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Abstract

Non-Interactive Timed Commitment schemes (NITC) allow to open
any commitment after a specified delay tfd. This is useful for sealed bid
auctions and as primitive for more complex protocols. We present the
first NITC without repeated squaring or theoretical black box algorithms
like NIZK proofs or one-way functions. It has fast verification, almost
arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our
protocol is based on isogenies between supersingular elliptic curves making
it presumably quantum secure, and all algorithms have been implemented
as part of SQISign or other well-known isogeny-based cryptosystems. Ad-
ditionally, it needs no trusted setup and can use known primes for SIKE
or SQISign.

Keywords: Non-interactive timed commitments, post-quantum, isogeny
walks, Deuring correspondence.

1 Introduction

The concept of time-lock puzzles [21] has been around for more than twenty
years, but timed commitments [5] are rather new and we will use the definition
of Non-Interactive Timed Commitment schemes (NITC) by Katz, Loss, and Xu
[19] from the year 2020. These protocols satisfy binding or non-malleability
properties and efficient verification just like usual commitment schemes, but a
commitment can be opened by anyone after some delay tfd. So hiding only
lasts for this time tfd and there are additional algorithms: one to verify that a
commitment can be opened by others and another one to open the commitment
forcefully in time at least tfd. A possible application is a sealed bid auction,
where all bids can be revealed after time tfd even if some of the bidders refuse
to open their commitment. Other applications are listed in Katz et al. [19].

Our approach uses random walks in the isogeny graph of supersingular ellip-
tic curves to construct a NITC, hence the name Supersingular Isogeny Graph
Non-Interactive Timed Commitments or SIGNITC1 for short. The main idea is
that computing isogenies of large or non-smooth degree is slow, but if we know
the endomorphism ring of the starting curve, we can find a smooth shortcut.
So we use a secret isogeny to a curve with known endomorphism ring for fast

1pronounced like “signets”
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commitment and verification, but the forced decommitment has to compute the
long isogeny and thus it needs time at least tfd.

The advantage of isogeny-based cryptography is that it is presumably quan-
tum secure and relatively slow compared to other fields of post-quantum cryp-
tography. Since we need a delay, this is a good thing. The field has undergone
thorough scrutiny due to the candidates SIKE [18] and SQISign [9] in NIST
competitions for post-quantum protocols and it is well-studied by now. The
protocol only uses (known) isogeny-based cryptography, so we do not need to
know several fields and this facilitates correct and secure implementations. This
also means that we have no theoretical black box algorithms like zero knowledge
proofs, succinct non-interactive arguments of knowledge or one-way functions.
In addition, all needed calculations have already been implemented as subrou-
tines in other cryptosystems. To our knowledge this is the first quantum secure
NITC scheme with explicit algorithms. The only drawbacks are that some al-
gorithms are still quite involved and that we need to differ slightly from the
original definition for hiding.

Related Work Thyagarajan et al. [23] present an approach based on class
groups using non-interactive zero knowledge (NIZK) proofs. Katz et al. [19]
and Chvojka and Jager [10] use protocols based on repeated squaring in a group
of unknown order and NIZK proofs. Finally Ambrona et al. [2] avoid NIZK
proofs but still use repeated squaring. None of these is quantum secure.

NITC schemes are related to verifiable delay functions (VDF) [6] in the sense
that both have fast verification and a function that needs a long time to evaluate.
The main difference is the handling of secrets. For VDFs finding the correct
response for a given challenge has to be slow for everyone. For NITC schemes
however someone has to compute the commitment and therefore already knows
the output of the slow task, namely finding the message to a given commitment.
So we can construct NITC schemes from VDFs, but the contrary is difficult or
impossible, depending on the protocol.

VDFs have direct applications to blockchains and there already are several
approaches. Many are based on repeated squaring for the delay. A new publica-
tion [4] suggests that this might not be sequential. So contrary to current belief,
repeated squaring could be parallelizable, disqualifying it as a delay function.
Additionally, this is not quantum secure. There are even some isogeny-based
candidates for VDFs, but they all still have some flaws. The pairing-based ap-
proach [11] is not quantum secure. Chavez-Saab et al. [8] use SNARGS and
their verification time increases for larger delays. Finally there is one base on
Kani’s criterion for abelian surfaces [13], but the authors state that it is not clear
how to implement it. A different approach based on endomorphism rings [1] has
the problem that the generation of a challenge also gives (a significant advantage
in finding) the response. So it is closer to a NITC scheme and gave the initial
idea for this article.

Structure of this Article The remainder of this paper is structured as fol-
lows. First we give a definition of NITC schemes and discuss their properties.
Next we recall the necessary definitions and fix the notations of isogeny-based
cryptography. Readers familiar with one of these topics can briefly skim through
the respective sections as we aimed to use standard notations. The sole differ-
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ence is a slight variation in Definition 3.5 of an IND-CCA security game. In
Section 4 we present our protocol in full detail. Its security and its properties
are discussed in Section 5. Finally we give a short conclusion and outlook.

2 Non-Interactive Timed Commitments

In this section we recall NITC schemes and their properties. In their paper Katz
et al. [19] gave the first formal definition of this concept.

Definition 2.1 (NITC [19]). A (tcom, tcv, tdv, tfd)- non-interactive timed com-
mitment scheme (NITC) is a tuple TC = (PGen, Com, ComVrfy, DecVrfy, FDecom)
of five algorithms with the following behaviour:

• The randomized parameter generation algorithm PGen takes as input the
security parameter 1κ and outputs a common reference string crs.

• The randomized commit algorithm Com takes as input a string crs and a
message m. It outputs a commitment C and proofs πcom, πdec in time at
most tcom.

• The deterministic commitment verification algorithm ComVrfy takes as
input a string crs, a commitment C and a proof πcom. It outputs accept
(if C could be forcefully decommitted) or reject in time at most tcv.

• The deterministic decommitment verification algorithm DecVrfy takes as
input a string crs, a commitment C, a message m and a proof πdec. It
outputs accept or reject in time at most tdv.

• The deterministic forced decommitment algorithm FDecom takes as input
a string crs and a commitment C. It outputs a message m or invalid in
time at least tfd.

We require that for all κ, all crs output by PGen(1κ), all m and all C, πcom, πdec
output by Com(crs,m), it holds that

ComVrfy(crs,C, πcom) = accept = DecVrfy(crs,C,m, πdec)

and FDecom(crs,C) = m.

To be relevant for applications a NITC also needs to satisfy three further
properties. First we give a proper definition of practicality and then recall
definitions for hiding and binding in our notation.

Definition 2.2 (Practicality). A NITC scheme is practical, if verification is
much faster than forcefully opening the commitment, so tcv, tdv ≪ tfd. If in
addition the commitment is also much faster than forced decommitment, i.e.
tcom ≪ tfd, we call it perfectly practical.

We present two IND-CCA security games and define hiding in terms of the
probability that an adversary A wins the games. In both cases the adversary
has access to an oracle for FDecom and a query is considered to have only a small
computational cost. The first game is the one used by Katz et al. [19].
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Definition 2.3 (IND-CCA original [19]). For a NITC scheme TC and an algo-
rithm A, define the game IND-CCAATC as follows:

1. Compute crs← PGen(1κ).

2. Run A(crs) in a preprocessing phase with access to FDecom(crs, ·).

3. When A outputs (m0,m1), choose a uniform bit b ← {0, 1} and then
compute (Cb, πcom, πdec)← Com(crs,mb). Give (Cb, πcom) to A, who con-
tinues to have access to FDecom(crs, ·) except that it may not query the
oracle on the given commitment Cb.

4. When A outputs a bit b′, it wins iff b′ = b.

The commitment C in our approach is a tuple C = (Es,KT , u) and not a
single value. Because of that we can only satisfy a slightly weaker variation of
the IND-CCA security game. The new Definition 3.5 is given in Section 3.2
and is discussed in more detail in Section 5.1. Hiding is defined with respect
to an IND-CCA game. This allows us to evaluate the security of our NITC in
terms of both the original and our adapted definition. Broadly speaking hiding
guarantees that it is impossible to infer information about the message from the
commitment. In our case hiding should hold at least for the time tfd it takes to
open a commitment by force, so for all to < tfd in the following definition.

Definition 2.4 (Hiding [19]). A NITC scheme TC is (tp, to, ε)-CCA-secure if
for all adversaries A running in time at most tp in the preprocessing phase and
time at most to in the subsequent online phase,

Pr
[
A wins IND-CCAATC

]
≤ 1

2
+ ε.

Similar to hiding, binding is defined in terms of the probability that A wins
a BND-CCA security game. This time we do not need to adapt this for our
approach.

Definition 2.5 (BND-CCA [19]). For a NITC scheme TC and an algorithm A,
define the game BND-CCAATC as follows:

1. Compute crs← PGen(1κ).

2. Run A(crs) with access to FDecom(crs, ·).

3. A outputs (m,C, πcom, πdec,m
′, π′

dec) and wins iff ComVrfy(crs,C, πcom) =
accept and either:

• m ̸= m′, yet DecVrfy(crs,C,m, πdec) and DecVrfy(crs,C,m′, π′
dec)

both output accept;

• DecVrfy(crs,C,m, πdec) = accept but FDecom(crs,C) ̸= m.

Binding makes sure that a commitment can not be opened to two different
messages and that FDecom gives the correct messages for valid commitments.

Definition 2.6 (Binding [19]). A NITC scheme TC is (t, ε)-BND-CCA-secure
if for all adversaries A running in time t,

Pr
[
A wins BND-CCAATC

]
≤ ε.
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3 Isogeny-based Cryptography

In this section we provide the necessary basics for isogeny-based cryptography,
quaternion algebras and the Deuring correspondence. We also discuss some
computational problems in this area.

3.1 Elliptic Curves and the Quaternion Algebra

Elliptic curves have ties to different fields resulting in several equivalent defini-
tions. We will mostly follow the notation of Silverman [22], but restrict ourselves
to aspects relevant for this paper.

Definition 3.1 (Elliptic Curve). An elliptic curve is a pair (E,∞), where E
is a curve of genus one and ∞ ∈ E. It is defined over a field K, if it is defined
over K as a curve and ∞ ∈ E(K).

We can define an addition of points on the curve making (E,+) an addi-
tive group where ∞ is the neutral element. This permits scalar multiplication
written as [m] : E → E and torsion subgroups E[m] := {P ∈ E | [m]P =∞}.

Definition 3.2 (Isogeny). Let E and E′ be elliptic curves. Then a morphism
φ : E → E′ such that φ(∞) = ∞ is called an isogeny. If a non-zero isogeny
φ : E → E′ exists, then E and E′ are called isogenous.

In fact, every isogeny between two curves is also a group homomorphism.
The isogenies from a curve E into itself form the endomorphism ring EndE.
Isogenies can be written as rational maps and their degree is defined by this
map. Thus, the degree deg(φ ◦φ′) = degφdegφ′ is multiplicative. In addition,
each isogeny φ : E → E′ has a unique dual isogeny φ̂ : E′ → E such that the
composition φ̂ ◦ φ = [degφ] is the multiplication by the degree. The isogenies
of degree 1 are the isomorphisms, and each isomorphism class can be labelled
by the so-called j-invariant. This allows to construct the ℓ-isogeny graph that
has those j-invariants as vertices and isogenies of degree ℓ as edges.

Definition 3.3 (Supersingularity). Let K be a field of characteristic p > 0
and E an elliptic curve defined over K. The curve E is supersingular if the
torsion group E[p] is trivial. Equivalently, this means that the endomorphism
ring EndE is an order in a quaternion algebra.

For the rest of this paper p > 3 will be a large prime. This allows us to
write every elliptic curve in short Weierstraß form as E : y2 = x3 + Ax + B
with j(E) = 108(4A)3/(4A3 + 27B2). For supersingular curves there is always
a representation with A,B, j in Fp2 . There are only ⌊p/12⌋ + ε supersingular
elliptic curves for fields with characteristic p where ε ∈ {0, 1, 2}. Hence, the
subset JSS ⊂ Fp2 of supersingular j-invariants has cardinality at least ⌊p/12⌋.

We have already seen in Definition 3.3 that supersingular curves are related
to quaternion algebras. We are interested in the quaternion algebra Bp,∞ ram-
ified at p and infinity with Q-basis {1, i, j, k} such that

i2 = −1, j2 = −p, k = ij = −ji.

The (reduced) norm of an element a = a0 + a1i + a2j + a3k ∈ Bp,∞ is given
by nrd(a) = aā for ā = a0 − a1i − a2j − a3k. The bilinear form f(a, b) =
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(ab̄ + bā)/2 satisfies f(a, a) = aā = nrd(a), and two elements a, b ∈ Bp,∞ are
called orthogonal if f(a, b) = 0. An order in Bp,∞ is a lattice that is also a
subring, and it is maximal if its discriminant equals p. Now an elliptic curve E
is supersingular if and only if EndE is isomorphic to a maximal order O in Bp,∞.

Theorem 3.4 (Deuring Correspondence [14]). The isomorphism classes of su-
persingular elliptic curves correspond to the isomorphism classes of invertible
left O-ideals in the quaternion algebra, for a fixed maximal order O.

This so-called Deuring correspondence also gives us that an ℓ-isogeny φ
starting at E corresponds to a left ideal Iφ of norm ℓ in O ∼= EndE, and the
image curve has an endomorphism ring isomorphic to the right order OR(Iφ) =
{a ∈ Bp,∞ | Iφa ⊆ Iφ} of Iφ, see [24, Ch. 42] for more details.

3.2 Application to Cryptography

Many isogeny-based protocols rely on secret walks in isogeny graphs of supersin-
gular elliptic curves. The fact that the endomorphism ring is non-commutative
gives rise to presumably quantum secure protocols. Moreover, the graphs have
fast mixing properties, meaning that we reach an almost uniform distribution
on the graph after a short random walk [16].

Taking n steps in the ℓ-isogeny graph corresponds (up to isomorphism) to
an isogeny φ : E → E′ of degree d = ℓn. For our purposes the degree of such
isogenies will always be coprime to the characteristic p of the field and the
isogeny φ is determined by a point K of order d on the staring curve E. This
point generates the kernel of φ and we write E′ ∼= E/⟨K⟩. In this case the
d-torsion group E[d] has d2 elements and can be generated by two points P,Q
of order d on E. This allows us to efficiently choose and describe a random walk
by two integers a, b such that K = [a]P + [b]Q. We can even use this to define
a random walk starting on a different curve. For an isogeny ψ : E → E′′ with
degree coprime to the degree of φ the pushforward [ψ]⋆φ is determined by the
kernel ⟨ψ(K) = [a]ψ(P ) + [b]ψ(Q)⟩ and starts at the codomain E′′ of ψ. Note
that although every supersingular elliptic curve has a representation in Fp2 , the
kernel of an isogeny and hence its generators might be elements of extensions
Fp2e . With this notation we can define the adapted security game mentioned in
Section 2.

Definition 3.5 (IND-CCA adapted). For a NITC scheme TC and an algorithm
A, define the game IND-CCAATC as follows:

1. Compute crs← PGen(1κ).

2. Run A(crs) in a preprocessing phase with access to FDecom(crs, ·).

3. When A outputs (m0,m1), choose a uniform bit b ← {0, 1} and then
compute (Cb, πcom, πdec)← Com(crs,mb). Give (Cb, πcom) to A, who con-
tinues to have access to FDecom(crs, ·) except that it may not query the
oracle on (E′,K ′, ·) for E′/⟨K ′⟩ ∼= Es/⟨KT ⟩ and Cb = (Es,KT , ub).

4. When A outputs a bit b′, it wins iff b′ = b.

Now we list some computational tasks that are relevant for isogeny-based
cryptosystems. First we present tasks that can be solved efficiently and have a
polynomial or even constant complexity.
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Task 1: Compute isogenies given their kernels.

Task 2: Given two elliptic curves E,E′, an isogeny φ : E → E′ as well as the
corresponding order O ∼= EndE and ideal Iφ, compute O′ ∼= EndE′.

Task 3: Given two elliptic curves E,E′, and the corresponding orders O ∼=
EndE, O′ ∼= EndE′, compute a connecting ideal I corresponding to an
isogeny φI : E → E′.

Task 4: Given a left ideal I of a maximal order O ⊂ Bp,∞, find an equivalent
ideal J = Ib (for b ∈ B∗p,∞) such that its norm is small(er) and smooth.

Task 5: Given O ∼= EndE, translate between isogenies φ : E → E′ and their
corresponding left O-ideals Iφ.

Depending on the degree, Task 1 can be solved using Vélu’s formulae [25] or
the
√
élu algorithm [3]. For Task 2 we can compute O′ as OR(Iφ) and the

connecting ideal I in Task 3 satisfies O = OL(I), where the left order OL(I)
is defined analogously to the right order OR(I) = O′. Task 4 is solved by the
KLPT algorithm [20] and Task 5 is addressed by subroutines of SQISign [12].

Note that these are not very specific and might have significantly different
running times for special cases or when given additional information. For ex-
ample, Task 1 is more efficient for smooth degrees than for non-smooth ones of
similar size (see Section 5.2) and Task 5 can be done faster when given additional
information.

In general, Task 5 only requires corresponding generators O = ⟨a0, . . . , a3⟩ ∼=
⟨α0, . . . , α3⟩ = EndE. Given an ideal I, the kernel of the corresponding isogeny
φI is the set of points K ∈ E such that α(K) = ∞ for all α ∈ EndE corre-
sponding to an element of I. Given an isogeny φ : E → E′ with kernel ⟨K⟩, the
corresponding ideal Iφ is the set of elements a ∈ O such that the corresponding
α ∈ EndE satisfy α(K) =∞. If we know the norm or degree d (coprime to the
characteristic p) of the ideal or isogeny, we can (pre)compute the action of the
generators (α0, . . . , α3) of EndE on the torsion group E[d] and write it as 2× 2
matrices (A0, . . . , A3) with respect to a basis (P,Q) of E[d]. Also, it suffices to
find one point or one quaternion to generate the kernel or the ideal, respectively.
Finding a generator is then reduced to finding a solution to a system of linear
equations modulo d. If we additionally know two non-trivial endomorphisms
θ, η such that ⟨K, θ(K)⟩ = E[d] and the corresponding quaternions aθ, aη are
orthogonal, we can solve [a]K + [b]θ(K) = η(K) (as matrix equation) to get
Iφ = aO + dO for a = a+ baθ − aη [9, Algorithm 23].

To create a delay we need moderately hard problems, which are still poly-
nomial in complexity but might take a considerable time to compute. In Sec-
tion 5.2 we show that Task 1 can be made sufficiently slow. The following hard
problems have a conjectured exponential complexity (see Section 5.2) and are
equivalent [26]. They are the basis for encryption or signature schemes like
CSIDH [7] or SQISign [12]. In our case they ensure that there are no shortcuts
for the forced decommitment.

Problem 3.6 (Isogeny Path Problem). Given two (isogenous) supersingular
elliptic curves E,E′ and a prime ℓ, find a path from E to E′ in the ℓ-isogeny
graph.
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Problem 3.7 (Endomorphism Ring Problem). Given a supersingular elliptic
curve E, find four endomorphisms that generate EndE as a lattice.

Problem 3.8 (Maximal Order Problem). Given a supersingular elliptic curve
E, find four quaternions in Bp,∞ that generate a maximal order O such that
O ∼= EndE.

Remark 3.9. Knowledge of endomorphism rings can break the hard problems.
If we know both endomorphism rings the first hard problem becomes polynomial
using Tasks 3 - 5. If we know an isogeny from a curve with known endomor-
phism ring to our curve also the second hard problem becomes polynomial by
Tasks 2 & 5. The third hard problem reduces to the second via Task 5.

Finding supersingular elliptic curves can basically be done in two ways. We
can reduce an elliptic curve in characteristic 0 modulo a prime and check if
the resulting curve is supersingular, or take a random isogeny starting at one
of these curves. In both cases the endomorphism ring of the final curve can
be computed either via reduction or by transport along the isogeny. But as
discussed in Remark 3.9 this weakens the hard problems. Hence many cryp-
tosystems require curves with unknown endomorphism ring. This in turn forces
them to use a multi-party computation or a trusted authority in their setup
to ensure that no single participant knows a complete path from a curve with
known endomorphism ring to the one used. See [? ] for more information. Note
that the present cryptosystem does not have this problem.

4 The Protocol

Now we can combine the previous two sections and present our construction.
First we give a high-level overview and discuss some challenges. Then we look
at the algorithms and choices for the parameters.

4.1 Overview

At the heart of our protocol is an isogeny φT of large degree dT . Its domain is
a public supersingular elliptic curve Es with secret Os

∼= EndEs and its kernel
is generated by a publicly known point KT on Es. We use the j-invariant jT of
the codomain ET of φT to hide the message m ∈ M . Therefore an adversary
needs to compute ET (or rather jT = j(ET )) in order to break hiding or to open
the commitment by force. We can choose how long the commitment should be
kept secret by setting the degree dT accordingly. This gives us hiding. Since Es

and KT are part of the commitment, the codomain ET
∼= Es/⟨KT ⟩ is fixed (up

to isomorphism) and we have perfect binding.
For verification to be faster than forced opening, we need a more efficient

way to compute jT . The starting curve E0 has a known endomorphism ring,
which allows us to compute elements of EndE0

∼= O0 efficiently using precom-
putations. During the commitment we choose a long isogeny φ′

T : E0 → E′
T

and use these precomputations to find another isogeny φ̃′
T : E0 → E′

T of much
smaller and smooth degree (Tasks 4 & 5 from Section 3.2). Finally we use φs

to push (the kernels of) φ′
T and φ̃′

T forward to (the kernels of) φT and φ̃T ,
respectively. We give φs and φ′

T to the verifier as part of the decommitment
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proof, so the commitment and the verification can compute ET as the codomain
of φ̃T . An adversary only knows Es, but not φs or φ′

T and hence can neither
compute Os

∼= EndEs nor the pushforward [φs]⋆φ̃
′
T = φ̃T . Therefore it has no

efficient way to compute a shortcut φ̃T . This gives us the preferred difference
in speed for verification and forced opening. This is visualized in Figure 1.

E0 Es
∼= E0/⟨Ks⟩ ET

∼= Es/⟨KT ⟩
φs φ̃T

φT

Figure 1: Walk in the isogeny graph with smooth deg(φs) = ds ≪ dT = deg(φT )
and smooth deg(φ̃T )≪ dT for the shortcut isogeny φ̃T .

To efficiently verify the validity of a commitment, we need to map the j-
invariant jT into the group of messagesM . This map has to satisfy the following
property. Otherwise the commitment might leak information about jT .

Definition 4.1 (Inverse Resistant Functions). A function f : X → Y is λ-
inverse resistant, if for uniform x ∈ X the probability Pr[A(f(x)) = x] is at
most 2−λ for all algorithms A.

This definition is weaker than one-way functions, since finding an element in
the preimage is allowed as long as the probability to find the correct one is suf-
ficiently small. It also differs from hash functions, which are mostly considered
to be collision resistant. A simple projection with a sufficiently large preimage
set satisfies this definition but is neither a one-way function nor a proper hash
function.

4.2 Algorithms

As seen in Definition 2.1 we have five algorithms PGen, Com, ComVrfy, DecVrfy
and FDecom. In this subsection we give pseudocode for each algorithm and
discuss their (relative) speed and some subroutines.

4.2.1 Parameter Generation

The parameter generation PGen defines the security of the whole protocol and
fixes the delay tfd. It sets all general parameters like the characteristic p of the
finite fields, the starting curve E0, O0

∼= EndE0, the degrees ds and dT , as well
as the message group (M,⊕) and the inverse resistant function F : JSS →M . It
also provides some precomputations that improve the speed of the commitment
and the decommitment verification. These are bases of the ds and dT torsion
groups of E0, and matrices that correspond to the action of two endomorphisms
θ and η on E0[dT ]. It may also include an integer dt dividing p+ 1 (or p2 − 1)
but coprime to ds and matrices that correspond to the action of EndE0 on
E0[dt]. Its output is the common reference string crs. A detailed description
can be found in Algorithm 1. The speed is dominated by finding generators of
E0[dT ] and computing the action of θ and η on these points. The bottlenecks are
checking the order and linear independency of two random points in E0(Fp2e)
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and decomposing the images of this basis under the endomorphisms in terms of
this basis.

Algorithm 1 Parameter generation algorithm PGen

Require: Security parameter 1κ

Ensure: crs =
(
(p,E0,EndE0,O0, ds, Ps, Qs,M, F ), (dT , P

′
T , Q

′
T , e, Aθ, Aη)

)
1: Choose prime p of right size
2: Choose supersingular elliptic curve E0 with known O0

∼= EndE0

3: Find corresponding bases O0 = ⟨a0, . . . , a3⟩ and EndE0 = ⟨α0, . . . , α3⟩
4: Choose ds ∈ N such that E0[ds] ⊆ E0(Fp2)
5: Find Ps, Qs ∈ E0 such that ⟨Ps, Qs⟩ = E0[ds]
6: Choose a group (M,⊕) with efficient membership testing as message space
7: Choose an efficient, inverse resistant function F : JSS →M
8: Set crs0 = (p,E0,EndE0,O0, ds, Ps, Qs,M, F ) ▷ Depends only on κ
9: Choose e, dT ∈ N such that dT is coprime to ds and E0[dT ] ⊆ E0(Fp2e)

10: Find P ′
T , Q

′
T ∈ E0(Fp2e) such that ⟨P ′

T , Q
′
T ⟩ = E0[dT ]

11: Find endomorphisms θ, η ∈ EndE0 such that ⟨R, θ(R)⟩ = E0[dT ] for all
R ∈ E0[dT ] of maximal order and the corresponding quarternions aθ, aη are
orthogonal

12: Compute the action of θ, η on E0[dT ] as matrices Aθ, Aη ∈ Mat2×2(Z/dTZ)
with respect to the basis (P ′

T , Q
′
T )

13: Set crsT = (dT , P
′
T , Q

′
T , e, Aθ, Aη) ▷ Fixes delay tfd

14: return (crs0, crsT )

4.2.2 Commitment

The commitment algorithm Com takes as input a message m ∈ M and outputs
a tuple (C, πcom, πdec). First it chooses a random isogeny φs : E0 → Es of
degree ds and a second random isogeny φ′

T : E0 → E′
T of large degree dT .

It uses O0 and the corresponding ideal I ′T to find an equivalent ideal Ĩ ′T and

corresponding isogeny φ̃′
T : E0 → E′

T of smooth and much smaller degree d̃T .
Here we use algorithms from SQISign [9] to translate between isogenies and
ideals and to find equivalent ideals of specific norm. Finally it pushes φ̃′

T forward

to the shortcut φ̃T = [φs]⋆φ̃
′
T : Es → ET of degree d̃T for the long isogeny

φT = [φs]⋆φ
′
T : Es → ET of degree dT . This allows it to efficiently compute

the j-invariant jT = j(ET ) and u = m ⊖ F (jT ) ∈ M . The commitment itself
C = (Es,KT , u) is again a tuple of a supersingular elliptic curve Es, a point
KT on Es that generates the kernel of φT and u ∈ M . While the commitment
proof πcom is empty, the decommitment proof πdec allows to reconstruct the
secret isogeny φs and to use the same method of finding a shortcut φ̃T for φT

as in Com. The individual steps are given in Algorithm 2. In SQISign [9] the
authors state that converting between isogenies and ideals is the bottleneck of
their computation. Therefore we assume that the slowest part of this algorithm
is computing φ̃T . Note however, that SQISign is still fast and our commitment
algorithm will be faster than computing the long isogeny φT (over Fp2e) directly.
A more detailed discussion can be found in Section 5.3.

Remark 4.2. We can force the degree d̃T of the shortcut isogeny to divide some
dt coprime to ds and precompute the action of EndE0 on E0[dt] as matrices to
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Algorithm 2 Commitment algorithm Com

Require: Common reference string crs, message m ∈M
Ensure: (C, πcom, πdec) =

(
(Es,KT , u), (), (s, t)

)
1: Choose random s ∈ [0, ds) and compute Ks = Ps + [s]Qs ∈ E0[ds]
2: Compute Es

∼= E0/⟨Ks⟩ via Vélu’s formulae
3: Choose random t ∈ [0, ds) and set v = (1, t)⊤, v′ = Aθv
4: Set A = (v, v′) ∈ GL2(Z/dTZ) and compute (w1, w2)

⊤ = A−1Aηv
5: Compute ideal I ′T = (w1 + w2aθ − aη)O0 + dTO0 corresponding to isogeny
φ′
T : E0 → E′

T of degree dT with kernel ⟨K ′
T = P ′

T + [t]Q′
T ⟩

6: Try to compute equivalent ideal Ĩ ′T with smooth norm d̃T ≪ dT coprime to

ds such that d̃T | (p+ 1) (or d̃T | (p2 − 1)) and go back to step 3 if it fails

7: Compute corresponding isogeny φ̃′
T of degree d̃T and kernel ⟨K̃ ′

T ⟩
8: Compute pushforward φ̃T = [φs]⋆φ̃

′
T : Es → ET with kernel ⟨φs(K̃

′
T )⟩

9: Compute KT = φs(P
′
T + [t]Q′

T ) ∈ Es[dT ]
10: Compute ET

∼= Es/⟨KT ⟩ as codomain of φ̃T

11: Compute jT = j(ET ) and u = m⊖ F (jT ) ∈M
12: Set C = (Es,KT , u) ▷ Commitment
13: Set πcom = () ▷ Commitment proof (empty)
14: Set πdec = (s, t) ▷ Decommitment proof
15: return (C, πcom, πdec)

improve the speed of translating Ĩ ′T into φ̃′
T . If we choose dt such that d̃T divides

(p + 1) or (p2 − 1), the kernel of φ̃T is Fp2- or Fp4-rational, respectively. This
allows for fast evaluation of φ̃T .

4.2.3 Commitment Verification

Algorithm 3 shows the commitment verification ComVrfy. It is fast since it only
needs to check if the three parts of the commitment are of the correct form.
Namely, Es is an elliptic curve, KT is a point on that curve and u is an element
of the group M . All of these membership tests can be done efficiently. If we
want to assure that forced opening does not take too long, we can also check if
KT ∈ F2

p2e . This sets an upper bound of dT ≤ pe − (−1)e for the degree dT of
φT .

Algorithm 3 Commitment verification algorithm ComVrfy

Require: Common reference string crs, commitment C and proof πcom
1: Check if Es is an elliptic curve over Fp2 , KT ∈ Es and u ∈M

Optional: check KT ∈ F2
p2e ▷ Check upper bound for degree of φT

2: return (accept/reject)

4.2.4 Decommitment Verification

The decommitment verification DecVrfy (Algorithm 4) is similar to the com-
mitment algorithm. It first reconstructs φs from πdec and verifies φs : E0 → Es

and KT = φs(P
′
T + [t]Q′

T ). Then it uses O0 to find a shortcut isogeny φ̃′
T

for φ′
T of smooth and much smaller degree d̃T and pushes it forward to φ̃T =
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[φs]⋆φ̃
′
T : Es → ET . With this short isogeny it computes jT = j(ET ) and checks

if u⊕F (jT ) = m. As stated above, we assume the slowest part of this algorithm
to be the computation of φ̃T . Again, this is still faster than forced decommit-
ment, as deg φ̃T is smooth and smaller than degφT (cf. Section 5.3). Here the
same improvements as in Remark 4.2 for the commitment can be applied.

Algorithm 4 Decommitment verification algorithm ComVrfy

Require: Common reference string crs, commitment C, message m, decom-
mitment proof πdec

1: Compute Ks = Ps + [s]Qs ∈ E0[ds] and check Es
∼= E0/⟨Ks⟩

2: Compute K ′
T = P ′

T + [t]Q′
T ∈ E0[dT ] and check φs(K

′
T ) = KT

3: Set v = (1, t)⊤, v′ = Aθv and A = (v, v′) ∈ GL2(Z/dTZ)
4: Compute (w1, w2)

⊤ = A−1Aηv1
5: Compute ideal I ′T = (w1 + w2aθ − aη)O0 + dTO0 corresponding to isogeny
φ′
T : E0 → E′

T of degree dT with kernel ⟨K ′
T ⟩

6: Compute equivalent ideal Ĩ ′T with smooth norm d̃T ≪ dT coprime to ds
such that d̃T | (p+ 1) (or d̃T | (p2 − 1))

7: Compute corresponding isogeny φ̃′
T of degree d̃T and kernel ⟨K̃ ′

T ⟩
8: Compute pushforward φ̃T = [φs]⋆φ̃

′
T : Es → ET with kernel ⟨φs(K̃

′
T )⟩

9: Compute ET
∼= Es/⟨KT ⟩ as codomain of φ̃T

10: Compute jT = j(ET ) and check u⊕ F (jT ) = m
11: return (accept/reject)

4.2.5 Forced Decommitment

In terms of the number of tasks the forced decommitment algorithm is rather
simple. It just computes ET as codomain of the isogeny φT given by the
point KT that generates its kernel. From there it recovers the message m =
u⊕ F (j(ET )). Computing an isogeny φT of large degree dT is slow (cf. Theo-
rem 5.11), especially when the calculations have to be done in a field extension
Fp2e . This allows us to make Algorithm 5 (almost) arbitrarily slow.

Algorithm 5 Forced decommitment algorithm FDecom

Require: Common reference string crs, commitment C
Ensure: Message m
1: Compute ET

∼= Es/⟨KT ⟩ via Vélu’s formulae or
√
élu algorithm

2: Compute jT = j(ET ) and m = u⊕ F (jT )
3: return m

4.3 Parameter Sizes and other Choices

The algorithms above do not specify all properties of the parameters. Therefore
we now discuss the necessary and some optional choices. For example, the hiding
property sets requirements on the size of some parameters and we also propose
some choices for implementing this protocol.

The delay tfd should be large, but it has to be polynomial in κ (or log p).
On one hand the main idea of NITC schemes is that we can forcefully open a
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commitment (in polynomial time) with FDecom, if someone refuses to open it
themselves. On the other hand generic algorithms to solve Problems 3.6 - 3.8
could be faster than FDecom and therefore violate hiding, if tfd were superpoly-

nomial. In particular, we need tfd < min{d1/4s , p
1/4} due to Assumptions 5.9

and 5.10 of Section 5.2 for quantum security and tfd ≫ tcv, tdv.

4.3.1 Prime p, starting curve E0 and isogenies φs and φT

In order to satisfy the hiding property, p and ds have to have a certain size. It
has to be infeasible to precompute Os for all possible Es or to find an isogeny
from E0 to Es in time less than tfd in the online phase. Therefore we choose
p ≈ 22κ and

√
p ≲ ds ≲ p or equivalently 2κ ≲ ds ≲ 22κ. The degree dT is

chosen such that computing an isogeny of degree dT takes at least time tfd, but
not much more, and we require ds ≤ dT . Since PT = φs(P

′
T ) and QT = φs(Q

′
T )

have to generate Es[dT ], we need the degree ds of φs to be coprime to dT . In
Section 5 we give a more detailed justification of these numbers.

The starting curve could be any supersingular elliptic curve E0 with a known
efficient representation of O0. For our protocol we choose E0 to be the curve
E0 : y

2 = x3 + x with (p + 1)2 points over Fp2 and O0 = ⟨1, i, i+j
2 ,

1+k
2 ⟩Z for

p ≡ 3 mod 4. In this case the endomorphisms [i] : (x, y) 7→ (−x, iy), ϕ : (x, y) 7→
(xp, yp) (Frobenius map), θ and η correspond to i, j, (j+ 1+k

2 ) and i, respectively2.
Usually, we would want ds and dT to be smooth numbers both dividing p + 1
in order to have fast evaluation of the corresponding isogenies. So ds should be
smooth and divide p+ 1 (or p2 − 1). However, evaluating φT does not need (in
fact should not) be efficient, since it is only evaluated by FDecom. Therefore dT
can contain large prime factors and should be large.

For a supersingular curve with (p+1)2 points over Fp2 we have (pe− (−1)e)2
points over Fp2e and the largest fully Fp2e -rational torsion group is the (pe −
(−1)e)-torsion. This means that for large dT we need to go to extensions of Fp2

to find a basis for the dT -torsion group of E0 or Es. Higher extensions and larger
p slow down the computations, therefore we want to minimize the degree of the
extension and the size of p to increase efficiency. Since the size of p affects almost
all computations, whereas the size of e only influences computations related to
the KT or φT , it can be beneficial to choose a smaller p and a larger e when
dealing with large dT .

For an implementation we can choose a prime p such that p + 1 contains a
smooth factor ds = 2κ. This ensures that the first isogeny φs : E0 → Es can be
evaluated efficiently. After choosing a prime, we find an extension degree e such
that pe− (−1)e contains a sufficiently large factor dT that is coprime to ds. For
example, we can choose dT odd with prime factorization dT =

∏
qeii such that∑

ei
√
qi > tfd (cf. Section 5.2). The primes used in SQISign and SIKE allow

to choose ds (and dT ) this way. So there are already known primes with the
right properties for different security levels. The primes for SQISign even allow
ds ≈ p, if the degree ds is just required to divide p2 − 1 instead of p+ 1. Then
tfd can be almost as large as p1/4 instead of p1/8. This could be a good trade-off
for large delays.

2This is not a typo. We have η = [i].
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4.3.2 Message space M and function F

We choose M to be a finite group M = Z/NZ for an integer N ∈ N. This
gives us very efficient membership testing and group operations. The size of
N depends on the needed length of a message m and the prime p. If N is
larger than ⌊p/12⌋ + 2, then F : JSS → M can not be surjective and therefore
u = m⊖ F (jT ) might leak information about the message m.

As mentioned before, computing jT from F (jT ) has to be infeasible or at
least slow. In order to satisfy hiding we choose the function F to be λ-inverse
resistant with λ = κ ≈ log

√
p. In addition, it has to be fast since Com and

DecVrfy have to compute F (jT ). An easy way to accomplish this is to take a
function that is not injective. The larger the kernel of F , i.e. smaller N , the
more information is lost. A simple projection Fp2 ⊃ JSS → Fp onto one of the
components or even their sum will leak information, since there is a subset of
j-invariants that already are in Fp. If we use a simple map like (a, b) 7→ b mod N
or (a, b) 7→ a + b mod N , we thus need to use N ≪ p. For an implementation
we can identify JSS ⊂ Fp2 with a subset of Fp[i] ∼= Fp2 and choose

F : JSS →M = Z/NZ, a+ bi 7→ a+ b mod N

with N = ⌊√p/12⌋. Then we can expect every element in M to be the image
of about

√
p ≈ 2κ elements in JSS . There is no direct way of finding the

supersingular j-invariants. Hence, one would have to compute the preimage in
Fp2 (about 12p3/2 elements) and check if they are j-invariants of supersingular
elliptic curves. This is sufficiently inverse resistant in practice.

Remark 4.3. If ds = N ≈ √p (or ds slightly smaller) we can add v = s⊖F (jT )
to the commitment C to make the scheme publicly verifiable. In this case s ∈
[0, ds) can be uniquely recovered from v if we know F (jT ), allowing to compute
φs(P

′
T ), φs(Q

′
T ) and finding t. So FDecom could also provide the decommitment

proof πdec = (s, t) and everyone could use DecVrfy to verify the output of FDecom
instead of computing it themselves. Since s can be considered as a random
number in M (in this case), the additional v in the commitment will neither
leak information about F (jT ) nor about s unless we already know F (jT ).

5 Security

We show that our protocol satisfies the Definition 2.1 of a NITC scheme by Katz
et al. [19] and prove the three properties practicality, hiding and binding. In
order to prove practicality, we need assumptions for the relative speed of some
algorithms. Remember that our timings are the number of operations rather
than real world times.

Remark 5.1. Operations in Fp2e are slower than operations in Fp2 . In partic-
ular, the majority of operations of FDecom are in extension fields, but for Com,
ComVrfy and DecVrfy most operations can be done in Fp2 . So our timings are
rather conservative.

Our algorithms have the correct input and output arguments and for all κ
and m ∈ M every set of honestly generated (κ,m, crs,C, πcom, πdec) satisfies
verification ComVrfy(crs,C, πcom) = accept = DecVrfy(crs,C,m, πdec) and
forced decommitment FDecom(crs,C) = m. This makes it a NITC scheme.
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5.1 Hiding and Binding

For hiding we use the same (non-malleability) Definition 2.4 as Katz et al. [19].
First we show why we need an adapted security game. In Definition 2.3 the
adversary A sends two messages m0,m1 and receives the commitment Cb =
(Es,KT , ub) corresponding to message mb for a uniform b ∈ {0, 1}. It is allowed
to query an oracle for FDecom(·) except for FDecom(crs,Cb).

Lemma 5.2. An adversary A can break hiding with the original security game
from Definition 2.3.

Proof. Since m1−b ⊖mb ⊕ ub = u1−b, querying FDecom(crs, (Es,KT , u±)) with
u+ = (m0 ⊖m1) ⊕ ub and u− = ⊖(m0 ⊖m1) ⊕ ub gives m1−b and a random
messagem′. For |M | = 2 we have u+ = u− and getm1−b. For |M | > 2 however,
we can assume m0 ̸= m′ ̸= m1. This allows A to output the correct b′ = b with
high probability.

Even worse, if we replace KT by any other point K ′ such that ⟨K ′⟩ =
⟨KT ⟩, e.g. K ′ = [ℓ]KT for ℓ coprime to dT , or apply an isomorphism such that
E′/⟨K ′⟩ ∼= ET

∼= Es/⟨KT ⟩ then FDecom(crs, (E′,K ′, ub)) will return mb.

Thus, it is reasonable to disallow queries of the form FDecom(crs, (E′,K ′, ·))
for E′/⟨K ′⟩ ∼= Es/⟨KT ⟩, i.e. using the adapted security game in Definition 3.5.
This is still in the spirit of the original definition, since it prohibits the “de-
cryption” of the commitment in question. In our case the security arises from
the secret isogeny φs : E0 → Es and the long isogeny φT : Es → ET with kernel
⟨KT ⟩, and the “key” is F (jT ) for jT = j(ET ). Such queries would enable A to
find F (jT ) and would hence basically allow to query FDecom(crs, (Es,KT , ub))
by proxy, which is forbidden in the original definition.

Assumption 5.3. We assume that the probability to find the correct output
in the online phase (step 3) of the security game from Definition 3.5 in time
to < tfd is less than 2−κ if F is a κ-inverse resistant function.

Let us justify this assumption by looking at the security game from Defini-
tion 3.5. Assume that F is a κ-inverse resistant function as specified in the pro-
tocol. In the online phase A sends two messages m0,m1 and receives the output
(Es,KT , ub) of Com(crs,mb) for a uniform b ∈ {0, 1}. The adversary A knows
that F (jT ) is equal to F0 = ⊖ub⊕m0 or F1 = ⊖ub⊕m1, but for each i ∈ {0, 1}
there are at least 2κ j-invariants such that F (j) = Fi and none of them is more
likely than the other. To verify one of them, A would have to compute Es/⟨KT ⟩.
But since this is equivalent to computing FDecom(crs, (Es,KT , ub)), it can not
be done in time less than tfd. Similarly, querying FDecom(crs, (Es, [ℓ]KT , ub))
for ℓ | dT gives mℓ = ub⊕F (jℓ) and hence F (jℓ) = ⊖ub⊕mℓ for j-invariants jℓ
of intermediate curves of the long isogeny φT . But since F is an κ-inverse resis-
tant function, there are at least 2κ undistinguishable candidates for each jℓ. For
a (small) prime ℓ a match between the (ℓ+ 1) neighbours of each candidate for
jℓ in the ℓ-isogeny graph and the candidates for jT from each F0 and F1 has to
be found. The probability to find such a match is less than to2

−2κ < 2−κ using
to < tfd < p1/4 < 2κ and the fact that not all of time to can be spent on this
task. Replacing Es and KT by a curve E′ and point K ′ such that E′/⟨K ′⟩ is un-
related to Es/⟨KT ⟩ or intermediate curves the query FDecom(crs, (E′,K ′, ub))
will give completely unrelated results.
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Theorem 5.4. For a κ-inverse resistant function F and under Assumption 5.3,
SIGNITC is (tp, to, ε)-CCA-secure (satisfies hiding) with security game from
Definition 3.5 for tp ≪ 2κ polynomial in κ, to < tfd and ε = 2−κ.

Proof. The precomputation phase can only provide a negligible advantage for
an adversary A. The computation of Com(crs,m) includes choosing random
Ks = Ps + [s]Qs ∈ E0[ds] and KT = PT + [t]QT ∈ Es[dT ] with s, t ∈ [0, ds).
Since 2κ ≈ √p ≲ ds, it is infeasible to precompute (and store) a significant
subset of all possibilities in time tp ≪ 2κ polynomial in κ. For the online phase
Assumption 5.3 gives us that the advantage over guessing is less than 2−κ.

The proof for binding works with the original Definition 2.6 and security
game from Definition 2.5. With our protocol we even achieve perfect binding.

Theorem 5.5. SIGNITC is (∞, 0)-BND-CCA-secure (satisfies binding) with
security game from Definition 2.5.

Proof. If the commitment C is accepted by ComVrfy, then it contains an elliptic
curve Es, a point KT on Es and an element u of an additive group M . Since
DecVrfy verifies that the codomain of φT = [φs]⋆φ

′
T is ET

∼= Es/⟨KT ⟩, we
have that acceptance of both (crs,C,m, πdec) and (crs,C,m′, π′

dec) by DecVrfy

implies m⊖F (jT ) = u = m′⊖F (jT ) and hence m = m′. The speedup does not
change this. Similarly, if DecVrfy accepts (crs,C,m, πdec) then u = m⊖F (jT )
and FDecom computes F (jT ) from Es and KT and thus outputs the correct
message m = u⊕ F (jT ).

5.2 Relative Running Times

Computing isogenies of prime degree q can be done using Vélu’s formulae in time
O(q), or the

√
élu algorithm [3] in time

√
q(log q)2+o(1) or Õ(

√
q) for short. Here

Õ may also contain additional logarithmic terms Õ(n) = O(n poly(log n)). The
crossover point for optimized algorithms is at q ≈ 100, and we denote the time
it takes to compute an isogeny of prime degree q with evalprime(q). Computing
isogenies efficiently is a well-studied topic and we will assume that these timings
are close to optimal.

Lemma 5.6. There is a (small) constant cp such that evaluating an isogeny of
prime degree q takes time evalprime(q) ≤ cpq.

Now let us look at an isogeny φ with a kernel that is generated by a point K ′
0

of order qℓ. We can decompose φ = φℓ ◦ · · · ◦φ1 into isogenies φi of degree q. In
each step we compute the pointsKi = [qℓ−i]K ′

i−1 generating the kernel of φi and
K ′

i = φi(K
′
i−1) generating the kernel of φ′

i = φℓ ◦ · · · ◦φi+1. So every step takes
time evalprime(q) plus the time it takes to compute the point multiplication.
Generalizing this to isogenies of arbitrary composite degree gives us bounds for
the time eval(d) it takes to compute an isogeny of degree d. If we ignore the
multiplications for the lower bound we get the following lemma.

Lemma 5.7. Let d =
∏r

i=1 q
ei
i be the prime factorization of the degree d. There

is a (small) constant cc ≥ 1 such that the time eval(d) it takes to evaluate an
isogeny of degree d is bounded by

r∑
i=1

ei evalprime(qi) ≤ eval(d) ≤ cc
r∑

i=1

ei evalprime(qi).
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This allows us to choose dT such that eval(dT ) ≥ tfd. Combining these
results we get an upper bound for the computation time of isogenies of smooth
degree.

Lemma 5.8. Evaluating an isogeny of B-smooth degree d with prime factor-
ization d =

∏r
i=1 q

ei
i takes time eval(d) ∈ O( B

logB log d).

Proof. We use Lemmas 5.7 and 5.6 to write

eval(d) ≤ cc
r∑

i=1

ei evalprime(qi) ≤ cccp
r∑

i=1

eiqi.

Since qi < B for all 1 ≤ i ≤ r, we get qi ≤ log qi
B

logB and

eval(d) ≤ cccp
r∑

i=1

ei log qi
B

logB
= cccp

B

logB
log d.

According to Eisenträger et al. [15] the fastest (currently known) algorithms
for solving the (equivalent) general Isogeny Path Problem, general Endomor-
phism Ring Problem or general Maximal Order Problem (cf. Section 3.2) over

Fp2 take time Õ(p1/2) for classical computations and Õ(p1/4) with a quantum
computer. Since E0 and Es are known to be connected by a ds-isogeny there is

also a meet-in-the-middle or claw-finding attack in classical time Õ(d
1/2
s ) and

Õ(d
1/4
s ) when applying Grover’s Algorithm [17].

Assumption 5.9 (General Isogeny Assumption). We assume that the fastest
algorithms to solve the general Isogeny Path Problem, the general Endomor-
phism Ring Problem or the general Maximal Order Problem over Fp2 need at

least p1/2 or p1/4 operations for classical or quantum algorithms, respectively.

Assumption 5.10 (Special Isogeny Assumption). We assume that the fastest
algorithms to find an isogeny between two d-isogenous curves over Fp2 with d < p

take at least d1/2 or d1/4 operations for classical or quantum algorithms, respec-
tively.

With these assumptions we can prove that computing the codomain of an
isogeny can be made almost arbitrarily slow.

Theorem 5.11. Let E be a supersingular elliptic curve over Fp2 with unknown
O ∼= EndE, but d′-isogenous to a curve E0 with known endomorphism ring.
Let further K be a point on E of order d, such that computing the corre-
sponding isogeny takes at least time t, according to Lemma 5.7. Then for t <
min{d′1/4, p1/4} and under Assumptions 5.9 and 5.10, computing EK

∼= E/⟨K⟩
takes at least time t.

Proof. The isogeny φ : E → EK with kernel ⟨K⟩ has degree d. Efficiently
calculating a shortcut isogeny φ̃ : E → EK requires knowledge of O ∼= EndE.
Finding the endomorphism ring EndE or the order O ∼= EndE without an
isogeny φ′ : E0 → E, or finding an isogeny φ̃ without O ∼= EndE are hard
problems. By Assumption 5.9 solving these problems takes time at least p1/4 >
t. Finding an isogeny φ′ needs at least time d′1/4 > t by Assumption 5.10
if d′ < p or p1/4 > t by Assumption 5.9 if d′ ≥ p. Therefore computing
ET
∼= Es/⟨KT ⟩ takes at least time t.
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The algorithm FDecom only has crs and C = (Es,KT , u) as input. In order
to compute m = u ⊕ F (jT ) it has to calculate the j-invariant jT of the secret
curve ET

∼= Es/⟨KT ⟩. Theorem 5.11 gives us the following corollary:

Corollary 5.12. For tfd < min{d1/4s , p
1/4} and under the Assumptions 5.9

and 5.10, the forced decommitment FDecom takes at least time tfd.

Note that the restriction tfd < min{d1/4s , p
1/4} is based on the quantum tim-

ings in Assumptions 5.9 and 5.10. For classical algorithms tfd < min{d1/2s , p
1/2}

would be sufficient, but since our protocol should be quantum secure we chose
the more general bound including quantum algorithms.

5.3 Practicality

We show that Com, ComVrfy and DecVrfy can be computed efficiently and that
we achieve a perfectly practical NITC scheme. We chose p ≈ 22κ,

√
p ≲ ds ≲ p

and tfd < min{d1/4s , p
1/4} to get κ bits of classical and κ/2 bits of quantum

security for the precomputation phase in hiding. In this subsection “efficiently”
means a running time at most polynomial in log p.

Lemma 5.13. The commitment Com takes time tcom ∈ poly(log p).

Proof. The number of operations on E0 for computing Ks = Ps + [s]Qs and
K ′

T = P ′
T+[t]Q′

T is linear in log ds since 0 ≤ s, t < ds. By Lemma 5.8 we can find
Es
∼= E0/⟨Ks⟩ and KT = φs(K

′
T ) via Vélu’s formulae in time O( B

logB log ds)

if ds is B-smooth. We adapted Algorithm 23 from [9] to compute I ′T from
K ′

T using one inversion and a few additions and multiplications modulo dT .
By heuristics from SQISign, the norm of an equivalent ideal can be expected
to be roughly

√
p or smaller. We can see that finding an equivalent ideal of

smooth norm d̃T and translating it into an isogeny can be done efficiently via
the algorithms from [9]. Evaluating this isogeny to find ET

∼= Es/KT is in

O( B
logB log

√
p) if d̃T is B-smooth. Finally we have to compute jT = j(ET ) and

u = m⊖F (jT ). Since we chose F and the group operation inM to be efficiently

computable, ds ≲ p and ds, d̃T smooth, we get that the algorithm takes time
tcom ∈ poly(log p).

Lemma 5.14. The maximal number of operations tcv for algorithm ComVrfy is
a small constant.

Proof. The algorithm has to complete three tasks. First it has to check if Es

is an elliptic curve. To do that, it suffices to check that the discriminant is
non-zero. For curves in short Weierstraß form E : y2 = x3 +Ax+B this is just
4A3 ̸= −27B2. To check if KT is a point on Es it can simply compute if KT

satisfies the curve equation. Finally, membership testing for u ∈ M is efficient
by definition of M . For M = Z/NZ this means checking if u is an integer (and
if 0 ≤ u < N). So all this can be done in very few operations and their number
is independent of the size of ds, p and κ.

Lemma 5.15. The decommitment verification algorithm DecVrfy takes time
tdv ∈ poly(log p).
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Proof. The decommitment verification has the same steps as the commitment.
There are only two differences: Firstly, it gets s, t from πdec instead of choosing
them and hence does not need to try again for bad choices of t. And secondly, it
has to compare the Es and KT it computes to the ones in the commitment and
m to the decommitment. Since these steps are computationally insignificant we
get that the algorithm also takes time tdv ∈ poly(log p).

Note that the running times of Com, ComVrfy and DecVrfy are not dominated

by dT . Even for low security levels like κ = 128 we get that log p≪ p1/8 ≲ d
1/4
s .

Since tfd can be almost as large as min{d1/4s , p
1/4} and ds ≲ p, the previous

Lemmas 5.14 and 5.15 show that we can choose log dT < eval(dT ) < tfd such
that tcom, tcv, tdv ≪ tfd. This gives us the following theorem:

Theorem 5.16. SIGNITC is perfectly practical under Assumptions 5.9 and 5.10.

Conclusion

We showed that SIGNITC is a perfectly practical NITC that satisfies hiding
and perfect binding. It is the first NITC without repeated squaring or black
box algorithms, it needs no trusted setup and all subroutines have already been
implemented for other cryptosystems. Since it uses only isogeny-based cryptog-
raphy, it is presumably quantum secure. Since repeated squaring might not be
a good candidate for creating a delay anymore, this could also be an interesting
starting point for isogeny-based delay in other settings. We leave it as open
research to implement this protocol to get some benchmarks for (relative) real
world timings and to find (computational) optimizations.
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[15] Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: Re-
ductions and solutions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, pages 329–368, Cham, 2018. Springer
International Publishing. doi: 10.1007/978-3-319-78372-7 11.

[16] Luca De Feo. Mathematics of isogeny based cryptography. Preprint, 2017. URL
https://arxiv.org/abs/1711.04062.

[17] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, pages 212–219, New York, NY, USA, 1996. Association for
Computing Machinery. doi: 10.1145/237814.237866.

[18] D. Jao et al. Supersingular isogeny key encapsulation, 2020. https://sike.org/
files/SIDH-spec.pdf.

[19] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles
and timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography, pages 390–413, Cham, 2020. Springer International Publishing.
doi: 10.1007/978-3-030-64381-2 14.

[20] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion ℓ-isogeny path problem. LMS J. Comput. Math., 17:418–432, 2014.
doi: 10.1112/S1461157014000151.

[21] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, USA, 1996.

[22] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer New York, 1986. doi: 10.1007/978-1-4757-1920-8.

[23] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie,
and Giulio Malavolta. Efficient CCA timed commitments in class groups. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’21, page 2663–2684, New York, NY, USA, 2021. Association
for Computing Machinery. doi: 10.1145/3460120.3484773.

[24] John Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics.
Springer Cham, 2021. doi: 10.1007/978-3-030-56694-4.
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