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Abstract—Range proofs serve as a protocol for the prover
to prove to the verifier that a committed number resides
within a specified range, such as [0, 2n), without disclosing the
actual value. These proofs find extensive application in various
domains, including anonymous cryptocurrencies, electronic
voting, and auctions. However, the efficiency of many existing
schemes diminishes significantly when confronted with batch
proofs encompassing multiple elements.

The pivotal challenge arises from their focus on the com-
mitment to a singular element rather than a vector. Addressing
this gap, our paper introduces MissileProof, a zero-knowledge,
succinct, non-interactive argument of knowledge tailored for
the range proof of a vector commitment. Our core contribution
lies in reducing this argument to a bi-to-uni variate SumCheck
problem and the bivariate polynomial ZeroTest problem, and
design two polynomial interactive oracle proofs (PIOPs) for
each problem.

Our principal innovation involves the transformation of
this argument into a bi-to-uni variate SumCheck problem and
the bivariate polynomial ZeroTest problem. To tackle these
challenges, we devise two Polynomial Interactive Oracle Proofs
(PIOPs) for each problem.

As far as we know, our scheme has the optimal proof size
(O(1)), the optimal statement length (O(1)), and the optimal
verification time (O(1)), at the expense of slightly sacrificing
proof time (O(l log l · n logn) operations on the prime field
for FFT and O(ln) group exponentiations in G). We prove
the security of this scheme. Experimental data shows for a
committed vector of length l = 16384 and n = 64, our work
has the best performance in terms of the statement length
(0.03125KB), proof size (1.375KB) and verification time (0.01s)
with a slightly increased proof time (614s).

1. Introduction
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A zero-knowledge proof is a protocol that allows the
prover to convince the verifier, that they know a secret
witness satisfying the certain relation without revealing the
witness itself. Range proof is a type of zero knowledge
proofs that allow a prover to convince a verifier that for
a commitment C, he knows the committed value v, and v
is in a certain range [0, 2n). Range proofs serve as the core
building block in numerous applications, such as anonymous
credentials [1], e-voting [2], e-cash [3], electronic auctions
[4] [5] [6], and cryptocurrencies Monero1, Beam2, Grin3. In
decentralized anonymous payment system such as Monero
and ZCash [7], range proofs are used to prove that the
sender’s balance is greater than the transferred amount. In
electronic supervision scenarios, the anonymous financial
institutions will submit commitments to the savings amount
of users under review, and provide a range proof to prove
that the deposit is within the legal range.

The existing range proof schemes mostly focus on
proving the commitment to a single element, which ham-
pers scalability. Therefore, we introduce range proof for
vector commitments to improve the efficiency of range
proof for large-scale data. Vector commitment schemes have
been used in many scenarios: stateless cryptocurrency [8],
account-based blockchain [7]. It is of great practical value
to design a range proof for vector commitment.

Problem. In a formalized form, common range proof
schemes prove the problem instance statement x (commit-
ment C) and the witnessw (secret value v) has the following
relation: (G is the field of the commitment, F is a prime
field.)

{(C ∈ G; v ∈ F) : C = Commit(v) ∧ v ∈ [0, 2n)}

When the prover needs to perform range proofs on a
vector v of l elements, i.e. to prove the following relation:

{(C ∈ Gl;v ∈ Fl) : ∀i ∈ [0, l), Ci = Commit(vi)∧vi ∈ [0, 2n)}

These works [9] [10] introduce batch proof and batch ver-
ification schemes to reduce the proof size and the verification
time. However, they cannot decrease the statement length since

1. https://web.getmonero.org/resources/moneropedia/BulletProofs.html
2. https://github.com/BeamMW/beam
3. https://grin.mw



the original statement C ∈ Gl has to be sent to the verifier, which
result in great communication pressure.

Essentially, we argue that the core obstacle of the scalability
is that these schemes only deal with the commitment scheme to a
single element and the prover has to transfer a set of commitments
to the elements as the statement. Moreover, the proof size and the
time cost for verification are also unsatisfactory.

Therefore, we propose new a range proof proving that each
element in a committed vector v of length l lies in a range [0, 2n)
Informally, it proves the relation RVCRP as follows:

{(C ∈ G;v ∈ Fl) : ∀i ∈ [0, l), C = VC.Commit(v)∧vi ∈ [0, 2n)}

1.1. Zero knowledge argument protocol design
background and interactive oracle proofs

In this section, we introduce a general paradigm to design a
non-interactive argument protocol which our work follows.

Polynomial interactive oracle proof (PIOP) [11] is a type
of interactive information-theoretic proof system. In a PIOP, the
prover sends the oracles to multi-variate polynomials as messages,
and the verifier can query these polynomials at arbitrary points.
The statement can also consist of oracles to polynomials which
the verifier can query.

One can obtain a succinct interactive argument of knowledge
by compiling a PIOP [11] with a cryptographic primitive called a
polynomial commitment scheme [12] [13]. In a nutshell, the com-
piler replaces each oracle and associated evaluation query in the
PIOP with a polynomial commitment scheme, and transform the
entire protocol into a succinct argument [14]. Then this interactive
argument can be turned into a non-interactive one via the Fiat-
Shamir transformation [15].

In summary, one can obtain a succinct argument via the
following three-step design process.

• PIOP. Design a public-coin PIOP for a certain relation.
• Compile. Run a compiler to replace oracles in the PIOP

with polynomial commitment schemes to obtain a public-
coin, interactive succinct argument.

• Fiat-Shamir transform. Remove interaction via Fiat-Shamir
transformation to get a non-interactive succinct argument.

1.2. Related work

Range proofs for single element. For range proofs, there are
two high-level approaches for construction: square decomposition
and k-ary decomposition. The square decomposition range proof
was first proposed by of Boudot et al. [16]. It reduces the original
statement that a secret value v is in range [a, b] to two sub-
statement: v − a and b − v are non-negative. This work employs
a fact that any positive integer can be decomposed into four
squares and construct a constant size proof. The advantage of this
scheme is that the proof time and verification time are constant,
regardless of the size of the range. However, although there has
been many subsequent works CLKR [17] Sharp [18] to optimize it,
this approach till have the following shortcomings: 1. it requires
the use of RSA groups or class groups with a discriminant that
is difficult to factorize, resulting in very large element sizes and
poor performance in practical applications. Sharp implements it
in a elliptic curve at the expense of additional overhead. 2. this
solution is difficult to prove in batches.

Another approach is k-ary decomposition that is more widely
used and has better efficiency. To prove that a secret value v lies
in range [0, kn), it is equivalent to prove that there exist a k-ary
decomposition vector (v0, ..., vn−1) such that each bit vi ∈ [0, k)

and v =
∑n−1

j=0 vi · ki. Based on binary decomposition and inner
product argument (IPA), proposed their schemes for proving the
secret value in a Pedersen commitment lies in a range [0, 2n).
Though the proof size is O(logn), its verification time is O(n).
Daza et al. [9] introduced the structured reference string to reduce
the verification complexity of IPA, so that their scheme has both
O(logn) communication and verification complexities. Although
there has been subsequent work [19] to further accelerate the range
proof by improving the IPA protocol, the asymptotic complexities
has not changed essentially.

Figure 1: Comparison of intuitions among our approach
and the other schemes. Note: “⟨, ⟩” means inner product
and “◦” means Hadamard product. The yellow blocks show
the reduction preprocesses. The blue blocks show the new
equivalent relations after reduction. The red blocks show the
core techniques that used to prove the relations given in the
blue blocks.

Range proofs for multiple elements. we roughly divide
techniques for constructing batch range proofs into two categories:
IPA-based schemes and PIOP based schemes. For each scheme, we
provide a toy example of its intuition in Fig.1, and Table 1 shows
their complexities.

Range proof schemes based on IPA can be batch proved and
verified. The prover splits each element in the secret vector v ∈ Fl

into a binary vector and concatenates l binary vectors to form a
long binary vector of length ln. Then, using IPA, the prover proves
the relationship between this string and the commitment vector.
Compared with repeatedly generating a single proof l times, its
main advantage is reducing the proof size from O(l · logn) to



TABLE 1: Comparison among different range proof schemes for multiple elements.

Protocols Statement length Proof size Prover complexity Verifier complexity Setup
BulletProof [10] O(l)G O(log l + logn)G+ O(ln)E+ O(ln)E+ transparent

5F O(ln)M O(ln)M
Daza et al. [9] O(l)G1 O(log l + logn)G1+ O(ln)E1+ O(l + logn)E1 +O(logn)E2+ private

O(log l + logn)F O(ln)M O(logn)M +O(logn)nP
TurboPlonk [20] O(1)G1 O(n)G1+ O(ln)E1+ O(n)E1 + 1E2+ private

O(n)F O(ln log l)M O(n)M + 1P
Plonkup [20] O(1)G1 O(1)G1+ O(l + 2n)E1+ O(1)E1 + 1E2+ private

O(1)F O((l + 2n) · 2n log(l + 2n))M O(1)M + 1P
This work O(1)G1 O(1)G1+ O(ln)E1+ O(1)E1 +O(1)E2+ private

O(1)F O(l log l · n logn)M O(1)M +O(1)P
Notes: n is the max bit length of elements (v ∈ [0, 1)). G is a cyclic group element. (G1,G2,GT ) is a bilinear group elements.
and F means prime field elements. E means group exponentiations in G; E1 means group exponentiations in G1; E2 means group
exponentiations in G2; M means field multiplications; P means pairings; transparent means no trusted setup; private means the setup is
generated by a trusted institution, moreover, the structured reference string of the setup algorithm is universally updatable.

O(log l + logn). However, this level of optimization still fails to
meet our requirements, and transmitting l commitments has already
incur a communication complexity of O(n).

The PIOP based argument schemes extends the secret vector
v ∈ Fl to a polynomial f(X) over the field F of degree less than
l, in the sense that for all a ∈ Hl, f(a) = vi, where Hl is a
multiplicative subgroup of the field F. Then the prover proves that
for all a ∈ Hl, f(a) ∈ [0, 2n). TurboPlonk [20] first splits each
element vi into a binary vector (vi,0, ..., vi,n−1), where i ∈ [0, l).
Subsequently, for j ∈ [0, n), it extends n vectors (v0,j , ..., vl−1,j)
to n univariate polynomials fj(X) of degree less than l over F,
such that ∀ai ∈ Hl, fj(ai) = vi,j . TurboPlonk then designs a PIOP
to prove that for all ai ∈ Hl and j ∈ [0, n), fj(ai) ∈ {0, 1} and
f(ai) =

∑n−1
j=0 fj(ai) · 2j . The advantage of TurboPlonk is that it

uses the PIOP paradigm and only needs to send 1 group element as
a statement. However, during the proof process, it needs to send
the commitment of all polynomial fj , resulting in a proof size
of O(n). As shown in Fig 1, Plonkup designs a scheme based
on the lookup argument PIOP. It introduces an auxiliary vector
a = (0, 1, ..., 2n − 1) ∈ F2n . The prover then concatenates the
vectors a and b and sort it to get a long vector t ∈ F2n+l. Then
he proves that the elements in t are either equal to the previous
element or equal to the elements in the auxiliary vector. Plonkup
performs well when l is large and n is small since its proving
complexity is O(l+2n). But by the same token, it is very inefficient
in dealing with the situation where n is large.

Vector commitment. Vector commitments (VC) [21] [22] [8]
are commitment schemes to a vector v. Polynomial-based vector
commitment (PVC) [8] is a type of vector commitment schemes
which encodes the vector v to a univariate polynomial f(X) ∈
Fd(X)<l[X], such that for all ai ∈ Hl, f(ai) = vi. Then the PVC
computes Cf, the polynomial commitment to f as the output vector
commitment (the full definition of the polynomial-based vector
commitment scheme and the polynomial commitment scheme can
be seen in definition 2.3 and definition 2.6).

Although the MissileProof proposed in this paper can be
applied to prove all PVC schemes, in the experimental part and the
complexity analysis part, we choose to implement the range proof
for the aggregatable subvector commitment (aSVC) [8] scheme.
aSVC is a vector commitment scheme based on the KZG [12]
polynomial commitment scheme. aSVC can aggregate multiple
proofs into a single, small subvector proof and is used in the
stateless cryptocurrencies.

1.3. Our approach and results

In this section we give a high level overview about how
MissileProof constructs a non-interactive argument of knowledge
for vector range proof as shown at the bottom of Fig 1.

First we introduce a reduction for the vector range proof. There
exists a fact that if a vector v = {v0, ..., vl−1} ∈ Fl, all element
vi ∈ v, i ∈ [0, l) is in a range [0, 2n), then the following condition
holds:

∃M ∈ Fl×n, vi =

n−1∑
j=0

Mi,j ∧Mi,j ∈ {0, 2j}

One can obtain the matrix using binary decomposition. Con-
versely, the condition above ensures that the largest possible value
in the vector v is max =

∑n−1
j=0 ·2

j = 2n − 1.
Take l = 2, n = 4 and v = (15, 6) as an example: there exists

a unique matrix M =

[
1 2 4 8
0 2 4 0

]
such that the condition

holds.
Let Hl and Hn be two multiplicative subgroups of the field F

and let f(X) ∈ Fd(X)<l[X] be a polynomial of degree at most l−1
over F that extends v in the sense that for all ai ∈ Hl, f(ai) =
vi. Similarly, extend the decomposition matrix M to a bivariate
polynomial m(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], s.t. for all ai ∈
Hl and bj ∈ Hn,m(ai, bj) = Mi,j . Considering the relationship
between the vector v and matrix M , the polynomials f and m
should satisfy the following conditions.

- Condition 1. Bi-to-uni variate polynomial SumCheck:∑
b∈Hn

m(X, b) = f(X).
- Condition 2. Bivariate polynomial ZeroTest: ∀a ∈ Hl, bj ∈
Hn,m(a, bj)(m(a, bj)− 2j) = 0.

These two conditions cannot be succinctly verified since they
involves the operations like “∀” and “

∑
”. So we need to reduce

these relations to new relations without “∀” or “
∑

”. Our core
theoretical contribution lies in this.

To efficiently prove the bi-to-uni variate polynomial Sum-
Check (condition 1), we propose Lemma 3.2, that for any
bivariate polynomial m(X,Y ) ∈ Fd(X)≤l−1,d(Y )≤n−1[X,Y ],∑

b∈Hn
m(X, b) = f(X) if and only if there exists a bivari-

ate polynomial u(X,Y ) ∈ Fd(X)<l,d(Y )<n−1[X,Y ], such that
m(X,Y ) = f(X)

n
+ Y · u(X,Y ). Via this lemma, the verifier can

efficiently check the condition 1 by checking the equality at a
random point using Schwartz-Zippel lemma (2.1).

For condition 2, the bivariate polynomial ZeroTest, we intro-
duce a bivariate random polynomial r(R, Y ) and reduce condition



2 to a combination of a univariate polynomial SumCheck relation
and a univariate polynomial ZeroTest relation.

Let p(Y ) be a polynomial such that ∀bj ∈ Hn, p(bj) = 2j .
Let M(X, b) = m(X, b)(m(X, b) − p(b)). r(R, Y ) is a random
polynomial, satisfying that for all b ∈ Hn, r(r, b) are n linearly
independent polynomials. Then we have:

∀a ∈ Hl,b ∈ Hn,M(a, b) = 0⇔
∀a ∈ Hl,M

∗(r, a) =
∑
b∈Hn

M(a, b)r(r, b) = 0

Completeness of the second check is straightforward. Sound-
ness follows from the fact that if any evaluation of M does not
equal to 0, the combined polynomial will not equals to 0 over
Hl with high probability. Then the proof for the condition 2
can be reduced to two phases: a univariate polynomial ZeroTest
and a univariate polynomial SumCheck. Concretely, in the phase
1, V randomly selects τr

$← F, and sends τr to P . P then
proves that ∀a ∈ Hl,M

∗(τr, a) = 0. In the phase 2, P proves
that M∗(τr, X) =

∑
b∈Hn

M(X, b)r(X, b) using the univariate
polynomial SumCheck protocol.

Figure 2: Our methodology for constructing a zero-
knowledge succinct non-interactive argument of knowledge
for vector range proof. Things in the yellow blocks are our
main contribution and core innovation. Things in the white
blocks are implemented using the existing techniques.

1.3.1. Technical overview. As shown in Fig. 2, following the
intuition given above, we introduce some mathematical lemmas in
section 3. Then based on the lemmas, we construct four PIOPs
in section 4. In section 5, we reduce the vector range relation to
a bi-to-uni variate polynomial SumCheck problem and a bivariate
polynomial ZeroTest problem and propose a PIOP for it. Then
following the paradigm of PIOP, we compile the public-coin PIOP
with a KZG-based polynomial commitment scheme and use Fiat-
Shamir transformation to get a succinct non-interactive argument
of knowledge for vector range proof.

1.4. Our contributions

• MissileProof. This paper presents MissileProof, a zero-
knowledge succinct non-interactive argument of knowledge
for range proof of a polynomial-based vector commitment.
As shown in Table 1, as far as we know, compared with the
other existing schemes, our scheme has the optimal proof size

(O(1)), the optimal statement length (O(1)), and the optimal
verification time (O(1)), at the expense of slightly sacrificing
proof time (O(l log l · n logn) operations on the prime field
for FFT and O(ln) group exponentiations in G).

• PIOP tools. As the core building block, we propose a new
bi-to-uni variate SumCheck PIOP and a bivariate ZeroTest
PIOP which can be seen as an independent interest. Then we
construct a PIOP for vector range proof based on them.

• Experimental efficiency. Experiment shows that for proving
each element of a secret vector of 16384 elements lies in a
range [0, 264), MissileProof costs 0.03125 Kb for statement
length, 1.375 Kb for proof size, 604 s for prover computation,
0.01 s for verification. These costs are are significantly less
than the other schemes except for proof time.

Paper outline

Section 2 presents the notations and related knowledge used
in this paper. Section 3 presents some lemmas and section 4
introduces four PIOP components based on the lemmas. Section 5
presents a PIOP forRVCRP and construct a non-interactive succinct
argument of knowledge for it. Section 6 discusses some more
general application scenarios of our work. Section 7 demonstrates
the efficiency of MissileProof through experiments. Finally, Section
8 concludes our work.

2. Preliminaries

We use F to denote a finite field (a prime field Fp for a
large prime p) and λ to denote the security parameter. A uni-
variate polynomial f of degree < l over the field F is denoted as
f(X) =

∑l−1
i=0 fiX

i ∈ Fd(X)<l[X]. Correspondingly, a bivariate
polynomial is denoted as m(X,Y ) =

∑l−1,n−1
i=0,j=0 mi,jX

iY j ∈
Fd(X)<l,d(Y )<n[X,Y ]. We assume that n and l is a power of 2
and divides p − 1. Let ωn be the n-th primitive root of unity in
Fp and let Hn = [ωj

n]j∈[0,n) and Hl = [ωi
l ]i∈[0,l) be two multi-

plicative subgroups of F. “⇔” means “if and only if”. A negligible
function is denoted as negl(λ) and “probabilistic polynomial-time”
is abbreviated as PPT. The prover is denoted as P and the verifier
is denoted as V .

Moreover, we introduce two special polynomials:
• Vanishing polynomial. zHl

(X) =
∏

a∈Hl
(X − a) = Xl− 1.

• Bivariate random polynomial. r(R, Y ) is a polynomial such
that all b ∈ Hn, r(R, b) are n linearly independent polynomi-
als. Concretely, we choose r(R, Y ) = Rn−Y n

R−Y
as an instance

of bivariate random polynomial (This random polynomial
is proposed in Marlin [23]. Its advantage is that it can be
efficiently evaluated in O(1) operations).

Lemma 2.1. (Schwartz-Zippel Lemma). Let f ∈ F[X1, ..., Xk] be
a non-zero multivariate polynomial of total degree d over field F.
Randomly choose r1, ..., rk

$← F. Then Pr[f(r1, ..., rk) = 0] ≤ d
|F| .

2.1. Succinct interactive arguments of knowledge

A relation R is a set of pairs (x,w), where the x is the
problem instance statement and the w is the witness. A pair of
PPT interactive algorithms is denoted as ⟨P,V⟩ and Setup is an
algorithm that takes as input the security parameter λ and outputs
public parameters pp.

Definition 2.1. Public-coin succinct interactive argument of
knowledge [24] . A protocol between a pair of PPT algorithms



⟨P,V⟩ is called a public-coin succinct interactive argument of
knowledge for a relation R if:

• Completeness. For any problem instance x ∈ R, there
exists a witness w such that for all r ∈ {0, 1}∗,
Pr{⟨P(pp,w),V(pp, r)⟩(x) = 1} ≥ 1− negl(λ).

• Soundness. For any non-satisfiable problem instance x,
any PPT prover P∗, and for all w, r ∈ {0, 1}∗,
Pr{⟨P∗(pp,w),V(pp, r)⟩(x) = 1} ≤ negl(λ).

• Knowledge soundness. For any PPT adversary A, there
exists a PPT extractor E such that for any problem instance x
and for all w, r ∈ {0, 1}∗, if Pr{⟨A(pp,w),V(pp, r)⟩(x) =
1} ≥ negl(λ), then Pr{SatR(x,w′) = 1|w′ ←
EA(pp,x)} ≥ negl(λ).

• Succinctness. The total communication between P and V is
sub-linear in the size of the NP statement x ∈ R

• Public coin. V’s messages are chosen uniformly at random.

Definition 2.2. (Zero-knowledge). An interactive argument
(Setup,P,V) for R is computational zero-knowledge if for every
PPT interactive machine V∗, there exists a PPT algorithm S
called the simulator, running in time polynomial in the length of its
first input such that for every problem instance x ∈ R,w ∈ Rx,
and z ∈ {0, 1}∗, the following holds when the distinguishing gap
is considered as a function of |x|:

View(⟨P(w),V∗(z)⟩(x)) ≈c S(x, z)

where View(⟨P(w),V∗(z)⟩(x)) denotes the distribution of the
transcript of interaction between P and V∗, and ≈c denotes that
the two quantities are computationally indistinguishable.

2.2. polynomial commitment schemes for bivariate
polynomials

We adopt the definitions from Bünz et al. [11], which gener-
alize the definitions in the KZG scheme [12] and the PST scheme
[25]. In a list of arguments or returned tuples, variables before the
semicolon are public and variables after are secret; semicolon is
omitted if there is no secret information.

Definition 2.3. Polynomial commitment scheme for bivari-
ate polynomials. A polynomial commitment scheme for bi-
variate polynomials is a tuple of four protocols PC =
(Setup,Commit,Open,Eval):

• pp ← Setup(1λ,D): takes as input D (the max degree of
bivariate polynomials F[X,Y ], D = (Dx, Dy)); produces
public parameters pp.

• (C;S) ← Commit(pp,m): takes as input a bivariate poly-
nomial m ∈ Fd(X)<Dx,d(Y )<Dy [X,Y ]; produces a public
commitment C and a secret opening hint S.

• b ← Open(pp, C,m, S): V verifies the opening of commit-
ment C to the bivariate polynomial m ∈ F[X,Y ] with the
opening hint S; outputs b ∈ {0, 1}.

• b ← Eval(pp, C, (τx, τy), v;m, S) is an interactive public-
coin protocol between a PPT prover P and verifier V .
Both V and P hold a commitment C, a specified coordinate
(τx, τy) and a scalar v ∈ F. P additionally knows a bivariate
polynomial m ∈ F[X,Y ] and its secret opening hint S. P
attempts to convince V that m(τx, τy) = v. At the end of the
protocol, V outputs b ∈ {0, 1}.

Definition 2.4. Polynomial commitment scheme properties. A
tuple of four protocols PC = (Setup,Commit,Open,Eval) is a
secure extractable polynomial commitment scheme for bivariate
polynomials over a finite field F if the following conditions hold.

• Hiding. For all PPT adversaries A = (A0,A1):∣∣∣∣∣∣∣∣∣∣
Pr


pp← Setup(1λ,D);

(m0,m1, st)← A0(pp);

b
$← {0, 1};

(C, S)← Commit(pp;m); b′ ← A0(pp, st) :
b′ = b

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

• Binding. For any PPT adversary A, and any bivariate poly-
nomial m ∈ Fd(x)<Dx,d(y)<Dy [X,Y ],

Pr

 pp← Setup(1λ,D); (C,m0,m1, S0, S1)← A(pp);
1← Open(pp, C,m0, S0) ∧ 1← Open(pp, C,m1, S1)

∧m0 ̸= m1

≤ negl(λ).

• Knowledge soundness. Eval is a public-coin succinct inter-
active argument of knowledge which has knowledge sound-
ness for the following relation given pp← Setup(1λ,D):

REval(pp) = {⟨(C, (τx, τy), v), (m, S)⟩ : m ∈ F[X,Y ]

∧m(τx, τy) = v ∧ Open(pp, C,m, S) = 1}

• Zero knowledge. Eval is a public-coin succinct interactive
argument of knowledge with zero-knowledge for the relation
REval given pp← Setup(1λ,D).

Remark. The definition provided above is for bivariate poly-
nomials. It can be simply converted to the definition for univariate
polynomial commitment schemes. We won’t elaborate on this here.

Enforcing a different degree bound to the polynomial.
Let us first take the univariate polynomial commitment scheme
as an example to discuss how to limit the degree bound of
a committed polynomial. The polynomial commitment scheme
naturally enforces a bound D on the degrees of the polynomials
f(X) ∈ Fd(X)≤D[X]. To enforce a new degree bound d to the
polynomial (d < D), the prover will commit to both the original
we require the sender to commit not only to f(X) ∈ Fd(X)≤d[X],
but also to a “shifted polynomials” f′(X) = XD−df(X). For a
randomly chosen point τ $← F, V checks that f′(τ) ?

= τD−df(τ).
Similarly, we can also enforce different degree bounds for

bivariate polynomials. Furthermore, Marlin [23] introduced an
improved scheme for setting new degree bounds to reduce the
computational overhead of the prover. This will not be elaborated
further here.

2.3. PIOP compilation

Definition 2.5. Polynomial interactive oracle proof (PIOP) A
PIOP is a public-coin interactive proof for a polynomial oracle
relation R = (x;w). The relation is an oracle relation in that x
can contain oracles to polynomials over some field F. The oracles
specify the number of variables and the degree in each variable.
These oracles can be queried at arbitrary points to evaluate the
polynomial at these points. The actual polynomials corresponding
to the oracles are contained in the pp and the x, respectively.
We denote an oracle to a polynomial f by fO . In every protocol
message, the P sends multi-variate polynomial oracles. V in every
round sends a random challenge.

PIOP compilation transforms the interactive oracle proof into
an interactive argument of knowledge (without oracles) Π. The
compilation replaces the oracles with polynomial commitments.
Every query by V is replaced with an invocation of the Eval
protocol at the query point τ . The compiled verifier accepts if the
PIOP verifier accepts and if the output of all Eval invocations is 1.
If Π is public-coin, it can further be compiled into a non-interactive
argument of knowledge using the Fiat-Shamir transform.



Theorem 2.1. (PIOP Compilation [11] [23] [26]). If the polyno-
mial commitment scheme PC has witness-extended emulation, and
if the t-round Polynomial IOP for R has negligible knowledge
error, then the output of the PIOP compilation Π, is a secure
(non-oracle) argument of knowledge for R. The compilation also
preserves zero knowledge. If PC is hiding and Eval is honest-
verifier zero-knowledge, then Π is honest-verifier zero-knowledge.
The efficiency of the resulting argument of knowledge Π depends
on the efficiency of both the PIOP and PC:

If the polynomial commitment scheme PC has witness-extended
emulation, and the t-round Polynomial IOP for R has negligible
knowledge error, then the output of the PIOP compilation Π is a
secure (non-oracle) argument of knowledge for R. Furthermore,
the compilation maintains zero knowledge.

If PC is hiding and Eval is honest-verifier zero-knowledge,
the resulting Π also attains honest-verifier zero-knowledge. The
efficiency of the resulting argument of knowledge, Π, depends on
the efficiency of both the PIOP and PC:

• Prover time. The prover time can be expressed as the sum of
the prover time in the PIOP, the product of the number of
oracles and commitment time, and the product of the query
times and the prover time of PC.

• Verifier time. The verifier time of the argument is equal to the
sum of the verification costs in the PIOP and PC times the
query complexity of the PIOP. the verifier time of the PIOP
plus the verifier time for PC.

• Proof size. The proof size is equal to t the product of the
message complexity of the PIOP and the commitment size,
added to the product of the query complexity and the proof
size of PC..

Batching. Batch openings of polynomial commitments can
significantly reduce the prover time, verifier time, and proof size.
Specifically, the proof size is influenced solely by the number of
oracles and a single batch opening.

2.4. Polynomial based vector commitment
Definition 2.6. Polynomial based vector commitment scheme.
We adapt and extend the definitions from aSVC [8]. A polynomial
based vector commitment scheme is a tuple of four protocols VC =
(Setup,Commit,Open,Eval):

• pp ← Setup(1λ, l): takes as input l (the max length of the
vector length); produces public parameters pp.

• (Cf;S) ← Commit(pp,v): takes as input a vector v, then
extends it to a univariate polynomial f ∈ Fd(X)<l[X], s.t.
∀ai ∈ Hl, f(ai) = vi; Computes the polynomial commitment
to f: (Cf;S) ← PC.Commit(pp, f) and outputs Cf as the
vector commitment and S as a secret opening.

• b← Open(pp, Cf, f, S): verifies the opening of commitment
Cf to the vector v with the opening hint S; outputs b ∈
{0, 1}.

• b← Eval(pp, Cf, i ∈ [0, l), vi;m, S) is an interactive public-
coin protocol between a PPT prover P and verifier V . P
proves that vi is the i-th element of v using the PC.Eval
protocol. At the end of the protocol, V outputs b ∈ {0, 1}.

Remark. Since the output of polynomial based vector commit-
ment is a polynomial commitment to the polynomial f that extends
v, the vector commitment can be seen as an oracle fO of f in the
PIOP paradigm.

3. Lemmas
Here we present 3 lemmas (lemmas for univariate SumCheck,

univariate ZeroTest, bi-to-uni SumCheck) which will be used to

construct the PIOP toolbox in the next section. Among these
lemmas, bi-to-uni SumCheck Lemma 3.2 is our core contribution
and innovation.

Fact 3.1. (Summation). Let ωn be the n-th primitive root of unity
in Fp and a multiplicative group Hn = {ω0

n, ω
1
n, ..., ω

n−1
n }, then∑

a∈Hn

ak =

{
0 if k ∈ {1, 2, ..., n− 1}
n if k = 0

PROOF: if k = 0,
∑

a∈Hn
ak =

∑
a∈Hn

1 = n. If k ∈
{1, 2, ..., n− 1}, according to the formula for summing geometric
series,

∑
a∈Hn

ak =
∑n−1

j=0 (ω
j
n)

k =
ωk∗n
n −1

ωk
n−1

= 0.

Lemma 3.1. (Univariate SumCheck). [27] [23] Denote a multi-
plicative subgroups as Hl = {ω0

l , ...ω
l−1
l }, where l is an integer

power of 2. For any univariate polynomial f(X) =
∑D−1

i=0 fiX
i ∈

Fd(X)<D[X], we have:∑
a∈Hl

f(a) = v, if and only if, ∃q(X) ∈ F[X], u(X) ∈
Fd(X)<l−1[X], f(X) = v

l
+X · u(X) + q(X)zHl

(X).

PROOF: ⇒: Dividing f(X) by zHl
(X) allows us to write

f(X) = q(X) · zHl
(X) + d(X), where q(X) is the quotient

polynomial and d(X) is the remainder polynomial of degree less
than l. Denote that d(X) =

∑l−1
i=0 diX

i. By the Fact 3.1, there
exists a fact that:

∑
a∈Hl

d(a) =
∑
a∈Hl

l−1∑
i=0

dia
i

=

n−1∑
i=1

∑
a∈Hl

dia
i +

∑
a∈Hl

d0a
0

= l · d0

So
∑

a∈Hl
f(a) =

∑
a∈Hl

d(X) +
∑

a∈Hl
q(X)zHl

(X) = l ·
d0 + 0. Actually, v =

∑
a∈Hl

f(a) = l · d0.

So we can set u(X) = d(X)−d0
X

∈ Fd(X)<l−2[X] , such that
f(X) = v

l
+X · u(X) + q(X)zHl

(X).
⇐: Denote the polynomial u(X) ∈ Fd(X)<l−1[X] =∑l−2

i=0 uiX
i, then:∑

a∈Hl

f(a) =
∑
a∈Hl

(
v

l
+ a · u(a) + q(a)zHl

(a))

= v +

l−2∑
i=0

ui

∑
a∈Hl

ai+1 + 0

= v

Specially, if the degree of f(X) equals to l, this lemma can
be simplified to:

∑
a∈Hl

f(a) = v ⇔ ∃u(X) ∈ Fd(X)<l−1[X] ∧
f(X) = v

l
+X · u(X).

Lemma 3.2. (Bi-to-uni variate SumCheck). Denote a mul-
tiplicative subgroup as Hn = {ω0

n, ...ω
n−1
n }. For any bi-

variate polynomial m(X,Y ) =
∑l−1

i=0

∑n−1
j=0 mi,jX

iY j ∈
Fd(X)<l,d(Y )<n[X,Y ], we have:∑

b∈Hn
m(X, b) = f(X), if and only if, ∃u(X,Y ) ∈

Fd(X)<l,d(Y )<n−1[X,Y ],m(X,Y ) = f(X)
n

+ Y · u(X,Y ).

Proof:



⇒: By Lemma 3.1, there exists a fact that:∑
b∈Hn

m(X, b) =
∑
b∈Hn

l−1∑
i=0

n−1∑
j=0

mi,jX
ibj

=

l−1∑
i=0

n−1∑
j=0

mi,jX
i
∑
b∈Hn

bj

=

l−1∑
i=0

n−1∑
j=1

mi,jX
i
∑
b∈Hn

bj +

i=l−1∑
i=0

mi,0X
i
∑
b∈Hn

b0

=

l−1∑
i=0

n−1∑
j=1

mi,jX
i · 0 +

i=l−1∑
i=0

mi,0X
i · n

= n ·
i=l−1∑
i=0

mi,0X
i.

Thus, f(X) =
∑

b∈Hn
m(X, b) = n

∑i=l−1
i=0 mi,0X

i.

Now, set u(X,Y ) =
m(X,Y )− 1

n
f(X)

Y
=∑l−1

i=0

∑n−1
j=1 mi,jX

iY j−1 ∈ Fd(X)<l,d(Y )<n−1[X,Y ]. This
choice of u(X,Y ) ensures that f(X)

n
+ Y · u(X,Y ) = m(X,Y ).

⇐: Since u(X,Y ) is a bivariate polynomial
in Fd(X)<l,d(Y )<n−1[X,Y ], we can represent it as
u(X,Y ) =

∑l−1
i=0

∑n−2
j=0 ui,jX

iY j . Then, using the given
expression m(X,Y ) = f(X)

n
+ Y · u(X,Y ), we obtain:∑

b∈Hn

m(X, b) =
∑
b∈Hn

(
f(X)

n
+ b · u(X, b)

)

= f(X) +

l−1∑
i=0

n−2∑
j=0

ui,jX
i
∑
b∈Hn

bj+1

= f(X).

This completes the proof.

Lemma 3.3. (Univariate ZeroTest). Let a univariate vanishing
polynomial zHl

(X) =
∏

a∈Hl
(X − a) = Xl − 1. For a multi-

plicative subgroup Hl and a polynomial f(X) =
∑d

i=0 fiX
i ∈

Fd(X)=d[X]: f(X) is identically zero on Hl if and only if f(X) is
divisible by the vanishing polynomial zHl

(X), i.e.

∀a ∈ Hl, f(a) = 0⇔ ∃e(X) ∈ F[X], e(X) · zHl
(X) = f(X)

PROOF: ⇒: Since all the elements in Hl must be the root of
f(X), so f(X) is divisible by all polynomials (X − a), a ∈ Hl.
Therefore f(X) is divisible by the vanishing polynomial zHl

(X).
⇐: Obviously, f(a) = e(a) · zHl

(a) = e(a) · 0 = 0.

4. PIOP toolbox
In this section, we describe PIOPs for the relations including

univariate SumCheck, bi-to-uni variate SumCheck, univariate Ze-
roTest and bivariate ZeroTest on the basis of lemmas provided in
section 3.

4.1. Univariate SumCheck PIOP

Here we describe a PIOP for the univariate SumCheck relation
proving that a function f(X) satisfying that

∑
a∈Hl

f(a) = v. This
PIOP is constructed based on Lemma 3.1.

Definition 4.1. (Univariate SumCheck relation) The relation
RUniSum is the set of all tuples (x;w) = (fO, v; f(X) ∈
Fd(X)<D[X]) where

∑
a∈Hl

f(a) = v.

PIOP Construction.

• P computes the univariate polynomial q(X), u(X) ∈
Fd(X)<l−1[X], such that f(X) = v

l
+ X · u(X) +

q(X)zHl
(X). P sends the oracles uO and qO to V .

• V checks that u(X) ∈ Fd(X)<l−1[X] and checks the equation
at a random point τx

$← F: V queries oracles to get µu =

u(τx), µq = q(τx), µf = f(τx), and checks that µf
?
= v

l
+

τx · µu + µqzHl
(τx).

Theorem 4.1. The PIOP for RUniSum is perfectly complete and
has knowledge soundness error δUniSum = D/|F|.

PROOF.

• Completeness and Knowledge soundness. As shown in
Lemma 3.1,

∑
a∈Hl

f(a) = v, if and only if, ∃q(X) ∈
F[X], u(X) ∈ Fd(X)<l−1[X], f(X) = v

l
+ X · u(X) +

q(X)zHl
(X). So the PIOP for RBUSum is perfectly complete

and the soundness error is the maximum degree over the field
size, which is at most D

|F| .
• Complexities.

– round complexity: 2-round.
– prover complexity: O(D).
– proof size: 2 oracles.
– verifier complexity: queries oracles 3 times.

4.2. Bi-to-uni variate SumCheck PIOP

Here we describe a PIOP for the bi-to-uni SumCheck relation
proving that a function m(X,Y ) satisfying that

∑
b∈Hn

m(X, b) =
f(X). This PIOP is constructed based on Lemma 3.2.

Definition 4.2. (Bi-to-uni variate SumCheck relation) The
relation RBUSum is the set of all tuples (x;w) =
(mO, fO;m(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], f(X) ∈ Fd(X)<l[X])
where

∑
b∈Hn

m(X, b) = f(X). (note that in this PIOP, we
constrained the degree of m(X,Y ).)

PIOP Construction.

• P computes the bivariate polynomial u(X,Y ) ∈
Fd(X)<l,d(Y )<n−1[X,Y ] = m(X,Y )−f(X)/n

Y
. P sends

the oracle uO to V .
• V checks the equation at a random point τx, τy

$← F: V
queries µm = m(τx, τy), µf = f(τx), µu = u(τx, τy), and
checks that µm

?
=

µf

n
+ τy · µu. Moreover, V checks that

u(X,Y ) ∈ Fd(X)<l,d(Y )<n−1[X,Y ].

Theorem 4.2. The PIOP for RBUSum is perfectly complete and
has knowledge soundness error δBUSum = ln

|F| .

PROOF.

• Completeness and Knowledge soundness. As shown in
Lemma 3.2,

∑
b∈Hn

m(X, b) = f(X), if and only if,
∃u(X,Y ) ∈ Fd(X)<l,d(Y )<n−1[X,Y ],m(X,Y ) = f(X)

n
+

Y ·u(X,Y ). So the PIOP for RBUSum is perfectly complete
and the soundness error is the maximum degree over the field
size, which is at most ln

|F| .
• Complexities.

– round complexity: 2-round.
– prover complexity: O(ln).
– proof size: 1 oracles.
– verifier complexity: queries oracles 3 times.



4.3. Univariate ZeroTest PIOP

Here we describe a PIOP proving that a univariate polyno-
mial evaluates to zero everywhere on a subgroup Hl. The PIOP
leverages the ZeroTest Lemma 3.3.

Definition 4.3. (Univariate ZeroTest relation) The relation
RUniZT is the set of all tuples (x;w) = (fO; f(X) ∈
Fd(X)<D[X]) where for all a ∈ Hl, f(a) = 0.

PIOP Construction.
• P computes the univariate polynomial q(X), such that
f(X) = q(X) · zHl

(X). P sends the oracle qO to V .
• V checks the equation at a random point τx

$← F: V queries
oracles to get µq = q(τx) and µf = f(τx) and checks that
µf

?
= µqzHl

(τx).

Theorem 4.3. The PIOP for RUniZT is perfectly complete and
has knowledge soundness error δUniZT = D

|F| .

PROOF.
• Completeness and Knowledge soundness. As shown in

Lemma 3.3, ∀a ∈ Hl, f(a) = 0 ⇔ ∃e(X) ∈ F[X], e(X) ·
zHl

(X) = f(X), so the PIOP for RBUSum is perfectly
complete. The soundness error is the maximum degree over
the field size, which is at most D

|F| .
• Complexities.

– round complexity: 2-round.
– prover complexity: O(D).
– proof size: 1 oracle.
– verifier complexity: queries oracles 2 times.

4.4. Bivariate ZeroTest PIOP

Here we describe a PIOP proving that a bivariate polynomial
evaluates to zero everywhere on a set {(a, b)}a∈Hl,b∈Hn . The
PIOP leverages the univariate polynomial ZeroTest PIOP and the
univariate SumCheck PIOP introduced in section 4.1 ZeroTest
PIOP in section 4.3.

Definition 4.4. (Bivariate ZeroTest relation). The relation
RBiZT is the set of all tuples (x;w) = (MO;M(X,Y ) ∈
Fd(X)<Dx,d(Y )<Dy [X,Y ]) where for all a ∈ Hl and all b ∈
Hn,M(a, b) = 0.

let r(R, Y ) be a prescribed polynomial such that all
r(R, b), b ∈ Hn are n linearly independent polynomials. Denote
M∗(R,X) =

∑
b∈Hn

M(X, b)r(R, b). The ZeroTest relation is
equivalent to the below equations:

• Equation 1: ∀a ∈ Hl,M
∗(R, a) = 0.

• Equation 2: M∗(R,X) =
∑

b∈Hn
M(X, b)r(R, b).

The PIOP for RBiZT is essentially a combination of the PIOP
for RUniZT and the PIOP for RUniSum.

PIOP Construction:
Phase 1: Following the PIOP for RUniZT , P proves that ∀a ∈

Hl,M
∗(r, a) = 0.

• V chooses a random value τr
$← F and sends it to P .

• P computes the univariate polynomial M∗(τr, X) =∑
b∈Hn

M(X, b)r(τr, b). P computes the polynomial e(X),
such that e(X) · zHl

(X) = M∗(τr, X). P sends the oracle
eO to V .

• V chooses a random value τx
$← F and sends it to P .

• P computes the univariate polynomial µM∗ = M∗(τr, τx)
and sends µM∗ to V .

• V checks the equation at τx: V queries oracle eO to get µe =

e(τx) and checks that µM∗
?
= µezHl

(τx).

Phase 2: Following the PIOP for RUniSum, P proves that the
purported µM∗ =

∑
b∈Hn

M(τx, b)r(τr, b).

• P computes the univariate polynomial q(Y ), u(Y ) ∈
Fd(Y )<n−1[Y ], such that M(τx, Y )r(τr, Y ) =

µM∗
n

+ Y ·
u(Y ) + q(Y )zHn(Y ). P sends the oracles uO and qO to V .

• V checks that u(Y ) ∈ Fd(Y )<n−1[Y ]. Then V checks the
equation at a random point τy

$← F: V queries oracles to get
µu = u(τy), µq = q(τy), µm = f(τx, τy), and checks that
M(τx, τy)r(τr, τy)

?
=

µM∗
n

+ τx · µu + µqzHn(τy).

Theorem 4.4. The PIOP for RBiZT satisfies the following is
perfectly complete and has knowledge soundness error δBiZT =
O(

Dx·Dy

|F| ).

PROOF.

• Completeness and Knowledge soundness. Follows the PI-
OPs introduced in section 4.3 and 4.1, the PIOP for RBUZT

is perfectly complete and the soundness error is the maximum
degree over the field size, which is at most O(

Dx·Dy

|F| ).
• Complexities.

– round complexity: 5-round (In practice, phase 1 and phase
2 can run in parallel).

– prover complexity: O(DxDy).
– proof size: 3 oracles and one field element.
– verifier complexity: queries oracles 4 times.

5. MissileProof: a succinct non-interactive ar-
gument for vector commitment range proof

In this section we first define a relation RVCRP of vector range
proof, then reduce it to an equivalent polynomial oracle relation
RVCRPPIOP . In subsection 5.1, we construct a PIOP for RVCRPPIOP

and then compile it with a KZG-based polynomial commitment
scheme to get an interactive argument of knowledge. Finally, we
turn it into a succinct non-interactive argument via the Fiat-Shamir
transformation.

Here we give the definition for the vector range proof relation
RVCRP.

Definition 5.1. Relation RVCRP. The relation RVCRP is the set of
all pairs: (x,w) = (C ∈ G;v ∈ Fl), where

{(C ∈ G;v ∈ Fl) : ∀i ∈ [0, l), C = VC.Commit(v)∧vi ∈ [0, 2n)}

Note that a polynomial-based vector commitment to a secret
vector v is a polynomial commitment to a univariate polynomial
f(X) ∈ Fd(X)<l[X] that extends v over F. Thus the vector
commitment C can be seen as an oracle fO in the PIOP paradigm.
Recall that there exists a fact that

∃M ∈ Fl×n, vi =

n−1∑
j=0

Mi,j ∧Mi,j ∈ {0, 2j}

Then RVCRP can be equivalently reduced to RVCRPPIOP , which is
defined below.

Definition 5.2. Relation RVCRPPIOP . Let p(Y ) ∈ Fd(Y )<n[Y ] be a
univariate polynomial satisfying that for all bj ∈ Hn, p(bj) = 2j .
The relation RVCRPPIOP is the set of all pairs: (x,w) = (fO, pO; f ∈



Fd(X)<l[X]), where exists a bivariate polynomial m(X,Y ) ∈
Fd(X)<l,d(Y )<n[X,Y ], s.t.∑

b∈Hn

m(X, b) = f(X)

∧ ∀a ∈ Hl, b ∈ Hn,m(a, b)(m(a, b)− p(b)) = 0

The following theorem summarizes part of our result in this
section.

Theorem 5.1. Given secure polynomial commitment schemes for
bivariate and univariate polynomials, there exists a public-coin
succinct interactive argument of knowledge for RVCRP where se-
curity holds under the assumptions needed for the polynomial
commitment schemes. When use the KZG-based polynomial com-
mitment scheme [23] [25], the complexities are as follows:

- soundness error: O(ln/|F|).
- round complexity: 6.
- prover complexity: O(l log l · n logn) field operations and
O(ln) group exponentiations in G.

- proof size: O(1).
- verifier complexity: O(1).
- size of an updatable strctured reference string (SRS): O(ln).

Remark: The polynomial commitment scheme mentioned in
the theorem 5.1 can be arbitrarily replaced with other existing
schemes to obtain different properties.

To prove the theorem 5.1, we first provide a construction of a
public-coin PIOP forRVCRP. Then compile the PIOP and the KZG-
based polynomial commitment scheme into a succinct interactive
argument of knowledge.

Finally, we turn it into a non-interactive argument of knowl-
edge using Fiat-Shamir transform and then analyze its costs and
security.

5.1. a public-coin PIOP for RVCRPPIOP

In this section, we give a public-coin polynomial IOP for
RVCRPPIOP . The whole protocol is shown in Fig 3.

PIOP construction:
Phase 1: P generates decomposition bivariate polynomial.

• P generates the decomposition bivariate polynomial
m(X,Y ). For all i ∈ [0, l), split vi into a binary
vector (vi,0, ..., vi,n−1). Then generate the matrix
M ∈ Fl×n,Mi,j = vi,j · 2j . Then extend the matrix M to a
bivariate polynomial m(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], s.t.
∀ai ∈ Hl, bj ∈ Hn,m(ai, bj) = vi,j . P then sends oracle
mO to V .
P is left to convince the V that the following two conditions

hold:
1. Bi-to-uni variate polynomial SumCheck:

∑
b∈Hn

m(X, b) =
f(X).

2. Bivariate polynomial ZeroTest: ∀a ∈ Hl, b ∈
Hn,m(a, b)(m(a, b)− p(b)) = 0.

• Phase 2: P proves that
∑

b∈Hn
m(X, b) = f(X).

In order to convince V of the first condition (bi-to-uni variate
polynomial SumCheck), P and V run a bi-to-uni variate
polynomial SumCheck PIOP for (mO, fO;m(X,Y ), f(X)) ∈
RBUSum. The soundness error is O(ln/|F|).

• Phase 3: P proves that for all a ∈ Hl and all b ∈ Hn,
m(a, b)(m(a, b)− p(b)) = 0.
Denote M(X,Y ) = m(X,Y )(m(X,Y ) − p(Y )). In order
to convince V of the second condition (bivariate polynomial
ZeroTest), P and V run a bivariate polynomial ZeroTest PIOP

for (MO;M(X,Y )) ∈ RBiZT . (Actually, V do not own an
oracle MO directly. When he wants to query MO to get
µM = M(τx, τy), he can query mO and pO to get µm =
m(τx, τy) and µp = p(τy). Then he can get µM = µm ·
(µm − µp) ). The soundness error is O( ln

|F| ).
Remark. In summary, the whole PIOP is shown in Fig 3.

In practice, the PIOP for the ZeroTest and SumCheck can run in
parallel. So V can choose ξx = τx and ξy = τy .

Theorem 5.2. The PIOP for RVCRPPIOP is perfectly complete and
has knowledge soundness error δVCRPPIOP = O( ln

|F| ).

PROOF.
• Completeness and knowledge soundness. Follows PIOP

toolbox in section 4, The PIOP forRVCRPPIOP is perfectly com-
plete and the soundness error is the maximum degree over
the field size, δVCRPPIOP = δBUSum + δBiZT = O( ln

|F| ).
• Complexities.

– round complexity: 6-round (the two parts of the PIOP can
be run in parallel).

– prover complexity: O(l log l·n logn) field operations (FFT
for the matrix M ).

– proof size: 2 oracles to bivariate polynomials and 3 oracles
to univariate polynomials and 1 field element.

– verifier complexity: queries oracles to bivariate polynomi-
als 2 times and oracles to univariate polynomials 5 times.

5.2. a non-interactive argument for vector commit-
ment range proof

Subsection 5.1 presents a 6-round PIOP for RVCRP, which
has negligible knowledge error. As shown in Theorem 2.1, given
a polynomial commitment scheme PC that is hiding and Eval
is honest-verifier zero-knowledge and has witness-extended em-
ulation, then the PIOP compilation can output Π, a secure zero
knowledge (non-oracle) argument of knowledge for RVCRP.

In section 7, we gave an instance of a zero-knowledge argu-
ment protocol forRVCRP by compiling the PIOP with a KZG-based
commitment scheme [12] [25]. The efficiency and complexities of
Π is as follows:

- soundness error: O(ln/|F|);
- round complexity: 6;
- prover complexity: O(l log l · n logn) field operations and
O(ln) group exponentiations in G;

- proof size: O(1);
- verifier complexity: O(1);
- size of the updatable strctured reference string (SRS): O(ln);
This completes the proof of Theorem 5.1.
Then using Fiat-Shamir transformation, we can turn this in-

teractive argument into a non-interactive argument of knowledge
by replacing the interaction random point with the output of hash
functions.

6. Further discussion

6.1. Transparent setup version of MissileProof

Choice of the polynomial commitment scheme. The com-
piler can compile a PIOP with different polynomial commitment
schemes to get different security properties.

In Table 2, we list commonly used polynomial commitment
schemes and compared their properties.



The MulRangeProof PIOP

input of P: (pp,F,Hl,Hn, f(X), p(Y ), r(R, Y ),v)
input of V: (pp,F,Hl,Hn, f

O, pO, r(R, Y ))

Phase 1: generate a decomposition bivariate polynomial
P: for ∀i ∈ [0, l), split vi into a binary vector (vi,0, ..., vi,n−1).

generate a matrix M ∈ Fl×n,Mi,j = vi,j · 2j .
compute m(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], s.t. ∀ai ∈ Hl, bj ∈ Hn,m(ai, bj) = vi,j .

P → V: {mO}.

Phase 2: prove that
∑

b∈Hn
m(X, b) = f(X)

P: compute u(X,Y ) =
m(X,Y )− 1

n f(X)

Y .
P → V: {uO}.
V: check if u(X,Y ) ∈ Fd(X)<l,d(Y )<n−1[X,Y ]

ξx, ξy
$← F.

query oracles mO, uO and fO to get µm = m(ξx, ξy), µu = u(ξx, ξy), µf = f(ξx).
check if µm

?
= ξy · µu +

1
nµf.

Phase 3: prove that ∀a ∈ Hl, b ∈ Hn,m(a, b)(m(a, b)− p(b)) = 0

P: compute M(X, b) = m(X, b)(m(X, b)− p(b))
compute M∗(R,X) =

∑
b∈Hn

M(X, b)r(R, b)
// then P wants to prove that ∀a ∈ Hl,M

∗(R, a) = 0.
V: τr

$← F.
V → P: {τr}.
P: Let M∗τr (X) = M∗(τr, X).

compute e(X) = M∗(τr,X)
zHl

(X) .
P → V: {eO}.
V: τx

$← F.
V → P: {τx}.
P: compute µM∗ = M∗(τr, τx).
P → V: {µM∗}.
V: query oracle eO to get µe = e(τx).

check if µe · zHl
(τx)

?
= µM∗ .

// then P wants to prove that µM∗ =
∑

b∈Hn
M(τx, b)r(τr, b).

SumCheck protocol: prove that µM∗ =
∑

b∈Hn
M(τx, b)r(τr, b)

P: compute q(Y ), g(Y ) ∈ Fd(Y )≤n−2[Y ], s.t. M(τx, Y )r(τr, Y ) = q(Y )zHn
(Y ) + Y g(Y ) + µM∗

n .
P → V: {qO, gO}.
V: check if g(Y ) ∈ Fd(Y )<n−1[Y ] τy

$← F.
query oracles mO, qO, pO, gO to get µm = m(τx, τy), µq = q(τy), µp = p(τy) and µg = g(τy).
check if µm(µm − µp)r(τr, τy)

?
=µqzHn(τy) + τyµg +

µM∗
n .

Figure 3: MissileProof PIOP for RVCRPPIOP



TABLE 2: Comparison between different polynomial commitment schemes for a bivariate polynomial of degree (d, d) (For
simplity, we assume that d(X) = d(Y ) = d). Transparent means no trusted setup. e is the extension factor in the FRI
scheme.

Protocols Transparent Group |pp| Proof size Prover complexity Verifier complexity
KZG-based [12] no bilinear GB O(d2) 2GB O(d2)MUL 2 Pairing

DARK [11] yes Unknown order groups GU O(1) 4 log dGU O(d2)MUL O(
√
d2)MUL

FRI-based [28] yes Hash output field FH O(1) O(e log2 d)FH O(ed2)Hash O(e log2 d)Hash
Notes: some notations used here are the same as that in Table. 1.

KZG-based schemes [12] [25]. The non-interactive argument
we presented in section 7 relies on the KZG-based commitment
scheme which works on a bilinear pairing group and stand out for
having the optimal proof size and the widest range of application
scenarios. However, its drawback lies in the requirement for a
trusted setup to generate a set of updatable structured reference
string.

Other schemes. If a system values the a transparent setup, one
can compile the PIOP with DARK [11] or FRI-based polynomial
commitment scheme [13] [28] [29] to get a non-interactive argu-
ment that do not need the trusted setup.

6.2. Batch-VCRP

If P needs to run the range proof for multiple vector com-
mitments at the same time, the prover time, proof size and the
verifier complexity can be significantly reduced compared to di-
rectly running the protocol multiple times, via the batch openings
of the polynomial commitments. Here we give the definition for
the vector range proof relation RBat-VCRP.

Relation RBat-VCRP. The relation RVCRP is the set of all pairs:
(x,w) = (C ∈ Gt; [vk]k∈[0,t) ∈ (Fl)t), where

∀k ∈ [0, t), ∀i ∈ [0, l), Ck = VC.Commit(vk) ∧ vk,i ∈ [0, 2n)

The batch opening protocol of polynomial commitment can
greatly reduce the proof size and verification time of the proof of
relationship RBat-VCRP.

Let p(Y ) ∈ Fd(Y )<n[Y ] be a univariate polynomial satis-
fying that for all bj ∈ Hn, p(bj) = 2j . For t vectors to be
proved and k ∈ [0, t), let fk(X) ∈ Fd(X)<l[X] be the univari-
ate polynomial that extends the vector vk. Same as mentioned
before, P needs to prove that there exists t bivariate polynomial
mk(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], s.t.

1.∀k ∈ [0, t),
∑
b∈Hn

mk(X, b) = fk(X)

2.∀k ∈ [0, t), ∀a ∈ Hl, b ∈ Hn,mk(a, b)(mk(a, b)− p(b)) = 0

Based on the idea of batch processing, we can turn the condi-
tions to:

1.
t−1∑
k=0

∑
b∈Hn

(mk(X, b)− fk(X)) ∗ Zk = 0

2.∀a ∈ Hl, b ∈ Hn,

t−1∑
k=0

mk(a, b)(mk(a, b)− p(b)) ∗ Zk = 0

V can randomly choose τz
$← F and send it to P . P is left

to prove that
∑t−1

k=0

∑
b∈Hn

(mk(X, b) − fk(X)) ∗ τk
z = 0 and∑t−1

k=0 mk(a, b)(mk(a, b) − p(b)) ∗ τk
z = 0, which are essentially

a bi-to-uni SumCheck relation and a bivariate ZeroTest relation.
Using this batch processing method, in addition to sending t

bivariate polynomials mk(X,Y ), the prover only needs to send 6

witness polynomials to complete one SumCheck and one ZeroTest
argument, which is reduced from O(n) to O(1). Moreover, we list
the complexities of the batched range proof.

• Completeness and knowledge soundness. Following the
PIOP toolbox introduced in section 4, the PIOP for RBat-VCRP
is perfectly complete and the soundness error is the maximum
degree over the field size, δBat-VCRP = O( t·l·n|F| ).

• Complexities.
– round complexity: 6-round.
– prover complexity: O(t · l log l · n logn) field operations.
– proof size: t + 2 oracles to bivariate polynomials and 4

oracles to univariate polynomials and 1 field element.
– verifier complexity: queries oracles to bivariate polynomi-

als t + 2 times and oracles to univariate polynomials 6
times.

Batching. Batch openings of polynomial commitments can
significantly reduce the prover time, verifier time, and proof size.
Specifically, the proof size is influenced solely by the number of
oracles and a single batch opening.

6.3. Arbitrary range

In the previous discussion, we explored how to prove that all
values in a vector are within the range [0, 2n). However, in practical
scenarios, it is often necessary to prove that each element in a
vector belongs to arbitrary ranges. Here we introduce a way to
prove that all values in a vector are within arbitrary ranges, namely,
∀vi ∈ v, vi ∈ [mini,maxi].

To prove a secret value v lies in range [a, b], it is sufficient to
prove both v−a and b−v are non-negative. When n is large (e.g.,
n = 64), proving v ∈ [0, 2n) is essentially equivalent to proving
v ≥ 0. So for two bound vectors min = (min0, ...minl−1)
and max = (max0, ...maxl−1), which can be extended to two
polynomials min(X) and max(X) ∈ Fd(X)<l[X], ∀vi ∈ v, vi ∈
[mini,maxi] ⇔ ∀a ∈ Hl, f(a) − min(a) ∈ [0, 2n) ∧ max(a) −
f(a) ∈ [0, 2n), where n is an enough large integer. Therefore,
the vector commitment range proof for arbitrary ranges can be
obtained by running the single MissileProof protocol twice.

6.4. Range proof for subvector

In reality, we often only need to prove that all elements of a
subset S of a vector are within an range. We can achieve this proof
by fine-tuning the relation RVCRPPIOP to Rsub-VCRPPIOP , which is the
set of all pairs: (x,w) = (fO, pO; f ∈ Fd(X)<l[X]), where exists
a bivariate polynomial m(X,Y ) ∈ Fd(X)<l,d(Y )<n[X,Y ], s.t.∑

b∈Hn

m(X, b) = f(X)

∧ ∀a ∈ S, b ∈ Hn,m(a, b)(m(a, b)− p(b)) = 0

The PIOP for Rsub-VCRPPIOP can be easily get by replaced the
vanishing polynomial zHl

to a new vanishing polynomial zS =∏
a∈S(X − a).



TABLE 3: Comparison of concrete complexities among different range proof schemes for multiple elements.
Protocols Statement length Proof size Prover complexity Verifier complexity

BulletProof [10] nG (2 logn+ 2 log l + 4)G+ l(13n+ 2 logn− 1)E+ l(7n+ 2 logn+ 9)E+
5F l(14n− 2)M l(n+ 3)M

Daza et al. [9] nG1 (7 log l + 7 logn+ 12)G1+ l(14n+ 11)E1+ (2l + 9 log l + 9 logn+ 24)E1 + (log l + logn)E2+
(2 log l + 2 logn+ 5)F l(35n+ 15)M (2 log l + 2 logn+ 1)M + (6 log l + 6 logn)P

TurboPlonk [20] G1 (n+ 2)G1+ (8ln+ 2n+ 2)E1+ (4n+ 4)E1 + 1E2+
(2n+ 2)F (l log l · n+ 4ln)M (2n)M + 1P

This work G1 13G1+ (12ln+ 24n+ 6l)E1+ 26E1 + 6E2+
18F (l log l · (n logn+ 1) + 6ln+ 5l + 7n)M 22M + 6P

Notes: the notations used here are the same as that in Table. 1.

TABLE 4: Experiment results of MissileProof and comparison with other works. The bit length n is fixed to 64 and l is
the length of the committed vector.

Schemes l = 64 l = 256 l = 1024 l = 4096 l = 16384

Statement length (Kb)

BulletProof 4 16 64 256 1024
Daza 4 16 64 256 1024

TurboPlonk 0.03 0.03 0.03 0.03 0.03
This work 0.03 0.03 0.03 0.03 0.03

Proof Size (Kb)

BulletProof 1.90 2.16 2.41 2.66 2.91
Daza 6.75 7.75 8.75 9.75 10.75

TurboPlonk 8.1875 8.1875 8.1875 8.1875 8.1875
This work 1.375 1.375 1.375 1.375 1.375

Proving cost (s)

BulletProof 2.37 9.49 37.96 151.85 607.42
Daza 2.60 10.41 41.66 166.67 666.70

TurboPlonk 1.44 5.76 23.12 92.81 372.52
This work 2.30 9.14 36.8 149.1 614.33

Verification cost (s)

BulletProof 1.30 5.21 20.84 83.39 333.56
Daza 0.11 0.14 0.22 0.51 1.59

TurboPlonk 0.013 0.013 0.013 0.013 0.013
This work 0.0102 0.0102 0.0102 0.0102 0.0102

7. Complexities analysis and experiment
demonstration

In Table 3, we give the concrete complexity analysis of our
work and compare them with other representative work.

7.1. Experiments

In this section, we evaluated the performance of the Mis-
sileProof protocol. We implemented the MissileProof scheme using
go (go version go1.20.2 linux/amd64) on a virtual machine with
the machine image of ubuntu-20.04.2.0-desktop-amd64, 3.20 GHz
processer and 8 GB memory. For the standard group based pro-
tocol, we use the elliptic curve secp256k1, on which a point is
stored as 64 bytes. For the bilinear pairing based group, we use
the curve bn256. A point of G1 is stored as 64 bytes. Every field
element is stored as 32 bytes.

As shown in Table 4, we tested various overheads of our work
and compare it with other schemes.

Experimental data shows that our work has the best perfor-
mance in terms of the statement length, proof size and verification
time. We have the optimal statement length which is only one
group element in G1. MissileProof has the shortest proof size,
1.375Kb, which is 16% of that of Plonkup. The verification time
of our scheme is still the best, but because the verification process

involves too many pairing operations, the verification overhead of
our scheme does not widen the gap with that of Plonkup.

As for the proving time cost, Although the proving process
involves O(l log l · n logn) operations on F, the disadvantage of
MissileProof is not great because the finite field operation is much
faster than the operation on the elliptic curve group.

8. Conclusion

This paper introduces MissileProof, a zero-knowledge succinct
non-interactive argument of knowledge for vector range proof. We
reduce this argument to a bi-to-uni variate SumCheck problem
and the bivariate polynomial ZeroTest problem, and design two
PIOP tools for them. Then we construct a PIOP for RVCRPPIOP and
compile it with a KZG-based extractable polynomial commitment.
Via the Fiat-Shamir transformation, we obtain a zero-knowledge
succinct non-interactive argument of knowledge for range proof.
As far as we know, compared with the other existing schemes, our
scheme has the smallest proof size (O(1)), the shortest statement
length (O(1)), and the shortest verification time (O(1)), at the
expense of slightly sacrificing proof time (O(l log l · n logn)
operations on the prime field for FFT and O(ln) group exponenti-
ations in G). Security analysis proves the security of the scheme.
Experimental data shows that our work has the best performance
in terms of the statement length, proof size and verification time.
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