
Finding Bugs and Features Using
Cryptographically-Informed Functional Testing

Giacomo Fenzi1 , Jan Gilcher2 , and Fernando Virdia3

1 Computational Security Lab, EPFL, Lausanne, Switzerland
2 Applied Cryptography Group, ETH Zurich, Zürich, Switzerland

3 NOVA LINCS, Universidade NOVA de Lisboa, Caparica, Portugal
giacomo.fenzi@epfl.ch

jan.gilcher@inf.ethz.ch

f.virdia@fct.unl.pt

Abstract. In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) per-
formed a post-mortem investigation of the correctness of reference im-
plementations submitted to the SHA3 competition run by NIST, finding
previously unidentified bugs in a significant portion of them, including two
of the five finalists. Their innovative approach allowed them to identify
the presence of such bugs in a black-box manner, by searching for coun-
terexamples to expected cryptographic properties of the implementations
under test. In this work, we extend their approach to key encapsulation
mechanisms (KEMs) and digital signature schemes (DSSs). We perform
our tests on multiple versions of the LibOQS collection of post-quantum
schemes, to capture implementations at different points of the recent
Post-Quantum Cryptography Standardization Process run by NIST. We
identify multiple bugs, ranging from software bugs (segmentation faults,
memory overflows) to cryptographic bugs, such as ciphertext malleability
in KEMs claiming IND-CCA security. We also observe various features
of KEMs and DSS that do not contradict any security guarantees, but
could appear counter-intuitive.

1 Introduction

As cryptography is adopted in a growing number of applications, it is often
the case that implementation correctness of cryptographic libraries becomes a
necessary condition for achieving overall system and application security. Im-
plementations of cryptographic algorithms often need to satisfy the conflicting
requirements of performing complex mathematical operations while achieving a
high level of performance, resulting in generally hard-to-debug code. High-profile
vulnerabilities have resulted from incorrect implementations of on-paper secure
cryptographic schemes, such as the recent “psychic signatures” vulnerability in
Java’s ECDSA library (CVE-2022-21449)4, or the buffer overflow bug in the
Keccak reference implementation (CVE-2022-37454)5.

4 https://www.cve.org/CVERecord?id=CVE-2022-21449
5 https://www.cve.org/CVERecord?id=CVE-2022-37454

https://orcid.org/0000-0003-3702-1780
https://orcid.org/0000-0002-1111-8325
https://orcid.org/0000-0002-0001-2955
https://www.cve.org/CVERecord?id=CVE-2022-21449
https://www.cve.org/CVERecord?id=CVE-2022-37454


While a long-term solution to the problem of developing robust implemen-
tations of cryptographic algorithms “from the get-go” will likely require more
extensive adoption of formal verification tools, today it is still the case that initial
reference implementations for cryptographic schemes are often written directly
in system programming languages such as C, rather than starting from a formal
specification. Often these reference implementations are then used to generate
known-answer test vectors used to verify correctness of later implementations
and may also be directly deployed as part of products, potentially resulting in
the proliferation of bugs (e.g., CA-1999-15)6.

In this work, we investigate the issue of automatically discovering bugs in
implementations of cryptographic primitives, by searching for counterexamples to
expected cryptographic properties of the implementations under test. This process
can be seen as a form of metamorphic testing (Zhou et al., ISFST 2004) [21],
instantiated using fuzzing tools.

In a nutshell, our approach is to run “bit-contribution” and “bit-exclusion”
tests on selected inputs to a cryptographic function. We make use of the AFL++
fuzzer [5], running on test programs specifically designed to crash whenever
an expected cryptographic property of a function is not satisfied. For example,
when testing IND-CCA2-secure key encapsulation mechanisms’ decapsulation,
we may generate a valid encapsulation c, modify it into c′ ̸= c, and attempt
to decapsulate it; if decapsulation succeeds, we crash the program. Together
with a custom mutator that generates c′ by individually “flipping” every bit in
c, AFL++ will then identify implementations that either internally crash, or
that do not achieve IND-CCA2 security, flagging either issue. This approach,
used on every (function, input) combination provided by the syntax of hash
functions, key encapsulation mechanisms (KEMs), and digital signature schemes
(DSSs), together with a cryptographically-informed test of their expected output
properties and with appropriate de-randomisation, led to our discoveries.

Related work. Our starting point is the work of Mouha et al. [12] on hash
functions proposed during the SHA3 competition run by the United States
National Institute of Standards and Technologies (US NIST). We borrow their
techniques and apply them to key encapsulation mechanisms and digital signature
schemes, as well as running some of their tests on different hash functions. While
the PQClean suite performs similar tests [11] on some KEM and DSS functions,
they do so on a smaller selection of algorithms and only testing: the effect of
replacing valid inputs with random tapes (for KEMs), whether replacing the
public key with a different valid public key still allows signature verification to
pass (for DSSs), and whether canary bytes around allocated buffers are touched
during normal operation (for KEMs and DSSs). This implies that some of the
bugs we encounter would likely not be detected.

Our work is also related to CLFuzz [20], which also focuses on testing crypto-
graphic libraries via fuzzers that are aware of some of the semantics of crypto-

6 https://vuls.cert.org/confluence/display/historical/CERT+Advisory+

CA-1999-15+Buffer+Overflows+in+SSH+daemon+and+RSAREF2+Library

https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1999-15+Buffer+Overflows+in+SSH+daemon+and+RSAREF2+Library
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1999-15+Buffer+Overflows+in+SSH+daemon+and+RSAREF2+Library


graphic algorithms. Therein, the fuzzing techniques are aware of the correctness
semantics of cryptographic primitives, while our work tests for a wider set of
semantics that our primitives should uphold. Yang, Arya and Wang [18] com-
bine formal methods with fuzzing in order to discover bugs in complex systems
such as 5G implementations. Our approach limits its scope to the underlying
cryptographic primitives, rather than aiming to holistically target an entire
system.

Our contributions. During the development of the project, we identified various
cryptographic bugs, including: an IND-CCA2 bug for some parameter sets in
the reference implementation of NTRU (fixed in 2020 after disclosure); a bug
breaking output consistency of the reference implementation of the KNOT-384
hash function submitted to the first round of the NIST Lightweight Cryptography
Standardization standardization process (independently fixed by the authors,
albeit not explicitly disclosed), that would allow influencing output digests by
modifying bytes neighboring (but not belonging to) the input buffer; second-
preimage bugs in the AVX/SSE implementations of acehash and syconhash
submitted to the NIST Lightweight Cryptography Standardization process. We
remark that the bugs mentioned exclusively affect the specific implementations
tested for each scheme, rather than their mathematical design.

Our tests also automatically detected a few surprising properties, including:
the lack of strong unforgeability for the compressed signature format in the Falcon
DSS (in version 1.1 of its spec, independently discovered by the Falcon team);
that Rainbow and Falcon public keys pk could be modified such that verification
using a specific pk′ ≠ pk would still succeed (as of LibOQS 0.4.0, since resolved),
a property of many KEMs using implicit-rejection Fujisaki-Okamoto transform
variants where valid ciphertexts decapsulate correctly under modified secret keys;
a similar property for the randomized version of the Dilithium DSS, where valid
signatures can be generated by modified secret keys in the presence of a faulty
randomness source. In contrast with the bugs that we previously mentioned, these
properties result from the schemes’ definition, and were identified by automatically
testing an implementation. While these properties do not invalidate the security
notions claimed (IND-CCA2 and EUF-CMA), some may be unexpected by users
and could affect the interaction between the cryptographic primitives and the
protocols these may be used as components of, similarly to what Jackson et
al. [10] discover for non-post-quantum signature schemes using formal verification
tools.

Finally, as part of our larger scale effort, we found that dealing with more
complex primitives and minimising the engineering overhead of adding new tests
can be obstacles to employing this methodology. To streamline this process we
develop a syntax for the testing procedure, which, once implemented, lets us
reuse a majority of the testing code across different primitives (hash functions,
KEMs, DSSs), libraries (SUPERCOP for hash functions, LibOQS for KEMs and
DSSs), and fuzzers (our final choice being AFL++) at minimal implementation
cost. This syntax could easily be adapted to check for other properties that we



did not test, such as near-collisions in hash functions, which could also result
from potential bugs.

We believe our results further demonstrate the usefulness of the techniques in-
troduced by Mouha et al., which are successful in identifying subtle bugs and prop-
erties of implementations and schemes in a black-box manner. We think our formal-
isation of it simplifies the extension to other primitives and tests, and we released
our implementation on https://gitlab.com/fvirdia/crypto-fun-test. We
think that adoption of similar testing techniques (possibly as an optional “mode”)
by cryptographic algorithm testing suites such as SUPERCOP or Project Wyche-
proof [2] could help increase early detection of various bugs at a relatively low
engineering cost for the cryptographic community.

Paper roadmap. In Section 2 we lay down preliminary notation and definitions.
In Section 3 we recall how metamorphic testing can be used to stress hash
function implementations, and explain how to extend this to KEMs and DSSs.
In Section 4 we introduce our approach to implementing metamorphic testing
on cryptographic schemes, and describe the specific tests we run. In Section 5
we describe the results of our experiments, the bugs we identify as well as some
possibly unexpected properties found.

2 Preliminaries

2.1 Notation

We denote by Z≥0 the set of non-negative integers. Let ‘true’ and ‘false’ be
denoted by ⊤ and ⊥, respectively. Given a statement S, we denote its truth value
by JSK. Given a bit string s, we denote its bitlength as |s|. Given two strings s1
and s2, we denote s1||s2 as the concatenation of s1 and s2. We write ⊕ for the
exclusive-or operation on single bits or on bitstrings having the same length. We
write (0x10y)2 to represent the bitstring of length x+ y + 1 with all bits set to
zero except for the bit in position x+ 1, which is set to one. Whenever we write
m mod n we mean the value m′ in {0, . . . , n− 1} such that m′ = m mod n. We
denote integer floor division of x by y as ⌊x/y⌋.

In pseudocode, we denote variable assignment using←, and random sampling
from a set using ←$. Whenever we are addressing a buffer x starting from the
second byte, rather than the first, we write “&x[1]” rather than “x”.

Definition 1 (Stateful pseudorandom generator). We define a “stateful”
pseudorandom generator PRG to be a function mapping λ-bit “seeds” s ∈ {0, 1}λ
into random tapes r ∈ {0, 1}∗ and new seeds, PRG : {0, 1}λ → {0, 1}λ × {0, 1}∗.

We chose this syntax for PRGs to simplify describing our generation of random
tapes during tests in Section 4.

Definition 2 (Key Encapsulation Mechanism (KEM)). Let Π be a triple
(Gen,Encaps,Decaps) of algorithms where Gen(1λ) → (pk, sk) takes a security

https://gitlab.com/fvirdia/crypto-fun-test


parameter and outputs a public-secret keypair, Encaps(pk)→ (c, ss) takes a public
key pk and outputs a ciphertext c and a shared secret ss, and Decaps(sk, c)→ ss
is a deterministic algorithm that takes a secret key sk and a ciphertext c and
outputs a shared secret ss (or a distinguished failure symbol ⊥). We say Π is a
key encapsulation mechanism (KEM), if

1− Pr
[
(pk, sk)← Gen(1λ), (c, ss)← Encaps(pk), ss′ ← Decaps(sk, c) : ss = ss′

]
is negligible.

Definition 3 (Digital Signature Scheme (DSS)). Let Π = (Gen,Sign,Verify)
be a triple of algorithms where Gen(1λ) → (pk, sk) takes a security parameter
and outputs a public-secret keypair, Sign(sk,m) → σ takes a secret key sk, a
message m ∈ {0, 1}∗ and outputs a signature σ, and Verify(pk,m, σ) ∈ {0, 1} is a
deterministic algorithm that takes a public key pk, a message m ∈ {0, 1}∗ and a
signature σ and outputs a bit b, with b = 1 meaning “valid” and b = 0 meaning
“invalid”. We say Π is a digital signature scheme (DSS) if

1− Pr
[
(pk, sk)← Gen(1λ), σ ← Sign(sk,m) : Verify(pk,m, σ) = 1

]
is negligible.

2.2 Security notions

In this section we recall security notions for hash functions, KEMs and DSSs,
that will be “stressed” by our testing, meaning that the tests may output
counterexample to the notion demonstrating that a specific implementation does
not satisfy it. This is not meant as an exhaustive list of security properties.

Definition 4 (Second-preimage resistance). Let H : {0, 1}m → {0, 1}ℓ be
a hash function. H is said to be second-preimage resistant if for any efficient
adversary A and random message x←$ {0, 1}m,

Pr[x←$ {0, 1}m, x′ ← A(x) : H(x) = H(x′) and x ̸= x′]

is negligible.

Definition 5 (KEM IND-CCA security). Let Π = (Gen,Encaps,Decaps)
be a KEM. We say that Π has indistinguishable encapuslations under chosen
ciphertext attacks (IND-CCA) secure if for any efficient adversary A

Pr

[
b←$ {0, 1}, (pk, sk)← Gen(1λ),

(c∗, ss∗)← Encaps(pk), b′ ← AODecaps
sk (·)(pk, c∗, ss)

: b = b′
]

is negligible, where ODecaps
sk (c) returns Decaps(sk, c) except if c = c∗, in which case

it returns ⊥, and ss = ss∗ if b = 0 and is randomly sampled from the shared
secret space if b = 1.



Definition 6 (sUF-CMA security). Let Π = (Gen,Encaps,Decaps) be a DSS.
We say that Π is strongly unforgeable under chosen message attacks (sUF-CMA)
secure if for any efficient adversary A

Pr
[
(pk, sk)← Gen(1λ), (m∗, σ∗)← AOSign

sk (·)(pk) : Verify(pk,m∗, σ∗) = 1
]

is negligible, where OSign
sk (m) returns (m,Sign(sk,m)), and where (m∗, σ∗) was

not output by OSign
sk .

3 Metamorphic testing

By design, the output of cryptographic primitives is often conjectured to be
indistinguishable from random. When testing a new implementation P of a
cryptographic primitive π, a common strategy is to compare the output of P
with that of a reference implementation P0 deemed correct. This can be done by
generating test cases (ti)i, and checking that P (ti) = P0(ti).

This approach however poses the problem of testing the initial reference
implementation P0. Indeed, given an input ti, it may be impossible to tell if P0(ti)
is correct, due to its pseudorandomness. If π is an encryption scheme, for example,
one may test whether ciphertexts generated with P0 correctly decrypt. However
this may not be a sufficient criteria if multiple ciphertexts could plausibly decrypt
to the same message. If π is a one-way function, such as a hash function, this may
be even harder, since no inverse function would be known. This is an instance of
the “oracle problem” in software testing [17].

We say that a test input ti is successful if, given a known output π(ti), an
implementation under test satisfies P (ti) = π(ti). We say ti is indeterminate
if P (ti) does not obviously fail (say, by crashing the program). We say ti is
unsuccessful if P (ti) ̸= π(ti). Metamorphic testing [4,3] is a testing approach
where a series of test cases (ti)i that are indeterminate can be transformed into
new test cases (t′j)j that may be possible to classify as unsuccessful, given the
partial knowledge of π.

For example, Mouha et al. [12] use metamorphic testing to test hash functions,
by creating indeterminate test cases (ti)i for i ∈ [n] by setting t0 = (0n)2 be the
zero-bitstring of length n, and ti = (0i−110n−i)2 be the bitstring with zeroes
everywhere except at index i, for i > 0, and checking whether P0(ti) = P0(tj) for
some i ̸= j (among other tests). Whenever this happens, the a likely bug in the
implementation is found, and (ti, tj) is marked as an unsuccessful test case, since
collisions or second pre-images to the hash function π should be hard to find.
This simple testing technique (the “Bit-Contribution” test, in [12]’s terminology)
allowed them to identify 19 bugs in submissions to the SHA3 standardization
competition.



3.1 Metamorphic testing for Hash functions

We now describe the original set of metamorphic tests introduced in [12] for
cryptographic hash functions. We will use these as the initial point for our further
tests on KEMs and DSSs.

For context, during the SHA3 competition, submitters had to design a hash
function able to take inputs of any bitlength in Z≥0 (with 0-bit inputs correspond-
ing to the empty string), and output digests of length in {224, 256, 384, 512}. Due
to the possibility of having hash functions have to compute digests over very
large bitstrings that could potentially be streamed between servers, in order to
facilitate progressive hashing (rather than having to wait until the transmission
had completed to start hashing), the reference implementation for the function
Hash(·) would have consisted of one call to Init(·) which would generate some
initial state σ, one or more calls to Update(σ, ℓ) which would update the state
σ by processing ℓ bits of input, and Final(σ) which would output the resulting
digest.

Mouha et al. [12] introduce three kinds of metamorphic test: the “Bit-
Contribution”, “Bit-Exclusion”, and “Update” tests.

Bit-Contribution. The bit-contribution test defines a series of input bitlengths
(ℓi)i ⊂ Z≥0, and for each ℓi defines an initial test case ti,0 ∈ {0, 1}ℓi . After
mauling this test case by defining ti,j := ti,0 ⊕ (0j−110ℓi−j)2 for 0 < j ≤ ℓi, it
collects Hash(ti,j) for all i, j as above, and checks for collisions. The rationale of
this test is that a collision would potentially be caused by some bit of the input
not contributing to the output in the implementation, likely meaning a bug is
present in the implementation.7 Of the 86 reference implementations tested in
[12], 19 fail this test.

Bit-Exclusion. The bit-exclusion test targets the fact that NIST required the
SHA3 competition submitters to define their hash functions over non-multiple-of-8
bitlenghts. However, in practice implementations in most languages work at byte-
level, including the reference implementations that were requested to be written
in the C programming language. This means that, for example, if a function
was called on an input of length ℓ = 6 mod 8, the last 2 bits of the input byte
buffer should be ignored, since they don’t actually belong to the input bitstring.
The bit-exclusion test is designed to check this property, by defining input test
cases ti,0 for ℓi ∈ {ℓ ∈ Z≥0 | ℓ mod 8 ̸= 0}, and then mauling these into further
test cases ti,j := ti,0 ⊕ (0ℓi0j−1108−(ℓi mod 8)−j)2, for 0 < j ≤ 8− (ℓi mod 8). For
each i, it then checks for non-collisions in {Hash(ti,j)}j . If given some length
ℓi, non-collisions are generated, this means that the implementation of Hash is
incorrectly over-reading bits beyond the input boundary when producing the
final digest. Of the 86 reference implementations tested in [12], 17 fail this test.

7 While a fundamental weakness of the design could be possible, this does not seem to
be the case for any of the tested primitives.



Update. The update test makes use of the guarantee on the internal API of Hash,
by checking whether Hash(x) = Final(·) ◦ Update(·, ℓ2) ◦ Update(·, ℓ1) ◦ Init(x) for
various values of x, such that ℓ1 + ℓ2 = |x|. Of the 86 reference implementations
tested in [12], 32 fail this test.

3.2 Metamorphic testing for KEMs and DSSs

As seen above, the core metamorphic test performed in [12] on hash functions is
whether outputs collide or not, depending on whether they are expected to (bit-
exclusion and update tests) or not (bit-contribution tests). The reason for only
checking for collisions is that hash functions only provide a method Hash, which
is expected to be one-way. This means that one cannot check for interactions of
the output of Hash with other cryptographic methods.

Extending metamorphic testing to KEMs and DSSs presents us with more
functions to use compared to hashes, but also with a few syntactic differences
that should be addressed.

Testable functions. In the case of KEMs and DSSs, both primitives provide
three methods, (Gen,Encaps,Decaps) and (Gen,Sign,Verify) respectively, present-
ing structure when composed with each other. This means that we can use
bit-contribution and bit-exclusion ideas to stress various aspects and security
properties of such primitives. This also means that more tests will have to be
run, when testing each function. Unfortunately, for the purpose of PQC stan-
dardisation, NIST did not mandate a specific internal API. Therefore, we don’t
define any “update” tests, unlike [12].

Randomness. Unlike hash functions, Gen, Encaps and Sign functions use random
tapes as one of their inputs. This adds some variability to testing, which can be
resolved by fixing a PRG seed used when generating the random tape. However,
the use of random tapes also suggest a different test that can be performed
on randomised algorithms: providing bad randomness. This may not always
be easy to implement, depending on the internal API of the implementation
being tested. Luckily, LibOQS does allow defining a custom PRG, such as one
that repeatedly outputs a fixed byte. While the setting of having access to
a bad randomness source is usually out-of-model in terms of cryptographic
vulnerabilities, by performing this test we do identify some implementations that
potentially hang if they get an unlucky random tape, which likely is not desired
behaviour. By adding a check for low hamming weight outputs (which we do not
perform as part of our tests, but did observe by manually inspecting outputs),
one can also notice that certain implementations chose to use the output of the
PRG function call defined by NIST (“randombytes”) directly, while others may
be further hashing it. For the latter, their output under bad randomness does
not appear obviously different from output obtained using the correct PRG.

Fixed-length inputs. Another difference with testing hash functions is that often
inputs to KEM and DSS methods are fixed-length. Exceptions are (in principle)



random tapes, where however we provide fixed-lenghts PRG seeds, messages
for Sign, where we consider fixed messages since anyway these are usually first
hashed,8 and Verify for some schemes where variable-length signatures are possible.
In the latter case, we store the signature in a buffer large enough to always contain
the largest possible signature σ output by Sign, together with an buffer encoding
the bytelength ℓσ of the specific signature. We then consider the case of mauling
both σ and ℓσ.

Format strings. Finally, as we will explain shortly in Section 4, for the purpose
of reducing the amount of tests to be individually written, we will collect bit-
contribution and bit-exclusion tests into a single test. The testing functionality
will be given an input string s, that could contain multiple function inputs
concatenated (say, x = pk||sk||m||sig for a signature scheme test) and a “format
string” tape, that captures whether one should expect the output of the function
being tested on a mauled version of x to equal or differ from the output of the
tested on the original s. We remark that this is not imposed by the primitives,
and is rather an implementation choice. This helps reduce code duplication when
writing the tests.

4 Implementing metamorphic testing

A main focus of our work is to reduce the friction for maintainers of cryptographic
libraries in order to incorporate metamorphic testing techniques in said libraries.
In order to achieve this goal, we develope a metamorphic framework that is
general enough to encompass our test suite. In this section, we formalize this
framework, and in Section 4.1 we describe how it will be instantiated to test the
corresponding primitives.

Informally, our testing framework follows similar steps to those used in
software fuzzing. First, we generate some valid input x with respect to some
cryptographic primitive function Π and some public parameters pp. We then call
Π on this input to obtain some baseline result y. We will apply some mutations
to x in order to obtain a new input x′. On this mauled input we will apply again
the tested function and receive a new output y′. Then, we will compare this y
and y′ to verify that the input mutation has caused the output to change (or not)
in the way that we expected. In general, we assume non-malleability, meaning
that we expect Π(x) ̸= Π(x′).

In formalizing this, we define the a metamorphic test specification as follows.

Definition 7 (metamorphic test specification). Let Φ = (GenInput, Call,
Maul, Match) be a tuple of functions with the following syntax.

– GenInput : (Π,pp, fmt) 7→ (x, y, aux), takes an argument Π that specifies a
cryptographic primitive’s method implementation and how to execute it, some

8 And testing messages of different lengths would realistically only stress the underlying
hash function being used by the DSS.



fixed public parameter pp, and a formatting specifier fmt and returns a triple
consisting of an input x, an output y, and some auxiliary information aux.

– Call : (Π,x, aux,pp, fmt) 7→ y, takes Π, pp, fmt as in GenInput, auxiliary
information aux and an input x, and returns an output y.

– Maul : (x, fmt, σ) 7→ (x′, σ, expected result), takes an input x, a format string
fmt, some state σ and outputs a mutated input x′, some updated state σ and
a value expected result that specifies the expected change that the mutated
input should have on the result of Call.

– Match : (y, y′, expected result) 7→ b, compares y with y′ on account of
expected result and raises an error on failure.

Given a metamorphic test specification Φ, we instantiate our testing framework
as shown in Figure 1 to obtain a testing function Test(Π,pp, fmt, runs).

Test(Π, pp, fmt, runs)

1 sus← [ ]; σ ← ⊥;
2 (x, y, aux)← GenInput(Π, pp, fmt)

3 assert(y ̸= crash)

4 // Fuzzer loop

5 foreach i in {1, . . . , runs}
6 x′, σ, expected result← Maul(x, fmt, σ)

7 try

8 y′ ← Call(Π, x′, aux, pp, fmt)

9 Match(y, y′, expected result)

10 catch

11 sus.append((x, fmt, σ))

12 return sus

GenInput(Π, pp, fmt)

1 x← // an initial valid input to Π

2 aux← // auxiliary data for evaluating Call

3 y ← Call(Π, x, aux, pp, fmt)

4 return (x, y, aux)

Call(Π, x, aux, pp, fmt)

1 return // output of a call the Π API on x

Maul(x, fmt, σ)

1 return // a format-aware mutated input

Match(y, y′, expected result)

1 // checks whether the implementation behaved

2 // as expected and crashes on failure

Figure 1: Generic test framework.

The advantage of defining a test specification, and strictly adhering to the
defined interface during its implementation (for example, by defining custom
generic types aux t for auxiliary information aux, or pp t for public parameters
pp) is that the code implementing functions that do not have a cryptographic
primitive’s method implementation Π as input (such as the Match and Maul
functions, or as the Test function main loop) can be reused “as is” for different
functions Π being tested. Furthermore, we observe that in practice often some of
the structure and code in Π-dependent functions such as Call and GenInput can
also be reused between different tests.

Given a test specification Φ, the Test function that we use, described in
Figure 1, only checks for single (y, y′) pairs, rather than collecting sets of multiple



{y0, y1, y2, . . . } for collisions, as done in [12]. While manually implementing such
a test should be possible while reusing the code from Φ, the reason we define the
Test over pairs is that it lends itself to a trivial adaptation to fuzzing libraries. In
particular, we will use Φ to define a custom AFL++ mutator function that will
allow us to use the parallelisation utilities provided by AFL++, while running
our tests. Indeed, our Maul function is essentially a bit-flip deterministic mutator,
similar to the one provided by the fuzzing library, the main difference being that
we run a subset of all deterministic mutations considered by AFL++ to avoid
an explosion of equivalent mutations being discovered. In order for the fuzzer to
pick up an unexpected output from Π, whenever the Match function observes an
unexpected result, we purposely crash it.

While defining a testing specification helps us normalise terminology and
in principle implement more general testing, our main contribution is defining
specific cryptographically-informed programs to fuzz, that not only are supposed
to not crash due to software bugs, but that also may capture a security property,
such that their crashing implies failure of the underlying implementation to
uphold a cryptographic property.

Types. We implement our test code in the C programming language, since the
reference implementations in LibOQS and SUPERCOP are similarly written in
C. To keep our test code in line with the test specification Φ, we define some
abstract types for inputs x (in t), outputs y (out t), public parameters pp
(pp t), auxiliary information aux (aux t), formatting specifiers fmt (fmt t) and
expected results (exp res t).

– The method implementation Π and the public parameters pp t will be
specific to the cryptographic library being tested. In LibOQS’ case, Π is
implicitly imported with the library (#include <oqs/oqs.h>), while pp t

only contains an integer “algorithm identifier” entry which is used by the
LibOQS interface to select the algorithm being used.

– in t is a struct pointing to a byte buffer and storing its byte length.
– out t is a struct pointing to a byte buffer, storing its length, and also storing

an integer return value that the method being tested may return (e.g., 0 on
correct decapsulation).

– aux t is a list of byte buffers, each stored together with its byte lenght.
– fmt t is a list of (ℓ, lbl) tuples, each containing a bit length ℓ together with

an associated “label” lbl.
– exp res t is a boolean storing whether outputs (y, y′) should match or not.

The case of (ℓ, lbl) tuples contained in fmt t deserves a more detailed ex-
planation. In particular, consider the case covered in bit-exclusion tests in [12].
Suppose we are testing a hash function implementation that should be defined
for bit strings with length ℓ ̸= 0 mod 8. Say we have an input string x of bit
length ℓ = 14. Then x will be stored in a in t struct pointing to a byte buffer of
bytelength 2, where the last two bits are unused.

If we were testing bit-contribution and bit-exclusion independently, the first
test would flip the first 14 bits and check that resulting hashes differ, while the



x = x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

second test would flip the last 2 bits and check that hashes do not differ. Our
Maul function performs both tests as once by making use of the format specifier
fmt. In particular, we would set fmt← [(14, DIFF), (2, EQ)], and store which bit
should first be flipped as part of state σ. Say, σ ← 0, where we address bits
from 0 to 15. Given the initial input in t x, Maul would flip x’s σth bit, and set
the expected result value based on whether to expect the flipped bit to cause
different hashes (σ < 14) or the same hashes (σ ≥ 14). In practice, whether this
condition is satisfied or not (and hence wether we detected a bug or not) will be
checked by Match. Utility functions for computing labels and data lengths from
format strings are given in Figure 2.

In order to detect memory over-reading, we tend to define format strings
that include a one-byte buffer before and after the main buffer to be used by
the test program. For example, in the case of the above example, we may pass
fmt← [(8, EQ), (14, DIFF), (2, EQ), (8, EQ)], and have the test program specifically
address the input and output buffers starting from the second byte, located at
“&x[1]”, rather than from the first, located at “&x”.

BufBitlen(fmt)

1 bitlen← 0

2 foreach (ℓ, lbl) ∈ fmt

3 bitlen← bitlen + ℓ

4 return bitlen

BufBytelen(fmt)

1 len← ⌊(BufBitlen(fmt) + 7)/8⌋
2 return len

GetLabel(i, fmt)

1 cnt← −1
2 idx← −1
3 while cnt < i

4 idx← idx + 1

5 (ℓ, lbl)← fmt[idx]

6 cnt← cnt + ℓ

7 return lbl

Figure 2: Format parsing utilities.

4.1 Instantiating specifications

We now look at how to concretely instantiate a metamorphic test specification.
We start by looking at hash functions, which present a simpler case. We then
follow by outlining the tests we perform on KEMs and DSSs.

Hash Functions. The security properties often expected from cryptographic
hash functions are preimage, second preimage, and collision resistance. Many
protocols model them as random oracles, meaning that there is commonly also



the expectation that the output of the hash function would look uniformly
distributed.

The Test function defined in Figure 1 essentially generates pairs (x, y ← H(x))
and (x′, y′ ← H(x′)), and proceeds to check for validity of these pairs using a
Match function. While it is unclear how to test for for preimage and collision
resistance using this framework, second preimage resistance is to some extent
testable by having Match implement an equality check between y and y′, as
essentially previously done in [12]. This results in Test 1.

Near-second preimages and uniform outputs may also be testable, by using
some statistical test on y and y′ inside Match, however we leave this for future
work.

Test: Hash(Maul(x))

Format: [(8, EQ), (ℓ, DIFF), (8, EQ)]

GenInput

1 x← (18)2||(0ℓ)2||(18)2
2 aux← ⊥
3 return x,Call(), aux

Call

1 y ← Hash(&x[1])

2 return y

Test 1: Testing Hash, mauling
the input x.

Test: Gen(;Maul(r))

Format: [(8, DIFF)]

GenInput

1 x← (08)2

2 aux← ⊥
3 return x,Call(), aux

Call

1 (sk, pk, rv)← Gen(;x)

2 y ← (sk||pk, rv)
3 return y

Test 2: Testing Gen, mauling
random tape r.

KEMs. Due to the richer API compared to hash functions, more tests can be
designed for KEMs. We will be trying to capture bugs in the three functions Gen,
Encaps and Decaps, by testing the behaviour of the output when modifying each
individual input.

As Gen and Encaps take in input a random tape, our tests will have to deal
with it. We consider two scenarios. In the first scenario, we are mauling an input
that is not the random tape, say pk in Encaps. In this case, we fix a seed for
the random number generator (RNG). In the second scenario, we are mauling
specifically the random tape. Since mauling the seed to the RNG would likely not
have any effect other than testing on different randomness, we instead leverage
the flexibility of the LibOQS interface to RNGs, and define a bad RNG, that
outputs a fixed byte, given in input. While no security should be expected by
a KEM (or DSS) without access to good randomness, we notice however that
some implementations hang in this scenario.



We note that, while the cryptographic interface of KEM functions does not
mention a “return value”, these functions do technically return an integer value
as C functions as implemented in LibOQS. We include this in the output of each
function, and check it as part of Match.

Testing Gen. The key generation algorithm Gen takes as input a random tape
and outputs a secret-public key pair (sk, pk). Here we only test the function under
bad randomness, Test 2, looking for collisions in output. Some implementations
hang on bad random tapes; this is likely due to key generation trying to sample
random elements with some given mathematical property, and failing to find one.

Testing Encaps. The encapsulation function Encaps takes in input a public key
pk and a random tape, and outputs a shared secret ss and an encapsulation c of
ss. We run two experiments where pk is mauled. In the first one, Test 3, we test
whether the shared secret generated by Encaps on a valid public key pk and on
a mauled version pk′ differ. In the second experiment, Test 4, we test whether
the shared secret generated by Encaps on a mauled public key still decapsulates
correctly. In the experiment where we maul the random tape, Test 5, we check
that outputs of Encaps change as a result.

Test: Encaps(Maul(pk); r)

Format: [(8, EQ), (|pk|, DIFF), (8, EQ)]
GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 x← (18)2||pk||(18)2
4 aux← sk

5 return x,Call(), aux

Call

1 ( , r)← PRG("call")

2 (ss, c, rv)← Encaps(&x[1]; r)

3 y ← (ss||c, rv)
4 return y

Test 3: Testing Encaps, mauling public
key pk.

Test: Decaps(sk,Encaps(Maul(pk); r))

Format: [(8, EQ), (|pk|, DIFF), (8, EQ)]
GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 x← (18)2||pk||(18)2
4 aux← sk

5 return x,Call(), aux

Call

1 ( , r)← PRG("call")

2 (sse, c)← Encaps(&x[1]; r)

3 (ssf , rv)← Decaps(c, aux)

4 eq ← Jsse = ssf K
5 y ← (eq, rv)

6 return y

Test 4: Testing Encaps, mauling public
key pk, then decapsulating.

Testing Decaps. The decapsulation function Decaps produces a shared secret
ss from a secret key sk and encapsulation c. In this case no random tape is



Test: Encaps(pk;Maul(r))

Format: [(8, DIFF)]

GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 x← (08)2

4 aux← pk

5 return x,Call(), aux

Call

1 (ss, c, rv)← Encaps(aux;x)

2 y ← (ss||c, rv)
3 return y

Test 5: Testing Encaps, mauling ran-
dom tape r.

present, and the mauling is simply performed over the secret key sk, Test 6, or
the ciphertext c, Test 7, with Match checking whether the resulting shared secrets
differ from the original. In particular, failing to pass the test mauling c highlights
a failure to provide IND-CCA security (Definition 5).

DSSs. The API of digital signatures is similarly rich to that of KEMs, hence
we follow a similar approach in writing and running tests. While we test the
functionality of Verify, we note that in the older versions of LibOQS the interface
did use instead a “Open” function (crypto sign open(...)) required by NIST.
We have decided to omit also testing Open, and following to the UF-CMA syntax
instead.

Testing Gen. This is done identically to what is done for KEMs.

Testing Sign. The Sign function maps a secret key sk, message m, and random
tape r, to a signature σ of length ℓσ (and a return value, in the case of LibOQS).
Not all signature schemes tested have constant-size signatures. To address these
cases, LibOQS provides an upper bound on the signature length, and outputs a
buffer containing the signature σ and an integer containing the signature length
ℓσ. We consider both σ and ℓσ as part of the signature (as both are output by
Sign and are required by Verify), and store and check them accordingly.

We expect the output of our tests in Tests 8 to 10 to result in differing
signatures. We however notice that the Sign algorithm must not necessarily be
a deterministic one. Therefore, we expect collisions for deterministic schemes
whenever Sign is being tested using differing random tapes.



Test: Decaps(Maul(sk), c)

Format: [(8, EQ), (|sk|, DIFF), (8, EQ)]
GenInput

1 (s, r)← PRG("geninput")

2 (sk, pk)← Gen(; r)

3 ( , r′)← PRG(s)

4 (sse, c)← Encaps(pk; r′)

5 x← (18)2||sk||(18)2
6 aux← (pk, c)

7 return x,Call(), aux

Call

1 (ssf , rv)← Decaps(&x[1], aux)

2 y ← (ssf , rv)

3 return y

Test 6: Testing Decaps, mauling secret
key sk.

Test: Decaps(sk,Maul(c))

Format: [(8, EQ), (|c|, DIFF), (8, EQ)]
GenInput

1 (s, r)← PRG("geninput")

2 (sk, pk)← Gen(; r)

3 ( , r′)← PRG(s)

4 (sse, c)← Encaps(pk; r′)

5 x← (18)2||c||(18)2
6 aux← (pk, sk)

7 return x,Call(), aux

Call

1 (ssf , rv)← Decaps(aux,&x[1])

2 y ← (ssf , rv)

3 return y

Test 7: Testing Decaps, mauling cipher-
text c.

Test: Sign(Maul(sk),m; r)

Format: [(8, EQ), (|sk|, DIFF), (8, EQ)]
GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 m← (0256)2

4 aux← (pk,m,⊥)

5 x← (18)2||sk||(18)2
6 return x,Call(), aux

Call

1 ( , r)← PRG("call")

2 (ℓσ, σ, rv)← Sign(&x[1], aux.m; r)

3 y = (ℓσ||σ, rv)
4 return y

Test 8: Testing Sign, mauling secret
key sk.

Test: Sign(sk,Maul(m); r)

Format: [(8, EQ), (256, DIFF), (8, EQ)]

GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 aux← (pk, sk)

4 m← (0256)2

5 x← (18)2||m||(18)2
6 return x,Call(), aux

Call

1 ( , r)← PRG("call")

2 (ℓσ, σ, rv)← Sign(aux.sk,&x[1]; r)

3 y = (ℓσ||σ, rv)
4 return y

Test 9: Testing Sign, mauling message
m.



Test: Sign(sk,m;Maul(r))

Format: [(8, DIFF)]

GenInput

1 ( , r)← PRG("geninput")

2 (pk, sk, rv)← Gen(; r)

3 x = $← (08)2

4 m← 00 // 1 byte

5 aux← (sk,m)

6 return x,Call(), aux

Call

1 (ℓσ, σ, rv)← Sign(aux.sk, aux.m;x)

2 y = (ℓσ||σ, rv)
3 return y

Test 10: Testing Sign, mauling random
tape r.

Test: Verify(Maul(pk),m, σ)

Format: [(8, EQ), (|pk|, DIFF), (8, EQ)]
GenInput

1 (s, r)← PRG("geninput")

2 m← 42
32

// 32 bytes

3 (sk, pk)← Gen(r)

4 ( , r′)← PRG(s)

5 (ℓσ, σ, rv)← Sign(sk,m; r′)

6 x← (18)2||pk||(18)2
7 aux← (sk,m, σ, ℓσ)

8 return x,Call(), aux

Call

1 rv ← Verify(&x[1], aux.m, aux.σ)

2 y ← rv

3 return y

Test 11: Testing Verify, mauling public
key pk.

Test: Verify(pk,Maul(m), σ)

Format: [(8, EQ), (256, DIFF), (8, EQ)]

GenInput

1 (s, r)← PRG("geninput")

2 m← (0256)2

3 (sk, pk)← Gen(r)

4 ( , r′)← PRG(s)

5 (ℓσ, σ, rv)← Sign(sk,m; r′)

6 x← (18)2||m||(18)2
7 aux← (pk, sk, σ, ℓσ)

8 return x,Call(), aux

Call

1 rv ← Verify(aux.pk,&x[1], aux.σ)

2 y ← rv

3 return y

Test 12: Testing Verify, mauling mes-
sage m.

Test: Verify(pk,m,Maul(σ))

Format: [(|ℓσ|, DIFF), (8, EQ), (|σ|, DIFF), (8, EQ)]
GenInput

1 (s, r)← PRG("geninput")

2 (sk, pk)← Gen(; r)

3 m← 42
32

// 32 bytes

4 ( , r′)← PRG(s)

5 (ℓσ, σ, rv)← Sign(sk,m; r′)

6 aux← (pk, sk,m)

7 x← (ℓσ||(18)2||σ||(18)2)
8 return x,Call(), aux

Call

1 rv ← Verify(aux.pk, aux.m,&x[⌊ ℓσ + 7

8
⌋+ 1])

2 y ← rv

3 return y

Test 13: Testing Verify, mauling signa-
ture σ.



Testing Verify. The Verify function maps a public key pk, messagem and signature
(and signature length) (σ, ℓσ), into a return value indicating success or failure of
verification. Checks are performed on the output return value rv accepting or
rejecting the signature. Tests check whether mauling of the inputs results in a
similarly valid signature to the original, see Tests 11 to 13. In the specific case
where the signature is being mauled, Test 13, the new signature passing verification
implies a lack of strong unforgeability (Definition 6) of the implementation.

5 Our Experiments

5.1 Experimental setup

Testing loop. The starting point of our implementation is the AFL++ fuzzing
framework9 [5]. The fuzzing framework is responsible for handling crashes of
the program under observation and collecting information required to reproduce
such crashes. While AFL++ already provided most of the functionality that was
needed out-of-the-box, there were a few modifications that were required from
our part to make the framework more closely match our requirements. First, the
default AFL++ has a hard 1 MB limit on the size of input files, which we had
to increase to 10 MB to make room for storing large public keys as part of the
crashing inputs. Second, the default deterministic mutator triggers the same bug
multiple times due to trying many redundant Maul combinations such as flipping
every bit and every pair of neighboring bits. We write a custom mutator to only
flip single bits for the sake of runtime. Third, some schemes produce too many
crashing examples. Since each recorded crash may contain megabytes of auxiliary
information (such as large public keys), we limit AFL++ to only collect up to 10
unique crashes (down from the default 104), to avoid storing terabytes of data.

Cryptographic implementations. The cryptographic implementations that we
chose to test were collected from from the Open Quantum Safe project (Li-
bOQS) [16] and the SUPERCOP project [1]. For LibOQS, we tested the 0.8.0
release, the 0.4.0 release, and the November 2018 nist-branch snapshot. These
three snapshots include the majority of all reference implementations submitted
to NIST as part of their post-quantum standardisation process [14]. For hash
functions, we tested the 20240107 release of SUPERCOP.

5.2 Results

During our testing, we identify many instances of implementations deviating
from our expected results. Before delving into details, we clarify how we count
the number of instances of an unexpected result. Say we have a scheme “XYZ”
that presents two different parameterisations: “XYZ-128” and “XYZ-256”, and
that both parameter sets have a reference implementation in different versions of
LibOQS. We count test results in different versions of LibOQS independently.

9 https://github.com/AFLplusplus/AFLplusplus

https://github.com/AFLplusplus/AFLplusplus


We also count test results in different parametrisations independently. However,
we do not count multiple test results in a specific parametrisation and LibOQS
version multiple times. For example, if the implementations of “XYZ-128/256”
in LibOQS 0.4.0 and 0.8.0 share a same line of code that triggers a bug in both
version of LibOQS using two different inputs, we would count this 4 times: once
per parameter set and per LibOQS version. We use this approach since we count
total numbers automatically, instead of manually inspecting the reason for each
specific unexpected result.

In our testing, we identify 265 malleabilities, where changing one function
input does not result in a change in function output. We report in Table 2
the total number for each test. While not all malleabilities imply a security or
software bug, some do. We also detect 38 hangs, 50 segmentation faults, 3 heap
overflows, and 2 stack overflows caused by mauling one of the intended inputs.
These could be seen as software vulnerabilities, depending on how exposed the
API for the scheme is. We proceed to mention some examples below. We provide
a full list of results and code for reproducing the tests at https://gitlab.com/
fvirdia/crypto-fun-test.

Table 1: Wall time required to run our tests. The machine used has two Intel(R)
Xeon(R) Gold 6138 CPUs at 2.00GHz with 20 cores each and 376GiB of RAM.

Library Used cores Wall time

SUPERCOP 20240107 31 6h 58m
LibOQS nist-branch 11-2018 31 8h 59m
LibOQS 0.4.0 31 12h 43m
LibOQS 0.8.0 31 14h 23m

Software bugs. An immediately useful category of results identified by our
test are software bugs, by which we mean segmentation faults, stack and heap
overflows, memory over-reads.

In particular, we find a memory over-read vulnerability in the optimised
implementation of the KNOT-384 [19] hash function submitted to the first round
of the NIST lightweight cryptography standardisation process [13], which has
since been fixed by the authors albeit not disclosed by them. This bug would
result in messages with a multiple-of-6 bytelength to be hashed to different
values depending on the first byte following the message in memory. The issue
was caused by incorrect masking in the conversion between least-significant-bit-
first and most-significant-bit-first integer notation. This bug was fixed by the
authors in a later round submission without disclosure of the bug. The version in
SUPERCOP was not updated.

We also include hangs in this classification, although often this is plausibly
not the result of a software bug. Indeed, they may be expected behaviour. For
example, if key generation requires using the randomness source to sample a

https://gitlab.com/fvirdia/crypto-fun-test
https://gitlab.com/fvirdia/crypto-fun-test


Table 2: Summary of the kind of malleabilities and crashes observed during our
tests.

Bit contribution failure Bit exclusion failure
Test Malleabilities Crashes/hangs Non-malleabilities

SUPERCOP 20240107

Hash(Maul(m)), Test 1 3 0 3

LibOQS 0.8.0

Encaps(Maul(pk); r), Test 3 10 0 0
Decaps(sk,Encaps(Maul(pk); r)), Test 4 10 0 0
Encaps(pk;Maul(r)), Test 5 1 10 (hang) 0
Decaps(Maul(sk), c), Test 6 23 0 0

Sign(Maul(sk),m; r), Test 8 3 0 0
Verify(pk,m,Maul(σ)), Test 13 2 0 0

LibOQS 0.4.0

Encaps(Maul(pk); r), Test 3 23 8 (segfault) 0
Decaps(sk,Encaps(Maul(pk); r)), Test 4 31 8 (segfault) 0
Encaps(pk;Maul(r)), Test 5 1 10 (hang) 0
Decaps(Maul(sk), c), Test 6 51 0 0
Decaps(sk,Maul(c)), Test 7 10 0 0

Sign(Maul(sk),m; r), Test 8 10 3 (heap buffer overflow) + 1 (hang) 0
Sign(sk,Maul(m); r), Test 9 0 1 (hang) 0
Sign(sk,m;Maul(r)), Test 10 22 1 (hang) 0
Verify(Maul(pk),m, σ), Test 11 7 1 (hang) 0
Verify(pk,Maul(m), σ), Test 12 0 1 (hang) 0
Verify(pk,m,Maul(σ)), Test 13 9 1 (hang) 0

LibOQS nist-branch 11-2018

KEM Gen(;Maul(r)), Test 2 3 0 0
Encaps(Maul(pk); r), Test 3 4 6 (segfault) + 1 (returns ⊥) 0
Decaps(sk,Encaps(Maul(pk); r)), Test 4 9 7 (segfault) + 1 (hang) 0
Decaps(Maul(sk), c), Test 6 24 12 (segfault) + 7 (hang) 0
Decaps(sk,Maul(c)), Test 7 3 9 (segfault) + 2 (stack overflow) + 4 (hang) 0

Sign(sk,m;Maul(r)), Test 10 6 0 0



non-zero integer and we assume the source is tampered such that only zeroes
are output, these may likely lead to key generation hanging. To avoid this kind
of scenario, it may be advisable to not use directly a randomness source, and
instead post-processing it with a pseudorandom generator.

Cryptographic weaknesses. Three of our tests identify implementations not
satisfying well-established security notions.

First, we observe three hash function implementations failing to achieve
second-preimage resistance (Definition 4): acehash256v1 (SSE2 implementation),
syconhash256v1 (AVX implementation), syconhash256v1 (SSE implementation).

We further identify some KEM implementations not satisfying IND-CCA
security (Definition 5). Some of these are purposely designed not to provide
such security, such as the ephemeral ThreeBears and SIKE variants in LibOQS
0.4.0, and the BIKE variant in LibOQS nist-branch 11-2018. Some crash or
hang on decapsulation of mauled ciphertext, such as Big Quake, LedaKEM
and Lima in LibOQS nist-branch 11-2018, technically providing a a form of
ciphertext-validity oracle. Finally, NTRU variants in LibOQS 0.4.0 (HRSS-701,
HPS-2048-677, HPS-2048-509) perform decapsulation of the encapsulated shared
secret, hence failing to provide IND-CCA security. This bug, caused by the
implementation not checking zero-padding of non-byte-aligned encapsulations,
was confirmed and fixed after private disclosure. 10

In the case of signatures, we identify some schemes not providing strong
unforgeability (Definition 6), such as various Picnic and Falcon instances in
LibOQS 0.4.0, with Falcon still lacking strong unforgeability in LibOQS 0.8.0.
Private communication with the Falcon team confirmed that this had been
independently discovered and addressed in version 1.2 of the specification. Shortly
after disclosure, the version of Falcon available via LibOQS was updated. 11 While
strong UF-CMA is a standard security notion, the NIST competition did not
require proposed schemes to satisfy it, and none of these schemes claims it.
However, in the case of Falcon, the signature scheme is built using the GPV
paradigm, which guarantees strong unforgeability [8, Prop 6.1]. As the Falcon
team did not mention this not being the case in their design document, users could
expect this property to hold by default. The loss of strong unforgeability was
due to the encoding scheme being used for integer coefficients in their signatures,
which did not guarantee unique encodings.

Potentially unexpected properties. Most of our tests stress malleabilities
allowed by standard security notions. However, some of these may be counterin-
tuitive at first thought. Among these, we highlight the malleability of keys.

Intuitively, one may think that a secret key should be uniquely identified
to lead to correct decapsulation. However, This is not true for a large quantity
of schemes. For example, this is the case for many schemes using the Fujisaki-
Okamoto transform [6,7] to compile a passively secure encryption scheme into an

10 https://github.com/jschanck/ntru/commit/6bb52396fed494001228ca579f4c1d91ef558171
11 https://github.com/open-quantum-safe/liboqs/issues/1315

https://github.com/jschanck/ntru/commit/6bb52396fed494001228ca579f4c1d91ef558171
https://github.com/open-quantum-safe/liboqs/issues/1315


IND-CCA KEM. Implicit-rejection variants of the transform append a random
string to the secret key from the passively secure scheme to be used to derive
incorrect decapsulations whenever a ciphertext has been mauled [9]. This random
string is not used if a ciphertext was not altered before decapsulation. Conse-
quently, modifying this tag (and hence the secret key of the KEM) still allows
correct decapsulation. This phenomenon is behind all implementations claiming
IND-CCA security in LibOQS 0.8.0 and 0.4.0 that our tests detect as returning
an unexpected result in Test 6.

We also observe some cases of malleability of DSS secret and public keys.
Unlike for KEMs, malleability of secret keys does not seem to be caused by a
specific transform, but rather due to having the same secret key format among
randomised and de-randomised variants of the scheme. For example, Dilithium’s
secret key has the format sk = (. . . ,K, . . . ) where K ∈ {0, 1}256, where K is
used in the deterministic variant of the scheme for generating message-dependent
pseudorandomness within Sign. The randomised variant of the scheme ignores K
and samples such signing randomness freshly. As in our tests we fix the seed of
the random number generator (which provides this “fresh” signing randomness
to the randomised variant), ignoring K results in different secret keys producing
in the same signature. In practice, unlike for KEMs where decapsulation is
inherently deterministic, this case would only be observable in deployment only
if the randomness source for the signing process was faulty.

In the case of public keys, we notice that being able to maul a public key
pk such that, given a (pk,m, σ) tuple that passes verification, (Maul(pk),m, σ)
also does, is reminiscent of breaks of conservative exclusive ownership (CEO) [15,
Def. 1]. Unlike in the case of successful CEO adversaries, we are however not able
to learn a valid secret key for Maul(pk), excluding the possibility of impersonation
attacks [10].

6 Conclusions

Metamorphic testing had been previously proposed as a source of stress tests
that could be useful when developing and evaluating hash function implemen-
tations [12]. In this work we argue that metamorphic testing approaches can
be used to test implementations of more complex primitives, and demonstrate
this by discovering or rediscovering various bugs in various implementations of
KEMs and DSSs adopted by the LibOQS project at different points in time. Our
implementation also suggests that this kind of tests could relatively easily be
integrated with pre-existing libraries such as SUPERCOP and LibOQS due to
the standard API used by these collections, allowing implementers to quickly be
made aware of bugs and other unexpected properties their implementations may
present.

Acknowledgements. We thank Greg Zaverucha for many useful discussions
on early versions of this work. We also thank Martin R. Albrecht for providing
servers for running our experiments.



References

1. D. J. Bernstein and T. Lange. (editors). eBACS: ECRYPT benchmarking of
cryptographic systems. https://bench.cr.yp.to, accessed on 29 January 2024.

2. D. Bleichenbacher, T. Duong, E. Kasper, Q. Nguyen, and C. Lee. Project wycheproof.
https://github.com/google/wycheproof.

3. T. Chen, T. Tse, and Z. Zhou. Fault-based testing without the need of oracles.
Information and Software Technology, 45(1):1–9, 2003.

4. T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: a new approach
for generating next test cases. arXiv preprint arXiv:2002.12543, 2020.

5. A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. AFL++: Combining incremental
steps of fuzzing research. In 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020.

6. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 537–554. Springer, Heidelberg, Aug. 1999.

7. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, Jan. 2013.

8. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

9. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017.

10. D. Jackson, C. Cremers, K. Cohn-Gordon, and R. Sasse. Seems legit: Automated
analysis of subtle attacks on protocols that use signatures. In L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, editors, ACM CCS 2019, pages 2165–2180. ACM Press, Nov.
2019.

11. M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers. Improving soft-
ware quality in cryptography standardization projects. In 2022 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages 19–30, 2022.

12. N. Mouha, M. S. Raunak, D. R. Kuhn, and R. Kacker. Finding bugs in cryptographic
hash function implementations. IEEE Transactions on Reliability, 67(3):870–884,
2018.

13. National Institute of Standards and Technologies. Announcing request for nomina-
tions for lightweight cryptographic algorithms; notice. In 83 Federal Register 43656,
pages 43656—43657, August 2019. Available at https://www.federalregister.
gov/d/2018-18433.

14. NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process, 2016. Available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf.
15. T. Pornin and J. P. Stern. Digital signatures do not guarantee exclusive ownership.

In Applied Cryptography and Network Security: Third International Conference,
ACNS 2005, New York, NY, USA, June 7-10, 2005. Proceedings 3, pages 138–150.
Springer, 2005.

16. D. Stebila and M. Mosca. Post-quantum key exchange for the internet and the
open quantum safe project. In R. Avanzi and H. Heys, editors, Selected Areas
in Cryptography – SAC 2016, pages 14–37, Cham, 2017. Springer International
Publishing.

https://bench.cr.yp.to
https://github.com/google/wycheproof
https://www.federalregister.gov/d/2018-18433
https://www.federalregister.gov/d/2018-18433
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf


17. E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,
25(4):465–470, 11 1982.

18. J. Yang, S. Arya, and Y. Wang. Formal-guided fuzz testing: Targeting security
assurance from specification to implementation for 5g and beyond. arXiv preprint
arXiv:2307.11247, 2023.

19. W. Zhang, T. Ding, B. Yang, Z. Bao, Z. Xiang, F. Ji, and X. Zhao.
KNOT: Algorithm specifications and supporting document, 2019.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/knot-spec-round.pdf.
20. Y. Zhou, F. Ma, Y. Chen, M. Ren, and Y. Jiang. Clfuzz: Vulnerability detection of

cryptographic algorithm implementation via semantic-aware fuzzing. ACM Trans.
Softw. Eng. Methodol., 33(2), dec 2023.

21. Z. Q. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen. Metamorphic
testing and its applications. In Proceedings of the 8th International Symposium
on Future Software Technology (ISFST 2004), pages 346–351. Software Engineers
Association Xian, China, 2004.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

	Finding Bugs and Features Using Cryptographically-Informed Functional Testing
	Introduction
	Preliminaries
	Notation
	Security notions

	Metamorphic testing
	Metamorphic testing for Hash functions
	Metamorphic testing for KEMs and DSSs

	Implementing metamorphic testing
	Instantiating specifications

	Our Experiments
	Experimental setup
	Results

	Conclusions


