
Distributional Secure Merge

Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

Abstract. Secure merge refers to the problem of merging two sorted
lists. The problem appears in different settings where each list is held by
one of two parties, or the lists are themselves shared among two or more
parties. The output of a secure merge protocol is secret shared. Each
variant of the problem offers many useful applications.
The difficulty in designing secure merge protocols vis-a-vis insecure merge
protocols (which work in linear time with a single pass over the lists) has
to do with operations having to be oblivious or data-independent. In par-
ticular, the protocol cannot leak the positions of items of each list in the
final merged list. On account of this, sorting-based secure merge proto-
cols have been a common solution to the problem. However, as they in-
troduce (poly)logarithmic overheads, there has been active investigation
into the task of building (near) linear time secure merge protocols. Most
recently, Hemenway et al. put forth a protocol for secure merge that does
achieve linear communication and computation and a round complexity
of O (log logn), where n is the length of the lists being merged. While
this shows the feasibility of a linear time secure merge, it still leaves room
for the design of a concretely efficient linear time secure merge.
In this work, we consider a relaxation of the problem where the lists
are uniformly random. We show a secure merge protocol for uniformly
random lists that achieves O (n log log n), i.e., near linear communication
and computation and a round complexity of O (log logn), where n is the
length of the lists being merged. Our protocol design is general and can
be instantiated in a variety of settings so long as the building blocks
(basic ones such as comparisons and shuffles) can be realized in said
settings. Although we do not achieve the same asymptotic guarantees
as Hemenway et al., our work is concretely efficient. We implement our
protocol and compare it to the state of the art sorting protocols and
demonstrate an order of magnitude improvement in running times and
communication for lists of size of 220.
We also extend our protocol to work for lists sampled from arbitrary
distributions. In particular, when the lists are (close to) identically dis-
tributed, we achieve the same efficiency as uniform lists. This immedi-
ately improve the performance of many crucial applications including
PSI & Secure Join, thus illustrating the significance and applicability of
our protocol in practice.

1 Introduction

Secure merge refers to a class of cryptographic protocols that as input takes two
secret-shared, sorted lists and outputs secret shares of a single combined, sorted
list. These protocols should achieve this without leaking any information about

2 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

the underlying lists apart from their lengths. Secure merge is closely related to
the more general setting of secure sorting where there is no precondition on
input list(s) being sorted. Both sorting and merging have numerous applications
for privacy-preserving data processing. Just to name a few, machine learning
techniques such as decision trees [19] need to sort the input features to identify
candidate splits, protocols for Oblivious RAM [7], Private Set Intersection (PSI)
[15] and secure join [4] all require sorting and/or merging as a building block.

In the plaintext setting merging two sorted lists of size n requires just O (n)
time while sorting n elements requires O (n log n) time in the comparison model.
In the secret shared setting, the primary research effort has gone into invent-
ing protocols for the more general problem of sorting. Initial efforts required
O
(
n log2 n

)
time and were based on generic circuit-based MPC applied to the

Batcher’s bitonic sort circuit. However, since then several advances have enabled
the overhead to be reduced to O (n log n) cryptographic operations and commu-
nication, which is likely optimal. More recently, attention has turned to realizing
comparable efficiency improvements in the case of secure merge, i.e. O (n) time
& communication. Very recently, [10] achieved this with the so-called shuffle-
then-merge paradigm. This technique makes sure of additively homomorphic
encryption to emulate the classic merge sort algorithm. At each step the parties
obliviously move the next smallest element from the input two lists to the output
list. Unfortunately, their technique requires O (n) rounds of interactions which
for many applications makes the protocol impractical. In particular, practical
protocols should ideally require O (log n) rounds of interactions for fewer.

From a theoretical perspective, this limitation was addressed by [11] which
proposed a different paradigm for merging. The resulting protocol achieves O (n)
computation and communication while requiring O (log log n) rounds of interac-
tion. Unfortunately, we believe that this protocol would be inefficient in practice.

1.1 Applications

One of the most prominent applications of secure merge and sorting is pri-
vate set interaction and secure joins. In its most basic formulation, two parties
each hold a set X,Y respectively and want to identify the intersection X ∩ Y .
When X ∩ Y is output in plaintext, many extremely efficient protocols exist
such as [21,9,16,6,28,29,17,30,26,27,31,12] with most of them not requiring sort-
ing/merging. However, more advanced use cases require the secret sharing of
X ∩ Y to be the output so that some additional computation can be performed
in the intersection. A natural extension is to also allow associated values for each
x ∈ X, y ∈ Y to be included as part of the secret shared output.

In this way, a large set of SQL-like join queries can be performed on secret
shared database tables where X,Y are the join keys and the associated values
are the corresponding rows of the table. One of the current state of art protocols
[24,4] for achieving this functionality builds on secure sorting as a building block.
In particular, given the two input tables the first operation is to sort them into a
combined table based on the join keys. Given this, it is relatively easy to generate
a wide variety of joins such as inner, left, full, and union.

Distributional Secure Merge 3

A large number of useful applications can be built on SQL-like joins. These
range from privacy-preserving fraud detection [24], ad-conversation rates [16],
data deduplication [20], oblivious RAM [7], graph algorithms [25] and many
more. Essentially all large data processing tasks make use of some form of joins
as a basic building block. Therefore, any improvement to the underlying join
techniques translates to improvements to these end applications.

A very immediate optimization to the sorting-based join protocols is to have
the input parties pre-sort these tables based on the join key and perform a
secure merge instead. Unfortunately, at the time of the writing of the state of
art protocol [4], the most concretely efficient merge protocol is to use a generic
sorting protocol with O (n log n) overhead. In this work, we aim to address this
gap in performance.

1.2 Our Contributions

We propose a new secure merge protocol tailored for input lists where the
marginal of each list is uniformly distributed. This restriction on the distribution
of the inputs list in turn allows our protocols to be significantly more efficient
than prior works. We then extend this protocol to merge arbitrarily distributed
lists. For the case of arbitrarily but (close to) identically distributed lists, we are
able to do this with virtually no loss in performance.

In particular, our main protocol takes as input two secret shared lists X,Y
and outputs a secret shared permutation π and secret shared sorted list Z such
that Zi = (X||Y)πi . Important contributions that our construction provides
include:

1. A flexible framework that can be implemented in various settings.
2. Concretely efficient merge for (close to) identically distributed lists.
3. Extensible for other input distributions.
4. First near-linear time and constant round circuit PSI and secure join in the

two-party setting.
5. Malicious or semi-honest security.
6. Secret shared inputs and outputs.

Importantly, we show that the requirement that the input lists follow a known
distribution is compatible with many of the most compelling applications, for ex-
ample, when joining two tables or performing PSI on join keys such as usernames
or emails that follow a well-known distribution. In addition, we give a general
characterization of how to apply our techniques to lists that have arbitrarily
different distributions as well.

1.3 Related Work

Secure Sorting Sorting is a widely used building block for data processing tasks.
There are several leading paradigms for secure sorting. The first is the so-called
“shuffle-then-sort” technique [14,13] where the parties first obliviously shuffle the

4 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

list so that no one knows the order. Any traditional comparison-based sorting
algorithm can then be performed where each plaintext comparison is replaced
with a secure comparison with private inputs but public output. That is, all
parties know the plaintext result of all comparisons. This in turn allows the par-
ties to reorder the shared according to the sorting algorithm being used. Sorting
algorithms such as quick-sort with a secret-sharing type MPC gives expected
O (log n log ℓ) round complexity and O (nℓ log ℓ) computational/communication
complexity, where ℓ is the bit length of the items being sorted.

More recently, [8] presented a new protocol for performing radix sort which
does not require shuffling the input list. They present a sub-protocol for obliv-
iously sorting single-bit elements. In particular, their protocol outputs a secret
sharing of a permutation that would sort the single-bit elements. One can then
compose this protocol so that you obliviously sort the most significant bit down
to the least significant bit. Their protocol requires O (ℓ) rounds and O (nℓ log ℓ)
communication. Asymptotically this protocol is preferred when log n > ℓ

log ℓ
which is typically the case.

Secure Merging One of the first protocols designed for merge is [7]. Their protocol
also follows the “shuffle-then-sort” [14,13] paradigm but with sorting replaced
with one iteration of merge-sort. In particular, the parties first construct a special
linked-list structure for each input list and then shuffle the linked-lists. The
parties can then run an essentially plaintext merge sort algorithm on the shares
where the parties obliviously select the next element to include by revealing
the location that it was shuffled to. In particular, the parties maintain a secret
shared version of the head of the two linked lists. The smaller head is merged
into the final list and the index of its shuffled child is revealed. The parties then
update this merged node with its child and the process is repeated.

The protocol of [7] was originally designed for the 4-server ORAM setting.
More recently, [10] adapted this protocol to the two-party setting. Their protocol
makes use of additively homomorphic encryption to perform the shuffle and the
construction of the linked list. One fundamental limitation of this approach is
that the nodes in the linked list must be revealed in an iterative manner. Reveal-
ing the node requires at least one round of interaction and therefore their protocol
requires a total of O (n) rounds of interaction. For large lists, e.g. n = 220, this
makes their protocol less time efficient than the previous sorting protocols when
network latency is considered.

An alternative approach was given by [11] where merging is performed in
two phases. They divide the sorted input lists into blocks of poly-logarithmic
size blocks. These blocks are then merged together based on their first elements.
Since there are few blocks, this can be done relatively efficiently. Given that the
blocks are now in sorted order, what remains is to locally sort the “strays” that
are out of order. Our work will also make use of this general strategy.

Recently, [5] put forth a protocol that takes O (n) computation and com-
munication and O (log log n) rounds relying on the same assumptions, designing
a protocol that is asymptotically optimal in terms of communication and com-
putation. While they also build on the framework of [11], considering dividing

Distributional Secure Merge 5

into blocks, merging them, and reorganizing strays, their protocol is rather com-
plicated and makes use of several cleverly designed protocols that are tailored
to be efficient in different parameter regimes. They then show how to compose
these different protocols to achieve the earlier stated parameters. Asymptoti-
cally, this result is rather intriguing, but the concrete efficiency of the protocol
seems uncertain at best.

2 Preliminaries

2.1 Notation

For integers m,n ∈ Z, we denote by [m,n] the set of integers {m,m + 1,m +
2, . . . , n} and [n] be the shorthand for [1, n]. We define a permutation of size
N ∈ N as a bijective function π : [N] → [N]. We use η to denote the statistical
security parameter, e.g., η = 40. Parties are denoted as P1, P2,

We denote the results of comparison operators using {·}. For instance, {2
?
>

3} = 1 and {2 ?
= 3} = 0.

We denote by [[x]] a secret sharing of the value x, and by [[x]]i the share held
by party Pi. We assume values come from a field F.

Following [5], for any two sorted lists L1 and L2, let
⊔

denote the “merge” of
two lists (i.e.,

⊔
is functionally equivalent to (multi-)set union followed by sort):

L1

⊔
L2 = sort(L1 ∪ L2). We will reserve the notation L1, L2 for the sorted

lists that are to be merged, and denote Li = {ℓi,1, . . . , ℓi,|Li|} for i ∈ [2], with
|L1| = n and |L2| = m. For any sorted list Li of size N , and for any k|N , let
Mi,k denote the k “medians” of Li . Namely, Mi,k = {ℓi,j·Nk }

k
j=1. For any two

lists X = (x1, . . . , xN) and Y = (y1, . . . , yN) of equal length N , the zip of X and
Y is X ▷◁ Y = ((x1, y1), . . . , (xN , yN)). We assume that all list elements come
from an appropriate field F and that the zero element 0 ∈ F is reserved as a
special dummy element.

2.2 Distributions

Definition 1 (Poisson). A discrete random variable X is said to have a Pois-
son distribution with parameter E[X] = λ > 0 if it has a probability mass function
given by

Pr[X = x] =
λxe−λ

x!

Definition 2 (Normal). A continuous random variable X is said to have a
Normal distribution N (µ, σ) with parameters µ, σ > 0 if it has a probability
density function given by

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ)

2

6 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

2.3 Definitions and Tools for Concentration

Definition 3 (Lipschitz condition). A function f is said to be c-Lipschitz is
f(x)− f(y) ≤ c|x− y| for all x, y.

Lemma 1. If a function f is c-Lipschitz with respect to hamming distance, then
||Dif ||∞ ≤ c for all i.

Lemma 2 (McDiarmid’s Inequality [3]). Let X1, X2, . . . , Xm be indepen-
dent random variables where Xi is Xi-valued for i ∈ [m]. Let X = (X1, X2, . . . , Xm).
Assume f : X1× . . .×Xm → R is a measurable function such that ||Dif ||∞ < ∞
for all i. Then for all γ > 0,

Pr[|f(X)− E[f(X)]| ≥ γ] ≤ 2e
− 2γ2∑

i∈[m] ||Dif||2∞

If f is c-Lipschitz with respect to hamming distance, then

Pr[|f(X)− E[f(X)]| ≥ γ] ≤ 2e−
2γ2

mc2

Lemma 3 ([1]). If X1, X2, . . . Xn are independent Poisson random variables
with parameters λ1, λ2, . . . λn, then X1+X2+. . .+Xn is Poisson random variable
with parameter λ1 + λ2 + . . .+ λn.

Lemma 4 ([2]). If X is a Poisson random variable with parameter E[X] = λ >
0, then for all x > 0,

Pr[X ≤ λ− x] ≤ e−
x2

2(λ+x)

Lemma 5 (Probability Integral Transform). Let X be a random variable
with a continuous distribution for which the cumulative distribution function
(CDF) is FX . Then the random variable Y defined as Y := FX(X) has a stan-
dard uniform distribution.

Proof. Given any random continuous variable X, define Y = FX(X). Given
y ∈ [0, 1], if F−1

X (y) exists (i.e., if there exists a unique x such that FX(x) = y),
then:

FY (y) = Pr[Y ≤ y]

= Pr[FX(X) ≤ y]

= Pr[X ≤ F−1
X (y)]

= FX(F−1
X (y))

= y

If F−1
X (y) does not exist, then it can be replaced in this proof by the function

χ, where we define χ(0) = −∞, χ(1) = ∞, and χ(y) ≡ inf{x : FX(x) ≥ y} for
y ∈ (0, 1), with the same result that FY (y) = y. Thus, FY is just the CDF of
a uniform random variable over (0, 1), so that Y has a uniform distribution on
the interval [0, 1].

Distributional Secure Merge 7

2.4 Definitions and Tools for Oblivious Merge

Details of many of the tools described in this section can be found in [5]. We
provide a summary for the sake of completeness.

Primitive Functionalities Our protocols are realized with black box calls to
the following “primitive” functionalities: ΠOpen, ΠComp, ΠSel, ΠShuffle. They
act on shared values. We briefly describe these functionalities here and note that
they can be realized using standard techniques.

– In ΠOpen, the parties allow each other to learn the shared value. See [23] or
similar.

– In ΠComp, the parties learn secret shares of a bit denoting the result of a

comparison operator [[{x
?
> y}]], [[{x

?
≥ y}]], [[{x ?

= y}]], or [[{x
?

̸= y}]]. See [23]
or similar.

– In ΠSel, the parties perform multiplication of two values, one a bit b that
is shared as [[b]], and the other a value x that is shared as [[x]]. Equivalently,
the parties compute secret shares of the ternary operator b?x : 0. See [23] or
similar.

– In ΠShuffle, the parties begin with secret shares of a given list, and end up
with secret shares of the same list, in some totally unknown order.
• We will occasionally also need to unpermute a list related to (perhaps a
modified version of equal length) a list that was permuted by ΠShuffle.
For this, we assume a variant of ΠShuffle, where the parties begin with
secret shares of a given list, and end up with secret shares of the same list,
in some totally unknown order, and secret shares of a handle [[handle]].
We also assume a protocol ΠUnshuffle where parties begin with secret
shares of a handle [[handle]] and secret shares of a list of size the same as
the one that was shuffled to get [[handle]], and end up with secret shares
of the list unpermuted. See [8].

We also assume a generic circuit-based MPC functionality FMPC that can
apply a circuit C to shared inputs to obtain shared outputs. One can assume
the GMW protocol.

Tag-shuffle-reveal Paradigm Wemake use of the tag-shuffle-reveal paradigm.
In the tag-shuffle-reveal paradigm, each element of a list is (obliviously) tagged
with some label. This label can be (a secret sharing of) its current index, or it can
be the result of some multiparty computation, for example, a bit representing
the output of a comparison against another value. Then, after shuffling the list,
the tag or some part of the tag is opened, and the list entries are rearranged
accordingly. Because the shuffle step ensures that the tags are randomly ordered,
the only requirement to ensure security is to ensure that the set of values the
opened tags take on does not depend on the underlying data. This paradigm is
used to realize extraction functionalities, described ahead.

8 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

Extraction Functionalities Our protocols are realized with black box calls
to the “extraction” functionalities ΠExtract-Ord and ΠExtract-Bin [5]. They act
on secret shared values. We briefly describe these functionalities here and note
that they can be realized using the tag-shuffle-reveal paradigm.

– In ΠExtract-Ord, the parties hold secret shares of a list with a certain number
of marked elements, and end up with secret shares of a list of the marked
elements in the order in which they appeared in the original list.

– In ΠExtract-Bin, the parties hold secret shares of a list with a certain number
of marked elements, where the marking can be of many different types, and
end up with secret shares of lists of the marked elements of each type in the
order in which they appeared in the original list.

Trivial Secure Merge Functionalities Our protocols make use of the näıve
secure merge protocol that simply performs all pariwise possible comparisons
(securely) for terminating iterative/recursive processes when the reduced list
sizes are sufficiently small. We call this protocolΠSM-ALL. Another option would
be to use any protocol that simply sorts the concatenation of the two lists. We
call this protocol ΠSM-Sort.

3 Abstract Secure Merge

Suppose, Alice and Bob each have a private, sorted list of items L1, L2 with
|L1| = n, |L2| = m and jointly want to learn the combined, sorted list. We
propose a recursive framework for Secure Merge (SM(n, m)) with the following
high-level approach:

1. (Base case of SM(n, m)) If n,m are small enough, Secure Merge (SM(n,
m)) via ΠSM-ALL or ΠSM-Sort.

2. Partition input L1 into k blocks, each of size n
k , for some k|n. Identify and

store the last element of every block into a separate list of medians M1,k.

3. Securely merge the medians M1,k with the list L2 using a secure asymmetric
merge protocol (asym-SM(k, m)) (see Section 3.1). The merge positions of
the medians M1,k divides L2 into (potentially unequal sized) chunks and we
end up with k smaller sub-problems. In each sub-problem, elements from a
block of L1 must be merged with its corresponding chunk in L2.

4. Determine a suitable upper bound Bmax on the size of all the chunks and
pad each chunk1 with dummies (upto Bmax) for obliviousness. Each padded
sub-problem is extracted into its own instance and processed independently.

5. (Recursive step) Secure Merge (SM(nk , Bmax)) each of the k blocks with its
corresponding padded chunk.

1 It is possible that we compute a different Bmax for different chunks–more on this in
Section 3.2.

Distributional Secure Merge 9

The main idea of the framework is to divide the sorted list L1 into k same-
sized blocks and identify each block by its last element, called a median (which
is an upper bound for all elements in the block). Next, we merge the block
identifiers or medians with the input list L2. This step demarcates the start and
end positions in L2 where elements of each block of L1 will merge with L2; we
refer to each such non-overlapping sub-list of L2 as a chunk. It is worth clarifying
here for ease of reading that we refer to equal sized sub-divisions of a list (as we
did with L1) as blocks, and induced (potentially unequal sized) sub-divisions of
a list (as we did with L2) as chunks.

The goal is to have k sub-problems that can be solved recursively until the
problem is small enough for the “all-pairs merge” (compare every pair of ele-
ments) using ΠSM-ALL to be efficient. However, the issue is that the sizes of
each chunk may leak information about the input lists. Therefore, we need an
extra step to select a suitable upper bound Bmax on the sizes of the chunks to
make the sub-problems oblivious (input-independent).

Observe that with no restrictions on the inputs L1, L2 it is difficult (actually,
impossible) to find a reasonable upper bound on the chunk size. It might be
the case that the first block identifier (last element of the first block) has a
larger value than the last element of list L2. In this skewed scenario, the upper
bound on the chunk size is the size of the entire list L2. Therefore, we work with
a restricted class of inputs amenable to efficient sub-protocols for asymmetric
merge and efficient upper bounds on the chunk size.

Uniform Inputs. In the rest of this section, we restrict ourselves to the case when
the input lists L1, L2 are sampled from the uniform distribution2. We utilize this
assumption to design an efficient merge protocol for the medians of one of the list
with all the elements of the other list. Based on the uniform distribution, we can
determine the expected chunk size. We can then analyze the tail distribution of
the chunk sizes to bound their worst-case behavior and determine a reasonable
upper bound Bmax on chunk size. We discuss this aspect in Section 3.2.

3.1 Asymmetric Secure Merge with Uniform Lists (Steps 2–3)

We design an efficient asym-SM(k,m) protocol to merge a small list of k medians
M1,k of L1 of size n with a significantly larger list L2 of size m, where L1, L2

are sampled from the uniform distribution. In expectation, an element at index
i from L1 will merge with the other list L2 at position i · m

n . However, we
must account for the strays where an element at position i merges with the
other list elsewhere. We would like to compute some reasonable bound β such
that the element at position i in L1 merges with L2 in a position within some

range
[
im
n − β

2 ,
im
n + β

2

]
of indices with overwhelming probability. In the next

section, we show using a balls-and-bins analysis that β = O
(√

m ln k
)
suffices.

Therefore, to merge a single element from list L1 into list L2 we need to make β

2 Over some fixed support. Additionally, their joint distribution need not be uniform.

10 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

Parameters:

– List of k medians M1,k of a list L1 of size n sampled from the uniform distri-
bution

– Sorted list L2 of size m sampled from the uniform distribution
– β =

√
2m((η + 1) ln 2 + ln k)

Protocol:

– Let M1,k = {m1, . . .mk} and L2 = {ℓ2,1, . . . , ℓ2,m}. For every i ∈ [k]:
• Compare, using ΠComp, mi with each element of the sub-list{

ℓ
2, im

k
− β

2
, . . . , ℓ

2, im
k

+ β
2

}
of L2 and find the first index Bi where Mi >

ℓ2,Bi .

Fig. 1: Outline of the Asymmetric Merge asym-SM(k, m) protocol.

comparisons and requireO
(√

m ln k
)
communication and computation. Overall,

as we want our merge protocol to have O (m) communication, we pick k =
√

m
lnm

medians for our asymmetric merge.

We describe this outline of our asymmetric merge protocol in Figure 1 and
perform a balls-and-bins analysis to estimate bounds on β in Section 3.1.

Choosing β In this section we will show via a balls-and-bins analysis how to
find the number of comparisons β required to correctly merge any given element
from L1 = {ℓ1,1, . . . , ℓ1,n} into L2 = {ℓ2,1, . . . , ℓ2,m}. Let the elements of list L1

define the divisions between bins and elements of list L2 be balls that we throw
uniformly into the bins. In the final merged list L1

⊔
L2, we then look at the

number of elements of L2 that fall between ℓ1,i−1 and ℓ1,i to be the number of
balls that fall into the ith bin represented by ℓ1,i. Technically, there is one more
bin for elements of L2 that are larger than ℓ1,n, but we ignore this for ease of
presentation, and note that it does not significantly change any of our analyses.

In expectation, we know that we have m
n balls that fall into the ith bin.

Now, we will compute concentration bounds for each bin, to learn the range β of
the number of balls that fall into a particular bin with overwhelming negligible
probability. Therefore, a ball can be at most ±β

2 bins away from its expected
position. In the context of merging lists, it means that an element ℓ1,i of L1 can
fall behind by merging with L2 at ℓ2, imn − β

2
or be ahead by merging with L2 at

ℓ2, imn + β
2
. Note that when applied to the k medians of L1, this translates to the

sub-lists of L2 compared with in Figure 1.

For our analysis, we will use the McDiarmid’s Inequality (Lemma 2). Consider
the experiment of throwing m balls into n bins uniformly and independently at
random. Define random variables: (P1, P2, . . . , Pm), where Pi is the bin where
the ith ball lands. These variables are independent. Define random variables:

Distributional Secure Merge 11

(Q1, Q2, . . . , Qn), where Qj is the number of balls that fall before and including
in bin j.

For each bin j, E[Qj] = j · m
n . Let f be the function such that the number of

balls that fall before and including in bin j, Qj = f(P1, P2, . . . , Pm), is a function
of how each of the balls fell into the bins. Observe also that this function f is
1-Lipschitz. Simply put, if you change the value of one of the random variables
{P1, P2, . . . , Pm}, that is, move exactly one ball from one bin to another, then
Qj also changes by at most 1. Using McDiarmid’s inequality, for all j ∈ [n],

Pr
[∣∣∣Qj − j · m

n

∣∣∣ ≥ γ
]
≤ 2e−

2γ2

m

From this inequality, we can determine the probability that Qj deviates from the
expectation by more than γ, and we will finally set β = 2 ·γ. We are interested in
finding the smallest possible γ, such that the probability of any of the k medians
M1,k of L1 deviating from their expected positions by more than γ is negligible.
So, using a union bound, we equate k times the right side with 2−η, where η is
the statistical security parameter. This gives us

γ =

√
m

2
((η + 1) ln 2 + ln k)

Effectively, our range size is β = 2 · γ = O
(√

m ln k
)
.

Therefore, in order to merge the k medians M1,k of L1 with L2, we need

k · O
(√

m ln k
)

comparisons. Setting k =
√

m
lnm , this ends up being O (m)

comparisons in total. We present the outline of this protocol in Figure 1. Note
that the protocol only takes O (1) rounds.

3.2 Padding: Choosing Bmax (Steps 4–5)

We now look at how to determine a reasonable upper bound Bmax on the chunk
sizes. Note that the chunk sizes would have been m

k in expectation, but they
may deviate from this. While we can find the chunk sizes explicitly, we cannot
leak them as this destroys obliviousness as this information is input-dependent.
To work around this, we pad each chunk with dummy3 elements up to some size
Bmax. In this section, we will first talk about how to set Bmax so that we have no
overflows with overwhelming probability (Section 3.2). Next, we will describe an
empirical way of padding chunks while heuristically maintaining obliviousness
and input-independence (Section 3.2).

Bounds via Poisson Approximation We will perform another balls-and-bins
analysis, but with the perspectives flipped. Let the elements of list L2 define
the bin divisions and elements of list L1 be balls that we throw uniformly into
the bins. If we throw n balls into m bins, the random variables representing the

3 We can assume we have the designated dummy element, 0.

12 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

number of balls in each bin are not independent. However, we can treat them like
independent variables and use Poisson approximation to learn a slightly looser
upper bound on the number of balls in a bin and use the Poisson approximation
method to translate it to a bound for the event we are interested in [18,22].
The Poisson approximation method for analyzing an event in the balls-and-bins
experiment proceeds as follows:

– Treat the balls being thrown into bins as independent Poisson random vari-
ables with parameter n

m .

– Compute the probability q of the event that we are interested in analyzing.

– Apply a penalty factor of e
√
n for the approximation itself, that is, the

probability of the actual event p ≤ e
√
n · q.

– The penalty factor can be reduced to 2 if q is monotonic.

The event that we are interested in analyzing is the following: How many
contiguous bins B do we need to find t balls with overwhelming probability?
Note that to find the size of a chunk in L2 that corresponds to a block of size
n
k in L1 via our balls-in-bins analysis, we must determine how many contiguous
bins are needed in order to see a total of at least n

k balls. This is why, looking
ahead, we are interested in the case where t = n

k , but we perform the analysis in
general. Also note that the advantage of looking at contiguous bins as opposed
to a single one and hoping to get strong concentration bounds is well-founded as
even though a single bin may be off by a lot from its expectation, a contiguous
set of bins may not be off by much more (and thus relative to the number of bins
we consider, the average deviation is not much)–in other words, the “curve” is
smooth and slow, not sharp.

Define Qj to be the number of balls in the j’th bin with E[Qj] =
n
m . Define

Rj to be the number of balls in the contiguous bins indexed by j, . . . , j +B− 1.
Note that E[Rj] = B · n

m . If we assume that the Qj ’s are independently Poisson,
then the Rj ’s are Poissonas well, as Rj = Qj + . . .+Qj+B−1 (Lemma 3).

Let λ = E[Rj] = B · n
m . From Lemma 4 and incorporating the penalty factor

2, we have that for all t ≤ λ,

Pr[Rj ≤ t] = Pr[Rj ≤ λ− (λ− t)] ≤ 2e−
(λ−t)2

2(2λ−t)

We will obtain a similar bound for each of k sets of balls (corresponding to the k
blocks of L1) that we consider, and so the net failure probability, using a union
bound, is at most k times the above bound. We would like for that bound to
be negligible, that is, at most 2−η, where η is the statistical security parameter.
Thus

e
(λ−t)2

2(2λ−t) ≥ e(η+1) ln 2+ln k

λ2 − 2λ(t+ 2(η + 1) ln 2 + 2 ln k) + 2t((η + 1) ln 2 + ln k) + t2 ≥ 0

Let

θ = 2(η + 1) ln 2 + 2 ln k

Distributional Secure Merge 13

The roots of the above quadratic are

λ−, λ+ = (t+ θ)±
√
(t+ θ)2 − t(t+ θ)

= (t+ θ)±
√
θ
√
t+ θ

=
√
t+ θ(

√
t+ θ ±

√
θ)

So, λ ≤ λ− or λ ≥ λ+. We also need λ− t ≥ 0 ⇐⇒ λ ≥ t. So

λ ∈ ([0, λ−] ∪ [λ+,∞)) ∩ [t,∞]

We have
λ− = (t+ θ)−

√
θ
√
t+ θ ≤ t

and so λ− ≤ t. Also, λ+ ≥ t. Therefore

λ ∈ [λ+,∞)

Recalling that λ = B · n
m , we have

B ≥ m

n

√
t+ θ(

√
t+ θ +

√
θ)

Therefore, if we look at Bmax = m
n

√
t+ θ(

√
t+ θ +

√
θ) bins, we will see t balls

with overwhelming probability. In particular, the chunk sizes corresponding to
each of the k blocks is of size at most Bmax with overwhelming probability,
where t = n

k , and hence padding chunks of L2 up to a size of Bmax with dummy
elements suffices.

We tabulate the values of Bmax for various choices of symmetric listsm = n in
Table 1. Somewhat predictably, we notice that padding to Bmax introduces only
a moderate overhead of dummies when m = n is large, however, for moderate to
small values of m = n, the overhead becomes significant, even crossing a 100%!
This means that as we get into the lower stages and smaller sub-problems of our
recursion, we will introduce a large fraction of dummies. This is not desirable. As
a way to work around this, we investigate padding chunks in accordance with the
distribution that the chunk sizes are expected to follow. We discuss this ahead
in Section 3.2.

Bounds via Empirical Estimation In Section 3.2, we determined a worst-
case upper bound Bmax on the chunk size. However, it is unlikely that every
or even many of the chunks get to be as large as Bmax. Our goal is then to
pad the chunks while exploiting this observation. Really, what we would like to
know is the probability distribution of the chunk sizes. If we had a handle on
this, we could pad up the chunks corresponding to the blocks so that the set
of all chunk sizes together jointly respects the probability distribution of the
chunk sizes. The reason we would like to look at this as opposed to settling for
the analysis from before is that from Table 1, for moderate to small values of
m = n, the overhead introduced by padding becomes significant. This means

14 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

m = n k Bmax Bmax − m
k

% kBmax over m

228 3719 74554 2375 3.29%
224 1004 17870 1160 6.94%
220 275 4395 582 15.26%
216 77 1162 311 36.53%
212 22 375 189 101.42%

Table 1: Values of Bmax and the excess padding introduced as a result of the
choice of Bmax; we have set η = 40.

that as we get further down our recursion, the number of dummies we introduce
may even vastly outnumber the elements themselves, which would be damaging
to concrete performance.

However, it seems technically difficult to analytically capture the joint dis-
tribution of the chunk sizes. Therefore, we resort to simulations and empirical
estimations for the joint distribution of the chunk size. From our simulation re-
sults in Figure 2, we see that the joint distribution of the chunk sizes is very
tightly approximation by a normal distribution with parameters

µ̂ =
m

k
, σ̂ =

√
m

k

(
1− 1

k

)(
1 +

m

n

)
While we will not formally prove this claim, we note that it is in accordance
with what we would expect if the chunk size were all drawn independently at
random (parameters of a binomial or multinomial distribution), except for a
“correction” factor of 1 + m

n . This correction factor, we believe, accounts for
abberations resulting from the lists that end up being sampled and how they
impact chunk sizes. For instance, if n were really small compared to m, then the
blocks of L1 would spread somewhat non-uniformly across L2 with reasonable
probability. On the other hand, if n ≫ m, in particular, if n → ∞, we expect
a distribution that exactly follows the balls-and-bins experiment, namely, a bi-
nomial or multinomial distribution. It is also worth noting that the results in
Figure 2 do show a behavior closer to a binomial or multinomial distribution
than a normal distribution. In particular, the distribution is skewed and the
normal approximation falls just as short as it does when we try to approximate
a binomial distribution using a normal distribution. However, as expected, for
larger values, this approximation quality improves and so, with reasonable slack,
we can use this normal distribution to approximate the joint distribution of the
chunk sizes.

To further concretize the padding schemes that we can utilize, we look at
the distribution of chunk sizes and compare it with the behavior of the normal
distribution N (µ̂, σ̂). We performed thorough simulations, some of the results
of which appear in Table 2. We considered various values of m = n and studied
the distribution of the chunk sizes that fell within 2σ̂ of µ̂. Accounting for the
slight deviations for smaller values of m = n on account of the skewedness of the

Distributional Secure Merge 15

Fig. 2: Empirical joint distribution of the chunk sizes for various values of n ≥ m,
and k (similar results are observed for n < m), averaged over 5000 iterations.
The observed values of the mean and standard deviations of the chunk sizes
µ and σ match µ̂ and σ̂ as defined before near exactly. The red line plots the
probability density function of N (µ̂, σ̂), and it envelopes and approximates the
observed empirical distribution near exactly.

16 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

m
=

n
k

B
m
a
x

µ̂
σ̂

[0
,µ̂

−
2
σ̂
]
(µ̂

−
2
σ̂
,µ̂

−
σ̂
]
(µ̂

−
σ̂
,µ̂

]
(µ̂

,µ̂
+

σ̂
]
(µ̂

+
σ̂
,µ̂

+
2
σ̂
]
(µ̂

+
2
σ̂
,B

m
a
x
]
%

P
a
d
d
in
g

2
2
8

3
7
1
9
7
4
5
5
4
7
2
1
7
9
3
8
0

2
.5
5
%

1
3
.4
2
%

3
3
.8
5
%

3
3
.9
6
%

1
3
.9
8
%

2
.2
4
%

0
.3
%

2
2
4

1
0
0
4
1
7
8
7
0
1
6
7
1
0
1
8
3

2
.4
6
%

1
3
.6
%

3
3
.5
2
%

3
4
.1
8
%

1
3
.7
5
%

2
.4
9
%

0
.6
4
%

2
2
0

2
7
5

4
3
9
5

3
8
1
3

8
7

2
.1
7
%

1
3
.5
3
%

3
4
.4
8
%

3
3
.9
2
%

1
3
.4
%

2
.5
%

1
.3
3
%

2
1
6

7
7

1
1
6
2

8
5
1

4
1

1
.9
3
%

1
3
.4
9
%

3
4
.7
9
%

3
3
.7
%

1
3
.3
9
%

2
.7
%

2
.9
%

2
1
2

2
2

3
7
5

1
8
6

1
9

1
.6
4
%

1
3
.4
2
%

3
4
.7
5
%

3
3
.3
8
%

1
3
.9
9
%

2
.8
2
%

6
.6
4
%

2
8

7
1
7
3

3
6

8
1
.3
5
%

1
4
.2
5
%

3
1
.3
5
%

3
5
.0
3
%

1
4
.5
9
%

3
.4
4
%

1
7
.4
2
%

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

2
.2
%

1
3
.6
%

3
4
.1
%

3
4
.1
%

1
3
.6
%

2
.2
%

n
/
a

T
ab

le
2:

D
is
tr
ib
u
ti
on

of
th
e
ch
u
n
k
si
ze
s
th
at

fa
ll
in
to

th
e
in
te
rv
a
ls

[0
,µ̂

−
2
σ̂
],

(µ̂
−

2σ̂
,µ̂

−
σ̂
],

(µ̂
−

σ̂
,µ̂

],
(µ̂
,µ̂

+
σ̂
],

(µ̂
+

σ̂
,µ̂

+
2
σ̂
],

a
n
d

(µ̂
+

2
σ̂
,B

m
a
x
],
as

w
el
l
as

th
e
ov
er
h
ea
d
of

p
ad

d
in
g
b
a
se
d
o
n
th
es
e
in
te
rv
a
ls
,
w
h
en

av
er
a
g
ed

ov
er

5
0
0
0
it
er
a
ti
o
n
s;

w
e
h
av
e
se
t
η
=

4
0
.
T
h
e
la
st

ro
w

is
a
re
fe
re
n
ce

th
at

li
st
s
th
e
d
is
tr
ib
u
ti
on

of
th
e
p
ro
b
a
b
il
it
y
m
a
ss

fo
r
th
e
n
o
rm

a
l
d
is
tr
ib
u
ti
o
n
N
(µ̂
,σ̂

).

Distributional Secure Merge 17

m = n bin width
σ̂

Bins % Padding

216 2 1 5.27%
216 2 2 4.74%
216 1 3 2.38%
216 1 4 2.34%

212 2 1 11.32%
212 2 2 9.87%
212 1 3 4.99%
212 1 4 4.82%

28 2 1 28.18%
28 2 2 20.26%
28 1 3 9.92%
28 1 4 9.25%

Table 3: Overhead of padding based on varying number of intervals (bins) around
µ̂ of varying sizes in terms of σ̂, when averaged over 5000 iterations; we have
set η = 40. As an example, Table 2 uses bin width

σ̂ = 1 and # Bins = 2. Further,
bin width

σ̂ = 2 and # Bins = 2 uses the intervals [0, µ̂− 4σ̂], (µ̂− 4σ̂, µ̂− 2σ̂], . . . ,

(µ̂+ 2σ̂, µ̂+ 4σ̂], and (µ̂+ 4σ̂, Bmax], and
bin width

σ̂ = 1 and # Bins = 3 uses the
intervals [0, µ̂− 3σ̂], (µ̂− 3σ̂, µ̂− 2σ̂], . . . , (µ̂+ 2σ̂, µ̂+ 3σ̂], and (µ̂+ 3σ̂, Bmax].

real distribution, the distribution of the chunk sizes does very closely resemble
N (µ̂, σ̂), which is to be expected given our results from Figure 2. If we pad chunk
whose sizes are in the intervals up to the upper-bound of the interval, our overall
overhead as a result of padding, i.e., the number of dummies we introduce, comes
down drastically compared to the numbers we had in Table 1. This confirms our
intuition that it is indeed a very small number of chunks whose sizes are large or
close to Bmax. The point is that our empirical calculations give us a fairly strong
handle on just how many of the chunks will end up having a large size. One
can now evaluate whether these percentages (or some slightly noised version of
them) can be considered public given the sizes of the lists, and hence whether
padding according to them leaks any information. We believe that given the
tight concentrations we see, it is indeed reasonable to pad up based on these
intervals.

If one is more conservative or less conservative, we could vary the number
and sizes of intervals we would like to consider. Indeed, the most conservative
setting is the theoretical analysis from before that has a single interval size
[0, Bmax]. We consider some other choices of intervals one could consider based
on µ̂ and σ̂ in Table 3. The results here are also as expected: (i) the padding
is lesser for larger lists, presumably because of concentration; (ii) for a given
list size and a given interval width, more intervals amounts to lesser padding;
(iii) for a given list size and a given number of intervals, wider intervals result
in more padding. These observations make a lot of sense in the context of an
event that concentrates so well. Indeed, if we use more intervals, or we use less-
wide intervals, we are leaking more information in a sense with respect to the

18 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

particular instance of the random lists we are working with. Thus, it makes sense
that they also end up needing lesser padding. And so, these statistics provide
a way for one to choose precisely how much padding they are willing to handle
and then assess whether the corresponding settings of intervals and their sizes
constitute acceptable leakage in that context.

Regardless of how conservative one decides to be, if we at all pad adaptively,
we are somewhat guaranteed that only one stage in the recursion introduces
a lot of padding, approximately 20%, while all the others will introduce very
little, say 0-5%. This means that, even for lists of size 2256, our net padding will
only be around 50%! This is significant compared to our results from Table 1
(also, Table 1 showed more than 100% padding for 212 while we can now achieve
less than 20% padding even for 28). This provides support for using adaptive
padding schemes similar to the ones we suggest here in order to achieve concrete
efficiency in practice, and all our other statistics provide ample evidence as to
why such a strategy would result in minimal privacy loss.

For our full construction, we will assume the use of a padding scheme Pad
which takes in chunk sizes and outputs a padded chunk size. Pad could be as
simple as just outputting Bmax, or doing something more interesting like padding
based on intervals like we have just discussed. Since the chunk sizes will not be
revealed prior to padding, Pad will have to be invoked on secret shared data,
which, looking ahead, we will do by invoking FMPC.

3.3 Distribution of Inputs to a Recursive Call

One important detail we have not addressed is the following. Our entire analysis
and choice of parameters hinges on the fact that the input lists are sampled
uniformly. Is this true of the sub-problems we create when we recurse? Well,
yes and no. Indeed, any block and chunk that we identify to merge do in fact
satisfy our assumption of uniformity, however, we potentially pad our chunks
with dummies. Thus, the sub-problems themselves do not satisfy the assumption.
This is actually an issue as the windows where we will now have to search for
the medians of one list in the other are now off on account of the dummies in the
list. If we know how many dummies there were, we can remedy this by observing
that it is in fact possible to quantify how much the expected position of where
a median from the first list merges with the second list deviates on account of
the dummies. Unfortunately, we cannot reveal the number of dummies.

To remedy this, we make the following observation. The maximum shift in
the position we are looking for is exactly the number of dummies. Therefore, if
we have a reasonable upper bound on the number of dummies in the list, we
can simply expand our search window by that bound, and the guarantees we
obtained from our analyses for the first level of the recursion will continue to
apply for other levels too. The remaining piece of the puzzle is then to have
an upper bound on the number of dummies we introduce, and in this regard,
all the statistics we collected in the previous sections come in handy. We have
fairly tight characterizations on the padding, i.e., number of dummies, that we
introduce for the various padding schemes that we have proposed. We can use

Distributional Secure Merge 19

those estimates (and perhaps relax them appropriately) to serve as an upper
bound on the number of dummies with high probability.

We formally denote this by a parameter α ≥ 0 in our full protocol. We assume
that we have knowledge of the parameter α as a function of n, m, the level of the
recursion, and the padding scheme that we use. For the outermost invocation of
our protocol, α = 0, and for further levels, α can be computed as a function of
the sizes of the sub-problems.

4 Our Secure Merge Protocol for Uniform Lists

In this section, we will describe our protocol for uniform lists in complete detail.
Before that, we look at the ΠExtract-Bin algorithm, which mostly follows [5], but
we make some changes to make it suitable for our purposes.

4.1 Adapting ΠExtract-Bin

We look at the stable bin extraction algorithm ΠExtract-Bin from [5], where the
parties hold:

– secret shares of a list A of elements marked with entries from [0, k], with a
certain number t′j of contiguous elements marked by j for j ∈ [k],

– an upper bound t such that t′j ≤ t
– secret shares of a list C that contains the starting indices in A of the block

of elements marked by j for j ∈ [k], and
– secret shares of a list T ′ that contains t′j for j ∈ [k]

and end up with secret shares of lists Bj for j ∈ [k] of elements marked j in the
order in which they appeared in L, padded with dummy elements to make each
list have a size of t.

We would like to adapt the protocol in the following respects:

– elements in A are marked with entries from {0, r1, . . . , rk} as opposed to
[0, k], where the parties hold {r1, . . . , rk},

– the list C contains the starting indices in A of the block of elements marked
by j for {r1, . . . , rk},

– each block has its own upper bound tj , i.e., t
′
j ≤ tj for j ∈ [k], where the

parties hold tj for j ∈ [k], and
– the list T ′ contains t′j for {r1, . . . , rk}

These adaptations can be performed using standard techniques and the ones
outlined in [5]. We provide the complete protocol description in Figure 3 for
completeness. Correctness, security, and efficiency of the protocol follow from
the analyses in [5].

One final comment is that we have an upper bound on the number of dummies
in any chunk, we can use this to make ΠExtract-Bin more efficient in that Step 1
needn’t append lists of size tj , but rather, just lists as large as the upper bound on
the number of dummies in each chunk. We however present the protocol without
this modification and note that the protocol description can be modified fairly
trivially to take this into account.

20 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

Input:

– Parties hold a list T of size k of elements of the form (tj , rj) for j ∈ [k].
– Parties hold secret shares of a list A of size m of elements of the form (ai, ιi),

with ιi ∈ {0, r1, . . . , rk}, and t′j ≤ tj elements with ιi = rj for j ∈ [k]. We are
guaranteed that all elements with ιi = rj are in a contiguous block, for j ∈ [k].

– Parties hold secret shares of a pair of lists (C, T ′), with the property that for
each j ∈ [k], cj is the index i of the first element of A with ιi = rj , and t′j is
the number of elements of A with ιi = rj . If for any j ∈ [k], no such element
ιi exists, t

′
j = cj = 0.

Output:

– Parties hold secret shares of a sequence of lists Bj for j ∈ [k], where each list
Bj has length tj and contains all elements ai with ιi = rj , in the same order
that they occur in A, followed by dummy elements as necessary.

Protocol:

1. Append
∑

j∈[k] tj elements to A, where for each j ∈ [k] and each i ∈ [m +∑
p∈[j−1] tp + 1,m+

∑
p∈[j] tp], we define

(ai, ιi) =

0, rj ·

i−

n+
∑

p∈[j−1]

tp

 ?
> t′j

This can be done, aside from local computations, by invoking ΠComp and ΠSel

for each j ∈ [k].
2. Generate the shared list A′ = A ▷◁ K, where K is the list of elements κi

defined as

κi =

{
i if i ∈ [m]

i mod tj if i ∈
[
m+

∑
p∈[j−1] tp + 1,m+

∑
p∈[j] tp

]
for j ∈ [k]

This can be done locally by P1 setting their share equal to κi and all other
parties setting their share equal to 0.

3. Invoke ΠShuffle to compute Â′ = ΠShuffle(A
′).

4. Let Â′ = Â ▷◁ K̂ where Â has elements of the form (âi, ι̂i) and K̂ has elements
κ̂i. Open all values ι̂i by invoking ΠOpen. Delete the ith entries of Â and K̂
for every i such that ι̂i = 0. Let the lengths of Â and K̂ after this be N .

5. For i ∈ [N], let j ∈ [k] by such that ι̂i = rj . Update the shared list K̂ of
elements κ̂i as

κ̂i =

(
κ̂i − (cj − 1) · {âi

?

̸= 0}
)

mod tj

This can be done, aside from local computations, by invoking ΠComp and ΠSel

for each i ∈ [N].
6. Open all the values κ̂i by invoking ΠOpen.
7. Intialize Bj as a list of length tj for j ∈ [k].
8. Set the pth element of Bj equal to âi where i ∈ [N] is the (unique) index with

ι̂i = rj and κ̂i = p mod tj , for j ∈ [k].

Fig. 3: Protocol ΠExtract-Bin.

Distributional Secure Merge 21

4.2 Complete Protocol Description

We now describe our protocol in complete detail, which is a concretization of the
abstract protocol described in Section 3. The protocol can be found in Figures
4 and 5.

Without loss of generality, we assume that the first element of L2 is a dummy
element 0, and thus every element of L1 is greater than the first element of L2.
This is just for ease of presentation and can easily be arranged by prepending
L2 with a dummy element before running our protocol and then stripping it off
at the end of the protocol.

Correctness We will now argue the correctness of our protocol. Step 1 is the
base case of the recursion which is correct from the correctness of ΠSM-ALL

or ΠSM-Sor. In Step 2, we compute the parameters k and γ as estimated in
Section 3.1 and they suffice per the analyses therein. Step 3 picks random values
δ1, . . . , δk+1 that will be used to define the labels for the recursive sub-problems
that we will create. Note that the k blocks of L1 may partition L2 into k + 1
chunks, k of which will each merge with one of the blocks of L1, and the last of
which is a trailing chunk that need just be appended at the end. Looking ahead,
the k sub-problems will be labeled as r1, . . . , rk, where rj =

∑
p∈[j] δp for j ∈ [k].

The trailing chunk will be labeled rk+1 =
∑

p∈[k+1] δp (this computation happens

in Step 7). In Step 3, we compute indicators posj,j′ of where the jth median of
L1 merges with L2 for j ∈ [k]. Specifically, if posj,j′ ̸= 0, it stores the number
of elements of L2 that are smaller than the jth median of L1. Simultaneously
and similarly, we also compute tagj,j′ which when non-zero is assigned a random
value δj+1.

Step 4 is where we aggregate the indicators to compute posj which is the
number of elements of L2 that are smaller than the jth median of L1. Once we

have this, we can compute the list T
′
chunk sizes csizej of L2 by looking at the

difference sequence of posj for j ∈ [k]. The size of the trailing chunk is computed
by csizek+1. Step 6 then pads the chunk sizes for obliviousness. Details of how
to do this can be found in Section 3.2. Step 7 computes the labels T for each
sub-problem as described before, but also opens and reveals the label rk+1 of the
trailing chunk which does not participate in any sub-problem. Step 8 computes
the starting indices C of each of the chunks, zeroing them out if the chunk is
empty (this is in preparation for invoking ΠExtract-Bin).

One crucial aspect that creates some additional work in our protocol is the
fact that even after padding, our chunks may be of unequal sizes (this is to avoid
“overpadding” with dummies, particularly later in the recursion, cf. Section 3.2).
This means that we cannot reveal padded chunk sizes in correspondence with
the order in which the chunks appear, but rather just the global set of chunk
sizes. For this reason, we will permute the chunks, i.e., the sub-problems, and
unpermute them once we recursively solve the sub-problems. For this, in Step 9,
we divide L1 into the blocks, one for each of the k sub-problems. In Step 10, we
finally permute all the parameters needed for setting up our sub-problems, and

22 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

hold on to the handle handle so that we can unpermute the sub-problems at the
end.

We now have to mark L2 so that we can divide it into its padded chunks by
invoking ΠExtract-Bin. This is done in Steps 11-12. We basically use the tagj,j′
indicators from before and compute a prefix-sum to propagate the labels across
the entire list. This is also why the labels end up being prefix sums of the δs and
not the δs themselves. The reason we do things this way is because the linear
operations can be done locally without any communication. Finally, in Step 13,
we invoke ΠExtract-Bin to obtain the chunks of L2, pair them up with the blocks
of L1, and recursively solve the k sub-problems of blocks of L1 with chunks
of L2. Once that is done, we unpermute the results of each sub-problem (after
adding in the trailing chunk in the trailth place) to get the result of the merge of
the lists. At this point, the dummies we have introduced while padding chunks
still remain in the lists. However, we can only remove dummies at the very end
of the protocol, so we don’t remove them in any of the recursive calls on the
sub-problems. In the end, we remove them using ΠExtract-Ord. The correctness
of our protocol is immediate from the argument above and the correctness of all
of the underlying protocols that we invoke.

Security The security of our protocol follows from the security of the under-
lying protocols that we invoke, and the fact that the values we open are input-
independent. Indeed, in Step 7, the label of the trailing chunk is revealed but
that will be revealed in correspondence with all the labels when we don’t in-
voke a recursive call on a sub-problem involving it. In Step 10, we reveal the
permuted list of padded chunk sizes and their labels. This is input-independent
from the analysis in Section 3.2. These are the only values we reveal and all
other operations are input-independent, and therefore our protocol is secure.

Efficiency Let N = max{n,m}. Since the sizes of the sub-problems are all
approximately N

k =
√
N lnN , the recursion proceeds to a maximum depth of

O (ln lnN). This holds even if we account for growth on account of padding at
every stage of the recursion since our worst-case padding is smaller than O (N c)
for c < 1. Each stage of the recursion takes O (1) rounds and O (N) communi-
cation and computation. Therefore, our protocol takes O (ln lnN) rounds and
O (N ln lnN) communication and computation in total.

Theorem 1. There exists a secure merge protocol for lists of size N that takes
O (N ln lnN) computation and communication and O (ln lnN) rounds and re-
lies only on black-box access to the secure functionalities for open, comparison,
selection, and shuffles.

Recently, [5] have put forth a protocol that takes O (N) computation and
communication and O (ln lnN) rounds relying on the same assumptions. While
this is a great improvement asymptotically, we would be surprised if their proto-
col were to be concretely efficient. In particular, we believe that the complexities

Distributional Secure Merge 23

of their protocol ΠSSM- log log that has the same asymptotics as ours might in-
volve some steep constants. It is interesting to note that we can compose our
protocol with their main protocol by replacing ΠSSM- log log with our protocol to
obtain a result similar to theirs asymptotically. Although this would only apply
once again to uniform lists, it would likely be a lot more concretely efficient.
Also, it would be interesting to see how the rest of their protocols could be made
more concretely efficient, in general, or even when tailored to uniform lists.

While we have stated the requirement for the lists to be uniform, we note that
much of the analysis centers on one crucial bound: how far does an element have
to look forward or behind in the other list to find its position in the merged list,
i.e., is there some guarantee on the search window for any given element? This
in turn translates to how balanced chunks will be were we to take the divide-
and-conquer approach as we do in this work. If the setting or the assumptions
are strong enough to yield non-trivial bounds of this form, we can either directly
use or suitably adapt our protocol to cater to lists from such a distribution as
well. We thus note that our protocol thus applies to applications where lists may
not be truly random, but they share certain characteristics with random lists
that suffice for our protocol.

5 Going Beyond Uniform Lists

In this section, we describe how to perform a distributional secure merge of lists
that are not uniformly distributed, but rather distributed according to some
distribution. We begin by considering the case where the lists are identically
distributed and move on to handle the case of arbitrary different distributions.

5.1 Identically Distributed Lists

We begin by noting that our protocol for uniform lists can be directly applied
to identically distributed lists from an arbitrary distribution. The key idea is to
leverage the so-called probability integral transform (see Lemma 5). The main
idea is the following: from any random variable X, one can derive a uniformly
distributed random variable Y (simply using the CDF of X). Crucially, this
transformation is order-preserving! That is, if we have sorted lists, L1 and L2,
which consists of samples from some distribution D, we can, in linear time and
communication and O(1) rounds, create equivalent lists L′

1 and L′
2 of samples

from the uniform distribution such that (1) L′
1 and L′

2 are sorted, and (2) the
permutation that merges L′

1 and L′
2 also merges L1 and L2. This is can be done

if the description of the distribution D is (1) publicly known, or (2) known via
a secret-sharing, or (3) unknown as well, but the support of D is known; in this
case, we would empirically estimate D using a scan of the lists themselves (the
quality of the estimation would of course depend on the length of the lists in
relation to the size of the support).

24 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

Input:

– Parties hold α ≥ 0 and secret shares of sorted lists L1 and L2 of sizes n and
m respectively, where the first element of L2 is 0.

Output:

– Parties hold secret shares of the merged list L1

⊔
L2 of size n+m.

Protocol:

1. if n,m are small enough, invoke either ΠSM-ALL or ΠSM-Sort on L1 and L2

and return the result.
2. Choose k such that k|n and k ≈

√
m

lnm
. Generate the shared list L3 = M1,k

of the k medians of L1. In the rest of the protocol, any value that is used as an
index is assumed to be rounded to the nearest integer, and we avoid explicitly
indicating a rounding in our description for readability. We also assume that
comparisons with ℓ2,p are omitted when p < 1 or p > m. Compute

γ =

√
m

2
((η + 1) ln 2 + ln k)

3. Pick shared random (from the underlying field F) values δ1, . . . , δk+1. For j ∈
[k] and j′ ∈

[
−γ − jαm

k
, γ

]
, compute the shared values posj,j′ and tagj,j′

defined by

posj,j′ =

(
jm

k
+ j′

)
·
{
ℓ
2, jm

k
+j′

?
< ℓ3,j

?
< ℓ

2, jm
k

+j′+1

}
;

tagj,j′ = δj+1 ·
{
ℓ
2, jm

k
+j′

?
< ℓ3,j

?
< ℓ

2, jm
k

+j′+1

}
This can be done, aside from local computations, by invoking ΠComp and ΠSel

for each j ∈ [k] and j′ ∈
[
−γ − αm

k
, γ

]
.

4. For j ∈ [k], compute the shared values posj =
∑

j′∈[−γ−αm
k

,γ] posj,j′ .

5. Compute the shared values csizej = posj − posj−1 for j ∈ [k], where pos0 = 0,

and csizek+1 = m− posk. Let T
′
be the list with entries {csize1, . . . , csizek+1}.

6. Compute the shared list T
′′

using the padding scheme Pad that pads each
entry of T

′
. This can be done by invoking FMPC on each entry of T

′
. Let the

entries of T
′′
be t

′′
1 , . . . , t

′′
k+1.

7. Compute the shared list R with entries rj for j ∈ [k + 1] defined as rj =∑
p∈[j] δp. Define T = T

′′
▷◁ R. Additionally, open rk+1 by invoking ΠOpen.

8. Compute the shared list C with entries cj for j ∈ [k + 1] defined as cj =

(posj−1 +1) · {csizej
?
> 0}, where pos0 = 0. This can be done, aside from local

computations, by invoking ΠComp and ΠSel.
9. Divide L1 into k equally sized blocks Aj for j ∈ [k]. For the forthcoming shuffle,

we think of L1 as a list of size k where each block of L1 is a macroelement.
10. Shuffle the entries of the lists L1, T , C, T

′
by invoking ΠShuffle((L1, T , C, T

′
)).

Let the shuffled lists be L′
1, T, C, T

′ and let the handle returned by ΠShuffle

be handle. Parse L′
1 as k blocks Aj for j ∈ [k]. Open the list T by invoking

ΠOpen. Let trail be the unique j ∈ [k + 1] such that rk+1 = rj where (·, rj) is
the jth entry in the list T .

Fig. 4: Our protocol for securely merging two random lists (Part 1 of 2).

Distributional Secure Merge 25

Input:

– Parties hold α ≥ 0 and secret shares of sorted lists L1 and L2 of sizes n and
m respectively, where the first element of L2 is 0.

Output:

– Parties hold secret shares of the merged list L1

⊔
L2 of size n+m.

Protocol (contd.):

1. Compute the shared list Lab of length m with entries labi for i ∈ [m] defined
as

labi =
∑

j∈[k],j′∈[−γ,γ]
jm
k

+j′=i

tagj,j′

Update labm as labm = δk+1 · {labm
?
= 0}. This can be done, aside from local

computations, by invoking ΠComp and ΠSel.
2. Let lab0 = 0. Compute the shared list I with entries ιi for i ∈ [m] defined as

ιi = δ1 +
∑
p∈[i]

labp−1

3. Define A = L2 ▷◁ I. Invoke ΠExtract-Bin(T,A,C, T ′) to obtain the shared lists
Bj for j ∈ [k + 1].

4. Define the k sub-problems (Aj , Bj) for j ∈ [k+1] \ {trail}. Recursively invoke
this protocol on each of the sub-problems with appropriate choices of the
parameter α to obtain lists Pj for j ∈ [k+ 1] \ {trail}. Set Ptrail = Btrail. Define
P = {P1, . . . , Pk+1}. For the forthcoming unshuffle, we think of P as a list of
size k + 1 where each Pj is a macroelement for j ∈ [k + 1].

5. Invoke ΠUnshuffle(P, handle) to unpermute P and obtain the list P =
{P 1, . . . , P k+1}.

6. If this was not the parent recursive call of the protocol, return P . Otherwise,
invoke ΠExtract-Ord(P) to remove dummy elements and return the final result
L1

⊔
L2. Note in this final invocation of ΠExtract-Ord that we think of P not

as a list of size k+ 1, but where each element of each P j is seen as a separate
element, for j ∈ [k + 1].

Fig. 5: Our protocol for securely merging two random lists (Part 2 of 2).

26 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

5.2 Arbitrarily Distributed Lists

The case where the lists are distributed according to arbitrarily different dis-
tributions is a lot more challenging. Recall that the reason why we are able to
merge uniform lists well is because elements close to one another in the support
of the distribution must be close to one another in the lists as well. In case
of arbitrarily but identically distributed lists, the probability integral transform
essentially stretches and squishes the distribution to provide the guarantee that
elements close to one another in the two lists must be close to one another in
their positions in the lists as well.

A first idea that does not work is the following. Suppose the lists L1 and
L2 of lengths n and m are distributed according to the distributions D1 and
D2 respectively. Consider the convex combination of their distributions given
by D = nD1+mD2

n+m . In the limit, drawing n +m samples from D is the same as
drawing n samples from D1 and m samples from D2. So, one consider whether
we could think of L1 and L2 as coming from the distribution D and reduce to
the case of identically distributed lists. This is however not true. While in the
limit, the n + m elements of L1 and L2 do in fact come from D, as individual
lists, they come from D1 and D2 respectively. We could perhaps try to salvage
this by trying to introduce approximately dummy elements from D2 into L1 and
D1 into L2 so that their distributions match that of D, but the lists are no longer
sorted!

In a sense, this is not surprising as if the lists could be arbitrarily distributed,
we could land up with a “worst-case” merge, i.e., the bound β on the size of the
“window” that we would have to consider could be quite large in general. Thus,
in general, our approach could get as inefficient as performing a merge on worst-
case lists. Nonetheless, we can still use the the fact that our lists are distributed
according to some distributions to design a protocol that would be much better
in scenarios where the distributions are not too dissimilar.

We take a second look at the convex combination D of the distributions.
Effectively, we will make use of the probability integral transform to bucketize the
lists into “uniform” buckets. Essentially, we examineD and determine thresholds
that split D into several quantiles. Once we have obtain these thresholds, we use
them to divide the lists L1 and L2 into buckets. To guarantee security, we can
pad the buckets. If the descriptions of D1 and D2 are publicly known, we can
use them to come up with padding thresholds distributionally as well like we did
in Section 3.2. Note that these buckets could be quite different in size. However,
since they span equally-sized quantiles of D, considering each bucket as a single
element, they are uniformly distributed over D. Now, thinking of the buckets as
elements, we can run over protocol for uniform lists which determines the buckets
in one list that the elements in a bucket of the list must consider for their merge.
There is a lot of room to tweak concrete performance. One can consider varying
the number of quantiles. The smaller the number of quantiles, the smaller the
window-size one needs to consider in terms of the number of buckets, but the
worse the merging of buckets. The larger the number of quantiles, the larger
the window-size one needs to consider in terms of the number of buckets, but

Distributional Secure Merge 27

the better the merging of buckets. One can also play with how the buckets are
merged. We could use a trivial protocol such as all-pair comparisons, or a sort-
based merge, or any of the other close-to linear time merge protocols, depending
on the bucket sizes considered.

6 Evaluation

We implement our protocol for uniform lists and compare it to the state of
art radix sorting protocol of [8] in the honest majority three-party semi-honest
setting. The primary reason for choosing this setting is to enable us to compare
with a high-performance sorting protocol. We note that our protocol could be
implemented in other settings that have the required building blocks, e.g. two
party. For our protocol, we make use of two levels of recursion regardless of the
size of the input lists. For the padding scheme we ensure that there is statistically
negligible leakage with parameter σ = 40. We implement the base case using
the “shuffle-then-sort” paradigm [14,13]. We implemented both protocols using
C++. We performed benchmarks on a single 8-core i7 laptop communicating
over TCP via localhost. Network latency was sub-millisecond. We note that this
low network latency disproportionally benefits [8] due to having a larger round
complexity. Each party was given a single computation thread to run on. Input
elements being sorted are 32 bits long.

Protocol m = n Time (ms) Communication (MB)

[ours] 212 101 2.9
[ours] 216 251 47.3
[ours] 220 3, 166 779.6

[8] 212 116 23.0
[8] 216 1, 220 367.1
[8] 220 27, 123 5, 887.5

Table 4: Comparison of performance overheads (running time and total com-
munication) of our secure merge protocol and generic radix sorting protocol [8].
Input elements being sorted are 32 bits long. Each of the two lists has n items,
i.e., [8] is sorting 2n items.

Table 4 contains the performance results. For the largest input size tested of
n = 220, we observe that our protocol is an order of magnitude faster, requiring
just 3.2 seconds compared to 27 seconds to perform generic sorting [8]. Similarly,
our protocol requires just 780MB of communication compared to 5, 888MB for
[8]. As expected, the main overhead of our protocol is the secure comparisons
and oblivious shuffles. For smaller input lists we observe that the difference
between our protocols decreases, with our protocol for n = 216 being 4.8× faster
and our protocol for n = 212 being just 1.2× faster. However, we note that in
a network with realistic latency, our protocol would likely outperform [8] by a
larger margin.

28 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

References

1. Sums of independent poisson random variables are poisson random variables.
https://llc.stat.purdue.edu/2014/41600/notes/prob1805.pdf (2014)

2. Tail bounds for poisson random variables. http://www.cs.columbia.edu/

~ccanonne/files/misc/2017-poissonconcentration.pdf (2017)
3. Mcdiarmid’s inequality. https://www.cs.columbia.edu/~djhsu/coms4995-s20/

lectures/mcdiarmid-notes.pdf (2020)
4. Badrinarayanan, S., Das, S., Garimella, G., Raghuraman, S., Rindal, P.: Secret-

shared joins with multiplicity from aggregation trees. In: Yin, H., Stavrou, A.,
Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022. pp. 209–222. ACM (2022)

5. Blunk, M., Bunn, P., Dittmer, S., Lu, S., Ostrovsky, R.: Secure merge in linear
time and o(log log N) rounds. IACR Cryptol. ePrint Arch. p. 590 (2022)

6. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin,
V.: Private matching for compute. IACR Cryptol. ePrint Arch. 2020, 599 (2020)

7. Chan, T.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less: Perfectly
secure oblivious algorithms in the multi-server setting. In: Peyrin, T., Galbraith,
S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 11274, pp. 158–188. Springer (2018)

8. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An ef-
ficient secure three-party sorting protocol with an honest majority. IACR Cryptol.
ePrint Arch. p. 695 (2019)

9. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Financial Cryptography. Lecture Notes in Computer Science,
vol. 6052, pp. 143–159. Springer (2010)

10. Falk, B.H., Nema, R., Ostrovsky, R.: A linear-time 2-party secure merge protocol.
In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptology, and Machine
Learning - 6th International Symposium, CSCML 2022, Be’er Sheva, Israel, June
30 - July 1, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13301, pp.
408–427. Springer (2022)

11. Falk, B.H., Ostrovsky, R.: Secure merge with o(n log log n) secure operations.
In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptography, ITC
2021, July 23-26, 2021, Virtual Conference. LIPIcs, vol. 199, pp. 7:1–7:29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021)

12. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryp-
tology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 395–425. Springer
(2021)

13. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: An effi-
cient sorting algorithm for practical secure multi-party computation. IACR Cryp-
tol. ePrint Arch. p. 121 (2014)

14. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically ef-
ficient multi-party sorting protocols from comparison sort algorithms. In: Kwon,
T., Lee, M., Kwon, D. (eds.) Information Security and Cryptology - ICISC 2012

https://llc.stat.purdue.edu/2014/41600/notes/prob1805.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
https://www.cs.columbia.edu/~djhsu/coms4995-s20/lectures/mcdiarmid-notes.pdf
https://www.cs.columbia.edu/~djhsu/coms4995-s20/lectures/mcdiarmid-notes.pdf

Distributional Secure Merge 29

- 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7839, pp. 202–216. Springer
(2012)

15. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits
better than custom protocols? In: 19th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8,
2012. The Internet Society (2012), https://www.ndss-symposium.org/ndss2012/
private-set-intersection-are-garbled-circuits-better-custom-protocols

16. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M.,
Shanahan, D., Yung, M.: On deploying secure computing: Private intersection-
sum-with-cardinality. In: EuroS&P. pp. 370–389. IEEE (2020)

17. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. IACR Cryptol. ePrint Arch.
p. 799 (2016), http://eprint.iacr.org/2016/799

18. Kübler, R.: The ‘balls into bins’ process and its pois-
son approximation. https://www.cantorsparadise.com/

the-balls-into-bins-process-and-its-poisson-approximation-e38d11bdf283

(2021)

19. jie Lu, W., Huang, Z., Zhang, Q., Wang, Y., Hong, C.: Squirrel: A scalable secure
two-party computation framework for training gradient boosting decision tree.
Cryptology ePrint Archive, Paper 2023/527 (2023), https://eprint.iacr.org/
2023/527, https://eprint.iacr.org/2023/527

20. Lucani, D.E., Nielsen, L., Orlandi, C., Pagnin, E., Vestergaard, R.: Secure general-
ized deduplication via multi-key revealing encryption. In: Galdi, C., Kolesnikov, V.
(eds.) Security and Cryptography for Networks - 12th International Conference,
SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12238, pp. 298–318. Springer (2020)

21. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: IEEE Symposium on Security
and Privacy. pp. 134–137. IEEE Computer Society (1986)

22. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

23. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
Cryptology ePrint Archive, Paper 2018/403 (2018), https://eprint.iacr.org/
2018/403, https://eprint.iacr.org/2018/403

24. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins and PSI for secret
shared data. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020. pp. 1271–1287. ACM (2020)

25. Nayak, K., Wang, X.S., Ioannidis, S., Weinsberg, U., Taft, N., Shi, E.: Graphsc:
Parallel secure computation made easy. In: 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 377–394. IEEE
Computer Society (2015)

26. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-n OT extension with appli-
cation to private set intersection. In: CT-RSA. Lecture Notes in Computer Science,
vol. 10159, pp. 381–396. Springer (2017)

27. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set in-
tersection from sparse OT extension. In: CRYPTO (3). Lecture Notes in Computer
Science, vol. 11694, pp. 401–431. Springer (2019)

https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
http://eprint.iacr.org/2016/799
https://www.cantorsparadise.com/the-balls-into-bins-process-and-its-poisson-approximation-e38d11bdf283
https://www.cantorsparadise.com/the-balls-into-bins-process-and-its-poisson-approximation-e38d11bdf283
https://eprint.iacr.org/2023/527
https://eprint.iacr.org/2023/527
https://eprint.iacr.org/2023/527
https://eprint.iacr.org/2018/403
https://eprint.iacr.org/2018/403
https://eprint.iacr.org/2018/403

30 Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal

28. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: USENIX Security Symposium. pp. 515–530.
USENIX Association (2015)

29. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security Symposium. pp. 797–812. USENIX Association
(2014)

30. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: ACM Conference on Computer and Communications Security. pp. 1229–
1242. ACM (2017)

31. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-psi from vector-
ole. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12697, pp. 901–930. Springer
(2021)

	Distributional Secure Merge

