
PT -symmetric mapping of three states and its implementation on

a cloud quantum processor

Yaroslav Balytskyi,1 Yevgen Kotukh,2 Gennady Khalimov,3, Sang-Yoon Chang4

1Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
2Department of Information Technologies, Yevhenii

Bereznyak Military Academy, Kyiv, 04050, Ukraine
3Department of Information Security, Kharkiv National

University of Radio Electronics, Kharkiv, 61166, Ukraine
4Department of Computer Science, University of

Colorado, Colorado Springs, Colorado 80918, USA

(Dated: June 21, 2024)

1



Abstract

Recently, PT -symmetric systems have garnered significant attention due to their unconventional

properties. Despite the growing interest, there remains an ongoing debate about whether these

systems can outperform their Hermitian counterparts in practical applications, and if so, by what

metrics this performance should be measured. We developed a novel PT -symmetric approach for

mapping N = 3 pure qubit states to address this, implemented it using the dilation method, and

demonstrated it on a superconducting quantum processor from the IBM Quantum Experience. For

the first time, we derived exact expressions for the population of the post-selected PT -symmetric

subspace for both N = 2 and N = 3 states. When applied to the discrimination of N = 2 pure

states, our algorithm provides an equivalent result to the conventional unambiguous quantum state

discrimination. For N = 3 states, our approach introduces novel capabilities not available in tradi-

tional Hermitian systems, enabling the transformation of an arbitrary set of three quantum states

into another, at the cost of introducing an inconclusive outcome. Our algorithm has the same error

rate for the attack on the three-state QKD protocol as the conventional minimum error, maximum

confidence, and maximum mutual information strategies. For post-selection quantum metrology,

our results provide precise conditions where PT -symmetric quantum sensors outperform their Her-

mitian counterparts in terms of information-cost rate. Combined with punctuated unstructured

quantum database search, our method significantly reduces the qubit readout requirements at the

cost of adding an ancilla, while maintaining the same average number of oracle calls as the original

punctuated Grover’s algorithm. This provides significant advantages for NISQ-era computers. Our

work opens new pathways for applying PT symmetry in quantum communications, computing,

and cryptography.

Keywords: PT -symmetric transformations; Quantum state discrimination; Quantum sensing; Quantum

database search; IBM Quantum Experience; Quantum key distribution; Qubit readout cost.
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I. INTRODUCTION

The problem of identifying information stored in a quantum system is fundamental in

quantum computer science, and the simplest option is to use two-dimensional systems or

qubits to store quantum information. In classical physics, the system’s state variables are

also observables and there is no fundamental limitation on the precision with which they

can be determined. By contrast, the quantum observables are represented by operators

acting on the vector space, which in the general case do not commute, and the outcome of

the measurement has statistical rather than deterministic properties. Quantum systems in

different non-orthogonal states are impossible to perfectly distinguish even when arbitrarily

large but finite number of samples for the measurements are available [1–6]. In other words,

no test can guarantee a correct guess every time, a fact highlighted by the quantum Chernoff

bound [7].

Quantum state discrimination involves two parties who agree on a set of allowed states

in which the system can be, and their prior probabilities of occurrence. A measurement can

obtain only a finite amount of information, and thus this set must be finite. Alice prepares

a state from this set and sends it to Bob, who must determine it using the appropriate

measurement. Quantum state discrimination has several important applications. In par-

ticular, it is strongly linked to a dimension witness of quantum systems [8] and represents

an operational interpretation of conditional mutual entropy [9]. The quantum key distri-

bution (QKD) security is based on the hardness of quantum state discrimination and the

no-cloning theorem [10]. The search over an unstructured database can be mapped to the

discrimination of the states exponentially close to each other [11].

Quantum state discrimination is difficult apart from the N = 2 case, and the exist-

ing strategies for quantum state discrimination can be classified into the minimum error

discrimination [2], unambiguous discrimination [12, 13], and maximum confidence discrim-

ination [14], each with its advantages and drawbacks. The minimum error discrimination

solution was obtained for the states possessing particular symmetries such as “geometrically

uniform” states [15], and mirror-symmetric states [16]. In the general case of N = 3 states,

the minimum error discrimination solution for pure qubit states was obtained in [17, 18]. In

the general case, however, the solution requires intricate computation. Unambiguous state

discrimination can be achieved only for linearly independent states [19], and therefore is

impossible for N = 3 qubit states.

Meanwhile, recent developments in PT -symmetric quantum mechanics [20–22], where the

condition of Hermiticity is replaced by the condition of PT -symmetry, provide new opportu-

nities for the quantum information science, that are not available in the usual Hermitian case.

Such theories possess an additional degree of freedom represented by the α parameter and in
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the limit α → 0, the intersection of PT -symmetric and Hermitian cases are real symmetric

Hamiltonians [23]. At certain values of the α parameter, the degeneracies occur, known as

exceptional points, which correspond to coalescing eigenvectors and eigenvalues [24, 25].

These points can be used in multiple applications. First, in the PT -symmetric system,

the time of quantum evolution may approach theoretically zero near the exceptional point,

while a finite time is needed in the Hermitian one. This effect was demonstrated both the-

oretically [26] and experimentally [27]. Second, it was used for enhanced sensing [28–33],

and it have been shown that PT -symmetric sensors are 8.856 times superior to Hermitian

ones [34]. Moreover, PT -symmetric operations increase the quantum Fisher information

(QFI) needed to increase the accuracy of quantum parameter estimation [35, 36], which

in turn was used for the Bayesian parameter estimation [37–39]. The existence of excep-

tional points was demonstrated in multiple classical systems as well [40–48], and they found

applications in laser mode management [49–51], and topological mode transfer [52–55].

For N = 2 states, PT -symmetric quantum state discrimination was developed in [56].

However, PT -symmetric transformation inherently requires postselection, and no formula

for the probability of successful postselection was provided in [56]. Our work extends this

method to N = 3 states and, for the first time, derives exact expressions for the population

of the postselected space for both N = 2 and N = 3.

The applicability of our results extends beyond quantum state discrimination, allowing

us to identify scenarios and conditions in which PT -symmetric systems outperform their

Hermitian counterparts. As discussed further in the text, PT -symmetric metrology can be

viewed as part of a broader class of postselected metrology, which is capable of producing

anomalously large information-cost rates [57]. However, previous research [57] did not ex-

plicitly identify the probability of successful postselection (pps) and the effective QFI rescaled

by this probability (ppsθ Ips), which together define the information-cost rate. Our results,

detailed further in the text, enable precise quantification of the information-cost rate in

PT -symmetric postselection qubit metrology, providing experimentalists with the necessary

tools to evaluate the performance of such systems.

Additionally, Grover’s search algorithm operates effectively within a two-dimensional sub-

space [58], making our results directly applicable to this scenario. By integrating our PT -

symmetric approach with the punctuated version of Grover’s algorithm [59, 60], we demon-

strate a significant reduction in qubit readout costs at the cost of introduction of an ancilla,

used only once to perform the PT -symmetric transformation. This reduction is achieved

while preserving the same average number of oracle calls as the original punctuated ver-

sion of Grover’s algorithm. Consequently, our method enhances the efficiency of quantum

searches, particularly for NISQ-era computers [61], by optimizing resource usage without
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compromising performance.

RESULTS AND STRUCTURE OF THE PAPER

First, we provide a necessary background on PT symmetry in Section II. In Section III,

we develop a PT symmetric approach for the N = 3 pure quantum states discrimination,

which consists of two stages of PT symmetric evolution. In the first one, two of the three

states are made mutually orthogonal in terms of the Hermitian scalar product. The second

stage enables the transformation of a given set of three arbitrary states into another set of

states as required. In the limiting case as α approaches ±π
2
, near the exceptional point,

the geometry of the postselected space closely resembles that of a two-state scenario. Our

initial findings regarding the PT -symmetric subsystem for N = 3 states [62] were validated

through experiments conducted on an optical setup [63] (see Section III and Ref. [38] therein

for further information). In Section IV, we derive, for the first time, exact expressions for

the population of the postselected PT -symmetric subspace for both N = 2 and N = 3. In

contrast, prior studies have relied on numerical computations and experimentation [63–66] to

embed the PT -symmetric subsystem into a Hermitian Hamiltonian. We show that for N = 2

states, the proposed method has the same probability of success as conventional unambiguous

quantum state discrimination [13]. This fact was experimentally determined in [63] and

confirmed in a more recent experimental work [64], which also found that this procedure

while having the same success probability, requires fewer quantum resources compared to

the regular Hermitian case. Our work provides the missing analytical derivation of this fact.

The corresponding results for N = 3 are used further in the text to identify applications and

relevant metrics where PT -symmetric systems outperform their Hermitian counterparts.

For N = 3, in Section V, we provide a comparison between our theoretical model and the

results of its implementation on IBM Quantum Experience. The details of implementation

are provided in Methods. In Section VI, we apply our algorithm to an attack on the trine

state QKD protocol [67] and demonstrate that our algorithm achieves the same error rate

as the minimum error, maximum confidence, and maximum mutual information strategies.

In Section VII, we apply our results to quantum sensing with non-Hermitian PT -

symmetric gates. Such a setup promises divergent susceptibility [68], which is relevant

for sensing applications. However, it has been shown that the QFI under postselection does

not increase [69], indicating that PT -symmetric quantum sensing cannot outperform Hermi-

tian sensing in terms of QFI. Additionally, when rescaled by the probability of a successful

outcome, the effective susceptibility does not diverge, as most measurements do not yield

meaningful information about the parameter of interest [70]. While the results in [70] suggest
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that non-Hermitian sensors do not outperform their Hermitian counterparts when resources

are unlimited, they also indicate that this conclusion may not hold in practice due to the

inevitable limitation of resources. In Section VII, we explicitly compute the QFI rescaled by

the maximal probability of successful postselection and show that, at the exceptional point,

it is the same as in the Hermitian case, thus aligning with previous research.

At the same time, as demonstrated in [57], postselected quantum metrology can outper-

form Hermitian metrology in terms of the information-cost rate when the measurement cost

is sufficiently high, yielding better results in resource-constrained scenarios. However, the

precise expression for the QFI rescaled by the probability of successful postselection was not

found in [57], but our work provides this crucial detail. These exact formulas enable the

identification of specific conditions—considering preparation, postselection, and measure-

ment costs—under which a PT -symmetric sensor outperforms its Hermitian counterpart.

This provides experimentalists with the necessary tools to evaluate and implement PT -

symmetric sensors, optimizing their performance and taking full advantage of the benefits

offered by PT -symmetry in various quantum metrology applications.

Finally, in Section VIII, we consider our approach in the context of unstructured quantum

database search. Previous studies [11, 56, 71] discussed the potential to improve unstructured

quantum database searches by applying PT symmetry. Since the advantages provided by

PT symmetry come at the price of introducing an inconclusive outcome, it is impossible

to reduce the average number of oracle calls [11, 56, 71] to find the marked element in

the database, in agreement with our results. However, as we discuss in the same Section,

in addition to the number of oracle calls, circuit depth and the cost of reading qubits are

critical parameters that can limit the performance of NISQ computers. We demonstrate that,

when combined with the punctuated unstructured quantum database search, our algorithm

significantly reduces the qubit readout demands while preserving the average number of

oracle calls. Our results highlight the practical advantages of PT -symmetric approaches in

quantum computing, offering means to optimize resource usage and improve performance in

real-world applications.

We present our conclusions and outline future work in Section IX. For details on numerical

input for processors from IBM Quantum Experience, see Methods X.

II. BACKGROUND ON PT SYMMETRY

For a complete description of the physical system, the energy eigenvalues of its Hamilto-

nian must be real-valued. Complex energies are often used to describe dissipative phenomena

when the probability of finding a particle decreases over time. However, the decaying parti-
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cle does not vanish but transforms into other particles, making this description incomplete.

The condition of reality of the spectra can be achieved by constraining the Hamiltonian to

be Hermitian, H = H†. However, this condition is not necessary and can be replaced by a

condition of unbroken PT -symmetry [20–22], which guarantees that all eigenvalues of the

Hamiltonian are real. Additionally, it provides an extra degree of freedom not available in

the Hermitian case, which we describe further.

The Hamiltonian is PT -symmetric if it satisfies the condition H = HPT . The signs of the

quantum mechanical coordinate and momentum, x̂ and p̂, are changed by the parity operator

P as Px̂P = −x̂, P p̂P = −p̂, and for the case of qubit, up to a unitary transformation, is

given by [26]:

P =

0 1

1 0

 (1)

Time-reversal operator T changes the signs of the imaginary unit and the momentum oper-

ator as T iT = −i and T p̂T = −p̂. The PT operator is a combination of P and T . For the

case of qubit, the most general PT -symmetric depends on three real parameters r, s and β

as [56]:

H = HPT =

reiβ s

s re−iβ

 (2)

The PT -symmetric Hamiltonian is called to possess an unbroken PT symmetry if each

of its eigenfunctions is also an eigenfunction of the PT operator. This condition guarantees

that all energy eigenvalues are real [72, 73]. Additionally, this condition provides an extra C
operator, which is not available in the Hermitian case. This operator is represented by the

sum of all eigenfunctions of the PT -symmetric Hamiltonian in Eqn. 2:

Hψn (x) = Enψn (x) , C (x, y) =
2∑

n=1

ψn (x)ψn (y) (3)

For the qubit case, it takes the form:

C =
1

cos (α)

i sin (α) 1

1 −i sin (α)

 , (4)

with α being expressed as sin (α) = r
s
sin (β). As a result, the set of commuting operators in

the PT -symmetric theory is bigger in comparison with the Hermitian case, [C,H] = 0 and

[C,PT ] = 0. The ket vector both in the Hermitian and PT -symmetric cases has the same

form:

|ψ⟩ =

 cos
(
θ
2

)
eiϕ sin

(
θ
2

)
 , (5)
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with θ and ϕ being the meridian and parallel of the Bloch sphere of the qubit respectively.

The difference lies in the scalar product, which is fixed in the Hermitian case but is defined

by the C operator in the PT -symmetric case, as given in Eqn. 4. The scalar product is

defined as (⟨ψ|)CPT = (CPT |ψ⟩)T and (⟨µ|ν⟩)CPT = (CPT |µ⟩)T · |ν⟩, where the superscript

T denotes matrix transposition. The CPT operation is a combination of the C and PT
operators, as previously defined. The limit α → 0 recovers the regular Hermitian case since

lim
α→0

(C) = P .

This property was utilized for N = 2 state discrimination [44] to manipulate the angle

between state vectors, effectively converting them into orthogonal ones. The no-cloning the-

orem [10] still applies to both the Hermitian and PT -symmetric cases, as this conversion oc-

curs at the cost of introducing an inconclusive outcome. This means that the PT -symmetric

part of the complete wave function of the system in the general case has a norm of less than

one. For two non-orthogonal states on the ϕ = −π
2
parallel:

|ψ1,2⟩ =

 cos
(
π∓2σ

4

)
−i sin

(
π∓2σ

4

)
 , (6)

this conversion may be achieved by two possible Solutions :

• Solution 1: zeroing the CPT product, (CPT |ψ1⟩)T ·|ψ2⟩ = 0, by setting the Hamiltinian

in Eqn. 2 to make sin (α) = r
s
sin (β) = cos (σ).

• Solution 2: performing PT -symmetric Hamiltonian evolution to (⟨ψ1|ψ2⟩)Hermitian = 0

for a time τPerp given by:

sin2 (ωτPerp) =
cos2 (α) cos (σ)

2 sin (α) (1− sin (α) cos (σ))
, ω =

√
s2 − r2 sin2 (β), (7)

effectively modifying the metrics as:

cos2 (α) e+iH†te−iHt =

cos2 (ωt− α) + sin2 (ωt) −2i sin2 (ωt) sin (α)

2i sin2 (ωt) sin (α) cos2 (ωt+ α) + sin2 (ωt)

 (8)

In contrast to the Hermitian case, in PT -symmetric dynamics, the states |0⟩ and |1⟩ exhibit
an angular separation of π − 2|α| [26]. As the system approaches the exceptional point in

the limit α → ±π
2
, these states merge.

In Section III, we extend the PT -symmetric approach to three states, N = 3, through

a double PT -symmetric evolution. In Section IV, we show that for the case of two states,

N = 2, and minimal value of α allowed by Eqn. 7, this approach is equivalent to an unam-

biguous quantum state discrimination [13]. In the same Section, we derive the corresponding
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expressions for N = 3. Further in the text, we demonstrate novel features not present in the

Hermitian case by leveraging the properties of PT -symmetric exceptional points.

III. SCHEME FOR PT -SYMMETRIC TRANSFORMATION OF N = 3 STATES

Our approach consists of three steps and can be summarized as:

• Step 1 : evolve two of the states, |ψ1⟩ and |ψ2⟩, into the orthogonal ones in terms of the

Hermitian scalar product, (⟨ψ1|ψ2⟩)Hermitian = 0, by applying the first PT -symmetric

evolution.

• Step 2 : By applying a unitary rotation, convert these effectively orthogonal states

into |ψ1,2⟩ → 1√
2

 1

±i

. In these positions, they remain orthogonal under the PT -

symmetric operations with an arbitrary value of the α parameter, allowing us to ma-

nipulate this parameter to adjust the relative angle to the third state.

• Step 3 : Perform a second PT -symmetric evolution to adjust the angle between |ψ1,2⟩
and |ψ3⟩, and perform the projective measurement in PT -symmetric subsystem.

Without loss of generality, an arbitrary set of three states |ψi⟩ =

 cos
(
θi
2

)
eiϕi sin

(
θi
2

)
, i ∈ [1, 3] can

be adjusted to the following positions by unitary rotations provided in Eqn. 94 in Methods:

|ψ1,2⟩ →

 cos
(
π∓2σ

4

)
−i sin

(
π∓2σ

4

)
 , |ψ3⟩ →

 cos
(
µ
2

)
eiν sin

(
µ
2

)
 , (9)

and σ, µ and ν parameters in the following equations.

In Step 1, we use PT -symmetric evolution controlled by the Hamiltonian in Eqn. 2, and

perform it for a time τPerp in Eqn. 7. As a result, the first pair of states takes the form:

|ψ1⟩ →

 cos
(
δ
2

)
−i sin

(
δ
2

)
 , |ψ2⟩ →

 sin
(
δ
2

)
i cos

(
δ
2

)
 , (10)

with the δ parameter provided by the Eqn. 11 and 12:

(11)cos

(
δ

2

)
=

cos (ωτPerp − α) cos
(
π−2σ

4

)
− sin (ωτPerp) sin

(
π−2σ

4

)
√
V

,
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|ψ3〉|ψ1〉

|ψ2〉

α→ π
2

Figure 1. Geometry of posts-

elected space for α→ π
2 .

|ψ3〉

|ψ1〉

|ψ2〉

α→ −π
2

Figure 2. Geometry of posts-

elected space for α→ −π
2 .

|ψ′
3〉

|ψ3〉

|ψ1〉

|ψ2〉

α ∼ ρ′ − ρ

Figure 3. Geometry modifica-

tion by α variation.

(12)V = 1− cos (2ωτPerp) sin
2 (α)

+ 2 sin (ωτPerp) sin (α) (cos (ωτPerp) cos (α) sin (σ)− sin (ωτPerp) cos (σ))

In Step 2, we apply the following gate with the χ parameter given by Eqn. 103 in Methods:

(13)W =
1√
2

1 i

i 1

 ·

1 0

0 ie−iχ

 ·

 cos
(
δ
2

)
i sin

(
δ
2

)
i sin

(
δ
2

)
cos
(
δ
2

)
 ,

∣∣χ(1,2,3)

〉
= W

∣∣ψ(1,2,3)

〉
(14)

The resulting states take the following form, with ρ = ξ + π
2
and ξ provided in Eqn. 103:

|χ1⟩ =
1√
2

1

i

 , |χ2⟩ =
1√
2

 1

−i

 , |χ3⟩ =

 cos
(
ρ
2

)
i sin

(
ρ
2

)
 (15)

After Step 2, the first two states are orthogonal, and we can adjust their relative angles

to the third state through the second PT -symmetric evolution, constituting Step 3. For

completeness, we consider both Hermitian and CPT measurements corresponding to the

aforementioned Solution 1 and Solution 2.
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A. Step 3 by Hermitian measurement

We apply the second PT -symmetric evolution by the Hamiltonian in Eqn. 2 for a time

τ II , and the relative angles between the evolved states κ12, κ13 and κ23 are given by:

(16)


cos2PT (κ12) =

2 tan2(α) sin2(2ωτII)
1+sec2(α)−tan2(α) cos(4ωτII)

cos2PT (κ13, κ23) =

(
√
2 sin(π±2ρ

4 )[(1±2 sin(α)) sin2(ωτII)+cos2(ωτII+α)]+sin(2α) cos( ρ
2) sin(2ωτII))

2

2((1±sin(α))2 sin2(ωτII)+cos2(α) cos2(ωτII))(sin2(ωτII)(1+2 sin(α) sin(ρ))−sin(2α) sin2( ρ
2) sin(2ωτII)+cos2(ωτII−α))

By the subscript PT in cos2PT , we mean the effective cosine squared in PT -symmetric

subspace after postselection. We derive exact expressions for the probability of postselection

the next Section IV. After the time τ II = π
2ω
, these expressions take the form:cos2PT (κ12) = 0

cos2PT (κ13, κ23) =
(1±sin(α))2(1±sin(ρ))

3+4 sin(α) sin(ρ)−cos(2α)

(17)

In the limit α → π
2
we obtain:

cos2PT (κ13) = 1− (1− sin (ρ))
(
π
2
− α

)4
16 (1 + sin (ρ))

+O

((π
2
− α

)5)
, (18)

cos2PT (κ23) =
(1− sin (ρ))

(
π
2
− α

)4
16 (1 + sin (ρ))

+O

((π
2
− α

)5)
, (19)

and for α → −π
2
we have:

cos2PT (κ13) =
(1 + sin(ρ))

(
π
2
+ α

)4
16 (1− sin(ρ))

+O

((π
2
+ α

)5)
, (20)

cos2PT (κ23) = 1− (1 + sin(ρ))
(
π
2
+ α

)4
16 (1− sin(ρ))

+O

((π
2
+ α

)5)
(21)

The corresponding geometry of the states in these limits is shown in Fig. 1 and Fig. 2.

These results apparently seem contradictory to the well-known impossibility of unambiguous

discrimination of linearly dependent states [19]. However, such PT -symmetric transforma-

tion inevitably involves postselection, and in the next Section IV, we show that changing

the angles in the PT -symmetric subspace happens at the cost of reduction of probability

of successful postselection. When considering the probability of postselection, these results

align with those in [19], as we show further in the text.
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As we showed earlier, an arbitrary set of three states can be reduced to the states in

Eqn. 15 through PT -symmetric transformations. Thus, an arbitrary set of three states is

uniquely characterized by its ρ value, up to the initial unitary transformation described in

the Methods. Therefore, the parameter α can be used to convert a set of three states char-

acterized by the parameter ρ into another set of three states corresponding to the parameter

ρ′. This can be done by setting the value of α to be:

sin (α) = min
{cos(ρ+ρ′

2

)
sin
(
ρ′−ρ
2

) , sin
(

ρ′−ρ
2

)
cos
(
ρ+ρ′

2

) }, (22)

depending on the values of ρ and ρ′ to ensure that |sin (α) |≤ 1, as illustrated in Fig. 3.

By running Steps 1 and 2 backward, one can transform the second set of states back to

the first set. As we discuss in Section IV, when the postselection probability is taken into

account, this does not lead to a reduction in error rate compared to conventional Hermitian

approaches. However, this property may be useful for the discrimination of states with highly

asymmetric geometries, as we discuss in Section VI.

As an example, one can achieve effective mirror-symmetric geometry of postselected states

corresponding to ρ′ = 0, when cos2PT (κ13) = cos2PT (κ23) =
1
2
in Eqn.17, by choosing:

sin (α) =
{
− cot

(ρ
2

)
,− tan

(ρ
2

)}
(23)

After application of S gate:

S =

1 0

0 i

 , (24)

this set of states is transformed to |+⟩, |−⟩, and |0⟩ which are stabilizer states [74]. As

we show in Section IV, even though the effective geometry of postselected states is mirror-

symmetric, the postselection changes the prior probabilities. Therefore, even though the

effective angles κ13 = κ23 = π
4
are the same, the prior probabilities of |ψ1⟩ and |ψ2⟩ are

different in the general case.

B. Step 3 CPT measurement

The same result can be achieved using the CPT measurement, since for an arbitrary α,

the states |ψ1⟩ and |ψ2⟩ are mutually orthogonal:

(⟨ψ1|ψ2⟩)CPT = 0; (⟨ψ1,2|)CPT =
(1± sin (α))√

2 cos (α)
(1, ∓ i) (25)
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This allows the value of α to be used to adjust the relative angles with the third state, κ13

and κ23: cos2PT (κ12) = 0

cos2PT (κ13, κ23) =
(1±sin(α))(1±sin(ρ))
2(1+sin(α) sin(ρ))

, (26)

and for α → π
2
represented in Fig. 1:

cos2PT (κ13) = 1−
(
π
2
− α

)2
(1− sin(ρ))

4(1 + sin(ρ))
+O

((π
2
− α

)3)
, (27)

cos2PT (κ23) =

(
α− π

2

)2
(1− sin(ρ))

4(1 + sin(ρ))
+O

((
α− π

2

)3)
(28)

In the limit α → −π
2
corresponding to Fig. 2:

cos2PT (κ13) =

(
π
2
+ α

)2
(1 + sin(ρ))

4(1− sin(ρ))
+O

((π
2
+ α

)3)
, (29)

cos2PT (κ23) = 1−
(
π
2
+ α

)2
(1 + sin(ρ))

4(1− sin(ρ))
+O

((π
2
+ α

)3)
(30)

Analogously to the Hermitian case, the CPT projection operators can be introduced which

are the CPT observables:

P̂1,2 =

( |ψ1,2⟩⟨ψ1,2|
⟨ψ1,2|ψ1,2⟩

)
CPT

=
1

2

 1 ∓i
±i 1

 ,
[
CPT , P̂1,2

]
= 0 (31)

Similarly to the Hermitian case in Eqn. 22, it is possible to transform the states ρ → ρ′ by

choosing:

sin (α) =
sin (ρ′)− sin (ρ)

1− sin (ρ′) sin (ρ)
, (32)

and when α = −ρ, three states are reduced to effectively mirror-symmetric corresponding

to ρ′ = 0, as illustrated in Fig. 3.

Unlike prior studies that relied on numerical computations [65, 66], in the next Section IV,

we derive precise expressions for the maximum probability of achieving a definitive outcome

following PT -symmetric evolution. This enables a fair comparison of their performance with

their Hermitian counterparts in the subsequent Sections.
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IV. EMBEDDING BY THE DILATION METHOD FOR N = 2 AND N = 3

We implement the PT -symmetric Hamiltonian evolution by extending the original qubit

with ancilla and employing Neumark’s theorem [75], similarly to [65, 66]. The combined

ancilla-qubit wave function |Ψcombined (t)⟩ with the PT -symmetric subspace |ψPT (t)⟩ is:

|Ψcombined (t)⟩ = |ψPT (t)⟩ |0⟩ancilla + ζ (t) |ψPT (t)⟩ |1⟩ancilla , (33)

where operator ζ (t) = ζ† (t) =
(
N (t)− 1̂

) 1
2 must maintain all its eigenvalues to be real, and

the initial value N (0) must be correspondingly chosen in order to ensure it, with:

N (t) = T exp

[
−i
∫ t

0

dτ ′ H†
q (τ

′)

]
N (0) T̃ exp

[
i

∫ t

0

dτ ′ H (τ ′)

]
, (34)

where T and T̃ are the time and and anti-time-ordering operators, respectively.

Further in the text, we perform analytical computations to find the minimal value of

N (0) that maximizes the probability of the conclusive outcome. Thus, unlike numerical

computations in [65, 66], for both the first and second stages of PT -symmetric evolution,

we find the population of postselected space exactly by simplifying the following equation:

D =
⟨ψPT (t) |ψPT (t)⟩

⟨ψPT (t) |ψPT (t)⟩+ ⟨ψPT (t)| ζ2 (t) |ψPT (t)⟩ , (35)

A. First stage, and N = 2 case

As demonstrated experimentally in [63, 64], at the critical value, PT -symmetric quantum

state discrimination has the same success probability rate as the optimal unambiguous state

discrimination in Hermitian systems [13]. Our present work provides the analytical derivation

that was previously lacking in the literature.

First, the smallest value of α in Eqn. 7 allowing to perform PT -symmetric evolution

corresponding to sin2 (ωτPerp) = 1 is given by:

sin (α) = (1− sin (σ)) sec (σ) (36)

For added convenience, alongside the pair of reference vectors in Eqn. 6, we introduce the

vector situated between them, aligning along the same parallel of the Bloch sphere:

|ψm⟩ =

 cos
(
π+2m

4

)
−i sin

(
π+2m

4

)
 (37)
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The resulting cos2PT (|ψm⟩ , |ψ1⟩) in the postselected subspace turns out to be the same as

computed by the CPT scalar product [37]:

cos2PT (|ψm⟩ , |ψ1⟩) =
1− cos (m− σ)

2 (1− cos (m) cos (σ))
(38)

By explicitly computing the eigenvalues of ζ (t), we find that the requirement that they

remain real throughout the evolution simplifies to the condition:

N (0) cot
(σ
2

)
− 1 ≥ 0 & N (0) tan

(σ
2

)
− 1 ≥ 0, (39)

and thus:

N (0) = max
{
tan
(σ
2

)
, cot

(σ
2

)}
(40)

For 0 < σ < π
2
and cos (σ) > 0, one needs to choose N (0) = cot

(
σ
2

)
, and at the end of the

PT -symmetric evolution, the ζ operator can be found explicitly:

ζI+

(
τ I =

π

2ω

)
=

1

2

√
cos(σ) csc

(σ
2

) 1 −i
i 1

 , (41)

as well as the population of postselected space representing the probability of a conclusive

outcome:

DI
+ (m,σ) =

1

2
(1− cos (m) cos (σ)) sec2

(σ
2

)
(42)

On the edges corresponding to |ψ1⟩ and |ψ2⟩, one finds:

DI
+ (σ, σ) = DI

+ (−σ, σ) = 1− cos (σ) = 1− |cos (σ) | (43)

For π
2
< σ < π and cos (σ) < 0, one needs to choose N (0) = tan

(
σ
2

)
leading to the following

ζ operator at the end of evolution:

ζI−

(
τ I =

π

2ω

)
=

1

2

√
− cos(σ) sec

(σ
2

) 1 i

−i 1

 , (44)

and the corresponding population of postselected space is:

DI
− (m,σ) =

1

2
(1− cos (m) cos (σ)) csc2

(σ
2

)
, (45)

DI
− (σ, σ) = DI

− (−σ, σ) = 1 + cos (σ) = 1− |cos (σ) | (46)

Combining Eqns. 43 and 46, one observes that when probability of successful outcome is

considered, the PT -symmetric discrimination of N = 2 quantum states developed in [56]
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Figure 4. cos2PT in PT -symmetric subsystem and population of postselected space corresponding to

Stage 1 of our algorithm, using expressions from Section IV, corresponding to the input state |ψ3⟩

as defined in Eqn. 60, and subsequently implemented on IBM Quantum Experience in Section V.

Figure 5. cos2PT in PT -symmetric subsystem and population of postselected space corresponding to

Stage 1 of our algorithm, using expressions from Section IV, corresponding to the input state |ψ′
3⟩

as defined in Eqn. 60, and subsequently implemented on IBM Quantum Experience in Section V.

converts two reference vectors in Eqn. 6 to orthogonal ones with the probability of the

conclusive outcome being 1−|cos (σ) |, the same as in a conventional unambiguous quantum

state discrimination [13]. We extend this result for N = 3 states in the next subsection.

Figs. 4 and 5 show several representative values of parameters used as input for Stage

1. It can be observed that higher values of σ, representing quantum states with better

distinguishability, correspond to higher probabilities of a decisive outcome. Using these

parameter values, we implement Stage 1 on IBM Quantum Experience in the next Section V.
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B. Second stage, and N = 3 case

Figure 6. cos2PT in PT -symmetric subsystem and population of postselected space for Stage 2 of

our algorithm with α > 0, using expressions from Section IV, corresponding to the input state |χ3⟩

as defined in Eqn. 15, and subsequently implemented on IBM Quantum Experience in Section V.

Similarly to Stage 1, by explicitly computing the ζ operator for the case of Stage 2, we

find that the condition on the reality of its eigenvalues reduces to:

N (0) ≥ 1 + cos(2α)

2− cos(2ωτ II) + cos(2α) cos(2ωτ II)± 2 sin(α) sin(ωτ II)
√

3 + cos(2α)− 2 sin2(α) cos(2ωτ II)
(47)

For 0 ≤ α < π
2
, one needs to choose the “-” sign which leads to the following ζ operator at

the end of evolution:

ζII+

(
τ II =

π

2ω

)
=

√
sin(α)

1− sin(α)

 1 −i
i 1

 (48)

This leads to the following probability of decisive outcome:

DII
+ (α, ρ) =

3 + 4 sin(α) sin(ρ)− cos(2α)

3 + 4 sin(α)− cos(2α)
(49)

Observe that DII
+

(
α, ρ = π

2

)
= 1, and in the limit α → π

2
:

DII
+ (α, ρ) =

1

2
(1 + sin(ρ)) +

1

32

(π
2
− α

)4
(1− sin(ρ)) +O

((π
2
− α

)5)
(50)

Thus, in this limit, the position ρ = −π
2
becomes close to almost always inconclusive.
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Similarly, for −π
2
< α ≤ 0, one chooses the “+” in Eqn. 47 and obtains:

ζII−

(
τ II =

π

2ω

)
=

√
− sin(α)

1 + sin(α)

 1 i

−i 1

 , (51)

DII
− (α, ρ) =

3 + 4 sin(α) sin(ρ)− cos(2α)

3− 4 sin(α)− cos(2α)
, (52)

and for this case, DII
−
(
α, ρ = −π

2

)
= 1, and in the limit α → −π

2
:

DII
− (α, ρ) =

1

2
(1− sin(ρ)) +

1

32

(
α +

π

2

)4
(1 + sin(ρ)) +O

((
α +

π

2

)5)
(53)

Importantly, combining two cases DII
±, we observe that:

cos2PT (κ23)DII
+ (α, ρ) =

(1− sin(α))2(1− sin(ρ))

3 + 4 sin(α)− cos(2α)
, (54)

cos2PT (κ13)DII
− (α, ρ) =

(1 + sin(α))2(1 + sin(ρ))

3− 4 sin(α)− cos(2α)
(55)

And similarly:

cos2PT (κ13)DII
+ (α, ρ) =

1 + sin (ρ)

2
= cos2

( π
2
− ρ

2

)
, (56)

cos2PT (κ23)DII
− (α, ρ) =

1− sin (ρ)

2
= cos2

( π
2
+ ρ

2

)
(57)

From Eqns. 54 and 55, it can be observed that when the probability of a decisive outcome

is taken into account, the PT -symmetric transformation during Stage 2 does not improve

state distinguishability. The state at the PT -symmetric exceptional point (|χ1⟩ or |χ2⟩) has
a low probability of a conclusive outcome. The state |χ3⟩, upon successful postselection, has

a small projection on the reference vector corresponding to the exceptional point. However,

its decisiveness (the probability of successful postselection) is much higher than that of the

state corresponding to the exceptional point (|χ1⟩ or |χ2⟩), as observed in Eqns. 49 and 52.

As a result, the average error rate remains the same as in the Hermitian case since all values

of ρ in Eqns. 54 and 55 are rescaled by the same factor. Similarly, from Eqns. 56 and 57,

one observes that an increase in cos2PT is accompanied by a reduction of DII
±, resulting in the

same average outcome as in the Hermitian case.

However, as we show in Section VII, the ability to consolidate all relevant information

about the parameter of interest within a small subset of events provides significant techni-

cal advantages over conventional Hermitian systems in terms of the information-cost rate.
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Additionally, as demonstrated in Section VIII, Eqn. 56 indicates that the application of

PT -symmetric operations does not reduce the number of oracle calls needed to find a target

in the unstructured quantum database. However, when combined with the punctuated ver-

sion of Grover’s search algorithm, it significantly reduces the qubit readout cost, presenting

substantial technical advantages for NISQ computers.

For α > 0, the output of Stage 2 is illustrated Fig. 6, and in the next Section V, we

confirm these analytical results by numerical computations and simulations on IBMQuantum

Experience.

V. IMPLEMENTATION ON IBM QUANTUM EXPERIMENCE

IBM Quantum Experience [76] is a quantum processor operating on superconducting

qubits that has become a leading candidate for scalable quantum computing platform, see

a review [77]. These devices already enabled proof-of-concept results such as quantum error

correction [78], fault-tolerant gates [79], experimental evidence of the violation of Mermin

and Leggett-Garg inequalities [80, 81], non-local parity measurements [82, 83], simulations

of paradigmatic models in open quantum systems [84], creation of highly entangled graph

states [85], determining the ground-state energies of the molecules [86] as well as imple-

mentation of quantum witnesses [87]. Moreover, PT -symmetric quantum mechanics can

enhance entanglement by local operations, a possibility prohibited in the Hermitian case, as

demonstrated experimentally by IBM Quantum Experience [66] based on theoretical findings

from [88].

To verify our analytical results in Section IV, we implemented both Stage 1 and

Stage 2 on IBM Quantum Experience, details on numerical inputs provided in the Meth-

ods X. We performed experiments on all processors provided by IBM Quantum Expe-

rience, namely ibm perth, ibmq jakarta, ibm lagos, ibm nairobi, ibm oslo, ibmq manila,

ibmq quito, ibmq belem, ibmq lima, simulator mps, simulator extended stabilizer,

ibmq qasm simulator, simulator statevector. In each experiment, total number of shots was

kept Nshots = 8192, and N (|ij⟩), i ∈ [0, 1] is a number of outcomes corresponding to |ij⟩,
such that

∑
i,j=1,2 N (|ij⟩) = Nshots.

For both Stages, the cosine squared between the reference vectors in PT -symmetric sub-

space is measured by counting the postselected outputs as shown in Eqn. 58:

cos2PT (|χ1⟩ , |χ3⟩) =
N (|00⟩)

N (|00⟩) +N (|10⟩) , (58)

while the population of the PT -symmetric subsystem is shown in Eqn. 59, correspondingly:
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D =
⟨ψPT |ψPT ⟩

⟨ψPT |ψPT ⟩+ ⟨ψPT | ζ2 |ψPT ⟩
=

N (|00⟩) +N (|10⟩)
N (|00⟩) +N (|10⟩) +N (|01⟩) +N (|11⟩) (59)

Figure 7. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 4
5 corresponding to the probe state |ψ3⟩ in Eqn. 60.

Figure 8. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 4
5 and ∆ = σ

2 corresponding to the probe state |ψ′
3⟩ in Eqn. 60.

For both Stages of our algorithm, the outputs from quantum processors are compared

to the analytical results derived in Section IV. We implement Stage 1 of our algorithm for

σ = 4
5
and 6

5
. To illustrate the changes in the geometry of the postselected space, we examine

the third state in two forms, |ψ3⟩ and |ψ′
3⟩:

|ψ3⟩ =

 cos
(
π+2δ
4

)
−i sin

(
π+2δ
4

)
 , |ψ′

3⟩ =

 cos
(
π+2∆

4

)
eiφ sin

(
π+2∆

4

)
 (60)

Theoretical predictions in Figs. 4 and 5 corresponding to Stage 1 using analytical results

from Section IV are compared to the experimental results in Figs. 7, 8, 9, 10, 11, and 12.
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Figure 9. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 4
5 and ∆ = σ

4 corresponding to the probe state |ψ′
3⟩ in Eqn. 60.

Figure 10. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 6
5 corresponding to the probe state |ψ3⟩ in Eqn. 60.

Figure 11. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 6
5 and ∆ = σ

2 corresponding to the probe state |ψ′
3⟩ in Eqn. 60.

Similarly, we implemented Stage 2 of our algorithm with the input state given in Eqn. 15
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Figure 12. Implementation of Stage 1 on IBM Quantum Experience using theoretical curves derived

in Section IV, with σ = 6
5 and ∆ = σ

4 corresponding to the probe state |ψ′
3⟩ in Eqn. 60.

for α = π
2
−1, α = π

2
−0.7, and α = π

2
−0.5. Fig.6 shows theoretical predictions corresponding

to Stage 2 as the α parameter approaches the exceptional point π
2
. It can be observed that

as the value of cos2PT flattens out when α → π
2
, the probability of a decisive outcome at

ρ = −π
2
approaches zero. For Stage 2, the corresponding comparisons between theoretical

predictions and experimental results are provided in Figs.13, 14, and15.

Figure 13. Implementation of Stage 2 on IBM Quantum Experience with theoretical curves derived

in Section IV, with α = π
2 − 1 corresponding to the probe state |χ3⟩ in Eqn. 15.

For both Stages, it is evident that the simulator mps, simulator extended stabilizer,

ibmq qasm simulator, and simulator statevector provided by IBM processors, as indicated

by circles, consistently exhibit superior agreement with theoretical predictions. Other proces-

sors, while successfully capturing the overall shapes of the theoretical curves, have significant

deviations. This may imply that quantum processors employing a Matrix Product State

representation, ranked-stabilizer decomposition, Open Quantum Assembly Language, and

those characterizing the quantum state of a system through a state vector are particularly

well-suited for performing PT -symmetric algorithms on IBM Quantum Experience [76].
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Figure 14. Implementation of Stage 2 on IBM Quantum Experience with theoretical curves derived

in Section IV, with α = π
2 − 0.7 corresponding to the probe state |χ3⟩ in Eqn. 15.

Figure 15. Implementation of Stage 2 on IBM Quantum Experience with theoretical curves derived

in Section IV, with α = π
2 − 0.5 corresponding to the probe state |χ3⟩ in Eqn. 15.

Therefore, we used these four simulators, simulator mps, simulator extended stabilizer,

ibmq qasm simulator, and simulator statevector, to perform simulation of attack three-state

QKD protocol [67]. The states used in this QKD protocol have 2π
3
angular separation:

|A⟩ =

1

0

 , |B⟩ =

 1
2

−
√
3
2

 , |C⟩ =

 −1
2

−
√
3
2

 (61)

The following gate:

K =

 1√
2

i√
2

1√
2
− i√

2

 , (62)

converts the reference states in Eqn. 61 to our conventions in Eqn. 37 as: |ψm,m = 0⟩ → |A⟩,∣∣ψm,m = 2π
3

〉
→ |B⟩,

∣∣ψm,m = −2π
3

〉
→ |C⟩. Since cos

(
2π
3

)
< 0, we use Eqn. 45 for the

probability of decisive outcome.
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Figure 16. Stage 1 for the states in Eqn. 37 used in three-state QKD protocol, with σ = 2π
3 and

N (0) ≈ Nmin. The state corresponding to m = 0 always yields a conclusive result D = 1.

In Fig. 16, one can observe a remarkable agreement between theoretical predictions for

Stage 1 from Section IV and experimental results from simulator mps, simulator extended stabilizer,

ibmq qasm simulator, and simulator statevector. For the specific geometry of states de-

scribed in Eqn. 61, it can be observed that Stage 1, with the value of α determined by

Eqn. 36 and N (0) = Nmin, transforms these states into a mirror-symmetric configuration.

In this configuration, |B⟩ and |C⟩ become orthogonal to each other, with |A⟩ positioned

between them. Regarding the probability of a decisive outcome, one can observe in Fig. 16

that D (|B⟩) = D (|C⟩) = 1
2
while D (|A⟩) = 1. Thus, the states |B⟩ and |C⟩ are 50% con-

clusive while the state |A⟩ is always conclusive. In the upcoming Section VI, we delve into

the implications of these observations and conduct a comparative analysis of our protocol

against existing approaches for attacking this QKD protocol.

VI. ATTACK ON THE TRINE-STATE QKD PROTOCOL

The available strategies for the attack on three-state QKD protocol are minimum error

and maximum mutual information approaches [67]. For the geometry of states in Eqn. 61,

minimum error and maximum confidence strategies coincide [3], and thus we do not consider

the latter.

If the encoded state is |A⟩, minimum error discrimination strategy yields correct result

with the probability 2
3
, and misclassifies |A⟩ as being |B⟩ or |C⟩ with the probability 1

6
. The

same applies for |B⟩ and |C⟩ through the permutation A → B → C. For minimum error

strategy obtaining |A⟩ after the measurement, the resulting density matrix is [67]:

24



ρMin.err. =
2

3
|A⟩ ⟨A|+ 1

6
|B⟩ ⟨B|+ 1

6
|C⟩ ⟨C| (63)

The maximum mutual information strategy excludes one of the states with certainty, but

the other two states remain equiprobable each with 50% probability and the resulting density

matrix:

ρMax.mut.inf. =
1

2

∣∣B̄〉 〈B̄∣∣+ 1

2

∣∣C̄〉 〈C̄∣∣ , (64)

where
∣∣B̄〉 and ∣∣C̄〉 are complementary to |B⟩ and |C⟩ [67]. However, both of these strategies

yield the same error rate, as demonstrated by [67], attributed to the inherent geometric

properties of these states since:

ρMin.err. = ρMax.mut.inf. =
1

2
|A⟩ ⟨A|+ 1

4
(65)

Now, consider the case when the attacker uses our PT -symmetric approach for N = 3

states we developed in the previous Sections. If Stage 1, as described in the preceding

Section V, produces an inconclusive result, the attacker immediately eliminates one of the

states with 100% confidence. This is because the probability of obtaining a decisive outcome

for one state is 100%, while the other two states are equiprobable, as illustrated in Fig. 16.

For a particular choice in Fig. 16, the attacker eliminates the state |A⟩ leaving |B⟩ and |C⟩
equiprobable. The probability of an inconclusive result in Stage 1 is given by:

p
(
|1⟩Iancilla

)
=

1

3
· 1
2
+

1

3
· 0 + 1

3
· 1
2
=

1

3
(66)

Thus, with probability 1
3
, our approach yields the result equivalent to the maximum mutual

information strategy.

In case the first postselection is successful, which happens with 2
3
probability, the resulting

postselected geometry of the states is mirror-symmetric. However, since the postselection

probability is nonuniform and varies for different states, their prior probabilities used as

input for the next Stage change from equiprobable to the values:

p
(
|A⟩ , |0⟩Iancilla

)
=

1 · 1
3

2
3

=
1

2
, p
(
|B⟩ , |0⟩Iancilla

)
= p

(
|C⟩ , |0⟩Iancilla

)
=

1
2
· 1
3

2
3

=
1

4
(67)

At this point, the attacker may choose to apply the strategy for mirror-symmetric configu-

ration [16] with p = 1
4
. In this scenario, the success probability rate remains 2

3
, consistent

with the original attack outlined in [67], as indicated by Eqn.(14) in [16]. Despite the change

in the geometry of the postselected space, the success rate remains unchanged due to the

varying probabilities of successful postselections for the states in Eqn. 61.
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Alternatively, if the attacker proceeds with Stage 2, as discussed in Section IV, one of

the states—|B⟩ or |C⟩—will have a 100% probability of successful postselection, depending

on whether α is greater or less than zero. Thus, if postselection of the Stage 2 fails, the

attacker immediately eliminates one of these states. For definiteness, let α > 0 and consider

the probability of a decisive outcome as given in Eqn. 49. In this case, one finds:

1−DII
+

(
α, ρ = −π

2

)
= 2

(
1−DII

+ (α, ρ = 0)
)
=

4 sin(α)

(1 + sin(α))2
(68)

Considering Eqns. 67 and 68, it is observed that the states |A⟩ and |C⟩ become equiprobable

while the state |B⟩ is eliminated:

p
(
|A⟩ , |1⟩IIancilla

)
p
(
|A⟩ , |0⟩Iancilla

)
= p

(
|C⟩ , |1⟩IIancilla

)
p
(
|C⟩ , |0⟩Iancilla

)
(69)

As a result, the scenario in which the second postselection fails, |1⟩IIancilla, is equivalent to a

maximum mutual information strategy.

If the postselection for Stage 2 is successful but the measurement returns the value cor-

responding to the projection on ρ = π
2
, the attacker eliminates the state |C⟩ corresponding

to ρ = −π
2
since in this case cos2PT

(
ρ = −π

2

)
= 0, as illustrated in Fig. 6. Similarly, the

remaining two states, |A⟩ and |B⟩, remain equiprobable since:

p
(
|B⟩ , |0⟩Iancilla

)
cos2PT

(
κ13, ρ =

π

2

)
DII

+

(
α, ρ =

π

2

)
=

1

4
, (70)

p
(
|A⟩ , |0⟩Iancilla

)
cos2PT (κ13, ρ = 0)DII

+ (α, ρ = 0) =
1

4
(71)

Finally, if the postselection at the Stage 2 is successful, and the measurement yields the

state with ρ = −π
2
projection corresponding to |C⟩, the state |B⟩ is excluded. Similarly, one

observes that:

p
(
|C⟩ , |0⟩Iancilla

)
DII

+

(
α, ρ = −π

2

)
= p

(
|A⟩ , |0⟩Iancilla

)
DII

+ (α, ρ = 0) cos2PT (κ23, ρ = 0) ,

(72)

and thus the states |A⟩ and |C⟩ remain equiprobable again.

In summary, coupling Stage 1 of our algorithm with a strategy for discriminating mirror-

symmetric states, as developed in [16], results in an outcome equivalent to the maximum

mutual information strategy in 1
3
of the cases and, in 2

3
of the cases, yields the same result as

the minimum-error strategy. If both Stages are employed, our approach yields an equivalent

result to the maximum mutual information strategy. Given that the minimum error and

maximum mutual information strategies exhibit the same error rate for this QKD protocol

due to Eqn. 65, our algorithm achieves precisely the same error rate as these strategies in

both cases.
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However, despite having the same error rate as conventional Hermitian approaches, as

discussed in [64], PT -symmetric quantum state discrimination is advantageous in terms of

the quantum resources involved. Additionally, while our algorithm does not provide an

advantage for the specific states used in the three-states QKD protocol, as given in Eqn. 61,

it can be advantageous in other scenarios. In cases involving highly nonsymmetric states,

where explicit solutions are not readily available and intricate computations are required [18],

our approach’s ability to map three arbitrary states to a predefined and standardized set can

be beneficial in practical applications.

In the following Sections, using the results derived earlier, we identify applications where

our algorithm offers significant technical advantages over its Hermitian counterparts.

VII. APPLICATIONS FOR POSTSELECTED PT -SYMMETRIC SENSING

Figure 17. Quantum Fisher information upon successful postselection FPT (α, ρ), and its effective

value rescaled by probability of successful postselection DII
+ (α, ρ).

With the help of explicit expressions for the probability of a decisive outcome in PT -

symmetric evolution derived in Section IV, we can now assess its implications for quantum

sensing applications. The use of non-Hermitian single-qubit gates for quantum sensing has

been proposed [68] because such systems exhibit divergent susceptibility, which promises in-

creased sensitivity. However, probabilistic metrology, evaluated by the mean square error of

estimation (MSE) and QFI, cannot extend the quantum limits of one-parameter estimation,

as shown in [69]. Recent work has confirmed that when postselection probability is taken

into account, average QFI and susceptibility do not increase [70]. As pointed out in [70],

postselected metrology does not outperform Hermitian metrology when resources are un-

limited. While postselected metrology can potentially outperform Hermitian metrology in
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practical scenarios where resources are limited [70], the exact conditions for this were not

specified in [70]. This is the subject of our paper and is specified further in the text.

In the conventional Hermitian approach, when measuring the value of ρ ∈
[
−π

2
, π
2

]
, two

projectors on two orthogonal directions saturate the Cramer-Rao inequality [89]. We sup-

plement these projectors with the PT -symmetric transformation to explore possible benefits

it can provide. Our results are consistent with the findings of all the aforementioned works.

Namely, in Fig. 6, one can observe a sharp spike in sensitivity at ρ = −π
2
in terms of cos2PT

reminiscent of [68]. Similarly to [35, 36], for the density matrix ρinit corresponding to the pure

state |χ3⟩ in Eqn. 15, we compute QFI FPure
ρ after the Stage 2 of PT -symmetric evolution:

ρStage 2 (t) =
e−iHtρinite

iH†t

Tr
(
e−iHtρiniteiH

†t
) , FPure

ρ = 2Tr

[(
∂ρρ

Stage 2
(
t = τ II =

π

2ω

))2]
(73)

One observes at ρ = −π
2
an apparently divergent QFI, similarly to [68]:

FPT (α, ρ) =
4 cos4(α)

(3 + 4 sin(α) sin(ρ)− cos(2α))2
=

(
α− π

2

)4
4(1 + sin(ρ))2

+O

((
α− π

2

)5)
, (74)

However, by an explicit computation, one obtains:

DII
+ (α, ρ)FPT (α, ρ) =

4 cos4(α)

(3 + 4 sin(α)− cos(2α))(3 + 4 sin(α) sin(ρ)− cos(2α))
(75)

As shown in Fig.17, the QFI in PT -symmetric postselected space, FPT (α, ρ), depicted on the

left, is significantly higher than that in the Hermitian case corresponding to α = 0. However,

at ρ = −π
2
, the average QFI, rescaled by the probability of successful postselection, remains

the same as in the Hermitian case. Additionally, as observed, when ρ > −π
2
, the effective

QFI is actually smaller than that in the Hermitian case. Therefore, the application of the

PT -symmetric exceptional point does not provide an advantage over the Hermitian case

in terms of average QFI, in complete agreement with [69] and [70]. However, as discussed

in [90], even though the average QFI after postselection remains the same as in the Hermitian

case, the ability to “condense” all QFI about the detected parameter into a small fraction of

events provides significant technical advantages, and we quantify these advantages further

in the text.

As discussed in [57], any real experiment involves the preparation cost (CP ), the final

measurement cost (CM), and, in the case of postselected metrology, the postselection cost

(Cps). Thus, a more reasonable figure of merit representing experimental realities is the

information cost rate, RHerm. for the Hermitian system, and RPT for the PT -symmetric

system, respectively:
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RHerm. =
I

CP + CM
, RPT =

ppsIps

CP + Cps + ppsCM
, (76)

where I = 1 is the QFI in the Hermitian system, Ips is the QFI upon successful postselection

in the PT -symmetric system, Ips = FPT (α, ρ), and pps = DII
+(α, ρ) is the probability of

successful postselection, as defined in our paper.

In the case when CM ≫ CP + Cps, as one observes from Eqn. 76 and Fig. 17:

RPT −→︸︷︷︸
CM≫CP+Cps

FPT (α, ρ)

CM
≫ RHerm. ≈ I

CM
, if α→ π

2
, ρ ≈ −π

2
, (77)

and the information-cost rate of PT -symmetric system drastically outperforms its Hermitian

counterpart, similarly to the conclusions of [57].

Figure 18. Illustrative values of the coefficients in Eqn. 78 in the vicinity of the exceptional point.

However, other results from [57] aimed at relaxing the condition CM ≫ CP + Cps are

inapplicable to the qubit case, as the unitary transformation encoding the qubit state has

exactly two eigenvalues. This condition may be too demanding in real-life experiments.

Nevertheless, the condition under which a PT -symmetric system outperforms its Hermitian

counterpart in terms of the information-cost rate can be significantly relaxed by explicitly

comparing RHerm. and RPT in Eqn. 76:

CM ≥ I −DII
+ (α, ρ)FPT (α, ρ)

DII
+ (α, ρ) (FPT (α, ρ)− I)CP +

I
DII

+ (α, ρ) (FPT (α, ρ)− I)Cps, (78)

with the coefficients’ explicit expressions being:
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
I−DII

+(α,ρ)FPT (α,ρ)

DII
+(α,ρ)(FPT (α,ρ)−I) = − (1+sin(α))2(1+sin(ρ))

sin(α)(3−cos(2ρ))+(3−cos(2α)) sin(ρ)

I
DII

+(α,ρ)(FPT (α,ρ)−I) = − csc(α)(3+4 sin(α)−cos(2α))(3+4 sin(α) sin(ρ)−cos(2α))
16(sin(α)+sin(ρ))(1+sin(α) sin(ρ))

(79)

As observed in Fig. 18, in the vicinity of the exceptional point when α → π
2
and ρ ≈ −π

2
,

the coefficients in Eqn. 79 approximately equal:

I − DII
+ (α, ρ)FPT (α, ρ) ≈ 0,

I
DII

+ (α, ρ) (FPT (α, ρ)− I) ≈ 1, (80)

and thus the condition CM ≫ CP + Cps is relaxed to the much weaker condition of CM ≳ Cps.
In single-particle experiments, post-sampling can be practically free and save resources by

eliminating the need to run the final measurement in case of failed post-selection [91], and

thus our results are directly applicable to current experimental designs.

As shown in Fig. 18, the corresponding coefficients become large as one departs from

the exceptional point. Therefore, PT -symmetric sensors should be used sufficiently close to

the exceptional point to outperform their Hermitian counterparts. Our results in Eqns. 78

and 79 provide experimenters with the necessary tools to evaluate the performance of an

arbitrary PT -symmetric system using three reference states for single-parameter estimation

tasks.

The next Section assesses the technical merits of our approach for the punctuated quantum

database search.

VIII. APPLICATION FOR PUNCTUATED UNSTRUCTURED DATABASE SEARCH

Finally, consider our approach in conjunction with the search over an unstructured

database of size M = 2n. The renowned Grover’s search algorithm [58] finds the solu-

tion in time ∼
√
M and is optimal in terms of the number of oracle calls required for the

search process [92].

As the quantum state of Grover’s algorithm remains in a two-dimensional subspace after

each application of the oracle [58], our results developed for the qubit case in Section IV are

directly applicable to the unstructured database search as well. Let |ω⟩ be the state to be

identified, |s⟩ = 1√
M

∑M−1
x=0 |x⟩ be the initial state consisting of all possible options before

applying the oracles, and |s′⟩ = 1√
M−1

∑
x ̸=ω |x⟩ be the state orthogonal to |ω⟩. In the limit

M ≫ 1, the state of the system after applying the oracle k times, in the two-dimensional

basis formed by orthogonal states |s′⟩ and |ω⟩, is given by [58]:
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|ΨG⟩ =

cos
(

2k√
M

)
sin
(

2k√
M

)
 (81)

After applying the oracle k times, the probability of correctly identifying the state is:

p+ (k) = sin2

(
2k√
M

)
, (82)

and approaches 100% when k = π
4

√
M [58], and

∣∣∣ΨG

(
k = π

4

√
M
)〉

= |1⟩.
However, in practice, it is possible that the cycle of Grover’s search algorithm is not

completed, and the final measurement is performed before the state of the system represented

by |ΨG⟩ reaches |1⟩. For example, when only half the number of oracles needed to perform

the complete cycle of Grover’s search algorithm is used, the state of the system is:∣∣∣∣ΨG

(
k =

1

2
× π

4

√
M

)〉
=

1√
2

1

1

 , (83)

and the applied measurement will yield the correct solution 50% of the time [59, 60]. The

average number of oracle calls needed to find the solution remains the same as in the original

Grover’s algorithm since the final measurement must be repeated twice on average.

Figure 19. The normalized average number of oracle calls, T (k)√
M
, and the average number of the

final measurements per qubit, R(k)
n , needed to find the solution using the punctuated version of

Grover’s search algorithm.

Reducing the depth of Grover’s search algorithm can provide a decrease in the average

number of oracle calls [59, 60] by minimizing:
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T (k) =
∞∑
i=1

(1− p+ (k))i−1 p+ (k) ik = k csc2
(

2k√
M

)
→ min (84)

This improvement capitalizes on the observation that the convergence towards the end of

the complete Grover’s search algorithm is slow, as indicated in Eqn. 81. The search is

stopped after approximately 0.5828
√
M oracle applications as illustrated in Fig. 19, earlier

than in the original version of Grover’s algorithm (π
√
M
4

). While the probability of correctly

identifying the state is approximately 84.458%, with the risk of having to restart the search,

the average number of oracle calls is reduced by 12% [59, 60].

Additionally, due to technical limitations in the depth of the quantum circuit, it may be

necessary to perform the final measurement before completing the entire Grover’s cycle. The

depth parameter is crucial for Noisy Intermediate Scale Quantum (NISQ) computers defined

by Preskill [61]. These quantum computers feature noisy qubits and have the potential to

solve practical problems of commercial significance faster than conventional supercomputers

or with lower energy consumption. To address the challenges posed by error accumulation,

decoherence, and error correction, it is recommended that the corresponding quantum cir-

cuits exhibit a shallow depth corresponding to a small number of qubit gate cycles [93].

Additionally, the NIST call for proposals on Post-Quantum Cryptography (PQC) [94, 95]

emphasized a specific form of the quantum circuit model. In this variant, the adversary is

constrained to executing a maximum of MAXDEPTH gates in series.

In addition to the number of oracle calls and the depth of the quantum circuit, an impor-

tant parameter in the practical implementation of Grover’s search algorithm is the number

of qubit readouts. These readouts convert the quantum information into classical informa-

tion, allowing the states of the qubit to be classified as “0” or “1”. They are among the

most error-prone and slowest operations on a superconducting quantum processor. Readout

errors on state-of-the-art cloud-based quantum processors can be more than 10% for some

qubits [96], and the readout time is greater than 300ns. For example, the quantum proces-

sors used to demonstrate the quantum supremacy [97] have readout errors of 9% [98], and

the execution time over 1µs [98].

If the cycle of the quantum database search is not complete, the number of times one

must perform the readout of n≫ 1 qubits on average is given by:

R (k) =
n

p+ (k)
= n · csc2

(
2k√
M

)
(85)

In the example discussed earlier, halving the depth of the original Grover search algorithm

doubles the qubit readout cost, which can be demanding for large-scale quantum database

searches. As illustrated in Fig. 19, the qubit readout cost rapidly increases when using
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shallow-depth quantum searches.

In the remainder of this Section, we demonstrate how the usage of PT symmetry can

drastically reduce the qubit readout cost in quantum database searches, at the cost of one

extra ancilla that is used only once and not involved during the punctuated Grover’s search

algorithm.

The possibility to improve the search over an unstructured database by using PT symme-

try was initially discussed in [56] (referring to [11]) and further discussed in [71]. According

to [11], the ability to exponentially separate the qubit states close to each other implies the

capability to search exponentially large databases in polynomial time. However, as discussed

in [71], achieving such an operation is only possible with an exponentially small probability

of success. Consequently, it is not feasible to search over an unstructured database using

fewer oracle calls than in Grover’s search algorithm by applying PT symmetry.

Our results in Eqns. 56 and 57 are in complete agreement with [71]. The following unitary

transformation:

Q =

 1√
2

− i√
2

− i√
2

1√
2

 , (86)

applied in the two-dimensional basis formed by {|s′⟩ , |ω⟩}, maps |s′⟩ to ρ = −π
2
and |ω⟩ to

ρ = −π
2
in the conventions of Section IV. Performing the same computations in this basis

as in Section IV for this case, one finds the probability of correctly identifying the solution

after successful postselection:

pPT
+ (k, α) =

2 (1 + sin (α))2 sin2
(

2k√
M

)
3− cos (2α)− 4 sin (α) cos

(
4k√
M

) , (87)

as well as the probability of successful postselection:

DPT
G (k, α) =

sec2 (α) (1− sin (α))
(
3− cos (2α)− 4 sin (α) cos

(
4k√
M

))
2 (1 + sin (α))

(88)

As one can observe in Eqn. 87, it is possible to exponentially increase the value of pPT
+ (k, α).

However, this enhancement is counterbalanced by an exponential decrease in postselection

probability DPT
G (k, α) in Eqn. 88, resulting in no improvement in the average number of

oracle calls since:

pPT
+ (k, α) · DPT

G (k, α) = sin2

(
2k√
M

)
= p+ (k) (89)

The dilation method required to execute the PT -symmetric transformation on n qubits, as

described above, requires only a single ancilla, regardless of the dimension of the underlying
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system [75]. Therefore, compared to the conventional punctuated Grover’s search algorithm

which requires n qubits, its PT -enhanced version requires n+1 qubits. Of these, n qubits are

used to perform the punctuated Grover’s search algorithm, while the additional qubit is used

only once to execute the non-Hermitian PT -symmetric transformation before performing the

final measurement.

In the approach we propose, one applies the PT -symmetric transformation on n working

qubits with α → π
2
achieving pPT

+ (k, α) → 1 at the cost of reduced DPT
G (k, α). In this limit,

from Eqn. 89, one finds that:

DPT
G

(
k, α → π

2

)
→ p+ (k) (90)

After that, similar to Section VII, the final measurement of n qubits is precluded if the

ancilla is measured to be |1⟩. This approach saves resources by avoiding the need for n

qubit measurements, which is resource-demanding as discussed above. After PT -symmetric

transformation, in the limit α → π
2
, the state-ancilla system is:

|ΨG⟩ |ψa⟩ ⇒
n qubits, read︷ ︸︸ ︷
|ΨG → ω⟩ |0⟩︸︷︷︸

1 qubit

+

n qubits, do not read︷ ︸︸ ︷
|ΨG → ∅⟩ |1⟩︸︷︷︸

1 qubit

, (91)

therefore, one reads out the result of all n working qubits only if the ancilla is found in the

|0⟩ state. Such an operation requires the following number of qubit readouts on average:

RPT (k) =
1

DPT
G

(
k, α → π

2

) + n =
1

p+ (k)
+ n, (92)

where 1 corresponds to reading a single ancilla possibly several times until postselection is

successful, and n corresponds to the readout of the rest of the qubits when postselection

succeeds. Such an approach uses a smaller number of qubit readouts compared to the

conventional punctuated Grover’s search algorithm:

RPT (k)

R (k)
=
n · p+ (k) + 1

n
−→︸︷︷︸
n≫1

p+ (k) ≤ 1 (93)

For example, when the punctuated quantum database search minimizing the number of

oracle calls described in Eqn. 84 is run, our approach reduces the number of qubit readouts

from n
sin2(2·0.583) = 1.184 · n to n, and from 2n to n when one is allowed to use half the depth

of the original Grover’s search cycle, in the n≫ 1 limit.

This advantage becomes even more significant and can outperform the conventional punc-

tuated search in terms of qubit readouts by several times if one is allowed to use less than
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half the depth to complete the full cycle of Grover’s search, as illustrated in Fig. 19. Addi-

tionally, in a similar manner, the number of qubit readouts can be reduced if several oracles

are run in parallel to find one of several possible solutions [60].

IX. CONCLUSIONS AND FUTURE WORK

The main result of our paper is the identification of specific scenarios and performance

metrics where PT -symmetric systems outperform their Hermitian counterparts. This

achievement was made possible by developing a new PT -symmetric algorithm for mapping

three arbitrary quantum states, deriving exact expressions for the probability of successful

postselection, and verifying our theoretical computations using IBM Quantum Experience.

We demonstrated that, when applied to the discrimination of N = 2 states, our ap-

proach provides equivalent results to conventional unambiguous quantum state discrimina-

tion. When applied to an attack on the three-state QKD protocol, our approach yields the

same error rate as other approaches in the literature, thus aligning with the security proof of

this QKD protocol. However, our methodology can be advantageous in practical scenarios

involving the discrimination of highly asymmetric quantum states.

Through explicit computations, we identified the conditions under which PT -symmetric

sensors outperform their Hermitian counterparts, thereby relaxing the conditions neces-

sary to achieve this performance. Furthermore, we explicitly demonstrated that our PT -

symmetric approach surpasses the conventional punctuated quantum database search in

terms of qubit readout cost, an important practical parameter, while maintaining the same

average number of oracle calls.

With our approach already implemented in an optical scheme [63], our work lays the foun-

dation for leveraging the unique properties of PT symmetry to advance quantum information

processing, communication, cryptography, and sensing.
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DATA AND CODE AVAILABILITY

The code, implementation, and results of the runs on the IBM Quantum Experience are

publicly available at GitHub repository:

https://github.com/BalytskyiJaroslaw/QuantumSimulations/tree/master.

X. METHODS

Adjusting to convenient positions

A set of arbitrary three states |ψi⟩ =

 cos
(
θi
2

)
eiϕi sin

(
θi
2

)
 , i ∈ [1, 3] can be adjusted to the

starting positions in Eqn. 9 by the following unitary rotation:

R =

 cos
(
π−2σ

4

)
−i sin

(
π−2σ

4

)
−i sin

(
π−2σ

4

)
cos
(
π−2σ

4

)
 ·

1 0

0 −ie−iλ−iϕ2

 ·

 cos
(
θ1
2

)
sin
(
θ1
2

)
e−iϕ1

− sin
(
θ1
2

)
eiϕ1 cos

(
θ1
2

)

(94)

The parameters of the starting position in Eqn. 9 are expressed as:

(95)cos
(µ
2

)
= |β|=

√
(Re (β))2 + (Im (β))2,

(96)ν = arctan

(
Im (γ)

Re (γ)

)
− arctan

(
Im (β)

Re (β)

)
,

with σ, and λ parameters given by the Eqns. 97, 98, 99, and 100 as:

(97)cos (σ) =

√
1 + cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)

2
,

(98)

λ = arctan

(
sin
(
θ1
2

)
cos
(
θ2
2

)
sin (ϕ2 − ϕ1)

cos
(
θ1
2

)
sin
(
θ2
2

)
− sin

(
θ1
2

)
cos
(
θ2
2

)
cos (ϕ2 − ϕ1)

)
−

− arctan

(
sin
(
θ1
2

)
sin
(
θ2
2

)
sin (ϕ2 − ϕ1)

cos
(
θ1
2

)
cos
(
θ2
2

)
+ sin

(
θ1
2

)
sin
(
θ2
2

)
cos (ϕ2 − ϕ1)

)
,

β = cos

(
θ1
2

)
cos

(
θ3
2

)
cos

(
π − 2σ

4

)(
1 + tan

(
θ1
2

)
tan

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)
+

+sin

(
θ1
2

)
sin

(
θ3
2

)
cos

(
π − 2σ

4

)
eiϕ3−iϕ1

(
1− cot

(
θ1
2

)
tan

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)
,

(99)
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γ = i cos

(
θ1
2

)
cos

(
θ3
2

)
sin

(
π − 2σ

4

)(
tan

(
θ1
2

)
cot

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ − 1

)
−

−i sin
(
θ1
2

)
sin

(
θ3
2

)
sin

(
π − 2σ

4

)
eiϕ3−iϕ1

(
1 + cot

(
θ1
2

)
cot

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)
(100)

Unitary rotation, Step 2

The unitary rotation adjusting the states into the starting positions for the Step 3 and

the second PT -symmetric evolution has the following parameters:

(101)
κ = cos

(µ
2

)(
cos (ωτ − α) cos

(
δ

2

)
+ sin (ωτ) sin

(
δ

2

))
+ ieiν sin

(µ
2

)(
cos (ωτ + α) sin

(
δ

2

)
− sin (ωτ) cos

(
δ

2

))
,

(102)
ζ = i cos

(µ
2

)(
cos (ωτ − α) sin

(
δ

2

)
− sin (ωτ) cos

(
δ

2

))
+ eiν sin

(µ
2

)(
cos (ωτ + α) cos

(
δ

2

)
+ sin (ωτ) sin

(
δ

2

))
,

cos

(
ξ

2

)
=

|κ|√
|κ|2+|ζ|2

, χ = arctan

(
Im (ζ)

Re (ζ)

)
− arctan

(
Im (κ)

Re (κ)

)
(103)

Implementation of PT symmetry by the dilation method

The combined qubit-ancilla system is governed by the following Hermitian Hamiltonian:

HTotal
a,q (t) = 1̂⊗ Σ (t) + σy ⊗Υ(t) , (104)

and its elements are given by:

Σ (t) =

[
Hq (t) + i

dζ (t)

dt
ζ (t) + ζ (t)Hq (t) ζ (t)

]
N−1 (t) , (105)

Υ (t) = i

[
Hq (t) ζ (t)− ζ (t)Hq (t)− i

dζ (t)

dt

]
N−1 (t) , (106)

N (t) = T exp

[
−i
∫ t

0

dτ H†
q (τ)

]
N (0) T̃ exp

[
i

∫ t

0

dτ H (τ)

]
, (107)
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where T and T̃ are the time and and anti-time-ordering operators, respectively. The operator

ζ (t) =
(
N (t)− 1̂

) 1
2 must maintain all its eigenvalues to be real, and the initial value N (0)

must be correspondingly chosen to ensure it. The following system of equations:Σ (t)− iΥ(t) ζ (t) = Hq (t)

Σ (t) ζ (t) + iΥ(t) = idζ(t)
dt

+ ζ (t)Hq (t)
, (108)

ensures that the driven qubit is evolved by the PT -symmetric Hamiltonian in Eqn. 2. The

ancilla qubit must be initialized as |ψ (0)⟩a = 1√
ζ(0)2+1

(|0⟩a + ζ (0) |1⟩a). For both stages of

the PT -symmetric evolution, 4× 4 evolution matrix was obtained by numerical solution of

differential equations by Mathematica [99]. Finally, the evolution matrices UEvolution were

decomposed into the elementary gates U3 as defined by IBM. For the first part of the PT -

symmetric evolution, they are denoted as U i
j , and V

i
j for the second part, where i, j ∈ [1, 4].

This was done employing the method defined in [100, 101]. First, the rotation to the “magic

basis” defined as: |ϕ1⟩ = 1√
2
(|00⟩+ |11⟩) ; |ϕ2⟩ = −i√

2
(|00⟩ − |11⟩)

|ϕ3⟩ = 1√
2
(|01⟩ − |10⟩) ; |ϕ4⟩ = −i√

2
(|01⟩+ |10⟩)

, (109)

was performed. As a result, the evolution matrix was factorized as:

UEvolution = (UA ⊗ UB) · UD · (VA ⊗ VB) , (110)

UD = eiθ0MatrixExp

(
i

3∑
k=1

θkσk ⊗ σk

)
=

4∑
k=1

eIΦk |ϕk⟩⟨ϕk| (111)

The final transformation is carried out by M and Λ matrices:

M =
1√
2


1 0 0 i

0 i 1 1

0 i −1 0

1 0 0 −i

 , Λ =


1 1 −1 1

1 1 1 −1

1 −1 −1 −1

1 −1 1 1

 , (112)

θ = (θ0, θ1, θ2, θ3)
T ; Φ = (Φ0,Φ1,Φ2,Φ3)

T ; θ = Λ · Φ (113)

The numerical results are as follows.
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PT -symmetric evolution #1
Postselection |0⟩

|0⟩ A1 U2
1 U2

2 U2
3 U2

4

∣∣ψ(1,2,3)

〉
U1
1 U1

2 U1
3 U1

4

∣∣ψ(1,2,3)

〉
evolved to

cos2 (κ12) = 0

Figure 20. Step 1 and the first stage of the PT -symmetric evolution.

1. First PT -symmetric evolution for σ = 4
5 , α = π

2 − 1, N (0) = 3

UFirstStage =
0.142552 − 0.235663i −0.650522− 0.393504i 0.2897 − 0.478919i −0.155267− 0.0939248i

−0.650482− 0.393478i 0.257979 − 0.426478i −0.155257− 0.0939158i −0.194071 + 0.320825i

−0.289696 + 0.478909i 0.155284 + 0.0939324i 0.142546 − 0.23565i −0.650547− 0.393515i

0.15525 + 0.0939129i 0.194076 − 0.320837i −0.650472− 0.393474i 0.257971 − 0.42646i



(Φ0,Φ1,Φ2,Φ3) = (1.61364, 1.61364, 2.61598, 2.61598) , (114)

UA =

 0.553173− 0.0868701i 0.128532 + 0.818494i

0.818494− 0.128536i −0.0868671− 0.553173i

 , (115)

UB =

 0.27538 − 0.495893i 0.823563

0.252434 − 0.783922i −0.556431 + 0.110127i

 , (116)

VA =

 −0.35228i −0.9359i

−0.9359 0.35228

 , (117)

VB =

 0.1277 − 0.81357i 0.19514 − 0.53266i

0.53266 − 0.19514i −0.81357 + 0.1277i

 (118)

2. First PT -symmetric Evolution for σ = 6
5 , α = π

2 − 1, N (0) = 2

UFirstStage =
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
0.49542 − 0.32066i −0.28774− 0.44456i 0.50219 − 0.32504i −0.06318− 0.09762i

−0.28768− 0.44447i 0.66023 − 0.42733i −0.06317− 0.0976i −0.24838 + 0.16076i

−0.50223 + 0.32506i 0.06318 + 0.09761i 0.49546 − 0.32069i −0.28773− 0.44455i

0.06318 + 0.09762i 0.24838 − 0.16076i −0.28769− 0.44449i 0.66024 − 0.42733i



(Φ0,Φ1,Φ2,Φ3) = (−0.09904,−0.09904,−1.04982,−1.04984) , (119)

UA =

 0.32195 + 0.35488i −0.65003 + 0.5898i

0.58977 + 0.65006i 0.35485 − 0.32198i

 , (120)

UB =

 −0.68589 + 0.4424i 0.57779

−0.57506 + 0.05604i −0.72556− 0.37379i

 , (121)

VA =

 0. − 0.27972i −0.00004− 0.96008i

−0.96008− 0.00002i 0.27972

 , (122)

VB =

 −0.42795− 0.38828i −0.78849− 0.21068i

0.21067 + 0.78849i −0.38827− 0.42795i

 (123)

3. Second PT -symmetric Evolution, α = π
2 − 1

PT -symmetric evolution #2
Postselection |0⟩

Result
∣∣ζ(1,2,3)〉

|0⟩ A2 V 2
1 V 2

2 V 2
3 V 2

4

∣∣ψ(1,2,3)

〉 ∣∣χ(1,2,3)

〉
= W

∣∣ψ(1,2,3)

〉
V 1
1 V 1

2 V 1
3 V 1

4

Figure 21. Steps 2 and 3. Unitary rotation W puts the evolved state into conventional positions,

and the second PT -symmetric evolution eliminates one of three states or reduces them to the

mirror-symmetric ones.
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USecond stage =


0.20775i −0.75471 0.55429i 0.28286

−0.75471 −0.2077i 0.28292 −0.55429i

−0.55429i −0.28286 0.20775i −0.75471

−0.28292 0.55429i −0.75471 −0.2077i

 (124)

UA =

 −0.35523− 0.0003i −0.94791− 0.00081i

0.94791 + 0.00081i −0.35523− 0.0003i

 , (125)

UB =

 0.00085− i 0.00005

−0.00005 −0.00085 + i

 , (126)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.93734,−0.93734, 0.93734,−0.93734) (127)

4. Second PT -symmetric Evolution, α = π
2 − 0.7

USecond stage =


0.29118i −0.68017 0.57944i 0.3418

−0.68017 −0.29097i 0.34196 −0.57945i

−0.57944i −0.3418 0.29118i −0.68017

−0.34197 0.57946i −0.68016 −0.29098i

 (128)

UA =

 −0.44888− 0.00094i −0.89359− 0.00187i

0.89359 + 0.00187i −0.44888− 0.00094i

 , (129)

UB =

 −0.0021− i 0.00011

−0.00011 0.0021 + i

 , (130)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.86525,−0.86525, 0.86525,−0.86525) (131)
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5. Second PT -symmetric Evolution, α = π
2 − 0.5

USecond stage =


0.3604i −0.62104 0.5786i 0.38684

−0.6211 −0.36067i 0.3866 −0.57852i

−0.5786i −0.38684 0.36039i −0.62105

−0.3866 0.57852i −0.62111 −0.36067i

 (132)

UA =

 0.52887 0.8487 + 0.00001i

−0.8487− 0.00001i 0.52887

 , (133)

UB =

 0.00001 + i 0.00017

−0.00017 −0.00001− i

 , (134)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.82071,−0.82071, 0.82071,−0.82072) (135)

The first part of the PT -symmetric evolution is shown in Fig. 20, and the unitary rotation

with the second part of the PT -symmetric evolution in Fig. 21 respectively.

6. Attack on the three-state QKD protocol

UThree State QKD =


−0.09739i −0.87214 0.43866i −0.1937

−0.87215 0.0974i −0.19372 −0.43864i

−0.4386i 0.19367 −0.09744i −0.87212

0.19366 0.43861i −0.8721 0.09742i

 (136)

UA =

 −0.2167 + 0.00644i 0.97579− 0.02899i

−0.97579 + 0.02899i −0.2167 + 0.00644i

 , (137)

UB =

 −0.02969 + 0.99956i 0.00001

−0.00001 0.02969− 0.99956i

 , (138)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (1.10479,−1.10479, 1.10482,−1.10482) (139)
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[46] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. Lu Long, S. Fan, F. Nori,

C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nature

Physics, vol. 10, no. 5, pp. 394–398, 2014, Nature Publishing Group.
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