
Improved YOSO Randomness Generation with Worst-Case

Corruptions∗

Chen-Da Liu-Zhang† Elisaweta Masserova‡ João Ribeiro§ Pratik Soni¶

Sri AravindaKrishnan Thyagarajan‖

Abstract

We study the problem of generating public unbiased randomness in a distributed manner
within the recent You Only Speak Once (YOSO) framework for stateless multiparty computa-
tion, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive
denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless
environments. While most works in the YOSO setting focus on independent random corrup-
tions, we consider YOSO protocols with worst-case corruptions, a model introduced by Nielsen
et al. in CRYPTO 2022.

Prior work on YOSO public randomness generation with worst-case corruptions designed
information-theoretic protocols for t corruptions with either n = 6t+1 or n = 5t roles, depending
on the adversarial network model. However, a major drawback of these protocols is that their
communication and computational complexities scale exponentially with t. In this work, we
complement prior inefficient results by presenting and analyzing simple and efficient protocols for
YOSO public randomness generation secure against worst-case corruptions in the computational
setting. Our first protocol is based on publicly verifiable secret sharing and uses n = 3t + 2
roles. Since this first protocol requires setup and somewhat heavy cryptographic machinery,
we also provide a second lighter protocol based on ElGamal commitments and verifiable secret
sharing which uses n = 5t+ 4 or n = 4t+ 4 roles depending on the underlying network model.
We demonstrate the practicality of our second protocol by showing experimental evaluations,
significantly improving over prior proposed solutions for worst-case corruptions, especially in
terms of transmitted data size.

1 Introduction

Public randomness is a fundamental component of numerous financial and security protocols [Rab83,
KBPB19]. Randomness usage is ubiquitous: From establishing fairness in the green card lottery,
to assessing risk via Monte Carlo simulations, to generating the public parameters for the cryp-
tographic protocols [BDF+15, LW15]. In the past, public randomness was typically obtained via
trusted third parties. However, with the emergence of blockchains and web3, there has been an
increased effort to decentralize economic activities, and as a consequence, to decentralize public
randomness generation as well [CD20, SJK+17, CMB23, Gro21, CD17].

∗This is the full version of a work that was presented at FC 2024.
†Lucerne University of Applied Sciences and Arts and Web3 Foundation. chen-da.liuzhang@hslu.ch.
‡Carnegie Mellon University. elisawem@andrew.cmu.edu.
§Instituto Superior Técnico, Universidade de Lisboa. jribeiro@tecnico.ulisboa.pt. Work done while at NOVA

LINCS and NOVA School of Science and Technology.
¶University of Utah. psoni@cs.utah.edu.
‖University of Sydney. aravind.thyagarajan@sydney.edu.au.

1

A protocol for such distributed public randomness allows multiple mutually distrusting parties,
each with their own source of randomness, to generate and agree on a public random value. How-
ever, designing a secure protocol which provides such a functionality is a notoriously hard task.
Indeed, the cryptographic community put significant effort into designing distributed randomness
generation protocols [CD20, CMB23, SJK+17, Gro21, CD17], as well as improving functionalities
such as verifiable delay functions [BBBF18] and time-lock puzzles [TCLM21], which oftentimes
serve as building blocks in such protocols.

Traditionally, those protocols consider static adversaries, where security is guaranteed as long
as the adversary decides which parties to corrupt prior to the start of the execution. However, such
an assumption seems unjustified, especially for protocols that run over long periods of time. A far
more realistic setting would allow the adversary to corrupt parties dynamically during the course of
the execution. This gave rise to a line of adaptively-secure protocols that are built out of ephemeral
one-time roles (e.g., [Mic17, PS17, CM19, BKLZL20]), mostly focused on agreement primitives. In
the context of general multi-party computation, a novel approach to achieving adaptive security (in
an arguably efficient manner) has been recently proposed in the You-Only-Speak-Once (YOSO) line
of work, introduced by Gentry, Halevi, Krawczyk, Magri, Nielsen, Rabin, and Yakoubov [GHK+21]
and the Fluid MPC model introduced by Choudhuri, Goel, Green, Jain, and Kaptchuk [CGG+21].
Intuitively, protocols in the YOSO setting consider the notion of stateless ephemeral roles, where
at a single point in time a small committee of such roles is required to perform certain actions,
and produce a public output, along with messages to be sent to future roles. Roles are assigned to
physical machines via a “role-assignment” functionality in the beginning of each round, in a way
that makes it hard for the adversary to predict which physical machines will be participating as
roles in a given committee. As roles are allowed to send only a single message (i.e., speak only
once), and are torn down after the execution, adaptively corrupting a machine which executed a
certain role in the past does not help the adversary. Due to these observations, assuming that the
adversary can only corrupt a fraction of (a large total number of) physical machines, the protocols
designed in the YOSO setting typically rely on the fact that the adversary’s best option is to
corrupt machines at random.

However, this assumption is viable only if role-assignment (which is typically separated from
the multi-party protocol computing the function of interest) is truly secure. This makes role-
assignment protocols hard to design, and the currently known constructions compromise either in
terms of efficiency [GHM+21] or in terms of the supported corruption threshold [BGG+20].

The line of work designing Fluid MPC protocols [CGG+21, DDG+23, DGLZ23] considers a
worst-case corruption-per-committee model, where up to a certain minority fraction of parties are
corrupted in each committee. In order to reduce trust in role-assignment even more, Nielsen,
Ribeiro, and Obremski (NRO in the following) recently introduced a model for YOSO with worst-
case corruptions [NRO22], which we dub YOSOWCC. In this model, prior to the start of the
protocol, the adversary can choose any up to t roles to corrupt overall across all participating
parties. The YOSOWCC model is tailored to the randomness generation setting, and the authors
introduce two information-theoretic protocols which are secure given worst-case corruption of roles.
Unfortunately, these protocols incur exponential communication- and computation complexities,
which motivates us to ask the following question:

Can we design efficient distributed randomness generation protocols in the model of YOSO with
worst-case corruptions?

As it is trivially possible to adapt known stateful randomness generation protocols to the
YOSOWCC setting at the cost of having a very low adversarial threshold (see Section 1.3 for details),
we further refine the question as follows:

2

Can we design efficient distributed randomness generation protocols in the model of YOSO with
worst-case corruptions while optimizing the required number of roles?

1.1 Our Contributions

In this work, we answer the question above positively. As in NRO, we distinguish between two
different adversarial models, the sending-leaks and execution-leaks models. Intuitively, in the
execution-leaks model the adversary only obtains messages addressed to corrupted parties upon
their execution. In the stronger sending-leaks model, the adversary obtains the messages addressed
to corrupted parties immediately upon the sender sending the message. We design two randomness
generation protocols in the sending-leaks model, along with an optimized version for the execution-
leaks model, and prove these protocols secure. Our protocols are in the computational setting,
meaning that the adversary we consider is computationally bounded.

In our first construction, we build upon a non-interactive publicly verifiable secret sharing
(PVSS) protocol [Sta96], which allows a dealer to share a secret in a single round among a set of
parties (a subset of which can be corrupt) in a way that lets anyone verify that the dealer behaved
correctly. Our PVSS-based randomness generation protocol requires 3t + 2 roles, and has com-
munication complexity that grows quadratically in the number of parties. While this construction
requires setup and somewhat heavy cryptographic machinery in the form of simulation-extractable
non-interactive zero-knowledge proofs, in our second construction we do not require setup and
rely only on the usage of ElGamal commitments. In this construction, we build upon verifiable
secret sharing (VSS) protocols [Ped92], a notion that is similar to PVSS but requires more rounds.
The communication complexity of this protocol is quadratic in the number of roles. The protocol
requires 5t+ 4 roles in the sending-leaks model or 4t+ 4 roles in the execution-leaks model.

We implement our VSS-based construction and compare it to our implementation of the NRO
scheme. Our evaluation shows that our protocol is not only asymptotically but also concretely
efficient, and we outperform NRO for values as small as t = 6 (for running time) and t = 3 (for
size of the transmitted data).

In the following, we first briefly outline our model, and then provide an overview of the main
techniques and ideas used in our work.

1.2 Our Model and Security Goal

We now briefly outline the YOSOWCC model we work in, following the communication model
description of NRO [NRO22]. We distinguish between stateless “roles” and physical machines
which may run for a long time and retain state. Note that in the following we use the terms
“role” and “party” interchangeably. We consider n parties P1, . . . , Pn, which are executed one after
the other. We assume that each party has its own internal source of randomness. We consider a
computationally bounded adversary which is allowed to corrupt any t out of n parties before the
protocol starts. Upon its execution, Pi can publicly broadcast a value xi and send secret values si,j
to each “future” party Pj , i.e., any Pj such that j > i. We consider the following two adversarial
network settings:

• In the sending-leaks model an adversary obtains a message si,j sent by an honest Pi to a corrupt
Pj as soon as Pi sent it. We call the corresponding adversary the sending-leaks adversary.

• In the execution-leaks model an adversary obtains a message si,j sent by an honest Pi to a corrupt
Pj only once Pj is activated. We call the corresponding adversary the execution-leaks adversary.

3

P1 P2 P3 Pn

x1 x2 x3 xn

︷ ︸︸ ︷

Ext

r

public communication

private communication

Figure 1: Communication model from [NRO22, Figure 1]. Parties Pi speak one after the other,
send secrets to future parties Pj for j > i, and publish public values, which are available to all
parties.

Our goal is the following: After the execution of all parties is complete, anyone (not just physical
machines which acted as roles P1, . . . , Pn) can obtain unbiased public randomness by applying a
publicly known and deterministic extraction function to the values (x1, . . . , xn). See Figure 1 for a
visual representation of this process.

More formally, let λ denote a security parameter. Consider an interaction of an adversary A
with the honest parties in the randomness generation protocol and let OUT(A) denote the coin
output of this protocol with adversary A. Let L(λ) denote the length of this output. Let D be a
distinguisher. Consider the following experiment (for protocols which assume trusted setup, this
setup is generated by the challenger):

1. b
$← {0, 1}.

2. r
$← {0, 1}L(λ).

3. If b = 0, set coin← OUT(A). Otherwise, set coin← r.

4. b′ ← D(coin).

Then, we have the following formal security definition.

Definition 1 (Computationally secure YOSOWCC randomness generation). A YOSOWCC random-
ness generation protocol with n parties is (t, n)-computationally secure in the sending-leaks (resp.
execution-leaks) model if for all PPT sending-leaks (resp. execution-leaks) adversaries A that cor-
rupt t out of n parties and all PPT distinguishers D in the above security game it holds that∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ≤ negl(λ).

1.3 Our Techniques

First, note that, as pointed out by NRO, any stateful r-round multiparty computation protocol
which is secure against t out of n corruptions can be ported to the YOSOWCC setting as follows:
Use r roles Pi,r to implement the behavior of each participant Pi of the stateful protocol over r
rounds. Role Pi,k mimics the behavior of Pi in round k of the stateful protocol, with the caveat
that it additionally sends its state to the future role Pi,k+1. Unfortunately, this approach is costly

4

in terms of the required number of roles: It requires n · r roles, while tolerating only t corrupted
parties.

To address this issue, we design randomness generation protocols which are tailored to the
YOSOWCC setting. For simplicity, say we wish to generate only a single random bit r ∈ {0, 1}.

First idea Our first idea is the following: As each party has its own source of randomness, we
could set n = t + 1 and simply XOR all values ri, where ri is the random bit generated by Pi,
i.e., set r =

⊕
i∈[t+1] ri. As at least one party out of t + 1 is honest, the XOR should result in

an unbiased bit. However, we need to be careful – we must not let a corrupt party see the values
of the honest parties before supplying its own ri. Thus, intuitively, we have to make each party
commit to the randomness it wishes to contribute prior to revealing the values of other parties.
This approach requires a party to speak two times: Once when committing to a value, and once
when opening it. This can be naively achieved by using two roles to implement Pi, and having the
first role privately send its state to its counterpart.

Perhaps surprisingly, this approach still does not achieve what we want: As corrupt parties can
refuse to open the committed values, in our protocol we must specify how to proceed in such a
case. We can either choose to ignore each such party Pi, thereby making their contribution equal
to ri = 0 (first case in the following), or set ri = 1 (second case). In both cases, a corrupt Pt+1 can
bias the outcome of the final XOR by committing to rt+1 = 1 in the first case and rt+1 = 0 in the
second case, and then adaptively deciding whether to open the value or not during the execution
of its second role, thereby setting the result r to the value of its choice. As the second role of Pt+1

is the last party speaking, all values supplied by the honest parties are known upon its execution.

Utilizing PVSS We address the issue above by ensuring that the coin output is fixed prior to
the reveal phase. We begin by considering a setting with trusted setup. In this case, we can rely
on a (t, n)-publicly verifiable secret sharing (PVSS) protocol. Using such a protocol, a dealer can
secret share its secret among n parties in a way that any t + 1 parties can reconstruct the secret,
but any t (potentially corrupted) parties have no information about the secret. Moreover, public
verifiability ensures that anyone (even non-recipients) can verify that the dealer sharing has been
performed correctly, i.e., there exists a unique secret which can be later reconstructed by any set
of t+ 1 recipient parties.

Intuitively, this fixes the secret at the end of the commit/sharing phase, and if the adversary
corrupts at most t parties, it does not learn any information about the secret. If we ensure that the
secret reconstruction starts only after the sharing phase of all secrets is complete, the adversary
can no longer bias the outcome. However, there is one caveat: As anyone must be able to verify
that the sharing was done correctly, the dealer cannot send the shares to the parties via private
communication. Instead, the dealer publishes encryptions of the shares of the parties with respect
to their corresponding public keys. In a scenario such as ours, where we run not only one, but
multiple PVSS protocols, publicly revealing encryptions of the shares makes PVSS susceptible to
malleability attacks. To prevent such attacks from adversarial dealers, we make use of a PVSS pro-
tocol with appropriate non-malleability properties. Such properties can be achieved, for example,
via simulation-extractable non-interactive zero-knowledge proofs [Gro06].

If we use a (t, 2t+1)-PVSS protocol, the above protocol requires only 3t+2 roles in total: t+1
dealers and 2t + 1 parties who obtain the secret shares. This protocol allows us to achieve the
following result:

Theorem 1 (informal). Assuming public key encryption and simulation-extr-actable NIZKs, there
exists a computationally secure randomness generation protocol with 3t+2 roles in the sending-leaks

5

model, where t is the number of corruptions.

We give a formal description of our PVSS-based construction in Section 2.

Removing Trusted Setup While the protocol above enjoys good efficiency properties and re-
quires only a small number of parties, it relies on somewhat heavy cryptographic assumptions and
a trusted setup. In our second and main construction we address these limitations.

Our idea is to utilize verifiable secret sharing (VSS), which is similar to PVSS, except that
it does not provide public verifiability. Instead, we only have the so-called “strong commitment”
property, which states that the shares of the honest parties define a secret (which could be ⊥).

At a high level, as a first step we will design a YOSOWCC-friendly VSS scheme. Then, as in the
PVSS-based construction, we will let t + 1 dealers each share their secret randomness using this
VSS. However, as mentioned above, this time we cannot rely on the public verifiability property
of the secret sharing scheme. We used this property in the previous construction to determine
whether a dealer behaved honestly during the commit/secret sharing phase. This, in turn, allowed
us to circumvent the issue where a malicious party commits to some randomness, and after seeing
honest values decides whether to open this randomness or not. In VSS, the dealer is allowed to
send shares to the parties privately, and thus when a dealer and a share recipient are in dispute,
from the perspective of an external party it may not be immediately possible to tell whether the
dealer or the share recipients behaved maliciously. Handling this requires further interaction and
results in more roles in our YOSOWCC VSS-based protocol, which we outline in the following.

We build our protocol around the well-known Pedersen VSS [Ped92]. The standard stateful
version of this VSS proceeds in the following four rounds, where s is the secret that is being shared,
and g and h are generators of a group where computing discrete logarithms is hard:

1. The dealer D chooses two degree-t polynomials

f1(x) = a0 + a1x+ · · ·+ atx
t,

f2(x) = b0 + b1x+ · · ·+ btx
t

such that b0 = s. Then, D broadcasts commitments

(c0, c1, · · · , ct) = (ga0hb0 , ga1hb1 · · · , gathbt),

and sends ri = f1(i) and si = f2(i) to each Pi, i ∈ [n].

2. Each party Ri checks whether g
rihsi =

t∏
k=0

ci
k

k . If not, Ri broadcasts Complain.

3. D broadcasts all shares from parties who complained. If any share that D broadcasts does
not satisfy the above relation, D is deemed corrupt and the execution halts. Otherwise, each
Pi who complained replaces its old share with the new (ri, si).

4. Each Ri outputs ri, si. The value s = f2(0) is the reconstructed secret.

Note that in the construction above, the dealer as well as each share recipient Ri may need to
speak twice – the dealer is required to come back in the third round to resolve the complaints, and
each Ri might complain in the second round, and is then required to output its share in the fourth
round. We adapt this scheme to the YOSOWCC setting in two steps: First, we use two roles D and
D′ for the dealer, and let D not only execute the first round of the protocol above, but also send it

6

state privately to D′. Second, we use two roles Ri and R′
i for each share recipient, and also let Ri

not only execute the second round of the protocol above, but send its state to its counterpart R′
i.

A final issue remains: Currently, we assume that g, h are publicly known values, and the
construction above is secure assuming that logg h is not known to any party. We would now like
to remove this setup. The strawman idea is to simply have each dealer supply its own pair of g
and h. However, if a malicious dealer colludes with a party Ri, then Ri can cheat by providing an
invalid opening (which still verifies correctly), thus changing the reconstructed secret value. To fix
this, we substitute computationally Pedersen commitments by unconditionally binding ElGamal
commitments. In more detail, we now compute the commitment (c0, c1, · · · , ct) as follows:

(c0, c1, · · · , ct) =
(
(ga0 , ha0 · gb0), (ga1 , ha1 · gb1), · · · , (gat , hat · gbt)

)
.

Pipelining When implemented naively, the construction outlined above requires 6t+4 roles, and
the construction is secure in the sending-leaks model. To further decrease the number of roles,
we carefully parallelize the execution of both dealer roles with the receiver roles. More concretely,
instead of letting the t+1 dealers share secrets towards a fixed set of 2t+1 receivers, the recipient
set for the i-th dealer is set to be the 2t+ 1 roles that immediately succeed that particular dealer.
Moreover, we observe that the conflicts regarding the i-th dealer can also be immediately resolved
after the corresponding set of 2t+ 1 receiver roles have been executed.

This means that the total number of roles (after resolving complaints from all dealers) is now
3t+3, i.e., this linearization of roles allows us to decrease the total number of roles by roughly t in
the sharing phase of the dealers. For further details, see Section 3.

Additional optimization in the execution-leaks model We make the observation that in
the execution-leaks model we can further reduce the final set of receivers R′

i by t roles. The idea is
that each original receiver Ri (from the sharing phase) follows the procedure of round two, but in
addition sends its shares to all roles R′

j (instead of only R′
i as before) if its shares verify correctly.

This step does not reveal information on the shares, since the channels to the future roles do not
reveal any information until the corresponding recipient role is executed. In the reconstruction
step, we can let each R′

j publish the received shares from all parties that it got the shares from.
We therefore arrive at the final theorem.

Theorem 2 (informal). Assuming ElGamal commitments, there exists a computationally secure
randomness generation protocol with 5t + 4 roles (resp. 4t + 4 roles) in the sending-leaks (resp.
execution-leaks model), where t is the number of corruptions.

2 PVSS-based YOSOWCC Randomness Generation

We introduce a randomness generation scheme which relies on publicly verifiable secret sharing
(PVSS). Before going into our protocol, we briefly explain what a PVSS is.

2.1 Publicly Verifiable Secret Sharing

Recall the definition of Publicly Verifiable Secret Sharing (PVSS) from [CD17]. In PVSS, a dealer
D shares a secret to a set of n parties P = {P1, · · · , Pn}. A (t, n)-PVSS protocol ensures that
a secret is split in a way that allows t + 1 parties to reconstruct a secret, but at the same time,
knowing t shares does not reveal any information about the secret. Any external verifier V is
able to check that D acts honestly. More formally, a PVSS protocol consists of the algorithms

7

(Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool), where Setup = (Setupπ, SetupPKI), and which de-
note the following:

• Setup: Consists of (Setupπ, SetupPKI), which take security parameter λ as input. In Setupπ, the
parameters of the proof system are generated in a trusted fashion. Using SetupPKI, every party
generates a public key pki and withholds the corresponding secret key ski.

• Distribution: The dealer creates shares s1, · · · , sn for the secret s, encrypts share si with the
key pki for i = {1, · · · , n} and publishes these encryptions ŝi, together with a proof proofD that
these are indeed encryptions of a valid sharing of some secret.

• Verification: In this phase, any external V (not necessarily being a participant in the protocol)
can verify non-interactively, given all the public information until this point, that the values ŝi
are encryptions of a valid sharing of some secret.

• Reconstruction: This phase is divided in two.

Decryption of the shares: This phase can be carried out by any set Q of t + 1 or more parties.
Every party Pi in Q decrypts the share si from the ciphertext ŝi by using its secret key ski,
and publishes si together with a (non-interactive) zero-knowledge proof proofi that this value
is indeed a correct decryption of ŝi.

Share pooling: Any external verifier V (not necessarily being a participant in the protocol) can
now execute this phase. V first checks whether the proofs proofi are correct. If the check passes
for less than t+1 parties in Q then V aborts; otherwise V applies a reconstruction procedure to
the set si of shares corresponding to parties Pi that passed the checks.

A PVSS protocol (Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool) must provide three security
guarantees: Correctness, Verifiability and IND1-Secrecy. These properties are defined below:

• Correctness: If the dealer and all players in Q are honest, then all checks in the verification and
reconstruction phases pass, and the secret can be reconstructed from the information published
by the players in Q during reconstruction.

• Verifiability: If the check in the Verification phase passes, then with high probability the
values ŝi are encryptions of a valid sharing of some secret. Furthermore, if the check in the
Reconstruction phase passes, then the values si are indeed the shares of the secret distributed
by D.

• IND1-Secrecy: Prior to the reconstruction phase, the public information together with the
secret keys ski of any set of at most t players gives no information about the secret.

2.2 Our PVSS-Based Randomness Generation Protocol

Our protocol is in the sending-leaks model (thus also secure in the execution-leaks model). We
describe the scheme and outline the security proof.

The high-level idea of the scheme is the following: given n = 3t+2 parties, split them into two
groups P and P ′ of size t + 1 and 2t + 1, respectively. We dub the parties from the first group
dealers, denoted by P1, P2, · · · , Pt+1, and the parties from the second group decryptors, denoted
by P ′

1, P
′
2, · · · , P ′

2t+1. Let (Setup := (Setupπ,SetupPKI),Dist,Verif,RDec, RPool) denote a (t, 2t+1)-
PVSS protocol. The protocol starts with a “sharing” phase, where every Pi is executed one after
another and acts as a PVSS dealer distributing its secret to the decryptors in P ′. Then, decryptors

8

P ′
i ∈ P ′ are executed one after another, and each decryptor P ′

i executes the share decryption part
of the PVSS reconstruction phase for each dealer Pi. Finally, any party C can execute the share
pooling phase of the PVSS reconstruction phase in order to obtain the secret shared by each dealer.
We give the full scheme in Protocol 1.

Protocol 1 Randomness Beacon from PVSS in the Sending-Leaks Model.

Setup: PVSS Setupπ algorithm is executed in a trusted fashion to obtain the common reference
string crs. Public key of every party in the protocol is generated according to SetupPKI.
Sharing phase: Each party Pi, i ∈ [t+ 1] does the following:

1. Pi samples xi from {0, 1} uniformly at random.

2. Pi uses PVSS algorithm Dist as the dealer to distribute shares of xi to the parties
P ′
1, · · · , P ′

2t+1:

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← Dist(xi, {pkP ′

j
}j∈[2t+1], crs).

3. Pi publishes ({ŝ(i)j }j∈[2t+1],proof
(i)
D).

Reconstruction phase: Each party P ′
j , j ∈ [2t+ 1] does the following:

1. For each Pi, P
′
j uses Verif({ŝ(i)j }j∈[2t+1],proof

(i)
D , crs) to verify that Pi dealt a valid secret.

For each Pi who passed the check, P ′
j verifies that the proof proof

(i)
D and every encryption

ŝ
(i)
m distributed by Pi is not the same as one distributed by any dealer Pk, where k < i.
Denote Pi as valid if so.

2. For each valid Pi, P
′
j uses the PVSS algorithm RDec(ŝ

(i)
j , sk′P ′

j
, crs) to obtain (s

(i)
j ,proof

(i)
j),

and publishes this pair.

Any party C can use the PVSS algorithm RPool on information published by the parties
P ′
1, · · · , P ′

2t+1 to obtain xi. Output
⊕

i∈I xi, where I denotes an index set of dealers for which C
obtained the secret using RPool.

For security, we need our PVSS to be non-malleable, which can be naively achieved by us-
ing simulation-extractable NIZKs [Gro06] as PVSS proofs. Intuitively, a strawman PVSS scheme
which provides the required non-malleability works as follows: Share the secret using a (t, n) secret
sharing scheme (e.g, Shamir’s secret sharing [Sha79]), encrypt each share using a public key of the
corresponding share receiver, and append a simulation-extractable NIZK proof confirming that the
dealer knows the shares underlying the ciphertexts, and these shares correspond to the (t, n) secret
sharing. The reconstruction works by having each receiver decrypt its share, and publish a proof
confirming that it knows a secret key such that the decryption of the corresponding ciphertext re-
sults in the stated value. The communication complexity is O(n2|c|+ n|p|), where |c| is the length
of a single ciphertext, and |p| of a proof.

Theorem 3. Assuming public key encryption and simulation-extractable NIZKs, there exists a
YOSOWCC (t, 3t + 2)-computationally secure randomness generation protocol in the sending-leaks
model.

9

3 Randomness Generation from ElGamal Commitments

We now describe our randomness generation protocol that is secure against computational adver-
saries, and does not require any setup assumptions. We provide two variations of this protocol:
One for the sending-leaks model and another for the execution-leaks model. To reduce the number
of roles, we use pipelining in both versions. For simplicity, we first describe the protocol without
pipelining.

Construction for the sending-leaks model. As mentioned in Section 1.3, the high-level idea
of the construction is the following: as a first step, we “linearize” a custom version of Pedersen’s
VSS protocol [Ped92] where a single party shares a random value in our stateless model. Recall
that in each linearization we have the roles:

• Party D, who acts as the dealer distributing the secrets (publishing commitments to the
coefficients of t-degree polynomial and bilaterally sending to each receiver a share evaluation),
and sends its state to its counterpart D′.

• 2t + 1 receivers Ri, who receive and verify the secret shares, complain about the shares if
applicable, and otherwise send these to the counterpart R′

i.

• Party D′ who obtains a state from D and uses it to publish the shares of the receivers that
complained.

• 2t + 1 receivers R′
i who receive the shares from their counterparts Ri, as well as set their

shares to the ones broadcast by D′ (if the counterpart Ri complained), and publicly reveal
these shares.

We use t+1 such linearized VSS to share t+1 random values, and output the final coin as the
xor the results. In more detail, we let n = 6t + 4, and divide the n parties into a group D of size
t + 1, group R of size 2t + 1, group D′ of size t + 1, and group R′ of size 2t + 1. These parties
execute the following roles:

• Each Di ∈ D acts as the dealer D in the i-th linearization.

• Each Ri ∈ R executes the role the i-th receiver Ri in each of the t+ 1 linearizations.

• Each D′
i ∈ D′ acts as the dealer D′ in the i-th linearization.

• Each R′
i ∈ R′ executes the role of the i-th receiver R′

i in each of the t+ 1 linearizations.

We denote a client who wishes to obtain the result of the protocol by C (C can be external, but
can also be one of Di, Ri, D

′
i, R

′
i).

The protocol starts with a “sharing” phase, where each Di is executed one after another and
shares its secret via Shamir’s secret sharing to the receivers in R, while committing to it using
ElGamal’s commitments. Additionally, each Di sends its state to its counterpart D′

i. Then, parties
in R are executed one after another, verify the shares they receive, and complain about the dealers
who sent inconsistent shares. Finally, each dealer D′

i uses the state it received from its counterpart
Di to publicly respond to the complains. After this, the sharing phase is completed and the
“reconstruction phase” begins. Here, each R′

i ∈ R′ simply outputs the shares it received. Every
party C who is interested in the output verifies the published shares, uses the ones that passed the
verification to reconstruct the secret dealt by a particular dealer, and computes the xor of all secrets
dealt by the dealers who were not deemed corrupt (i.e., publicly sent inconsistent information as a
respond to a complain during the sharing phase). See Protocol 2 for details.

10

Execution-leaks variant. For the execution-leaks model, we similarly implement the behavior
of each dealer using two roles – one responsible for the sharing of a secret, and one responsible
for addressing the complaints. However, instead of implementing each Ri using two roles, we have
2t+1 parties Ri and t+1 parties R′

j (where R
′
i can not be thought of as a counterpart of Ri). Each

Ri follows the procedure of round two, and if its shares verify, it additionally sends its shares to
each R′

j . Finally, each R′
j publishes all shares (from all parties got the shares from) which verified

correctly.

Pipelining optimization Implemented naively, in the sending-leaks model the protocol de-
scribed above requires 6t+4 parties, and its execution-leaks variant requires 5t+4 parties. To reduce
this number, we propose the following modification to both the sending-leaks and the execution-
leaks protocols: Instead of combining multiple linearized VSS by having t+1 dealers, each of whom
shares secrets among the same set R of 2t+ 1 parties, we let each dealer share secrets among the
next 2t+1 parties. In the sending-leaks model, we now have n = 5t+4 parties Pi, where depending
on the index i, party Pi executes the following roles:

• For 1 ≤ i ≤ t + 1, party Pi executes the role of the dealer D in i-th VSS linarization. If
additionally i > 1, Pi also executes the role Ri−j in j-th VSS linearization, where j < i.

• For t+2 ≤ i ≤ 3t+2, party Pi executes the role Ri−j in j-th VSS linearization, where j < i.
If additionally i > 2t+ 2, Pi also executes the role of the dealer D′ in the i− 2t− 2-th VSS
linearization.

• For i = 3t+ 3, party Pi executes the role D′ in the t+ 1-st VSS linearization.

• For 3t+ 4 ≤ i ≤ 5t+ 4, Pi executes the role R′
i−3t−3 for each linearization.

We state the following theorems.

Theorem 4. Assuming ElGamal commitments, there is a YOSOWCC (t, 5t + 4)-secure computa-
tional randomness generation protocol in the sending-leaks model.

Theorem 5. Assuming ElGamal commitments, there is a YOSOWCC (t, 4t + 4)-secure computa-
tional randomness generation protocol in the execution-leaks model.

11

Protocol 2 SL Randomness Generation from ElGamal Commitments
Sharing phase:
Each Di, i ∈ [t+ 1] does the following:

1. Di chooses random degree-t polynomials f1 and f2:

f1 = a0 + a1x+ · · ·+ atx
t and f2 = b0 + b1x+ · · ·+ btx

t.

2. Di chooses a pair of generators (g, h).

3. Di commits to f1 and f2 via broadcasting (g, h) along with

(c0, c1, · · · , ct) =
(
(ga0 , ha0 · gb0), (ga1 , ha1 · gb1), · · · , (gat , hat · gbt)

)
.

4. Di sends rj = f1(j) and sj = f2(j) to each Pj , j ∈ [2t+ 1]; and sends polynomials f1 and f2
to D′

i.

Each Ri, i ∈ [2t+ 1] does the following:

1. For each dealer Dj , Ri checks whether the share (ri, si) it obtained from Dj , and the
commitments to f1 and f2 distributed by Dj satisfy

gri =

t∏
k=0

(gak)i
k
and hri · gsi =

t∏
k=0

(
hak · gbk

)ik

If not, Ri broadcasts Complain− Dj.

2. Ri sends all shares (ri, si) that passed verification to R′
i.

Each D′
i, i ∈ [t+ 1] does the following:

1. D′
i broadcasts shares of parties who complained about Di. If any share broadcast by D′

i

does not pass the check above, D′
i is deemed corrupt.

Reconstruction phase:
Each R′

i, i ∈ [2t+ 1] does the following:

1. If Ri complained about Dj , and D′
j was not deemed corrupt, R′

i sets its corresponding share
to si and ri broadcast by D′

j .

2. R′
i outputs all shares (si, ri) it obtained for non-corrupt dealers.

Client C does the following:

1. For each D′
i who was not deemed corrupt, C uses any t+ 1 shares sj and rj that pass the

verification check against the corresponding commitment to reconstruct the value si = fi(0),
where fi is the polynomial f2 dealt by Di/D

′
i.

2. Let H denote the index set of dealers D′
i which were not deemed corrupt. C outputs⊕

i∈H si.

12

t Our scheme NRO

1 314 0.64
2 821 2
3 1589 24
4 2793 236
5 4285 2463
6 6312 24387
7 8886 233328
8 11966 -

Table 1: Running time comparison, all times
in milliseconds.

t Our scheme NRO

1 0.0031 0.0003
2 0.0067 0.004
3 0.0115 0.039
4 0.0176 0.378
5 0.0249 3.399
6 0.0336 29.182
7 0.0436 242.327
8 0.0548 -

Table 2: Overall communication sizes in MB.

4 Implementation and Evaluation

We now evaluate our randomness generation scheme in the sending-leaks model from Section 3.
In the following, we first compare it to our implementation of the randomness extraction protocol
from [NRO22]. We evaluate the work required to be performed by each role. Our implementation
is available at https://github.com/yosorand/yoso-rand-elgamal and required ≈ 300 lines of
code in Rust. We ran all our experiments single-threaded on a MacBook Pro with 32GB of RAM,
and an Apple M1 Pro SoC.

In our proof-of-concept implementation, we simulate the communication layer (i.e., the broad-
cast and point-to-point channels), and assume that the channels are authenticated. In our imple-
mentation all parties behave honestly, which corresponds to the worst case in terms of communi-
cation and computation complexity (same for NRO).

In terms of the running times (see Table 1), as expected, for very small values of t the NRO
protocol is faster than our protocol. However, due to the exponential computational complexity of
the NRO protocol, we outperform NRO already for t = 6, and the NRO scheme becomes impractical
for values as small as t = 8. This gap will only increase as t grows.

Note that while in our evaluation we assume that all parties are single-threaded, our scheme is
easily parallelizable: As a party often executes multiple roles for independent protocol executions
of the linearized VSS, those roles can be executed by different cores. This slashes the cost roughly
by a factor which corresponds to the number of cores available.

Finally, we report the overall data sizes that parties need to transmit both in our protocol and
the NRO protocol (see Table 2). Again, while the NRO protocol is very efficient on very small
values of t, our scheme outperforms it already for t = 3 (and stays remarkably low for larger values
of t). This gap will only grow, as the NRO protocol has exponential communication complexity.
As before in our running time experiment, we did not obtain the final values for the NRO scheme
due to the timeout.

Acknowledgements

This work was supported by a Protocol Labs Cryptonet Network Grant RFP-013 “Stateless Dis-
tributed Randomness Generation”. C. Liu-Zhang’s research was also supported by the Hasler
Foundation Project No. 23090 and ETH Zurich Leading House Research Partnership Grant RPG-
072023-19. J. Ribeiro’s research was also supported by NOVA LINCS (ref. UIDB/04516/2020)
with the financial support of FCT - Fundação para a Ciência e a Tecnologia. E. Masserova was

13

https://github.com/yosorand/yoso-rand-elgamal

supported by a gift from Bosch and NSF Grants No. 1801369 and 2224279. We thank Jay Bosamiya
for helping us with the implementation of this work.

References

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions.
In Advances in Cryptology – CRYPTO 2018, pages 757–788. Springer, 2018.

[BDF+15] Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrède Lep-
oint, and Matthieu Rivain. Trap me if you can – million dollar curve. IACR Cryptol.
ePrint Arch., 2015.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography, pages 260–290,
Cham, 2020. Springer International Publishing.

[BKLZL20] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous
byzantine agreement with subquadratic communication. In Theory of Cryptography:
18th International Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020,
Proceedings, Part I 18, pages 353–380. Springer, 2020.

[CD17] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable Randomness Attested by
Public Entities. In International Conference on Applied Cryptography and Network
Security, pages 537–556, 2017.

[CD20] Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe BATched
Randomness based On Secret Sharing. In Advances in Cryptology – ASIACRYPT
2020, pages 311–341, Cham, 2020. Springer International Publishing.

[CGG+21] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel
Kaptchuk. Fluid mpc: Secure multiparty computation with dynamic participants.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
pages 94–123, Cham, 2021. Springer International Publishing.

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

[CMB23] Kevin Choi, Aathira Manoj, and Joseph Bonneau. SoK: Distributed randomness bea-
cons. In 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA,
USA, May 21-25, 2023, pages 75–92. IEEE, 2023.

[DDG+23] Bernardo David, Giovanni Deligios, Aarushi Goel, Yuval Ishai, Anders Konring, Eyal
Kushilevitz, Chen-Da Liu-Zhang, and Varun Narayanan. Perfect mpc over layered
graphs. In Annual International Cryptology Conference, pages 360–392. Springer, 2023.

[DGLZ23] Giovanni Deligios, Aarushi Goel, and Chen-Da Liu-Zhang. Maximally-fluid mpc with
guaranteed output delivery. Cryptology ePrint Archive, Paper 2023/415, 2023. https:
//eprint.iacr.org/2023/415.

14

https://eprint.iacr.org/2023/415
https://eprint.iacr.org/2023/415

[GHK+21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal
Rabin, and Sophia Yakoubov. YOSO: You Only Speak Once. In Annual International
Cryptology Conference, pages 64–93, 2021.

[GHM+21] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yak-
oubov. Random-index PIR and applications. In Theory of Cryptography - 19th Interna-
tional Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings,
Part III, volume 13044 of Lecture Notes in Computer Science, pages 32–61. Springer,
2021.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology –
ASIACRYPT 2006, pages 444–459, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing. IACR
Cryptol. ePrint Arch., 2021.

[KBPB19] John Kelsey, Lúıs T. A. N. Brandão, Rene Peralta, and Harold Booth. A reference
for randomness beacons: Format and protocol version 2. Technical report, National
Institute of Standards and Technology, 2019.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx.
IACR Cryptol. ePrint Arch., 2015.

[Mic17] Silvio Micali. Very Simple and Efficient Byzantine Agreement. In Christos H. Papadim-
itriou, editor, 8th Innovations in Theoretical Computer Science Conference (ITCS
2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1–6:1, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[NRO22] Jesper Buus Nielsen, João Ribeiro, and Maciej Obremski. Public randomness extrac-
tion with ephemeral roles and worst-case corruptions. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages 127–147, Cham,
2022. Springer Nature Switzerland.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,
pages 129–140, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part II 23, pages 380–409. Springer, 2017.

[Rab83] Michael O Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27(2):256–267, 1983.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[SJK+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed

15

randomness. In 2017 IEEE Symposium on Security and Privacy (SP), pages 444–460,
2017.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor, Advances
in Cryptology - EUROCRYPT ’96, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
volume 1070 of Lecture Notes in Computer Science, pages 190–199. Springer, 1996.

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie, and
Giulio Malavolta. Efficient CCA timed commitments in class groups. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, page 2663–2684, New York, NY, USA, 2021. Association for Computing
Machinery.

16

A A Note on PVSS and NIZKs

We now further outline the security properties of PVSS we rely on in our PVSS-based randomness
generation scheme. Recall that a PVSS scheme consists of a tuple of algorithms

(Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool),

where Setup = (Setupπ,SetupPKI). We first formally specify the IND-1 secrecy of the scheme:

Definition 2. We say that the PVSS is IND1-secret if for any PPT adversary A corrupting at
most t parties, A has negligible advantage in the following game played against a challenger C.

1. C runs the Setup phase of the PVSS and sends all public information to A. Moreover, it
creates secret and public keys for all uncorrupted parties, and sends the corresponding public
keys to A.

2. A creates secret keys for the corrupted parties and sends the corresponding public keys to C.

3. C chooses values x0 and x1 at random in the space of secrets. Furthermore it chooses b ←
{0, 1} uniformly at random. It runs the Distribution phase with x0 as secret. It sends A all
public information generated in that phase, together with xb.

4. A outputs a guess b′ ∈ {0, 1}.

The advantage of A is defined as |Pr[b = b′]− 1
2 |.

In addition to the above IND-1 secrecy, as well as correctness and verifiability, which have been
defined previously, we require our PVSS to be non-malleable.

A Note on Non-Malleability To obtain the non-malleability guarantee required by our con-
struction we informally require the compatibility with the (unbounded) computational zero-knowledge
property and the simulation-extractability property of the underlying proof system. In more detail,
consider the proof system (G,P, V) for a relation R, where

• σ ← G(1λ): given a security parameter λ, the key generation algorithm produces a crs σ.

• π ← V (σ, x, w): the prover algorithm takes as input a crs σ, a statement x, and a witness,
and produces a proof π.

• b← G(σ, x, π): the verifier algorithm takes as input a crs σ, a statement x produces a crs σ.

We consider non-interactive proofs, and require that in addition to the standard completeness and
soundness guarantees, the proof system has the following properties:

Definition 3 ((unbounded) computational zero-knowledge). A non-interactive proof system (G,P, V)
is zero-knowledge for a relation R, if there exists a PPT simulator consisting of a tuple of PPT
algorithms S = (S1, S2), such that for all PPT adversaries A holds that

Pr|[σ ← G(1λ) : AP (σ,·,·)(σ) = 1] − Pr[(σ, τ) ← S1(1
λ) : AS(σ,τ,·,·)(σ) = 1]| < negl(λ),

where S(σ, τ, x, w) = S2(σ, τ, x) if (x,w) ∈ R.

We call non-interactive zero-knowledge proof systems NIZKs. We additionally require the fol-
lowing:

17

Definition 4 (Simulation Extractability [Gro06]). We call a NIZK (G,P, V) simulation-extractable
if there exists a tuple of PPT algorithms (SE1, E), such that SE1 output a triple (σ, τ, ζ), which is
identical to the output of S1 when restricted to the first two parts, and for all PPT adversaries A
holds that

Pr

 (σ, τ, ζ)← SE1(1
λ)

(x, π)← AS2(σ,τ,·)(σ, ζ)
w ← E(σ, ζ, x, π)

:
(x, π) /∈ Q
(x,w) /∈ R

V (σ, x, π) = 1

 < negl(λ),

where Q is the list of A’s simulation queries and responses.

Additionally, we require that the proof system is “decoupled” from the encryption scheme used
in the PVSS, in the sense that the keys and the proof crs are generated independently of each other,
and the distribution algorithm can be split into two steps, first of which produces the ciphertexts
ŝi, and the second of which produces a NIZK proof given these ciphertexts.

Note that such PVSS scheme can be trivially built from a public-key encryption scheme and
a simulation-extractable NIZK as follows. First, the dealer splits its secret using a (t, n) Shamir
secret sharing, and encrypts each share using the public keys of the share receivers. Then, the dealer
generates a NIZK proof confirming that it knows shares underlying the ciphertexts, and these lie
on a polynomial of degree at most t. Anyone can verify the correctness of the dealer’s sharing
using the verifier for the NIZK proof. In the reconstruction phase, every share recipient decrypts
its share, and generates a proof that the decrypted value indeed corresponds to the ciphertext
published by the dealer. Given t+ 1 honest share recipients, the correctness of the scheme follows
from the correctness of the encryption scheme, completeness and soundness of the NIZK, and
correctness of Shamir’s secret sharing. Privacy follows from the security of the encryption scheme,
zero-knowledge of the NIZK, and security of Shamir’s secret sharing. Verifiability follows from the
simulation-extractability of the NIZK, correctness of the encryption, and and the fact that any t+1
shares fix the secret.

B PVSS-based YOSOWCC Randomness Generation: Security Proof

We prove the theorem via a hybrid argument. In the following, let λ denote the security parameter.
Hybrid H0 : This hybrid corresponds to the real world experiment as defined in Definition 1

with the bit b fixed to 0. Specifically, the challenger interacts with a PPT adversary A that corrupts
a set M of parties, where |M | = t, and interacts with a set H, |H| = 2t + 2, of honest parties to
obtain the coin output of the Protocol 1, and forwards this output to a PPT distinguisher D.

1. crs← Setupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← Dist(xi, {pk′j}j∈[2t+1], crs).

5. For P ′
i ∈ H:

18

(a) For each Pi such that

Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1,

check whether proof
(i)
D and every encryption ŝ

(i)
m distributed by Pi is not the same as

one distributed by any dealer Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← RDec(ŝ

(i)
j , sk′i, crs).

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j ,proof

(i)
j , crs)j∈[2t+1]).

7. out←
⊕

i∈I outi, where I denotes the index set such that for every i ∈ I holds outi ̸= ⊥.

8. b′ ← D(out).

Here, M denotes the set of parties controlled by A, and H is the set of honest parties.
Hybrid H1 : This hybrid is the same as before, except that instead of computing proofs

proofD and proofi honestly, the proofs are generated using a simulator.
The game becomes the following (changes from the previous hybrid in red):

1. (crs, τ)← SimSetupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(xi, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1, check whether proof

(i)
D and

every encryption ŝ
(i)
m distributed by Pi is not the same as one distributed by any dealer

Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← SimRDec(ŝ

(i)
j , sk′i, crs, τ).

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j ,proof

(i)
j , crs)j∈[2t+1]).

19

7. out←
⊕

i∈I outi, where I denotes the index set such that for every i ∈ I holds outi ̸= ⊥.

8. b′ ← D(out).

Lemma 1. Assuming that the proof system used in the PVSS scheme has the zero-knowledge
property, the outputs of experiments H0 and H1 are computationally indistinguishable.

Proof. This is a series of hybrids in which each honest proof is replaced one by one. Given a PPT
adversary A and a distinguisher D who is able to distinguish between the two hybrids given the
output of the challenger’s interaction with A, we construct an adversary B on the zero-knowledge
property of the underlying PVSS scheme as follows. B obtains the setup information for the
proof system used in PVSS from its challenger C, and forwards this information to the adversary
A. Then, B follows the game as specified by the previous hybrid (using the challenger to obtain
simulated proofs if required by the previous hybrid), except that when B must produce the proof
proofD (proofi), B uses the simulated proof which it obtains from C. B forwards the protocol
output of its interaction with A to D. If D outputs “Hybrid 0”, B outputs “Real prover”, otherwise
“Simulator”. As the only difference between the two hybrids is the way that proofD (proofi) is
being generated, B’s advantage is the same as D’s. Thus, if the advantage of the pair A and D is
non-negligible, B’s advantage is non-negligible as well.

Hybrid H2 : This hybrid is the same as before, except that the challenger uses the extractor
Ext to extract the corresponding secret from each proofD that verifies correctly. The challenger
aborts if the extraction fails.

1. (crs, τ, ζ)← SimExtSetupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(xi, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that

Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1,

check whether proof
(i)
D and every encryption ŝ

(i)
m distributed by Pi is not the same as

one distributed by any dealer Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi ∈M let w ← Ext(proof
(i)
D , crs, ζ). If

(crs, {ŝ(i)j }j∈[2t+1],proof
(i)
D , w) /∈ R,

then abort.

(c) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← SimRDec(ŝ

(i)
j , sk′i, crs, τ).

20

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j , {pk′i}i∈[2t+1],proof

(i)
j , crs)j∈[2t+1]).

7. out←
⊕

i∈I outi, where I denotes the index set such that for every i ∈ I holds outi ̸= ⊥.

8. b′ ← D(out).

Lemma 2. Assuming that the proof system used in the PVSS scheme has the simulation extractabil-
ity property, the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. This is a series of hybrids in which each adversarial proof which verifies correctly is handled
one by one. In the i-th such hybrid step, given a PPT adversary A and a distinguisher D who is
able to distinguish between the two hybrids given the output of the challenger’s interaction with
A, we construct an adversary B on the simulation extractability of the underlying PVSS scheme
as follows. B obtains the setup information for the proof system used in PVSS from its challenger
C, and forwards this information to the adversary A. Then, B follows the game as specified by the
previous hybrid, except that it uses C to obtain simulated proofs that B is required to generate
according to the protocol. When the adversary A publishes the i-th adversarial proof, B forwards
this proof to its challenger C, and uses the extractor on this proof. If the extraction succeeds, B
forwards the protocol output of its interaction with A to D, otherwise B aborts. Note that the two
hybrids are exactly the same when the proof extraction succeeds. Thus, we get that

Pr[(A,D) wins]

= Pr[(A,D) wins|Extr. succeeds] · Pr[Extr. succeeds]
+ Pr[(A,D) wins|Extr. fails] · Pr[Extr. fails]

=

(
1

2
+ negl(λ)

)
(1− Pr[Extr. fails])

+ Pr[(A,D) wins|Extr. fails] · Pr[Extr. fails]

≤ 1

2
+ negl(λ) + Pr[Extr. fails]

(
1− 1

2
− negl(λ)

)
.

Therefore, we have that

Pr[Extr. fails] ≥
Pr[A wins]− 1

2 − negl(λ)
1
2 − negl(λ)

.

Note that B wins whenever the extraction fails. Thus, if A wins with some non-negligible
advantage, B wins with non-negligible probability as well.

Hybrid H3 : This hybrid is the same as before, except that the protocol outcome computation
is modified as follows: For the dealers controlled by the adversary which pass the check of the PVSS
verification phase, instead of using the secrets obtained for these dealers during the reconstruction
phase, the challenger uses the secrets that were extracted using the extractor Ext.

1. (crs, τ, ζ)← SimSetupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

21

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(xi, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1, check whether proof

(i)
D and

every encryption ŝ
(i)
m distributed by Pi is not the same as one distributed by any dealer

Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi ∈M let wi ← Ext(proof
(i)
D , crs, τ, ζ). If

(crs, {ŝ(i)j }j∈[2t+1],proof
(i)
D , w) /∈ R,

then abort.

(c) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← SimRDec(ŝ

(i)
j , sk′i, crs, τ)

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j , {pk′i}i∈[2t+1],proof

(i)
j , crs)j∈[2t+1]).

7. out ←
⊕

i∈I∩H outi ⊕ x̃i∈Ĩ , where I denotes the index set such that for every i ∈ I holds

outi ̸= ⊥, Ĩ ⊆ M denotes the index set such that for each i ∈ Ĩ holds P ′
i is valid, and x̃i is

the secret corresponding to the witness wi.

8. b′ ← D(out).

Lemma 3. Assuming that the PVSS scheme is verifiable, the outputs of experiments H2 and H3

are computationally indistinguishable.

Proof. This is a series of hybrids, where we change the contribution of each malicious dealer one-
by-one. By the verifiability property of the PVSS scheme, if the verifications checks passes, then
the sharing phase determines a unique secret, and this secret will be reconstructed by the end of the
reconstruction phase. As the extractor Ext extracted a valid secret s∗, and the secret determined
by the sharing phase is unique and is guaranteed to be reconstructed by the end of the protocol,
s∗ is exactly the secret that the parties would have reconstructed for this dealer by the end of the
reconstruction phase.

Hybrid H4 : This hybrid is the same as before, except that the protocol outcome computation
is modified as follows: For the honest dealers, instead of using the secrets obtained for these dealers
during the reconstruction phase, the challenger uses the secrets that these dealers shared during
the sharing phase:

1. (crs, τ, ζ)← SimSetupπ(1
λ).

22

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(xi, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that

Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1,

check whether proof
(i)
D and every encryption ŝ

(i)
m distributed by Pi is not the same as

one distributed by any dealer Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi ∈M let wi ← Ext(proof
(i)
D , crs, τ, ζ). If

(crs, {ŝ(i)j }j∈[2t+1],proof
(i)
D , w) /∈ R,

then abort.

(c) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← SimRDec(ŝ

(i)
j , sk′i, crs, τ).

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j , {pk′i}i∈[2t+1],proof

(i)
j , crs)j∈[2t+1]).

7. out←
⊕

i∈H xi ⊕ x̃i∈Ĩ , where Ĩ ⊆M denotes the index set such that for each i ∈ Ĩ holds P ′
i

is valid, and x̃i is the secret corresponding to the witness wi.

8. b′ ← D(out).

Lemma 4. Assuming that the PVSS scheme is correct, the outputs of experiments H3 and H4 are
indistinguishable.

Proof. This is a series of hybrids, where we change the contribution of each honest dealer one-by-
one. By the correctness property of the PVSS scheme all verifications checks in the protocol pass
(for the secret distributed by this honest dealer) and the reconstructed secret is the same as the
honest dealer shared during the sharing phase.

Hybrid H5 : This hybrid is the same as before, except that the challenger stops its interaction
with A after the sharing phase.

1. (crs, τ, ζ)← SimSetupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

23

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(xi, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1, check whether proof

(i)
D and

every encryption ŝ
(i)
m distributed by Pi is not the same as one distributed by any dealer

Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi ∈M let wi ← Ext(proof
(i)
D , crs, τ, ζ). If

(crs, {ŝ(i)j }j∈[2t+1],proof
(i)
D , w) /∈ R,

then abort.

(c) For each valid Pi publish

(s
(i)
j ,proof

(i)
j)← SimRDec(ŝ

(i)
j , sk′i, crs, τ).

6. For each i ∈ [t+ 1] let

outi ← RPool((s
(i)
j , {pk′i}i∈[2t+1],proof

(i)
j , crs)j∈[2t+1]).

7. out ←
⊕

i∈I∩H xi ⊕ x̃i∈Ĩ , where Ĩ ⊆ M denotes the index set such that for each i ∈ Ĩ holds
P ′
i is valid, and x̃i is the secret corresponding to the witness wi.

8. b′ ← D(out).

Lemma 5. The outputs of experiments H4 and H5 are indistinguishable.

Proof. Note that in the previous hybrid the protocol output, which is exactly the input of the
distinguisher D, was already fixed and could be computed by the challenger by the end of the
sharing phase. Thus, nothing changed.

Hybrid H6 : This hybrid is the same as before, except that in the beginning of the sharing
phase each honest dealer Pi now chooses a value x′i uniformly at random. Each encryption of a
share sent by an honest dealer to a party Pj is now changed to an encryption of a corresponding
share of x′i.

1. (crs, τ, ζ)← SimSetupπ(1
λ).

2. For P ′
i ∈ H, let (pk′i, sk

′
i)← SetupPKI(1

λ).

3. For P ′
i ∈M , let pk′i ← A({pk′j}P ′

j∈H).

24

4. For Pi ∈ H:

(a) Sample xi ← {0, 1} uniformly at random.

(b) Sample x′i ← {0, 1} uniformly at random.

(c) Publish

({ŝ(i)j }j∈[2t+1],proof
(i)
D)← SimDist(x′i, {pk′j}j∈[2t+1], crs, τ).

5. For P ′
i ∈ H:

(a) For each Pi such that

Verif({ŝ(i)j }j∈[2t+1],proof
(i)
D , crs) = 1,

check whether proof
(i)
D and every encryption ŝ

(i)
m distributed by Pi is not the same as

one distributed by any dealer Pk, where k < i. Denote Pi as valid if so.

(b) For each valid Pi ∈M let wi ← Ext(proof
(i)
D , crs, τ, ζ). If

(crs, {ŝ(i)j }j∈[2t+1],proof
(i)
D , w) /∈ R,

then abort.

6. out ←
⊕

i∈I∩H xi ⊕ x̃i∈Ĩ , where I ′ ⊆ M denotes the index set such that for each i ∈ Ĩ holds
P ′
i is valid, and x̃i is the secret corresponding to the witness wi.

7. b′ ← D(out).

Lemma 6. Assuming that the PVSS scheme satisfies the IND1-secrecy property, the outputs of
experiments H6 and H7 are computationally indistinguishable.

Proof. This is a series of hybrids, where we change sets encryptions sent by each honest dealer Di

one-by-one. Given a PPT adversary A and a distinguisher D who is able to distinguish between
the two hybrids given the output of the challenger’s interaction with A, we construct an adversary
B on the IND1-secrecy property of the underlying PVSS scheme as follows. Upon obtaining the
PVSS setup information as well as the public keys of the honest parties from its challenger C, B
generates new PVSS setup, and forwards this setup information to the adversary A, along with the
public keys of the honest parties generated by C. Then, B forwards the public keys supplied by A
to C. B follows the game as specified by the previous hybrid, except when it needs to act as the
dealer Di. Then, upon obtaining the ciphertexts, proofD, and xb from its challenger, B generates
a new proof′D using the simulator for the setup generated by B, and forwards the ciphertexts
along with the new proof′D to the adversary A. Then, B continues to follow the game as specified
by the previous hybrid. When computing the output of the protocol, B uses xb as the contribution
from the honest dealer. B outputs exactly what D outputs. Note that if xb was x0, the game played
corresponds exactly to the game in the previous hybrid. Otherwise, the game played corresponds
exactly to the game specified in the new hybrid. Thus, if the advantage of the pair A and D is
non-negligible, B’s advantage is non-negligible as well.

Note that in the last hybrid the information about each honest secret xi the adversary receives
during the sharing phase of the protocol is completely independent of the honest secrets values xi.
This corresponds to the security game outlined in Definition 1 with the bit b fixed to 1.

25

C A Protocol in the Execution-Leaks Model via ElGamal Com-
mitments

Protocol 3 EL Randomness Generation from ElGamal Commitments
Sharing phase:
Each Di, i ∈ [t+ 1] does the following:

1. Di chooses random degree-t polynomials f1 and f2:

f1 = a0 + a1x+ · · ·+ atx
t and f2 = b0 + b1x+ · · ·+ btx

t.

2. Di chooses a pair of generators (g, h).

3. Di commits to f1 and f2 via broadcasting (g, h) along with

(c0, c1, · · · , ct) =
(
(ga0 , ha0 · gb0), (ga1 , ha1 · gb1), · · · , (gat , hat · gbt)

)
.

4. Di sends rj = f1(j) and sj = f2(j) to each Pj , j ∈ [2t+ 1], and sends polynomials f1 and f2
to D′

i.

Each Ri, i ∈ [2t+ 1] does the following:

1. For each dealer Dj , Ri checks whether the share (ri, si) it obtained from Dj , and the
commitments to f1 and f2 distributed by Dj satisfy

gri =
t∏

k=0

(gak)i
k

and hri · gsi =
t∏

k=0

(
hak · gbk

)ik

.

If not, Ri broadcasts Complain− Dj.

2. Ri sends all shares (ri, si) that passed verification to every R′
j .

Each D′
i, i ∈ [t+ 1] does the following:

1. D′
i broadcasts shares of parties who complained about Di. If any share broadcast by D′

i

does not pass the check above, D′
i is deemed corrupt.

Reconstruction phase:
Each R′

i, i ∈ [t+ 1] does the following:

1. If Ri complained about Dj , and D′
j was not deemed corrupt, R′

i sets the i-th corresponding
share to si and ri broadcast by D′

j .

2. R′
i outputs all shares (si, ri) it obtained for non-corrupt dealers.

Client C does the following:

1. For each D′
i who was not deemed corrupt, C uses any t+ 1 shares sj and rj that pass the

verification check against the corresponding commitment to reconstruct the value si = fi(0),
where fi is the polynomial f2 dealt by Di/D

′
i.

2. Let H denote the index set of dealers D′
i which were not deemed corrupt. C outputs⊕

i∈H si.

26

D Randomness Generation Performance per Role

We separately measure the performance of each role in our linearized VSS construction, which
serves as a subprotocol in our randomness generation. Because of this, we do not report the times
for the second role of the dealer D′ (as there are no complains, D′ is not required to do anything).
We also do not report the time for the second role of each receiver R′

i: These parties simply forward
messages they received, which requires only very little time. We report our findings in the Table 3.

(t, n = 5t+ 4) Dealer D Receiver Ri Client

(1, 9) 25 26 54
(2, 14) 38 29 88
(4, 24) 63 35 177
(8, 44) 114 46 423

Table 3: Performance of each role in our SL Randomness Generation, all running times in millisec-
onds.

As expected, the dealing of the secret (work done by the Dealer), and the secret reconstruction
(work done by the Client) are the two most expensive operations in our protocol.

We further report the communication sizes of each role below. Note that as Client is not
required to publish anything, we do not report any numbers for them. Further, note that in the
honest case, both Receiver roles publish exactly the same information.

(t, n = 5t+ 4) Dealer Receiver

(1, 9) 0.00129 0.00006
(2, 14) 0.0018 0.00006
(4, 24) 0.0028 0.00006
(8, 44) 0.0048 0.00006

Table 4: Performance of each role in our SL Randomness Generation, communication sizes in MB.

As expected, the Dealer is the one who posts the most, and receiver’s communication does not
increase with n (note that we consider only a single VSS). For the dealer, the communication size
increases linearly with t.

27

	Introduction
	Our Contributions
	Our Model and Security Goal
	Our Techniques

	PVSS-based YOSOWCC Randomness Generation
	Publicly Verifiable Secret Sharing
	Our PVSS-Based Randomness Generation Protocol

	Randomness Generation from ElGamal Commitments
	Implementation and Evaluation
	A Note on PVSS and NIZKs
	PVSS-based YOSOWCC Randomness Generation: Security Proof
	A Protocol in the Execution-Leaks Model via ElGamal Commitments
	Randomness Generation Performance per Role

