
Attacks Against the IND-CPAD Security of Exact FHE
Schemes

Jung Hee Cheon
Seoul National University &

CryptoLab Inc.
Seoul, Republic of Korea

jhcheon@snu.ac.kr

Hyeongmin Choe
Seoul National University
Seoul, Republic of Korea
sixtail528@snu.ac.kr

Alain Passelègue
CryptoLab Inc.
Lyon, France

alain.passelegue@cryptolab.co.kr

Damien Stehlé
CryptoLab Inc.
Lyon, France

damien.stehle@cryptolab.co.kr

Elias Suvanto
CryptoLab Inc. & University of

Luxembourg
Lyon, France & Luxembourg
elias.suvanto@cryptolab.co.kr

Abstract
A recent security model for fully homomorphic encryption
(FHE), called IND-CPAD security and introduced by Li and
Micciancio [Eurocrypt’21], strengthens IND-CPA security
by giving the attacker access to a decryption oracle for
ciphertexts for which it should know the underlying plain-
texts. This includes ciphertexts that it (honestly) encrypted
and those obtained from the latter by evaluating circuits
that it chose. Li and Micciancio singled out the CKKS FHE
scheme for approximate data [Asiacrypt’17] by giving an
IND-CPAD attack on it and claiming that IND-CPA security
and IND-CPAD security coincide for exact FHE schemes.
We correct the widespread belief according to which

IND-CPAD attacks are specific to approximate homomorphic
computations. Indeed, the equivalency formally proved by Li
and Micciancio assumes that the schemes have a negligible
probability of incorrect decryption. However, almost all com-
petitive implementations of exact FHE schemes give away
strong correctness by analyzing correctness heuristically and
allowing noticeable probabilities of incorrect decryption.
We exploit this imperfect correctness to mount efficient

non-adaptive indistinguishability and key-recovery attacks
against all major exact FHE schemes. We illustrate their
strength by implementing them for BFV using OpenFHE
and simulating an attack for the default parameter set of the
CGGI implementation of TFHE-rs (the attack experiment is
too expensive to be run on commodity desktops, because
of the cost of CGGI bootstrapping). Our attacks extend to
CKKS for discrete data, and threshold versions of the exact
FHE schemes, when the correctness is similarly loose.

Keywords: Fully homomorphic encryption; IND-CPAD se-
curity

1 Introduction
In a fully homomorphic encryption (FHE) scheme, arbitrary
circuits can be publicly applied to encrypted data. The most

direct application is to outsource computations confiden-
tially: a client encrypts data and sends the ciphertexts and
a circuit to the server; given the ciphertexts, the server
homomorphically evaluates the circuit and produces a new
ciphertext that it sends back to the client; the client then
decrypts to obtain the result of the computation. If the
FHE scheme is indistinguishable under chosen plaintext
attacks (IND-CPA), then the server cannot learn anything
about the client’s data. Application scenarios of FHE and its
extensions abound, and additional security properties may
be required [40].

IND-CPA security suffices for applications of FHE in
which the data that shall remain confidential is accessible
only to the entity that encrypts it and to the owner of the
decryption key. In this work, we are interested in a different
type of applications of FHEwhere the decrypted data is being
shared publicly. Let us consider three parties: the encryptor,
the evaluator, and the decryptor. A typical scenario is the
case in which an entity (the decryptor) is willing to allow for
some computation (e.g., statistics) over its data to a client (the
encryptor) via a public server performing the computation
(the evaluator). FHE allows to do so without requiring the
entity to reveal the raw data to the server nor the client.
The adversary is the encryptor. It is honest but curious, in
the sense that it encrypts by following the specifications of
the encryption procedure. It can then request the evaluator
to homomorphically evaluate circuits of its choice, and can
ask the decryptor to decrypt a ciphertext that is produced
honestly via encryption and/or evaluation. To address this
scenario, Li and Micciancio [37] extended IND-CPA security
to the notion of indistinguishability under chosen plaintext
attacks with a decryption oracle (IND-CPAD). In the security
game, the adversary is given access to the above-mentioned
oracles, and should not be able to learn information about
the decryptor’s data, up to what is revealed by the result of
the computation. It is formalized by indistinguishability of
chosen (challenge) plaintexts with the restriction that the

1

Cheon et al.

decryption oracle can be called only on ciphertexts whose
underlying plaintexts are independent of the challenge bit.

Note that, while IND-CPAD security might not be needed
for many applications involving a single decryptor, a very
similar security notion is necessary in the context of thresh-
old FHE [6, 10], which has numerous applications (e.g., it is
used in smart contracts [23]). In the threshold setting, the
secret key is shared between distinct parties (decryptors) and
decryption is done by involving multiple decryptors: each
of them partially decrypts a ciphertext using its share of the
key, and the plaintext is obtained by recombining all partial
decryptions. A decryptor revealing its partial decryption
is analogous to making a decryption query in the single
decryptor setting, thus IND-CPAD security can be seen as
the simplest form of threshold security (i.e., when a single
decryptor owns the actual secret key). In the rest of the paper,
we focus on IND-CPAD security and conclude by extending
our contributions to the threshold setting.
At first sight, one may think that the public sharing of

the decryption should not help the adversary in any way,
as decryption should provide information that it already
has. The definition from Li and Micciancio is motivated
by the CKKS FHE scheme [18], which performs arithmetic
computations on approximations to real/complex plaintexts.
In this scheme, the errors due to inaccuracies of the ap-
proximations are entangled with the errors introduced for
security, due to the use of the Learning With Errors problem
(LWE) [43]. Decryption then gives information on the latter
type of errors. In fact, simply encrypting a message and
requesting its decryption already gives a linear equation with
the secret key vector. By repeating this, the adversary obtains
an invertible system of linear equations and can recover
the secret key. This gives a key-recovery with a decryption
oracle (KRD) attack. KRD security, later defined in [38], is an
adaptation of IND-CPAD security that asks the attacker to
recover the secret key. It is a weaker notion of security than
IND-CPAD security, as a KRD attack gives an IND-CPAD

attack. Li and Micciancio showed that “exact” FHE schemes
are immune to IND-CPAD attacks, which leads them to
conclude that the IND-CPAD security shows a weakness
that would be specific to approximate FHE schemes. This
leads to the current state of affairs: it is widely believed that
only CKKS is susceptible to IND-CPAD attacks, while other
(“exact”) schemes are immunized.

This common belief is due to misleading terminology
in [37]. The word “exact” is used to oppose older, “standard”,
FHE schemes such as BGV [15], BFV [14, 27], DM [26], and
CGGI [19] that operate on exact data, to the “approximate”
CKKS FHE scheme, which supports real/complex data with
approximate homomorphic evaluation. It is assumed in [37]
that an exact scheme is correct. The definition of correctness
in [37, Section 2] for schemes operating on exact data states
that the decryption failure probability should be negligible

in the security parameter, i.e., asymptotically smaller than
any inverse polynomial. For standard schemes focusing
on IND-CPA security (even mere public-key encryption
algorithms), this translates in practice to values that are
sufficiently small to not alter functionality, such as 2−40
or 2−60. However, when the correctness can be adversarially
exploited, as in IND-CPAD security, the decryption error
probability should be set exponentially small in the security
parameter (e.g., 2−128). As a result, a “standard exact” scheme
would be correct for a notion of correctness that is only
related to functionality, as per the definition in [37, Section 2],
but not adversarially correct, as per what would be needed
to obtain IND-CPAD security from [37, Lemma 1]. Setting
the decryption failure probability to 2−40 instead of 2−128
helps performance, and hence a larger failure probability is
often preferred as it is (incorrectly) believed that this affects
functionality but not security, as “exact” schemes would be
immunized to IND-CPAD attacks.

Our contributions We exhibit non-adaptive IND-CPAD and
KRD attacks for BGV/BFV, DM/CGGI, disproving the com-
mon belief that IND-CPAD insecurity is specific to approxi-
mate schemes. For many available implementations of the
aforementioned exact schemes, our attacks are very efficient.
We report experimental data showing their practical strength,
considering the BFV implementation fromOpenFHE [7] and
the CGGI implementation from TFHE-rs [47]. We stress that
these are only examples, our attack being widely applicable.
We also propose IND-CPAD attacks against recent variants
of CKKS operating over discrete data [3, 20, 25]. Our attacks
extend to Threshold-FHE, and we discuss the impact of our
attack on the Noah’s Ark scheme from [24] as an illustration.
The main take-away of our work is that IND-CPAD

and KRD attacks are not about exact versus approximate
schemes, but about decryption correctness. In particular,
our attacks highlight that decryption correctness is not only
a matter of functionality: it is crucial for security as soon
as information about the result of the decryption is made
public. In particular, most of our attacks do not require the
full knowledge of the decryption result but only on partial
information about decryption. Notably, for our attack against
DM/CGGI and CKKS, it is sufficient to know a single bit of
information per ciphertext and permessage slot, respectively:
whether the decryptionwas correct or not. Real-life scenarios
in which such information could be available1 thus require
strong correctness guarantees.

What do the attacks exploit? Recall that the proof of [37,
Lemma 1], which states that IND-CPA security implies

1For example, consider a scenario involving homomorphic detection of a
rare disease over encrypted health data: a patient receiving a positive test
might alert about potential false positive, which could be the result of a
failed decryption. Having this information is sufficient for a non-adaptive
attacker to mount our key-recovery attacks against DM/CGGI or CKKS.

2

Attacks Against the IND-CPAD Security of Exact FHE Schemes

IND-CPAD security for exact schemes, relies on the correct-
ness of the FHE scheme, defined in [37, Section 2]. There
are two significant caveats when translating this lemma
into practice. First, for all efficient implementations of FHE
schemes, correctness is heuristic. Statements on correctness
even involve probabilities in contexts where there is no
randomness, heuristically modeling some errors occurring
in homomorphic circuit evaluation as probabilistic. Second,
the decryption failure probability may be sufficiently small
for honest users but not for adversaries collecting decryption
failures: concrete decryption failure “probabilities” can be
of the order of 2−40 [47] or even higher (for instance,
Concrete-python, a TFHE compiler for TFHE-rs, has de-
cryption failure probability of the order of 2−17 [46]). Some
of our attacks exploit the heuristic aspects of correctness
analyses, others exploit the overly high decryption failure
probabilities.

A key-recovery attack on BFV/BGV. The BFV/BGV schemes
are based on leveled schemes that support homomorphic
evaluation of arithmetic circuits with bounded multiplicative
depth, and on bootstrapping procedures that turn them
in fully homomorphic schemes. In this work, we consider
their leveled variants. As they rely on the RLWE [39, 44]
problem, their ciphertexts are associated to error (or noise)
components. Since the error increases at each homomorphic
operation and may interfere with the plaintext when it
becomes sufficiently large, bounding the magnitudes of the
errors is important to guarantee correctness. Different noise
management strategies are available in the literature to
ensure the correctness of these schemes. Absolute bounds
based on the triangle inequality provide rigorous correctness
guarantees but lead to large parameters. To avoid this
performance penalty, most current implementations rely
on heuristic noise estimates. Some assume that manipulated
ciphertexts have noise terms that are Gaussian and inde-
pendent. These heuristic noise estimates are much closer to
what happens in typical executions, but correctness is only
heuristic. A recent work [28] showed that those heuristic
noise estimates can be exploited to obtain a KRD attack
against CKKS, by using correlated input ciphertexts. We
show that such noise bounds also make BFV/BGV insecure
by adapting the KRD attack to the CKKS context. The attack
adds an encryption of 0 sufficiently many times with itself so
that the noise moves to the plaintext position and can be read
by requesting a decryption. We successfully mounted the
attack against a BFV implementation based on such error
analysis, using OpenFHE. The attack actually breaks the
default BFV implementation, but for another reason (see
related works, below).

A key-recovery attack on DM/CGGI. In the DM/CGGI FHE
schemes, evaluating a circuit gate is performed jointly with
a bootstrapping operation. We describe our attack for CGGI,
which relies on binary secret key vectors, but note that it

can be adapted to DM. Bootstrapping is a procedure that
reduces the noise of a given ciphertext, allowing for further
homomorphic manipulations. These schemes make use of
LWE [43] formats for regular ciphertexts, and GLWE [15, 35]
formats inside the so-called BlindRotate procedure. In the
BlindRotate procedure, GLWE ciphertexts encrypt powers
of 𝑋 whose exponents correspond to the pre-BlindRotate
ciphertext. As a result, the pre-BlindRotate ciphertexts are
defined modulo 2𝑁 , where 𝑁 is the GLWE ring degree. For
efficiency purposes 𝑁 is taken as small as possible, implying
the need to switch the modulus 𝑞 of regular ciphertexts
to 2𝑁 beforeBlindRotate. This step is calledModSwitch. Our
attack focuses on this step, because it introduces significant
noise and hence significantly contributes to the bootstrap-
ping error probabilities, and because the rounding noise ẽ
is publicly known. When a decryption failure occurs, we
obtain that ⟨ẽ, s⟩ +𝑒 ≥ 𝑡 , where s is the secret key, the term 𝑒

can be modeled as an independent integer Gaussian sample,
and 𝑡 is a correctness threshold. As we have LWE samples
for s, this looks like an instance of LWE with hints, which
has been the focus of recent works on lattice-cryptography
cryptanalysis [21, 22]. Running the security estimate script
corresponding to [22] already gives interesting attack costs,
but we take an even more direct approach. We observe
that conditioned on a decryption failure, the distribution
of 𝑒𝑖 is (heuristically) uniform in [−1/2, 1/2] when 𝑠𝑖 = 0,
and very different when 𝑠𝑖 = 1. We then amplify the
distributional discrepancy by considering many decryption
failures, allowing us to recover s.
To assess the strength of our attack, we considered

the TFHE-rs library [47]. For its default parameters, the
bootstrapping failure probability is of the order of 2−40.
We then expect the adversary to observe a bootstrapping
failure in large enough homomorphic computations such as
those processing more than 128 GB ≃ 240 bits of underlying
plaintexts. Due to the limited performance of TFHE-rs,
computing 240 bootstraps takes around 300 years on a single-
thread CPU. To mount our efficient key recovery algorithm,
we provide two experiments producing hints that circumvent
the cost of bootstrapping: In the first one, we modify the
TFHE-rs parameters so that it still has 128 bits of IND-CPA
security but with a bootstrapping failure probability of
around 1%. In this case, we are able to compute sufficiently
many bootstraps to mount our attack in practice using only
the TFHE-rs API. In the second experiment, we keep the
default TFHE-rs parameters, but simulate bootstrapping
errors rather than running bootstrapping itself. In this
experiment, we recover all coefficients of the secret key s
with the observation of only 256 bootstrapping failures.

A key-recovery attack on CKKS over discrete data. Recent
works introduce techniques for discrete computations using
CKKS instead of BFV/BGV or DM/CGGI by discretizing the
CKKS message space of CKKS [3, 20, 25]. Another recent

3

Cheon et al.

work [31] uses the CKKS bootstrapping algorithm as a
subroutine to accelerate the expensive BGV/BFV bootstrap-
ping [31]. However, with some small probability, CKKS
bootstrapping fails, in that the plaintexts below the input and
output ciphertexts are very far away. As a results, the exact
schemes mentioned just above may have significant failure
probability due to the CKKS bootstrapping. In the literature,
the failure probability of CKKS bootstrapping can vary from
2−16 [11] to 2−138 [2, 12], but a failure probability of the
order of 2−35 is often preferred to make bootstrappings more
efficient. This is also the case in the discrete computations
using CKKS, and thus our KRD attack is applicable. We
note that CKKS bootstrapping failures also occur in the
CKKS approximate FHE scheme even with noise flooding
countermeasures [38], if the bootstrapping failure probability
is not sufficiently small. This is notably the case of [7], which
claims IND-CPAD security, but to which our attack applies.
In CKKS, the post-multiplication rescaling consumes

ciphertext modulus and, once it gets too small, no more
homomorphic computations are available. The CKKS boot-
strapping replenishes the ciphertext modulus and enables
further computations. The scheme relies on RLWE formats
for ciphertexts, like BGV/BFV: a ciphertext is a pair of
elements in R ≔ Z[𝑋]/(𝑋𝑁 + 1) modulo a ciphertext
modulus, for a power-of-two integer 𝑁 . When enlarging
the modulus from a small 𝑞 to a larger 𝑄 , a ciphertext
(a, b = as +m + e) ∈ R2

𝑞 can be regarded over R: it satisfies
b = as + m + e + 𝑞I, for some I ∈ R, where s is a secret
key, e is a small error, and m is a message. If 𝑄 ≫ 𝑞, we
can interpret the ciphertext over R𝑄 instead of R: it then
decrypts to m + e + 𝑞I. The CKKS bootstrapping applies the
modulo 𝑞 operation homomorphically on the ciphertexts, by
evaluating a polynomial approximating the modulo function
in the range [−(𝐾 − 1)𝑞, (𝐾 − 1)𝑞] for some integer 𝐾 . Our
attack focuses on this approximation range: the polynomial
evaluation introduces a large error if the input lies outside the
range.When a post-bootstrapping decryption fails, we obtain
an inequality ∥b− as− e∥∞ ≥ 𝐾𝑞. By properly tweaking the
attack, we can obtain the coordinate in which the overflow
occur, along with its sign. This leads to a secret key recovery
attack, similar to the one for DM/CGGI.
We use the Lattigo library [2] to test our attack. For this

purpose, we generate custom parameters with 128 bits of
IND-CPA security, having high failure probability.

Extension to Threshold-FHE. We complete our work by
extending the IND-CPAD attacks to threshold FHE schemes.
To a threshold-FHE scheme, we associate the (non-threshold)
FHE scheme with the same key generation, encryption and
evaluation algorithms, and with decryption defined as the
composition of the partial decryptions and recombination.
If there is an IND-CPAD attack on the FHE scheme, it is
possible to derive an attack on the threshold-FHE scheme.

Codes of our experiments. The codes are publicly available at
the following git repository:
https://github.com/hmchoe0528/INDCPAD_HE_ThresFHE

Vulnerability disclosure. We initiated a discussion involving
all libraries we are aware of. Some libraries have updated
their guidelines in light of our attacks (see, e.g., recent
updates of [7, Section 2.6] and https://github.com/zama-
ai/tfhe-rs).

Concurrent works. Recently, Checri et al. [16] proposed an
alternative attack against exact FHE schemes. Their attack
starts similarly to our KRD attack against BFV (Algorithm 4,
itself adapted from [28]). Their adversary queries iterative
additions of the ciphertext with itself and its decryption
until the obtained ciphertext fails to decrypt. It then begins
a dichotomy search to find the smallest integer 𝛼 such that
the ciphertext 𝛼 · 𝑐𝑡 (obtained with homomorphic additions)
fails to decrypt. It uses the obtained information about the
secret LWE error to recover the secret key by Gaussian
elimination. We note that this adversary against DM/CGGI
can be thwarted by requiring bootstrapping is performed
after every addition. In contrast, we present a KRD adversary
relying on a weakness of the bootstrapping algorithm. We
further note that the strategy from [16] requires adaptive
queries while all our attacks are non-adaptive.
Following [16, 28] and a prior version of this work,

Alexandry et al. [5] proposed an alternative security notion,
termed application-aware IND-CPAD security. This notion
restricts the capability of the adversary in the IND-CPAD

game, by requiring it to only encrypt plaintexts and eval-
uate circuits from restricted sets of inputs and functions
corresponding to a target application (we note that such a
restriction was already considered in [34, Section 6.2]). The
formal definition requires that parameters are set so that
decryption correctness holds for all inputs and functions in
those sets. Further, practical guidelines to instantiate this
requirement are provided. Our BFV attack is claimed to by-
pass the normalOpenFHE parameter generationmechanism,
as it would set scheme parameters for a given application
and use the scheme instantiation for another application
(see [5, Section 6.2]). This is incorrect: our attack has a single
circuit, that we use for both parameter setting and evaluation.
However, it should be noted that our attack is analyzed
in a setup where the scheme parameters are set assuming
that ciphertext noise terms are statistically independent.
This aggressive assumption is not made in the OpenFHE
parameter generation mechanism. This being said, our attack
actually succeeds against OpenFHE even if we follow all
guidelines to set parameters. This is not due to a heuristic
aspect of the error analysis but to an incorrect worst-case
error analysis for additions in OpenFHE. See Section 3.

Paper organization. After reminding preliminary defini-
tions in Section 2, we describe our attacks based on incorrect

4

https://github.com/hmchoe0528/INDCPAD_HE_ThresFHE
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

Attacks Against the IND-CPAD Security of Exact FHE Schemes

noise estimates for BFV/BGV in Section 3. Our attacks
exploiting large bootstrapping failure probability (against
DM/CGGI and discrete CKKS) are detailed in Section 4. In
addition, we describe two additional results in the appendix.
First, we provide a generic IND-CPAD attack against exact
schemes with non-zero decryption failure, whose advantage
is essentially the decryption error probability multiplied by
the number of decryption queries. This attack is explained
in Appendix A. Second, we discuss the implications of our
attacks to threshold FHE schemes in Appendix B.

2 Preliminaries
Notation.Vectors and polynomials are denoted in bold fonts.
The 𝑖-th component of a vector or the 𝑖-th coefficient of a
polynomial is denoted with subscript 𝑖 . Given a measurable
set 𝑋 , we letU(𝑋) denote the uniform distribution over 𝑋 .
For any real 𝜎 > 0 and a vector 𝜇 ∈ R𝑛 , define

the Gaussian function on R𝑛 centered at 𝜇 with standard
deviation parameter 𝜎 as 𝜌𝜇,𝜎 = exp(−∥x − 𝜇∥2/2𝜎2) for all
x ∈ R𝑛 . For the discrete Gaussian distribution over Z𝑛 , with
center parameter 𝜇 and standard deviation parameter 𝜎 , we
denote as 𝐷𝜇,𝜎 which is defined by

∀x ∈ Z𝑛 :
𝜌𝜇,𝜎 (x)∑

x∈Z𝑛 𝜌𝜇,𝜎 (x)
.

We omit the subscript 𝜇 when it is 0.
For the normal distribution over R, centered at 𝜇 and

with standard deviation 𝜎 , we use the notation N(𝜇, 𝜎2). Its
probability density is (1/

√
2𝜋𝜎)𝜌𝜇,𝜎 (𝑥) (for 𝑥 ∈ R). We let

erfc(𝑥) denote the complementary error function, defined
as erfc(𝑥) = 1 − (2/

√
𝜋) ·

∫ 𝑥

0 exp(−𝑡2)d𝑡 . It then holds that,
for 𝑒 ∼ N(0, 𝜎2) and 𝑡 > 0:

Pr[𝑒 > 𝑡] = 1
2
erfc

(
𝑡
√
2𝜎

)
.

We let 𝑖 = 𝑎..𝑏 denote an iterative integer index 𝑖 that
ranges from 𝑎 to 𝑏, and let [𝑎] denote the set {0, 1, · · · , 𝑎−1}
for any integer 𝑎. We let Avg(a) denote an average of the
coefficients of a vector a.

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme is an encryption
scheme that enables the evaluation of circuits on the data
underlying ciphertexts.

Definition 2.1 (Fully homomorphic encryption). A fully
homomorphic encryption scheme (FHE) is a tuple of efficient
algorithms (KeyGen, Enc,Dec, Eval) with the following spec-
ifications:

• KeyGen outputs a secret key sk and a public key pk;
• Enc takes as inputs a public key pk and a plaintext𝑚 ∈
{0, 1}, and outputs a ciphertext ct;

• Eval takes as inputs a public key pk, a binary circuit𝐶
and a tuple of ciphertexts ct1, . . . , ct𝑘 where 𝑘 is the
number of input wires of 𝐶 , and outputs a cipher-
text ct;
• Dec takes as inputs a secret key sk and a ciphertext ct,
and outputs a plaintext𝑚.

For 𝜀 ≥ 0 and a circuit size bound 𝐵, the scheme is
said (𝜀, 𝐵)-correct if for any pair (sk, pk) output by KeyGen,
for any binary circuit 𝐶 of size at most 𝐵, for any plain-
texts 𝑚1, . . . ,𝑚𝑘 ∈ {0, 1} where 𝑘 is the number of input
wires of 𝐶 , the following holds with probability ≥ 1 − 𝜀
over ct𝑖 := Enc(pk,𝑚𝑖) (for 𝑖 ≤ 𝑘):

Decsk
(
Evalpk (𝐶, (ct1, . . . , ct𝑘))

)
= 𝐶 (𝑚1, . . . ,𝑚𝑘) .

An FHE scheme is perfectly correct if it is 𝜀-correct for 𝜀 = 0
and any 𝐵.

Typical FHE definitions also include a ciphertext compact-
ness condition, to avoid vacuous constructions. We omit it
as this is irrelevant to our work. We note that the plaintext
space of concrete FHEs can be more complex than {0, 1},
such as rings Z/𝑘Z for some integer 𝑘 or Cartesian products
of such rings, or approximations to R𝑑 or C𝑑 . In the latter
case, the FHE is said approximate. When it enables exact
computations on discrete data, it is said exact.
Concerning correctness, we note that most concrete

schemes are not 𝜀-correct as per the above definition. All
known FHE constructions have a notion of noise, which
goes throughout homomorphic manipulations. The noise
must remain sufficiently small to enable correct decryption.
To obtain better parameters, concrete schemes often make
heuristic assumptions on noise growth, notably relying
on probabilistic arguments without any randomness. To
decrease the noise, the known constructions rely on an op-
eration called bootstrapping, which has a (heuristic) failure
probability. For very long computations, bootstrapping may
be required many times, so that 𝜀-correctness cannot be
ensured, for any 𝜀 < 1.

The default notion of security for an FHE is indistinguisha-
bility against chosen plaintext attacks (IND-CPA).

Definition 2.2 (IND-CPA security game). For an FHE
scheme Π = (KeyGen, Enc,Dec, Eval), we define the advan-
tage AdvIND-CPA (A) of an adversaryA against the IND-CPA
security of Π as:������2 · Pr

𝑏 = 𝑏′

������ (pk, sk) ← KeyGen;
𝑏 ←U ({0, 1}) ;

𝑏′ ← A(pk, Enc(𝑏))

 − 1
������ .

In the context of FHE, IND-CPA security is typically inher-
ited from the presumed hardness of LWE [43], RLWE [39, 44],
GLWE [15, 35] and circular security assumptions.

5

Cheon et al.

2.2 IND-CPAD Security

IND-CPAD security, introduced in [37], augments IND-CPA
security by allowing the adversary to access decryptions of
ciphertexts obtained by encrypting and evaluating messages
of its choice. This is defined formally by allowing the
adversary to access three types of oracles, to encrypt,
evaluate and decrypt. Decryption queries can be made only
on ciphertexts produced by the encrypt/evaluate oracle. This
is simply to ensure that these ciphertexts are well-formed.
The database 𝑆 appearing in the oracles is used to store all
ciphertexts formed by using the encryption and evaluation
oracles as well as the underlying pair of plaintexts (𝑚0,𝑚1),
where𝑚𝑏 is the encrypted plaintext (possibly the result of
some prior evaluations) for𝑏 being the challenge bit. Notably,
the database is used to ensure that a decryption query made
on a ciphertext does not lead to a trivial attack by checking
that the underlying plaintext is independent of the challenge
bit 𝑏.

Algorithm 1 Encryption oracle OEnc (𝑚0,𝑚1; pk, 𝑏, 𝑖)
1: ct← Encpk (𝑚𝑏)
2: 𝑆 [𝑖] := (𝑚0,𝑚1, ct)
3: 𝑖 := 𝑖 + 1
4: return ct, 𝑖

Algorithm 2 Evaluation oracle Oeval (𝐶, 𝑖1, . . . , 𝑖𝑘 ;𝑏, 𝑆)
1: ct← Evalpk (𝐶, 𝑆 [𝑖1] .ct, . . . , 𝑆 [𝑖𝑘] .ct)
2: 𝑟0 := 𝐶 (𝑆 [𝑖1] .𝑚0, . . . , 𝑆 [𝑖𝑘] .𝑚0)
3: 𝑟1 := 𝐶 (𝑆 [𝑖1] .𝑚1, . . . , 𝑆 [𝑖𝑘] .𝑚1)
4: 𝑆 [𝑖] := (𝑟0, 𝑟1, ct)
5: 𝑖 := 𝑖 + 1
6: return ct, 𝑖

Algorithm 3 Decryption oracle ODec (𝑗 ; sk, 𝑆)
1: if 𝑆 [𝑗] .𝑚0 = 𝑆 [𝑗] .𝑚1 then
2: 𝑚 ← Decsk (𝑆 [𝑗] .ct)
3: return𝑚
4: else
5: return ⊥
6: end if

Definition 2.3 (IND-CPAD security). Let Π = (KeyGen,
Enc,Dec, Eval) be an FHE scheme. For an adversary A that
is given access to the (stateful) oracles OEnc, OEval and ODec
defined above, we define the advantage AdvINDCPAD (A) of
A against the IND-CPAD security of Π as:������2 · Pr

𝑏 = 𝑏′

������ (pk, sk) ← KeyGen;
𝑏 ←U ({0, 1}) ;

𝑏′ ← AOEnc,OEval,ODec (pk)

 − 1
������ .

2.3 KRD Security

KRD security is a relaxation of IND-CPAD security in-
troduced in [38]. Given the same types of oracles, the
adversary’s task is to recover the secret key, as opposed
to distinguishing between two (families of) ciphertexts.

Definition 2.4 (KRD security). LetΠ = (KeyGen, Enc,Dec, Eval)
be an FHE scheme. For an adversary A that is given access
to the (stateful) oracles OEnc, OEval and ODec with 𝑏 fixed to 0,
we define the success probability SuccKRD (A) against the
KRD security of Π as:����Pr [sk = sk′

���� (pk, sk) ← KeyGen;𝑏 = 0;
sk′ ← AOEnc,OEval,ODec (pk, 𝑏)

] ���� .
Then, an FHE scheme is said KRD secure if the success
probability of any PPT adversary A is negligible on 𝜆.

If a scheme is IND-CPAD secure, then it is KRD secure:
indeed, any adversary A against KRD security of Π leads
to an adversary B against IND-CPAD security of Π with
the same advantage and the same runtime. As a result,
an attack against KRD security is stronger than an attack
against IND-CPAD security.

3 KRD Attacks on B(F/G)V-like FHE
Schemes

In this section, we present our KRD attack against the BGV
and BFV (F)HE schemes [14, 15, 27] and their variants, when
they rely on (heuristically) average-case noise analysis. We
note that our attack also holds for the leveled version of
those schemes (i.e., without bootstrapping), with no level
consumption. For the sake of simplicity, we focus on the
BFV scheme, and its implementation in OpenFHE [7]. We
stress that our attack also applies to other implementations
of BGV and BFV that rely on average-case noise analyses.
For instance, HElib uses a worst-case noise analysis after
encryption, thus our attack is not applicable. However, many
recent instantiations of BGV and BFV [7, 9, 42] rely on
average-case noise analyses to improve performance. These
are vulnerable to our attack.

3.1 Noise Analysis for BFV

We start with the following notations for the BFV FHE
scheme.
• 𝑁 > 0: the ring degree;
• R: the base ring, of the form Z[𝑋]/Φ(𝑋) for some
cyclotomic polynomial of degree 𝑁 ;
• 𝑞 > 0: the ciphertext modulus;
• R𝑞 : the quotient ring R/𝑞R;
• 𝑡 > 0: the plaintext modulus;
• Δ = ⌊𝑞/𝑡⌉: the scale factor.

The RLWE key s ∈ {−1, 0, 1}𝑁 ⊂ R is chosen ternary,
possibly sparse (i.e., with many 0’s).

6

Attacks Against the IND-CPAD Security of Exact FHE Schemes

Let us start with a RLWE-format ciphertext ct = (b, a) ∈
R2
𝑞 satisfying

b + as = Δm + e mod 𝑞 ,

for some plaintext m ∈ R𝑡 and some error e ∈ R. For
a fresh ciphertext, the coefficients of e are independently
sampled from 𝐷𝜎 , a discrete Gaussian distribution over Z
centered in 0 with standard deviation 𝜎 . For two ciphertexts,
we define their homomorphic addition as their component-
wise addition in R2

𝑞 , i.e., for ct0 = (b0, a0) and ct1 = (b1, a1)
with underlying errors 𝑒0, 𝑒1 ← 𝐷𝜎 , their homomorphic
addition is

(b0 + b1 mod 𝑞, a0 + a1 mod 𝑞) ,
resulting in an underlying error term that is equal to e0 + e1.
This error has coefficients that have a variance of ≈ 2𝜎2
if the errors e0 and e1 are sampled independently and
identically from 𝐷𝜎 . However, if the two ciphertexts are
correlated, the variance can be smaller, or larger. In the
worst case, we have ct0 = ct1 and the error term 2e0 has
a variance of 4𝜎2. The most efficient instantiations only
consider the first option, as this leads to improved parameters
and performance. However, it may result in underestimating
the error probability.

The evaluation (or the decryption of the evaluated result)
is allowed if the variance is sufficiently small compared to
the threshold Δ/2. More precisely, the probability of evalu-
ation failure is bounded from above by erfc((Δ/2)/(

√
2𝜎)),

where 𝜎 is the standard deviation of the error in the
ciphertext under scope.

3.2 Key-Recovery Attack

As discussed above, the average-case noise analysis does not
capture the different types of variance increases, depending
on whether the ciphertexts are statistically independent or
correlated. Our attack takes advantages of this gap, which
can be exploited by the attacker, and the ciphertext can be
decrypted to a message other than what it should have been,
in the view of the challenger.

Algorithm 4 KRD attack on BFV.
1: Query ct0 ← Encpk (0)
2: for 0 ≤ 𝑖 < 𝑘 B

⌊
log2 Δ

⌉
do

3: Query ct𝑖+1 ← Evalpk (Add, ct𝑖 , ct𝑖)
4: end for
5: Query e← Decsk (ct𝑘)
6: Solve b − e = as over R𝑞
7: return s

The attack is given in Algorithm 4. Note that the calls
to Enc, Eval and Dec correspond to oracle queries made to
the challenger, as per Definition 2.4. The attack is pictorially
represented in Figure 1. For the sake of simplicity, we focus
on the power-of-2 integer for scale factor Δ.

ct0 =

ct𝑖+1 =

ct𝑘 =

m = 0 e

e

e

𝑡 Δ

.

.

.

.

.

.

Figure 1. Position of the error in b + as mod 𝑞 during the
iterations of the KRD attack.

Our attack proceeds as follows. We first query an encryp-
tion of 0 and obtain a ciphertext ct0, whose error e is sampled
from𝐷𝜎 . We then query evaluations of additions, recursively
to itself. After 𝑘 =

⌈
log2 Δ

⌉
iterations, we query a decryption

oracle to the ciphertext. From the decryption result, we
recover the initial error e, then recover the secret key by
solving a linear equation.
During the iterative additions, the standard deviation of

the resulting error is doubled for each iteration. After 𝑘
iterations, the error has a standard deviation 2𝑘𝜎 ≈ Δ𝜎 .
However, the average-case analysis estimates that the error
standard deviation is 2𝑘/2𝜎 ≈

√
Δ𝜎 . Thus, the decryption fail-

ure probability will be estimated to ≈ erfc((Δ/2)/(
√
2Δ𝜎))

based on the average-case analysis. Unless this is deemed too
large, the decryption oracle is allowed. The attacker receives
the decryption result⌊

2𝑘e mod 𝑞
Δ

⌉
= e ,

unless the infinite norm of e is larger than 𝑡 . If the error e
has infinite norm larger than 𝑡 , we may repeat the process
with 𝑘 − 1, 𝑘 − 2, etc iterations instead of 𝑘 , to learn e, chunk
by chunk. The attacker can then recover the secret key by
solving a linear equation as = b− e over R𝑞 with unknown s.
If it needs a few more equations to find the solution (note
that R𝑞 is not a field), it may repeat the process several times.

For a general Δ, we can learn e from its scaled and rounded
values, repeating the process.

3.3 Experimental Results

For our experiments, we consider a typical BFV parameter
set generated by the OpenFHE library. We have 𝑁 = 4096,
𝑞 = 260, 𝑡 = 216 + 1, and Δ = 244 − 𝜀 for some small 𝜀. We use
uniform ternary secret. The standard deviation of the initial
error is ≈ 27.41. We start from a fresh encryption of 0 that
we recursively double 𝑘 = 44 times. The decryption failure
probability estimate based on the average-case approach is
≈ erfc(213.5) ≈ 2−227.5 , which is extremely low. Thus the
decryption is allowed and the decryption result is⌊

244e
244 − 𝜀

⌉
= e +

⌊ 𝜀e
244 − 𝜀

⌉
= e ,

7

Cheon et al.

unless the infinite norm of e is larger than (244−𝜀)/(2𝜀) ≈ 216.
This is very unlikely to happen, since each coefficient has a
standard deviation of ≈ 27.

With the settings above, we perfectly recovered the error
after decryption. Now, we recover the secret key by solving
the linear equation as = b − e over R𝑞 in several seconds, as
in [37]. We first compute the inverse of a over the ring, then
multipy it to b − e, which will recover the full secret key.

3.4 On the Default BFV Implementation of OpenFHE

The OpenFHE implementation of BFV does not rely on the
agressive error analysis we considered so far, based on the
heuristic assumption that the noise terms of ciphertexts to be
added would be statistically independent. It instead uses the
triangular inequality to bound the error growth for additions.
In particular, as mentioned in [7, Section 2.6.1] and recalled
in [5, Section 5.2], OpenFHE provides an option to set the
maximum allowed number of additions per multiplication
level, at parameter generation.2 The corresponding variable
is SetEvalAddCount, and the error due to additions is
bounded from above as the input error bound, multiplied by
SetEvalAddCount.
The above approach misses the fact that the result of

an addition can itself be an input to a subsequent addition,
leading to a larger noise amplification. Indeed, if we repeat 𝑘
times the addition of a number with itself, only 𝑘 additions
are performed, but the noise grows as 2𝑘 . This is exactly
what Algorithm 4 does. As a result, it also provides an attack
against the default OpenFHE implementation of BFV, even
when used as intended. Instead of exploiting a heuristic
aspect of the noise analysis, it exploits an incorrect worst-
case noise analysis.

4 KRD Attacks from Too Large
Bootstrapping Failure Probability

In this section, we present our KRD attack against the DM
and CGGI FHE schemes [19, 26], also respectively known
as FHEW and TFHE, and discrete FHE schemes based on
CKKS [3, 20, 25, 31]. Interestingly, our attack also applies
to the CKKS scheme over approximate numbers with noise
flooding countermeasures [38], when the bootstrapping
failure probability is not sufficiently low. The KRD attacker
can observe decryption failures and obtain information
from the failing events. Our KRD attack takes advantage
of the errors introduced during bootstrappings, that give
approximate inequality hints on the secret key when the
bootstrapping fails.

In the following, we first recall the approximate inequality
hints, and introduce a simple yet powerful method to utilize
these hints to recover the secret key. We then introduce how
2See for instance, ‘ParameterGenerationBFVRNS::ParamsGenBFVRNS’
function of [7] which generates parameters based on a noise analysis
regarding the number of allowed additions per level.

the inequality hints can be obtained from the bootstrappings
of DM/CGGI and CKKS. Finally, we illustrate our attacks
with experiments.

4.1 Inequality Hints

We first define the approximate inequality hint on a secret
vector in Definition 4.1, which is a type of approximate
hint [21].

Definition 4.1 (Approximate Inequality Hint). For 𝜎 > 0
and a threshold 𝑡 > 0, a (𝜎, 𝑡)-approximate-inequality hint
on the secret vector z ∈ {0,±1}𝑁 is a vector c ∈ R𝑁 such
that

⟨c, z⟩ + 𝑒 > 𝑡 ,
where 𝑒 ∼ N(0, 𝜎2).

In our attack scenario, the hint vectors are originated from
a uniform distribution on an interval centered in 0. For the
sake of simplicity, let us assume that c ∼ U([−1/2, 1/2]𝑁)
and z ∈ {0, 1}𝑁 . It is not surprising that if c is a hint vector
on a secret vector z, then the hints and the secret are aligned:
the larger the threshold 𝑡 , the more aligned they are. This
leads us to the following statement, on the distribution of a
vector c, conditioned on whether it is a hint on the secret
vector z or not.

Lemma 4.2. Let 𝜎 > 0, 𝑡 > 0 and a secret vector z ∈ {0, 1}𝑁 .
Let c ∼ U([−1/2, 1/2]𝑁) and 𝑒 ∼ N(0, 𝜎2). Let 𝑖 ∈ [𝑁]
and 𝑌𝑖 = ⟨c, z⟩ − 𝑐𝑖𝑧𝑖 . Then the conditional probability density
function 𝑓 of 𝑐𝑖 conditioned on the event ⟨c, z⟩ + 𝑒 > 𝑡 satisfies,
for all 𝑥𝑖 ∈ [−1/2, 1/2]:

𝑓 (𝑥𝑖) =
{

Pr[𝑥𝑖+𝑌𝑖+𝑒>𝑡]
Pr[𝑐𝑖+𝑌𝑖+𝑒>𝑡] if 𝑧𝑖 = 1,
1 if 𝑧𝑖 = 0.

Proof. We consider two cases. If 𝑧𝑖 = 0, the failure event is
independent of the random variable 𝑐𝑖 and its conditional
distribution remains the uniform distribution on [−1/2, 1/2].
If 𝑧𝑖 = 1, Bayes’ law gives

𝑓 (𝑥𝑖) =
Pr[⟨c, z⟩ + 𝑒 > 𝑡 | 𝑐𝑖 = 𝑥𝑖]

Pr[⟨c, z⟩ + 𝑒 > 𝑡] .

We use the equality 𝑐𝑖𝑧𝑖 + 𝑌𝑖 = ⟨c, z⟩ to conclude. □

Lemma 4.2 implies that the distribution of the coefficient 𝑐𝑖
is very different depending on the value 𝑧𝑖 ∈ {0, 1}. Indeed,
one is uniform while the other has an increasing density
function (if 𝑡 > 0.5). Since 𝑌𝑖 is a sum of (hw(z) −1) uniform
variables (when 𝑧𝑖 = 1), if the Hamming weight of z is
sufficiently large, 𝑌𝑖 + 𝑒 approximately follows N(0, 𝜎2 +
(hw(z) − 1)/12). Thus the density function for 𝑧𝑖 = 1 is
similar to a scaled and reversed erfc function at > 𝑡 − 𝑥𝑖 .

In our attacks, the source of the hints is the bootstrapping
failures, and in practice, 𝑡 is chosen so that the bootstrapping
failure probability is not too high. Thus, we are indeed
somewhat far from the zero in the erfc function, in a range

8

Attacks Against the IND-CPAD Security of Exact FHE Schemes

(a) CGGI (b) CKKS

Figure 2. Distributions of coefficients 𝑐𝑖 of hints obtained
from (a) CGGI bootstrapping for 𝑧𝑖 ∈ {0, 1}, and (b) CKKS
bootstrapping for 𝑧𝑖 ∈ {0,±1}. Custom parameters with 128-
bit IND-CPA security are used (see Section 4.4 for details).
The 𝑥 axis shows the range of 𝑐𝑖 and the 𝑦 axis shows the
number of 𝑐𝑖 ’s in each interval of length 1/8.

where it varies significantly. Figure 2 displays the distribution
of 𝑐𝑖 of the approximate inequality hints obtained from
the custom parameters for CGGI and CKKS implemented
in TFHE-rs and Lattigo, respectively. We note that we can
similarly exploit the distributions of the 𝑐𝑖 ’s conditioned on
correct bootstrappings, but then the two distributions are
extremely close.

Distinguishing the two distributions. Our attacks exploit
the different tendencies of the probability density functions.
For instance, the average of the coefficients 𝑐𝑖 over the
different hint vectors c will give sufficient information about
𝑧𝑖 . The average corresponding to 𝑧𝑖 = 0 is 0, whereas one
corresponding to 𝑧𝑖 = 1 is a positive value. We can categorize
the indices based on the average, depending on whether it
is larger than a threshold, or not. It is worth noting that
the slope of the hints distribution in relation to 𝑧𝑖 = 1 has
an impact on both the quality and cost of the attack: the
steeper the slope, the easier it is to distinguish between the
two distributions.

More concretely, assuming the independence of the failing
ciphertexts, the average c̃ = Avg(c) ∈ R𝑁 over the 𝑓 hints
is a sum of 𝑓 i.i.d. random variables. If 𝑧𝑖 = 0, 𝑐𝑖 is a scaled
sum of 𝑓 uniform variables, and it follows the Irwin-Hall
distribution. It can be approximated to Gaussian distribution
centered at 0 with variance 𝜎20 = 1/(12𝑓), using the central
limit theorem when 𝑓 is sufficiently large. If 𝑧𝑖 = 1, 𝑐𝑖
is a scaled sum of 𝑓 random variables, each following an
identical distribution of variance𝜎2trunc ≪ 𝜎2+(hw(z)−1)/12.
Using the central limit theorem, we can approximate the
distribution of 𝑐𝑖 to Gaussian distribution centered at some
𝛼 > 0 with variance 𝜎21 = 𝜎2trunc/𝑓 . Therefore, when using
a threshold of 𝛼/2, the probability of correctly categorizing
𝑐𝑖 will be a linear combination of two erfc values, for inputs
(𝛼/2)/(

√
2𝜎0) and (𝛼/2)/(

√
2𝜎1). To correctly categorize all

𝑁 ≲ 216 coefficients, it is sufficient to have the inputs to erfc
functions larger than 3. This leads us the following claim.

Theorem4.3 (informal). Given (𝜎, 𝑡)-approximate-inequality
hints 𝑐0, · · · , 𝑐 𝑓 −1 ∈ R𝑁 on a secret vector z ∈ {0, 1}𝑁 , we can
recover the secret vector with probability 𝑂 (1), if 𝑁 ≤ 216
and 𝑓 satisfies 𝑓 ≥ max(3/(2𝛼2), (3𝜎trunc/𝛼)2), where 𝜎trunc
is the standard deviation of the Irwin-Hall distribution for
(hw(z) − 1) sums ofU([−1/2, 1/2]), truncated at 𝑡 .

In practice, we can approximate the value 𝛼/2 by averag-
ing c̃ over 𝑧𝑖 ∈ {0, 1}. In the case when the Hamming weight
of the secret is given, we can directly choose the largest
hw(z) values from c̃.
We note that, if 𝑡 gets larger, the failure probability

decreases, however, the standard deviation 𝜎trunc of the
truncated distribution gets smaller and 𝛼 becomes larger.
Thus, fewer hints are required to recover the full secret, even
if the failure probability is lower than before. For the ternary
secret, we can simply extend all the results from above.

4.2 KRD Attacks on DM/CGGI

For the sake of simplicity, we only focus on the CGGI scheme
and the TFHE-rs library [47], but stress that our attack is
general and not specific to our choice of variant for DM/CGGI
and our choice of target implementation. Our KRD attack
against DM/CGGI FHE schemes takes advantage of the
large rounding error in the ModSwitch step during gate
bootstrapping.

In the following, we first recall the CGGI (gate) bootstrap-
ping, then introduce our KRD attack.

TFHE (Gate) Bootstrapping. We use the following nota-
tions for the CGGI scheme parameters.
• 𝑛 > 0: the LWE dimension;
• 𝑞 > 0: the initial modulus of ciphertexts;
• 𝑁 : the ring degree, set as a power-of-2 integer;
• 𝑝 > 0: the plaintext modulus;
• Δ = 𝑞/𝑝: the scale factor.

The LWE secret key s = (𝑠1, . . . , 𝑠𝑛) ∈ {0, 1}𝑛 is chosen
binary.

TFHE bootstrapping. Let us start with an LWE ciphertext
ct = (𝑏, 𝑎1, . . . , 𝑎𝑛) ∈ Z𝑛+1𝑞 satisfying

−𝑏 +
𝑛∑︁
𝑖=1

𝑎𝑖𝑠𝑖 = Δ𝑚 + 𝑒in mod 𝑞 ,

for some 𝑚 ∈ {0, . . . , 𝑝 − 1} and some integer 𝑒in whose
absolute value is small relative to Δ. The bootstrapping
procedure consists of 4 steps, namely, ModSwitch, Blin-
dRotate, SampleExtract, and KeySwitch. An illustration of
bootstrapping is provided in Figure 3.

Note that the error (relatively to the modulus) is decreased
by BlindRotate, and is unchanged or increased at all other
steps. We will focus on ModSwitch because 1) the error
incurred by this step is quite large and 2) information
concerning this error is publicly available.

9

Cheon et al.

LWEs
mod 𝑞

Var: 𝜎2in

LWEs
mod 2𝑁

Var: 𝜎2in + 𝜎
2
ms

GLWEs′
mod 𝑞

Var: 𝜎2br

LWEs′
mod 𝑞

Var: 𝜎2br

ModSwitch

BlindRotate

SampleExtract

KeySwitch

Figure 3. High-level overview of the TFHE bootstrapping
loop. In each box, we give the ciphertext format, the secret
key, the current ciphertext modulus, and the (heuristic)
normalized variance of the noise after decryption with the
secret key (the variance is normalized by the square of
the modulus). The initial variance 𝜎2in can vary depending
on the input: a fresh ciphertext (𝜎2fresh), a bootstrapped
ciphertext (𝜎2br + 𝜎

2
ks), or a linear combination of them (for

gate bootstrapping).

ModSwitch maps a ciphertext ct = (𝑏, 𝑎1, · · · , 𝑎𝑛) ∈ Z𝑛+1𝑞

with modulus 𝑞 to a ciphertext c̃t = (𝑏, 𝑎1, · · · , 𝑎𝑛) ∈ Z𝑛+12𝑁
with modulus 2𝑁 with 𝑞 ≫ 2𝑁 , by rounding:

𝑏 =

⌊
2𝑁 · 𝑏
𝑞

⌉
, 𝑎𝑖 =

⌊
2𝑁 · 𝑎𝑖
𝑞

⌉
,∀𝑖 ≤ 𝑛 .

For each coefficient, this rounding creates a rounding error 𝑒𝑖
which is a deterministic function of the publicly available
ciphertext:

𝑒0 =

⌊
2𝑁 · 𝑏
𝑞

⌉
− 2𝑁 · 𝑏

𝑞
, 𝑒𝑖 =

⌊
2𝑁 · 𝑎𝑖
𝑞

⌉
− 2𝑁 · 𝑎𝑖

𝑞
,

for 𝑖 ≤ 𝑛. We have

−𝑏 +
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑠𝑖 =
2𝑁
𝑞
(Δ𝑚 + 𝑒in) + ⟨ẽ, (−1, s)⟩ mod 2𝑁 . (4.1)

We have a pre-ModSwitch error 𝑒in with standard devia-
tion 𝜎in and a new error 𝑒ms = ⟨ẽ, (−1, s)⟩ with standard
deviation 𝜎ms. Assuming that ẽ ∼ 𝑈

(
(−1/2, 1/2]𝑛+1

)
and

that s has as many 1’s as 0’s, the normalized standard
deviation of 𝑒ms is

𝜎ms =

√︂
1
12

(
1 + 𝑛

2

)
· 1
2𝑁

.

Wenote that this bound assumes that theHammingweight of
the secret key vector is𝑛/2, which is the most likely situation
but may not be the case for specific secret keys.
We emphasize that the rounding error ẽ is publicly

computable. We also argue that it is typically large rela-
tively to the new modulus 2𝑁 : it is (heuristically) uniform
in (−1/2, 1/2]; and 𝑁 is set as small as possible as it has a
strong impact on the bootstrapping performance.

Correctness of bootstrapping. Assume we start with a
ciphertext modulo 𝑞 that decrypts to a plaintext 𝑚 under
key s. We say that bootstrapping fails if after ModSwitch,
BlindRotate, SampleExtract, and KeySwitch, the new cipher-
text does not decrypt to𝑚 anymore. Recall that decryption
fails (i.e., the decryption result is incorrect) if the error in the
ciphertext exceeds a threshold. As the noise keeps increasing
(except with BlindRotate), the moment when it is most likely
to provide a decryption error is after ModSwitch. Several
errors contribute: those introduced during BlindRotate,
those introduced by KeySwitch, and those introduced by
ModSwitch. In practice, the largest one is typically the one
introduced by ModSwitch.
Before ModSwitch, the ciphertext is associated to an

error 𝑒in of (heuristic, normalized) standard deviation 𝜎in
satisfying 𝜎2in = 𝜎2br + 𝜎

2
ks, where the term 𝜎ks corresponds to

the error introduced by KeySwitch.ModSwitch introduces
an extra error term 𝑒ms, whose normalized standard deviation
is 𝜎ms. Note that we heuristically assume all errors from
all steps to be statistically independent. The total relative
error afterModSwitch is given as (𝑒in/𝑞 + 𝑒ms)/(2𝑁), which
has variance 𝜎2bts = 𝜎2br + 𝜎

2
ks + 𝜎

2
ms. Assuming that the

error behaves as a continuous Gaussian, the probability of
incorrect bootstrapping is computed as:

erfc
(

1/16
√
2 · 𝜎bts

)
.

Here 1/16 is the relative threshold for the correct decryption:
when the error is above this value, the plaintext obtained by
decrypting after bootstrapping may differ from the initial
plaintext𝑚.

Correctness of gate bootstrapping. Gate bootstrapping
combines the evaluation of a binary gate and bootstrapping.
This is achieved by adding two ciphertexts and a constant
before, or after KeySwitch, and running bootstrapping as
above. When to add the two ciphertexts depends on the
parameter choice. We consider the case of adding the
ciphertexts after KeySwitch, as this corresponds to the
default situation in the TFHE-rs library, but we stress that
the attack works for both cases (with success probabilities
depending on the parameter choices).
The addition of the two ciphertexts corresponds to an

addition of the underlying plaintexts over the integers, which
suffices for gate evaluation as any symmetric binary gate
is a function of the integer sum of the input bits. The
ciphertext ct then goes through ModSwitch, BlindRotate,
etc. If ct0 = ct1, we have 𝜎2in = 4(𝜎2br + 𝜎

2
ks) and thus

𝜎2gbts = 4𝜎2br + 4𝜎
2
ks + 𝜎

2
ms after ModSwitch. Assuming that

the error behaves as a continuous Gaussian, the probability
of incorrect bootstrapping is erfc(1/(16

√
2 · 𝜎gbts)).

Inequality hints from CGGI gate bootstrapping fail-
ures. In the KRD security model, the attacker has accesses to

10

Attacks Against the IND-CPAD Security of Exact FHE Schemes

a decryption oracle (limited to properly created ciphertexts).
Decryption takes place for LWE ciphertexts under modulo 𝑞
under key s, i.e., after KeySwitch and before ModSwitch.
Decryption after (gate) bootstrapping can fail for several
reasons:
• post-ModSwitch error 𝑒in + 𝑒ms is too large;
• pre-decryption (post-KeySwitch) error 𝑒br + 𝑒ks is too
large.

As the purpose of bootstrapping is reducing the error,
the parameters are set to have lower (relative) standard
deviation for the second types of error than the first type.
This means, the relative standard deviation of the error
reaches the maximum after ModSwitch, and if the (gate)
bootstrapping fails, it is extremely likely that the error after
ModSwitchwas above the correct decryption threshold. This
induces a (two-sided) approximate inequality hint ẽ for the
secret vector (−1, s), where ẽ/2𝑁 ∼ U((−1/2, 1/2]𝑛+1), and
error 𝑒in/𝑞 with standard deviation of 𝜎in.
To obtain a one-sided hint, we focus on the gate boot-

strapping for AND gates. Concretely in TFHE-rs, the AND
gate is implemented by first computing ct = ct0 + ct1 −
(𝑞/8, 0, · · · , 0) then applying the bootstrapping on ct, for
the input ciphertexts ct0 and ct1. Noting that, 𝑞/8 and 3𝑞/8
correspond to true whereas −3𝑞/8 and −𝑞/8 correspond to
false, the gate bootstrapping failure with input ciphertexts
both encrypting true implies a one-sided hint. Concretely
from Equation 4.1, we have

⟨ẽ, (−1, s)⟩ + 2𝑁
𝑞
𝑒in >

2𝑁
16

.

Algorithm 5 KRD attack on TFHE
1: 𝑓 := 0
2: for 0 ≤ 𝑘 < 𝛾 do
3: Query ct← Enc(true)
4: Query ct′ ← Eval(AND, ct, ct)
5: Query ct′′ ← Eval(AND, ct′, ct′)
6: Query𝑚 ← Decsk (ct′′)
7: if 𝑚 = false then
8: Compute ẽ ← GenModSwitchError(ct′), then

let c𝑓 = ẽ/2𝑁
9: 𝑓 := 𝑓 + 1
10: end if
11: end for
12: Compute 𝑐𝑖 = Avg𝑗∈[𝑓] (𝑐 𝑗,𝑖) for 𝑖 ∈ [𝑛 + 1]

13: Compute 𝑠est,𝑖 =
{
1 if 𝑐𝑖 > 𝛼/2,
0 otherwise, for 𝑖 ∈ [𝑛 + 1]

14: return sest

KRD attack against CGGI. Our KRD attack is given in
Algorithm 5, which proceeds as follow. We first query an
encryption of true, then we query an AND gate twice on the
resulting ciphertext itself. Then we ask for a decryption.

When failure occurs, an approximate inequality hint is
obtained. We collect such hints, then compute the average
per each index. Finally, we categorize the indices key based
on the average, and output sest, a guess for the secret key s.
The calls to Enc, Eval andDec formally correspond to oracles
to the challenger, as per Definition 2.4. The parameter 𝛾
quantifies the number of attempts to create decryption
failures, and the parameter𝛼/2 is a threshold for categorizing.
Note GenModSwitchError denote the procedure generating
the rounding error ẽ from ct′, which do not require the secret
key.
The first bootstrapping increases the variance of the

error of the ciphertext, which will be input to the AND
gate bootstrapping. This accelerates collecting the gate
bootstrapping failures. The average of the hints includes
information about the distributions of 𝑒 , and thus of s. The
attack recovers the full secret key if 𝑓 is sufficiently large,
thanks to Theorem 4.3. The threshold, in practice, can be
chosen the average of the averages, i.e., 𝛼/2 = Avg(ẽ).

4.3 KRD Attacks on CKKS over discrete data

Recentworks introduce techniques for discrete computations
using CKKS instead of BGV/BFV by discretizing the message
space [3, 20, 25]. Another recent work proposes to use
the CKKS bootstrapping as a subroutine to accelerate the
expensive BGV/BFV bootstrappings [31]. In all of the above
cases, to achieve the IND-CPAD/KRD security, CKKS should
be correct within a given threshold, with overwhelming
probability. However, the CKKS bootstrapping is not per-
fectly correct, and if it fails, the adversary obtains inequality
hints about the secret key. This type of bootstrapping failure
also occurs in the CKKS variant introducing noise flooding
countermeasures [38] if one does not set the bootstrapping
failure probability to be low enough [7].
In the following, we first recall the CKKS bootstrapping,

then introduce our KRD attack strategy.

CKKS bootstrapping. We start with the following nota-
tions for the CKKS FHE scheme.

• 𝑁 > 0: the ring degree, power-of-two integer;
• R: the base ring, of the form Z[𝑋]/(𝑋𝑁 + 1);
• 𝑄 ≫ 𝑞 > 0: the ciphertext moduli before (𝑞) and after
(𝑄)ModRaise;
• R𝑞 : the quotient ring R/𝑞R, the plaintext space;
• Slots encoding encodes a message into a plaintext

polynomial via the inverse complex canonical embed-
ding.
• Coefficients encoding encodes a message in the coef-
ficients of a plaintext polynomial.

The purpose of CKKS bootstrapping is to raise the FHE
ciphertext modulus from 𝑞 to 𝑄 ≫ 𝑞 to enable further HE

11

Cheon et al.

computations, since the modulus is consumed after each
homomorphic multiplication. It proceeds as follows.3

• SlotsToCoeffs: moves the messages from slots to
coefficients, resulting in a ciphertext (a, b) ∈ R2

𝑞

satisfying b = as + m + e + 𝑞I for some I ∈ R and
error e, where m is the message,
• ModRaise: raises the ciphertext modulus from 𝑞 to 𝑄 ,

resulting in (a′, b′) ∈ R2
𝑄
, where (a′, b′) = (a, b) mod

𝑞, which satisfies b = as +m + e + 𝑞I mod 𝑄 ,
• CoeffsToSlots: moves the messages back to slots,
having m + e′ + 𝑞I in slots, where e′ is a new error,
• EvalMod: homomorphically evaluates a polynomial,
approximating the modulo 𝑞 operation over an inter-
val [(−𝐾 + 1)𝑞, (𝐾 − 1)𝑞].

The last EvalMod step is to remove the unnecessary 𝑞I
from the message, by (approximately) applying the modulo
𝑞 operation. As it is a periodic function, we set a high-
probability interval for the message m + e′ + 𝑞I, then
approximate the function to a polynomial. The state-of-the
art implementation uses Chebyshev approximations on the
sine or cosine functions with a scaled interval, then applies
double angle formula [11, 12, 29].

Inequality hints from CKKS bootstrapping failures.
The multiplicative depth of EvalMod depends on the polyno-
mial degree, thus, narrowing the approximation interval
is preferred for bootstrapping performance. However, it
raises the failing probability of EvalMod, which follows the
Irwin-Hall distribution [36]. With probability Pr[|I|∞ > 𝐾],
at least one slot contains a message that lies outside the
approximation interval, which has a huge absolute value
after the polynomial evaluation. If we decrypt the ciphertext
after bootstrapping, the failed slot contains a message much
larger than it should be. Based on the index 𝑖 of the failed
slot, we get information of s as

| (b − as)𝑖 | = |𝑚𝑖 + 𝑞𝐼𝑖 + 𝑒′𝑖 | > 𝐾 ,

where 𝑖 is the index corresponding to the failed slot, which is
a two-sided approximate inequality hint. The two-sided hints
are already useful since the density function of the coefficient
distributions with respect to 𝑠𝑖 = ±1 are symmetric and
convex, we can recover the indices of non-zero secret key
coefficients.

However, since the polynomial approximating the modulo
function is not symmetric with respect to the y-axis, by
looking at the (sign of the) decrypted result, we can easily
classify the failures and collect one-sided approximate
inequality hints, each satisfying

⟨c, z⟩ +
𝑒′𝑖
𝑞

> 𝐾 ,

3There is the other option for the orders of the subprocedures, starting from
ModRaise and ending with SlotsToCoefficients, but this makes only little
difference for our attack.

where c = (𝑏𝑖 , 𝑎𝑖 , 𝑎𝑖−1, · · · , 𝑎0,−𝑎𝑁−1, · · · ,−𝑎𝑖+1)/𝑞 and z =

(1, s). We also note that 𝑞 ≫ |𝑚𝑖 |∞ ≫ |𝑒′𝑖 |∞, thus the error
𝑒′𝑖 /𝑞 can mostly be ignored.

KRD attack against CKKS. For the sake of simplicity,
we focus on the RNS-CKKS FHE scheme and its Lattigo
implementation [2] using sparse secret encapsulation [12].
In this scenario, the key switch operation is applied before
and afterModRaise, to change the dense secret key (with a
large Hamming weight) into a sparse secret key (with smaller
Hamming weight), and vice versa. We note, our attack works
for all of the CKKS variants and implementations that may
or may not use the sparse secret encapsulation technique.
Our KRD attack is given in Algorithm 6, which proceeds

as follows. We first query an encryption of 0 and obtain
a ciphertext ct, then query a bootstrapping on the it. We
then query a decryption oracle to the ciphertext. From the
decryption result, we find the slots that havemessages whose
absolute value is larger than a threshold𝛿 , which is in general,
sufficiently larger than usual errors. From the sign of the
message, we can categorize the side of the failure. We collect
the ciphertext ct, then we can evaluate SlotsToCoeffs and the
sparse key encapsulation using the public key. By repeating
this, we can collect a one-sided approximate inequality hint.
The distribution of the coefficients in hints reveals the secret
key if 𝑓 is sufficiently large, thanks to Theorem 4.3.

Algorithm 6 KRD attack on CKKS bootstrapping
1: 𝑓 := 0
2: for 0 ≤ 𝑘 < 𝛾 do
3: Query ct← Enc(0)
4: Query ct′ ← Bootstrap(ct)
5: Query𝑚 ← Decsk (ct′)
6: if 𝑚𝑖 > 𝛿 for some 0 ≤ 𝑖 ≤ 𝑁 − 1 then
7: Compute ct′′ = (a, b) ← SparseEncap (StC(ct))
8: Compute c𝑓 :=
(𝑎𝑖 , 𝑎𝑖−1, · · · , 𝑎0,−𝑎𝑁−1, · · · ,−𝑎𝑖+1)/𝑞

9: 𝑓 := 𝑓 + 1
10: end if
11: end for
12: Compute 𝑐𝑖 = Avg({c𝑗,𝑖 | c𝑗,𝑖 > 0, 𝑗 ∈ [𝑓]}) for 𝑖 ∈ [𝑁]

13: Compute 𝑠est,𝑖 =

1 if 𝑐𝑖 > 𝛼/2,
−1 if 𝑐𝑖 < −𝛼/2,
0 otherwise,

for 𝑖 ∈ [𝑁]

14: return sest

In practice, the threshold 𝛿 can be easily chosen, since the
decryption results are quite discretized and the polynomial
approximating the modulo operation is public. For CKKS,
the Hamming weight ℎ of the secret key is public, so the
categorization regarding the threshold 𝛼 can be replaced by
choosing the indices having the top ℎ largest absolute values
for 𝑐𝑖 .

12

Attacks Against the IND-CPAD Security of Exact FHE Schemes

4.4 Experimental Results

Our KRD attacks require at least a few ciphertexts that fails
to decrypt correctly. Since even the fastest bootstrapping
reports 10ms of running time in a moderate single-CPU, it
requires more than a year to observe one failure for the de-
fault parameter sets.4 These figures can be accelerated using
GPUs or hardware accelerators [30, 45]. As the bootstrapping
failure probability depends on the parameter sets, we first
give the experimental results of the attacks targeting custom
parameters with higher failure probabilities. We also provide
experiments using the default parameters with simulated
ciphertexts following the appropriate distribution. Then we
give estimated results for other existing parameters.

DM/CGGI results. In OpenFHE [7], the decryption failure
probabilities depicted in [41] range from 2−33 for the STD256
parameter set to 2−101 for the STD192Q parameter set.5 In
TFHE-rs [47], the decryption failure probability upper-bound
is 2−40 in the default parameters. Since gate bootstrapping
takes a relatively long time, of around 10ms on a single
threaded CPU, performing 240 gate bootstrapping may take
more than hundreds of years. With the FPGA implementa-
tion from [8], this may still take around a year.
We highlight that this computation time is on the chal-

lenger side and that it is high only because of the limited
performance of DM/CGGI. In fact, our KRD attack is very
efficient: it just averages the rounding errors corresponding
to decryption failures.
Since current implementations of gate bootstrapping are

too inefficient to experiment the attack on used parameter
sets, we present two types of experimental results.
• Attack for custom parameters: We generate a custom
parameter set with 128-bit IND-CPA security, but
with higher failing probability. We collect the failing
ciphertexts, then recover the secret key in several
seconds using only the public APIs.
• Attack using simulated ciphertexts for default pa-
rameters: We simulate the ciphertexts conditioned
on failures for the default parameters of TFHE-rs,
using rejection sampling technique, then apply our
key recovery attack. The simulation is based on the
analysis given in Section 4.2. We reveal the secret key
with less failing ciphertexts, as desired.

In Figure 4a, we give the accuracy of the secret key
estimation using our KRD attack, for the two parameters.
The accuracy is given as the number of correctly estimated
coefficients, say, |s − sest |1. Using our custom parameter set
(see Appendix C for details), we run the KRD experiment

4e.g., for CGGI,DEFAULT_PARAMETERS of TFHE-rs takes 10ms×240 ≈ 350
years, and for CKKS, a default parameter of OpenFHE takes 40s × 222 ≈ 5
years.
5One may generate custom parameters having lower failing probability
with additional options, but we focus on their default settings.

(Algorithm 5) with 𝛾 = 1, 000, 000 samples. The attack
recovered 596 out of 600 secret key coefficients from 𝑓 =

8, 434 failing ciphertexts. We also run our attack on the
TFHE-rs default parameters set DEFAULT_PARAMETERS,
using the simulated ciphertext samples, and fully recover the
secret key with less than 256 decryption failures. Note that
he distribution of the rounding error coefficients of failed
ciphertexts are already given in Figure 2a. We note that the
two parameters enjoys the same level of IND-CPA security,
estimated by the lattice estimator [4].6

CKKS results. In OpenFHE [7], the bootstrapping failure
probability is set to lower than 2−22 in the default parameters,
which can be induced from the Irwin-Hall distribution with
approximation range parameter 𝐾 = 28 and the Hamming
weight ℎ = 128 for the secret key. In Lattigo [2], the
bootstrapping failure probability is set to lower than 2−138 in
the default parameters, which is indeed 128-bit IND-CPAD

secure. However, prior works using Lattigo suggest the
parameters with ≈ 2−16 [11] or ≈ 2−35 [12], which are not
128-bit IND-CPAD secure. We note that each bootstrapping
takes 30-50 seconds, thus collecting several failing slots will
take at least a year. We highlight, again, that our KRD attack
takes only several tens of seconds to recover the secret key
from the collected failing ciphertexts.
To run an experiment, we generate a custom parameter

set with 128-bit IND-CPA security, but with higher failing
probability. We collect the failing ciphertexts, then recover
the secret key within several tens of seconds.
In Figure 4b, we give the accuracy of the secret key

estimation for the custom parameters, which shows the
number of correctly estimated +1’s and−1’s. We run theKRD

experiment (Algorithm 6) with 𝛾 = 100 samples. The attack
recovered 31 out of 32 secret key coefficients. We note that,
the attack outputs the 32 coefficients that has the highest
averages among the 𝑁 coefficients, however, we can also
output several more coefficients in addition. In this case, with
87 failing slots, we can recover the full secret key from the
top 42 coefficients, and with 138 failing slots, we can recover
from the top 37 coefficients. Note that the distribution of the
coefficients corresponds to the failed slots is already given
in Figure 2b.

Other libraries and parameters. We summarize the pa-
rameter sets of DM/CGGI and CKKS implementations in the
literature in Table 1. The third column shows the average
slope for the distribution of the hints from the failing
ciphertexts, for 𝑠𝑖 = 1 (see Theorem 4.2 and Figure 2). The
average of the slopes are given based on experiments for the
custom parameters. For the rest of the parameters, the slopes
are computed based on the parameters, or estimated based on
the failing probabilities. The last column of the table shows
the cost for collecting failing ciphertexts, in the number of
6Git commit 564470e07d816f788d9c85acf72a1789c7787574

13

Cheon et al.

0 2 4 6 8 10 12
0

100

200

300

log2(𝑓)

Δ
(s

es
t,
s)

(a) CGGI

0 2 4 6
0

10

20

30

log2(𝑓)

(b) CKKS

Figure 4. Accuracy of the KRD attack estimating the secret
key from given number of failing ciphertexts (for CGGI) or
slots (for CKKS). The cyan and magenta curves respectively
correspond to the custom parameters (for both CGGI and
CKKS) and the CGGI TFHE-rs DEFAULT_PARAMETERS. The
𝑥 axis is the number of given failing ciphertexts (slots) in
logarithm two, and the 𝑦 axis is the accuracy of the secret
key estimation, showing the number of incorrectly estimated
coefficients.

decryption queries. The numbers are estimated based on the
failing probabilities and the average slopes. If the slope is
enough steep, the secret key can be recovered with few, e.g.,
32 ciphertexts. We note that recovering the secret key from
the failing ciphertexts requires a few tens of seconds. For
typical parameters of DM/CGGI, we denote their names.7
For CKKS, most of the libraries use the same setting for their
parameter sets, except for OpenFHE. It has two options for
secret key distribution, sparse ternary with a fixed Hamming
weight of 192 or uniform ternary. Asterisk (*) indicates the
prior works using CKKS over discrete data [20, 25, 31]. All
of them follows the libraries that use not sufficiently low
failing probabilities. Pound (#) indicates the works claiming
IND-CPAD security.
5 Conclusion
We exhibited IND-CPAD and KRD attacks on homomorphic
encryption schemes for exact data, when their correctness
does not hold with probability sufficiently close to 1. These
attacks also extend to threshold variants of those schemes.
This work hence disproves the common belief that exact
schemes would be immune to IND-CPAD attacks, oppositely
to approximate schemes. Overall, what matters most for this
notion of security is the correctness of the scheme rather
than the type of data that it manipulates (although schemes
on approximate data create specific definitional difficulties
when it comes to correctness).

We emphasize that loose and possibly heuristic correct-
ness suffices for IND-CPA security, which is relevant in all
applications of homomorphic encryption where the output
results are not shared. When the output results may be
shared, correctness guarantees should be strengthened to

7‘_PARAMETERS’ are omitted from the TFHE-rs parameters names.

Parameters 𝑝fail Slope Cost
DM/CGGI

(Our) Custom 2−7 1.21 220
OpenFHE [7] STD256 2−33 1.39 ≈ 246
TFHE-rs [47] DEFAULT 2−40 2.48 ≈ 250
OpenFHE [7] STD192Q 2−101 2.89 ≈ 2111
TFHE-rs [47] TFHE_LIB 2−165 5.75 ≈ 2171

CKKS
(Our) Custom 0.87 24.1 28
[11] 2−16 22.3 ≈ 226
OpenFHE [7]# [38]#, [20]∗ 2−22 22.6 ≈ 232
HEaaN [1], [12], [31]∗, [25]∗ 2−35 26.8 ≈ 240
OpenFHE [7]# 2−57 1.21 ≈ 270
Lattigo [2], [12] 2−138 29.0 ≈ 2143

Table 1. Parameter sets from the literature with claimed
IND-CPA security larger than 128 bits. The columns show
(upper bounds of) failure probabilities, slope for hint
distributions, and estimated number of decryption queries
for the attacks.

thwart IND-CPAD attacks. This may lead to a performance
penalty: for example, in the case of CKKS, a solution was
given in [38] based on the noise flooding technique. To avoid
paying for this performance penalty across all applications,
a possibility is to specify in software whether the outputs
may be shared or not [17].

References
[1] HEaaN private AI: Homomorphic encryption library. https://hub.

docker.com/r/cryptolabinc/heaan. CryptoLab.Inc.
[2] Lattigo v5.0.2. https://github.com/tuneinsight/lattigo (commit

4cce9a48c1daaa2dd122921822f5ad70cd444156), Mar. 2024. EPFL-LDS,
Tune Insight SA.

[3] E. Aharoni, N. Drucker, G. Ezov, E. Kushnir, H. Shaul, and O. Soceanu.
E2E near-standard and practical authenticated transciphering. IACR
Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/2023/1040.

[4] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of
learning with errors. J. Math. Cryptol., 9(3):169–203, 2015. Software
available at https://github.com/malb/lattice-estimator.

[5] A. Alexandru, A. A. Badawi, D. Micciancio, and Y. Polyakov.
Application-aware approximate homomorphic encryption: Config-
uring FHE for practical use. IACR Cryptol. ePrint Arch., 2024.
https://eprint.iacr.org/2024/203.

[6] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In D. Pointcheval and
T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
483–501. Springer, Heidelberg, Apr. 2012.

[7] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, R. V. Saraswathy, K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca. OpenFHE:
Open-source fully homomorphic encryption library. In WAHC,
2022. Library available at https://www.openfhe.org/, v1.1.1. (commit
4ebb28ea7bdd894a73bc5b73e59fcfbc7825330). IACR Cryptol. ePrint
Arch. 2022/915, dated March 12, 2024.

14

https://hub.docker.com/r/cryptolabinc/heaan
https://hub.docker.com/r/cryptolabinc/heaan
https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2023/1040
https://github.com/malb/lattice-estimator
https://eprint.iacr.org/2024/203
https://www.openfhe.org/

Attacks Against the IND-CPAD Security of Exact FHE Schemes

[8] M. V. Beirendonck, J. D’Anvers, F. Turan, and I. Verbauwhede. FPT: A
fixed-point accelerator for torus fully homomorphic encryption. In
CCS, 2023.

[9] B. Biasioli, C. Marcolla, M. Calderini, and J. Mono. Improving and
automating BFV parameters selection: An average-case approach.
IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/2023/600.

[10] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai. Threshold cryptosystems from threshold
fully homomorphic encryption. In H. Shacham and A. Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 565–596.
Springer, Heidelberg, Aug. 2018.

[11] J.-P. Bossuat, C. Mouchet, J. R. Troncoso-Pastoriza, and J.-P. Hubaux.
Efficient bootstrapping for approximate homomorphic encryption
with non-sparse keys. In A. Canteaut and F.-X. Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 587–617.
Springer, Heidelberg, Oct. 2021.

[12] J.-P. Bossuat, J. R. Troncoso-Pastoriza, and J.-P. Hubaux. Bootstrapping
for approximate homomorphic encryption with negligible failure-
probability by using sparse-secret encapsulation. In G. Ateniese and
D. Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 521–541.
Springer, Heidelberg, June 2022.

[13] K. Boudgoust and P. Scholl. Simple threshold (fully homomorphic)
encryption from LWE with polynomial modulus. In J. Guo and
R. Steinfeld, editors, ASIACRYPT 2023, Part I, volume 14438 of LNCS,
pages 371–404. Springer, Heidelberg, Dec. 2023.

[14] Z. Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In R. Safavi-Naini and R. Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Heidelberg, Aug. 2012.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, 2012.

[16] M. Checri, R. Sirdey, A. Boudguiga, and J.-P. Bultel. On the practical
CPA-D security of “exact” and threshold FHE schemes and libraries.
IACR Cryptol. ePrint Arch., 2024. http://eprint.iacr.org/2024/116.

[17] J. H. Cheon, S. Hong, and D. Kim. Remark on the security of CKKS
scheme in practice. IACR Cryptol. ePrint Arch., 2020. http://eprint.
iacr.org/2010/1581.

[18] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption
for arithmetic of approximate numbers. In T. Takagi and T. Peyrin,
editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 409–437.
Springer, Heidelberg, Dec. 2017.

[19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 3–33. Springer, Heidelberg, Dec. 2016.

[20] H. Chung, H. Kim, Y.-S. Kim, and Y. Lee. Amortized large look-up
table evaluation with multivariate polynomials for homomorphic
encryption. Cryptology ePrint Archive, Paper 2024/274, 2024. https:
//eprint.iacr.org/2024/274.

[21] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi. LWE with
side information: Attacks and concrete security estimation. In
D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329–358. Springer, Heidelberg, Aug. 2020.

[22] D. Dachman-Soled, H. Gong, T. Hanson, and H. Kippen. Revisiting
security estimation for LWE with hints from a geometric perspective.
In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023, Part V,
volume 14085 of LNCS, pages 748–781. Springer, Heidelberg, Aug.
2023.

[23] M. Dahl, C. Danjou, D. Demmler, T. Frederiksen, P. Ivanov, M. Joye,
D. Rotaru, N. Smart, and L. T. Thibault. fhEVM: Confidential EVM
smart contracts using fully homomorphic encryption, 2023. https:
//github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf.

[24] M. Dahl, D. Demmler, S. E. Kazdadi, A. Meyre, J. Orfila, D. Rotaru, N. P.
Smart, S. Tap, and M. Walter. Noah’s Ark: Efficient threshold-FHE

using noise flooding. In WAHC, 2023.
[25] N. Drucker, G.Moshkowich, T. Pelleg, andH. Shaul. BLEACH: cleaning

errors in discrete computations over CKKS. J. Cryptol., 37(1):3, 2024.
[26] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic

encryption in less than a second. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640.
Springer, Heidelberg, Apr. 2015.

[27] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic
encryption, 2012. http://eprint.iacr.org/2012/144.

[28] Q. Guo, D. Nabokov, E. Suvanto, and T. Johansson. Key recovery attack
on approximate homomorphic encryption with non-worst-case noise
flooding countermeasures. In USENIX Security, 2024.

[29] K. Han and D. Ki. Better bootstrapping for approximate homomorphic
encryption. In S. Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS,
pages 364–390. Springer, Heidelberg, Feb. 2020.

[30] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee. Over 100x faster
bootstrapping in fully homomorphic encryption through memory-
centric optimization with GPUs. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021.

[31] J. Kim, J. Seo, and Y. Song. Simpler and faster BFV bootstrapping for
arbitrary plaintext modulus from CKKS. IACR Cryptol. ePrint Arch.,
2024. https://eprint.iacr.org/2024/109.

[32] K. Kluczniak and G. Santato. On circuit private, multikey and threshold
approximate homomorphic encryption. IACR Cryptol. ePrint Arch.,
2023. https://eprint.iacr.org/2023/301.

[33] K. Kluczniak and G. Santato. On circuit private, multikey and threshold
approximate homomorphic encryption. Cryptology ePrint Archive,
Report 2023/301, 2023. https://eprint.iacr.org/2023/301.

[34] C. Knabenhans. Practical integrity protection for private computations,
2022. Available at https://pps-lab.com/student_theses/mthesis-
christianknabenhans.pdf.

[35] A. Langlois and D. Stehlé. Worst-case to average-case reductions for
module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[36] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No. High-precision
bootstrapping of RNS-CKKS homomorphic encryption using optimal
minimax polynomial approximation and inverse sine function. In
A. Canteaut and F.-X. Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 618–647. Springer, Heidelberg, Oct. 2021.

[37] B. Li and D. Micciancio. On the security of homomorphic encryption
on approximate numbers. In A. Canteaut and F.-X. Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 648–677.
Springer, Heidelberg, Oct. 2021.

[38] B. Li, D. Micciancio, M. Schultz, and J. Sorrell. Securing approximate
homomorphic encryption using differential privacy. In Y. Dodis and
T. Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 560–589. Springer, Heidelberg, Aug. 2022.

[39] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and
learning with errors over rings. In H. Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June
2010.

[40] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek, and
N. Aaraj. Survey on fully homomorphic encryption, theory, and
applications. Proc. IEEE, 2022.

[41] D. Micciancio and Y. Polyakov. Bootstrapping in FHEW-like
cryptosystems. In WAHC, 2021. Available at https://eprint.iacr.org/
2020/086. Version dated October 23, 2022.

[42] S. Murphy and R. Player. A central limit framework for ring-LWE
decryption. Cryptology ePrint Archive, Report 2019/452, 2019. https:
//eprint.iacr.org/2019/452.

[43] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009.

[44] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public
key encryption based on ideal lattices. In M. Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. Springer,

15

https://eprint.iacr.org/2023/600
http://eprint.iacr.org/2024/116
http://eprint.iacr.org/2010/1581
http://eprint.iacr.org/2010/1581
https://eprint.iacr.org/2024/274
https://eprint.iacr.org/2024/274
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2023/301
https://eprint.iacr.org/2023/301
https://pps-lab.com/student_theses/mthesis-christianknabenhans.pdf
https://pps-lab.com/student_theses/mthesis-christianknabenhans.pdf
https://eprint.iacr.org/2020/086
https://eprint.iacr.org/2020/086
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2019/452

Cheon et al.

Heidelberg, Dec. 2009.
[45] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Accelerating fully

homomorphic encryption using GPU. In HPEC, 2012.
[46] Zama. Concrete: TFHE compiler that converts python programs into

FHE equivalent, 2022. https://github.com/zama-ai/concrete (commit
9b2e39fd10b1e5172ab24a6fd561dc3603787643).

[47] Zama. TFHE-rs v0.4.1, 2023. https://docs.zama.ai/tfhe-rs (commit
ad41fdf5a5060c0a981cd0c35bf998feafe68e02).

A A Generic IND-CPAD Attack
In this section, we describe an IND-CPAD attack against
non-perfectly correct (F)HE schemes, i.e., FHE schemes with
a non-zero decryption failure probability.
The attack simply consists in building ciphertexts which

are supposed to result in𝑚0 or𝑚1 with𝑚0 =𝑚1, and then
requesting their decryption. The decryption request is valid,
as the underlying plaintext is supposed to be independent
of 𝑏. The attack then exploits the fact that, even though the
underlying plaintext messages are identical, the decryption
failure probability of the corresponding ciphertexts can differ
significantly. Since the adversary also knows the underlying
plaintext, it can distinguish whether or not decryption failed,
which leads to breaking IND-CPAD security.

As a warm-up, we start with an attack targeting binary HE,
i.e., HE whose plaintext space is {0, 1}. Then, we introduce a
technique boosting the success probability with repetitions.
We note that the attack can be easily extended to general HE
schemes over larger rings, as {0, 1} can be embedded in any
ring.

Binary HE. Let {T, F} denote the message space. We con-
sider a binary HE scheme supporting Boolean operations
AND and OR.

Adversary Challenger

𝑏 ← {0, 1}
OEnc (T, F)−−−−−−−−−−−−−−−−−−−→ 𝑆 [0] = (T, F, ct0)
OEnc (F, F)−−−−−−−−−−−−−−−−−−−→ 𝑆 [1] = (F, F, ct1)

OEval (AND(·, ·), 0, 1)−−−−−−−−−−−−−−−−−−−−→ 𝑆 [2] = (F, F, ct2)
ODec (2)−−−−−−−−−−−−−−−−−−−→ 𝑚res ← Decsk (ct2)
𝑚res←−−−−−−−−−−−−−−−−−−−

𝑏′ =

{
0 if𝑚res = T ,

1 else.

Figure 5. A generic IND-CPAD attack on binary HE.

Our IND-CPAD attack, described in Figure 5, proceeds as
follows. The attacker first makes two encryption queries
(𝑚0

0 = T,𝑚0
1 = F) and (𝑚1

0 = F,𝑚1
1 = F). Then it asks the

evaluation oracle to evaluate the AND function on the two

ciphertexts, resulting in a ciphertext ct2. Finally, it asks the
decryption oracle to decrypt ct2, and outputs 𝑏′ = 0 if the
decrypted result is T, and 𝑏′ = 1 otherwise.

When the encryption and evaluation queries are given, the
underlying messages are tracked, and stored in the shared
state 𝑆 [0], 𝑆 [1], and 𝑆 [2], respectively. Since AND(𝑚0

𝑏
,𝑚1

𝑏
=

F) is always equal to F regardless of 𝑏, the tracked messages
stored in 𝑆 [2] are F and F, and the decryption queries passes
the check of the oracle. Hence, the attacker receives the
decryption result𝑚res = Decsk (ct2).

The decrypted result is𝑚res = F if there is no failure during
the homomorphic operations. However, if the ciphertext
ct1 fails to decrypt properly, i.e., Decsk (ct1) ≠ F, then the
decryption result of ct2 is

Decsk (ct2) = AND(Decsk (ct0),Decsk (ct1))
= AND(Decsk (ct0), T)
=𝑚𝑏 ,

assuming that no additional failure happened (which is the
case with probability close to 1). The attacker thus has a
success probability slightly higher than 1/2 as:
Pr[𝑏 = 𝑏′] = (1 − 𝑝) · Pr[𝑏 = 𝑏′ | ¬A] + 𝑝 · Pr[𝑏 = 𝑏′ | A]

= (1 − 𝑝) · 1
2
+ 𝑝 · 1

=
1
2
+ 𝑝
2
,

where A is the event Decsk (ct1) ≠ F and 𝑝 = Pr[A]. We note
this figure does not change when considering additional
failures during the first encryption or the evaluation oracles.

Boosting the adversary’s advantage. We can increase the
success probability by repeating the encryption, evaluation,
and decryption queries, and outputting 0 if and only if T
appears among the decrypted results. This attack requires
(𝑘 + 1) encryption queries, 𝑘 evaluation queries and 𝑘

decryption queries, and succeeds with probabiity

Pr[𝑏 = 𝑏′] ≈ (1 − 𝑝)𝑘 · 1
2
+
(
1 − (1 − 𝑝)𝑘

)
· 1

≈ 1
2
+ 𝑘𝑝

2
,

where the last approximation is valid when 𝑘𝑝 ≪ 1.
We note that, by querying the circuit evaluating the

OR of all the above AND operations, we can decrease the
number of evaluation and decryption queries to a single one.
Specifically, for a circuit 𝐶 : C𝑘+1 ↦→ C defined as,

𝐶 (𝑥, 𝑥1, · · · , 𝑥𝑘) = (𝑥 ∧ 𝑥1) ∨ (𝑥 ∧ 𝑥2) ∨ · · · ∨ (𝑥 ∧ 𝑥𝑘) ,
where ∧ is an AND operation and ∨ is an OR operation, the
two values 𝐶 (T, F, · · · , F) and 𝐶 (F, F, · · · , F) are both equal
to F. However, if there exists 𝑖 such that 𝑥𝑖 = T, the two
values become different and will capture the failure. Thus,
we can have the same advantage of approximately 1/2+𝑘𝑝/2
as before, but with only (𝑘 + 1) encryption, 1 evaluation, and

16

https://github.com/zama-ai/concrete
https://docs.zama.ai/tfhe-rs

Attacks Against the IND-CPAD Security of Exact FHE Schemes

1 decryption queries. We note that this is a generalization
(𝑘 = 1) of the attack in Figure 5, which queries 𝑘 encryptions
of (𝑚𝑖

0 = F,𝑚𝑖
1 = F) for 𝑖 = 1..𝑘 instead of one, and queries

an evaluation of the circuit 𝐶 instead of AND.

From fresh to arbitrary ciphertexts. We observe that
the freshly encrypted ciphertexts ct𝑖 (for 𝑖 = 1..𝑘) can
be replaced by the ciphertexts having higher decryption
failure probability. The circuit 𝐶 can be replaced by a new
composed one having larger depth, possibly with more
encryption queries, but with the same number of evaluation
and decryption queries.
For example, assume that there exists a circuit 𝐶∗ with ℓ

input wires such that ct = Evalpk
(
𝐶∗, (ct1, · · · , ctℓ)

)
has a

decryption failure probability 𝑝∗, over the randomness used
by Enc to obtain the ct𝑗 ’s (for 𝑗 = 1..ℓ). By composing the
circuits 𝐶 and 𝐶∗ to 𝐶′ : C𝑘ℓ+1 ↦→ C defined as,

𝐶′ = 𝐶 ◦ (𝑖𝑑,𝐶∗, · · · ,𝐶∗) ,

we increase the success probability to ≈ 1/2 + 𝑘𝑝∗/2, with
(𝑁ℓ + 1) encryption queries, 1 evaluation query, and 1
decryption query.

The discussion above shows that loose correctness directly
impacts IND-CPAD security. Further, in this context, what
should be considered is the failure of decryption probability
for a ciphertext resulting from the evaluation of a very large
circuit.

B (In)security of Threshold-FHE
In this section, we discuss the insecurity of Threshold-FHE
schemes by relying on our IND-CPAD and KRD attacks.

B.1 Definitions and Relation to IND-CPAD Security

The purpose of Threshold-FHE is to distribute the secret
decryption key among several parties, such that any subset
of large enough size (corresponding to the threshold) can
jointly decrypt any ciphertext, while any smaller subset of
parties cannot learn anything about the underlying plaintext.

The capabilities of the attacker against Thres-IND-CPA se-
curity present important similarities with those in IND-CPAD

and KRD security. Indeed, an attacker is allowed to request
encryption queries, evaluation queries, as well as and partial
decryption queries of the ciphertexts obtained from prior
queries as long as the underlying plaintext is independent
of the challenge bit 𝑏.
The main differences between Threshold-FHE and FHE

are the setup procedure, which distributes the secret key
between parties, and the decryption procedure, which is
split in two phases: 1) each party can compute a partial
decryption of a ciphertext using its share of the secret key,
2) (a sufficiently large set of) partial decryptions of a same
ciphertext can be recombined to recover the underlying
plaintext.

Since a threshold-FHE scheme encompasses a standard
FHE scheme (e.g., consider the secret key as being the set of
all partial decryption keys), our attacks extend to the case
of threshold-FHE. However, we emphasize that in general,
and unlike for standard FHE (for which many application
scenarios do not require IND-CPAD security), having access
to a decryption oracle in scenarios involving threshold-FHE
is the default option. Therefore, our attacks have a strong
impact on threshold variants of the schemes studied so far.

Let us first recall the definition of Threshold-FHE.

Definition B.1 (Threshold-Fully Homomorphic Encryption).
Let 𝑛 ≥ 𝑡 ≥ 0. A (𝑡, 𝑛)-threshold-fully homomorphic
encryption scheme (Threshold-FHE) is a tuple of efficient
algorithms (Setup, Enc, Eval, PDec, FinDec) with the follow-
ing specifications:
• Setup outputs secret keys sk1, . . . , sk𝑛 and a public
key pk;
• Enc takes as inputs a public key pk and a plaintext𝑚 ∈
{0, 1}, and outputs a ciphertext ct;
• Eval takes as inputs a public key pk, a binary circuit𝐶 ,
and a tuple of ciphertexts ct1, . . . , ct𝑘 where 𝑘 is
the number of input wired of 𝐶 , and outputs a
ciphertext ct;
• PDec takes as inputs a secret key sk𝑖 for 𝑖 ≤ 𝑛, and a
ciphertext ct, and outputs a partial decryption p𝑖 ;
• FinDec takes as inputs a public key pk, and a set
{p𝑖 }𝑖∈𝑆 for some 𝑆 ⊆ {1, . . . , 𝑛}, and outputs a
plaintext𝑚 ∈ {0, 1,⊥}.

For 𝜀 ≥ 0 and a circuit size bound 𝐵, the scheme
is said (𝜀, 𝐵)-correct if for any key set (sk1, . . . , sk𝑛, pk)
output by Setup, for any binary circuit 𝐶 , for any plain-
texts 𝑚1, . . . ,𝑚𝑘 ∈ {0, 1} where 𝑘 is the number of input
wires of 𝐶 , for any set 𝑆 ⊆ {1, . . . , 𝑛} with |𝑆 | ≥ 𝑡 , the fol-
lowing holds with probability ≥ 1 − 𝜀 over ct𝑗 := Encpk (𝑚 𝑗)
(for 𝑗 ≤ 𝑘) and p𝑖 = PDecsk𝑖

(
Evalpk (𝐶, (ct1, . . . , ct𝑘)

)
:

FinDecpk ({p𝑖 }𝑖∈𝑆) = 𝐶 (𝑚1, . . . ,𝑚𝑘).

A scheme is perfectly correct if it is 𝜀-correct for 𝜀 = 0.

As mentioned above, a threshold-FHE scheme Π encom-
passes an underlying FHE scheme Π∗, defined as:
• Π∗ .KeyGen outputs (sk = (sk1, . . . , sk𝑛), pk), where
(sk1, . . . , sk𝑛, pk) ← Π.Setup,

• Π∗ .Encpk = Π.Encpk,
• Π∗ .Evalpk = Π.Evalpk,
• Π∗ .Decsk (·) = Π.FinDecpk ({PDecsk𝑖 (·)}𝑖≤𝑛).

Thres-IND-CPA security is defined very similarly to IND-CPAD

security [32]. Actually, IND-CPAD security can be pre-
cisely seen as Thres-IND-CPA security seeing the FHE
scheme as a (1, 1)-Threshold FHE scheme. We provide a
detailed definition below. Note that Thres-IND-CPA is an
indistinguishability-based security definition. In the case of

17

Cheon et al.

threshold FHE, simulation security is often preferred, but
similar indistinguishability-based security notions have been
defined in various works on this topic [13, 33].

Definition B.2 (Thres-IND-CPA security). Let Π = (Setup,
Enc, Eval, PDec, FinDec) denote a Treshold-FHE scheme. For
an adversary A = (A0,A1) that is given access to the
(stateful) oracles OEnc, OEval and OPDec defined below, we
define the advantage AdvThres-IND-CPA (A) of A against the
Thres-IND-CPA security of Π as:��������2 · Pr

𝑏 = 𝑏′

��������
(pk, sk1, . . . , sk𝑛) ← KeyGen;

𝑏 ←U ({0, 1}) ;
T ← A0 (pk);

𝑏′ ← AOEnc,OEval,OPDec1 (pk, {sk𝑖 }𝑖∈T)

− 1
�������� ,

where A0 is required to output a (possibly empty) set T ⊂
{1, . . . , 𝑛} of corrupted parties of size at most 𝑡 − 1. Oracles
OEnc and OEval are defined exactly as for IND-CPAD security.
Oracle OPDec can be invoked only on a priorly obtained
ciphertext. On input the index 𝑗 of a priorly generated
ciphertext, oracle OPDec checks that the underlying plaintext
is independent of the challenge bit 𝑏, and if so, returns
PDecsk𝑖 (ct𝑗), for 𝑖 ≤ 𝑛.

Then, we have the following.

Theorem B.3. Let Π be a Threshold-FHE scheme and Π∗

be the underlying FHE scheme of Π. Let B an adversary
against the IND-CPAD security of Π∗. Then, there exists an
adversary A against the Thres-IND-CPA security of Π, with
same advantage and running time as B.

Proof. Let B be an adversary against the IND-CPAD security
of Π∗. We construct an adversaryA against the security of Π.
Adversary A obtains a public key pk from its challenger,
which it forwards to B. A does not corrupt any party (i.e.,
adversary A0 (pk) returns ∅). Now, adversary A1 runs B
and makes the exact same queries as B to its own oracles.
Then, for each query, adversary A1 simply forwards the
response it obtains to B, except for decryption queries. In
that last case, it first reconstructs the actual decryption result
by running FinDec on input the partial decryption shares it
obtains from OPDec, and then returns the result to B. When
B halts with some output bit 𝑏′, so does A1.
By definition, all queries made by B are also valid

queries for A1 since its queries must satisfy the exact same
constraints (i.e., decryption queries should be made only for
ciphertexts whose underlying plaintexts are independent
of the challenge bit). Moreover, it can be seen that A
correctly simulates an IND-CPAD challenger in B’s view,
hence leading to our claim. □

B.2 Noah’s Ark, a Threshold-FHE Scheme

We first recall the Threshold-FHE scheme from [24]. It builds
upon the CGGI FHE scheme, and thus the underlying FHE
scheme is very similar to the one we studied in Section 4.2.

The Setup stage can be done by using a secure multiparty
protocol, generating the underlying secret key data in
a secret-shared form. Once the keys are generated, the
encryptions and evaluations can be done by anyone, with the
public key. They are identical to the CGGI encryptions and
evaluations. For a ciphertext (𝑏, a), the partial decryption
algorithm computes 𝑏 − ⟨a, s𝑖⟩ + 𝑒𝑖 mod 𝑞, where s𝑖 is the
secret key share of party 𝑃𝑖 and 𝑒𝑖 is a fresh error. The
additional error is introduced to statistically hide the party’s
secret information: to obtain sufficient security, this error
term is set quite large. The final decryption consists in
computing a linear combination of shares.

As CGGI does not have the capacity to absorb a sufficiently
large error 𝑒𝑖 , in Noah’s ark, the gap between the error
and the plaintext message is increased by using a so-called
Switch-and-Squash technique. It consists in switching the
ciphertext modulus and the LWE dimension, squashing
the errors via bootstrapping. The procedure is identical to
CGGI bootstrapping, except that the moduli and dimension
are changed: it takes as input an LWE ciphertext with
dimension 𝑛 and modulus 𝑞 and outputs an LWE ciphertext
with dimension 𝑛 and modulus 2𝑁 via ModSwitch, then the
ciphertext becomes an GLWE ciphertext of ring dimension𝑁
through BlindRotate, and finally goes back to an LWE
ciphertext, now with dimension 𝐿 and modulus 𝑄 .

B.3 Is There a Hole in Noah’s Ark?

There are two possible sources of failures in Noah’s Ark. A
first one is the homomorphic evaluation of gates. A second
one is the Switch-and-Squash method which involves a
bootstrapping for a different set of parameters. In [24],
parameter details are provided only for Switch-and-Squash,
so we chose to present an attack targeting failures of PDec
instead of Eval. The attack is described in Algorithm 7. For
the sake of simplicity, we describe it for 𝑛 = 𝑡 = 2, even
though this is not a parametrization considered in [24].

Algorithm 7 Attack on Noah’s Ark, with 𝑛 = 𝑡 = 2.
1: 𝑓 := 0
2: for 0 ≤ 𝑘 < 𝛾 do
3: Query ct𝑘 ← Enc(true)
4: Query ct′

𝑘
← Eval(AND, ct𝑘 , ct𝑘)

5: Query (p1, p2) ← PDecsk (ct𝑘)
6: Set𝑚 ← FinDecpk (p1, p2).
7: if 𝑚 = false then
8: Compute the rounding error ẽ𝑓 from ct′

𝑘

9: 𝑓 := 𝑓 + 1
10: end if
11: end for
12: Compute ẽ = 1

𝑓

∑𝑓 −1
𝑗=0 ẽ𝑗

13: For all 𝑖 ≤ 𝑛, compute 𝑠𝑖 =
1 if ẽ𝑖 < 𝛼/2
0 otherwise

14: return sest

18

Attacks Against the IND-CPAD Security of Exact FHE Schemes

We recall in the columns of Table 2 the four parameter
sets considered for Switch-and-Squash. The last row gives a
lower bound on the decryption failure probability. The latter
is possibly significantly higher as we compute the bound
using only the ModSwitch error. Indeed, the other error
terms cannot be obtained in [24].

𝜌 1 4 1 4
(𝑞, 𝑙) (264, 777) (264, 870) (264, 1024) (264, 1024)
(𝑄, 𝐿) (2128, 4096) (2128, 4096) (2128, 4096) (2128, 4096)
𝑁 ′ 1024 2048 1024 2048
𝑤′ 4 2 4 2

𝜎ms 2−8.49 2−9.41 2−8.29 2−9.29
2−𝜌−1−1 2−3 2−6 2−3 2−6

𝑟 25.49 23.41 25.29 23.29

erfc(𝑟/
√
2) 2−1460 2−85.1 2−1110 2−72.8

Table 2. Parameter sets of Switch-and-Squash and lower
bounds of decryption failure probability. The notations are
borrowed from [24].

C Custom Parameter Set for CGGI
Figure 6 shows the custom parameter that we use for CGGI
attack, in TFHE-rs library.

19

Cheon et al.

Figure 6. Parameter sets of TFHE-rs with 128 bits of IND-CPA security.
Parameter DEFAULT_PARAMETERS CUSTOM_PARAMETERS

lwe_dimension 722 600
glwe_dimension 2 7
polynomial_size 512 128

lwe_modular_std_dev 0.000013072 0.000143792
glwe_modular_std_dev 0.000000050 0.000000550

pbs_base_log 6 6
pbs_level 3 3
ks_base_log 3 3
ks_level 4 4

encryption_key_choice Small Small

20

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 IND-CPAD Security
	2.3 KRD Security

	3 KRD Attacks on B(F/G)V-like FHE Schemes
	3.1 Noise Analysis for BFV
	3.2 Key-Recovery Attack
	3.3 Experimental Results
	3.4 On the Default BFV Implementation of OpenFHE

	4 KRD Attacks from Too Large Bootstrapping Failure Probability
	4.1 Inequality Hints
	4.2 KRD Attacks on DM/CGGI
	4.3 KRD Attacks on CKKS over discrete data
	4.4 Experimental Results

	5 Conclusion
	References
	A A Generic IND-CPAD Attack
	B (In)security of Threshold-FHE
	B.1 Definitions and Relation to IND-CPAD Security
	B.2 Noah's Ark, a Threshold-FHE Scheme
	B.3 Is There a Hole in Noah's Ark?

	C Custom Parameter Set for CGGI

