
Breaking HWQCS: a code-based signature scheme
from high weight QC-LDPC codes

Alex Pellegrini1 , Giovanni Tognolini2

1 Department of Mathematics, Eindhoven University of Technology
2 Department of Mathematics, University of Trento

alex.pellegrini@live.com, giovanni.tognolini@unitn.it

Abstract. We analyse HWQCS, a code based signature scheme presented at
ICISC 2023, which uses quasi-cyclic low density parity check codes (QC-LDPC).
The scheme introduces high Hamming weight errors and signs each message using
a fresh ephemeral secret key rather than using only one secret key, so to avoid
known attacks on QC-LDPC signature schemes. In this paper, we show that
the signatures of HWQCS leak substantial information concerning the ephemeral
keys and formally describe this behaviour. Furthermore, we show that for each
security level, we can exploit the leakage to efficiently reconstruct partial secret
data from very few signatures, and finally mount a universal forgery attack.

Keywords: post-quantum cryptography, code-based cryptography, hash&sign signature,
universal forgery, information leakage

1 Introduction

Linear codes are well known in cryptography, and their use spans multiple branches of this
subject. In this work we deal with a code based digital signature scheme, and here we provide
an overview of how linear codes have been used with this aim. Two important computationally-
hard algebraic problems arising in coding theory are the Syndrome Decoding Problem (SDP)
and the Codeword Finding Problem (CFP). Several code-based digital signature schemes are
built upon SDP, and an adversary who wants to break such schemes is usually left with the only
option of solving these problems. Currently, the two main approaches for solving these problems
are information set decoding (ISD) algorithms and the generalized birthday algorithm (GBA).
ISD algorithms demonstrate greater efficiency when the decoding problem involves only a lim-
ited number of solutions, while GBA is more effective when the expected number of solutions
is high. We refer the reader to [22] for more details on these techniques.

Code-based digital signature schemes can be divided into two variants. On one hand there
are the schemes based on proofs of knowledge, which in turn can follow the Fiat-Shamir [9] or
the Schnorr-Lyubashevsky [13] approach, while on the other side there are the schemes follow-
ing the hash&sign paradigm.

According to the aim of this work, we focus on digital signature schemes which follow the
hash&sign paradigm. Among these schemes, CFS [2, 3] and KKS [11] were the first to be in-
troduced. The idea behind both of them is the same: the digest of a message to be signed
is considered as the syndrome of a corrupted codeword, and the owner of the private key is
the only one capable of decoding. The main difference between CFS and KKS is that in the
former the digest is considered as a random syndrome, leading to an inefficient scheme, while
the latter manipulates the digest to output a decodable syndrome, leading to a very efficient
but insecure scheme [16]. In order to mitigate the efficiency issues of CFS, some authors have
proposed similar schemes in which the hash function is replaced by a map whose output is a
syndrome with small-weight coset-leader, combining some ideas behind both CFS and KKS.
This approach has been adopted e.g. in [18], where the authors use a hash function based on

the works of Augot, Finiasz and Sendrier [1] and on the Merkle-Damgard construction [4, 15].
However, this approach has been proved insecure in [8].

In 2014, the first rank metric code based signature scheme RankSign [10] has been designed,
which uses augmented low-rank parity check codes (LRPC). A structural attack [6] on RankSign
was developed in 2018. During the last years there have been different attempts to build similar
digital signature schemes [17, 10, 12, 19] but it seems that the cryptographic community is far
from achieving a trustable proposal [20, 23, 7]. In this context, a remarkable hash&sign code
based digital signature scheme that still remains unbroken is Wave [5], which has been proposed
in 2019 and relies on the indistinguishability of the normalized generalized (U,U + V) codes.

In 2023, a new attempt to build a code based signature scheme, called HWQCS [21], has
been made. HWQCS uses QC-LDPC codes with the Hamming metric and introduces the use
of high weight errors to make the decoding problem harder for an attacker. The construction
of this scheme is devised in such a way to prevent other known attacks from being effective.

Contributions. This work addresses the cryptanalysis of [21]. First, we show that every signa-
ture reveals some information about the ephemeral keys used in the signing process. We formally
describe the stochastic behaviour of the exposed information leakage and provide experimental
evidence in support of our claims.

As a second contribution, we show that, for any security level (128,192 and 256 bits) an
attacker only needs a handful of signatures in order to be able to recover partial secret data,
which is meant to be known only by the signer. We compute lower bounds of the success
probability of this event for every intercepted signature. After, we proceed to mount a universal
forgery attack using the data recovered using our strategy.

Finally, we provide a probabilistic algorithm along with a SageMath implementation and
supporting experimental data, that efficiently outputs the secret data needed to forge valid
signatures for arbitrary messages. We also propose a slight speed-up for the security level 256
which turns out to be the best scenario for our attack.

Related works. Part of this work follows a strategy similar to that of [20]. The idea is to
analyse a valid signature and exploit the bias on the distribution of the signature coefficients
to perform a statistical test and thus obtain part of the key.

Organization of this paper. Section 2 defines the necessary background and notation which
will be used throughout the paper. In Section 3 we recall the setup, key generation, sign and
verification phases of the HWQCS scheme. In Section 4 we describe how the scheme leaks infor-
mation and how to exploit very few signatures to completely reconstruct the private ephemeral
values used to sign. Finally, Section 5 presents our attack in its full generality, showing how
to mount a universal forgery attack, and we propose a speed-up for the security level 256. We
provide Sagemath code and experimental data in support of our results.

2 Background and Notation

Let F2 be the finite field with two elements. The Hamming weight of a vector a ∈ Fn
2 , with

a = (a1, a2, . . . , an), is defined as

wtH(a) := # {i ∈ [n] | ai ̸= 0} ,

where we denote with [n] the interval of values {1, . . . , n}. The Hamming distance between two
vectors a,b ∈ Fn

2 is defined as dH(a,b) = wtH(a − b). We denote with Vn,w ⊂ Fn
2 the set of

vectors of length n and Hamming weight w. Let k, n ∈ N, then a linear [n, k, d]-code C is a
k-dimensional subspace of Fn

2 with minimum distance

d := min
a,b∈C,a ̸=b

dH(a− b).

In this work, we consider vectors as row vectors, and thus their transposes as column
vectors. Let R := F2[x]/(x

n − 1) be the ring of all polynomials over F2 of degree less than n.
For a ∈ Fn

2 , denote by a(x) the unique polynomial a(x) = a1 + a2x+ · · ·+ anx
n−1 ∈ R. Given

2

a vector a ∈ Fn
2 , we denote its j-th entry by aj when a = (a1, . . . , an) is specified, and by

(a)j otherwise. Similarly, we denote the j-th coefficient of a polynomial a(x) ∈ R as (a(x))j .
Consider two elements a,b ∈ Fn

2 , then the vector c ∈ Fn
2 , such that c(x) = a(x)b(x), can be

computed by the formula c⊤ = circ(a) ·b⊤, where circ(a) is the n×n circulant matrix obtained
from a as

circ(a) =

a1 an · · · a2

a2 a1 · · · a3

...
...

. . .
...

an an−1 · · · a1

 ,

whose j-th row is a circular right shift of the first row of j positions. Due to this relationship,
it is possible to link the description of the scheme presented in [21] to the Syndrome Decoding
Problem. In particular, HWQCS uses two ephemeral values e1(x), e2(x) ∈ R with low weight,
a public element h(x) ∈ R, and computes the public value b(x) = e1(x) ·h(x)+ e2(x) ·h−1(x).
An attacker who wants to retrieve the ephemeral values is therefore asked to solve the following
decoding problem:

b =
(
circ(h) | circ(h)−1) (e1, e2)

⊤.

3 The HWQCS Signature Scheme

This section describes the algorithms of HWQCS [21] for key generation KeyGen, signature Sign
and the verification Verify. We assume that the global parameters k,wf , wu, we, wc, ws, wt,
R and hashωc provided in the setup are public, and we do not specify them as input of the
algorithms.

Setup. The parameters of the scheme are the positive integers k,wf , wu, we, wc, ws, wt, the
quotient ring R = F2[x]/(x

k − 1) and hashωc a hash function with fixed output Hamming
weight wc

Key Generation. The Key Generation algorithm KeyGen is the following.

Algorithm 3.1 Key generation algorithm KeyGen

Input : ∅.
Output : a public key pk ∈ R and a private key sk ∈ R2.

1. Choose random f1, f2 ∈ Vk,wf such that f1(x), f2(x) ∈ R are invertible.

2. Compute h(x) := f1(x)
−1 · f2(x) ∈ R.

3. Output the public key pk = h and the private key sk = (f1, f2).

Signature Algorithm. The signing algorithm Sign is as follows.

3

Algorithm 3.2 Signature algorithm Sign

Input : the message to signm, a public key pk = h ∈ Fn
2 and a secret key sk = (f1, f2) ∈ Fn

2×Fn
2 .

Output : a valid signature σ ∈ (Fn
2)

4 for m under pk and sk.

1. Choose random e1, e2 ∈ Vk,we and u1,u2 ∈ Vk,wu .
2. Set

– b(x) := e1(x)h(x) + e2(x)h
−1(x) ∈ R and

– d(x) = u1(x)f2(x) + u2(x)f1(x).
3. Compute c := hashωc(m,b,d,h) ∈ Vk,wc .
4. Compute si(x) := ui(x)fi(x) + c(x)ei(x) for i = 1, 2.
5. If w(s1) > ws or w(s2) > ws or w(d) > wt then repeat from Step 1.
6. With this notation, the signature is given by σ = (c,b, s1, s2).

Verification Algorithm. The verification algorithm Verify is as following.

Algorithm 3.3 Verification algorithm Verify

Input : A message m, a public key pk = h ∈ Fn
2 and a signature σ = (c,b, s1, s2) ∈ (Fn

2)
4.

Output : accept or reject signature σ for m.

1. Compute t(x) := s1(x)h(x) + s2(x)h
−1(x)− c(x)b(x).

2. Compute c′ := hashωc(m,b, t,h) ∈ Vk,wc .
3. If c = c′, wtH(t) ≤ wt and t(x) ̸= 0, then accept, otherwise reject.

The sets of parameters suggested for 128,192 and 256 bits of security are reported in Table 1.

Security (k, ωf , ωu, ωe, ωc, ωs, ωt)

128 (12539, 145, 33, 141, 31, 4844, 4937)

192 (18917,185,41,177,39,7450,7592)

256 (25417,201,51,191,51,10111,10216)

Table 1. Suggested parameters for security levels 128,192 and 256 of HWQCS.

4 Information Leakage of HWQCS

We start this section by giving an overview of our attack, which serves as a motivation for the
study of the objects developed in the rest of the section, where we show that the signatures
generated by the Sign algorithm of HWQCS leak a critical amount of information about the
ephemeral values e1 and e2.

4.1 Overview of the attack

The idea is to use information set decoding techniques in a simplified scenario, which allows
us to perform fast recovery of secret data, hence forge signatures. In other words, we aim at
finding error free positions in the vector e. To this end, we apply a similar analysis to [20],
which manipulates each intercepted signature in such a way that it is possible to separate a
good amount of zero bits of e1 and e2 from the one bits. Furthermore, we can carefully guess
additional zero bits. Once k, zero bits have been recovered, we can perform linear algebra using
a submatrix of the public matrix

H =
[
circ(h) | circ(h)−1

]
. (1)

4

to reconstruct the values e1, e2 completely. Finally, compute ui(x)fi(x) = si(x)− c(x)ei(x) for
i = 1, 2. At this point it is possible to start forging valid signatures, see Section 5 for a detailed
explanation and Algorithm 5.1 for the concrete attack.

In the next section, we will formally describe the behaviour of the information leakage, which
will be useful to determine the necessary objects for our attack. Our analysis is identical for
both i = 1, 2, therefore we won’t fix a value of i.

4.2 Statistical analysis of the information leakage

We describe the technique introduced in [20] adapted to the setting of HWQCS. Let σ =
(c,b, s1, s2) be an intercepted signature where si(x) := ui(x)fi(x) + c(x)ei(x), as per Sign. We
can expose many one bits of e as follows:

– Let v ∈ supp(c) and write

x−vsi(x) = x−v (ui(x)fi(x) + c(x)ei(x))

= x−vui(x)fi(x) +

1 + x−v
∑

l∈supp(c)\{v}

xl

 ei(x)

= ei(x) + x−vui(x)fi(x) +
∑

l∈supp(c)\{v}

xl−vei(x).

(2)

– Finally, compute

di(x) :=
∑

v∈supp(c)

x−vsi(x) ∈ Z[x], (3)

where the sum in 3 is taken over Z. Notice that x−vui(x)fi(x) is a polynomial whose
coefficient vector is a circular left shift of the coefficient vector of ui(x)fi(x) of v positions. The
same holds for xl−vei(x), so that for every v ∈ supp(c), the value x−vsi(x) is given by ei(x)
plus some random noise, see (2). Therefore, we expect the larger coefficients of di(x) to be
associated with the entries of ei(x) equal to 1. Figures 1, 2 and 3 give a visual representation
of the information leakage for a random signature, of an instance of HWQCS for security levels
128, 192 and 256.

0 0.5 1

·104

10

20

Value of j

(d
1
) j

Fig. 1. Information leakage of e1(x) of an instance of HWQCS with security parameter 128.
We highlighted with green dots the entries j for which (e1)j = 0, and with black asterisks the
entries j for which (e1)j = 1.

5

0 0.5 1 1.5

·104

10

20

30

Value of j

(d
1
) j

Fig. 2. Information leakage of e1(x) of an instance of HWQCS with security parameter 192.
We highlighted with green dots the entries j for which (e1)j = 0, and with black asterisks the
entries j for which (e1)j = 1.

0 0.5 1 1.5 2 2.5

·104

10

20

30

40

Value of j

(d
1
) j

Fig. 3. Information leakage of e1(x) of an instance of HWQCS with security parameter 256.
We highlighted with green dots the entries j for which (e1)j = 0, and with black asterisks the
entries j for which (e1)j = 1.

From figures 1, 2 and 3, one can easily see that, for each security level, the one entries of
ei (in the examples in the figures i = 1) are pushed to the upper half of the plot, meaning that
they correspond to the higher coefficients of di(x). This means that, with great probability, a
random entry (di)j ∈ Z which is small enough will correspond to a zero entry (ei)j . The rest
of this section is dedicated to the proof of Theorem 1, which describes the behaviour of the
entries of di ∈ Zk.

Theorem 1. Let u(x), f(x), e(x) and c(x) be random elements of R, in such a way that
wtH(u) = wu,wtH(f) = wf ,wtH(e) = we and wtH(c) = wc, respectively. Let v ∈ supp(c)
and define

d(x) :=
∑

v∈supp(c)

ei(x) + x−vui(x)fi(x) +
∑

l∈supp(c)\{v}

xl−vei(x)

 ∈ Z[x].

Assume that the random variables x−vui(x)fi(x) and
∑

l∈supp(c)\{v} x
l−ve(x) are independently

distributed, as v and l vary. Then, for j ∈ [k−1], we have that (d(x))j is binomially distributed

6

as

(d(x))j ∼ Bin

wc,

3∏
i=1

pi +

3∑
i=1

pi
∏

j∈[3],j ̸=i

(1− pj)

 , (4)

where

p1 = we/k, p2 = (1− (1− 2we/k)
wc−1)/2

and

p3 =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf)

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Let j ∈ [k−1]. We will analyse the distribution of (x−vsi(x))j for a fixed v ∈ supp(c), break-
ing down the analysis on the three summands of the last equation in (2), treated as random
variables. Namely, we are going to compute the probability distributions of (x−vui(x)fi(x))j

and of
(∑

l∈supp(c)\{v} x
l−vei(x)

)
j
, while we consider (ei)j to be Bernoulli distributed with pa-

rameter ωe/n. After, we will provide the explicit probability distribution of the sum of the three

random variables and describe the distribution of (di(x))j =
(∑

v∈supp(c) x
−vsi(x)

)
j
, where the

sum is taken over Z.

The following result comes in handy to compute the probability distribution of the entry
(x−vui(x)fi(x))j .

Lemma 1. [14, Proposition 2.4.1] Let u(x), f(x) ∈ R be random elements such that wtH(u) =
ωu and wtH(f) = ωf . Set z(x) = u(x)f(x), then for every j ∈ {0, . . . , k − 1}, we have that
(z(x))j is distributed as a Bernoulli random variable with parameter p = P (zj = 1) equal to:

p =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf)

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
. (5)

Lemma 1 provides us with a way to compute the distribution of (ui(x)fi(x))j .

Remark 1. Note that x−vui(x)fi(x) is a polynomial whose coefficient vector is a circular left
shift of the coefficient vector of ui(x)fi(x) of v positions. Therefore, the two random variables
(ui(x)fi(x))j and

(
x−vui(x)fi(x)

)
j
are identically distributed.

We move on to the distribution of
∑

l∈supp(c)\{v} x
l−vei(x). We will treat (xl−vei(x))j as inde-

pendent random variables, as l and v vary.

Lemma 2. Let X1, X2, . . . , Xk be k independent random variables following a Bernoulli distri-
bution with parameter q < 1

2
and let X =

∑k
h=1 Xh be their sum over F2. Then X is Bernoulli

distributed with parameter p = P(X = 1) equals to:

p =

(
1

2
− (1− 2q)k

2

)
. (6)

Proof. The random variable X is Bernoulli distributed with parameter recursively given by
T (k) = T (k− 1)(1− q) + q(1− T (k− 1)), with T (0) = 0. Our goal is to convert this expression
into a closed formula. Consider the formal power series f(x) :=

∑∞
h=1 T (h)x

h where we consider

7

the real interval x ∈ (0, 1). We have that

f(x) =

∞∑
h=1

T (h)xh

= qx+

∞∑
h=2

T (h)xh

= qx+

∞∑
h=2

(T (h− 1)(1− q) + q(1− T (h− 1)))xh

= qx+ (1− q)

∞∑
h=2

T (h− 1)xh +

∞∑
h=2

qxh − q

∞∑
h=2

T (h− 1)xh

=

∞∑
h=1

qxh + (1− q)xf(x)− qxf(x)

=

∞∑
h=1

qxh + (1− 2q)xf(x).

We can rewrite f(x) as

f(x) =

∑∞
h=1 qx

h

1− x+ 2qx

=
q · (x

1−x
)

1− x+ 2qx

=
qx

(1− x) · (1− (1− 2q)x)

=
1
2

(1− x)
−

1
2

(1− (1− 2q)x)

For every constant A such that |Ax| < 1 we have that
∑∞

h=0(Ax)h = 1/(1−Ax), therefore we
can rewrite both 1/(1− x) and 1/(1− (1− 2q)x) as formal power series, obtaining

f(x) =
1

2

∞∑
h=0

xh − 1

2

∞∑
h=0

(1− 2q)hxh =

∞∑
h=1

(
1

2
− (1− 2q)h

2

)
xh.

We conclude that T (h) = 1
2
− (1−2q)h

2
, as claimed. ⊓⊔

We have all the necessary tools to be able to take a big step forward towards the proof of
Theorem 1.

Proposition 1. Let u(x), f(x), e(x) and c(x) be random elements of R, in such a way that
wtH(u) = wu,wtH(f) = wf ,wtH(e) = we and wtH(c) = wc, respectively. Let v ∈ supp(c),
define s(x) := u(x)f(x) + c(x)e(x) and consider the expression

x−vs(x) = ei(x) + x−vui(x)fi(x) +
∑

l∈supp(c)\{v}

xl−vei(x).

Assume that the random variables
∑

l∈supp(c)\{v} x
l−ve(x) are independently distributed, as l

and v vary. Then, for j ∈ [k− 1], we have that (x−vs(x))j is distributed as a Bernoulli random
variable with parameter p = P((x−vs(x))j = 1) equal to:

p =

3∏
i=1

pi +

3∑
i=1

pi
∏

j∈[3],j ̸=i

(1− pj), (7)

where
p1 = we/k, p2 = (1− (1− 2we/k)

wc−1)/2

8

and

p3 =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf)

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Proof. Write

(d(x))j =

 ∑
v∈supp(c)

x−vs(x)

j

=
∑

v∈supp(c)

(
x−vs(x)

)
j

Fix the value of v ∈ supp(c) and consider the summand (x−vs(x))j . We can expand it as in (2)
as

(x−vs(x))j = (e(x))j + (x−vu(x)f(x))j +

 ∑
l∈supp(c)\{v}

xl−ve(x)

j

. (8)

The random variable (e(x))j is Bernoulli distributed with parameter

p1 = we/k.

Note that (xl−ve)j and (e(x))j are identically distributed, as the coefficient vector of the former
is the right circular shift of the coefficient vector of the latter, by l−v positions. Therefore, from

Lemma 2 we obtain that
(∑

l∈supp(c)\{v} x
l−ve(x)

)
j
is Bernoulli distributed with parameter

p2 = (1− (1− 2we/k)
wc−1)/2.

Finally, from Lemma 1 and Remark 1 we have that the random variable (x−vu(x)f(x))j is
Bernoulli distributed with parameter

p3 =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf)

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Bearing in mind that we are considering events over F2, the sum of the three random variables
is Bernoulli distributed with parameter

p =
3∏

i=1

pi +
3∑

i=1

pi
∏

j∈[3],j ̸=i

(1− pj),

i.e. (x−vs(x))j succeeds if either only one or all the three variables produce success. ⊓⊔

At this point the proof of Theorem 1 is straightforward.

Proof of Theorem 1. The statement directly follows from Prop. 2 and the aforementioned as-
sumptions of independence of the random variables involved in the sum. ⊓⊔

In the settings of our attack, we are going to specialize Theorem 1 to the case where
p1 ∈ {0, 1}. This allows us to study the effect of the j-th coordinate of the vector ei on the dis-
tribution of the j-th coordinate of di. Notice that, in order to have a clear understanding of the
behaviour of the j-th component of d(x), as defined in Eq. 3, we needed to sum the (x−vs(x))j
random variables over all the v ∈ supp(c), where in this case the events are intended over Z.
While modelling this, we made the simplifying assumption that the random variables x−vui(x)
and

∑
l∈supp(c)\{v} x

le(x) are independently distributed, as v varies in the support of c. Exper-
imental results in support of this assumption will be provided, showing that this assumption
still manages to capture satisfactorily the behaviour of d(x), and, even more importantly, it
does not affect the outcome of the cryptanalysis. Figure 4 gives a visual representation of how
Theorem 1 approximates the behaviour of di.

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

5 · 10−2

0.1

0.15

Value of z

P
ro
b
a
b
il
it
y

P(di(x))j = z | (ei)j = 0)

Exp. results for (ei)j = 0

P(di(x))j = z | (ei)j = 1)

Exp. results for (ei)j = 1

Fig. 4. In red (resp. dark gray) the theoretical estimates P(di(x))j = h | (ei)j = 0) (resp.
P(di(x))j = h | (ei)j = 1)), as h varies in the interval [wc], for security level 128. In orange
(resp. light gray) the associated experimental results obtained for a random instance of HWQCS
with 128 bit of security.

4.3 Recovering k zero bits of e

As mentioned in Section 4.1, we aim at finding k zero entries in e. The columns of H corre-
sponding to the remaining k positions will constitute a square k × k matrix which, in the case
of being invertible, can be used to compute the entire value e = (e1, e2). The idea is to use
the knowledge of the distribution of the entries (di)j , provided in Theorem 1, and find ⌈k/2⌉
error free positions in both the left side e1 and the right side e2 of e, adding up to (at least)
k error free positions. We search for an optimal threshold value τ such that the probability
P((ei)j = 0 | (di)j < τ) is large enough. For our attack, we choose τ as follows:

τ := max

{
h ∈ [wc] | we

h∑
l=0

P((di)j = l | (ei)j = 1) < 1

}
, (9)

i.e. the largest integer such that, for each signature, the expected number of entries j such
that (ei)j = 1 and (di)j < τ is less than 1. This means that, on average, all the coordinates j
such that ((di)j) < τ will be error free. Let N0 and N1 be the expected number of error free
positions and error positions that we can find by taking all j with (di)j < τ , respectively. Then

N0 := (k − we)

τ−1∑
h=0

P((di)j = h | (ei)j = 0),

and

N1 := (we)

τ−1∑
h=0

P((di)j = h | (ei)j = 1).

Therefore, the probability that (ei)j = 0 for all j ∈ [k] such that (di)j < τ is given by

psucc :=
∏

j∈[k],(di)j<τ

P((ei)j = 0 | (di)j < τ) =

(
N0

N0 +N1

)N0+N1

.

The values for τ,N0, N1 and of psucc for each suggested parameter set of HWQCS are given in
Table 2. These values indicate how many error free bits of ei we can expect to recover with our
strategy. Surprisingly enough, for security level 256 we can reconstruct more than ⌈k/2⌉ error
free positions of ei. The same does not hold for levels 128 and 192, meaning that we need to
guess ⌈k/2⌉ −N0 error free positions on each side of e.
Table 6 reports the probability distribution and expected values using our approximation of
(di)j given by Theorem 1.

10

Security level ⌈ k
2
⌉ τ N0 N1 psucc ⌈ k

2
⌉ −N0

128 6270 12 5564.3997 0.3995 0.6707 706

192 9459 15 7574.2963 0.2521 0.7771 1885

256 12709 21 13560.6279 0.3457 0.7077 -

Table 2. For each security level, we report the threshold value τ , the values N0 and N1 of zero
and one bits that we expect to find among the j’s such that (di)j < τ , and the probability
psucc that this event occurs. The value ⌈ k

2
⌉ −N0 is the number of positions that we still need

to guess to fully reconstruct ⌈k/2⌉ entries.

Remark 2. We are considering ⌈k/2⌉ in order to make sure we are recovering enough positions
as k is an odd number for all three parameter sets. This implies that the probabilities we are
computing are actually underestimates. Also, for security 256 we might select a subset of ⌈k/2⌉
of the N0 expected error free positions, which would increase the value of the success probability
to psucc = 0.7233. We will exploit this in section 5.2 to give a speed-up of our attack.

Remark 3. The security level 256 would have values as reported in Table 3.

Security level ⌈ k
2
⌉ τ N0 N1 psucc

256 12709 22 16336.7984 0.8193 0.4407

Table 3. Value of τ as given in Equation 9, and the values of N0 and N1 of zero and one bits
that we expect to find among the j’s such that (di)j < τ , as well as the probability psucc that
this event occurs.

As mentioned at the beginning of this subsection, we are searching for a total of ⌈k/2⌉
error free entries in ei. The value of N0 for security level 256 with τ = 22, accounts for many
more positions than actually needed, with somewhat smaller success probability compared to
the levels 128 and 192. Decreasing the value of τ to 21 still gives N0 larger than ⌈k/2⌉ and
increases the success probability by more than 0.25.

We are left with the problem of finding the missing ⌈ k
2
⌉−N0 zero positions of ei for security

levels 128 and 192. According to the behaviour of the (di)j entries, we aim at finding these
values among the j’s such that (di)j = τ , i.e. the set of positions that have the least probability
of containing an error, after those we already chose. Let M0 and M1 be the expected number
of error free and error positions j such that (di)j = τ , respectively. Then

M0 = (k − we)P((di)j = τ | (ei)j = 0)

and
M1 = (we)P((di)j = τ | (ei)j = 1).

Therefore the probability such that ⌈ k
2
⌉ −N0 randomly chosen positions j such that (di)j = τ

will be error free is given by

qsucc :=

(
M0

M0 +M1

)⌈ k
2
⌉−N0

.

The values of M0,M1 and qsucc for levels 128 and 192 are reported in Table 4.
The overall probability of a correct recovery of ⌈k/2⌉ zero bits of ei is then

ptot := psucc · qsucc.

For the case of security level 256 we consider qsucc = 1 as N0 > ⌈ k
2
⌉. Applying this technique

on both e1 and e2 we can recover k error free positions of e with probability of success p2tot.
Values for each security level are reported in Table 5.

11

Security level ⌈ k
2
⌉ −N0 M0 M1 qsucc

128 706 1806.5588 0.7402 0.7491

192 1885 2433.8479 0.4371 0.7129

Table 4. For security parameters 128 and 192, ⌈ k
2
⌉ −N0 denotes the number of entries which

is still necessary to guess to perform our attack. Values M0 and M1 represent the expected
number of error free and error positions among the j’s such that (di)j = τ .

Security level k p2tot
128 12539 0.2524

192 18917 0.3070

256 25417 0.5008

Table 5. For each security level, k and p2tot are the number of error free positions we need to
recover and the probability of recovering them correctly, respectively.

In other words, Table 5 says that we can successfully recover k error free coordinates of e of
around one fourth of the signatures of security level 128, slightly less than one third of those
of level 192 and of half of the signatures of level 256. In the next section, we show how to
completely reconstruct e using the k error free positions we recovered in this section.

h P((di(x))j = h | (ei)j = 0) Exp. number of entries P((di(x))j = h | (ei)j = 1) Exp. number of entries

0 3.078 · 10−7 0.004 1.248 · 10−13 1.759 · 10−11

1 5.935 · 10−6 0.074 6.220 · 10−12 8.770 · 10−10

2 0.006 · 10−2 0.686 1.500 · 10−10 2.115 · 10−8

3 0.003 · 10−1 4.128 2.331 · 10−9 3.286 · 10−7

4 0.001 17.973 2.623 · 10−8 3.698 · 10−6

5 0.005 60.371 2.277 · 10−7 0.003 · 10−2

6 0.013 162.726 1.586 · 10−6 0.002 · 10−1

7 0.029 361.500 9.109 · 10−6 0.001
8 0.054 674.586 0.004 · 10−2 0.006
9 0.086 1072.334 0.001 · 10−1 0.025
10 0.118 1467.441 0.006 · 10−1 0.090
11 0.141 1742.590 0.002 0.276
12 0.146 1806.558 0.005 0.740
13 0.132 1642.366 0.0123 1.739
14 0.105 1313.477 0.025 3.595
15 0.074 925.951 0.0464 6.550
16 0.046 575.964 0.0746 10.530
17 0.025 316.115 0.105 14.937
18 0.012 152.936 0.132 18.678
19 0.005 65.088 0.145 20.545
20 0.001 24.292 0.140 19.818
21 0.0006 7.914 0.118 16.688
22 0.0001 2.237 0.086 12.195
23 0.00004 0.544 0.054 7.671
24 9.109 · 10−6 0.112 0.029 4.11
25 1.586 · 10−6 0.019 0.013 1.850
26 2.277 · 10−7 0.002 0.005 0.686
27 2.623 · 10−8 0.003 · 10−1 0.001 0.204

Table 6. Values of the distribution of (di(x))j for security level 128. For every h, we report
the probability that (di(x))j = h, conditioning on the event (ei)j = 0, 1. Two more columns
report the expected number of entries j associated to (di(x))j = h.

12

4.4 Completing the reconstruction of e

In this section, we exploit the analysis performed so far to fully reconstruct the ephemeral
values e1, e2 with a certain probability. Recall that

b = He⊤, (10)

where e = (e1, e2) and H =
(
circ(h), circ(h)−1

)
.

Let J ⊂ [2k] the set of k positions recovered using the strategy outlined in Section 4.3 and
let I := [2k]\J . Finally, let HI be the submatrix of H which consists of the columns indexed by
I. We can treat HI as a random matrix in Fk×k

2 . Assume that HI is invertible. Then given the
syndrome equation b = He⊤ of e as in Sign, we can compute ē = H−1

I b and thus reconstruct
e = (e0, . . . , e2k−1) as

eh =

{
ēh if h = i for some i ∈ I

0 otherwise,
(11)

for each h ∈ [2k]. The probability for a random k × k matrix to be invertible is given by
Proposition 2.

Proposition 2. Let H ∈ Fk×k
2 be a random square matrix. The probability that H is invertible

is given by

pinv :=

k−1∏
i=0

(
1− 1

2k−i

)
. (12)

Proof. For k = 1 the result is trivial. Suppose k is greater than one. If we have k − 1 inde-
pendent vectors, the probability that the k-th vector is independent of the previous ones is
(2k − 2k−1)/2k. Multiplying the probability for which these k− 1 vectors are independent and
the probability that the k-th vector is independent of the others yields

2k − 2k−1

2k
·
k−2∏
i=0

(
1− 1

2k−i

)
=

k−1∏
i=0

(
1− 1

2k−i

)
.

For each set of suggested parameters of HWQCS, the value of the probability of HI to be
invertible is pinv := 0.2888.

Remark 4. The code used to compute data for this section can be found at https://github.
com/triki96/Cryptanalysis-of-HWQCS

5 Universal Forgery

In this section, we exploit the reconstruction of e1, e2 to mount a universal forgery attack.
Suppose an adversary A intercepts a signature (c,b, s1, s2) used by a honest signer to sign a
given message m. Note that:

b(x) = e1(x)h(x) + e2(x)h
−1(x),

c(x) = hashwc(m,b,u1(x)f2(x)− u2(x)f1(x), pk),

si(x) = ui(x)fi(x) + c(x)ei(x).

Now, suppose the A is given a random message m′, and it is asked to sign that message. The
adversary needs σ′ = (c′,b′, s′1, s

′
2) which satisfies Verify(m′, pk, σ′) = 1. Therefore, A computes

the signature in the following way:

b′(x) = b(x),

c′(x) = hashwc(m
′,b′, s1(x)h(x) + s2(x)h(x)

−1 − c(x)b(x), pk),

s′i(x) = si(x)− c(x)ei(x) + c′(x)ei(x) = ui(x)fi(x) + c′(x)ei(x).

13

https://github.com/triki96/Cryptanalysis-of-HWQCS
https://github.com/triki96/Cryptanalysis-of-HWQCS

The verifier computes

t′(x) = s′1(x)h(x) + s′2(x)h
−1(x)− c′(x)b′(x)

= s′1(x)h(x) + s′2(x)h
−1(x)− c′(x)b(x)

= (u1(x)f1(x) + c′(x)e1(x))h(x) + (u2(x)f2(x) + c′(x)e2(x))h
−1(x)+

− c′(x)(e1(x)h(x) + e2(x)h
−1(x))

= u1(x)f2(x) + u2(x)f1(x).

Clearly t′ ̸= 0 and w(t′) ≤ wt, as this is the same value computed in the verification phase of
the first sign. It remains to check whether c′′ := hashwc(m

′,b′, t′, pk) is equal to c′, but

c′′ = hashwc(m
′,b′, t′, pk) = hashwc(m

′,b,u1(x)f2(x) + u2(x)f1(x), pk) = c′.

This concludes the forgery.

Algorithm 5.1 is a probabilistic algorithm that sequentially analyses HWQCS signatures in
order to retrieve the ephemeral values e1, e2 and forge a new signature for m′.

Algorithm 5.1 Attack on HWQCS

Input pk = (h) and τ according to Table 2.
Output True/False.

1: function attackHWQCS(h, τ)
2: Compute H =

(
circ(h), circ(h)−1

)
;

3: Request (m,σ) = (m, (c,b, s1, s2));
4: Compute di(x) :=

∑
v∈supp(c) x

−vsi(x) ∈ Z[x];
5: Set

– J1,1 := {j ∈ [k] | (d1)j < τ} and
– J1,2 := {j ∈ [k] | (d2)j < τ};

6: Set random
– J2,1 ⊂ {j ∈ [k] | (d1)j = τ} and
– J2,2 ⊂ {j ∈ [k] | (d2)j = τ}

of size ⌈k/2⌉ −#J1;
7: Set I := [2k] \ (J1,1 ∪ J1,2 ∪ J2,1 ∪ J2,2);
8: Set HI the submatrix of H made by columns of H indexed by I;
9: if Hi is not invertible then
10: Go to (3);
11: else
12: Compute ē = H−1

I b;
13: Set e′ = (e′0, . . . , e

′
2k−1) = (e′

1, e
′
2) as

e′
h =

{
ēh if h = i for some i ∈ I,

0 otherwise.

14: end if
15: Let m′ be a new message to be signed;
16: Compute b′(x) = b(x);
17: Compute c′(x) = hashwc(m

′,b′, (s1(x)h(x) + s2(x)h
−1(x)− c(x)b′(x),h);

18: Compute s′i(x) = si(x)− c(x)e′
i(x) + c′(x)e′

i(x);
19: if Verify(m′,h, (c′,b′, s′1, s

′
2)) then

1. Return true;
20: else

1. Go to (3);
21: end if
22: end function

14

5.1 Complexity of our attack

We estimate the success probability of Algorithm 5.1. The attack succeeds at reconstructing
the data needed for a universal forgery if we can correctly obtain k error free positions of e
and if the matrix HI , which depends on the recovered positions, is invertible. We computed
the success probabilities p2tot and pinv of both the events in sections 4.3 and 4.4, respectively.
Therefore, the success probability of Algorithm 5.1 is given by the product

pbreak := p2tot · pinv,

and thus, the expected number of attempts to achieve success is given by ⌈1/pbreak⌉. The cost
of each attempt is dominated by that of inverting the matrix HI ∈ Fk×k

2 , which is in O(k2.37).

Therefore, Algorithm 5.1 runs in time O(2log(k
2.37/pbreak)). The values of pbreak, the expected

number of needed attempts and the cost of the attack for each security level of HWQCS are
reported in Table 7.

Security level pbreak Number of signatures Cost

128 0.0727 14 36.04

192 0.0887 12 37.25

256 0.1446 7 37.48

Table 7. For each security level, pbreak denotes the probability that our attack successfully
retrieves the ephemeral values e1, e2 from a given signature. The expected number of signatures
for our attack to succeeds and the log2 of the cost of the attack are reported.

We implemented an unoptimized version of our attack in SageMath and ran it on a Linux
Mint virtual machine. The code stops after recomputing e′ and checking it against the real
error vector e. If the two match, the forgery succeeds. Table 8 reports the average, on 10 runs
of the attack for each security level, of the number of signatures needed to recover e and the
average time consumed analysing each signature.

Security level Number of signatures Consumed time (s)

128 17 40.33

192 9 92.50

256 3 133.25

Table 8. Average number of signatures needed to mount our universal forgery attack, and
average time needed to analyse each signature, on 10 runs of our attack for each security level.

Remark 5. The code for our attack can be found in Appendix A. More code concerning our
analysis can be found at https://github.com/triki96/Cryptanalysis-of-HWQCS.

5.2 BONUS: Breaking HWQCS security level 256 with one signature.

Due to the large value of N0 as an effect of our choice of τ = 21 for security level 256, see
Table 2, it is possible to slightly improve on our attack by intercepting only one signature.
Indeed, we can take advantage of this surplus of potentially error free positions that we obtain
by taking all j such that (di)j < τ . The idea is to randomly pick a subset Ji of cardinality
⌈k/2⌉ of the N0 + N1 positions such that (di)j < τ for both i = 1, 2. In other words, we are
applying plain information set decoding on a potentially error free set of positions aiming at
finding an invertible submatrix of H.

15

https://github.com/triki96/Cryptanalysis-of-HWQCS

Note that Ji has probability of being error free equal to
(

N0
N0+N1

)⌈k/2⌉
. Since we are doing

this for both left and right-hand side of e, the overall probability of J := J1 ∪ J2 of being

error free is p :=
(

N0
N0+N1

)k
. According to the values in Table 2, we have p = 0.5231. Set now

I := [2k] \ J and let HI be the matrix consisting of the columns of H indexed by I. As per
proposition 2, the probability of HI of being invertible is pinv = 0.2888. In the case that HI is
invertible, we continue the same way as in our attack, leading to a forgery.

The success probability of recovering the correct e becomes then

pbreak = p · pinv = 0.1511,

which gives an improvement of 0.065 on the probability 0.1446 reported in Table 7. The expected
number of attempts of finding an invertible matrix HI is ⌈1/pbreak⌉ = 5, which improves on
table 7 by 2.

Remark 6. The SageMath code in Appendix A implements this single signature version of the
attack.

16

Bibliography

[1] D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based cryptographic hash
functions. In International Conference on Cryptology in Malaysia, pages 64–83. Springer,
2005.

[2] N. T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a mceliece-based digital
signature scheme. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 157–174. Springer, 2001.

[3] L. Dallot. Towards a concrete security proof of courtois, finiasz and sendrier signature
scheme. In Western European Workshop on Research in Cryptology, pages 65–77. Springer,
2007.

[4] I. B. Damg̊ard. A design principle for hash functions. In Conference on the Theory and
Application of Cryptology, pages 416–427. Springer, 1989.

[5] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. Wave: A new family of trapdoor one-way
preimage sampleable functions based on codes. In Advances in Cryptology–ASIACRYPT
2019: 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I, pages 21–
51. Springer, 2019.

[6] T. Debris-Alazard and J.-P. Tillich. Two attacks on rank metric code-based schemes:
Ranksign and an ibe scheme. In Advances in Cryptology–ASIACRYPT 2018: 24th Inter-
national Conference on the Theory and Application of Cryptology and Information Secu-
rity, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part I 24, pages 62–92.
Springer, 2018.

[7] J.-C. Deneuville and P. Gaborit. Cryptanalysis of a code-based one-time signature. De-
signs, Codes and Cryptography, 88:1857–1866, 2020.

[8] G. D’Alconzo, A. Meneghetti, and P. Piasenti. Security issues of cfs-like digital signature
algorithms. Journal of Discrete Mathematical Sciences and Cryptography, 27(1):175–187,
2024.

[9] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology—CRYPTO’86: Proceedings 6, pages 186–
194. Springer, 1987.

[10] P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. Ranksign: an efficient signature algorithm
based on the rank metric. In International Workshop on Post-Quantum Cryptography,
pages 88–107. Springer, 2014.

[11] G. Kabatianskii, E. Krouk, and B. Smeets. A digital signature scheme based on random
error-correcting codes. In IMA International Conference on Cryptography and Coding,
pages 161–167. Springer, 1997.

[12] J.-L. Kim, J. Hong, T. S. C. Lau, Y. Lim, and B.-S. Won. Redog and its performance
analysis. Cryptology ePrint Archive, 2022.

[13] V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based
signatures. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 598–616. Springer, 2009.

[14] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
E. Persichetti, G. Zémor, and I. Bourges. Hamming quasi-cyclic (hqc). NIST PQC Round,
2:4–13, 2018.

[15] R. C. Merkle. One way hash functions and des. In Conference on the Theory and Appli-
cation of Cryptology, pages 428–446. Springer, 1989.

[16] A. Otmani and J.-P. Tillich. An efficient attack on all concrete kks proposals. In Interna-
tional Workshop on Post-Quantum Cryptography, pages 98–116. Springer, 2011.

[17] E. Persichetti. Efficient one-time signatures from quasi-cyclic codes: A full treatment.
Cryptography, 2(4):30, 2018.

[18] F. Ren, D. Zheng, W. Wang, et al. An efficient code based digital signature algorithm.
Int. J. Netw. Secur., 19(6):1072–1079, 2017.

[19] S. Ritterhoff, G. Maringer, S. Bitzer, V. Weger, P. Karl, T. Schamberger, J. Schupp, and
A. Wachter-Zeh. Fuleeca: A lee-based signature scheme. Cryptology ePrint Archive, 2023.

[20] P. Santini, M. Baldi, and F. Chiaraluce. Cryptanalysis of a one-time code-based digital
signature scheme. In 2019 IEEE International Symposium on Information Theory (ISIT),
pages 2594–2598. IEEE, 2019.

[21] C. H. Tan and T. F. Prabowo. High weight code-based signature scheme from qc-ldpc
codes. In H. Seo and S. Kim, editors, Information Security and Cryptology – ICISC 2023,
pages 306–323, Singapore, 2024. Springer Nature Singapore.

[22] V. Weger, N. Gassner, and J. Rosenthal. A survey on code-based cryptography. arXiv
preprint arXiv:2201.07119, 2022.

[23] K. Xagawa. Practical attack on racoss-r. Cryptology ePrint Archive, 2018.

18

Appendix A

from sage.doctest.util import Timer

Level 128

#lam,k,wf,wu,we,wc,ws,wt,tau = 128,12539,145,33,141,31,4844, 4937,12

Level 192

#lam,k,wf,wu,we,wc,ws,wt,tau = 192,18917,185,41,177,39,7450,7592,15

Level 256

lam,k,wf,wu,we,wc,ws,wt,tau = 256,25417,145,51,191,51,10111,10216,21

F = GF(2)

R1.<y> = F[]

R.<x> = R1.quo(y^k - 1)

def weight(v):

return sum(1 for i in v if i==1)

def getmultmatrix(R,P2,nrows):

M = []

for i in range(k):

el = list((R*x^i).mod(P2))

M.append(el + [0 for j in range(k-len(el))])

M = matrix(Fqm,M)

return M[:nrows,:]

def keygen():

f = []

for i in range(2):

inv = False

while not inv:

P = Permutations(k)

p = P.random_element()

meta_pol = [1 for i in range(wf)] + [0 for i in range(k-wf)]

meta_pol = [meta_pol[p[i]-1] for i in range(k)]

fi = R(meta_pol)

inv = fi.is_unit()

f += [fi]

return f[0].inverse_of_unit()*f[1], f

def sign(H,sk):

while True:

e = []

u = []

P = Permutations(k)

for i in range(2):

p = P.random_element()

ei = [1 for i in range(we)] + [0 for i in range(k-we)]

ei = [ei[p[i]-1] for i in range(k)]

e += [ei]

for i in range(2):

p = P.random_element()

19

ui = [1 for i in range(wu)] + [0 for i in range(k-wu)]

ui = [ui[p[i]-1] for i in range(k)]

u += [ui]

e = vector(e[0]+e[1])

b = H*e

p = P.random_element()

c = [1 for i in range(wc)] + [0 for i in range(k-wc)]

c = [c[p[i]-1] for i in range(k)]

s = [R(u[i])*sk[i]+ R(c)*R(list(e)[k*i:k*(i+1)]) for i in range(2)]

if weight(s[1]) <= ws and weight(s[0]) <= ws and

weight(R(u[0])*sk[1] + R(u[1])*sk[0]) <= wt:

return s,b,c,e

pk,sk = keygen()

print("computing public matrix, might take a while ...")

h1 = matrix.circulant(list(pk))

H = h1.augment(h1.inverse())

print("done")

times = []

numsig = []

timer = Timer()

for i in range(1):

broken = False

count = 1;

time = 0

timer.start()

while not broken:

print(f"generate one signature and analyze it ... {count}")

count +=1

s,b,c,e = sign(H,sk)

c = R1(c)

stats0 = [ZZ(0)]*k

stats1 = [ZZ(0)]*k

p0s0=[]

p1s0=[]

p0s1=[]

p1s1=[]

for m in c.monomials():

v = m.degree()

s0v = s[0]*x^(k-v)

s1v = s[1]*x^(k-v)

ls0 = list(s0v)

ls1 = list(s1v)

for i in range(k):

stats0[i] += ZZ(ls0[i])

stats1[i] += ZZ(ls1[i])

s0zeros = []

s0ones = []

s1zeros = []

s1ones = []

for i in range(k):

if e[i] == 0:

p0s0 += [i]

s0zeros += [stats0[i]]

20

else:

p1s0 += [i]

s0ones += [stats0[i]]

if e[k+i] == 0:

p0s1 += [i]

s1zeros += [stats1[i]]

else:

p1s1 += [i]

s1ones += [stats1[i]]

z0 = [i for i in range(k) if stats0[i]<tau]

print(len(z0),min(s0ones),len([i for i in s0ones if i<=tau]))

z1 = [k+i for i in range(k) if stats1[i]<tau]

print(len(z1),min(s1ones),len([i for i in s1ones if i<=tau]))

z013 = [i for i in range(k) if stats0[i]==tau]

z113 = [k + i for i in range(k) if stats1[i]==tau]

SEARCH INVERTIBLE MATRIX

print("Start searching for an invertible submatrix")

Htmp = zero_matrix(k)

cols = []

if lam != 256:

print("guess some/other columns to exclude on the left and on the right...")

s0smpcoord = sample(range(len(z013)), ceil(k/2)-len(z0))

s0smp = [z013[i] for i in s0smpcoord]

cols0 = z0 + s0smp

s1smpcoord = sample(range(len(z113)), k-ceil(k/2)-len(z1))

s1smp = [z113[i] for i in s1smpcoord]

cols = cols0 + z1 + s1smp

print(len(z0), len(s0smp), len(z1),len(s1smp))

sel = [i for i in range(2*k) if i not in cols]

print("build the submatrix ...")

Htmp = H[:,sel]

print(f’Matrix is invertible : {Htmp.rank()==k}’)

if Htmp.rank() != k : continue

print("Computing error vector...")

etmp = Htmp.inverse()*b

erec = [0]*(2*k)

for i in range(k):

erec[sel[i]] = etmp[i]

broken = vector(erec) == e

print(f’Found error vector is valid : {broken}’)

if broken:

timer.stop()

times += [timer.walltime]

numsig += [count]

else:

while not broken:

21

cols = []

coord = sample(range(len(z0+z1)), k)

for i in coord:

cols += [(z0 + z1)[i]]

print("256 -- ",len(cols))

sel = [i for i in range(2*k) if i not in cols]

print("build the submatrix ...")

Htmp = H[:,sel]

print(f’Matrix is invertible : {Htmp.rank()==k}’)

if Htmp.rank() != k : continue

print("Computing error vector...")

etmp = Htmp.inverse()*b

erec = [0]*(2*k)

for i in range(k):

erec[sel[i]] = etmp[i]

broken = vector(erec) == e

print(f’Found error vector is valid : {broken}’)

if broken:

timer.stop()

times += [timer.walltime]

numsig += [count]

22

	Breaking HWQCS: a code-based signature scheme from high weight QC-LDPC codes

