
The Espresso Sequencing Network:
HotShot Consensus, Tiramisu Data-Availability, and

Builder-Exchange

Jeb Bearer1, Benedikt Bünz1,3, Philippe Camacho1, Binyi Chen1,4,
Ellie Davidson1, Ben Fisch1,2, Brendon Fish1, Gus Gutoski1,

Fernando Krell1, Chengyu Lin1, Sishan Long1, Dahlia Malkhi1,6,7,
Kartik Nayak1,5, Keyao Shen1, Alex Xiong1, Nathan Yospe1

1Espresso Systems, 2Yale University, 3New York University, 4Stanford University,
5Duke University, 6Chainlink Labs, 7UC Santa Barbara

{firstname}@espressosys.com

Abstract

Building a Consensus platform for shared sequencing can power an ecosystem of layer-2
solutions such as rollups which are crucial for scaling blockchains (e.g.,Ethereum). However,
it drastically differs from conventional Consensus for blockchains in two key considerations:

• (No) Execution: A shared sequencing platform is not responsible for pre-validating blocks
nor for processing state updates. Therefore, agreement is formed on a sequence of cer-
tificates of block data-availability (DA) without persisting them or obtaining blocks in
full. At the same time, the platform must stream block data with very high efficiency to
layer-2 entities for execution, or (in the case of rollups) for proof generation.

• Builder-Exchange: A shared sequencing platform delegates to external entities to build
blocks and separates it from the role of a consensus proposer. This allows an ecosystem
of specialized builders to pre-validate transactions for diversified rollups, languages, and
MEV exploits. However, separating the task of block-building from proposing brings a
new challenge. Builders want assurances that their blocks would commit in exchange for
revealing their contents, whereas validators/proposers want assurance that the data in
committed blocks will be available and fees paid. Neither one trusts the other, hence the
shared sequencing platform should facilitate a “fair-exchange” between builders and the
sequencing network.

The Espresso Sequencing Network is purpose-built to address these unique considerations.
Among the main novelties of the design are (i) a three-layered DA system called
Tiramisu, coupled with (ii) a costless integration of the DA with the platform’s
consensus core, and (iii) a Builder-Exchange mechanism between builders and the
consensus core.

Note that this paper relies substantially on and can be seen as an extension of The Espresso
Sequencer: HotShot Consensus and Tiramisu Data Availability [84].

1

Contents
1 Introduction 3

2 Architecture Overview 5

3 Tiramisu Data Availability 7
3.1 Overview . 7

3.1.1 Communication complexity . 9
3.2 How HotShot uses Tiramisu . 9

3.2.1 Liveness . 9
3.2.2 Forcing expensive data recovery . 10

4 The Builder-Exchange 10

5 Full Protocol 11
5.1 The Threat Model . 11
5.2 Views and proposers. 12

6 Preliminary Evaluation on HotShot 14
6.1 Setup . 14
6.2 Performance . 14
6.3 Analysis and Future Improvements . 14

7 Related Work 16

A Savoiardi Verifiable Information Dispersal 23
A.1 Commit . 23
A.2 Disperse . 23
A.3 Retrieve . 25
A.4 Storage quorum size . 25
A.5 On the need for a vector commitment . 26
A.6 Asymptotic complexity . 26
A.7 Minimal termination guarantee . 26
A.8 Strong availability guarantee . 26
A.9 Related work . 27

B Verifiable Secret Sharing 27

2

1 Introduction
Building a Consensus platform for shared sequencing can power an ecosystem of layer-2 solutions
such as rollups [51, 89, 83] which are crucial for scaling blockchains (e.g., Ethereum). However, it
drastically differs from conventional Consensus for blockchains in two key considerations:

(No) Execution: A shared sequencing platform is not responsible for pre-validating blocks nor
for processing state updates. Therefore, the validator nodes of the sequencing network do
not need to obtain, nor persist, full copies of blocks. Rather, they form agreement on a
sequence of certificates of block data-availability (DA). At the same time, the platform must
stream block data with very high efficiency to layer-2 entities for execution, or (in the case
of rollups) for proof generation.

Builder-Exchange: A shared sequencing platform delegates to external entities to build blocks
and separates it from the role of a consensus proposer. This allows an ecosystem of specialized
builders to pre-validate transactions for diversified rollups, languages, and MEV exploits.
However, separating the task of block-building from proposing brings a new challenge.

Builders want assurances that their blocks would commit in exchange for revealing their
contents, whereas validators/proposers want assurance that the data in committed blocks
will be available and fees paid. Neither one trusts the other, hence the shared sequencing
platform should facilitate a “fair-exchange” between builders and the sequencing network.

The Espresso Sequencing Network is purpose-built to address these unique considerations. Among
the main novelties of the design are (i) a three-layered DA system called Tiramisu, cou-
pled with (ii) a costless integration of the DA with the platform’s consensus core, and
(iii) a Builder-Exchange mechanism between builders and the consensus core.

The need for a shared decentralized sequencing network. Layer-2 (or L2) solutions such
as rollups [51, 89, 83] have been introduced to improve the transaction processing performance on
top of Ethereum. By handling execution outside the Layer-1, rollups have become the de facto
solution for scaling Ethereum [17]. The immediate benefits for users are obvious: Low latency,
high throughput, fast confirmations and above all low gas fees. Misfortunately the price to pay for
this convenience is high: First of all L2 sequencers are in practice centralized which expose users
to liveness issues [32] and the risk of being censored. While decentralizing the rollup sequencer
could be a solution, achieving the same economic security as Ethereum is likely to be challenging.
Moreover, another fundamental problem remains: By default L2s do not interoperate in a smooth
way. This means we now have to deal with fragmented user bases and liquidity in addition to
encouraging economic centralization due to cross-chain MEV opportunities that are only accessible
to well funded players [65, 66].

A shared sequencing network can support atomic execution of a set of transactions belonging to
multiple rollups, allowing users to trade cross-rollup without risk, opening new possibilities such
as cross-rollup flash-loans and others. Indeed, assuming the shared sequencing infrastructure is
in place, recent proposals such as AggLayer [78] suggest that trustless synchronous interactions
between L2s are possible.

HotShot design principles. The motivation above leads us to introduce HotShot, a decen-
tralized, highly performant network for shared sequencing. In designing HotShot, several design
principles are combined.

First, scaling in the number of validator nodes is crucial for achieving strong security through de-
centralization. This level of decentralization is achieved by adopting a proof-of-stake participation
regime.

Second, bribery attacks, where an adversary, even without knowing who to corrupt, can advertise
payouts for certain verifiable malicious behaviors [9],(e.g., the attacker can create a smart contract
that pays participants to censor specific transactions) are a concern. An adaptive, bribing adversary
is one of the strongest threat models, and is discussed further in [84]. To achieve bribery resistance,
all staked nodes secure the safety of the protocol, rather than relying on any kind of sub-committee
solution. This security level is enabled by utilizing a consensus core with linear complexity in the
optimistic case, which is based on HotStuff-2 [63] coupled with the view synchronization protocol
from Naor and Keidar [70].

3

Third, optimizing for quick response in optimistic conditions is a priority. The steady state protocol
of HotShot achieves an important property called optimistic responsiveness, advancing at the speed
of the underlying transport when network conditions are favorable.

The HotShot consensus core is described in Section 5. We proceed to describe the DA layer, the
Builder-Exchange mechanism, and their integration with HotShot.

Tiramisu: The Three-Layered Data Availability Solution Our data availability solution,
Tiramisu, is designed to balance two requirements. On one hand, we want certifiable data dissem-
ination without fully replicating information and without introducing extra steps to the consensus
protocol. On the other hand, we want efficient retrieval that (in the common case) doesn’t need
to collect and process pieces of data. These requirements are met through three mechanisms,
mirroring the layers of the timeless Italian dessert.

At the base, the Savoiardi layer, uses a newly-introduced variant of the verifiable information
dispersal (VID) scheme from [7] to guarantee data availability. The idea is to encode the data
block into erasure-coded chunks and send one chunk per node. Nodes that receive valid chunks
return a signed acknowledgement, of which a quorum certifies the availability of data against
corruption of less than one third of the nodes. (As we shall see below, the Savoiardi certificate
of availability double-serves in consensus as a quorum of votes.) To destroy data availability, an
adversary would need to control 1/3-fraction of the stake in the system.

A disadvantage of Savoiardi is the cost of retrieval. A rollups who wishes to recover the full payload
must download shares from many storage nodes and spend computation resources to decode the
payload. To remedy this, we introduce the Mascarpone layer. This layer enables fast reconstruction
through a randomly elected small random committee. Each node in this committee receives the
entire block data. A valid DA certificate must include a signature by a threshold, e.g. 80%, of the
committee. This ensures that with high probability, every quorum of two-thirds will include one
honest node that can provide fast access to the data and aid reconstruction. The random selection
ensures that the committee can be small, but unfortunately, this also makes it more vulnerable to
briberies. The Savoiardi layer does not have this vulnerability and provides the strongest security.
Combining Savoiardi and Mascarpone gives both strong security and fast reconstruction.

Finally, we can optimistically increase the performance of the system by adding a content delivery
network (CDN), which we call the Cocoa layer. The CDN can cache and efficiently distribute data,
and can be thought of as an efficient broadcast layer. It can deliver performance on the level of
traditional Web2 infrastructure, but it is entirely optional and is backed up by the Mascarpone
and Savoiardi layers. When the CDN is online, it can significantly improve the performance of
those layers and the system overall, by quickly disseminating data and providing fast access to it.
The Cocoa layer aligns well with our optimistically responsive goal, where the solution works faster
when all components are fully working and online, but still gives high-security guarantees in the
presence of an adversary.

In terms of complexity, the Savoiardi VID scheme has linear message complexity for storing/re-
trieving data, albeit only constant bit costs. The Mascarpone and Cocoa layers have constant
message complexity for storing/retrieving. Retrieval from Mascarpone or Cocoa is fast and has a
constant communication cost. A bribing adversary might corrupt the entire random DA commit-
tee, forcing the protocol to use Savoiardi to retrieve the data. This does not hurt liveness but can
cause a slowdown and inefficiency. However, a cheaper attack would slow down consensus leaders
anyway. Thus, we expect that Savoiardi will seldom be triggered for data retrieval, and the data
can be retrieved quickly from CDN nodes or the small DA committee in the optimistic condition
where the leader is honest and the DA committee is not bribed.

Integration of Tiramisu DA with HotShot Consensus. HotShot is a view-by-view protocol
based on HotStuff-2: each view has a leader that proposes a block (possibly outsourcing the
construction of the block to a third party) to extend the sequence of blocks. In order to drive a
consensus decision, the leader must collect a quorum of votes forming a Quorum Certificate (“QC”)
on its proposal. For liveness, the nodes in HotShot consensus need to ensure data availability
before voting for a vector commitment proposal. This is done by stipulating that a node votes
on a block proposal only if (i) the proposal carries a certificate that a threshold of parties in the
random DA committee received the full data, and (ii) the node itself received a Savoiardi piece for
the commitment. In this way, when a QC is formed towards a sequencing decision, it a fortiori
guarantees that a block’s data will always be available.

4

Integration of Tiramisu DA with a Builder-Exchange. Separating the task of block-
building from consensus validation, so that it is performed by two different entities, brings inherent
challenges that relate to the trust between the two:

Builders concern: Builders are concerned about revealing blocks before they are committed
to slots in the blockchain. The predominant reason is that block builders in ecosystems like
Ethereum invest substantial effort in searching and exploiting MEV opportunities [8], and
they do not want validators to steal [30] what they discovered. Additionally, builders may be
willing to pre-pay a fee to validators in the form of a bid; however, if blocks are not included
in the designated slots, they would lose the fee.

Validators concern: Validators are concerned about committing blocks without having access
to the contents because if the data is not available, they may lose their block rewards and
fees. It also leaves the blockchain with “holes”.

Currently, the concrete solution available for Ethereum to the fair-exchange problem consists of
relying on trusted third parties called relays [44]. Misfortunately, these new single-point-of-failures
have already yielded exploits [31] and are not economically sustainable in the long run [11]. While
decentralized solutions to this problem have been proposed [18], their practicality is still a matter
of debate [72].

The Espresso Sequencing Network addresses this dilemma via a Builder-Exchange mechanism
between builders and the HotShot consensus core. The trick is a Builder-driven approach that
delegates the privilege to propose blocks to the builder which wins a slot (and pays a fee). The
winning builder further uses a commit-reveal scheme that hides the block contents until after the
builder itself is assured that it can drive a commit decision. This exchange hinges on a unique
capability of the HotShot platform: the builder sends a fee payment which is predicated on a
consensus decision that includes its block at the designated slot. HotShot uniquely supports
such predicated payments.

The Builder-Exchange mechanism deals with all but the least probable threats. Briefly,once the
builder reveals enough pieces of the block, the builder itself obtains a QC. Even a bribing adversary
cannot bribe a small subset (e.g., the next proposer or a DA committee) to reveal the block content
in advance of proving the builder with a QC. Once obtaining a QC, a bad proposer or a small subset
of validators cannot hold back the builder from driving its block to commit. Even if a majority
of validators prevent the commit, they will simply be lose progress and be left without the fee.
Finally, while the builder could send a bogus decryption key, this is not a concern, validators form
agreement on what the (bogus) block is.

2 Architecture Overview
In this section, we briefly describe the main components of the Espresso Sequencing Network, as
well as their interactions with users, builders, L2 rollups and the L1 blockchain (e.g., Ethereum).

The Espresso Sequencing Network is a decentralized network of thousands of heterogeneous nodes
providing log replication as a service. Internally, it consists of three core components:

1. The HotShot Consensus layer (Section 5) that enables builders to sequence transactions
without handling execution. It is a permissionless, leader-based, multi-shot BFT protocol
that extends HotStuff-2 [63] to the proof-of-stake setting.

2. The Tiramisu DA layer (Section 3) that guarantees the availability of the data submitted
by builders. More specifically, a set of storage nodes are responsible for the availability
and retrievability of raw transaction data. Since the Espresso Sequencing Network is not
responsible for execution, the data need not be broadcast to every node; this is essential for
achieving better throughput.

3. The Builder-Exchange protocol (Section 4) is an extension of HotShot that allows its leaders
to delegate the task of generating blocks to specialized entities called builders. This protocol
achieves the “fair exchange” of the content of the block provided by the builder against the
guarantee for this block to be committed to the chain.

As shown in Figure 1, the Espresso Sequencing Network interacts with users, builders, L2 rollups
and the L1 blockchain.

5

Figure 1: Main components in the HotShot protocol and highlevel workflow.

• Users. Users are participants who create transactions by signing some piece of data with
their private key. These transactions can then be sent to the Tiramisu DA mempool which
is public, or some other entity such as a private pool / builder.

• Builders. Builders have the ability to select and order transactions in order to create
valuable blocks. They obtain users’ transactions from the public mempool or some other
potentially private source.

• Layer 2 (L2) rollups. These are off-chain execution engines (VMs) that accept users’
transactions and deterministically process them after being ordered and finalized by the
Espresso Sequencing Network. Their execution logic could be anything from app-specific to
fully-featured smart contract platforms (like EVM rollups). Furthermore, the prover network
as a subcomponent will periodically update the state commitments in the rollup contract on
L1, along with a validity proof (for zkRollups) or a potential fraud proof (for optimistic
rollups).

• Layer 1 (L1) blockchain. The Espresso Sequencing Network checkpoints the ledger state
to this blockchain. Its primary function is to serve as an always-online, minimally trusted
verification light client for the HotShot Consensus layer. When the L1 is more mature with
wider adoption and higher economic cost for forking/reorg, these checkpoints also provide a
defense in depth on long-range attacks on HotShot consensus. Internally, there is a HotShot
contract that logs the finalized ledger produced by the HotShot sequencers; and one rollup
contract per L2 rollup that reads the ledger state from the HotShot contract and maintains
its rollup-specific states.

The high level workflow between all these components is made of “tasks”. Some of these tasks are
sequential while others are performed in parallel.

1. Generate transactions. Users through their wallets generate transactions which are then
forwarded to some public mempool (e.g. Tiramisu DA mempool) or some private one, which
can be managed or accessed by a builder. At this stage transactions have no specific order
and do not belong to a block yet.

2. Build block. Builders continuously monitor transactions potentially coming from different
sources with the goal of creating valuable blocks. Once the block is ready, the builder may
participate in some kind of selection process (e.g. auction) involving a HotShot leader who
has the right to append new blocks to the HotShot ledger.

3. Commit block. After this selection process is over, the builder and the HotShot leader
engage in the Builder Exchange protocol which aim is to ensure that the block is committed
while no information about its content is leaked to the leader. This interaction also involves
the Tiramisu DA component that ultimately stores and disseminate the block data to all the
replicas of the HotShot protocol.

6

4. Fetch rollup block. Rollups monitor the state of the HotShot ledger and periodically fetch
the transactions corresponding to their namespace. By doing so they obtain a rollup block
which can be derived deterministically from the contiguous sequence of Espresso Sequencing
Network blocks and the rollup namespace.

5. Update rollup state. Armed with this block data and potentially some additional auxiliary
information (e.g., snark proof), the rollup can update the state on its L1 contract in order
to make all the transactions included in this block final.

6. Update HotShot light client state. Rollup state validation in the L1 rollup smart
contract consists of a number of steps that includes ensuring the rollup state is consistent
with the HotShot ledger state. While this can be done in a number of ways (e.g. verifying a
zero-knowledge proof inside the rollup contract), the Espresso Sequencing Network contract
gives access to already validated HotShot states to any L1 (rollup) contract.

7. Check consistency with HotShot state. As mentioned above, some rollups may decide
to fetch the HotShot ledger state directly from the HotShot contract in order to verify that
the rollup state is consistent with the consensus state.

3 Tiramisu Data Availability
3.1 Overview
In a conventional consensus protocol each node votes to finalize a new block only after it has seen
the entire data payload for that block. If the payload has size |B| then this requires O(n |B|)
communication which is a key barrier to throughput. A conventional approach to scaling would
send the data only to a sub-committee. Unfortunately, this is not resilient against our assumed
bribing adversary: if an adversary bribed the entire sub-committee holding copies to a finalized
block, its payload is forever lost—a catastrophic failure of liveness.

The Espresso Sequencing Network forms agreement on an ordered list of certificates of data avail-
ability (DA) and therefore, it does not need to disseminate the entire block contents to nodes. In
this section we describe Tiramisu—an efficient, three-layer solution to the DA problem. Each layer
represents a point on the security-performance tradeoff curve. Importantly, the common case of
Tiramisu is fast, keeping the full system (optimistically) responsive. (See Figure 2.)

Cocoa: content delivery network (CDN)
Centralized, web2 performance

Marscapone: small DA committee
Secure against any adversary who cannot bribe 80% of the committee, high performance

Savoiardi
Secure against any bribing adversary, expensive decoding

Pe
rfo

rm
an

ce Security

Figure 2: Tiramisu: a three-layer solution for data availability (DA).

Base layer. Savoiardi: bribery-resilient DA. In rare cases the network operates under pessimistic
conditions: the network is under active attack by a powerful active or bribing adversary, and
the other layers of Tiramisu might cease to function for the duration of this attack.

In this case we rely on a solution similar to Ethereum’s Danksharding proposal [73]. The
proposer of a new block encodes its payload under an erasure code. Then the proposer
partitions the encoded payload into small shares and distributes only these small shares
among all nodes in the network. Assuming |B| is large enough, each piece has size O(|B| /n)
and the total communication is O(|B|). Savoiardi introduces an enhancement to previous
information dispersal schemes that adapts VID to HotShot’s linear communication topology.
A full description of Savoiardi is given in Appendix A.

7

CDN

small optimistic committee

all storage nodes

Cocoa

Marscapone

Savoiardi

whole block

whole block

block pieces

block
proposer

block
proposer

attestations

attestations

block proposal

payload commitment

optimistic cert

Savoiardi cert

content delivery network

Figure 3: Tiramisu flow. Block proposer disperses block among validator nodes, aggregates attes-
tations into certificates, builds a candidate HotShot block.

Security. This erasure-coded payload has the property that the entire payload can be recov-
ered from any sufficiently large subset of shares. Thus, even if a powerful adversary corrupts
many nodes, the remaining honest nodes are able to recover the payload.

Performance. A disadvantage of Savoiardi is that no single node has the entire payload. A
client who wishes to recover the full payload must download shares from many nodes and
spend computation resources to decode the payload. Thus, while Savoiardi is the ultimate
defense against powerful adversaries, for performance reasons its use should be avoided in all
but the worst network conditions.

Middle layer. Mascarpone: a small DA committee for fast consensus. Most of the time we expect
the network to operate under optimistic conditions: the network is not under attack by a
powerful active or bribing adversary.

In such cases the network can avoid Savoiardi’s expensive payload recovery process and
instead rely on a small, constant-size DA committee. The block proposer or other participant
uploads a new block’s payload to the committee, and the block is finalized after receiving
attestations from a quorum of committee members1.

Security. Members of the committee are selected at random, and the committee is replaced at
the beginning of each epoch. Randomness for this selection is sourced from the decentralized
random beacon (DRB) as described in Section B.1 of the HotShot whitepaper [84]. The size of
the committee is chosen so that if a passive adversary corrupts less than 1/3 of all stake then at
least one committee member is honest with overwhelming probability. Thus, the Mascarpone
layer is secure against all but the most powerful adversaries. It can be compromised only by
an adaptive adversary who can quickly corrupt the committee before it is replaced with a
new one, or a bribing adversary who can corrupt the committee immediately.

Top layer. Cocoa: Web2 performance from a CDN. We can further improve performance under
optimistic network conditions via a centralized content distribution network (CDN).

This solution is simple: the block proposer uploads a new block’s payload to the CDN,
and anyone who wants the block payload may request it from the CDN much like a Web2
streaming service consumer might download a video.

The CDN can also serve as an ultra-fast channel for passing messages between the block pro-
poser and other nodes for use cases such as collecting attestations for the quorum certificate.

A centralized CDN might be an easy target for an attacker, or it could experience occasional
downtime even in the absence of any malicious actor. As such, the Cocoa of a CDN is
well-supported by the Mascarpone layer below it when the CDN us unavailable but network
conditions are otherwise optimistic.

1This is the step that may fail in the presence of a bribing adversary, but will succeed in optimistic conditions as
mentioned above.

8

3.1.1 Communication complexity

Tiramisu achieves asymptotically optimal O(|B|) total network communication, summed over all
three layers of the protocol:

Base layer (Savoiardi). The Savoiardi erasure-code dispersal scheme achieves O(|B|) as de-
scribed in Appendix A.6.

Middle layer (Mascarpone). The full block payload is sent to each member of the Mascarpone
committee. The size of this committee is constant. (Say, 10–200 nodes.) As such, total
network communication for this layer is O(|B|).

Top layer (Cocoa). Like Mascarpone, the full block payload is sent to only a constant number
of nodes. In Cocoa, the payload is sent to only a single node—the CDN. Thus, total network
communication for this layer is O(|B|).

3.2 How HotShot uses Tiramisu
HotShot’s use of Tiramisu is simple. During each view, a HotShot consensus proposer (or its
delegate, see Section 4) will attempt to finalize a commitment to a block B with an accompanying
certificate of availability. A DA-certificate is obtained by the consensus proposer by utilizing
Tiramisu. Given a block payload B, the proposer performs the following:

1. Compute the payload commitment C ← Commit(B).

2. Initiate all three layers of Tiramisu concurrently:

Savoiardi. Execute Savoiardi.Disperse(B) with all nodes.

Mascarpone. Upload (B,C) to the small DA committee.

Cocoa. Upload (B,C) to the content delivery network (CDN).

Validator nodes vote in HotShot for a candidate block only if they have seen their own Savoiardi
share of the encoded block. Under this scheme, if the HotShot vote passes then it must also be
the case that a quorum of Savoiardi nodes has each seen its Savoiardi share, so there’s no need to
compile these attestations into a certificate.

In addition, nodes in the DA small sub-committee of Mascarpone respond with a signed certificate
of C.

The proposer of the next block (or its delegate) awaits responses of both types above to compose
a certificate of availability: votes attesting availability of Savoiardi pieces from of quorum of 2f +
1 nodes, and attestations of C from a threshold of the small DA sub-committee. The block
commitment C and its corresponding certification of DA, denoted cert(C), are included on-chain.
As discussed previously, the payload B is too big to fit on-chain, but the security properties of
Tiramisu ensure that B is available.

3.2.1 Liveness

Recall that the block proposer waits for two types of responses to form a certificate of availability,
a quorum of votes attesting availability of Savoiardi pieces and attestations of C from a threshold
of the small DA sub-committee.

Savoiardi is guaranteed to succeed by the properties of the Savoiardi scheme and the HotShot threat
model. But Mascarpone could fail if a sufficiently powerful adversary corrupts the optimistic DA
committee so that it is unable to produce a certificate. In this case, no block can be finalized for
this HotShot view—a temporary failure of liveness.

Because the optimistic DA committee is selected at random and frequently refreshed, the only
way an adversary can reliably cause the committee to fail is to execute an expensive adaptive or
bribery attack. As discussed in Section 5.1, these attacks exhaust the adversary’s budget, after
which liveness recovers immediately.

To put this attack in perspective, observe that the adversary could cause a similar liveness failure
more cheaply by attacking only the leader for this view, so this avenue for attack cannot further
weaken HotShot liveness.

9

3.2.2 Forcing expensive data recovery

Assume that the Cocoa layer of Tiramisu (CDN) is not functioning for some reason, as there can
be no problem retrieving payload data when the CDN is functioning. Of all the layers of Tiramisu,
Savoiardi is the only layer that is secure against an adaptive or bribing adversary. Thus, we expect
there must exist an attack whereby the adversary forces the network to rely on the expensive
Savoiardi scheme to recover the block payload.

The only such attack is to corrupt the small DA committee so that it produces a certificate, yet is
unwilling or unable to deliver the payload upon request. In Section 3.2.1 we observed that liveness
attacks exhaust the adversary’s budget. The same principle applies to attacks that force expensive
data recovery.

4 The Builder-Exchange
In this section, we describe an extension of HotShot that enables an ecosystem of block builders in
the Espresso Sequencing Network by delegating the proposing task to external builders. Delegating
proposing to external builder is consistent with the HotShot approach of keeping validators free
of pre-validating transactions and therefore help promote extremely high performance. It allows
builders to emerge and become highly specialized in specific rollups, languages, and MEV extrac-
tion. However, the separation of builder and proposer roles presents inherent challenges.

Builders invest effort into producing a block, e.g., identifying arbitrage opportunities and eploiting
MEV, and they need protection from having their effort stolen. Conversely, each consensus proposer
has a unique privilege to gain fees and block rewards that they do not want to miss, and need
protecting from untrusted builders. In particular, a key challenge relates to a fair exchange between
the builder and HotShot, where deciding the builder block is exchanged for a fee by the builder
and for the builder’s block content. To understand the concern better, consider several strawman
scenarios.

If the builder sent the block to an intermediary, such as the consensus proposer or the DA sub-
committee of the Espresso Sequencing Network, it must trust the intermediary. However, a bribing
adversary might steal the builder effort and replace the block or simply censor it.

If the builder utilized a simple “commit-reveal” scheme (e.g., Fino [64], Ferveo [10], Suave [43]),
letting consensus decide first on a builder’s commitment, and then revealing the contents, then
untrusted builders could spam the system with commitments and drop. This has two adverse
affects. First, proposers may not be able to collect fees or rewards for their slots. Second, they
would leave the chain with ‘holes’ in the sequence.

Conversely, if the builder paid fees upfront, then bad proposers might charge the block fee without
including it in the sequence.

In fact, it should not be surprising that these scenarios present conflicting tradeoffs. The fair-
exchange problem has been studied extensively in the cryptography literature, and it is known
that even a mere fair-exchange of cryptographic strings among mistrusting parties cannot be solved
deterministically [29]. Note that approaches based on the idea of gradually releasing a secret [12,
35, 21] do not work in our context due to tight timing constraints.

To strike a balance between the conflicting requirements, we devise a Builder-Exchange mechanism
that protects both sides against all but the most implausible attack scenarios. In particular, our
mechanism protects the builder from revealing its block against a bribing adversary who can
control the proposer and an entire DA sub-committee, while assuming two-thirds of the validators
are honest. It protects the consensus network from holes in the sequence, i.e., liveness it always
maintained under our threat model. Additionally, HotShot will be able to retrieve the builder’s
block and make a decision assuming rational builders, who are eager to reveal their block once it
is guaranteed a slot in the sequence. Note that an irrational builder could not send anything or
send an invalid block in any case. Therefore, forcing a builder to reveal the block does not provide
any benefit. Uniquely, the Espresso Sequencing Network supports paying fees that are predicated
on a decision to include a block which in a pre-designated slot. This guarantees the system can
charge the builder a fee even if the block itself is invalid.

Below we describe the Builder-Exchange solution in the context of HotShot as the underlying
consensus protocol; however, the mechanism is suitable for other consensus protocols and may be
of interest on its own.

10

Figure 4: Builder-driven exchange between a builder and the consensus network.

The Builder-Exchange mechanism is a combination of two core ingredients: (i) a commit-reveal
regime, and (ii) a Builder-driven extension to HotShot. Figure 4 depicts the flow of a block from
the builder until a consensus decision to include it in the sequence:

The commit-reveal scheme is fairly standard: The builder sends an encrypted block proposal and
uses secret-sharing to escrow the key with the validators. In this way, the builder is guaran-
teed that unless a third of the validators collude to reveal the key, the block contents cannot be
revealed.

The builder also sends a fee payment predicated on a consensus decision that includes its block.
In this way, if a majority of validators prevent the commit, they will simply be lose progress and
be left without the fee.

The Builder-driven regime is somewhat unique. The builder itself obtains the lock and sends it to
validators. Builder-driven lock dissemination guarantees that there will be 2f + 1 validators that
prevent the next leader from skipping this slot.

To maintain efficient retrieval of block data through Mascarpone or Cocoa, in this step the builder
should also send the key Kv to the small Mascarpone sub-committee and publish it to the Cocoa
CDN.

5 Full Protocol
In this section, we present an overview of the full HotShot protocol. The protocol revolves around
a consensus core, modified to utilize Tiramisu for DA, as described in Section 3, and finally,
incorporating a Builder-driven exchange between builders and the consensus core as explained in
Section 4.

5.1 The Threat Model
For simplicity, most of this paper uses a static, permissioned setting consisting of n validator
nodes (”nodes”) out of which up to f < n/3 are Byzantine. However, as described in the Espresso
Sequencing Network whitepaper [84], HotShot adapts a permissioned Byzantine Fault Tolerant
(BFT) protocol to the proof-of-stake setting. This enables us to support dynamic network par-
ticipants that can freely join and leave protocols by bonding or unbonding stake. The protocol
should satisfy safety and liveness so long as more than two-thirds of the total amount of stake is
controlled by honest nodes.

To achieve full decentralization, we need to support tens of thousands of staked consensus nodes.
Traditional approaches usually combine a permissioned BFT protocol with proof-of-stake via com-
mittee sampling, where a small random committee will represent the entire set of staked users to
run the consensus. However, this type of scheme usually suffers from adaptive attacks, where an
adversary, that can control only a small amount of stake, can still corrupt the elected committee
and break the security of consensus. There do exist solutions (e.g., Algorand [47], YOSO [46])

11

secure against adaptive adversaries. The best known defense is to hide the elected committee until
they published their votes. Thus, an adaptive adversary cannot change the committee’s behavior
after the fact.

However, a bribery attack is still a practical concern for this solution, where a malicious adversary,
even without knowing who to corrupt, can advertise payouts for certain verifiable malicious be-
haviors [9], e.g., the attacker can create a smart contract that pays elected committee members to
censor specific transactions. An important aspect of modelling such adversaries is that they must
have limited financial resources. Indeed, a bribing adversary with infinite budget is not realistic,
and could simply cause a permanent liveness failure we cannot protect against. Thus, to achieve
the desired efficiency and scalability without losing bribery resistance, we let all staked nodes par-
ticipate in the consensus protocol. It is worth noting that this choice of adversarial model led
to mandating a consensus core protocol whose steady state (optimistic) communication complex-
ity is linear: HotStuff-2 [63] as the underlying BFT protocol, coupled with a view sync protocol
(“pacemaker”) from Naor and Keidar [70].

5.2 Views and proposers.
The HotShot protocol operates in a view-by-view manner. Each view v has a designated leader
Lv, and an external party Uv elected as a builder. A discussion of the Espresso’s lottery mecha-
nism for managing builder selection is provided in [85] and is orthogonal to the discussion in this
paper.

The protocol consists of two parts, a steady-state protocol and a view synchronization (or pace-
maker) protocol for advancing views. To guarantee liveness, a pacemaker synchronizes nodes to
overlap in each view for sufficiently long. In this paper, we only elaborate on driving commit
decisions. We defer the details of the view synchronization to the HotShot whitepaper [84].

Block format. The protocol forms a chain of values. We use the term block to refer to each value
in the chain. We refer to a block’s position in the chain as its height. A block Bk at height k is
chained to the block Bk−1 preceding it using a cryptographic commitment denoted Commit(Bk−1).
The form of commitment is determined by the DA layer. (The reason HotShot cannot use a simple
hash of Bk−1 as other blockchains is that Bk−1 itself is not seen by all nodes, only the commitment
used in the DA layer for information dispersal.)

The block at height k has the following format

Bk := (bk, hk−1)

where bk denotes a proposed value at height k and hk−1 := H(Commit(Bk−1)) is a hash of the
previous block’s commitment. The first block B0 = (b0,⊥) has no predecessor. HotShot does not
perform validity check on block content except for verifying that it is chained to a certificate of
availability of its predecessor. We say Bl extends Bk, if Bk is an ancestor of Bl (l > k).

Encrypted blocks by builders. When an elected builder Uv has a block bv to propose, it
initially hides the contents using a symmetric key Kv it encrypts Ev ← EncKv (bv). It then shares
bk := (Ev,Kv) (we will see how below).

Certificates and certified blocks. In the protocol, nodes vote for blocks using an aggregate
signature. To vote for a block Bk = (bk, hk−1), a node signs H(Commit(bk), hk−1). We use Cv(Bk)
to denote a set of signatures by 2f + 1 nodes in view v. We call Cv(Bk) a certificate or a quorum
certificate (QC) for Bk from view v. Certified blocks are ranked by the views in which they are
certified, i.e., a certificate Cv(Bk) is ranked higher than Cv′(Bk′) if v > v′.

Locked blocks. At any time, each node locks the highest certified block to its knowledge. During
the protocol execution, each node keeps track of all signatures for all blocks and keeps updating
its locked block, and uses them to guard the safety of a commit.

View protocol. A view proceeds according to the following flow:

1. Delegate (leader only). At the beginning of each view, the leader waits to collect a QC from
the immediately proceeding view, or for the pacemaker module (mentioned above) to expire

12

the previous view. The leader Lv sends the elected builder Uv a signed delegation certificate
Dv := 〈pubkey(Uv), hk−1〉Lv

, along with a certificate Cv′(Bk−1) known to leader which hk−1

refers to. The builder should extend hk−1. In steady state, hk−1 will refer to the immediately
preceding view. If a QC from the immediately preceding view is not available, for instance,
because the previous leader crashed, then the leader includes the QC from the highest view
known to it.

2. Propose (builder only). The builder generates a block Bk ← (bk, hk−1) extending the latest
certified block it was given by the leader. It then uses the DA layer to spread two items:
(i) it invokes Tiramisu (all three layers) to disseminate (PROPOSE, v, Ev, Cv′(Bk−1)) signed
by Uv, along with the delegation certificate Dv and a commitment Cv,1 ← CommitV ID(Ev).
(ii) simultaneously, it invokes Savoiardi to disseminate Kv along with a commitment Cv2 ←
CommitV SS(Kv). The builder uses a variant of Savoiardi that shares Kv and its commitment
Cv,2 with validators using a verifiable secret-sharing [27, 41] scheme. In practice, we use a variant
of Feldman’s scheme [41] where the linear size commitment to the polynomial is replaced by
a KZG commitment [52]. More details can be found in Appendix B. Importantly, Kv is not
broadcast via Mascarpone or Cocoa and each key share sent to replica R must be encrypted
with R’s public key. The builder also sends a fee payment predicated on a consensus decision
that includes a block and key that match the commitment at the designated slot. Note that
the Espresso Sequencing Network uniquely supports such predicated payments.

Crucially, only the commitments and Kv shares incur a linear communication blowup, while
the (encrypted) block content Ev is disseminated erasure-coded via the DA layer, and sent in
full only to a small sub-committee. Hence, this protocol preserves the communication efficiency
of Tiramisu.

3. Vote (all nodes). A node waits to receive the first proposal in view v signed by Uv carrying
(i) a valid certificate Dv of delegation of Lv to Uv (ii) an erasure-coded piece of Ev matching a
commitment Cv,1, (iii) a secret-share of Kv matching a commitment Cv,2, (iv) a QC Cv′(Bk−1)
ranked no lower than the locked block. To vote for the block Bk = (bk, hk−1), the node signs
hk := H(Cv1 , Cv,2, hk−1) and sends 〈VOTE, hk, v〉 as a threshold signature share to Uv. It
updates lock to Cv′(Bk−1).

4. Drive (builder only). Upon collecting 2f + 1 vote shares, form Cv(hk) and broadcast to all
nodes. To maintain efficient retrieval of block data through Mascarpone or Cocoa, in this step
the builder should also send the key Kv to the small Mascarpone sub-committee and publish it
to the Cocoa CDN.

Retrieving a block. Under (common) optimistic scenarios, retrieving the block content is done
by obtaining Ev and Kv through the Cocoa or Mascarpone layers. In worst case scenarios, retriev-
ing the block content is done by reconstructing the key Kv using Shamir secret-sharing, which is a
linear transformation, and reconstructing the encrypted block Ev through Savoiardi. In either case,
applying the key Kv to Ev decrypts the block. Importantly, even if the builder acts irrationally
and sends a bogus key Kv, both Ev and Kv can be retrieved. That is, no hole will be left in the
chain, the builder will be charged a fee for a unique (bogus) block. Finally, note that replicas must
wait for the block Bk to be committed before sending the share of the corresponding symmetric
key Kv in order to avoid a malicious participants to collect shares early on and steal the content
of the block.

Committing a block. A block Bk is said to be committed if there exists an l ≥ k such that
Cv′(Bl) and Cv′+1(Bl+1) are formed, and Bl extends Bk. In other words, either for Bk or for
one of its successors, two blocks at consecutive heights are certified in consecutive views. The
existence of these certificates guarantees that the encrypted content Ev of the block value bv is
retrievable from one of the Tiramisu layers as well as the corresponding decryption key Kv such
that Ev = EncKv

(bv).

Omitted Details. Several mechanisms are left outside the scope of this paper; the details are
provided in [84]. Briefly, they include several efficient primitives (e.g., aggregated quorum certifi-
cates, stake table and decentralized random beacons) to adapt the permissioned settings to the
fully decentralized setting without performance deterioration. The stake stable maps public keys of
stake-holders to validators, and it is managed on the L1 mainnet. When the set of stakers change,

13

HotShot dynamically reconfigures the validator set. Additionally, as already mentioned, HotShot
integrates a view synchronization protocol based on Naor-Keidar [70].

6 Preliminary Evaluation on HotShot
We have implemented HotShot as a Rust library open-sourced under the MIT license 1. In this
section, we will show the performance by preliminary evaluation and then discuss about bottlenecks
and future improvements.

6.1 Setup
The evaluations were conducted on HotShot version 0.5.63 2, which implements the original Hot-
Stuff protocol[93]. We plan to upgrade to the HotStuff 2 protocol[63] in the future. Additionally,
the proposer-builder exchange mechanism has not yet been implemented, but it will be included
in future benchmarks.

Each benchmark was run until 100 blocks were committed. After each benchmark run, nodes
reported:

• total time elapsed for the run

• throughput in MB/s

• total latency to finalize blocks

• total number of blocks committed

• total number of views it took to reach 100 commits

• number of failed views (views that failed to make progress)

These values were collected and averaged in the final results. Note that throughput is measured
in decimal definition of megabytes per second, instead of binary definition.

In our evaluations, we progressively increased the block size from 50KB to 20MB and tested on
network sizes ranging from 10 to 1000 nodes. In all settings, a subset of 10 nodes serves both as
validators and the committee for Tiramisu DA’s Mascarpone layer.

We conducted our experiments on two types of machines:

CDN Instances: Our CDN 3 is a distributed and fault-tolerant system responsible for routing
messages between validators. The CDN was run across 3 Amazon EC2 m6a.xlarge instances
located in the us-east-2 region. Each instance ran a broker, which is the component responsible
for forwarding messages to their intended recipients. One instance also ran the marshal service,
which is the service that facilitates the authentication and marshaling of validators to a specific
broker. Each instance had 4 vCPUs and 16.0 GiB memory.

Validator Instances: HotShot nodes were run on Amazon ECS tasks with 2 vCPUs and 4
GiB memory. Nodes were equally distributed among the us-east-2a, us-east-2b and us-east-2c
availability zones.

6.2 Performance
As shown in Figure 5, throughput rises with the increasing load without a corresponding increase
in latency, up to a certain point of saturation. Beyond this point, latency begins to increase while
throughput either remains steady or shows a slight increase. In the Table 1, we show the benchmark
data for block sizes of 5MB block size, which is approximately the turning point.

6.3 Analysis and Future Improvements
We compared performance between our implementation of the Tiramisu data availability protocol
and our previous HotShot implementation 4 without the Savioradi DA layer. We saturate the
network in both implementations to calculate the throughput and corresponding latency. Our latest

1https://github.com/EspressoSystems/HotShot
2https://github.com/EspressoSystems/HotShot/tree/0.5.63
3https://github.com/EspressoSystems/Push-CDN
4https://docs.espressosys.com/sequencer/releases/doppio-testnet-release/benchmarks

14

https://github.com/EspressoSystems/HotShot
https://github.com/EspressoSystems/HotShot/tree/0.5.63
https://github.com/EspressoSystems/Push-CDN
https://docs.espressosys.com/sequencer/releases/doppio-testnet-release/benchmarks

0 2 4 6 8 10
Throughput (MB/s)

0

5

10

15

20

25

La
te

nc
y

(s
)

10 nodes - 10 DA
100 nodes - 10 DA
200 nodes - 10 DA
500 nodes - 10 DA
1000 nodes - 10 DA

Figure 5: HotShot throughput vs. end-to-end latency at varying network size and increasing block
sizes from [50 KB, 100 KB, 500 KB, 1 MB, 2.5 MB, 5 MB, 10 MB, 20 MB].

Network Size Mascarpone
Committee Size

Block
Size (MB)

Average
Latency (s)

Average
View Time (s) Throughput (MB/s)

10 10 5 3 1.08 4.58
100 10 5 2 0.85 5.76
200 10 5 4 1.21 4.04
500 10 5 9 1.97 2.48
1000 10 5 21 5.56 0.88

Table 1: HotShot throughput and latency for selected data points.

implementation demonstrates superior maximum throughput in large-scale networks compared to
our previous implementation. However, this implementation exhibits increased latency in such
networks. We have identified several implementation-specific bottlenecks that could be addressed
to mitigate this issue.

Network Size HotShot w/ Tiramisu HotShot w/o Tiramisu
Throughput

(MB/s)
Average

Latency (s)
Throughput

(MB/s)
Average

Latency (s)
10 5.07 7.00 25.2 2.90
100 10.0 7.40 5.5 11.20
500 5.58 13.7 1.13 7.2
1000 2.97 25.7 0.55 7.3

Table 2: Throughput and corresponding latency for HotShot when saturating the network with
and without Tiramisu data availability protocol. It helps achieving much better throughput with
increased latency.

The primary bottlenecks of this particular implementation are twofold:

1. Our current implementation of Tiramisu DA’s Savoiardi layer is compute-intensive. This
causes builders, leaders, and Mascarpone DA committee members to spend additional time
computing Savoiardi shares during each view. This bottleneck can be addressed by more
optimally parallelizing intensive compute, dynamically tuning Savoiardi parameters such as
multiplicity1 to optimally encode block data, experimenting with different hardware such as
GPUs, and having the Cocoa layer optimistically calculate Savoiardi shares.

2. The builder used in these benchmarks is a simple, naive builder. Unlike a sophisticated
builder, this builder does no optimistic execution or optimistic Savoiardi calculations. The

1Multiplicity: Tiramisu DA’s Savoiardi VID scheme is inspired by Ethereum’s danksharding proposal, where
the block payload is viewed as a list of polynomial coefficients. Ordinarily, these coefficients are partitioned into
multiple polynomials, and each storage node gets one evaluation from each of those polynomials. At the other
extreme, one could instead gather these coefficients into a single high-degree polynomial, and give each storage node
multiple evaluations from this polynomial. We use the word “multiplicity” to denote the number of evaluations
per polynomial sent to each storage node. Multiplicity is a parameter that can be tuned between two extremes to
optimize performance.

15

simple builder does not begin building blocks until the HotShot leader requests it to do so.
This causes the builder to be slow in returning block data to the HotShot leader, thus adding
unneeded latency for each view. This bottleneck can be addressed by using a sophisticated
builder that optimistically builds blocks.

These benchmarks did not use a public transaction mempool. Instead, block builders were con-
figured to build predetermined-sized blocks each view. This configuration is equivalent to block
builders only building blocks with privately-sent transactions. A public mempool is part of the
current HotShot implementation, however, and will be included in future benchmarks. Note that
throughput and latency results will differ with the inclusion of the public mempool.

As mentioned before, we intend to upgrade to the HotStuff 2[63] protocol in the future, which will
reduce commit latency significantly.

7 Related Work
The problem of state machine replication [59, 60, 79] studies how multiple deterministic distributed
machines can agree on a common shared state, even if some of the machines are adversarial or
Byzantine. The last four decades have seen a lot of progress towards designing Byzantine Fault
Tolerant (BFT) protocols for SMR [23, 61, 68, 67, 47, 36]. While reviewing all the work in this
space is beyond the scope of this manuscript, we will describe aspects that are closely related to
HotShot.

Achieving high throughput and low latency. Several works in the past two decades have
focused solely on designing protocols that can process a large number of transactions with low
latency. This includes Nakamoto style protocols [69, 19, 39, 75, 76, 33, 56, 91, 94, 58] as well as
classical BFT protocols under different network conditions such as synchrony [26, 3, 4, 38, 47, 86,
77, 80, 2], partial synchrony [23, 15, 93, 25, 24, 45, 88], and asynchrony [5, 48, 62, 82, 45]. To
improve throughput, a recent line of work attempts to separate data dissemination from consensus
on transactions [28, 37, 36, 82, 81, 76, 91]. Similarly, in terms of latency, the notion of optimistic
responsiveness was introduced and shown to hold for many protocols [75, 77, 80, 93, 25, 23]; in a
nutshell, a responsive protocol finalizes transactions at the speed of the network (independent of
any pessimistic upper bound on network delay ∆).

HotShot borrows many of the above advances and its core consensus protocol is based on HotStuff-
2 [93, 63].

Data availability. At a high level, data availability protocols must ensure that once the data
is shared among the nodes of the network, it can be reliably recovered later. A naive way to
achieve such a goal is to store this data directly on the ledger. In the context of Ethereum, this
is the approach that was taken by most rollups before the introduction of Proto-Danksharding
(EIP4488) [20], causing high gas cost and reduced throughput.

Similarly to Ethereum’s Danksharding proposal [73], Tiramisu leverages erasure codes [90] and
polynomial commitments [52] in order to share the data among replicas. This is how we achieve
low communication complexity for disseminating a block B on the critical path: assuming |B| � n,
where n is the number of parties, the total communication remains O(|B|) as each party only
receives a piece of data of size proportional to a chunk of the block. While recovery is expensive in
the worst case, Tiramisu additionally offers the Mascarpone and Cocoa layers to address efficient
retrieval in the optimistic scenarios.

Bribery resistance. Prior works have classified adversaries as either static, adaptive, or mobile.
While static corruption is a weak adversarial assumption for open blockchain settings, practical
solutions are not known under strong mobile adversaries [74, 95, 13, 42]. Thus, many works aim to
secure themselves under an adaptive adversary, although many of them still incur a high communi-
cation complexity [14, 22, 57, 96, 3, 38, 1, 53]. Algorand [47] improves upon this to simultaneously
achieve low communication complexity using small committees, in addition to security against
an adaptive adversary. However, as also mentioned in [9], we note that an adversary can utilize
bribery attacks to blindly corrupt parties, making solutions based on small committees insecure.
Our solution, on the other hand, obtains the desirable performance parameters while being secure
under an adaptive and bribing adversary.

16

Use of a CDN. We leverage a hybrid network composed by a Content Delivery Network (CDN)
coupled with a P2P network. In the optimistic scenario, all messages and data will be exchanged
through the CDN, thus guaranteeing close to optimal throughput and latency. While the idea of
combining CDN and P2P networks to improve content distribution has been explored in previous
works [97, 50], their purpose is to boost the performance of centralized systems. In our case the
goal is to maximize network performance most of the time while retaining liveness and censorship
resistance even when the CDN is disrupted or compromised.

MEV. Maximal Extractable Value (MEV) [34] is a serious concern as it may not only harm
user experience but also undermines the security of the consensus protocol. Among the numerous
approaches to mitigate the negative effects of MEV [64, 54, 49, 55, 87, 98, 44], Proposer-Builder-
Separation (PBS) aims at allowing validators (a.k.a. proposers) to outsource the construction of
blocks to a competitive builder market place. At the core of PBS is the fair exchange problem,
where a builder sends the contents of its block and some payment to the proposer in the hope this
block will be appended to the ledger. In practice the problem is solved via a trusted party called
Relay [44] that allows builders and proposers to run the block auction and ensure both parties
comply with their obligations. In addition to the strong trust assumption, currently relays are
not economically sustainable [11] and thus can only be considered as temporary solution. Getting
rid of the trust assumption would require to enshrine PBS [72] into the consensus protocol (e.g.
Ethereum) which is a complex task and might make it difficult to implement a potentially better
alternative in the future.

Our Builder-Exchange protocol leverages the idea of delegation to circumvent the complexity of
standard approaches such as two-slots PBS [18]. Another benefit from our solution is its modularity,
as it can be integrated to any auction or builder selection protocol. More generally, our Builder-
Exchange mechanism enables the evolution of an ecosystem that manages MEV.

17

References
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous

byzantine agreement with expected o(1) rounds, expected o(n2) communication, and optimal
resilience. Cryptology ePrint Archive, Paper 2018/1028, 2018. https://eprint.iacr.org/
2018/1028.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected o (1) rounds, expected communication, and optimal re-
silience. In International Conference on Financial Cryptography and Data Security, pages
320–334. Springer, 2019.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity consensus, explored.
Cryptology ePrint Archive, 2018.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 106–118. IEEE, 2020.

[5] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

[6] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Asynchronous verifiable information dispersal with near-optimal communica-
tion, 2022. https://eprint.iacr.org/2022/775.

[7] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof
systems, 2021. https://eprint.iacr.org/2021/1500.

[8] Guillermo Angeris, Alex Evans, and Tarun Chitra. A note on bundle profit maximization,
2021.

[9] Vivek Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Proof-of-stake longest chain protocols: Security vs pre-
dictability. In Proceedings of the 2022 ACM Workshop on Developments in Consensus, pages
29–42, 2022.

[10] Joseph Bebel and Dev Ojha. Ferveo: Threshold decryption for mempool privacy in bft net-
works. Cryptology ePrint Archive, Paper 2022/898, 2022. https://eprint.iacr.org/2022/
898.

[11] The Block. Blocknative suspending mev-boost relay to focus on ’econom-
ically viable opportunities’, 2023. https://www.theblock.co/post/253035/
blocknative-suspending-mev-boost-relay-to-focus-on-economically-viable-opportunities
, Accessed 2024-04-13.

[12] Dan Boneh and Moni Naor. Timed commitments. In Annual international cryptology confer-
ence, pages 236–254. Springer, 2000.

[13] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien Tixeuil. Opti-
mal mobile byzantine fault tolerant distributed storage. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, pages 269–278, 2016.

[14] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings of the
third annual ACM symposium on Principles of distributed computing, pages 154–162, 1984.

[15] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938, 2018.

[16] Vitalik Buterin. Reed-solomon erasure code recovery in
n log2 n time with ffts, August 2018. https://ethresear.ch/t/
reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts.

[17] Vitalik Buterin. A rollup-centric ethereum roadmap, 2020. https://ethereum-magicians.
org/t/a-rollup-centric-ethereum-roadmap/4698, Accessed: 2024-04-14.

[18] Vitalik Buterin. Two-slot proposer/builder separation, 2021. https://ethresear.ch/t/
two-slot-proposer-builder-separation/10980, Accessed: 2024-04-14.

18

https://eprint.iacr.org/2018/1028
https://eprint.iacr.org/2018/1028
https://eprint.iacr.org/2022/775
https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://www.theblock.co/post/253035/blocknative-suspending-mev-boost-relay-to-focus-on-economically-viable-opportunities
https://www.theblock.co/post/253035/blocknative-suspending-mev-boost-relay-to-focus-on-economically-viable-opportunities
https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts
https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://ethresear.ch/t/two-slot-proposer-builder-separation/10980
https://ethresear.ch/t/two-slot-proposer-builder-separation/10980

[19] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform.
white paper, 3(37):2–1, 2014.

[20] Vitalik Buterin, Dankrad Feist, Diederik Loerakker, George Kadianakis, Matt Garnett, Mofi
Taiwo, and Ansgar Dietrichs. Eip-4844: Shard blob transactions,” ethereum improvement
proposals, no. 4844, 2022. https://eips.ethereum.org/EIPS/eip-4844, Accessed: 2024-
04-11.

[21] Philippe Camacho. Fair exchange of short signatures without trusted third party. In Topics
in Cryptology–CT-RSA 2013: The Cryptographers’ Track at the RSA Conference 2013, San
Francisco, CA, USA, February 25-March 1, 2013. Proceedings, pages 34–49. Springer, 2013.

[22] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
42–51, 1993.

[23] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, pages 173–186. USENIX
Association, 1999.

[24] Benjamin Y Chan and Rafael Pass. Simplex consensus: A simple and fast consensus protocol.
Cryptology ePrint Archive, 2023.

[25] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. Cryptology ePrint Archive, 2018.

[26] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely simple synchronous
blockchain. Cryptology ePrint Archive, 2018.

[27] Benny Choc, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults. In Annual Symposium on Foundations
of Computer Science (Proceedings), pages 383–395, 1985.

[28] Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and Manuel
Vidigueira. Every bit counts in consensus. arXiv preprint arXiv:2306.00431, 2023.

[29] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 364–369,
1986.

[30] Coindesk. Ethereum bot gets attacked for $20m as valida-
tor strikes back. https://www.coindesk.com/business/2023/04/03/
ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/, Accessed:
2024-04-07.

[31] Cointelegraph. Sandwich trading bots lose bread and but-
ter in $25m exploit, 2023. https://cointelegraph.com/news/
sandwich-trading-bots-lose-bread-and-butter-in-25m-exploit, Accessed: 2024-
04-14.

[32] Cointelegraph. zksync went down for 5 hours on christmas day
but is now back online, 2023. https://cointelegraph.com/news/
zksync-went-down-5-hours-christmas-day-now-back-online, Accessed: 2024-04-14.

[33] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography and Data Security:
23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers 23, pages 23–41. Springer, 2019.

[34] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

[35] Ivan Bjerre Damgård. Practical and provably secure release of a secret and exchange of
signatures. In Workshop on the Theory and Application of of Cryptographic Techniques, pages
200–217. Springer, 1993.

19

https://eips.ethereum.org/EIPS/eip-4844
https://www.coindesk.com/business/2023/04/03/ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/
https://www.coindesk.com/business/2023/04/03/ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/
https://cointelegraph.com/news/sandwich-trading-bots-lose-bread-and-butter-in-25m-exploit
https://cointelegraph.com/news/sandwich-trading-bots-lose-bread-and-butter-in-25m-exploit
https://cointelegraph.com/news/zksync-went-down-5-hours-christmas-day-now-back-online
https://cointelegraph.com/news/zksync-went-down-5-hours-christmas-day-now-back-online

[36] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Nar-
whal and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 34–50, 2022.

[37] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. Cryptology ePrint Archive, Paper 2021/777, 2021. https://eprint.iacr.org/2021/
777.

[38] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[39] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. {Bitcoin-NG}: A
scalable blockchain protocol. In 13th USENIX symposium on networked systems design and
implementation (NSDI 16), pages 45–59, 2016.

[40] Dankrad Feist and Dmitry Khovratovich. Fast amortized kzg proofs, 2023. https://eprint.
iacr.org/2023/033.

[41] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pages 427–438. IEEE, 1987.

[42] Orr Fischer and Merav Parter. Distributed congest algorithms against mobile adversaries.
In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages
262–273, 2023.

[43] Flashbots. The future of mev is suave. https://writings.flashbots.net/
the-future-of-mev-is-suave/, Accessed: 2023-05-11.

[44] Flashbots. Mev boost, 2024. https://docs.flashbots.net/flashbots-mev-boost/
introduction, Accessed 2024-04-13.

[45] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and
Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous
fallback. In Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers, pages 296–315. Springer, 2022.

[46] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. Yoso: You only speak once: Secure mpc with stateless ephemeral roles.
In Annual International Cryptology Conference, pages 64–93, 2021.

[47] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on
operating systems principles, pages 51–68, 2017.

[48] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster
asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 803–818, 2020.

[49] Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipula-
tions in decentralized finance. In Proceedings of the 4th ACM Conference on Advances in
Financial Technologies, AFT ’22. ACM, September 2022.

[50] Hai Jiang, Jun Li, Zhongcheng Li, and Xiangyu Bai. Efficient large-scale content distribution
with combination of cdn and p2p networks. International Journal of Hybrid Information
Technology, 2(2):4, 2009.

[51] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W Felten.
Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium, pages
1353–1370, 2018.

[52] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to poly-
nomials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16, pages 177–194. Springer, 2010.

[53] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Annual International Cryptology Conference, pages 445–462. Springer, 2006.

20

https://eprint.iacr.org/2021/777
https://eprint.iacr.org/2021/777
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2023/033
https://writings.flashbots.net/the-future-of-mev-is-suave/
https://writings.flashbots.net/the-future-of-mev-is-suave/
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://docs.flashbots.net/flashbots-mev-boost/introduction

[54] Alireza Kavousi, Duc V. Le, Philipp Jovanovic, and George Danezis. Blindperm: Efficient
mev mitigation with an encrypted mempool and permutation. Cryptology ePrint Archive,
Paper 2023/1061, 2023. https://eprint.iacr.org/2023/1061.

[55] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part
III 40, pages 451–480. Springer, 2020.

[56] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017.

[57] Valerie King and Jared Saia. Breaking the o (n 2) bit barrier: scalable byzantine agreement
with an adaptive adversary. Journal of the ACM (JACM), 58(4):1–24, 2011.

[58] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In 25th usenix security symposium (usenix security 16), pages 279–296,
2016.

[59] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21:558–565, 1978.

[60] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16:133–169, 1998.

[61] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

[62] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous consensus
as fast as the pipelined bft. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2159–2173, 2022.

[63] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase responsive bft. Cryptology
ePrint Archive, 2023.

[64] Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value (mev) protection on a
dag. arXiv preprint arXiv:2208.00940, 2022.

[65] Ori Mazor and Ori Rottenstreich. An empirical study of cross-chain arbitrage in decentralized
exchanges. Cryptology ePrint Archive, Paper 2023/1898, 2023. https://eprint.iacr.org/
2023/1898.

[66] Conor McMenamin. Sok: Cross-domain mev, 2023.

[67] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. Cryptology ePrint Archive, Paper 2016/199, 2016. https://eprint.iacr.org/
2016/199.

[68] Iulian Moraru, David G Andersen, and Michael Kaminsky. There is more consensus in egal-
itarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 358–372, 2013.

[69] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, page 21260, 2008.

[70] Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr, 2020. https://arxiv.org/abs/2002.07539.

[71] Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups. arXiv preprint arXiv:2111.12323, 2021.

[72] Mike Neuder. Why enshrine proposer-builder separation? a
viable path to epbs, 2023. https://ethresear.ch/t/
why-enshrine-proposer-builder-separation-a-viable-path-to-epbs/15710 , Ac-
cessed 2024-04-13.

[73] Valeria NikolaenkoDan and Dan Boneh. Data availability sampling and danksharding: An
overview and a proposal for improvements. https://a16zcrypto.com/posts/article/

21

https://eprint.iacr.org/2023/1061
https://eprint.iacr.org/2023/1898
https://eprint.iacr.org/2023/1898
https://eprint.iacr.org/2016/199
https://eprint.iacr.org/2016/199
https://arxiv.org/abs/2002.07539
https://ethresear.ch/t/why-enshrine-proposer-builder-separation-a-viable-path-to-epbs/15710
https://ethresear.ch/t/why-enshrine-proposer-builder-separation-a-viable-path-to-epbs/15710
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/

an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/, Accessed
2023-07-12.

[74] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In Proceedings of
the tenth annual ACM symposium on Principles of distributed computing, pages 51–59, 1991.

[75] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
Cryptology ePrint Archive, Paper 2016/917, 2016. https://eprint.iacr.org/2016/917.

[76] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
symposium on principles of distributed computing, pages 315–324, 2017.

[77] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018
Proceedings, Part II 37, pages 3–33. Springer, 2018.

[78] Polygon. Aggregated blockchains: A new thesis. https://polygon.technology/blog/
aggregated-blockchains-a-new-thesis, Accessed: 2024-04-11.

[79] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[80] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the optimality of optimistic
responsiveness. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 839–857, 2020.

[81] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving dag-bft
latency and robustness, 2023.

[82] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: Dag bft protocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2705–2718, 2022.

[83] Starkware. Starknet. https://www.starknet.io/, Accessed: 2023-05-11.

[84] Espresso Systems. The espresso sequencer: Hotshot consensus and tiramisu data
availability, 2023. https://github.com/EspressoSystems/HotShot/blob/main/docs/
espresso-sequencer-paper.pdf, Accessed: 2024-04-7.

[85] Espresso Systems. The espresso market design, 2024. https://hackmd.io/
n0z0sBkNS3irfttkeG5xzw.

[86] DFINITY Team et al. The internet computer for geeks. Cryptology ePrint Archive, 2022.

[87] Shutter team. Combating front-running and malicious mev using threshold cryptography.
https://blog.shutter.network/, Accessed: 2024-04-13.

[88] TD Team et al. State machine replication in the diem blockchain, 2021.

[89] Barry Whitehat. zkrollup, 2018. https://github.com/barryWhiteHat/roll_up, Accessed:
2023-05-11.

[90] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications. John
Wiley & Sons, 1999.

[91] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse, Giulia Fanti, and
Pramod Viswanath. Prism: Scaling bitcoin by 10,000 x. arXiv preprint arXiv:1909.11261,
2019.

[92] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispers-
edLedger: High-Throughput byzantine consensus on variable bandwidth networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages
493–512, Renton, WA, April 2022. USENIX Association.

[93] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hot-
stuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.

[94] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. Ohie: Blockchain scaling made
simple. In 2020 IEEE Symposium on Security and Privacy (SP), pages 90–105. IEEE, 2020.

22

https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/
https://eprint.iacr.org/2016/917
https://polygon.technology/blog/aggregated-blockchains-a-new-thesis
https://polygon.technology/blog/aggregated-blockchains-a-new-thesis
https://www.starknet.io/
https://github.com/EspressoSystems/HotShot/blob/main/docs/espresso-sequencer-paper.pdf
https://github.com/EspressoSystems/HotShot/blob/main/docs/espresso-sequencer-paper.pdf
https://hackmd.io/n0z0sBkNS3irfttkeG5xzw
https://hackmd.io/n0z0sBkNS3irfttkeG5xzw
https://blog.shutter.network/
https://github.com/barryWhiteHat/roll_up

[95] Moti Yung. The” mobile adversary” paradigm in distributed computation and systems. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pages
171–172, 2015.

[96] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain
via full sharding. In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 931–948, 2018.

[97] Ge Zhang, Wei Liu, Xiaojun Hei, and Wenqing Cheng. Unreeling xunlei kankan: Under-
standing hybrid cdn-p2p video-on-demand streaming. IEEE Transactions on Multimedia,
17(2):229–242, 2014.

[98] Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2mm: Mitigating frontrunning, trans-
action reordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371, 2021.

A Savoiardi Verifiable Information Dispersal
HotShot uses a variant of a VID scheme due to Alhaddad-Duan-Varia-Zhang (ADVZ) that those
authors call AVID-1 [7]. Our variant of AVID-1 is called Savoiardi and differs from the original
scheme in the following ways:

1. Reduce the asymptotic communication burden of AVID-1 Disperse from quadratic to linear
in the number of storage nodes. The quadratic communication of AVID-1 Disperse is due
to the all-to-all messaging among storage nodes in the “echo” and “ready” steps of that
scheme. HotShot eliminates these steps, thus achieving linear communication for Disperse.
(See Section A.7 for discussion.)

2. Augment Commit(B) to include a constant-size vector commitment to certain polynomial
evaluations as described below. The purpose of this augmentation is to enable the use of
quasi-linear algorithms to batch-compute KZG proofs. (See Section A.5 for discussion.)

Next, we informally describe Savoiardi—see Algorithm 6 for pseudocode. Let n be the number of
storage nodes, let r be the rate of the erasure code (example: r = 1/4), let m = rn be the number
of fragments into which the block payload B is split. Without loss of generality we assume that
the block payload B consists of a list of scalars in some suitable prime field, and the size of this
list is a multiple of m so that B has size km for some k.

A.1 Commit
View the block payload B as k sublists of m scalars each. For i = 1, . . . , k view the m scalars
of sublist i as coefficients for a degree-(m − 1) polynomial pi and let p̂i denote the KZG [52]
commitment to pi. For each j = 1, . . . , n let

ej = (p1(j), . . . , pk(j))

denote the k-tuple of evaluations of these polynomials at j. Let vc denote an arbitrary constant-size
vector commitment scheme. Commit(B) is defined as the pair (h, v) where

h = hash(p̂1, . . . , p̂k)

v = vc(e1, . . . , en)

(If desired, the bit length of Commit(B) could be further reduced by hashing the pair (h, v).)

A.2 Disperse
Disperse(B) is a one-round interactive protocol between the block sender and the storage nodes.
For j = 1, . . . , n the sender sends the following data to storage node j:

1. Polynomial commitments p̂1, . . . , p̂k and the vector commitment v. (This data is the same
for each storage node.)

2. An evaluation tuple ej = (p1(j), . . . , pk(j)) and a vc opening vj for ej to v.

3. A constant-size aggregate KZG witness wj of the polynomial evaluations relative to the
polynomial commitments.

23

Disperse(B)

. Sender
1 : p1, . . . , pk ← interpret B as polynomials
2 : p̂1, . . . , p̂k ← KZG commitments to p1, . . . , pk

3 : for j = 1, . . . , n

4 : ej ← (p1(j), . . . , pk(j)) evaluate polynomials
5 : endfor

6 : h← hash(p̂1, . . . , p̂k)

7 : v ← vc(e1, . . . , en)

8 : t← hash-to-field(h, v)

9 : p←
k∑

i=1

tipi (random lin combo)

10 : (w1, . . . , wn)← batch-KZG-prove(p)

11 : for j = 1, . . . , n

12 : vj ← open v at ej

13 : Send to storage node j:
14 : p̂1, . . . , p̂k, v and ej , wj , vj

15 : endfor

. Storage node j

16 : Receive p̂1, . . . , p̂k, v and ej , wj , vj

17 : Verify vector opening vj of v at ej

18 : h← hash(p̂1, . . . , p̂k)

19 : Commit(B)← (h, v)

20 : t← hash-to-field(Commit(B))

21 : p̂←
k∑

i=1

tip̂i

22 : p(j)←
k∑

i=1

tipi(j)

23 : KZG-verify(p̂, j, p(j), wj)

24 : Store p̂1, . . . , p̂k, v and ej , wj , vj

25 : indexed by Commit(B)

26 : Send to Sender: sign(Commit(B))

. Sender
27 : Wait for q valid sigs s1, . . . , sq

28 : of message Commit(B) from storage nodes
29 : s← aggregate sigs s1, . . . , sq

30 : return certificate of retrievability
31 : cert(Commit(B)) = (s, Commit(B))

Commit(B)

1 : p1, . . . , pk ← interpret B as polynomials
2 : p̂1, . . . , p̂k ← KZG commitments to p1, . . . , pk

3 : h← hash(p̂1, . . . , p̂k)

4 : for j = 1, . . . , n

5 : ej ← (p1(j), . . . , pk(j)) evaluate polynomials
6 : endfor

7 : v ← vc(e1, . . . , en)

8 : return commitment (h, v)

Retrieve(c, cert(c))

. Client
1 : Check validity of cert(c)
2 : Retrieve p̂1, . . . , p̂k, v from somebody
3 : h← hash(p̂1, . . . , p̂k)

4 : Verify c = (h, v)

5 : t← hash-to-field(h, v)

6 : p̂←
k∑

i=1

tip̂i

7 : Send to all storage nodes: “retrieve c, cert(c)”
. Storage node j

8 : Receive “retrieve c, cert(c)”
9 : Retrieve ej , wj , vj and send to Client

. Client
10 : Receive ej , wj , vj from storage node j

11 : Verify vector opening vj of v at ej

12 : p(j)←
k∑

i=1

tipi(j)

13 : KZG-verify(p̂, j, p(j), wj)

14 : Store j, ej

15 : Retrieve from m storage nodes j1, . . . , jm

16 : for i = 1, . . . , k

17 : pi ← Interpolate from pi(j1), . . . , pi(jm)

18 : endfor

19 : B ← Interpret p1, . . . , pk as a block payload
20 : return B

Figure 6: VID

24

The KZG witnesses w1, . . . , wn are computed as follows:

1. Compute the pseudorandom scalar

t = hash-to-field(Commit(B)) (1)

2. Compute the polynomial p as a pseudorandom linear combination

p =

k∑
i=1

tipi. (2)

3. Each wj is a KZG witness for the polynomial evaluation p(j). Batch-compute all KZG
witnesses w1, . . . , wn in quasi-linear time via the Feist-Khovratovich algorithm [40].

On receiving this data from the sender, each storage node j checks the integrity of its data. If the
integrity check succeeds then the storage node stores its data for later use and replies to the sender
with a signature of Commit(B) to indicate its success.

The integrity check proceeds as follows for storage node j:

1. Verify the vc opening vj for ej relative to v.

2. Compute t as in (1) and the commitment p̂ and evaluation p(j) according to

p̂ =

k∑
i=1

tip̂i (3)

p(j) =

k∑
i=1

tipi(j) (4)

3. Run KZG verification to check that the witness wj is consistent with p̂, j, and p(j).

The sender waits for signatures of Commit(B) from at least q storage nodes. (The choice of q
is discussed in Section A.4.) The certificate of retrievability for block payload B consists of an
aggregation of these q signatures and Commit(B).

A.3 Retrieve
Retrieve(c, cert(c)) is a one-round interactive protocol between the client and storage nodes. The
client fetches the polynomial commitments p̂1, . . . , p̂k and vector commitment v from somewhere—
possibly from one of the storage nodes—and checks correctness of these commitments by verifying
c = (hash(p̂1, . . . , p̂k), v). Next, the client computes the scalar t as per (1) and polynomial com-
mitment p̂ as per (3).

The client extracts the identities of at least q storage nodes from cert(c) and sends a request to
each such storage node for its block data for commitment c. Storage node j retrieves its data tuple
ej and witnesses wj , vj and sends this data to the client.

On receiving this data from a storage node j, the client checks the integrity of the data:

1. Verify the vector opening vj for ej with respect to v.

2. Compute p(j) as per (4) and verify the KZG-witness wj with respect to p̂, j, and p(j).

The client waits for at least m successful retrievals from storage nodes j1, . . . , jm. For each i =
1, . . . , k the client recovers the degree-(m−1) polynomial pi from the m evaluations pi(j1), . . . , pi(jm)
via interpolation. The coefficients of p1, . . . , pk are precisely the data in the block payload B.

A.4 Storage quorum size
The number q of storage nodes in a certificate of retrievability is chosen so that the Disperse sender
and Retrieve client are both guaranteed to succeed even in the presence of up to f malicious
storage nodes. Thus, we require m+ f ≤ q ≤ n− f . There are many choices of f,m, q that meet
this constraint. For example, the overhead from erasure encoding is inversely proportional to the
erasure code rate r = m/n, which is maximized at m = n− 2f , implying q = n− f . Alternatively,
a smaller choice of r enables larger f or smaller q.

25

A.5 On the need for a vector commitment
We defined Commit(B) in Section A.1 to include a commitment v to the vector (e1, . . . , en) of
polynomial evaluation tuples. Why? For each j the pseudorandom scalar t must depend on the
evaluations p1(j), . . . , pk(j) as otherwise a malicious sender could produce a valid KZG witness for
incorrect evaluations.

An alternative that avoids the need for a vector commitment is to define a different scalar tj for each
storage node j as tj = hash(Commit(B), p1(j), . . . , pk(j)) and compute p, p̂, and p(j) differently for
each storage node using tj instead of t.

Unfortunately, computation of these polynomials (and their KZG proofs) precludes the use of
Feist-Khovratovich and introduces a quadratic dependence on the number n of storage nodes for
the sender’s run time. As quasi-linear runtime is a priority for HotShot, we prefer the additional
communication overhead of the vector opening vj over O(n2) run time for the sender.

A.6 Asymptotic complexity
Let |B|, |open| denote the size of the block payload B and vector openings vj , respectively. Total
communication over all nodes for the payload B (without overhead) is O(|B|). Overhead per node
is O(k + |open|). Recall that kn is O(|B|). Thus, if |open| is constant then Savoiardi achieves
optimal asymptotic communication complexity O(|B|).

Asymptotic computational complexity for both Disperse and Retrieve includes many costs, such
as computation and verification of a vector commitment. But these costs are dominated by the
discrete Fourier transforms (DFTs) computed in these protocols. Field arithmetic is cheaper than
group arithmetic, so we account for these two costs separately.

Disperse. For each i = 1, . . . , k the polynomial evaluations pi(1), . . . , pi(n) cost O(n log n) for
a total cost of O(|B| log n) field operations. The batch KZG proof costs O(n log n) group
operations.

Retrieve. The k polynomial interpolations p1, . . . , pk each cost O(n log2 n) [16] for a total cost of
O(|B| log2 n) field operations.

Field ops Group ops
Disperse |B| log n n log n

Retrieve |B| log2 n 1

Table 3: Dominant DFT costs of two main procedures in Savoiardi.

A.7 Minimal termination guarantee
Why does AVID-1 Disperse of Ref. [7] have “echo” and “ready” steps, and why can these steps be
safely eliminated in HotShot? These steps are necessary to achieve strong termination guarantees
for AVID-1. Specifically, AVID-1 achieves both termination (if the sender is honest then all honest
storage nodes complete Disperse) and agreement (if any honest storage node completes Disperse
then all honest storage nodes complete Disperse).

As observed in Ref. [71], such strong termination guarantees are not needed in protocols such as
HotShot. Instead, it suffices that only an honest sender for Disperse is guaranteed to complete
the protocol and obtain a valid retrievability certificate . This weaker guarantee can be achieved
without all-to-all messaging among storage nodes and so we may safely eliminate these steps in
HotShot.

A.8 Strong availability guarantee
Some VID protocols offer only a weak availability guarantee: if an honest client initiates
Retrieve(C, cert(C)) then eventually it terminates and obtains some block payload B′. However,
there is no guarantee that Commit(B′) = C. This weak availability guarantee allows for a much
simpler and faster VID protocol that can be instantiated with any erasure code and any hash
function. Examples of state-of-the-art VID protocols of this type include AVID-M [92] and the
unnamed protocol of Ref. [6].

26

The weak availability guarantee implies that a maliciously dispersed payload might not be dis-
covered during Disperse. Instead, discovery must wait until Retrieve, where the client can
re-compute Commit(B′) to check consistency with commitment C.

In the event where a HotShot adversary corrupts both the VID Disperse sender and the entire
HotShot optimistic DA committee so that the DA committee stores no data and the retrieved
block payload B′ is inconsistent with the commitment C, the data-availability can be lost. Fortu-
nately, the event that Commit(B′) 6= C can be an evidence for identifying and penalizing a corrupt
Disperse sender.

• Example: someone could assemble a subset S of storage node shares that recovers B′ and
create SNARK proof that S is inconsistent with C.

• Example: A quorum of storage nodes could each attest that B′ is consistent with its own
share but inconsistent with C.

However, the above mitigations are complex and expensive. A complex, expensive, and rarely-used
mitigation process is especially vulnerable to mistakes. It is not clear that the performance benefits
of weak availability VID is worth this risk.

A.9 Related work
As mentioned previously, Savoiardi is a variant of AVID-1 [7] with weaker termination guarantees.
A similar state-of-the-art protocol is Semi-AVID-PR due to Nazirkhanova-Neu-Tse [71]. Note that
we can alternatively use Semi-AVID-PR as our VID protocol, which has features like a transparent
setup and the support to fast discrete-log-based curves. The tradeoff is that Semi-AVID-PR has
higher verification/communication complexity compared to AVID-1 when the number of storage
nodes is large.

In Section A.8 we cited Refs. [92, 6] as examples of state-of-the-art VID protocols with a weak
availability guarantee.

B Verifiable Secret Sharing
Verifiable Secret Sharing [27] (VSS) is a cryptographic primitive that allows a dealer Pd (in our
context, the builder) to share a secret value s (symmetric key Kv) among n players P1, P2, · · · , Pn

(replicas) so that t < n shares do not leak any information about the secret s, while t + 1 shares
are enough for its recovery. We follow the scheme described in [52] (see Section 4.1) that essen-
tially replaces the linear size commitment in Feldman’s construction [41] with a (constant size)
polynomial commitment.

Share Phase. In this phase, shares are computed, distributed and verified.

• Pd computes a t-degree polynomial Q(X) := s+
∑t

i=1 riX
i where ri are randomly sampled.

• Pd computes the polynomial commitment to Q(X), Q̃ := KZG.Commit(pp,Q(X)), where
pp := KZG.Setup() is some public parameter. In our setting, Q̃ = CommitV SS(s).

• Pd sends 〈SHARE, Q̃, i, Q(i), wi〉 to each replica Pi where wi := KZG.CreateWitness(pp,Q(X), i)
is the polynomial evaluation witness.

• Each replica then runs KZG.VerifyEval(pp, Q̃, i, Q(i), wi) and accepts if the verification suc-
ceeds.

Recovery Phase. In this phase the shares are collected, verified and combined to recover the
secret.

• A participant R willing to recover the secret s broadcasts a message 〈RECOVER, v〉 where v
is a view number.

• When receiving this message, all honest replicas check first that the corresponding secret s
for view v corresponds to a committed block, otherwise an error message is returned.

• Each replica Pi then sends 〈SHARE, Q̃, i, Q(i), wi〉 back to R.

27

• R waits for obtaining t+ 1 valid shares, that is shares that satisfies
KZG.VerifyEval(pp, Q̃, i, Q(i), wi) = >. If f is the number of corrupt nodes, we set the
threshold t such that f ≤ t < n− f , in order to ensure recovery is always possible.

• Using polynomial interpolation, R recovers s = Q(0).

28

	Introduction
	Architecture Overview
	Tiramisu Data Availability
	Overview
	Communication complexity

	How HotShot uses Tiramisu
	Liveness
	Forcing expensive data recovery

	The Builder-Exchange
	Full Protocol
	The Threat Model
	Views and proposers.

	Preliminary Evaluation on HotShot
	Setup
	Performance
	Analysis and Future Improvements

	Related Work
	Savoiardi Verifiable Information Dispersal
	Commit
	Disperse
	Retrieve
	Storage quorum size
	On the need for a vector commitment
	Asymptotic complexity
	Minimal termination guarantee
	Strong availability guarantee
	Related work

	Verifiable Secret Sharing

