Verifiable FHE via Lattice-based SNARKSs

Shahla Atapoor! ®, Karim Baghery! ®, Hilder V. L. Pereira? ® and
Jannik Spiessens’

1 COSIC, KU Leuven, Leuven, Belgium
2 Universidade de Campinas (UNICAMP), Instituto de Computacio, Campinas, Brazil

Abstract.  Fully Homomorphic Encryption (FHE) is a prevalent cryptographic
primitive that allows for computation on encrypted data. In various cryptographic
protocols, this enables outsourcing computation to a third party while retaining
the privacy of the inputs to the computation. However, these schemes make an
honest-but-curious assumption about the adversary. Previous work has tried to re-
move this assumption by combining FHE with Verifiable Computation (VC). Recent
work has increased the flexibility of this approach by introducing integrity checks
for homomorphic computations over rings. However, efficient FHE for circuits of
large multiplicative depth also requires non-ring computations called maintenance
operations, i.e. modswitching and keyswitching, which cannot be efficiently verified
by existing constructions. We propose the first efficiently verifiable FHE scheme
that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT
representation in which FHE schemes are typically computed, and using lattice-based
SNARKSs to prove components of this computation separately, including the mainte-
nance operations. Therefore, our construction can theoretically handle bootstrapping
operations. We also present the first implementation of a verifiable computation on
encrypted data for a computation that contains multiple ciphertext-ciphertext multi-
plications. Concretely, we verify the homomorphic computation of an approximate
neural network containing three layers and >100 ciphertexts in less than 1 second
while maintaining reasonable prover costs.

Keywords: Fully-Homomorphic Encryption - Verifiable FHE - Lattice-based SNARKSs
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1 Introduction

Fully Homomorphic Encryption (FHE) schemes can be used to add privacy-preserving
properties to cloud applications by encrypting the client’s inputs such that the server can
still (homomorphically) perform computations on them, resulting in encrypted outputs
that are sent back to the client. Examples of such applications are oblivious RAM
(ORAM) [CDNP23], privacy-preserving machine learning [BPTG15, BGGJ19] and more
recently confidential smart contracts in general-purpose blockchains [ZAM23]. Normally,
FHE schemes can only be used in settings where the server is assumed to be honest-but-
curious, meaning the server is trusted to perform the homomorphic computations correctly
but not trusted with access to the confidential plaintext values on which the computation is
performed. This trust assumption can be removed by adding verifiablitity to existing FHE
schemes and thereby constructing verifiable FHE (vFHE) [VKH23]. By adding integrity to
the FHE primitive, vFHE could be used to maintain confidentiality of FHE against active
adversaries performing e.g. key-recovery attacks [CT15, CGG16]. More generally, vVFHE
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2 Verifiable FHE via Lattice-based SNARKSs

enables verifiable computation on encrypted data, aka Private Verifiable Computation
(PVC) [FGP14], in which a client can outsource computation to a server in a verifiable
way while preserving the privacy of its inputs and outputs.

A common approach for constructing vFHE is to combine an FHE scheme with
a Verifiable Computation (VC) scheme which is used to prove the correctness of the
homomorphic computations. However, combining these two primitives in an efficient way
turns out to be a highly non-trivial task. Namely, VC can usually prove arithmetic circuits
whose gates are additions or multiplications over some field F,,, while the homomorphic
computation that the server wants to prove is performed over polynomial rings. Simply
representing the computation as circuits over [F), introduces many significant overheads on
the size of the proofs or on the size of CRS (common reference strings), and also on the
running time of the prover and of the verifier.

To overcome this, recent works [GNS23, BCFK21] have studied how to modify the
VC protocols to work over rings, in an attempt to have proofs that match the type of
computation done by the server and do not require representing operations over rings with
gates over IF,,. We propose a fundamentally different approach, namely, to exploit the
well-known decomposition of the polynomial rings used in FHE as direct product of fields?
which evokes the use of a lattice-based SNARK over fields to generate the proofs.

1.1 Owur Contributions

We propose the first verifiable fully homomorphic encryption scheme combining FHE
and SNARKSs (succinct non-interactive argument of knowledge) in a non-trivial way.
Our approach is modular, meaning that it is possible to construct blocks of verifiable
homomorphic circuits that can be assembled together to build larger circuits. Our
construction is the first one to handle real homomorphic computation, including the
fundamental maintenance operations known as modulus switching and key-switching (aka
relinearization). In addition, this implies that we can handle bootstrapping and achieve
fully homomorphic encryption. Moreover, we provide a public C+4 implementation of
our construction and run experiments that can serve as a baseline for future works when
it comes to practical results.

1.2 Exploiting double-CRT to make FHE more VC-friendly

Most FHE schemes work over cyclotomic rings R = Z[X]/(X" + 1), where N is a power
of two. In particular, ciphertexts are composed by elements of Rg := R/QR, where Q is
a large integer. Thus, when a server performs computations on encrypted data, it operates
on elements from Rg, i.e., polynomials modulo X N 11 and Q. At first glance, this type
of computation is not easily represented by circuits over F,,, which is the set VC typically
handles.

However, FHE schemes are commonly implemented using a double-CRT representation,
which works by choosing @ as a product of a few small primes qq, ..., qr,, then using the
isomorphism
leo [X] ZQL [X]

to represent operations on R¢ as independent operations on each R,,. Since for each prime
gi, it holds that Z,, is a field, this gives us a hint that it could be possible to instantiate
different VC instances, defined over fields F, ...,F,, and then have L + 1 proofs to prove
the actual computation over Rg.

IThis is often called residual number representation (RNS) or double-CRT representation.
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Figure 1: Homomorphic computation of (co + ¢1) - ¢2 - ¢ modulo Q = ¢o - ¢1. Every
gate represents a homomorphic addition or multiplication, which are composed by many
operations over Rg. When we represent the circuit as two circuits with low-level operations
defined modulo gy and ¢;, and inputs ¢; ; = ¢; mod ¢;, the output of the first multiplication
gate is used as input of the following gates in all the circuits.

However, between the homomorphic operations, one needs to execute two “maintenance
operations” that are not defined in terms of additions and multiplications on Rq, and
thus do not respect the above isomorphism. These operations are key switching, which
is used to guarantee that ciphertexts have a valid format during the whole computation,
and modulus switching, which controls the noise growth. Concretely, as discussed in more
detail in Section 2.6, both operations require non-arithmetic modular reductions. Moreover,
since the isomorphism does not hold, the computations modulo g; become dependent of
values modulo g; for j # ¢. This means that instead of having L + 1 independent circuits
defined modulo different primes ¢;’s, which could be proved independently, we actually
have L + 1 circuits that are interconnected, with intermediary wires being shared among
them. This is illustrated in Figure 1 and discussed in more detail in Sections 2.4 and 2.5.

Figure 2: Two circuits representing the homomorphic computation of (co + ¢1) - ¢a - ¢3
modulo @ = qg - ¢1. We divide the circuits in two layers, the first one is composed by the
proofs my ¢ and 7 1, and the second layer corresponds to the proofs m ¢ and m,;. Proof
7,0 considers as input the value ¢ 3 and the two outputs of the first layer. And similarly
for 711 and ¢ 3.
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Because of the non-arithmetic operations and the wires shared among the circuits, we
cannot simply have one proof for each prime ¢;. Thus, we subdivide each circuit into layers,
such that the input wires can come from any circuit, and the output wires can be connected
to any other circuit, but the internal wires are connected only to gates with respect to
the same ¢;. As such, we have “boxes” defined entirely modulo one single prime and we
can finally have a proof for them, which gives us a proof for the original homomorphic
computation modulo @) as a concatenation of the proofs of these small subcircuits. This is
illustrated in Figure 2. Notice that simply breaking a proof with respect to Q = Hz’L:O qi
into proofs with respect to ¢;’s does not increase the proof size, since each proof now is
smaller (containing elements modulo ¢;). However, adding k layers multiplies the proof
size by O(k). On the other hand, the prover’s running time is basically the same and the
CRS can even become smaller. Moreover, if a non-interactive VC protocol is used, then
our solution remains non-interactive, since the prover can generate all m; ;’s and only then
send them to the client for verification.

1.3 Optimizations and efficiency

By looking at the homomorphic operations more closely, we see that there are different
ways of grouping them or changing the order they are executed in, such that we add no
or very little overhead to the prover and reduce the proof size and the verifier’s running
time. First of all, all the operations between plaintexts and ciphertexts, and also the
homomorphic additions can be grouped in single proofs, since they do not require key
switching or modulus switching, and these are the only two operations that mix the wires.
Also, the homomorphic multiplication is usually composed by a tensor product, then a key
switching, then a modulus switching. Thus, at first glance, a block of operations finishing
with a ciphertext-ciphertext multiplication would require 3 layers of proofs, however,
switching the modulus from @ to Q' := Q/qr means that the following computation is
executed modulo @', thus there is no subsequent computation modulo ¢r. As a result, we
can actually finish the proof with respect to qr, then pass its output as inputs to the other
proofs and save one layer. This is shown in Figure 3. Also, each layer has one less column
than the previous layer, which almost halves the proof size.

modgqg modgq; modgy

‘ ‘ ‘ modgg modgq modgs

KeySwt KeySwt

ModSwt

ModSwt
9

ModSwt ModSwt ModSwt
9 g 9

I
I I \ e g
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Figure 3: Proof for homomorphic computation of the composition g o f, where f ends
with a multiplication. On the right, we show how we can merge two layers by ending the
proof corresponding to the last prime.
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One problem that hinders the practical efficiency of our construction, is that to
achieve soundness, state-of-the-art efficient VC schemes [Grol6, GWC19] need to prove
computations over fields F, where ¢ is around 256 bits, while the g¢;’s typically used in FHE
schemes are around 30 bits. One could emulate the smaller moduli in the bigger field F,, but
this inevitably blows up the number of gates in the arithmetic circuit that the VC scheme
verifies. We observe that recently proposed lattice-based approaches [GMNO18, ISW21]
can achieve similar security while being flexible in terms of field choice. Note that the use
of lattice-based constructions also comes with the added benefit of maintaining plausible
post-quantum security.

In Section 3.4, we study the efficiency of our scheme when instantiated to verify building
blocks such as ciphertext additions, plaintext-ciphertext multiplication, matrix-vector
multiplication, and higher depth computations such as ciphertext-ciphertext multiplication,
slot rotations and more general high-depth functions composed of these building blocks.

1.4 Implementation and practical results

We present the first implementation of a verifiable FHE construction that can be efficiently
instantiated for fully homomorphic circuits i.e. with a possible multiplicative depth greater
than one. We instantiate it for a homomorphic circuit representing a 3-layered neural
network and implement it in C++ to show the practicality of our scheme. The only other
vFHE implementation known to us [VKH23] proves the correct computation of a single
ciphertext-ciphertext multiplication (without the required maintenance operations) in 443s
while our implementation needs only 167s to prove a homomorphic computation on >100
ciphertexts that includes the maintenance operations required to compute higher depth
computations. Verification times vary from 0.6s to 0.9s depending on the size of the input
layer.

2 Preliminaries

2.1 Notations

We denote the security parameter as A. The notation y < A(x) signifies the execution
of a probabilistic polynomial-time (PPT) algorithm A which outputs y given the input
. The symbol F is used to denote a finite field, while R denotes a ring. We denote by
negl(A) an arbitrary negligible function in A. Within the paper, square brackets are used
to indicate a range [n] = {1,...,n}, and also to represent the central remainder modulo ¢
as [n],. Bold lowercase letters are used to denote vectors and bold uppercase for matrices.

2.2 Rank-1 Constraint System (R1CS)

An R1CS instance is a collection of constraints on a vector of values ¢ € F¥« called the
wire values, where N,, is the number of wire values and F is a finite field. The first n
values of this wire vector are called the statement & € F". The last N,, — n values are
called the witness w € FNv~"_ There are N, constraints which are also referred to as

gates. An R1CS instance CS can be defined as a tuple CS = (Ng7 Ny N, {@i, by, ¢i}icy ])

g
for Ny,n, N, € N (with n < N,,) and a;, b;, ¢; € FNo*! for all i € [Ny]. Define a function
CS : F" x FNw—" — {0, 1} for some constraint system CS. This function has the property
that for some statement € F" and witness w € FNv=" CS(x,w) = 1 if and only if
za;-zb; = zc; for z = [l "w'] and i € [N,]. We call the constraint system satisfiable for
some statement « iff there exists some w such that CS(z, w) = 1. The set of all satisfiable
wire values (x,w) is a relation called Res. We can define the corresponding language as
Les ={x | Fw s.t. CS(x,w) = 1}.
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2.3 Succinct Non-interactive ARguments of Knowledge (SNARKS)

We define Succinct Non-interactive ARgument of Knowledge (SNARK) schemes in the
preproccesing model with a designated verifier. A SNARK consists of the following three
probabilistic polynomial time (PPT) algorithms:

- Setup(1*,CS) — (crs, st) : given the security parameter A and the constraint system
CS, it generates a common reference string crs and a verification state st.

- Prover(crs,x,w) — 7 : given a common reference string crs, a statement x and a
witness w, it generates a proof .

- Verifier(st,x, 7) — b : given a verification state st, a statement « and a proof =, it
generates a verification bit b € {0,1}.

These algorithms must satisfy the completeness and knowledge soundness properties.

Completeness. A SNARK scheme is complete iff for any security parameter A, statement
x and witness w, and R1CS instance CS,

CS(x,w) =1
Pr | Verifier(st,z,m) =1 | (crs,st) < Setup(1*,CS) | = 1.
7 < Prover(crs, z, w)

Knowledge Soundness. A SNARK scheme satisfies knowledge soundness iff for any
PPT algorithm Prover®, there exists a PPT extractor Extr such that for any security
parameter A\, R1CS instance CS and state z,

Verifier(st, z,7*) =1 | (crs,st) < Setup(1*,CS)
Pr A (m*,x) + Prover®(crs; z) | < negl(\).
CS(x,w*) #1 w* + Extr(crs; 2)

SNARKs schemes are also required to be succinct. Concretely, this requires that the
proof size can be expressed as poly(A + log|CS|) and the Verifier algorithm runs in time
poly(X + |z| + log |CS]).

2.3.1 Lattice-based SNARKSs.

Traditionally, SNARKSs defined over F, rely on the large size of this field to guarantee
security and soundness, which means that ¢ typically has around 256 bits. Lattice-based
SNARKS, on the other hand, base their security on hardness assumptions such as the
learning with errors problem (LWE), which allow them to be instantiated with smaller
fields, i.e., F, with small gq. Thus, they are a perfect tool for our construction, because we
can use small values of ¢ to match the small primes used in FHE schemes. As an additional
benefit of lattice-based SNARKS, they are post-quantum, just like the FHE schemes are.
Thus, combining them with FHE gives us constructions that are still post-quantum secure.

In our analysis, we assume that the verification runs in time O(X + |z|) and each proof
is composed by a constant number of ring elements, which together have size O()). Those
assumptions are true for current constructions of lattice-based SNARKs[GMNO18, ISW21].
We refer to the appendix B for more details on the construction of lattice-based SNARKs.

2.4 Fully Homomorphic Encryption (FHE)

FHE schemes are encryption schemes with the property that arbitrary circuits C' can
be evaluated homomorphically in the ciphertext space. To make the presentation more
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concrete, we consider in this section the BGV scheme [BGV12], but notice that other
schemes, like FV [FV12] and CKKS [CKKS17], are very similar. We give a high-level
description of the construction, that suffices for our purposes. Moreover, to simplify the
presentation, we just present a symmetric-key version of BGV. Transforming it into a
asymmetric scheme is done via simple standard techniques.

Let R = Z[X]/(X"N +1), where N = 2¥ for some k € N. Define a modulus Q = Hf:o i
where each ¢; is a different prime, and Rg = Zg[X]/(XY + 1). The ciphertexts are
defined as vectors over Rg, but the homomorphic operations are easier to understand if
the ciphertexts are considered polynomials in Rg[Y], where Y is a new variable. That
is, we can view a ciphertext ¢ € R, as c¢(Y) = Z?:_ol ¢; - Y. Fix a plaintext modulus
t and an error distribution e, over R that samples coefficients according to a discrete
Gaussian distribution with standard deviation oer. Then, we say that ¢(Y") decrypts to
a message m € R, if when we evaluate ¢(Y') on the secret key, we get the message plus
some small noise term, i.e., ¢(sk) mod @) = te +m for e € R. Notice that in this case,
(c(sk) mod Q) mod t = m.

2.4.1 Generic construction.

A homomorphic encryption scheme HE requires the following functions for parameter
generation, secret key generation, encryption and decryption. For a basic (symmetric-key)
version of the BGV scheme, they can be constructed as follows.

- HE.ParamGen (1%, L): given the security parameter A and a multiplicative depth L,
choose N, Q = HiL:o g; and o € R such that the (N, Q, 0)-RLWE problem achieves
A bits of security and the FHE scheme based on it can accommodate homomorphic
circuits of depth L. Let R := Z[X|(XN + 1), Rg := R/QR and R; := R/tR for
some plaintext modulus ¢. The message and the ciphertext spaces are R, and Rq[Y],
respectively. Set params := (N, @, o,t), which is a default input to the following
algorithms.

- HE.KeyGen(1): Given the security parameter \, uses params to output some secret
key s and rlk which is the relinearization key with respect to s (see Section 2.6).

- HE.Encg(m): Consider m € R,. Sample a uniformly at random from R¢, and
e < Xerr- Compute b:= —a-sk+t-e+m € Rg. Output ¢(Y) :=b+a-Y.

- HE.Deci(c): Compute b* := [c(sk)]g over Rg. Output b* mod ¢. Notice that
b* mod t = m iff all coefficients of e remain smaller than |@Q/2t], i.e. the noise term’s
loo-norm remains below a certain bound.

A homomorphic encryption scheme also requires a function HE.Eval that evaluates an
arithmetic circuit C' on some input ciphertexts ¢;(Y') = HE.Enc(m;) and outputs ciphertext
¢ (Y) such that HE.Dec(c') = C({m;}). We present the functions called by the HE.Eval
function to homomorphically compute basic operations on ciphertexts.

- HE.Add(cg, ¢1): Output caqq(Y) = co(Y) +¢1(Y) = (bo + b1) + (ap +a1) - Y. Tt is
easy to see that

Cadd(sk) mod t = [co(sk) + ¢1(sk)]g mod t = mg + m;.
Thus, ¢(Y) is an encryption of the sum of the messages, as desired. Notice that the

noise terms are also added together, and therefore homomorphic addition increases
the noise additively.
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- HE.Mult(cg, ¢1): Output ¢pmuie(Y) = co(Y) - c1(Y) =bo- b1+ (ap- b1 + a1 -bo) - Y +
ag - a1 - Y'2. We can see that

Cmuit(sk) mod t = ¢g(sk) - ¢1(sk) mod ¢ = mg - mq,

which is an encryption of mg - m1, as desired. Notice that ciphertext multiplication
leads to quadratic noise growth since the noise terms are multiplied.

Furthermore, the degree of ¢,,,;+ in Y is larger than the degree of both input
ciphertexts, and thus requires more elements of R to store it. In other words, this
operation increases the size of the ciphertexts.

- HE.MultPtxt(cg, m1): Output cpuitprzt(Y) = ZLO my - ¢ - Y for input ciphertext
¢o(Y) of degree k. Notice that ¢yt piat has the same degree as ¢ in Y, so the size of
the output ciphertext remains constant. Also, the noise term of ¢q is only multiplied
by myg, and therefore the noise growth is small compared to ciphertext-ciphertext
multiplication (at least when ¢ is relatively small).

Notice that both the noise and ciphertext degree grow exponentially with the multi-
plicative depth of the homomorphic circuit being evaluated. In levelled FHE schemes, this
is typically solved by performing maintenance operations after every ciphertext-ciphertext
multiplication. More concretely, the ciphertext ¢(Y) = co+c¢1-Y 4¢3 - Y% € Rg is
first relinearized using a relinearization key rlk resulting in ¢/(Y) = ¢y + ¢} - Y € Rg.
This is followed by the modswitching operation which aims to remove the noise added by
ciphertext-ciphertext multiplication (and relinearization). As the name implies, this is
achieved by switching to a smaller modulus Q* = @Q/g¢; such that ¢/(Y) = ¢f+cf-Y € R+,
which essentially divides the noise by g;. See Section 2.6 for a more detailed description.

2.5 Basics of RNS

All the homomorphic operations are composed of some operations over Rg, which boil
down to adding and multiplying polynomials of degree less than N, then reducing them
modulo XV + 1, and reducing each coefficient modulo Q.

Because @ is typically large (say, with more than 1000 bits), to work directly with
polynomials mod @, we need to use libraries that implement multi-precision integers,
which is inefficient. To overcome this, the residue number system (RNS), is typically used.
It exploits the decomposition of Q) = Hle q; to work with several polynomials modulo
each ¢;, which fit in the 32- or 64-bit native integer types of current processors.

In more detail, because QQ = Hle i, by using the Chinese remainder theorem coefficient-
wise, we have

14
Ro = ZalX]/(XN +1) = [] 24, [X]/(X" +1).
i=1

Thus, working with an element of Rg is equivalent to working with a vector of size £ in
Hle Rg;- Therefore, we could in principle verify the homomorphic computation over Rg
with ¢ independent proofs over each Z,,. We will discuss the limitations of this method
soon.

Since multiplying polynomials efficiently requires first performing a fast Fourier trans-
form, or number-theoretic transform (NTT), it is common to go one step further and
represent elements of R in the “NTT form". Given a € Rg, instead of simply storing
its list of coefficients, we precompute the NTTs of a with respect to each ¢;. For this, we
choose each ¢; as a prime congruent to 1 modulo 2N. This guarantees that there is a
primitive 2N-th root of unity w; € Z,, and that the following is an isomorphism:

NTT;(a) = (a(wo), a(wl),a(ws), ey a(szfl)) € Zfl\if“

? K2 3 ?
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Putting all together, we start with a(X) € Rg, then we obtain a list of polynomials
(a1(X),...;ae(X)) € Rq, X ... X Ry,, then we map each of them to a vector using the NTTs
so, at the end, a(X) is stored as a matrix

NTTy(a1) ao ... Q1N
Mat(a) := : =1 . : € ZEx(N+1)
NTTZ (ae) ay.0 ... Qg N

By using a special type of NTT transform, called a negative-wrapped convolution (on which
we will not elaborate here), we can avoid the polynomial reduction after multiplication
[LMPROS8, Zucl8]. Therefore, we can implement each addition and multiplication over
R with pointwise operations of the corresponding matrices. For example, a-b € Rq is
C :=Mat(a) ® Mat(b), that is, each entry (4, ) of C is [a; ; - bi jlq

So computations over Rg can instead be performed as vector computations over [
different finite fields. We will refer to this as the double-CRT (dCRT) representation. In
the following section, it will become clear that the FHE scheme presented in Section 2.4 is
not practical when computed in dCRT representation entirely. Maintenance operations
require inverting the NTT transform and then sharing elements between different rows in
the matrix representation.

2.6 Maintenance operations

In Section 2.4, we explained that ciphertexts maintenance enables the scheme to manage
arbitrary depth homomorphic circuits. Typically, one relinearizes after multiplication,
followed by a modswitch to decrease the noise. We define the modulus at level i as QY =
H;:o q;. Therefore, ciphertexts encrypted over Rgx) can manage homomorphic circuits
of multiplicative depth L. It will become clear from a more detailed description below that
the maintenance operations are not composed of additions and multiplications over Rg).
This implies that they can not be performed in dCRT representation. Therefore, one should
first invert the NTT transform. However, one can avoid inverting the RNS decomposition
by performing fast base extension FastBaseExt. To extend the decomposition of ¢ € Ry
in base QW) = ¢y - ... g to another base Q¥) = G - ... - i that is coprime to Q" one
computes

l

FastBaseExt(c,Q(l),Q(k)) = (Z [C- (Q(l)/%‘)il

i=1

k

(Q"Y/g;) mod tfj)

qi j=1

Notice that this does not exactly equal [[c]om]gm , but it can be shown that using fast base
extension in maintenance operations only adds negligible noise to the resulting ciphertexts.

2.6.1 Relinearization.

As discussed in Section 2.4, multiplying ciphertexts results in a degree 2 ciphertext
c(Y) =co+ec1+Y +cy- Y? which should be relinearized to a ciphertext ¢/(Y) = ¢ +¢} - Y,
that decrypts to the same plaintext. One approach would be to encrypt sk? as rik(Y) =
rlkg + rlk; - Y and then compute c} = ¢j + ¢p - rlk; for j € {0,1}. Notice however, that
this would add a large noise term ¢z - e, where e is the noise term of r1k(Y) and ¢z is an
element modulo Q. Therefore, we instead use a decomposition of ¢, into its RNS base

DQ(i) (c2) = (FastBaseExt ([e2] 00+ 90, Q(i) ),

FastBaseExt([ca],,, ¢i, Q7 )) € Rz;}) ,
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and define the relinearization key as a vector of ciphertexts rlkg, rlk; € Rgr(il), such that

we can compute the relinearization as c; = c¢; + (Dgw (c2),rlk;) for j € {0,1}. This
ensures that noise terms of rlk are only multiplied with smaller elements modulo g;, since
the elements of D) (c2) were base extended from the base g; to the base Q. Using
a similar technique, one can construct from a ciphertext ¢(Y") another ciphertext ¢/(Y)
such that [c(sk)]gw = [¢/(sk’)]gw mod ¢, i.e. they decrypt to the same plaintext using a
different secret key. This operation is referred to as key-switching.

2.6.2 Modulus Switching.

To decrease the noise in a ciphertext c¢(Y') € Rge)[Y] at level 4, one switches the modulus of
that ciphertext to QU—Y = Q) /¢;. This produces another ciphertext ¢/(Y) € Roa-n[Y]
such that ¢(sk) mod Q) and ¢/(sk) mod QU~1) are equivalent modulo ¢, i.e. they decrypt
to the same plaintext. Given that the noise at ¢(Y) = ¢o + 1Y satisfies a certain bound,
the coefficients of ¢’ can be calculated as

1
== ¢+ 0
= L)

where §; = t(—¢;/t mod ¢;) for I € {0,1}. This operation can be performed in RNS
decomposition by base extending ¢ € R,, to the base QU1

For a more detailed description of these maintenance operations, as well as alternative
methods, we refer to [Zucl8, KPZ21]. Importantly, notice that all computations required
by the maintenance operations (and also the double-CRT vector operations) are easily
representable by R1CS constraints.

2.7 Verifiable FHE (vFHE)

We present a definition for vEHE schemes adjusted from Viand et al. [VKH23]. This
definition simply extends the definition of an FHE scheme by introducing a Verify algorithm
that verifies the ciphertext ¢, and proof m output by the Eval algorithm for a certain input
ciphertext ¢, and homomorphic circuit f. More concretely, a vVEHE scheme consists of the
following algorithms

- params < ParamGen(1*, f): given a security parameter A and a homomorphic circuit
f, it computes the parameters params which are a default input to all other algorithms.

- (sk, pk) + KeyGen(1*): given a security parameter ), it generates the public key pk
and secret key sk.

- ¢; < Enc(z,pk): given plaintext input(s) = and a public key pk, it computes
encryption(s) ¢;.

- (¢y,my) < Eval(cy, pk): given some input ciphertexts ¢, and the public key pk, it
computes the output ciphertexts ¢, and a proof m,.

- {accept, reject} < Verify(c,, ¢, my, sk): given some input ciphertexts c,, some output
ciphertexts ¢, and a proof m,, output either accept or reject.

- y < Dec(cy,sk): given some ciphertext(s) ¢, and secret key sk, it computes the
decryption(s) y.

Next, we define the properties that a vVFHE scheme should satisfy.
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Correctness. [VKH23] defines a correct vEHE scheme as a scheme that always decrypts
to the correct plaintext, i.e., decryption works with probability one. However, most FHE
schemes have a small failure probability, thus, we change the definition replacing “one” by
overwhelming. Formally, for a certain security parameter A, any function f and plaintext
inputs x, using the parameters params <+ ParamGen(1?, f), it holds that

(sk, pk) <+ KeyGen(1*)
Pr | Dec(cy,sk) = f(x) ¢z < Enc(z, pk) =1 —negl(}).
(¢y, my) < Eval(cy, pk)

Completeness. A complete vVEFHE scheme always verifies for output ciphertexts and
proof generated honestly for the corresponding input ciphertexts. More formally, for
a certain security parameter A and any function f and plaintext inputs x, using the
parameters params < ParamGen(1*, f), it holds that

(sk, pk) + KeyGen(1?*)
¢z < Enc(z, pk) =1
(¢y,my) < Eval(cz, pk)

Verify(cg, ¢y, Ty, sk)

Pr
= accept

Soundness. A sound vFHE scheme only allows a negligible probability that some input
and output ciphertexts verify if their corresponding plaintexts are not valid. More formally,
for a certain security parameter A and any function f, plaintext inputs x and adversary A,
using the parameters params < ParamGen(1?, f), it holds that

Verify(cg, ¢y, Ty, sk) (sk, pk) < KeyGen(1*)
= accept x 4 Aparams (k)
A ¢z < Enc(z, pk)
Dec(cy,sk) # f(x) | (cy,my) < Aparams(ca k)

Pr < negl()\).

Security. The security of a vFHE scheme is defined basically in the same way as the
security of a regular FHE scheme. Formally, for a certain security parameter A, any function
f, plaintext inputs = and adversary A, using the parameters params < ParamGen(1?, f),
we say that the vFHE scheme is CPA-secure if it holds that

(sk, pk) < KeyGen(1%)
’_ (.1?07 x1, St) — Aparams(pk) . 1
Pri b=b ¢z + Enc(zp, pk) for b« {0,1} 2 < negl(A).

b Aparams(cxv St)

Notice that [VKH23] defines CCA1 security and it is known that by combining FHE
and SNARKS, we can achieve CCA1, but this introduces some technical and theoretical
complications that would push us away from our goal of constructing a practical vEHE
scheme. Thus, we prefer to stick to CPA security.

Remark about approximate FHE. Notice that equality on the plaintext space of the
FHE scheme is exact for BGV and FV but is only approximate for the CKKS scheme, that
is, for any plaintext m it holds that ||HE.Decg (HE.Encsk(m)) —m||oo < 1/2P for some integer
p, which is a precision parameter chosen during the parameter generation. Therefore, that
is how one has to interpret the condition Dec(c,,sk) = f(x) in the correctness definition
when applying our construction to CKKS. Analogously, the condition Dec(c,,sk) # f(z)
in the soundness definition must be interpreted as ||HE.Decg(cy) — f(x)||oo is larger than
the chosen bound.
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3 VvFHE Schemes from Lattice-based SNARKSs

In this section, we construct our new verifiable FHE (vFHE), as defined in Section 2.7, by
combining a second-generation FHE scheme, such as BGV or CKKS, and a lattice-based
SNARK. A vFHE scheme allows a client to outsource the computation of f on input x to
a service provider, while keeping x private and also verifying the correctness of the final
result y = f(z). Without loss of generality, we assume that the homomorphic computation
corresponding to the outsourced function is represented as a layered circuit, as explained
in Section 3.1. The homomorphic computation is then performed as usual, and to allow
the verification of the computation, the SNARK is used to generate proofs for each layer
of the circuit. This is explained in detail in Section 3.2.

3.1 Layered circuits for homomorphic computation

In this section?, we assume that the homomorphic computation can be represented as
a circuit where each gate takes as input elements of the ring Rg (polynomials modulo
X" +1 and coefficients in Zg) and performs a homomorphic addition, plaintext-ciphertext
multiplication, or ciphertext-ciphertext multiplication, which is divided in a tensor product
and the maintenance routines, the key-switching and the modulus switching. Moreover,
it is always possible (and it is common in the FHE literature) to use layered circuits
for the homomorphic computation, where each layer finishes with ciphertext-ciphertext
multiplication gates, and the number of layers is then the multiplicative depth of the
circuit. Thus, we consider the following structure for the circuits: First of all, define
Q) = H?:o i, i.e., the product of k£ + 1 small primes. For a circuit with multiplicative
depth L, fresh ciphertexts are defined over Ry = Rg. Then we represent the circuit as
the following composition of subcircuits

Co(-.(Mp-1(Cr—1(ML(CL("))))))

where each subcircuit Cy takes as input input(k) elements of Rga), outputs output(k)
elements of Rgk), and only the output gates can be tensor products. The subcircuit
Mj, then corresponds to the key- and modulus-switchings. Hence, it takes as input
input(k — 1) < output(k) elements of Ry, and outputs input(k — 1) elements of Rg-1).

3.2 Owur vFHE scheme

Our scheme combines a second-generation FHE scheme & = (HE.ParamGen, HE.KeyGen,
HE.Enc, HE.Dec, HE.Eval), such as BGV and CKKS, and a lattice-based SNARK II =
(Setup, Prover, Verifier).

- ParamGen(1?, f): Given the function f, construct a layered circuit
Co(-o.(Mp,_1(Cr—1(Mr(CL(+)))))) of multiplicative depth L that computes f(-).
Run HE.ParamGen(1*, L) to generate the FHE parameters HE.params. Return
params = (HE.params, L, {C; }, {M;}) and consider them default inputs to the follow-
ing algorithms.

- KeyGen(1*) Generate the secret, public, and relinearization key of the FHE scheme,
i.e., run (HE.sk, HE.pk, HE.r1k) + HE.KeyGen(1%). Then, run the setup algorithm
of the SNARK scheme for each multiplicative layer i, over each field that is used in
the dCRT representation of Rge- In more detail:

2Extending our construction to also implement slot rotations is straightforward, as discussed in
Appendix A, where we also present an optimized way of adding all the slots minimizing the number of
proof layers.
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1. For each prime g; with j = 0,..., L, use the SNARK setup algorithm to generate
(crsp, j,vrkp, ;) « ILSetup(1*,C) in Fy,.

2. For each multiplicative layer i = L —1 to i = 0, use the SNARK setup algorithm
to generate
(a) (crs;j,vrk; ;) < ILSetup(1*,C; o M;11) in Fy,, for 0 < j <.
(b) (crsiit1,vrkiiy1) HSetUP(l/\aMiH) inFg,,, .

Output the secret/public keys: sk = (HE.sk, {vrk; ;}) and pk = (HE.pk, HE.r1k, {crs; ; }).

- Enc(x,pk): Return ¢, = HE.Enc(z, HE.pk) € R2, ., for plaintext x.

Q)

- Eval(c, pk): For a layered circuit Co(...(Mr_1(Cr—1(Mr(CL(+)))))) and vector of
input ciphertexts ¢ € (Ré( ) )i"p“t(L), run the evaluation algorithm of the FHE scheme
as usual, but use the intermediate values as the wire values that are used to generate
proofs in the SNARK scheme. In more detail:

1. For each prime ¢; with j =0,...,L:

(a) Evaluate cp ; < HE.Eval(c;,Cr,HE.rlk) where ¢; € (jo)i“p”t(L) and
cL; € (jo)"“tp“t(m since Cr, has input(L) inputs and output(L) outputs.
Additionally store the results of all intermediate computations as wy,; € Fy .

(b) Calculate proof 7y, ; <— II.Prover(crsy, ;, €;l|cL ;. Wi ;)

2. For each multiplicative layer i = L — 1 to i = 0:

(a) Generate the intermediate outputs used for modulus switching c; ;41 <

HE.Eval(Ciy1,i41, Miy1, HE.T1k) where ¢ip1,i11 € (RS, )™ and ¢; ;11 €

(R?IHr |)Put(d) | since a maintenance circuit has as many ciphertext outputs
as inputs. Also, for 0 < j < 4, generate intermediate outputs c;; «
HE. Eval(Cerl,j |[Cz+1 1+1]q1 C;o M; 1, HE. rlk) where Cit1,5 € ('R,3 )input(i)
and ¢c; ; € (’R2 yeuteut(®) gince C; has input(i) inputs and output(i) outputs.

Again, store the results of all intermediate computations as w; ; € IF* for

0<3<i+1.
(b) For 0 < j <14, using additionally in the statement HE.r1k, modswitching
outputs Cit1,i+1 and the decompositions

[€ilq, € (Rf{;l)i””“t(i) used for relinearization, calculate the proofs
i < ILProver(crs; j, ciy1 5l[ci jll[Cit1,i41]q, ||[€ilq, |IHE.T1k, Wy ;).
Also calculate the proofs for the maintenance circuit M;
Tii41 < ILProver(crs; i1, Ciy1iv1]|Ciiv1]|[Ci]q,; |[HE. X1k, Wi j41).
Return all ciphertexts c; ; output by HE.Eval and all proofs m; ; output by IL.Prover

- Verify(c, {c; ;},{mi ;},sk): Given the input ciphertexts ¢ € (RzQ(L))i“p“t(L), all inter-

mediate outputs c; ; € (Ri)"“tp“t(i), the proofs 7; ; and verification keys vrk; ;, run
I1.Verifier for every partial circuit in every field [y, and output reject if any SNARK
verifier rejects. Otherwise output accept. In more detail:

1. For each prime ¢; with j = 0,..., L: verify the circuit C, by running by, ; <
II.Verifier(vrkz, ;, ¢jl|cL j, mr,;) and output reject if by, ; = 0.
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2. For each multiplicative layer ¢+ =L — 1 to i = 0:

(a) For 0 < j < i, verify the circuit C; o My in Fy, by using the relevant input
and output ciphertexts, modswitching outputs and inputs for relinearization
to run

bi,j < ILVerifier(vrk; j, cit1 jllci jl|[Cit1,i+1]q; [|[€i]q; [[HE 1k, 7; ;)

and output reject if b; ; = 0.
(b) Verify the circuit M;; by using the relevant input and output ciphertexts
and inputs for relinearization to run

bi,i+1 < H.Verifier(vrk¢,i+1, ci+1,i+1 | |ci,i+1 | ‘ [67](1] | |HE.I:|.1{7 7'(‘1‘,7;_’_1)

and output reject if b; ;11 = 0.
(c) Output accept, since all subcircuits verified correctly.

- Dec(cy, sk): Output plaintext y = HE.Dec(c, HE.sk) for ¢, € (R%(U))W“’“t(o).

Subcircuit blueprinting. In our basic construction, the vFHE public key contains
O(L?) different SNARK crs instances which are used in the Eval algorithm to generate
the vFHE proof. This could easily be decreased to only O(L) instances by generating
a "blueprint” crs for each prime ¢;. These crs’s encode a blueprint circuit C'p which is
able to compute all other subcircuits Co(Mi(+)),...,Cr_1(ML(-)),CL by setting certain
input wires to zero. Since these subcircuits would be very similar, mostly differing in the
number of inputs and outputs, the added number of gates would be minimal, which means
that the added cost of proof generation would also be minimal. Note that one can also
choose to make this tradoff for certain similar layers but not for others. This blueprinting
technique also effects the number of SNARK vrk instances in the secret key but their size
is negligible compared to the crs’s.

3.3 Security analysis

The FHE and the SNARK schemes are used independently in our construction, hence, the
security of our scheme is trivially inherited from them. In this section, we briefly discuss
the security requirements that were defined in Section 2.7.

3.3.1 Correctness & Completeness.

These properties follow from the correctness and completeness of the FHE and SNARK
scheme respectively. Our construction simply divides the FHE computation in an exhaustive
set of subcircuits. The Eval algorithm evaluates every subcircuit, propagating outputs as
intended by the FHE scheme. The Verify algorithm will accept when all the SNARKSs that
prove these subcircuits verify.

3.3.2 IND-CPA Security.

Suppose there is an algorithm A that breaks the CPA-security of our scheme. Then we
can construct an algorithm B that breaks the CPA-security of the underlying FHE scheme
by simply letting B generate the public parameters of the SNARK scheme (as they are
all independent of the secret values of the FHE scheme, thus B is able to do so), and
providing them to the A algorithm. The remainder of the IND-CPA security game is the
same for the vEHE adversary, so B can forward the messages between A and its challenger.
Therefore, our construction remains CPA-secure if the base FHE scheme is already so.
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3.3.3 Soundness.

The knowledge-soundness of the SNARK scheme implies that the probability ¢ that a PPT
algorithm can produce a verifying but non-valid assignment is negligible in the security
parameter \. If we denote this probability for the subcircuit in layer ¢ with the modulus
g; as €;,; and call this event V;; (such that Pr[V; ;] = ¢; ;), and denote the soundness
probability from Section 2.7 as e,rug, we can use the union bound to state that

EvFHE S PI‘[ U ‘/i,j} S Z Ei,j S d2€ = negl(/\)
i=0,...,d i=0,...,d
§=0,...,i+1 §=0,...,i+1
where d is the multiplicative depth of the homomorphic circuit. Honest homomorphic
evaluation implies vFHE soundness by the correctness of the FHE scheme.

3.4 About the compactness and client’s efficiency

To avoid trivial constructions of FHE where the server does not actually compute anything,
but just attaches the circuit to the ciphertext and the client decrypts and evaluates the
circuit on their own, one usually requires that FHE schemes be compact [vGHV10], i.e., the
running time of decrypting a ciphertext is independent of the circuit that was evaluated.
We notice that as all existing leveled FHE schemes, our construction does not satisfy this
compactness property, but it is not equivalent to the trivial construction either. Indeed,
there are functions for which it is more expensive for the client to compute them locally
than to outsource their computation, run the decryption and the verification.® Moreover,
we notice that there are other reasons for a client to outsource the computation, for example,
if the client has already outsourced the storage or if the computation to be performed
depends on inputs from the server, which are unknown to the client (as is common when
the server offers machine learning as a service, since in this case the server trains a large
model and the client cannot download the model to run it locally). Furthermore, the
privacy of the server’s inputs can be preserved by performing noise-flooding in the FHE
scheme to achieve circuit privacy similar to [BCFK21]. Finally, we would like to stress
that in practice, our construction is still much more efficient than existing constructions
and allows the computation of complicated and deep circuits that could not be handled
previously.

All that said, we now present an analysis of the verification cost, then we provide
examples of some functions families that are “outsourceable”.

3.4.1 Verification cost

As stated in Section 2.3.1, the time complexity of verifying a proof 7 that a circuit with
input size ¢;, and output size £,,; was correctly computed is O(€;, + £our + A). Notice
that we instantiate our SNARKSs over F,; for 0 < j < L, thus, each gate of the circuit that
operates on polynomials is actually a point-wise addition or multiplication of N-dimensional
vectors corresponding to the NTTs of the polynomials (see Section 2.5). Thus, because the
circuit is defined in terms of polynomials, its verification cost is O(N - (€i, + Cout) + A).

Lemma 1. Verifying Cr(-) can be done in O(N - L - (input(L) + output(L)) + L - A) basic
operations, i.e., operations modulo small primes q;’s.

Proof. One just has to note that Cp, is a circuit from Rinrzg(L) to Rou(tf;“(L)7 thus, the

verification for each prime g; can be done in time O(N - (input(L) + output(L)) + A). Since
we have L+ 1 primes, verifying Cf,(-) costs, in total, O(N - L (input(L)+output(L))+ L- )
basic operations. O

3In works that construct private verifiable computation (PVC), this is related to the outsourceability of
the functions.
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Lemma 2. Verifying Cr,(Mg11(-)) can be done in O(N -output(k + 1) - (k+1)2 + N -
output(k) - (k+1)+ X- (k+ 1)) basic operations, i.e., operations modulo small primes ¢;’s.

Proof. Since My 1 runs the relinearization and the modulus-switching, it uses the algorithm

FastBaseExt, which takes as input the outputs of Cj1 used as inputs for Cy, for each of
input(k)-(k+1)

the k + 1 primes used to compute Cg41. Thus, My is a circuit from RQ(k+1> to
input(k)
RQ(k) .
i k k i k)-(k+1 k
Then, we have C}, : Rgf,f)t( ) jo(t,f)“( ). Thus, Cro M4 : Rg?:f}l)) (k+1) jo(t,f)“( ),

which means that for each prime qo, ..., g, we can verify Cj(Mg41(+)) in time O(N -input(k)-
(k4 1)+ N -output(k) + A). Since input(k) < output(k + 1), verifying it for all k£ + 1 primes
has time complexity O(N -output(k + 1) - (k + 1) + N -output(k) - (k + 1) + X (k + 1)).

O

Lemma 3 (Client’s verification cost). Verifying a layered circuit C(-) = Co(...(Mr—1(Cr—1(
ML(CL(")))))) can be done in

L
o) ()\ -L?*+ N -L-input(L) + ZN -output(k) - (k + 1)2> (1)
k=0

operations modulo small primes q;’s.

Proof. Since the verification is done by verifying Cp, then verifying the composition
C o Myyq for 0 < k < L — 1, we just have to compute tg + t1, where t; is cost from
Lemma 1 and t; is the sum of costs from Lemma 2 for each k. It holds that

L—1
tp = O(N -output(k + 1) - (k+ 1) + N - output(k) - (k + 1) + A+ (k + 1))
k=0
L
=0 (/\ CL2 + ZN -output(k) - (k + 1)2>
k=0
Since tg = O(N - L - (input(L) 4+ output(L)) + L - A), the result follows. O

We stress that thanks to the slot structure of the plaintext space of the FHE schemes
we are considering, the client can encrypt s := ©(N) messages per ciphertext and the
homomorphic computation actually evaluates the circuit on N different inputs in parallel.
Thus, the expression in Lemma 3 can be divided by N when comparing to the cost of
evaluating the function locally. Generally speaking, a circuit is outsourceable if it is wide
and the number of “inner gates” is much larger than the number of inputs and outputs.
For example, supposing that input(k) and output(k) are constants for all &k, then Lemma 3
simplifies to O(N - L? + A+ L?) = O(N - L?), because N = O(\) for security reasons. Hence,
since the cost of encryption/decryption is negligible wrt the cost of verification, a circuit
with S gates and multiplicative depth L is outsourceable if S = Q(L3?).

3.4.2 Outsourceability of matrix-vector multiplication.

Let f(v) = M- v for some matrix M € Z™*™ and some vector v € Z". Also, let s € O(N)
be the number of plaintext slots. Then, computing f(v1), f(v2), ..., f(vs) locally costs at
least s-m-n € Q(N - m - n) basic operations. However, since we can compute f with
a circuit of depth one, we can set L = 1 and the verification cost in Lemma 3 becomes
O(N(n+ m) + A). Because N = ©(\), this is actually O(N(n + m)), which is cheaper
than Q(N - m-n). This comparison could be extended to affine maps f(v) = M-v+b for
a vector b € Z™. Notice that homomorphically calculating these linear functions does not
require ciphertext-ciphertext multiplications.
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3.4.3 Outsourceability of depth-one circuits.

Now we extend the comparison to non-linear functions. Let f(vi,va) = (M; -vy) ®
(My - vy) for vi,ve € Z" and M;,My € Z™*™ where ® represents the Hadamard
product. Here, homomorphically calculating f would require one layer of ciphertext-
ciphertext multiplications, so again we set L = 1. Similar to the previous comparison
we can show that the verification cost is O(N(n + m)). Also, for s € ©(N) plaintext
slots, the cost of local computation is at least Q(N - m - n), so the function remains
outsourceable. Notice again that this comparison can be extended to functions of the form
f(Vl,VQ,Vg) = (Ml . Vl) ® (M2 . VQ) + M3 - V3 + b.

3.4.4 Outsourceability of higher depth circuits.

To homomorphically calculate circuits of higher depth we divide them into consecutive
depth-one circuits as described in Section 3.1. Consider for example homomorphically
calculating a function f that approximately represents the feedforward computation of a
neural network. For a d-layered network, f can be defined as f(v) = fa(... fa(f1(Vv))...)
where f;(v) = o(M; - v +Db;) for a sequence of compatible weight matrices M;, bias vectors
b; and an activation function ¢. In FHE, the function o is typically approximated by a
low-degree polynomial, e.g. o(v) = v ® v, thus each neural network layer is a depth-one
circuit and we can set L = O(d). To ease the comparison, let’s say the number of inputs
or outputs in each layer (i.e. neurons) is upper bounded by w. Then, the cost of locally
evaluating f on s € O(N) different inputs becomes Q(N - d - w?). From Lemma 3, we
can conclude that the verification cost becomes O(N - w - d®). Therefore, f would be
(asymptotically) outsourceable in terms of basic operations when w € Q(d?), meaning the
neural network is sufficiently wide. In Section 5, we instantiate our construction for this
specific example.

4 Related work and comparisons

There exists limited previous research on privacy-preserving verifiable computation. Early
examples include a scheme by Gennaro et al. [GGP10] based on garbled circuits and a
scheme by Goldwasser et al. [GKP " 13] based on functional encryption. Fiore et al. [FGP14]
proposed the approach of combining a VC and FHE scheme, later extended in [FNP20]
and improved by Bois et al. [BCFK21], with which we compare.

Other vCOED approach. Our construction follows the approach of [FGP14] which
uses VC to verify FHE computations and thereby achieves verifiable Computations On
Encrypted Data (vCOED). Recently, Garg et al. [GGW23] have proposed a different
approach for vVCOED where one uses FHE to homomorphically compute a VC scheme
but have not provided a concrete description of their scheme nor cost analysis. Another
recent eprint [ACGSV23] follows this approach and explicitly describes and implements
the homomorphic computation of FRI (an important building block of many SNARKSs).
Although it would be interesting to make a comparison with our approach, the cost of
their vCOED scheme is not described in the non-interactive setting. Furthermore, they
have not provided an implementation of the vCOED scheme, nor have they parameterized
it for a specific IOP and FHE scheme.

4.1 Comparison with [BCFK21]

In [BCFK21], two homomorphic hash functions over Galois rings are proposed and they are
used together with a variant of the GKR protocol [GKRO08] to obtain verifiable computation
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over encrypted data. On the positive side, their solution is publicly verifiable. However,
the types computation they can verify is rather limited.

In more detail, instead of verifying computation over Rg, they actually verify circuits
over Zg[X], meaning that no reduction modulo X* + 1 is performed, which means
that the degrees of the polynomials involved in the homomorphic computation are no
longer bounded by N, but on depth d, they have degree O(2? - N). Then, they use the
homomorphic hash functions to compress these polynomials and reduce the proof size. But
because the maintenance operations do not respect the homomorphic properties of the
hashes, i.e., they are not composed by additions and multiplications on Zg[X], they cannot
prove the relinearization and the key-switching. Without relinearization, the number of
polynomials in each ciphertexts is no longer constant, but at depth d, we have ©(2%) of
them. Thus, by exponentially increasing the number of polynomials and the degree of
each polynomial, we end up with ciphertexts of size ©(22¢ - N log Q) instead of O(N log Q).
Of course, operating with larger ciphertexts is also more costly timewise. In other words,
there is a huge time and memory overhead for the server depending on the depth.

In our case, the server has essentially no overhead, as the homomorphic computation is
basically unchanged.

Furthermore, no modulus switching means that the noise in the ciphertexts grows
exponentially fast. Essentially, at depth d, the noise is @(J2d) where o is a constant
bounding the initial noise of fresh ciphertexts. If the noise is too big, then the correctness
of decryption stops holding. In more detail, we need the final noise to be bounded by @,
S0,

2% . Jogo <logQ = d € O (log(logQ/logo)) = O (loglog Q)

Therefore, on top of the limitation related to the size of the ciphertexts (efficiency),
there is another limitation related to the correctness, which implies that, in the best
possible scenario, the depth of the circuits that [BCFK21] can verify is only O (loglog Q).
In our case, because we support modulus-switching, the FHE scheme itself supports much
deeper computations.

From Theorem 7 of [BCFK21], the time complexity of their verification of a circuit of
depth L, having S gates over Rg, and input size input(L) is O((input(L)+ L?)N +\Llog S)
operations over Z¢g. Since additions and multiplications modulo @ cost at least log @
basic operations, supposing ) polynomial in N, as it is usual in FHE, their verification
cost becomes O(((input(L) + L?)N + AL1log S)log N) in terms of basic integer operations.
By setting L as a constant, since basically that is the multiplicative depth that their
construction can handle, their verification cost becomes O(input(L)N log N +\log Slog N),
while in our case, from Equation 1, we obtain verification cost O (A + N - input(L)).

4.2 Comparison with Rinocchio

The authors of [GNS23] propose another approach for verifying computations over en-
crypted data. They circumvent the incompatibility between the finite field-based zkSNARK
schemes and the ring-based FHE schemes by adjusting a state-of-the-art zkSNARK proof
system to work over rings. They claim that this proof system enables privacy-preserving
verifiable computation by instantiating it over the ring Ry and combining it with RLWE-
based FHE schemes. However, similar to [BCFK21], their approach does not natively
support the maintenance operations that are crucial for the efficiency of modern FHE
schemes such as [BGV12] and [FV12]. As discussed above, not performing the maintenance
operations means that both the modulus @) and the ciphertext degree depend exponentially
on the multiplicative depth d. This would impose an overhead on the prover which makes
the scheme impractical for applications with some multiplicative depth. We refer to
Appendix C for a more detailed comparison.
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5 Implementation and Performance

In this section, we discuss an instantiation of our scheme that uses the construction by
Ishai et al. [ISW21] as lattice-based SNARK to verify the following computation of a BGV
homomorphic circuit

ki1

Ky 2
[Cl+1]§l§f = [(Z aiijCri + bz,j> ] (2)
i=1

j=1

for two layers [ = 0 and | = 1. Here, a and b are elements of the plaintext space R,
and ciphertexts ¢ € Rg[Y]. Notice that this computation approximates the feedforward
evaluation of a basic neural network layer. Since each layer has a multiplicative depth
of one, we can evaluate one neural network layer before performing relinearization and
modswitch on the ciphertexts c; ;. We refer to Section 3.4 for a more detailed description
of this instantiation.

We have selected standard BGV parameters that provide 128-bit security, which we
confirmed using the lattice estimator by Albrecht et al. [APS15] for lattice dimension
N = 2'2 and Gaussion width s = 4. It is trivial to show that for these BGV parameters, it
suffices to select a BGV modulus, Q = Q™) = qoqi1¢2, the product of three 30-bit primes,
and a post-modswitch modulus Q(© = gyq;. (Concretely, the output ciphertexts cz
satisfy the noise bound for decryptability and the relinearized ciphertexts c’17 satisfy the
noise bound required before modswitching.) Therefore, we claim that this computation is
verifiable using 6 proofs in 2 layers and 3 finite fields, as in Figure 3. To simplify parameter
selection for this specific instantiation, the moduli Q(®, Q™) contain an extra prime.
Remark that our construction also allows for other similar adjustments, e.g. removing
multiple primes per modswitch for increased noise reduction.

As shown in Section 3.3, we can select the security parameters for the FHE and SNARK
scheme independently. We now select the parameters of the lattice-based SNARK scheme
such that 128-bit security is achieved (for instantiations over all prime fields F,,). This
scheme consists of a linear PCP and a linear-only vector encryption. To ensure efficiency
of the former, we select the primes g; such that the prime fields IF,, contain Ny-th roots of
unity for N, = 220 which determines the maximum number of gates in one R1CS instance.
This allows for O(nlogn) construction of the QAP that the linear PCP is based on. Notice
that the existence of the Ny-th roots of unity ensure the existence of the N-th roots of
unity required for the NTT transformation in BGV (since N = 2!2). Also, a soundness
amplification parameter p is determined in order to achieve sufficient knowledge soundness
for the PCP. That is, to obtain soundness bounded by 27°, one should select p such that
(2Ng4/(g — Ngy))? < 27° (we refer to Section B.1 for more detail). In our implementation,
targeting s = 128 and using 30-bit primes, we chose p = 15. But we notice that for 60-bit
primes we would only need p = 4 which significantly reduces the CRS size. Also, it is
possible to use a smaller s, different from the security level.

As for the linear-only vector encryption, the parameters were selected similarly to the
method in Section 4.2 of [[SW21]. Recall that the plaintext space F,,, of this scheme needs
to match the finite field of the PCP. In this context, ¢; are the ciphertext space moduli.
In Table 1, we summarize our selection of the necessary parameters. Lastly, we slightly
adjusted both the linear PCP and the vector encryption to remove components that form
the zero-knowledge property of the resulting SNARK.

We have implemented® this instantiation of our vFHE scheme for the homomorphic
circuit described by Equation (2). Using the libsnark library, we implemented the R1CS
constraint systems. This includes the elementary BGV computations in double-CRT
representation, as well as the circuits required for the relinearization and the modswitch

4nttps://github.com/KULeuven-COSIC/vFHE
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Table 1: Parameter selection for the lattice-based SNARK. p is the plaintext modulus,
while ¢ is the ciphertext modulus. n and s are the lattice dimension and the Gaussian
width of the lattice-based vector encryption. p is the soundness amplification parameter.
is the ciphertext sparsification parameter which ensures the linear-only property and ¢’ is
the post-modswitch modulus which decreases proof size. For a more thorough explanation,
we refer to Ishai et al. [ISW21].

!

log, ¢ q n
87  389942329959458 3500

87 410854793832210 3500
87 420467605951707 3500

P P
1085276161 15

1092616193 15
1095761921 15

ol oY ot 3
| | | ®»

operations. The latter include sub-circuits for the NTT transformations which are most
expensive in terms of the number of R1CS gates required. We used the lattice-zksnark
library by Ishai et al. to implement the Setup, Prover and Verifier SNARK methods
that are used in our scheme. The timings of these algorithms, aggregated over all 6 R1CS
instances, are most relevant for the performance of our scheme and are shown in Table
2. The total crs size over all 6 proofs is 11.6GB while the proof size is about 187kB.
There are 3133440 gates in all R1CS instances combined. Note that crs size and setup
time could be greatly reduced (possibly 6x smaller) when using the blueprinting technique
discussed in Section 3.2.

Table 2: Performance results for SNARK methods of our construction on the computation
of Equation (2) for different kg and k1 = 3, ks = 1.

ko | Setup time Prover time Verifier time
5 1821s 116 s 597 ms

15 1922s 131 s 618 ms

25 2023 s 138 s 664 ms

35 2025s 138 s 692 ms

50 2129 s 146 s 731 ms

75 2448 s 167 s 824 ms

100 2431 s 167 s 925 ms

We compare our results with [VKH23], who implemented the Rinocchio scheme, and
also the naive approach of using field-incompatible proof schemes to verify the dCRT
computations. Both approaches are unable to efficiently verify homomorphic circuits with
depth greater than one, therefore they only verify a circuit that performs one ciphertext-
ciphertext multiplication (followed by a modswitch). Comparison is unfair since it is
unclear how their constructions would scale for higher depth circuits. However, we note
that our implementation still achieves a 4-6x improvement in prover time while verification
times remain practical, even for circuits with a high number of public inputs.
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A More building blocks for vFHE

A.1 Rotations

For any odd integer k € [N], homomorphically rotating the slots by & positions is done in
two steps: First, we apply an automorphism 73 : X — X* to both components ¢; € Rg of
a ciphertext ¢(Y'), then we apply a key switching from s(X%) to s(X).

Since the automorphism is implemented by simply permuting the entries of the matrices
corresponding to the double-CRT representation of ¢(Y'), it does not add any cost to the
proof and just implies that the wires of the proof of key switching have to be renamed to
match the permutation. Then, the key-switching procedure is basically the same as the
relinearization, which was already implemented for the homomorphic multiplication.

A.2 Adding all the slots via rotations

Let AddSlotsy : Ré — Ré be a procedure that takes one ciphertext encrypting (po, ..., fts—1)

and outputs an encryption of a vector u such that ulk] = Zf;()l w; and ufi] = 0 for ¢ # k,
i.e., the sum is located in the k-th slot and all the other slots are zero.

Algorithm 1: Standard way of adding all the slots homomorphically
Input: Ciphertext ¢(Y) € Rg[Y], key-switching keys K; from :(s) to s, for
0 < i <logS, where s is the secret key. An integer k € [0,.5 — 1].
Output: Ciphertext ¢/(Y) € Rg[Y],
d(Y)=c(Y)
for 0 <i<logS do
r(Y) = oi(e(Y)) > Automorphism that rotates by 2
r(Y) = KeySwt(e(Y),K;)
dY)=d)+rY)
> Apply a mask to zero other slots
u=(0,..,0) €z
ulk] =1
u(X) = Pack(u)
dY)=d(Y) u
10 return ¢/(Y)

ok W N

© 0w I o

This procedure is usually implemented as shown in Algorithm 1, since it requires
only ©(log S) rotations. However, since each rotation requires a key switching, this
algorithm would require ©(log S) layers of proofs in our construction. Instead, we propose
Algorithm 2, which computes the same, but only applies the key switchings at the end and
in parallel, requiring thus, just 2 layers of proofs, one for the main block, and another one
for the key switchings. The main idea is that we can loop rotating the slots and adding,
as in the original algorithm, but then we are producing a ciphertext that depends not only
on the original secret key, but also on “rotated keys” obtained after the automorphisms.
Namely, we are adding terms like 7"(()1)1/}27‘, (sk) to the ciphertext. Thus, if we store the values
7“(()1), we can use them to key switch at the end, producing encryptions of —Tél)’l/)Qi (sk),
which can then be added to the final ciphertext so that we only keep the term that depends
on sk itself.

The number of additions on R is basically the same in both algorithms. The number
of key switchings also doesn’t change. The only overhead is that now the prover has to
store all the O(log S) ring elements r(()l) € Rq produced in the first loop. That is, we
reduce the number of proof layers from ©(log S) to 2 basically for free.
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Algorithm 2: Verification-friendly slot addition

LI

o

Input: Ciphertext ¢ € R, Key-switching keys K; from s(X?') to s(X), for
0 <i<logS. An integer k € [0,5 — 1].
Output: Ciphertext c € 7'\’,2(;,,

(a', V) = (c[0],c[1]) > Encryption of m under s
for 0 <i<logsS do
(r$", %) = i () > 1) = r i (s) + e 4 i (m)
o=+ > Now b’ is of the form a's+ 3 ., r{ g (s) + € + m/

> Apply the key switchings

for 0 <i<log$ do

L v; = Decompose(r((f)) -K; € R, > vi[1] = v;[0]s +e; — Téz)wgi(s)
V)= (a,0)+ 3% v

> Apply a mask to zero other slots

u=(0,..0) €z

o ulk] =1

10
11
12

u(X) = Pack(u)
dY)=d(Y) u
return ¢/(Y)

B Lattice-based SNARKSs

We recall a lattice-based designated-verifier SNARK, proposed by Ishai et al.[ISW21]
which combines linear PCPs and linear-only vector encryption following the Bitansky et

al.

[BCTT13, BISW17] compiler. Note that these components can be easily adjusted such

that they construct a designated-verifier zkSNARK.

B.

1 Linear Probabilistically Checkable Proofs (LPCPs).

A linear PCP is a PCP where the oracle is restricted to respond with linear functions
a = Q' of the queries Q. Following Ishai et al., we will define them using three PPT
algorithms. A LPCP with k queries, query length [ and knowledge error € consists of a
tuple of algorithms Iy pcp = (Q, P, V) with the following properties

- Q(CS) — (st, Q) : given the the constraint system CS, it generates some query
matrix Q € F'** and a verification state st.

- P(CS,x,w) — 7 : given the statement x € F”, the witness w € FN»~" and the
constraint system CS, it generates a proof 7w € F'.

- V(st,z,a) — b : given the verification state st, the statement & € F" and some
responses a € F¥| it generates a verification bit b € {0,1}

For our purposes, these LPCPs need to satisfy completeness and knowledge soundness

properties described below.

Completeness. A LPCP scheme I, pcp = (Q, P, V) is complete iff for every statement
x and witness w, and R1CS instance CS,

CS(x,w) =1
Pr| V(st,z,Q'm) =1 | (st,Q) <« Q(CS) | =1.
<« P(CS,z,w)
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Knowledge Soundness. A LPCP scheme I pop = (Q, P, V) has knowledge soundness
iff for every statement x and proof * where

Pr[V(st,z,Q 7*) = 1] (st, Q) + Q(CS)] > ¢
there exists an efficient extractor Extr such that
Pri[CS(z,w*) =1 | w" < Extr(z,7")] = 1.
This implies that for every ¢ L¢s and proof vector 7*
Pr[V(st,z,Q ' n*) =1] <e.

Ishai et al. use the claim written below, to construct a linear PCP for R1CS over any
field F by utilizing Quadratic Arithmetic Programs (QAPs) [GGPR13].

Linear PCPs for R1CS (adapted from [ISW21]). Let CS be an R1CS instance over
a finite field F, where CS = (Ny,n, Ny, {a;, b;, ¢i}icin,))- Then, there exists a 4-query
linear PCP for CS with knowledge error 2N, /(|F| — N,) and query length 4+ N,, + N, —n.

They consider linear PCPs over quadratic extensions > as well as over the base field
F,. As will be obvious from the construction later, this field needs to match the plaintext
space of the vector encryption scheme. Ishai et al. achieve this by either instantiating the
vector encryption over the same field or compiling the F,. PCP to a F, PCP.

B.2 Linear-Only Vector Encryption.

We recall the definition of a vector encryption scheme by Ishai et al. and then define the
linear-only property required by the [BCI*13, BISW17] compiler. Let F be a finite field.
A secret-key additively-homomorphic vector encryption scheme over a vector space F!
consists of a tuple of algorithms IIg,. = (Setup, Encrypt, Decrypt, Add) with the following
properties:

- Setup(1*,1%) — (p,sk): On input the security parameter A and the plaintext dimen-
sion [, the setup algorithm outputs public parameters p and a secret key sk.

- Encrypt(sk,v) — ct: On input the secret key sk and a vector v € F!, the encryption
algorithm outputs a ciphertext ct.

- Decrypt(sk,ct) — v/ L: On input the secret key sk and a ciphertext ct, the
decryption algorithm either outputs a vector v € F! or a special symbol L.

- Add(p, {ct;}iem]s {¢i}iem)) — ct™: On input the public parameters, a collection of
ciphertexts ctq,--- ,ct, and scalars c1,--- , ¢, € F, the addition algorithm outputs
a new ciphertext ct*.

Moreover, Il g, should be additively homomorphic and satisfy CPA security. Addi-
tionally, Il g, should satisfy the following property.

Linear-only homomorphic encryption (adapted from [ISW21]). An additively-
homomorphic vector encryption scheme I g, = (Setup, Encrypt, Decrypt, Add) is linear-only
iff for any PPT adversary A, there exists an PPT extractor Extr that outputs II € F! such
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that for any security parameter \, auxiliary state z € {0, 1}P°'Y(>‘), plaintext dimension [
and plaintext generator M

(p,sk) < Setup(1*, 1)
(Ula B ,Uk-) — M(p)

li
Decrypt(ct’) #L ct; + Encrypt(sk, v;) for i € [k]

Pr A < negl(\).

] ct’ + A(p,cty,...,cty; 2
Decrypt(ct’) # v; for i € [K] IT + Extl(‘?p Cél Clgl' Z))
ct’ = [cty,...,ct] 1T

B.3 SNARKS from Linear-Only Encryption.

We recall the Bitansky et al. [BCI*13] compiler for constructing SNARKs from linear
PCPs and linear-only vector encryption (specifically the variant by Boneh et al. [BISW17]
based on linear-only vector encryption) following Ishai et al. [ISW21].

Let CS be an R1CS instance over a finite field F. The construction relies on the
following building blocks:

- Let HLPCP = (QLPCP7 PLPCPaVLPCP) be a k—query LPCP for CS. Let m be the
query length of Il pcp.

- Let gpne = (Setupg,,., Encryptg,,., Decryptg,,., Addgne) be a linear-only additively-
homomorphic vector encryption scheme for F*.

The single-theorem, designated-verifier SNARK IIgnyarx = (Setup, Prover, Verifier) for
RCS is defined as follows:

- Setup(1*,6S) — (crs,st):  On input the security parameter A, run
(strpep, Q) + QrLpcp(CS) where Q € F™*k. For each i € [m], let ¢/ € F*
denote the i th row of Q. Then sample (p,sk) + Setupg,.(1*,1%) and compute
ct; + Encrypty,.(sk,q ) for each i € [m]. Output the common reference string
crs = (CS, p,cty, -+, cty,) and the verification state st = (st pop,sk).

- Prover(crs,z, w) — 7: On input the common reference string crs = (CS,p, cty, -+ ,
cty,), a statement x, and a witness w, the prover constructs an LPCP proof 7 +
Prpcp(CS,x,w). The prover then homomorphically computes the linear PCP re-
sponse ct* — Addgnc(p, {ct1, - ,ctm},
{71, ,mm}). It outputs the proof m = ct*.

- Verifier(st,x,m): On input the verification state st = (st; pcp,sk), the statement x,
and the proof = = ct*, the  verifier first  decrypts
a < Decryptg,,.(sk,ct*). If @ =L, the verifier outputs 0. Otherwise, it outputs

VLPCP(StLPCP; x, a).

C Comparison with Rinocchio

In [GNS23], the authors propose another approach for verifying computations over en-
crypted data. Their work defines a zZkSNARK for computations over rings by extending
the classical Quadratic Arithmetic Programs (QAPs) to Quadratic Ring Programs (QRPs),
and defining compatible ring-based encoding schemes. Since QRPs can represent arithmetic
circuits over rings, they can be used to represent the homomorphic computations of modern
FHE schemes. However, the maintenance operations still pose a problem since they can not
be expressed in QRPs in an efficient way. As we discussed in Section 4.1, not performing
the maintenance operations means that both the modulus @ and the ciphertext degree



28 Verifiable FHE via Lattice-based SNARKSs

depend exponentially on the multiplicative depth d. This puts a significant overhead on
the prover in practical applications.

As the authors briefly remark, it is possible to simulate the non-arithmetic operations
in the QRP and in that way still incorporate maintenance operations in the proof. Again
this causes additional overhead in contrast to our construction, which we will analyze here.
Relinearization, for example, requires modular reduction [c],; of an element ¢ € Rq, for
j=0,...,i. To prove this modular reduction, one needs to prove the modular reduction
of each of its N coefficients. Proving the reduction [a],, for a € Zg requires O(log Q)
constraints, since it is only possible by first bitwise decomposing the coefficient a. Therefore,
proving relinearizations alone would add O(dLN log Q) constraints to the QRP instance
for each ciphertext. In our construction, we avoid having to express these reductions using
R1CS constraints and therefore avoid the increased CRS size and the increased cost of
proof generation.

Modulus-switching also significantly increases the amount of constraints in the QRP
since it requires non-arithmetic modular reduction. Moreover, ciphertexts coefficients are
defined modulo Q;_; after this operation. The authors of Rinocchio suggest to emulate this
modulus switch by multiplying by the constant (1,1,...,1,0,...,0) in RNS decomposition,
for i—1 non-zero elements. Since this only emulates the reduction in the RNS decomposition
of the ring, one eventually has to properly reduce (requiring bitwise decomposition) before
the next round of maintenance operations. The authors do remark that modulus-switching
can be avoided by using a scale-invariant FHE scheme [FV12]. However, in that case the
homomorphic multiplication of ciphertexts would require non-arithmetic computations
even without relinearization. Both approaches, in contrast to our construction, also imply
that the size of ciphertexts and therefore the amount of constraints, does not decrease
linearly w.r.t. the current multiplicative depth.

One advantage of Rinocchio is that while our proof size depends on the multiplicative
depth of the circuit, their proofs consist of a constant number of encoding elements.
However, [GNS23] describe this encoding as a Regev-style encoding for plaintext space
R, which is impractical since @ typically has hundreds of bits. To be fair, we mention
an improvement of the encoding in Rinocchio introduced by Viand et al. [VKH23] where
each of the RNS digits of a ring element is encoded separately such that the plaintext
modulus of the encoding scheme corresponds to a modulus ¢; instead of . In this case the
encoding size per ring element would be similar to our construction, but we would have to
encode less elements because of the reasons mentioned above, as well as the blueprinting
technique mentioned in Section 3.2.

To summarize: our construction is generally more efficient than Rinocchio except in
proof size when multiplicative depth is large, but we have shown that in this case their
CRS size and proof generation are impractically costly.
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