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Abstract

We study the behavior of the multiplicative inverse function (which
plays an important role in cryptography and in the study of finite fields),
with respect to a recently introduced generalization of almost perfect non-
linearity (APNness), called kth-order sum-freedom, that extends a classic
characterization of APN functions, and has also some relationship with in-
tegral attacks. This generalization corresponds to the fact that a vectorial
function F : Fn

2 7→ Fm
2 sums to a nonzero value over every k-dimensional

affine subspace of Fn
2 , for some k ≤ n (APNness corresponds to k = 2).

The sum of the values of the inverse function x ∈ F2n 7→ x2n−2 ∈ F2n

over any affine subspace A of F2n not containing 0 (i.e. being not a vec-
tor space) has been addressed, thanks to a simple expression of such sum,
which shows that it never vanishes. We study in the present paper the
case of vector (i.e. linear) subspaces, which is much less simple to handle.
The sum depends on a coefficient in subspace polynomials. We study for
which values of k the multiplicative inverse function can sum to nonzero
values over all k-dimensional vector subspaces. We show that, for every
k not co-prime with n, it sums to zero over at least one k-dimensional
F2-subspace of F2n . We study the behavior of the inverse function over
direct sums of vector spaces and we deduce that the property of the in-
verse function to be kth-order sum-free happens for k if and only if it
happens for n− k. We derive several other results and we show that the
set of values k such that the inverse function is not kth-order sum-free is
stable when adding two values of k whose product is smaller than n (and
when subtracting two values under some conditions). We clarify the case
of dimension at most 4 (equivalently, of co-dimension at most 4) and this
allows to address, for every n, all small enough values of k of the form
3a + 4b.

Note: Some of the results in this paper have been presented without proof
in the Conference Fq15 (without proceedings), June 2023, Paris, France.
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1 Introduction

The important notion on (n,m)-functions F : Fn2 7→ Fm2 called almost perfect
nonlinearity (APNness) (see e.g. [10]) has been recently generalized in [11]:
given 2 ≤ k ≤ n and m, an (n,m)-function F is called kth-order sum-free if, for
every k-dimensional affine subspace (i.e. k-flat) A of Fn2 , the sum

∑
x∈A F (x)

of the values taken by F over A is nonzero.
In the present paper, we study the behavior relative to this notion of one of

the currently most important examples of vectorial functions for cryptography,
namely the (multiplicative) inverse function, defined over F2n as

F (x) = x2
n−2,

that is, F (x) = 1
x , with the convention 1

0 = 0 (the function F (x) will be in some
cases denoted by x−1, as it is usual). Recall that this function is used in the
S-boxes of the Advanced Encryption Standard (AES, see [16]), that is nowadays
the symmetric cryptosystem for civil use employed in all domains of every-day
life in the whole world (e.g. internet), and also in banking, etc. We shall recall
from [11] that the inverse function behaves in a particular way with respect to
sum-freedom, since it sums to a nonzero value over every affine subspace of F2n

over F2 that is not a vector subspace. We study in the present paper for which
values of k this function sums to nonzero values over all k-dimensional vector
spaces, which is a much more difficult problem to study for vector spaces than
for those affine spaces that are not vector spaces, and that we shall only very
partially solve. It seems that the mathematical study of the sum of the values
taken by the inverse function over all affine subspaces has never been made,
while an algorithmic approach exists in [18].

The paper is organized as follows. After preliminaries in Section 2, we give in
Section 3 some results on the so-called subspace polynomials that will be useful
in the whole paper. In Section 4, we recall an expression found in [11], in the
form of a ratio with a very simple numerator, of the sum of values taken by the
inverse function over affine spaces that are not vector spaces. This expression
shows that this sum is never zero. In the case of vector spaces, finding a simple
expression is more difficult. In Section 5, we address the case of F2l -subspaces
of F2n where l ≥ 2 is a divisor of n. We deduce that, for every k not co-prime
with n, the multiplicative inverse function sums to zero over at least one k-
dimensional F2-subspace of F2n and is then not kth-order sum-free. We derive
a formula valid for any direct sum of vector spaces, which allows to prove that
the inverse function is kth-order sum-free if and only if it is (n − k)th-order
sum-free and showing some stability under addition and subtraction of the set
of values of k such that the inverse function is not kth-order sum-free. We
address, for all n, the cases where k is at most 4 or at least n − 4. We finally
give computer investigation results on the kth-order sum-freedom of the inverse
(n, n)-function for n ≤ 12 and all k.
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2 Preliminaries

Let n and m be two positive integers. The functions from Fn2 to Fm2 are called
(n,m)-functions and when n and m are not specified, they are called vec-
torial functions. Every (n,m)-function F admits a unique algebraic normal
form, that is, a representation as a multivariate polynomial in the algebra1

Fm2 [x1, . . . , xn]/(x21 − x1, . . . , x2n − xn) of the form:

F (x) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi =
∑

I⊆{1,...,n}

aI x
I ; x = (x1, . . . , xn) ∈ Fn2 , aI ∈ Fm2 .

The global degree of this multivariate polynomial, that is, max{|I|; aI 6= 0}, is
called the algebraic degree of F and denoted by dalg(F ). Any vectorial function
F is affine (that is, satisfies F (x) + F (y) + F (z) + F (x + y + z) = 0 for every
x, y, z ∈ Fn2 ) if and only if it has an algebraic degree at most 1. Similarly, we call
quadratic a function having an algebraic degree at most 2. We write ”at most 2”
and not “equal to 2” because this allows simplifying some statements. Note that
thanks to this definition, affine functions are particular quadratic functions. In
general, for some positive integer r, a function F has algebraic degree at most
r if and only if it sums to zero over every affine space of dimension k > r. In
particular, an (n,m)-function has (maximum) algebraic degree n if and only if
it sums to a nonzero value over Fn2 .
In the present paper, Fn2 will be endowed with the structure of the field F2n .
This is of course possible because F2n being an n-dimensional vector space over
F2, every element x ∈ F2n can be identified with the binary vector (x1, . . . , xn)
of its coordinates with respect to a fixed basis of F2n over F2. Then, (n, n)-
functions viewed from F2n to F2n can be uniquely represented by their univariate
representation:

F (x) =

2n−1∑
i=0

δix
i ∈ F2n [x]/(x2

n

+ x); δi ∈ F2n . (1)

Indeed, the function mapping such a polynomial of degree at most 2n − 1 to
the corresponding function from F2n to itself is linear injective, and its domain
and co-domain have the same dimension. The existence and uniqueness of this
representation extends to (n,m)-functions when m divides n (and in particular
to Boolean functions, for which m = 1), since F2m is then a subfield of F2n .
For m = n, we call power functions the functions of univariate representation
F (x) = xi. It can be proved (see e.g. [10]) that the algebraic degree of any
function F given by (1) equals the largest 2-weight w2(i) of those exponents i
whose coefficients δi are nonzero, where the 2-weight is the Hamming weight of
the binary expansion.
A vectorial function is called APN if it sums to nonzero values over all the

1We need to make the quotient by the ideal generated by the x2i −xi for having uniqueness;
the variables xi represent bits, and are then equal to their squares; concretely, this limits the
exponents of the variables to at most 1.
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affine planes {x, y, z, x + y + z} (x, y, z distinct) of the vector space Fn2 over
F2. This leads to the generalization called kth-order sum-freedom, in which the
dimension 2 of affine planes is replaced by dimension k ≤ n.

3 Preliminary results involving linearized poly-
nomials

3.1 Subspace polynomials

Let Ek be any k-dimensional F2-subspace of F2n (i.e. an element of the Grass-
mannian space of index k over F2n). Then it is well-known that the function

LEk
(x) =

∏
u∈Ek

(x+ u) (2)

is F2-linear (i.e. is a linearized polynomial). It is the only normalized poly-
nomial of degree 2k whose zeros are the elements of Ek. Polynomials of this
form are often called subspace polynomials over F2n (and sometimes specified
as kernel-subspace polynomials or subspace-vanishing polynomials); they play
roles in many domains of discrete applied mathematics and coding theory (e.g.
finding an element of high multiplicative order in a finite field), affine dispersers
and extractors (i.e. Boolean functions that behave pseudorandomly when their
domain is restricted to any particular affine space of a dimension bounded from
below2), computational complexity, sub-linear proof verification, cyclic subspace
codes for random network coding, the list decoding of Reed-Solomon codes and
rank-metric codes, see [1, 2, 4, 5, 6, 7, 14, 15, 23, 25, 26, 28, 31, 32, 35, 36, 37].
They are those normalized linearized polynomials over F2n which split over F2n

and have simple zeros (equivalently, which divide x2
n

+x, and still equivalently,
whose kernel size in F2n equals the degree).

Remark. The coefficient of x in LEk
(x) equals

∏
u∈Ek,u6=0 u 6= 0. Every nor-

malized linearized polynomial over F2n is a subspace polynomial over some
Galois extension of F2n if and only if its coefficient of x is nonzero, but we are
interested in the subspace polynomials over F2n precisely. �

Let us recall some properties of subspace polynomials which may be useful in
future papers. If Ek is defined as the kernel of some linearized polynomial L(x)
over F2n , then LEk

(x) = gcd(L(x), x2
n

+ x) and if L(x) splits over F2n , then
L(x) = (LEk

(x))2
r

for some r, k. It is also observed (for instance in [4]) that
the image spaces of all subspace polynomials of degree 2k are all the (n − k)-
dimensional vector subspaces of Fn2 (and are then also viewed in [4] as so-called
image-subspace polynomials). Moreover, if the image space of LEk

equals E′n−k

2In the case of dispersers, these restrictions must be non-constant, and in the case of
extractors, they must lie at a Hamming distance from balanced functions which is bounded
above by some given number.
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then the image space of LE′n−k
equals Ek (we shall recall the proof of this fact

below) and LEk
◦ LE′n−k

(x) = LE′n−k
◦ LEk

(x) = x2
n

+ x.

Given a basis (a1, . . . , an) of Fn2 , the sequence (LEk
)2≤k≤n where Ek equals

the vector space < a1, . . . , ak > satisfies a recurrence relation: for k ≥ 2,
assuming that LEk−1

is linear, we have LEk
(x) = LEk−1

(x)LEk−1
(x + ak) =

LEk−1
(x)
(
LEk−1

(x) + LEk−1
(ak)

)
, and therefore:

LEk
(x) =

(
LEk−1

(x)
)2

+ LEk−1
(ak)LEk−1

(x) (3)

is also linear. Note that Relation (3) is also valid for k = 1 if we assume that
L0(x) = x. This is how it can be checked by induction that LEk

is linear.
Moreover, LEk

(x) equals, up to a multiplicative constant, the determinant of
the so-called Moore matrix:

x x2 . . . x2
k

a1 a21 . . . a2
k

1
...

... . . .
...

ak a2k . . . a2
k

k

 .
When k divides n and Ek = F2k , we have LEk

(x) = x2
k

+ x. More gener-

ally, for every l ≤ n, if L(x) = x2
l

+ x, then gcd(L(x), x2
n

+ x) = x2
k

+ x with
k = gcd(l, n). And denoting Fk = L(F2n), it is easily seen that LFk

(x) = trnk (x),

where trnk (x) is the relative trace function from F2n to F2k : trnk (x) = x+ x2
k

+

x2
2k

+ · · ·+ x2
n−k

.

Remark. c = LEk−1
(ak) is the unique nonzero element of LEk−1

(Ek) (since
Ek \Ek−1 = ak +Ek−1), and, denoting by trn the absolute trace function over

F2n (that is, trn1 ): trn(x) =
∑n−1
i=0 x

2i , we have trn

(
LEk

(x)

c2

)
= 0 for every

x ∈ F2n , since
LEk

(x)

c2 =
(
LEk−1

(x)

c

)2
+

LEk−1
(x)

c . Hence, Im(LEk
) = LEk

(F2n)

is included in the hyperplane {0, 1
c2 }
⊥ = {x ∈ F2n ; trn(xy) = 0,∀y ∈ {0, 1

c2 }}.
In fact, Ek and LEk

being invariant when changing the order in which we write
the elements of the chosen basis of Ek, we can obtain this way several elements
in the dual of Im(LEk

). �

Remark. Let L∗Ek
(x) =

∑k
i=0(bix)2

n−i

be the adjoint operator of LEk
=∑k

i=0 bix
2i , satsifying L∗Ek

(u)·x = u·LEk
(x),∀u, x ∈ F2n (where u·x = trn(ux)).

For every u ∈ F2n and x ∈ Ek, we have then L∗Ek
(u) · x = 0 and the image set

of L∗Ek
is then included in E⊥k . Since these two vector spaces have the same

dimension (because LEk
and L∗Ek

are known to have the same rank), we have

then Im(L∗Ek
) = E⊥k . �

Remark. Let E and F be two vector spaces having a trivial intersection. Then,
denoting by E⊕F their direct sum, we have LE⊕F (x) =

∏
u∈E;v∈F (x+u+v) =∏

v∈F LE(x+ v) =
∏
v∈F (LE(x) + LE(v)) = LLE(F )(LE(x)). �
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Main known properties of subspace polynomials Despite the number
of papers where subspace polynomials are addressed and used, little is known
on them. Let us summarize:
- In [1] are observed the obvious facts that LαEk

(x) = α2kLEk
(α−1x) for ev-

ery α ∈ F∗2n , and that applying the Frobenius automorphism to Ek results
in applying it to each coefficient in LEk

(x). It is also proved in this same
paper that, given two vector subspaces Ek and Ek′ such that dim(Ek) =
k ≥ dim(Ek′) = k′, denoting by 2j (resp. 2j

′
) the second highest degree

of the monomials in LEk
(x) (resp. LEk′ (x)), we have dim(Ek ∩ Ek′) ≤ r =

max(j, j′ + k − k′). This is a direct consequence of the relations LEk∩Ek′ (x) =

gcd(LEk
(x), LEk′ (x)) = gcd(LEk

(x), (LEk′ (x))2
k−k′

) = gcd(LEk
(x), LEk

(x) +

(LEk′ (x))2
k−k′

) and deg(LEk
(x) + (LEk′ (x))2

k−k′

) ≤ 2r (the second equality
above coming from the fact that LEk

(x) splits and has simple zeros).
- It is observed in [4] that at least one coefficient is nonzero among any n − k
consecutive coefficients bi in LEk

(x), which is straightforward by considering

gcd(x2
n

+ x, (LEk
(x))2

j

) for some j, since a nonzero polynomial of degree less
than 2k cannot have 2k zeros.
- It is shown in [7, 4] that, if E is an F2-vector subspace of F2n and E′ = LE(F2n),
then E = LE′(F2n). Indeed, the monic (formal) polynomial LE′ ◦ LE(X) ∈
F2n [X] having degree 2n and vanishing on F2n equals X2n +X. Hence, we have
LE ◦LE′ ◦LE(X) = LE(LE′ ◦LE(X)) = LE(X2n +X) = LE(X2n) +LE(X) =
(LE(X))2

n

+LE(X) and the polynomial φ(X) = LE ◦LE′(X) +X2n +X com-
posed on the right by LE(X) equals then the zero polynomial in F2n [X]. This
implies that φ(X) is the zero polynomial since otherwise, denoting its degree by

d, the term inX2kd could not be cancelled in the polynomial φ◦LE(X) ∈ F2n [X].
The equality LE ◦LE′(X) = X2n +X implies that LE′(F2n) is included in E and
this completes the proof since these two vector spaces have the same dimension
by the fundamental theorem of linear algebra. Note that this then proves that
LE′ and LE commutate (which is not straightforward from their definitions). A
particular case is when r divides n and E = F2r . Then LE(x) = x2

r

+ x, E′ =
ker(trnr ), LE′(x) = trnr (x) and E ∩ E′ = {x2r + x;x ∈ F2gcd(2r,n)} is trivial if n

r
is odd and non-trivial if n

r is even.
- The linearized polynomials LEk

are characterized in [15, 26] by means of com-
panion matrices.

3.2 Particular case of subspace polynomials with coeffi-
cients in F2

The linearized polynomial LEk
(x) has all its coefficients in F2 if and only if Ek

is invariant under the Frobenius automorphism x 7→ x2. We know, see [23],

that such a linearized polynomial
∑k
i=0 bix

2i , bi ∈ F2, is a divisor of x2
n

+ x if

and only if the so-called associated polynomial
∑k
i=0 bix

i is a divisor of xn + 1.
If n is odd then we know, see [24], that this is equivalent to the fact that it
is the generator polynomial of a binary cyclic code of length n, and it equals

6



the product of minimal polynomials Mj(x) =
∏
i∈Cj

(x + βi), where j ranges

over a set of representatives of cyclotomic classes Cj = {j, 2j, 22j, . . . } in Z/nZ
and β is a primitive nth root of unity in F2m , where m is the smallest positive
integer such that n divides 2m − 1. Note that the number of these cyclotomic
classes (and hence, the maximal number of the minimal polynomials which
are factors of LEk

(x)) may be as small as 2 (this happens with some primes:
n = 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, . . . ).

4 Sums of the values taken by the inverse func-
tion over affine spaces not containing 0

In [11], we obtained an explicit expression of the sum of the values taken by the
multiplicative inverse function over affine subspaces of F2n that are not vector
subspaces, which allowed us to prove that such sum is always nonzero. We recall
this result after briefly recalling how it was obtained.
Let Ek still be any k-dimensional vector subspace of F2n . According to (3),
LEk

(x) has the form:

LEk
(x) =

k∑
i=0

bk,ix
2i , (4)

where bk,k = 1 and bk,i = b2k−1,i−1 + LEk−1
(ak) bk−1,i, for every i = 0, . . . , k,

with the convention bk−1,−1 = 0.
The only monomial in (4) having a nonzero derivative (here we mean the classic
derivative of a polynomial function) is x. We have then that L′Ek

(x) equals the
constant bk,0 =

∏
u∈Ek,u 6=0 u 6= 0. We also have, by the application of the classic

formula on the derivative of a product, that L′Ek
(x) =

∑
u∈Ek

∏
v∈Ek,v 6=u(x+v)

and for x 6∈ Ek, this gives L′Ek
(x) =

(∑
u∈Ek

1
x+u

)
LEk

(x). We deduced then:

Theorem 1 [11] For every 0 ≤ k ≤ n, let Ek be any k-dimensional F2-subspace
of F2n and let F (x) = x2

n−2 = x−1 be the multiplicative inverse function over
F2n . We have:

∀x 6∈ Ek,
∑
u∈Ek

F (x+ u) =
∑
u∈Ek

1

x+ u
=

∏
u∈Ek,u 6=0 u∏
u∈Ek

(x+ u)
=

bk,0
LEk

(x)
6= 0, (5)

where LEk
(x) =

∏
u∈Ek

(x+ u) and bk,0 is its coefficient of x.

5 Sums of the values taken by the inverse func-
tion over vector subspaces of F2n

Let us now study the value of
∑
u∈E F (x+ u) when x ∈ E (hence, without loss

of generality, when x = 0). We study then
∑
u∈Ek,u 6=0

1
u .
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Remark. Theorem 1 shows that, for every F2-vector subspace E of F2n such
that

∑
u∈E,u6=0

1
u = 0 and every linear hyperplane H of E (that is, any vector

subspace of E of co-dimension 1), we have
∑
u∈H,u 6=0

1
u 6= 0 (since

∑
u∈E\H

1
u 6=

0). Hence, if the inverse function is neither kth-order sum-free nor (k − 1)th-
order sum-free, the (k−1)-dimensional vector spaces over which it sums to zero
cannot be subspaces of the k-dimensional vector spaces over which it sums to
zero.
Similarly, for every vector subspace F of F2n containing E as a hyperplane, we
have

∑
u∈F,u6=0

1
u 6= 0, since

∑
u∈F\E

1
u 6= 0.

In particular, for every divisor m ≥ 2 of n, every linear hyperplane H of F2m

and every (m + 1)-dimensional vector subspace F containing F2m , the inverse
function does not sum to 0 over H nor over F . �

5.1 Relation with subspace polynomials

Let φk(x) =
∏
u∈Ek,u6=0(x + u) and φ0(x) = 1. According to Relation (4), we

have φk(x) =
∑k
i=0 bk,ix

2i−1. Then φk(0) =
∏
u∈Ek,u6=0 u = bk,0 and φ′k(x) =∑k

i=1 bk,ix
2i−2 and therefore φ′k(0) = bk,1, while the formula on the derivative

of a product gives φ′k(x) =
∑

u∈Ek,u 6=0

∏
v 6=0,v 6=u

(x+ v) and then:

∑
u∈Ek,u6=0

1

u
=
φ′k(0)

φk(0)
=
bk,1
bk,0

. (6)

Proposition 1 Let E be any F2-subspace of F2n . The sum
∑
u∈E,u 6=0

1
u is equal

to 0 if and only if the coefficient of x2 in the linearized polynomial LE(x) =∏
u∈E(x+ u) equals 0.

According to Proposition 1, studying the kth-order sum-freedom of the inverse
function results in studying if some linearized polynomials of degree 2k can have
their coefficient of x nonzero, their coefficient of x2 equal to 0, and 2k distinct
zeros in F2n . The results of [28, 36, 37] may be helpful from this regard but
they do not allow to really solve the general problem.

Remark. Another viewpoint on Proposition 1, which sheds a different light on
the result, is as follows. The relation

∑k
i=0 bk,ix

2i = 0 is satisfied by every ele-

ment of Ek. Dividing this relation by bk,0x
2 for x 6= 0 gives x−1 =

∑k
i=1 bk,ix

2i−2

bk,0
.

Since 0−1 = 0 and
∑k

i=1 bk,ix
2i−2

bk,0
equals

bk,1

bk,0
for x = 0, we have then, for every

x ∈ Ek: x−1 =
bk,1δ0(x)+

∑k
i=1 bk,ix

2i−2

bk,0
, where δ0(x) = x2

n−1 + 1 is the Dirac

(or Kronecker) symbol, and this latter function on Ek, viewed as a k-variable
Boolean function, has algebraic degree k (and hence sums to a nonzero value
over Ek) if and only if bk,1 6= 0. �
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5.2 Determining the kth-order sum-freedom of multiplica-
tive inverse function for some values of k

We have seen that for n ≥ 3 odd, the inverse function is second-order sum-free
and for n ≥ 2 even, it is not. The inverse (n, n)-function being a permutation
it is not nth-order sum-free and since its restriction to any subfield F2k is the
multiplicative inverse (k, k)-function, for every divisor k of n, the inverse (n, n)-
function is not kth-order sum-free (this generalizes the fact that if n is even,
then the inverse function is not APN). The inverse function is (n − 1)th-order
sum-free, thanks to Theorem 1 and the fact that it is not nth-order sum-free
(i.e. it sums to 0 over F2n). Hence there are values of k for which the inverse
function is kth-order sum-free and values for which it is not.

According to Theorem 1, determining whether the multiplicative inverse
function is kth-order sum-free for some k reduces to determining whether the
inverse function sums to nonzero values over all k-dimensional vector subspaces
of F2n .

Note that when a function is not kth-order sum-free (which, for k ∈ {3, . . . , n−
3}, is the case of inverse function, seemingly, as we shall see), it is good (but
it seems rather difficult for inverse function in general) to determine all k-
dimensional subspaces over which the inverse function sums to 0 (or at least
determine their number), as this is done for various functions for k = 2 in [22],
in relation with APNness (this reference uses the term of vanishing k-flats for
such affine spaces). This could be done for k ∈ {3, . . . , n− 3} in future papers.

5.2.1 When k is not co-prime with n

We now show that, when gcd(k, n) > 1, the inverse function sums to zero over
some k-dimensional vector spaces, and is then not kth-order sum-free. This
generalizes the property that the inverse function sums to zero over subfields of
F2n different from F2, and is then not kth-order sum-free when k ≥ 2 divides n:

Theorem 2 If gcd(k, n) = l > 1, let E be any k
l -dimensional F2l-subspace

of F2n , then
∑
u∈E;u 6=0

1
u = 0; the multiplicative inverse function is then not

kth-order sum-free.

Proof. E \ {0} is the disjoint union of the elements of the (kl − 1)-dimensional
projective space P equal to the set of equivalence classes in E \ {0} under the
equivalence relation “a ∼ b if a

b ∈ F2l”. Each element in P having the form

aF∗2l , we have then
∑
u∈E\{0}

1
u =

∑
a∈P

1
a

(∑
u∈F∗

2l

1
u

)
= 0. 2

Theorem 2 settles the case of a rather large number of values of k when n
is composite (of course, it is useless when n is a prime). Thanks to it, we need
now only to address the case where k and n are co-prime.
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Generalization of Theorem 2

Proposition 2 Let k be the dimension of any F2-vector subspace Ek of F2n

stable under multiplication by some λ ∈ F2n \F2, then the multiplicative inverse
function is not kth-order sum-free. In particular, if k equals the (additive) rank
of any non-trivial multiplicative subgroup G of F2n , that is, if it equals the
dimension of any vector subspace of F2n over F2 generated by the powers λi of
some λ 6= 0, 1, the multiplicative inverse function is not kth-order sum-free.

Proof. If Ek is stable under multiplication by λ, then we have
∑
u∈Ek;u6=0

1
u =∑

u∈Ek;u 6=0
1
λu = 1

λ

∑
u∈Ek;u 6=0

1
u with 1

λ 6= 1 and therefore
∑
u∈Ek;u 6=0

1
u = 0.

If k equals the (additive) rank of a non-trivial multiplicative subgroup G of F2n ,
then let λ be a generator of G and let Ek be the k-dimensional F2-vector sub-
space generated by G, we have that Ek is invariant under multiplication by λ. 2

Remark. Proposition 2, even if it covers Theorem 2 as a particular case, does
not allow to address more values of k. Indeed, we need to have

∏
u∈Ek;u 6=0 u =∏

u∈Ek;u 6=0(λu) = λ2
k−1∏

u∈Ek;u6=0 u and since
∏
u∈Ek;u 6=0 u 6= 0, this implies

that λ2
k−1 = 1, which (because λ 6= 1) requires that gcd(2k − 1, 2n − 1) > 1,

that is, gcd(k, n) > 1. �

Sum-freedom over subfields and superfields If the inverse function over
F2n is not kth-order sum-free, then for every r, the inverse function over F2rn is
not kth-order sum-free either, since the restriction to F2n of the inverse function
over F2rn equals the inverse function over F2n . Moreover:

Proposition 3 For every k ≥ 2, and every n ≥ k, there exists a positive integer
r such that the multiplicative inverse function over F2rn is not kth-order sum-
free.

This result is straightforward, since we know that, lcm(k, n) being a multiple
of k, the multiplicative inverse function over F2lcm(k,n) is not kth-order sum-

free. We can even take r smaller than lcm(k,n)
n when k is composite, thanks to

Theorem 2, by taking for r any divisor of k larger than 1.
But let us give an alternative proof which will provide additional insight on the
question. According to Proposition 1, the multiplicative inverse function over
F2rn is kth-order sum-free if and only if, for every k-dimensional F2-subspace
E of F2rn , the coefficient of x2 in the polynomial L(x) =

∏
u∈E(x + u) is

nonzero. The set of such polynomials, for r ranging over N∗, equals the set of
linearized polynomials L(x) of degree 2k over the algebraic closure of F2n which
have simple zeros. Note that such linearized polynomial has simple zeros in
the algebraic closure if and only if its coefficient of x is nonzero (indeed, the
polynomial derivative of a linearized polynomial equals the constant polynomial
equal to this coefficient). Among such polynomials, some have their coefficient
of x2 equal to zero.
The open question is: for which values of k and n, the value of r can be taken
equal to 1?
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5.2.2 A result on direct sums of F2-subspaces of F2n and its conse-
quences

Theorem 1 implies the following corollary.

Corollary 1 Let 1 ≤ l ≤ k ≤ n and let E, F be F2-subspaces of F2n with a
trivial intersection, and of respective dimensions l and k − l, then

∑
u∈E⊕F ;u 6=0

1

u
=

∑
u∈E;u6=0

1

u
+

 ∏
u∈E,u 6=0

u

 ∑
v∈LE(F );v 6=0

1

v
, (7)

where ⊕ denotes the direct sum, LE(x) =
∏
u∈E(x + u) and LE(F ) (equal to

LE(E ⊕ F )) is the (k − l)-dimensional vector space equal to the image of F by
LE.
Given an F2-subspace E of F2n , the vector space LE(F ) can be any (k − l)-
dimensional F2-subspace of the (n− l)-dimensional space LE(F2n)

Proof. By hypothesis, LE is injective over F , because F has trivial intersection
with the kernel E of LE . According to Theorem 1, we have:∑

u∈E⊕F ;u 6=0

1

u
=

∑
u∈E;u6=0

1

u
+

∑
w∈F ;w 6=0

∑
u∈E

1

w + u

=
∑

u∈E;u6=0

1

u
+

∑
w∈F ;w 6=0

∏
u∈E,u 6=0 u

LE(w)

=
∑

u∈E;u6=0

1

u
+

 ∏
u∈E,u6=0

u

 ∑
w∈F ;w 6=0

1

LE(w)

=
∑

u∈E;u6=0

1

u
+

 ∏
u∈E,u6=0

u

 ∑
v∈LE(F );v 6=0

1

v
.

Given an F2-subspace E of F2n and any (k − l)-dimensional F2-subspace E′ of
LE(F2n), there exists a (k − l)-dimensional F2-subspace F of F2n with trivial
intersection with E such that LE(F ) = E′, since LE is a bijective linear map
from F to LE(F ). This completes the proof. 2

Remark. Corollary 1 can be extended to more than two vector spaces. For
instance, let E,F,G be three vector spaces that are in a direct sum, then:∑

u∈E⊕F⊕G;u 6=0

1

u
=

∑
u∈E;u6=0

1

u
+

 ∏
u∈E,u 6=0

u

 ∑
v∈LE(F );v 6=0

1

v
+

 ∏
v∈LE(F ),v 6=0

v

 ∑
w∈LLE(F )(LE(G));w 6=0

1

w

 . (8)
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Indeed, by applying Corollary 1, we obtain:
∑
u∈E⊕F⊕G;u 6=0

1
u =

∑
u∈E;u 6=0

1
u +(∏

u∈E,u6=0 u
)(∑

v∈LE(F⊕G);v 6=0
1
v

)
, and since, by injectivity, we have that

LE(F ⊕ G) = LE(F ) ⊕ LE(G), we obtain
∑
u∈E⊕F⊕G;u 6=0

1
u =

∑
u∈E;u6=0

1
u +(∏

u∈E,u6=0 u
)(∑

v∈LE(F )⊕LE(G);v 6=0
1
v

)
and we can then apply again (7), which

gives (8). �

A first consequence dealing with complementary dimensions Corol-
lary 1 implies that the property for the inverse function of being kth-order
sum-free is invariant under the transformation k 7→ n− k:

Theorem 3 Let 2 ≤ k ≤ n − 2 be such that the inverse function is not
kth-order sum-free. Let Ek be a k-dimensional F2-subspace of F2n such that∑
u∈Ek;u 6=0

1
u = 0 and let En−k = LEk

(F2n). Then we have
∑
v∈En−k;v 6=0

1
v = 0

and the inverse function is not (n− k)th-order sum-free.
Thus, kth-order sum-freedom and (n − k)th-order sum-freedom are equivalent
for the multiplicative inverse function.

Proof. Let Fn−k be a vector space whose image by LEk
equals En−k and having

dimension n−k (i.e. having a trivial intersection with the kernel Ek of LEk
and

whose direct sum with Ek equals F2n). According to Corollary 1, we have:

∑
u∈Ek;u6=0

1

u
+

 ∏
u∈Ek,u 6=0

u

 ∑
v∈En−k;v 6=0

1

v
=

∑
u∈Ek⊕Fn−k;u 6=0

1

u
=
∑
u∈F∗

2n

1

u
= 0,

and therefore, since
∑
u∈Ek;u 6=0

1
u = 0 and

∏
u∈Ek,u6=0 u 6= 0, we have:∑

v∈En−k;v 6=0
1
v = 0. 2

Remark. Let Ek be such that
∑
u∈Ek,u6=0

1
u = 0 and let El be a subspace

of Ek. Then
∑
u∈El,u6=0

1
u = 0 if and only if

∑
u∈Ek−l,u6=0

1
u = 0, where

Ek−l = LEl
(Ek). �

Remark. Theorem 3 and the fact that, if the inverse function is not kth-order
sum-free over a given field, then the same happens on any of its Galois ex-
tensions, shows that if n divides an integer m and the multiplicative inverse
function is not kth-order sum-free over F2n then it is neither kth-order sum-free
nor (n− k)th-order sum-free nor (m− k)th-order sum-free, nor (m− n+ k)th-
order sum-free over F2m . �

Remark. Theorem 3 can also be deduced from Relation (6) and the polynomial
equality, recalled in Subsection 3.1, that (without any reduction by, for instance,
x2

n

+ x):
LEk
◦ LEn−k

(x) = LEn−k
◦ LEk

(x) = x2
n

+ x.

Indeed, according to this double equality, and since the coefficient of x2 in x2
n

+x
equals 0 and the coefficient of x in LEk

(x) is nonzero as well as that of x in

12



LEn−k
(x), the coefficient of x2 in LEk

(x) equals zero if and only if the coefficient
of x2 in LEn−k

(x) equals zero. �

A second consequence, on the structure of the set K of values k such
that the inverse function is not kth-order sum-free The following lemma
will allow us to show the stability of K under addition and subtraction, with
constraints.

Lemma 1 Let U and V be two vector subspaces of the vector space F2n over
F2. If (n − dimU)(dimV ) < n, then there exists a nonzero element a ∈ F2n

such that a V ⊂ U .

Proof. Let U⊥ be the orthogonal of U with respect to the inner product x · y =
trn(xy), where trn is the trace function from F2n to F2. Let (e1, . . . , en−dimU )
be a basis of U⊥. For every x ∈ F2n , we have x ∈ U if and only if trn(x ei) = 0
for every i ∈ {1, . . . , n−dimU}. Let (f1, . . . , fdim(V )) be a basis of V . Since the
intersection between any d-dimensional vector subspace of F2n and any linear
hyperplane of F2n has dimension at least d− 1, the vector space {a ∈ F2n ;∀i ∈
{1, . . . , n− dimU},∀j ∈ {1, . . . ,dimV }, trn(a eifj) = 0} has dimension at least
n− (n−dimU) dimV > 0. There exists then a nonzero element a in this vector
space, satisfying for every element v ∈ V , that trn(a eiv) = 0 for every i, that
is, a v belongs to U . This completes the proof. 2.

We deduce the following two results.

Theorem 4 Let n ≥ 6 and let two integers l ≥ 2 and r ≥ 2 be such that lr < n.
If the inverse function is not lth-order sum-free nor rth-order sum-free, then it
is not (l + r)th-order sum-free.

Proof. Let E of dimension l and V of dimension r be two vector spaces such that∑
u∈E,u 6=0

1
u =

∑
v∈V,v 6=0

1
v = 0. We can apply Lemma 1 with U = LE(F2n).

Indeed, the dimension of U equals n − l and the hypothesis of Lemma 1 is
then satisfied. Let a be nonzero and such that a V ⊂ U . Since LE induces
an isomorphism from F2n/E to LE(F2n), there exists an F2-subspace F of F2n

of dimension r such that E ∩ F = {0} and LE(F ) = a V . We have then∑
v∈LE(F );v 6=0

1
v = 0 and Corollary 1 implies then

∑
u∈E⊕F ;u6=0

1
u = 0. This

completes the proof. 2

Hence, the set K defined above is stable under the addition of small enough
elements (in particular of elements strictly smaller than

√
n). We deduce from

Theorem 4:

Corollary 2 Let n ≥ 6 and let r, l be two integers such that n− 2 ≥ r ≥ l ≥ 2
and l (n−r) < n. If the inverse function is not lth-order sum-free nor rth-order
sum-free, then it is not (r − l)th-order sum-free.
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Proof. Applying (thanks to Theorem 3) Theorem 4 with n − r instead of r
gives that if l (n− r) < n and the inverse function is not lth-order sum-free nor
rth-order sum-free, then it is not (l + n − r)th-order sum-free and then again
according to Theorem 3, it is not (r − l)th-order sum-free. 2

Remark. There is also a direct proof of Corollary 2 which has its own interest.
Let E and U be two vector spaces of dimensions l and r, respectively, and such
that

∑
u∈U,u 6=0

1
u =

∑
v∈E,v 6=0

1
v = 0. According to Lemma 1 with V = E, there

exists a 6= 0 such that aE ⊂ U . Let then F be a vector subspace of U with a
trivial intersection with aE and such that (aE)⊕ F = U . Then the dimension
of F equals r− l and Corollary 1 shows that the inverse function sums to 0 over
the (r − l)-dimensional vector space LaE(F ), which proves the result. �

Of course, we can apply Theorem 4 and Corollary 2 iteratively. For instance,
let three integers l ≥ 2, r ≥ 2 and s ≥ 2 be such that lr < n and (l + r)s < n,
then if the inverse function is not lth-order sum-free nor rth-order sum-free nor
sth-order sum-free, then it is not (l + r + s)th-order sum-free.

A third consequence when n is composite We now give another conse-
quence of Corollary 1 which can cover many values of k when n is composite.

Theorem 5 Let n be any positive integer divisible by the product lr of two num-
bers larger than or equal to 2. Then LF

2l
(F2n) contains an (nr − l)-dimensional

F2r -vector subspace of F2n and for every k divisible by l or by r or of the form
l + jr where j ∈ {1, . . . , nr − l} or of the form r + jl where j ∈ {1, . . . , nl − r},
the multiplicative inverse function is not kth-order sum-free.
In particular, for n even and divisible by an odd integer l ≥ 3, for every
k ∈ {2, 4, . . . , l − 1} ∪ Jl, n − lK ∪ {n − l + 1, n − l + 3, . . . , n − 2}, the mul-
tiplicative inverse function is not kth-order sum-free. For instance, if n is di-
visible by 6, then the multiplicative inverse function is not kth-order sum-free
for k ∈ J2, n− 2K.

Proof. We have that LF
2l

(x) = x+x2
l

and therefore LF
2l

(F2n) equals the kernel

of the relative trace function trnl (x) = x+x2
l

+x2
2l

+x2
3l

+ · · ·+x2
n−l

from F2n

to F2l . This kernel includes as an F2-vector subspace the kernel of the relative

trace function trnrl(x) = x+ x2
rl

+ x2
2rl

+ · · ·+ x2
n−rl

from F2n to F2rl , because
trnl = trrll ◦ trnrl. Since trnrl is F2rl-linear, this latter kernel is an F2rl-vector
subspace of dimension n

rl − 1 of F2n and therefore an F2r -vector subspace of
F2n , of dimension (nr − l).
Let us then apply Corollary 1 to E = F2l and to any F2-subspace F of F2nhaving
a trivial intersection with E and whose image by LF

2l
is an F2r -vector subspace

of the kernel of trnrl. Thanks to Theorem 2 and Corollary 1, we have then∑
u∈F

2l
⊕F

1
u = 0 and F2l ⊕ F can have for dimension over F2 any number of

the form l + jr where j = 1, . . . , nr − l. This completes the first part (the case
“ k divisible by l or by r” being covered by Theorem 2). The second part is a
direct consequence by taking r = 2 (since all the odd numbers between l and
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n− l can be written as l+ jr = l+ 2j where j = 1, . . . , nr − l = n
2 − l). The last

sentence is by taking l = 3. 2

5.2.3 Viewing vector spaces as the supports of their indicators

Let f(x) be any Boolean function and let supp(f) = {x ∈ F2n ; f(x) = 1} be its

support. Let f(x) =
∑2n−1
i=0 δix

i ∈ F2n [x]/(x2
n

+x); δi ∈ F2n , be the univariate
representation3 of f .
We have that

∑
u∈supp(f)\{0}

1
u =

∑
x∈F2n

x2
n−2f(x) = δ0

∑
x∈F2n

x2
n−2 +

δ1
∑
x∈F2n

x2
n−1 +

∑2n−1
i=2

(
δi
∑
x∈F2n

xi−1
)
.

Among the monomials x2
n−2, x2

n−1, x, x2, . . . , x2
n−2 the only one of algebraic

degree n is x2
n−1, and we know that if a Boolean or vectorial function has

algebraic degree less than n, then it sums to zero over F2n . This implies:∑
u∈E\{0}

1

u
= δ1

∑
x∈F2n

x2
n−1 = δ1, (9)

that is:

Proposition 4 Let f be any Boolean function over F2n , then
∑
u∈supp(f)\{0}

1
u

equals the coefficient of x in the univariate representation of f(x).

For instance, for f(x) = trn(x), we have δ1 = 1 and then
∑
u∈supp(f)\{0}

1
u = 1.

Proposition 4 leads to the question of characterizing the univariate represen-
tation of the indicators of F2-vector subspaces of F2n . We shall unfortunately
leave this question open in general, but we will see a consequence of Proposition
4 in the next subsection.

5.2.4 On large values of k

We show now that large values of k can be addressed more easily than small ones
(and since kth-order sum-freedom is equivalent to (n−k)th-order sum-freedom,
studying the former is a simpler way for addressing the latter). We have, ac-
cording to Proposition 4 that

∑
u∈Ek\{0}

1
u equals the coefficient of x in the

univariate representation of the indicator function 1Ek
(x). Let (u1, . . . , un−k)

be a basis of Ek
⊥ = {y ∈ F2n ; trn(x y) = 0,∀x ∈ Ek}. We have 1Ek

(x) =∏n−k
i=1 (1 + trn(ui x)) =

∑
b∈{−∞,0,...,n−1}n−k

(∏n−k
i=1 u

2bi
i

)
x
∑n−k

i=1 2bi , where by

convention 2−∞ = 0, and that the coefficient of x equals then:

∑
b∈{−∞,0,...,n−1}n−k;∑n−k
i=1

2bi≡1 (mod 2n−1)

(
n−k∏
i=1

u2
bi

i

)
.

3Since f is Boolean, the univariate representation of f can be written (not in a unique

way) in the form δ0 + trn(
∑2n−1

i=0 cix
i); ci ∈ F2n , but we shall not use this.

15



Note that for k = n − 2, the coefficient of x is
∑

b∈{−∞,0,...,n−1}2;

2b1+2b2≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 =

u2
0

1 u
2−∞

2 +u2
−∞

1 u2
0

2 +u2
n−1

1 u2
n−1

2 = u1 +u2 +
(
u1u2

) 1
2

= u2

(
1 +
(u1
u2

) 1
2

+
u1
u2

)
.

Since the polynomial 1 + x+ x2 has no zero in F2n for n odd, and has for zeros
the two primitive elements w,w2 = w+1 of F4 for n even, and since in the latter

case, u1 and u2 can be F2-linearly independent while satisfying
(
u1

u2

) 1
2

= w, we

can see that for n ≥ 4, the multiplicative inverse function over F2n is (n− 2)th-
order sum-free if and only if n is odd, which is coherent with what we know
about APNness and Theorem 3.

For k = n− 3, the coefficient of x equals∑
b∈{−∞,0,...,n−1}3;2b1+2b2+2b3≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 u2
b3

3 =

u1 + u2 + u3 + u2
n−1

1 u2
n−1

2 + u2
n−1

1 u2
n−1

3 + u2
n−1

2 u2
n−1

3 + u2
n−2

1 u2
n−2

2 u2
n−1

3 +

u2
n−2

1 u2
n−1

2 u2
n−2

3 + u2
n−1

1 u2
n−2

2 u2
n−2

3 .

Denoting x = u1, y = u2, z = u3 and raising to the fourth power, we have that,
for n ≥ 6, the multiplicative inverse function over F2n is not (n − 3)th-order
sum-free if and only if the equation:

x4 + x2(y2 + z2 + yz) + x(y2z + yz2) + y4 + z4 + y2z2 = 0

admits solutions (x, y, z) such that x, y, z are F2-linearly independent (for n = 5,
we know that the inverse function is 2nd-order sum-free, since n is odd).
Since this polynomial is homogeneous (of degree 4), we can assume without
loss of generality that z = 1 (and the condition that x, y, z are F2-linearly
independent writes then x, y, x + y 6∈ F2), since the equation is invariant when
we multiply each variable by the same nonzero factor. Denoting t = y2 + y+ 1,
the condition above becomes:

x4 + tx2 + (t+ 1)x+ t2 = 0, (10)

with trn(t + 1) = 0, t 6= 1 and x + x2 6∈ {0, t + 1}. It is clear that, for n large
enough (say, n ≥ 13), there exist values of (x, t) satisfying this, since (10) writes
t2 + (x+ x2)t+ x+ x4 = 0, which is equivalent to(

t

x+ x2

)2

+
t

x+ x2
=

x+ x4

x2 + x4
, (11)

and has two solutions t if and only if x is such that trn

(
x+x4

x2+x4

)
= 0, and the

number of pairs (x, t) satisfying (11) and trn(t + 1) = 0 is then larger than
the number of pairs (x, t) such that t = 1 or x + x2 ∈ {0, t + 1}. This com-
pletes the proof of the next theorem (thanks to Theorem 3), since the computer
investigations we give below show that the result is also true for n ∈ [6, 12].
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Theorem 6 For every n ≥ 6, the multiplicative inverse function over F2n is
neither third-order sum-free, nor (n− 3)th-order sum-free.

For k = n− 4, the coefficient of x equals∑
b∈{−∞,0,...,n−1}4;2b1+2b2+2b3+2b4≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 u2
b3

3 u2
b4

4 =

4∑
i=1

ui +
∑

1≤i<j≤4

u2
n−1

i u2
n−1

j +
∑

1≤i<j≤4;1≤k≤4
k 6=i,j

u2
n−2

i u2
n−2

j u2
n−1

k +

+
∑

1≤i<j≤4;1≤k 6=l≤4;
k,l 6=i,j

u2
n−3

i u2
n−3

j u2
n−2

k u2
n−1

l + u2
n−2

1 u2
n−2

2 u2
n−2

3 u2
n−2

4 .

Denoting x = u1, y = u2, z = u3 and taking u4 = 1, we are led for n ≥ 6 to the
equation:

x8 + x4(y4 + z4 + y2z2 + y2 + z2 + 1 + yz + yz2 + y2z)+

x2(y2z4 + y4z2 + y2z2 + y2 + y4 + z2 + z4 + yz + yz4 + y4z)+

x(yz2 + yz4 + y2z + y4z + y2z4 + y4z2)+

y2z2 + y2z4 + y4z2 + y8 + z8 + y4 + z4 + y4z4 + 1 = 0.

We need then to find four elements a, b, c, d of F2n such that there exist x, y, z
such that x, y, z and 1 are linearly independent, and satisfying:

x8 + ax4 + bx2 + cx+ d = 0
y4 + z4 + y2z2 + y2 + z2 + yz + yz2 + y2z = a+ 1
yz
(
y + z + (y + z)3

)
+ y2z2

(
y + z + (y + z)2

)
= a+ b+ 1

a+ b+ c+ 1 = 0
a2 + d = 0.

That is, we need to find two elements a, b of F2n such that there exist x, y, z
such that x, y, z and 1 are linearly independent, and satisfying: x8 + ax4 + bx2 + (a+ b+ 1)x+ a2 = 0

y4 + z4 + y2z2 + y2 + z2 + yz + yz2 + y2z = a+ 1
yz
(
y + z + (y + z)3

)
+ y2z2

(
y + z + (y + z)2

)
= a+ b+ 1.

(12)

Lemma 2 If there exist y, z such that:

• y, z and 1 are linearly independent over F2,

• for some a 6= 0, and b, the two last equations in System (12) are satisfied,
and the first equation has eight distinct solutions.

then the multiplicative inverse function over F2n is not (n−4)th-order sum-free.
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Proof. We want to show that, under these hypotheses, at least one solution x of
(12) is such that x, y, z and 1 are linearly independent. Suppose this is not the
case. Since y, z and 1 are linearly independent and the first equation in (12) has
eight distinct solutions, these eight solutions are the elements of the vector space
generated by y, z and 1. This implies that x8 + ax4 + bx2 + (a+ b+ 1)x+ a2 =
x(x+y)(x+z)(x+1)(x+y+z)(x+y+1)(x+z+1)(x+y+z+1). The term not
involving x after the expansion of the right-hand side of this equality equaling
0, while it is nonzero on the left-hand side, we arrive to a contradiction. 2

The double condition that a 6= 0 and the first equation in (12), which is
a linear non-homogeneous equation, has eight distinct solutions, is equivalent
to saying that these eight solutions are the elements of a 3-dimensional affine

space that is not a vector space. There are (2n−3−1) (2n−1)(2n−2)(2n−4)
(23−1)(23−2)(23−4) (roughly

proportional to 24n) possible linear equations of degree 8 corresponding to such
a situation. The fact that the two last coefficients equal a+b+1 and a2 where a, b
are the two other coefficients selects a part of them of size roughly proportional
to 22n. There would be different cases to consider for concretely showing this;
we do not develop more, since another proof has been found (after a previous
version of the present paper was on iacr ePrint Archive), which will be given in
the forthcoming paper [19]. We do not claim that we give a complete proof of
Theorem 7 below. Our observations can be viewed as heuristic arguments.
Denoting yz = p and y + z = s, the second and third equations in (12) become{

s4 + s2 + p2 + p(s+ 1) = a+ 1(
p2 + p(s+ 1)

)
(s2 + s) = a+ b+ 1,

which is equivalent to:{
p2 + p(s+ 1) = s4 + s2 + a+ 1(
(s2 + s)2 + a+ 1

)
(s2 + s) = a+ b+ 1.

The first equation has solutions p, given s, if and only if s4+s2+a+1
s2+1 has

trace 0 (which is not very selective) and many solutions to the second equation
satisfy this condition and correspond to y, z such that y, z and 1 are linearly
independent. The hypothesis of Lemma 2 is then satisfied by a large number
of solutions for n ≥ 13. And for 6 ≤ n ≤ 12, our computational results below
show the existence of solutions as well. We deduce, using again Theorem 3:

Theorem 7 For every n ≥ 6, the multiplicative inverse function over F2n is
neither fourth-order sum-free, nor (n− 4)th-order sum-free.

Theorem 7, and Theorem 4 successively applied for the pairs:

(l, r) = (4, 4), (8, 4), . . . , (4(b− 1), 4), (4b, 3), (3 + 4b, 3) . . . , (3(a− 1) + 4b, 3)

show:
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Table 1: The kth-order sum-free status of the inverse function for small n

n
k

1 2 3 4 5 6 7 8 9 10 11 12

6 X ¬ ¬ ¬ X ¬
7 X X ¬ ¬ X X ¬
8 X ¬ ¬ ¬ ¬ ¬ X ¬
9 X X ¬ ¬ ¬ ¬ X X ¬
10 X ¬ ¬ ¬ ¬ ¬ ¬ ¬ X ¬
11 X X ¬ ¬ ¬ ¬ ¬ ¬ X X ¬
12 X ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ X ¬

Corollary 3 For all numbers k of the form 3a+4b such that 16(b−1) < n and
3
(
3(a − 1) + 4b

)
< n with a ∈ N∗, b ∈ N, the inverse function is not kth-order

sum-free nor (n− k)th-order sum-free.

The cases k = 5, . . . , n−5 could be studied similarly, but the number of vari-
ables x, y, z, . . . , and the number of equations in the related system of equations
of unknowns a, b, c, . . . , increasing with k, the amount of work would increase
as well, and an idea (to be found) for addressing all k ∈ {3, . . . , n− 3} with less
calculations would be nicer.

5.2.5 Computer investigation

A computer investigation has been made with the kind help of Stjepan Picek.
For each pair (n, k) where n ∈ J6, 12K and k ∈ J3, n− 3K, a k-dimensional vector
space E has been found such that

∑
u∈E,u 6=0

1
u = 0. We display in Table 1 with

“X” each value of k for which the multiplicative inverse function is kth-order
sum-free and with “¬” when it is not.
All these investigation results are explained for every k by the theorems above.

Note that for n = 8, which is particularly interesting because of AES, we
know mathematically the status of all values of k (for k = 7 the inverse function
is kth-order sum-free, and for k = 2, it is not as we know and for k = 3, 4, 5, 6,
it is not, according to Theorem 6, Theorem 2, Theorem 3, Theorem 2 or 3,
respectively).

5.3 Perspectives

Given the computer investigations above, it seems that, for k ∈ {3, . . . , n− 3},
the inverse function is not kth-order sum-free. We leave open the problem of
proving or disproving this fact (we tend to think it is true).
Considering now other functions than the inverse function, there is an example,
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given in [11], of a class of (n, n)-functions such that, for any k ≥ 2 and any

n ≥ k, one of the (n, n)-functions in the class, namely the function x2
k−1, is

kth order sum-free (we have then, for every k, an infinite class of kth order
sum-free functions). We leave open the question of finding (infinite classes of)
(n, n)-functions being kth order sum-free for several values of k ∈ {3, . . . , n−3}
(note that, for n odd, the inverse function is kth order sum-free for two values
of k: 2 and n−2). We would even more like to find examples of (n, n)-functions
being kth order sum-free for an unbounded number of values of k.
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