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Abstract

The recent works of Ananth et al. (ITCS 2022) and Bartusek et al. (Eurocrypt 2023) initiated the study of
pre-constrained cryptography which achieves meaningful security even against the system authority, without assuming
any trusted setup. In this work we significantly expand this area by defining several new primitives and providing
constructions from simple, standard assumptions as follows.

1. Pre-Constrained Encryption. We define a weaker notion of pre-constrained encryption (PCE), as compared to
the work of Ananth et al. which nevertheless suffices for all known applications. We then provide constructions
for general constraints, satisfying malicious security from a variety of assumptions including DDH, LWE, QR
and DCR. Our LWE based construction satisfies unconditional security against malicious authorities. In contrast,
the construction by Ananth et al. supporting general constraints must rely (inherently) on strong assumptions like
indistinguishability obfuscation.

2. Pre-Constrained Static Functional Encryption. We provide a new definition for pre-constrained functional
encryption in the so-called static setting (PCSFE) where the functions to be embedded in secret keys are specified
during the setup phase. We provide constructions for PCSFE supporting general constraints, with security
against malicious authorities. As in the case of PCE, our first construction can be instantiated from a variety of
assumptions including DDH, LWE, QR and DCR. Our second, LWE based construction satisfies unconditional
security against malicious authorities.
We also study succinctness in PCSFE, where the public key is sublinear in the number of function keys. We
provide the first construction from LWE in the random oracle model. We additionally provide a heuristic
construction in the standard model using lattices together with groups.

3. Pre-Constrained Input Obfuscation. We define and provide the first construction of pre-constrained input
obfuscation from the same assumptions as those used to instantiate PCSFE.

4. Pre-Constrained Group Signatures. For pre-constrained group signatures (PCGS), we provide the first construction
supporting general constraints, achieving unconditional security against malicious authorities from the LWE
assumption. The only other construction by Bartusek et al. supports the restricted set/database membership
constraint, and achieves computational security from the DDH assumption (and is therefore quantum insecure).
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1 Introduction
An important balance that the field of cryptography seeks to enable is that between privacy and accountability. As an
example, consider the basic primitive of encryption – the key generation procedure for public key encryption (PKE) is
typically run by service providers, who are often not trusted by end users but can nevertheless access encrypted user data.
This has led to security breaches as well as conflicts between the privacy goals of users and profit/law-enforcement/other
considerations of service providers. Anger against mass surveillance and “hidden” trapdoors led to the creation
of end-to-end encryption services (E2EE), which guarantees that even the service provider itself cannot access the
information that it is storing or transmitting on behalf of the user. Billions of users have adopted E2EE services, happy
with the assurance that control of their data is back with themselves.

However, the right to privacy of users must be contrasted with the helplessness of law enforcement agencies, such
as the police, in being unable to access conversations that are threatening to society, for example those that incite
violence or distribute illegal information such as child sexual abuse material. Is there a way to guarantee user privacy
for honest users while enforcing some meaningful notion of accountability for propagating illegal information? The
broad question of balancing privacy and accountability has received a lot of attention in recent years, in the context of
diverse applications beyond encryption [GP18, FPS+18a, GKL21, AJJM22]. In this work, we further this study by
defining several new, arguably meaningful notions for accountable privacy in the setting where there is no trusted setup,
and by additionally providing constructions for the same. Below, we survey known approaches closest to our approach,
and refer the reader to Section 1.4 for a more extensive discussion of related work.

1.1 Prior Approaches: Definitions
Pre-Constrained (Functional) Encryption. The work of Ananth et al. [AJJM22] proposed the notion of pre-constrained
encryption (PCE) as a new model for advanced encryption schemes where even the setup authority does not have full
decryption power, but instead can only decrypt some “authorized” values on private data. Moreover, this model does
not assume any trusted setup or CRS generation. In more detail, [AJJM22] define pre-constrained encryption with
respect to a constraint family C and a function family F where the constraint family C models the kinds of decryption
capabilities permitted to the authority. Now, setup is run with respect to some constraint C ∈ C and this produces a
public key together with a master secret key which is “constrained” to C, the key generation procedure takes this master
key and a function f ∈ F and outputs a function key SK f if and only if C( f ) = 1. Encryption supports computing a
ciphertext CTx for any input x and decryption of CTx with SK f enables recovery of f (x). In particular, note that even
the authority holding the master secret can only derive function keys and hence perform computations for authorized
functions f , as captured by C( f ) = 1, and nothing else.

The informed reader must have noticed that the notion of pre-constrained encryption corresponds closely to the
advanced notion of functional encryption (FE), where decryption keys correspond to functions instead of users. The
syntax and security of FE seem very similar – in FE, the setup procedure outputs a public key and master secret key,
the key generator can use the master key to derive function keys SK f for any function f , the encryptor can compute
a ciphertext CTx for any input x and decryption recovers f (x) and nothing else. Indeed, the notion of “hierarchical”
functional encryption [BCG+17] supports delegation capabilities which allow the holder of SK f to, in turn, generate a
functional key SKg◦ f corresponding to the function g ◦ f for any function g. The decryptor can now compute g( f (x))
using the delegated functional key applied to the ciphertext. Moreover, hierarchical FE can be constructed generically
from a sufficiently expressive FE scheme. Then, it is evident that we can capture the PCE functionality by defining
f ′(x) = ( f , f (x)) and g( f ′(x)) = f (x) if C( f ) = 1, ⊥ otherwise. This may cause concern as to whether PCE is
just a special case of hierarchical FE.

However, there is a crucial difference between FE and PCE – the latter permits some security against authority while
the former does not. In PCE, there does not even exist a universal master secret key, which is powerful enough to decrypt
any message! This is in stark contrast to FE – indeed, the existence of such a master key has been the cause of much concern
in FE schemes, and several works [BF03, Cha07, LW11, Goy07, GLSW08, BGJS16, GHMR18, GHM+19, GV20] have
attempted to find solutions to mitigate this so-called “key escrow” problem. That said, aside from this (fundamentally)
new security property, the notions of FE and PCE are indeed the same – in particular, PCE also admits a key generation
procedure that allows computing function keys for dynamically chosen authorized functions. To underline this connection,
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we will refer to the notion of PCE defined by [AJJM22] as PCFE in the remainder of this article.

Self-Detecting Encryption. As noted by Ananth et al. [AJJM22], pre-constrained encryption is meaningful and non-
trivial to achieve even without the key delegation feature of functional encryption. Closer to basic public key encryption
in the pre-constrained setting, is the primitive of self-detecting encryption defined by Alamati et al. [ABD+21]. A
self-detecting encryption scheme is similar to a regular public-key encryption with the key difference that it is possible to
detect whether the underlying message of a given ciphertext belongs to a database of certain illegal messages. Moreover,
such a check can be performed just by knowing the database values, as opposed to the system’s secret key – this enables
the feature that illegal contents in encrypted messages can be flagged even without knowing the secret key, without
compromising the privacy of honest messages.

Formally, SDE, similar to PKE allows to generate a key pair (pk, sk). There is a hash algorithm which computes a
hash value hDB and state information st from a database DB. A user can then generate a ciphertext ctm of m by using hDB
and pk. The secret key holder can decrypt ctm. In addition, it has a detection algorithm that can recover m from ctm and st
(without sk) if m ∈ DB. Observe that DB has no relation to (pk, sk). The security against the authority of self-detecting
encryption guarantees (pk, (hDB, st), Enc(pk, hDB, m0))

c≈ (pk, (hDB, st), Enc(pk, hDB, m1)) if m0, m1 /∈ DB.
The notion of self detecting encryption is philosophically similar to that of public key encryption with a database

constraint – the state information st can be seen as a constrained key which only allows the authority to learn m if it
belongs to an illegal set. Moreover, this notion supports dynamic updates to the database by changing the hash and
satisfies succinctness in that the hash size can be independent of the DB size. However, the constructions of SDE use
a CRS generated honestly by a Prm algorithm, hence only achieve security against a semi-honest authority1, who is
moreover, computationally bounded.

Pre-Constrained Group Signatures. Bartusek et al. [BGJP23] further extended the umbrella of pre-constrained
cryptography without trusted setup to include signatures. In more detail, they defined the notion of set pre-constrained
(SPC) group signatures, which enable tracing of users in messaging systems who sign predefined illegal content while
providing security against malicious group managers.

Privacy Preserving Blueprints. The recent work of Kohlweiss et al. [KLN23] also addresses the question of pre-
constraining in the context of anonymous credentials. Their primary motivating example is in anonymous e-cash – here,
there is a bank that issues e-coins, users who withdraw and spend these coins, and vendors who verify and accept e-coins
as payment. Suppose we want an authority to be able to “watch” suspected users for financial fraud. We would like to
have a mechanism which will enable an auditor to trace the transactions of these suspected users (on a “watchlist”)
without revealing the contents of the watchlist or violating the privacy of honest users.

Kohlweiss et al. suggest to enhance the anonymous transaction between the user and verifier with a “privacy
preserving blueprint” which allows the user, engaging in a transaction with the verifier, to compute an “escrow” Z
which can convince the auditor that s/he is not on the (secret) watchlist without revealing anything else. The watchlist is
encoded in a parameter PKA which is published by the auditor in advance. The verifier verifies that the escrow Z is
consistent with the credentials embedded in the e-coins being provided by the user, and rejects the transaction otherwise.
At a high level, privacy preserving blueprints can be seen as embedding accountability into a proof system, where there
is a user/prover, a vendor/verifier and an auditor who must learn some constrained function about the user’s anonymous
credentials. On the other hand, PCFE and SDE embed accountability into encryption.

Kohlweiss et al. also consider security against authority, the auditor in this case, and take care to ensure that even a
malicious auditor cannot create a blueprint that corresponds to an unauthorized input – for instance, an honest user who
is not in the real watchlist. However, their definition relies on trusted parameters generated by an honest setup algorithm
– in particular, if the auditor generates the parameters, then security against a malicious auditor cannot be guaranteed2.
Thus, the reliance on a trusted party is crucial in their notion.

1The authors do consider maliciously constructed ciphertexts, but not maliciously generated CRS.
2Indeed, there is an attack against the scheme if the auditor generates the trusted parameters. Concretely, they use Pedersen commitment (in

Definition 1) to instantiate the commitment scheme and cpar includes group elements for Pedersen commitment. If the auditor knows the discrete log
of the group elements, it can easily break the soundness of the blueprint scheme since the adversary can generate a fake commitment that can be
opened to an arbitrary value by using the discrete log.
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1.2 Prior Approaches: Constructions
Below, we discuss known constructions for pre-constrained cryptography without trusted setup, which is the focus of
our work.

Pre-Constrained Functional Encryption. Ananth et al. [AJJM22] (AJJM) provide several constructions for PCFE.
Analogously to the literature on FE, they consider special cases of PCFE such as identity-based PCE and attribute-based
PCE, denoted as IB-PCE and AB-PCE, respectively. These notions are similar to the celebrated notions of identity-based
encryption (IBE) [BF03] and attribute-based encryption (ABE) [GPSW06], except that the functions must now
additionally be authorized via a constraint specified during setup. In more detail, an AB-PCE scheme consists of four
algorithms – Setup takes as input a constraint C and outputs a public key and master key, KeyGen takes as input a
predicate f and outputs SK f if C( f ) = 1, Enc takes as input an attribute vector x and a message µ and outputs (x, CTx)
and Dec takes SK f and (x, CTx) and outputs µ if f (x) = 1. In an IB-PCE, the function f is restricted to be a vector y
and we define f (x) = 1 iff x = y.

AJJM provide the first constructions of PCE – they build AB-PCE for point constraints (i.e. Cx∗( f ) = 1 iff
f (x∗) = 0) and IB-PCE for general constraints C from the Learning With Errors (LWE) assumption. Both these
constructions cleverly use the “punctured” proof technique of the ABE scheme by Boneh et al. [BGG+14] to puncture
the master key in the constructions.

To construct AB-PCE for general circuit constraints, they rely on the strong primitive of witness encryption (WE)
together with NIZK proofs with perfect soundness. Additionally, they construct PCE for general constraints from the
powerful hammer of indistinguishability obfuscation (iO) and NIZKs with perfect soundness. Moreover, they show that
the usage of strong primitives like iO and WE is inherent since AB-PCE for general circuit constraints implies WE for
NP while PCE for general circuit constraints implies iO for P/poly.

In the context of general constraints, the equivalence of PCFE to strong notions like witness encryption and
obfuscation is discouraging – real world applications may require support for arbitrary constraints and the inherent
reliance on such strong primitives creates barriers to real world deployment, at least in the near future. As an example,
consider their own motivating example of spam filtering, where the secret key should open ciphertexts containing spam –
here the functionality “is-spam?” is formalized by some constraint C, which could be arbitrary.

We also note that all their constructions are natively secure against a semi-malicious authority, who can choose
the randomness used during setup but cannot arbitrarily deviate from the honest setup procedure. To obtain security
against a full-fledged malicious authority who can deviate arbitrarily during setup, they construct a compiler that
“bootstraps” semi-malicious to malicious security. While such a compiler has the advantage of being generally applicable,
a disadvantage is that it uses non-interactive witness indistinguishable proofs (NIWI), which can be instantiated using
pairings or iO [GOS12, BP15] – this induces an additional reliance on these assumptions and is particularly dissatisfying
if the underlying construction is based on (conjectured) post-quantum assumptions. On the positive side, their formalism
supports dynamic key delegation which could be desirable in some settings.

Pre-Constrained Group Signatures. Bartusek et al. [BGJP23] provided concretely efficient protocols for Set
Pre-Constrained (SPC) group signatures for the Decision Diffie Hellman (DDH) assumption, and also provide an
implementation to demonstrate practical efficiency. Along the way to constructing SPC group signatures, they also
provide a construction for SPC encryption from DDH.

1.3 Our Approach: Untrusted Setup and Unbounded Security
In this work, we study broad primitives under the umbrella of pre-constrained cryptography, with a focus on untrusted
setup and unbounded security against the authority. We believe that unbounded security against authority is much more
meaningful than computational security in this setting, since in the real world, authorities are typically much more
powerful than users and can possess effectively unbounded computational resources3. Note that prior constructions of
PCE [AJJM22] and SPC group signatures [BGJP23] satisfy security only against efficient (i.e., PPT) adversaries. In
more detail, we ask:

3While a similar effect can be achieved by making the security parameter very large, this will negatively impact the performance of the scheme.
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Can we construct pre-constrained cryptography that is secure against unbounded authorities? Moreover, can we
support general constraints and rely on quantum safe assumptions?

We answer the above question in the affirmative by definining several meaningful notions of pre-constrained cryptography
and providing constructions for the same. Some (but not all) of our constructions satisfy security against unbounded
authority and can be conjectured post-quantum secure. We discuss our suggested new primitives next.

Pre-Constrained Encryption. Our first contribution is to define a notion of pre-constrained encryption (PCE) which
interpolates the notions of self-detecting encryption and pre-constrained functional encryption in terms of functionality,
but, similarly to PCFE, does not rely on trusted setup. In more detail, our notion generalizes the database functionality
considered by SDE but removes the dynamic key delegation feature considered by PCFE. We adapt the formalism of
PCFE for our definition, but emphasize that our definition is not a special case of the AJJM PCFE definition.

In more detail, we define PCE as a PKE scheme where a constraint C is embedded in the secret key created during
setup, the encryptor may compute a ciphertext for any message x and decryption succeeds to recover x if and only
if C(x) = 1. We ask that the public key does not reveal information about C – constraint-hiding and that the secret
key holder cannot learn any leakage on x if C(x) = 0 – security against authority. For some applications, it will be
meaningful to divide the input into a public part and private part, referred to as attribute and plaintext respectively.
Similar to [AJJM22], we envisage the deployment of pre-constrained encryption in conjunction with an end-to-end
encryption scheme so that user data is encrypted twice, once under each scheme. The former is used for accountability
to the authority, while the latter is used for regular communication. Standard cryptographic tools are used to ensure that
the data encrypted under both schemes is the same – please see [AJJM22] for a discussion.

Why is PCE meaningful? The above notion of PCE is arguably natural – indeed, it is closely connected with reusable
2 round 2 party secure computation, which has been studied extensively in the literature [BL20, AJJM20, BGMM20,
BJKL21, AJJM21, BGSZ22, IKSS23]. In more detail, PCE can be seen as a special case of reusable 2PC by collapsing
the setup and decrypt algorithms of PCE into the same (first) party with input C and by considering encrypt as the
second party with input x. However, we believe that it is meaningful to study PCE as a separate notion for the following
reasons:

1. The fundamental security property in PCE is against authority without relying on trusted setup – this renders 2PC
protocols with trusted setup (such as CRS) or satisfying only semi-malicious security, ill-suited for our setting.

2. Since reusable 2PC security definitions are simulation based, 4 rounds are optimal for malicious security in the
plain model [KO04]. However, PCE generalizes PKE so we cannot admit protocols which incur more than 2
rounds. To the best of our knowledge, 2 round maliciously secure reusable MPC in the plain model relies on
super-polynomial-time simulation and strong assumptions such as iO [FJK23]. In contrast, our definitions are
game based and admit constructions from standard assumptions.

In terms of applications, our notion of PCE enables several new applications:

1. Checking Data Sanitization: As our first example, consider a constraint C which encodes some program that
checks the content for illegal or undesirable attributes such as violence or racial biases. Now, the setup provides a
secret key that encodes C, the encryptor computes a ciphertext for some input x and the authority can recover x if
and only if C(x) = 1.

2. Crime Investigation: During a crime investigation, it is desirable for the authority to have a key encoding some
constraint that checks for names of suspects (or such other material) in encrypted chat conversations, and allows
them to only decrypt the matching chat messages. Here, the user’s message x is encrypted in ciphertext CTx and
recovered by the key if and only if C(x) = 1.

3. Contest: As a third, more fun example, consider a newspaper company that publishes a crossword puzzle in its
newspaper and gives a reward for solving the puzzle. To send the reward, the company needs to know the personal
information of the puzzle solvers, but it should be able not to learn personal information of people who send the
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wrong answers. Here, we can encode the puzzle answer in the constraint that is embedded in the public and secret
keys. A reader computes a ciphertext where the answer and his/her personal information are the attribute and
plaintext, respectively. By the constraint-hiding property, the public key does not reveal information about the
answer. If the answer is correct, the newspaper has the required information while if it is wrong, readers’ personal
information is not revealed.

Our notion of PCE also provides a simpler way to realize some applications that were studied by [AJJM22]. For
instance, they motivate their notion of identity-based PCE via the example of a “no-fly list” where the public key
contains a list (say S) of suspected individuals who should not be allowed to fly. The encryption and function keys are
with respect to identities (possibly user public keys). The master key which encodes S can be used to derive the secret
key for any identity in S via a key derivation procedure, which in turn can be used to decrypt any ciphertext associated
with an identity in S. In our framework too, the public key can encode a no-fly list as a constraint C and the ciphertext
can encode the identity x. If C(x) = 1, the ciphertext can be decrypted. Thus, the difference is that we do not explicitly
provide a key derivation procedure, but the constrained master secret key suffices for decryption.

Pre-Constrained Static Functional Encryption: We extend pre-constrained encryption to encompass a weaker form
of functional encryption which we call “static” functional encryption. In this primitive, a set of functions f1, . . . , fQ is
specified during setup, which outputs a public key and secret keys for fi for i ∈ [Q]. These secret keys can only be used
to compute the specified function and nothing else just as in functional encryption, except that now even the authority
cannot compute anything beyond the specified functions. We refer to this notion as pre-constrained “static” FE because
unlike in FE, there is no “on-the-fly” key derivation procedure for functions, and functions must be specified during
setup. In contrast, [AJJM22] study a dynamic notion of pre-constrained FE which supports key derivation.

Our notion of static PCFE can also be instantiated using reusable 2PC as discussed above, if the receiver in reusable
2PC prepares many independent first messages. However, as in PCE, we desire a 2 round protocol without trusted setup
which satisfies malicious security, hence we believe there is merit in defining this notion separately. Note that our notion
also achieves a form of function hiding where the public key does not reveal the embedded functions. However, we
emphasize that this notion does not imply indistinguishability obfuscation since the function hiding considered here is
much weaker than that considered in FE – in particular, the adversary is not given functional decryption keys.

We believe that our notion suffices for several applications of FE, provides a meaningful guarantee for security
against authority, and can satisfy a meaningful notion of function privacy. Additionally, it admits constructions from
weaker assumptions than [AJJM22] even for general constraints. To see the usefulness of our primitive, consider one of
the standard motivating scenarios of functional encryption – running medical research algorithms on genomic data. In
this context, it is customary to assume that a user is only willing to contribute their genomic data for authorized medical
studies which reveal the output of the computation but keep the input hidden. Now, let us say that the authorized medical
research algorithms are represented by circuits f1, . . . , fQ. These functions are fixed in advance, and moreover, must be
kept confidential. The user encrypts data and the authority can only use the function keys to learn the output.

Pre-Constrained Input Obfuscation. We also define the notion of pre-constrained input obfuscation where the
setup algorithm hides a set of inputs in the public key, the obfuscate algorithm produces an obfuscated program and
the evaluation algorithm allows to compute the output of the program on the hidden inputs. To see the motivation for
this notion, say that a user/prover claims they have an algorithm for a difficult problem. To check this without leaking
the algorithm, the verifier chooses several large random inputs and programs them into the public key. The prover
obfuscates her code using this key (note that the inputs remain hidden) and sends this to the verifier, who can test
whether the correct output is produced in reasonable time.

Constructions. We provide the following new constructions:

1. Pre-Constrained Encryption

• As a warm-up, we provide a simple construction of PCE for general constraints, which relies on two-message
statistically sender-private oblivious transfer (SSP-OT) as well as garbled circuits and achieves security
against a malicious authority. Note that SSP-OT can be based on diverse assumptions such as DDH
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[AIR01, NP01], QR and DCR [HK12], LWE [BD18, DGI+19, ADD+23], LPN and Nisan-Wigderson style
derandomization [BF22]. This construction bears similarities to constructions of reusable 2PC that have
appeared in the literature [GSW23], though the details are quite different.

• Next we provide a construction which supports general constraints and relies on malicious circuit-private
fully homomorphic encryption (FHE)[OPP14], which can be instantiated from the LWE assumption.
This construction satisfies unconditional security against a malicious authority, and can be conjectured
post-quantum secure.

• Our third construction supports the database checking constraint, relies on two-message statistically
sender-private oblivious transfer, and achieves unconditional security against a malicious authority. Thus,
our construction can be instantiated using DDH, QR, DCR, LWE, LPN and Nisan-Wigderson style
derandomization, as discussed above. In contrast, the only other construction by Bartusek et al. [BGJP23]
relies on the DDH assumption in the random oracle model. Thus, our construction has the advantage of
being secure in the standard model and plausibly post-quantum secure.

2. Pre-Constrained Static Functional Encryption. We provide the first constructions for pre-constrained static
functional encryption (PCSFE) for general constraints, with security against malicious authorities. First, we
show that natural adaptations of the PCE constructions described above, from two-message SSP-OT and garbled
circuits and from malicious circuit-private FHE can be extended to this setting.
Next, we study succinctness in PCSFE, where the public key is sublinear in the number of function keys supported
by the scheme. We show that such a notion is impossible to achieve against a malicious authority. Relaxing
the security to semi-malicious, we provide the first construction from LWE in the random oracle model. We
additionally provide a construction that uses a weaker heuristic than ROM from lattices and groups. Providing a
construction from standard assumptions in the standard model is a fascinating open problem.

3. Pre-Constrained Input Obfuscation. We provide a construction of pre-constrained input obfuscation (PCIO) from
pre-constrained static functional encryption. This lets us instantiate PCIO from the same assumptions as those
used to instantiate PCSFE.

4. Pre-Constrained Group Signatures. For pre-constrained group signatures (PCGS), we provide the first construction
supporting general constraints, achieving unconditional security against malicious authorities. The only other
construction by Bartusek et al. [BGJP23] supports the restricted set/database membership constraint, and achieves
computational security. Our construction relies on the LWE assumption while theirs relies on DDH – thus, our
construction has the advantage of being plausibly post-quantum secure. Additionally, our construction achieves a
stronger security notion, namely unlinkability as compared to theirs. On the other hand, their construction enjoys
concrete efficiency and comes with an implementation, whereas ours does not.

1.4 Technical Overview
We proceed to outline the technical ideas used in our constructions.

Pre-Constrained Encryption. We define PCE to have three algorithms – Setup, Enc, Dec. Here, Enc and Dec are
standard encryption and decryption algorithms of PKE. Setup takes as input a security parameter and a boolean circuit
C, and outputs a public key and a secret key. The secret key can recover a plaintext x from encryption of x if C(x) = 1.
As discussed above, this notion simplifies the notion of PC(F)E defined by Ananth et al. [AJJM22] and can also be seen
as a natural generalization of the notion of set pre-constrained encryption by Bartusek et al. [BGJP23]. We remark
that our security notions are game-based, similar to Ananth et al. [AJJM22] in contrast to the ideal-functionality-based
security notions of Bartusek et al. [BGJP23]. We make this choice to separate the authentication of constraints from the
schemes.

We define three security requirements for PCE. One is the standard indistinguishability against adversaries who do
not have secret keys. Another is constraint-hiding, which ensures public keys do not reveal information about the circuit
embedded during the setup phase. The third is security against authority – this can be semi-honest, semi-malicious or
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malicious, which are increasingly stronger. We focus on malicious authority in this section, which allows the authority
to behave arbitrarily during the setup phase. The requirement imposed by this notion of security is very strong – a
plaintext x must remain hidden from a malicious authority when C(x) = 0 even if the authority itself generates a
possibly malformed public key p̃k under which the message is encrypted! Here, we let C ← Ext(1λ, p̃k) where Ext
is a possibly inefficient extractor. In our work, we consider unconditional security against the authority – namely, if
C(x) = 0, even a computationally unbounded authority cannot obtain information about x.

It is easy to show that security against semi-honest/semi-malicious/malicious authority and constraint-hiding imply
the standard indistinguishability – we do not discuss this in the remainder of this overview.

Pre-Constrained Static Functional Encryption. The notion of PCE admits a natural generalization to the more
advanced notion of PCSFE, just as PKE generalizes to FE. A PCSFE consists of three algorithms (Setup, Enc, Dec).
Here, Enc and Dec are encryption and decryption algorithms of standard FE. Setup takes as input a security parameter
and functions ( f1, . . . , fQ), and outputs a public key and functional decryption keys (sk f1 , . . . , sk fQ).

There are three security requirements for PCSFE. One is the standard indistinguishability against adversaries who
do not have functional decryption keys. Another is function-hiding, which ensures that public keys do not reveal
information about the functions embedded during the setup phase. The third is security against malicious authority,
which guarantees the following: a ciphertext of x does not provide any information beyond ( f1(x), . . . , fQ(x)) even if
the malicious authority generates a possibly malformed public key p̃k where ( f1, . . . , fQ)← Ext(1λ, p̃k) and Ext is a
possibly inefficient extractor. As in PCE, malicious security can be weakened to semi-malicious, which can be further
weakened to semi-honest. When security holds against a computationally unbounded authority, we say that it satisfies
unconditional security. As in the case of PCE, security against semi-honest/semi-malicious/malicious authority and
function-hiding imply the standard indistinguishability notion.

Pre-Constrained Input Obfuscation. A PCIO has three algorithms, namely (Setup,O, Eval). Setup takes as input a
security parameter and an input-set X := (x1, . . . , xQ), and outputs a public key and evaluation key ek. O takes pk
and a circuit C and outputs an obfuscated circuit C̃. Eval takes ek, C̃, and x′, and outputs y. Correctness posits that if
x′ ∈ X , y = C(x′).

We observe that PCIO is the dual of PCSFE. We can obtain PCIO from PCSFE if we set fi := U[xi] where U[xi] is
a universal circuit that takes a circuit C and outputs C(xi), ek := (sk f1 , . . . , sk fQ), and encrypt C in PCSFE. PCIO
should have input-set-hiding and virtual black-box security against malicious authority. The former and latter correspond
to function-hiding and security against malicious authority, respectively. On the other side, we can also obtain PCSFE
from PCIO via a universal circuit. Please see Section 5 for details.

Warmup: Constructions based on OT. As discussed above, Ananth et al. [AJJM22] provide constructions by
using the punctured proof technique of Boneh et al. [BGG+14]. This technique is very well suited for constructing
pre-constrained encryption since it naturally lends itself to constraining the master key, providing constructions for
the restricted primitives of IB-PCE for general constraints and AB-PCE for point constraints. However, this technique
is highly specific to LWE-based ABE constructions and appears very hard to generalize (even to punctured proofs in
pairing-based ABE constructions, for instance).

From broader assumptions, it appears very challenging to guarantee confidentiality against a malicious authority.
This task seems even more difficult when considering security against an unbounded authority. To tackle this difficulty,
we take advantage of our simpler definition, which does not require key delegation. In this setting, we then leverage
two-message secure two-party computation between an authority with input C (constraint) and a sender with input x
(plaintext). The authority obtains x · C(x) (and the sender obtains nothing). If C(x) = 0, the authority cannot obtain
information about x.

To implement this idea, we make use of two-message statistically sender-private oblivious transfer (SSP-OT) [HK12,
BD20]. This primitive satisfies the following two requirements: (1) computational indistinguishability between ot1(0)
and ot1(1) where ot1(β) is the receiver’s message with choice bit β, and (2) statistical indistinguishability between the
sender message generated from (µ0, µ1, ot1) and one generated from (µβ′ , µβ′ , ot1) where β′ ← Ext(ot1), Ext is a
possibly inefficient extractor, and ot1 is the receiver’s message. We can instantiate this primitive with many standard
assumptions [HK12, BD20] such as the DDH, QR, and LWE assumptions.
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Our PCE scheme can be constructed as follows. The setup algorithm generates an SSP-OT receiver’s message
ot1,i with choice bit βi := C[i] for all i ∈ [ℓ] where |C| = ℓ and C is a constraint. The public key is {ot1,i}i∈[ℓ].
The encryption algorithm generates a garbled circuit P̃ and its labels {lbi,b}i∈[ℓ],b∈{0,1} of a circuit P[x] that takes
as input a circuit C and outputs x · C(x). It also generates an SSP-OT sender’s message ot2,i of (lbi,0, lbi,1) for
all i ∈ [ℓ]. A ciphertext consists of (P̃, {ot2,i}i∈[ℓ]). The authority can recover {lbi,C[i]}i∈[ℓ] from {ot2,i}i∈[ℓ] and
P[x](C) = x ·C(x) from P̃ and the labels. The receiver security of SSP-OT guarantees constraint-hiding. The statistical
sender security (against malicious receiver) and the garbled circuit security guarantee security against malicious authority
since the (inefficient) extractor can extract C from {ot1,i}i∈[ℓ] and we can simulate the SSP-OT sender’s message and
the garbled circuit using only {lbi,C[i]}i∈[ℓ] and 0 if C(x) = 0.

We then extend this construction to PCSFE to support Q functions. The setup algorithm uses more SSP-OT
instances. That is, it generates Q× ℓ SSP-OT receiver’s messages where Q is the number of functions and ℓ is the size
of functions. The encryption algorithm garbles Q universal circuit Ui[x] that takes as input fi for i ∈ [Q] and outputs
fi(x). The rest of the construction follows a similar outline as the PCE scheme above. The public key size is linear in Q.

Although we use statistical sender privacy for security against malicious authority, the constructions do not achieve
unconditional security since we use garbled circuits in the ciphertext. If we restrict the constraint/function class to NC1,
these constructions achieve unconditional security since an information-theoretic version of Yao’s garbled circuit exists
for NC1 circuits [IK02]. Please see Sections 3.2 and C.1 for details.

Unconditionally secure constructions based on FHE. To obtain unconditional security in PCE and PCSFE, we
need to use other tools that support all circuits since information-theoretically secure garbled circuits for all circuits
do not exist so far. Our next idea is using circuit private fully homomorphic encryption (FHE) to implement the
two-message secure two-party computation. The setup algorithm generates a key pair (fhe.pk, fhe.sk)← FHE.Gen(1λ)
and a ciphertext fhe.ctC of constraint C and outputs (fhe.pk, fhe.ctC) as a public key. The encryption algorithm applies
the evaluation algorithm of FHE to fhe.ct and a circuit P[x] above. The evaluated ciphertext should be statistically
indistinguishable from FHE.Enc(fhe.pk, x · C(x)) due to the circuit privacy of FHE. The authority can recover x · C(x)
and nothing beyond that. If C(x) = 0, the information about x completely disappears from the evaluated ciphertext.
Hence, it guarantees unconditional security. Constraint-hiding follows from the indistinguishability of FHE.

The big issue in this idea is that a malicious authority may generate a malformed public key (and ciphertext),
and the circuit privacy of FHE is not guaranteed. Hence, we use maliciously circuit private FHE by Ostrovsky,
Paskin-Cherniavsky, and Paskin-Cherniavsky [OPP14], which guarantees statistical circuit privacy even when the
adversary generates a pair of malformed public key and ciphertext. This security notion perfectly fits our setting. Let
(f̃he.pk, f̃he.ct) be a pair of adversarially generated public key and ciphertext. A simulator of maliciously circuit
private FHE is given (f̃he.pk, f̃he.ct, G(m)) and can output a ciphertext which is statistically indistinguishable from
Eval(f̃he.pk, G, f̃he.ct) (i.e., a circuit G is applied to f̃he.ct). Here, m is a plaintext extracted from f̃he.ct. Hence,
the unbounded authority obtains x · C(x) and nothing beyond if we set m := C and G := P[x]. The simulated
ciphertext has no information about x if C(x) = 0. It is easy to extend this construction to PCSFE. We generate
(FHE.Enc(fhe.pk, f1), . . . , FHE.Enc(fhe.pk, fQ)) as a public key and use U[x] instead of P[x] at the encryption phase.
The rest of the construction is the same. The public key is linear in Q. Please see Sections 3.3 and C.2 for details.

Lower bounds for PCSFE. It is not hard to observe that achieving PCSFE with succinct ciphertexts is as hard
as achieving indistinguishability obfuscation. Succinct ciphertexts mean the ciphertext size is sublinear in Q. If
PCSFE has succinct ciphertexts, we can transform such a PCSFE into a single-key succinct standard FE, which
implies indistinguishability obfuscation [BV18] by using known transformations [KNT21, BV18, LPST16a, LPST16b].
Although PCSFE does not have a delegation mechanism, its absence does not prevent the use of these transformations.

We then consider succinct public keys for PCSFE, namely we require that the public key size is sublinear in Q. First,
we show that it is impossible to achieve maliciously secure PCSFE with succinct public keys via an incompressibility
style argument inspired by the impossibility of simulation-based secure FE [AGVW13]. We sketch this argument next.
Let ui be a uniformly random string. Suppose that we generate (pk, sk1, . . . , skQ) from Q functions (g[u1], . . . , g[uQ])

where g[ui] is a constant function that outputs ui for any input and |pk| = O(Q1−γ) for some 0 < γ < 1. If a
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PCSFE scheme satisfies security against malicious authority, there exists a possibly inefficient extractor Ext that extracts
(g[u1], . . . , g[uQ]) from pk. That is, Ext can recover (u1, . . . , uQ) only from pk. This extraction is information
theoretically impossible since |pk| = O(Q1−γ), but ∑Q

i=1 |ui| = O(Q). See Section 4.2 for the details. Hence, the
best security we can achieve for succinct public key constructions is semi-malicious security against authority.

Succinct Semi-Malicious PCSFE. We now turn to the question of constructing PCSFE with succinct public key in
the semi-malicious setting. To begin, we consider the simpler security requirement of semi-honest security against the
authority – recall that in this notion, the setup algorithm is run honestly, but the adversary is allowed to see the random
coins used for the execution.

Our starting point is the idea that to achieve succinct public key in a pre-constrained static FE scheme, we can
leverage any FE scheme where the running times of setup and key generation algorithms are independent of the number
of collusions supported. Hopefully, encryption and decryption can work as in the underlying FE scheme, yielding the
desired functionality, and we can then try to adapt the scheme to obtain semi-malicious security.

A construction of bounded key ciphertext policy functional encryption by Agrawal et al. [AMVY21] enjoys the
above feature and serves as a useful starting point. At a high level, their construction works as follows. They make use
of a reusable dynamic MPC (RDMPC) protocol [AV19], an identity-based encryption (IBE) scheme and a garbled
circuits scheme. An RDMPC consists of a single client and N servers where the client offloads an apriori bounded
number of computations Q to the N servers in two phases: (i) an offline phase, in which the secret circuit C held by the
client is encoded into N shares (via a circuit encoding algorithm), and one share is provided to each of the N servers,
(ii) An online phase, in which the client runs an input encoding algorithm on each of its Q inputs and provides this to all
the servers. Each server now performs some local computation on its circuit encoding and the given input encodings,
after which, any subset S of servers of some minimum size (say n) can combine their partial outputs to obtain the final
output of the computation.

To leverage an RDMPC to build FE, [AMVY21] do the following: the setup algorithm runs the setup of an IBE
scheme and outputs a public and master secret key. The key generator, given an input f 4, computes its input encoding
using the RDMPC scheme. It then samples a random set of servers ∆ and provides an IBE secret key corresponding
to this set of servers and the given input encoding. The encryptor computes garbled circuits for the RDMPC local
computation circuit for each share of the circuit encoding, and encrypts the labels of these garbled circuits using IBE
encryption. To decrypt, the user first performs IBE decryption to obtain the labels corresponding to the input encodings
and chosen servers, then executes the garbled circuit to perform the RDMPC local computation and then performs the
RDMPC final evaluation to recover the desired output.

For our setting of PCSFE, we first observe that it is beneficial to use the simpler primitive of hash encryption
[DGHM18] in place of IBE for our purposes. A hash encryption scheme is similar to a witness encryption scheme and
is specified as follows: there is a hash algorithm that hashes an input x to some short value h, an encryption algorithm,
which given the hash, encrypts a message µ against h, a position i ∈ [|x|] and a bit b, and a decrypt algorithm which,
given the preimage x to h, recovers µ if and only if xi = b. While hash encryption is known to imply IBE [DGHM18],
it is far better for us as a building block since we desire security against a semi-malicious authority. In more detail, the
construction of HE from LWE by Döttling et al. has a random matrix as its public key and does not have any master
secret! Thus, it is immediate that this HE is secure against semi-honest authority in the standard model and against
semi-malicious authority in the ROM (simply by using the RO to generate the public matrix). This is in stark contrast to
an IBE, which also has an MSK and is much harder to secure against a semi-malicious authority.

The careful reader may object that using HE to build IBE does not really help with security against authority since
the resultant IBE must nevertheless have some master key. Here, we use a second trick – instead of using IBE, we
leverage the static setting of our FE to directly use HE to construct FE. In more detail, we collapse the setup and keygen
of [AMVY21] into setup for our PCSFE where the functions are pre-specified. We use the RDMPC input encoding to
encode the Q functions f1, . . . , fQ, then hash the concatenation of these encodings using the hash algorithm of the HE
scheme. Since the hash is compressing, the public key is succinct. This hash h is now provided to the encryptor, who
computes the shares of the circuit encoding, garbles the local computation circuit and uses HE encryption to encode the
labels of the garbled circuits. Decryption proceeds by recovering the garbled circuit labels using HE decryption, and
executing the garbled circuits to get the RDMPC partial outputs, which are then combined using the RDMPC combine

4Although the construction of [AMVY21] is ciphertext-policy, it will be more useful for us to swap the role of the circuit and the input
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procedure. The next challenge that is encountered is that the construction obtained via the above route does not satisfy
function hiding. We then provide a generic way to lift a construction without function hiding to one with function hiding.
Please see Section 4.4 for details.

In the above construction, the only randomness used by setup is in sampling the CRS or public key of the hash
encryption scheme. Hence, we immediately get security against authority in the semi-honest setting. Moreover,
by shifting to the ROM, we also obtain security against a semi-malicious authority. Can we get security against a
semi-malicious authority even in the standard model?

Heuristic: PCSFE with Semi-Malicious Security. We do not have a complete answer to the above question. In the
standard model, with randomness chosen adversarially, there are several attacks that the adversary can mount to break
the security of a hash encryption scheme. While we are unable to provide a construction that can be proven secure
under any clean assumptions, we adapt the LWE-based HE scheme by Döttling et al. [DGHM18] to incorporate several
additional safeguards which allow us to weaken the requirement on the hash function which was modeled as a random
oracle in the aforementioned construction.

At a high level, our construction adapts the ROM-based construction explained in the previous section to the standard
model by (i) reducing the attack surface of the adversary to linear attacks by moving LWE samples to the exponent of a
suitable group, (ii) Identifying possible linear attacks and constructing countermeasures against them. Nevertheless, we
are far from a proof of security, which appears very challenging, even in the generic group model. Our goal in providing
this heuristic is to engender efforts in the community to find an attack or a different construction with a proof. We refer
the reader to Section 4.5 for details.

Pre-Constrained Group Signatures. Bartusek et al. [BGJP23] define the notion of set pre-constrained group
signatures which can be implemented in an end-to-end secure messaging application. This primitive allows to encode a
set of predefined illegal content into the public key of a group signature scheme. The main idea is that if a user signs a
message that belongs to the predefined illegal set, then the user can be de-anonymized by the group manager. On the
contrary, signers of messages outside this set remain anonymous even to the group manager.

We generalize the notion of pre-constrained group signatures (PCGS) to support general constraints beyond set
membership. Our definitions for PCGS are game-based instead of ideal-functionality-based definitions of [BGJP23].
We improve the PCGS constructed by [BGJP23] by (i) supporting general constraints, (ii) achieving unconditional
security, (iii) obtaining plausible post-quantum security. The construction by Bartusek et al. [BGJP23] designs an
SPC group signature scheme from an SPC encryption scheme plus standard cryptographic tools, namely, a one-way
function, a digital signature scheme, and a zero-knowledge non-interactive argument of knowledge. Our construction
follows the same broad outline except that we use our general PCE and dual-mode NIZK instead of SPC encryption and
standard NIZK argument of knowledge, respectively. Additional details need care to handle – for instance, we must use
a dual-mode NIZK to achieve unconditional security against malicious authority. In the end, we obtain a PCGS for
general constraints against unbounded authorities from the LWE assumption. We refer the reader to Section 6 for the
details.

Other Related Work. Next we discuss additional notions related to pre-constrained cryptography.

Conditional disclosure of secrets. We mention the related primitive of conditional disclosure of secrets (CDS). While
CDS bears some similarities in syntax to PCE, it is a fundamentally different primitive. In particular, PCE generalizes
basic PKE by setting constraint C as the constant function that always outputs 1. It is not known how to achieve PKE
only from CDS.

In more detail, in conditional disclosure of secrets [GIKM00], Alice and Bob have access to a joint source of
randomness r and secret s, and compute F1(x, s, r) and F2(y, s, r) from inputs x and y, respectively. Here, x and y
are public. They can send some secret s to Carol if f (x, y) = 1 using their joint randomness. If f (x, y) = 0, Carol
cannot obtain any information about s (and r). In PCE, the two parties, i.e., parties running Setup and Enc, do not have
common randomness. Setup has input a constraint C (unlike CDS, this must be hidden) and outputs pk and sk, Enc
has input x and message m and uses pk to generate ct, and Dec uses sk to recover m if U(C, x) = 1 (where U is the
universal circuit). Here, the output pk of the first party can be used an unbounded number of times for encryption of
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different (xi, mi) whereas CDS is a one-time primitive. CDS can be seen as a weak symmetric key, one time attribute
based encryption scheme and does not satisfy any of the scenarios targeted by our work (or by the work of Ananth et
al. [AJJM22]).

Group signature with Message-Dependent Opening (GS-MDO). We also compare our pre-constrained group signatures
to the notion of group signature with message-dependent opening (GS-MDO). As discussed in [BGJP23], in a GS-MDO
scheme [OSEH13], the trust is divided between two entities : the group manager and the admitter. Both entities need
to pool their private information in order to trace a user from a signature. We note that in this notion, if the group
manager and the admitter collaborate in a malicious way, they can open any signature to reveal the user’s identity. In our
pre-constrained group signature scheme, even a malicious group manager cannot open any signature if the underlying
message does not satisfy the constraint which was committed to during the setup phase.

Exceptional Access for Law Enforcement. A line of work [Sav18, GKVL21, GSW23] has provided approaches to
allowing law enforcement agencies exceptional and controlled access to private user data. As noted by [AJJM22], the
work of Green et al. [GKVL21] can be seen as an IB-PCE scheme. We also mention the work of [GP17, FPS+18b]
which seeks to enforce accountability on secret laws. These works study questions in the domain of privacy versus
accountability but use very different assumptions and techniques than ours.

2 Preliminaries
2.1 Lattice Background
Definition 2.1 (Discrete Gaussian distribution). For any real s > 0, c ∈ Rn, and n-dimensional lattice Λ ⊂ Rn, the
discrete gaussian distribution over Λ with parameter s, centered around c, is defined as

∀x ∈ Λ, DΛ,s,c =
ρs,c(x)
ρs,c(Λ)

where ρs,c(x) = exp(−π · ||x − c||2/s2) and ρs,c(Λ) = ∑x∈Λ ρs,c(x). We use the shorthand DΛ,s when the
distribution is centered at zero.

2.2 Statistical Sender-Private Two-Message Oblivious Transfer
Here we provide the definition of a two-message statistically sender-private oblivious transfer (SSP-OT) scheme, adapted
from [BD18].
A two-message oblivious transfer scheme, for an input space I , consists of three algorithms (OTR, OTS, OTD) with
the following syntax.

OTR(1λ, β) → (ot1, st). This algorithm takes as input the security parameter λ and a choice bit β ∈ {0, 1} and
outputs a message ot1 and a secret state st.

OTS(1λ, (µ0, µ1), ot1)→ ot2. This algorithm takes as input the security parameter λ, two inputs µ0, µ1 ∈ I , and a
message ot1 and outputs a message ot2.

OTD(1λ, β, st, ot2)→ µ. This algorithm takes as input the security parameter λ, the bit β ∈ {0, 1}, the secret state
st, and the message ot2 and outputs µ ∈ I .

Next, we define the properties satisfied by a statistical sender-private two-message oblivious transfer scheme.

Definition 2.2 (Correctness). A SSP-OT scheme is said to be correct if for any λ ∈ N, and inputs µ0, µ1 ∈ I the
following holds.

Pr

 µ = µβ :
β← {0, 1}; (ot1, st)← OTR(1λ, β);
ot2 ← OTS(1λ, (µ0, µ1), ot1);
µ = OTD(1λ, β, st, ot2)

 = 1.
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Definition 2.3 (Receiver Privacy). A SSP-OT scheme is said to satisfy receiver privacy if the following two distributions
are computationally indistinguishable

{ot1 | (ot1, st)← OTR(1λ, 0)} ≈c {ot1 | (ot1, st)← OTR(1λ, 1)}.

Definition 2.4 (Statistical Sender Privacy). A SSP-OT scheme is said to satisfy statistical sender-privacy if there
exists an admissible unbounded extractor algorithm OT.Ext such that for any sequence of messages ot1 output by an
unbounded receiver and for any inputs µ0, µ1 ∈ I , the following two distributions are statistically indistinguishable

{ot2 | ot2 ← OTS(1λ, (µ0, µ1), ot1)} ≈s {ot2 | ot2 ← OTS(1λ, (µβ′ , µβ′), ot1)}

where β′ = OT.Ext(ot1). We say that OT.Ext is admissible if for any β ∈ {0, 1} and randomness r, we have β = β′

where (i) ot1 ← OTR(1λ, β; r) and (ii) β′ = OT.Ext(ot1).

SSP-OT can be based on a wide variety of assumptions – number-theoretic assumptions such as DDH [AIR01, NP01],
QR and DCR [HK12], LWE [BD18, DGI+19, ADD+23], LPN and Nisan-Wigderson style derandomization [BF22].

2.3 Maliciously Circuit-Private FHE
A fully homomorphic encryption (FHE) scheme, for circuit class Cn of all efficiently computable circuits of input length
n = n(λ), consists of four algorithms (KeyGen, Enc, Eval, Dec) with the following syntax.

KeyGen(1λ)→ (pk, sk). The key generation algorithm takes as input the security parameter and outputs a public key
pk and a secret key sk.

Enc(pk, m)→ ct. The encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}, and outputs a
ciphertext ct.

Eval(pk, C, c1, . . . , cn)→ ĉt. The evaluation algorithm takes as input the public key pk, a circuit C ∈ Cn with input
size n and ciphertexts c1, . . . , cn, where ci ← Enc(pk, mi) for i ∈ [n], and outputs a ciphertext ĉt.

Dec(sk, c)→ m. The decryption algorithm takes as input the secret key sk and a ciphertext c and outputs a message m.

Definition 2.5 (Correctness). A FHE scheme for circuit class Cn is correct if, for any key-pair (pk, sk)← KeyGen(1λ),
any circuit C ∈ Cn, any plaintexts m ∈ {0, 1}, m1 ∈ {0, 1}, . . . , mn ∈ {0, 1}, the following two condition holds

Pr[m = Dec(sk, Enc(pk, m))] = 1

and
Pr[C(m1, . . . , mn) = Dec(sk, Eval(pk, C, Enc(pk, m1), . . . , Enc(pk, mn)))] = 1.

Definition 2.6 (Semantic Security). A FHE scheme is said to satisfy semantic security if for any PPT adversary A,
there exists a negligible function negl(·) such that for any two messages m0, m1 ∈ {0, 1}, the following holds

Pr

 β′ = β :
(pk, sk)← KeyGen(1λ);
β← {0, 1}; ctβ ← Enc(pk, mβ);
β′ ← A(pk, ctβ)

 ≤ 1
2
+ negl(λ).

Definition 2.7 (Malicious Circuit Privacy). A FHE scheme is said to satisfy malicious circuit privacy if there exists
unbounded simulator Sim, a and an admissible deterministic extractor Ext, such that for all λ ∈N, all C ∈ Cn and any
adversary A, the following two distributions are statistically indistinguishable

Sim(pk∗, c∗1 , . . . , c∗n, C(m∗1 , . . . , m∗n)) ≈s Eval(pk∗, C, c∗1 , . . . , c∗n)

where (pk∗, c∗1 , . . . , c∗n)← A(1λ) and (m∗1 , . . . , m∗n) = Ext(pk∗, c∗1 , . . . , c∗n). We say that Ext is admissible if for any
(m1, . . . , mn) ∈ {0, 1}n, keygen randomness r and encryption randomness r̄, we have (m1, . . . , mn) = (m′1, . . . , m′n)
where (i) (pk, sk)← KeyGen(1λ; r), (ii) ci ← Enc(pk, mi; r̄) for all i ∈ [n] and (iii) m′i = Ext(pk, c1, . . . , cn).
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Definition 2.8 (Compactness). A FHE scheme is compact if there exists a fixed polynomial bound p(·) such
that for any circuit C ∈ Cn and ciphertexts {ci}i∈[n] where ci ← Enc(pk, mi), we have |ĉt| ≤ p(λ) where
ĉt← Eval(pk, C, c1, . . . , cn), i.e., the size of the evaluated ciphertext is independent of the size of the evaluated circuit.

Definition 2.9 (Linear efficiency). A FHE scheme satisfies linear efficiency if the ciphertext size is linear in the plaintext
size. That is, |ct| = poly(λ) · |m| where ct← Enc(pk, m).

Ostrovsky et al. [OPP14] showed that any compact FHE scheme can be converted to one that satisfies malicious
circuit privacy using statistically sender private OT and Brakerski and Dottling [BD18] showed how to achieve
statistically sender private OT from the Learning With Errors (LWE) assumption. Also, the resulting scheme retains the
linear efficiency property of the underlying compact FHE scheme. Since compact FHE with linear efficiency can also
be constructed from LWE [GSW13], we obtain the following:

Theorem 2.10 ([OPP14, BD18, GSW13]). There exists a malicious circuit-private compact fully homomorphic
encryption scheme with linear efficiency from the polynomially hard learning with errors (LWE) assumption.

2.4 Reusable, Dynamic MPC Protocol
Here we provide the definition of a reusable, dynamic multi-party computation (RDMPC) protocol, adapting the syntax
from [AMVY21], for circuit class Cinp consisting of circuits with input length inp = inp(λ). The protocol is further
associated with polynomial functions N = N(λ, Q), n = n(λ, Q), and t = t(λ, Q).

CktEnc(1λ, 1Q, 1inp, C)→ (Ĉ1, . . . , ĈN). The circuit encoding algorithm takes as input the security parameter λ, the
number of sessions Q, input length of circuit inp, and a circuit C ∈ Cinp. It then outputs an encoding (Ĉ1, . . . , ĈN)
of the circuit C.

InpEnc(1λ, 1Q, 1inp, x)→ x̂. The input encoding algorithm takes as input the security parameter λ, the number of
sessions Q, input length of circuit inp, and an input x ∈ {0, 1}inp. It then outputs an encoding x̂ of the input x.

Local(Ĉu, x̂)→ ŷu. The local computation algorithm takes as input the u-th encoding Ĉu of C and an encoding x̂ of x
and outputs ŷu. We assume that this algorithm is deterministic.

Decode({ŷu}u∈S, S)→ z. The decoding algorithm takes as input a set of encodings {ŷu}u∈S and a set S ⊆ [N] and
outputs z.

Definition 2.11 (Correctness). An RDMPC protocol with parameter (N, n, t) is correct if for all inp ∈N, x ∈ {0, 1}inp,
C ∈ Cinp, and set S ⊂ [N] of size n, we have

Pr

 (Ĉ1, . . . , ĈN)← CktEnc(1λ, 1Q, 1inp, C),
x̂ ← InpEnc(1λ, 1Q, 1inp, x),

Decode
({

Local(Ĉu, x̂)
}

u∈S
, S

)
= C(x)

 = 1

where probability is taken over the random coins of CktEnc, InpEnc and Decode.

Definition 2.12 (Security). For a RDMPC protocol for the circuit family Cinp with parameter (N, n, t), a stateful
PPT adversary A, a simulator Sim = (Sim0, Sim1), and a coin β ∈ {0, 1} consider the following experiment
ExptRDMPC

β,A (1λ):

1. Setup phase: On input 1λ, A submits the query bound 1Q and input length 1inp of the circuits to the challenger.
Note that this defines the total number of parties N = N(λ, Q), number of parties n = n(λ, Q) participating
in any session, threshold t = t(λ, Q). The adversary A also chooses Scrr ⊂ [N] of size at most t and sets
∆(1), . . . , ∆(Q) ⊆ [N] such that |∆(i)| = n and submits it to the challenger.
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2. Query phase: During the game, A is allowed to make a total of Q input encoding queries. First, it makes
R1 ≤ Q adaptive input encoding queries. Namely, when A makes the i-th input encoding query x(i) with i ≤ Q,
the challenger runs x̂(i) ← InpEnc(1λ, 1Q, 1inp, x(i)) and returns x̂(i) to A.

3. Challenge phase: During the game, A is allowed to make single circuit encoding query. When A submits a
circuit C ∈ Cinp, the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs (Ĉ1, . . . , ĈN) ← CktEnc(1λ, 1Q, 1inp, C) and returns({
Ĉj

}
j∈Scrr

,
{

Local(Ĉj, x̂(i))
}

i∈[R1],j∈∆(i)

)
to A .

• Ideal World. If β = 1, we define V as V = {C(x(i)), x(i)}i∈[R1]
. Then, the simulator is run as(

st,
{

Ĉj

}
j∈Scrr

,
{

ŷ(i)j

}
i∈[R1],j∈∆(i)

)
← Sim0(1|C|, Scrr,V) and the output is returned to A. Here, st is

the internal state of the simulator.

4. Query phase: A then makes R2 ≤ Q− R1 input encoding queries. When A submits an input x(i) ∈ {0, 1}inp,
the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs x̂(i) ← InpEnc(1λ, 1Q, 1inp, x(i)) and returns
(

x̂(i),
{

Ĉj(x̂(i))
}

j∈∆(i)

)
to A.

• Ideal World. If β = 1, we run the simulator as
(

x̂(i),
{

ŷ(i)j

}
j∈∆(i)

)
← Sim1(st, ∆(i), C(x(i)), x(i)) and

returns the output to A.

5. Output phase: A outputs a guess bit β′ as the output of the experiment.

We say that an RDMPC protocol is secure if for every adversary A, there exists a PPT simulator Sim such that

AdvRDMPC
A (λ) =

∣∣∣Pr
[
ExptRDMPC

0,A (1λ) = 1
]
− Pr

[
ExptRDMPC

1,A (1λ) = 1
]∣∣∣ ≤ negl(λ).

Theorem 2.13 (Adapted from [AV19]). Assuming the existence of one-way functions, there exists an RDMPC protocol
with parameter N = Θ(Q2λ), t = Θ(Qλ), and n = Θ(t) for Cinp with any inp = poly(λ).

2.5 Hash Encryption
Here we provide the definition of a hash encryption (HE) scheme from [DGHM18].
A HE scheme consists of four algorithms (Gen, Hash, Enc, Dec) with the following syntax.

Gen(1λ, m)→ key. The generation algorithm takes as input the security parameter, input parameter m and outputs a
key key,

Hash(key, x)→ h. The hashing algorithm takes as input a key key, an input x ∈ {0, 1}m and outputs a hash value h
of λ bits.

Enc(key, (h, i, c), µ)→ ct. The encryption algorithm takes as input a key key, a hash value h, an index i ∈ [m], a bit
c ∈ {0, 1}, and a message µ ∈ {0, 1}∗ and outputs a ciphertext ct.

Dec(key, x, ct)→ µ′. The decryption algorithm takes as input a key key, an input x ∈ {0, 1}m, and a ciphertext ct
and outputs µ′ ∈ {0, 1}∗ ∪ {⊥}.

Definition 2.14 (Correctness). A HE scheme is said to be correct if for any input x ∈ {0, 1}m and index i ∈ [m], the
following holds

Pr[Dec(key, x, Enc(key, (Hash(key, x), i, x[i]), µ)) = µ] ≥ 1− negl(λ)
where x[i] denotes the i-th bit of x and the randomness is taken over key← Gen(1λ, m).
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Definition 2.15 (Semi-Honest Security). For a HE scheme and an adversary A, we consider the following experiment
ExptHE

β,A(1
λ).

1. A outputs an input x ∈ {0, 1}m.

2. The challenger generates key← Gen(1λ, m) using some randomness R and sends key to A.

3. A outputs an index i ∈ [m], c ∈ {0, 1}, such that xi ̸= c and two messages µ0, µ1.

4. The challenger samples β← {0, 1} and returns ctβ to A where ctβ ← Enc(key, Hash(key, x), i, c), µβ).

5. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvHE
A (λ) of A in the above game as

AdvHE
A (λ) :=

∣∣∣Pr
[
ExptHE

0,A(1
λ) = 1

]
− Pr

[
ExptHE

1,A(1
λ) = 1

]∣∣∣ .

We say that a HE scheme is selectively secure if for any PPT adversary A, AdvHE
A (λ) ≤ negl(λ).

Definition 2.16 (Succinctness). We say that a HE scheme is succinct if |key| = poly(λ), where key← Gen(1λ, m),
i.e., the size of key is independent of the size of input x ∈ {0, 1}m.

Definition 2.17 (Semi-Malicious security). We say that a HE scheme satisfies semi-malicious security if it is secure
in the above sense even if the random coins R used by the challenger to generate key in Step 2 are provided by the
adversary in Step 1.

Theorem 2.18 ([DGHM18]). There exists a HE scheme satisfying semi-honest security assuming learning with errors
(LWE).

Remark 2.19 (Multi-challenge Security). We note that a security game where an adversary can adaptively send
polynomially many challenge queries {i, µ

(i)
0 , µ

(i)
1 }, for a single challenge input string x, is implied by the single-

challenge query security game as defined above via a simple hybrid argument. In the argument we can consider
polynomially many single-challenge security sub-hybrids, one for each query.

2.6 Garbling Scheme
Here we provide the definition of a garbling scheme for circuit class C = {C : {0, 1}ℓin → {0, 1}ℓout}. A garbling
scheme for circuit class C consists of a pair of algorithms (Garble, Eval) with the following syntax.

Garble(1λ, C) → (C̃, lb). The garbling algorithm takes as input the security parameter λ and a circuit C ∈ C, and
outputs a garbled circuit C̃ and a set of labels lb = {lbi,b}i∈[ℓin],b∈{0,1}.

Eval(C̃, lbx)→ y. The evaluation algorithm takes as input the garbled circuit C̃ and labels corresponding to an input
x ∈ {0, 1}ℓin , lbx = {lbi,xi}i∈[ℓin] where xi denotes the i-th bit of x, and it outputs y ∈ {0, 1}ℓout .

A garbling scheme satisfies the following properties.

Definition 2.20 (Correctness). A garbling scheme is said to be correct if for any circuit C ∈ C and any input
x ∈ {0, 1}ℓin , the following holds

Pr
[

y = C(x) : (C̃, lb)← Garble(1λ, C); y← Eval(C̃, lbx)
]
= 1.

Definition 2.21 (Security). A garbling scheme is secure if there exists a PPT simulator SIM such that for any circuit
C ∈ C and any input x ∈ {0, 1}ℓin , the following holds

{(C̃, lbx) | (C̃, lb)← Garble(1λ, C)} ≈c {(C̄, ¯lb) | (C̄, ¯lb)← SIM(1λ, C(x))}

where lb = {lbi,b}i∈[ℓin],b∈{0,1} and lbx = {lbi,xi}i∈[ℓin].
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Remark 2.22 (Multi-challenge Security). Similar to Remark 2.19, we note that the above security definition implies
multi-challenge security of a garbled circuit scheme, where the adversary can adaptively make polynomial number of
garbling queries to the challenger,i.e., adversary can query (C1, x1) and receive (C̃1, lbx1), then query (C2, x2), and so
forth. All queries are answered by honestly using Garble algorithm in the real world whereas they are all simulated in
the ideal world.

We provide some additional preliminaries in Appendix A.

3 Pre-Constrained Encryption
3.1 Definition
A pre-constrained encryption (PCE) scheme for a circuit family CL = {C : {0, 1}L → {0, 1}}, consisting of circuits
with input length L = L(λ), and message spaceM = {0, 1}L consists of three algorithms (Setup, Enc, Dec) with the
following syntax.

Setup(1λ, C)→ (pk, sk). The setup algorithm takes as input the security parameter, a circuit C ∈ CL and outputs a
public key pk and a secret key sk.

Enc(pk, x) → ct. The encryption algorithm takes as input the public key pk, a message x ∈ M and outputs a
ciphertext ct.

Dec(sk, ct)→ y. The decryption algorithm takes as input the secret key sk and a ciphertext ct and outputs a string
y ∈ M∪ {⊥}.

Next, we define the properties of a pre-constrained encryption scheme.

Definition 3.1 (Correctness). A PCE scheme is said to be correct if for any C ∈ CL, (pk, sk) ← Setup(1λ, C) and
x ∈ M such that C(x) = 1, the following holds

Pr[Dec(sk, Enc(pk, x)) = x] ≥ 1− negl(λ).

If correctness holds with probability 1, the scheme is said to satisfy perfect correctness.

Definition 3.2 (Constraint-Hiding). A PCE scheme is said to satisfy constraint-hiding security if for any PPT adversary
A the following holds

Pr
[
A(pkβ) = β : (C0, C1)← A;

β← {0, 1}; (pkβ, sk)← Setup(1λ, Cβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if |C0| = |C1| and C0, C1 ∈ CL.

Definition 3.3 (Security against Semi-Honest Authority). A PCE scheme is said to satisfy security against the
semi-honest authority if for any PPT and admissible adversary A, the following holds

Pr

 A(r, pk, sk, ctβ) = β :
C ← A; (pk, sk)← Setup(1λ, C; r)
(x0, x1)← A(r, pk, sk);
β← {0, 1}; ctβ ← Enc(pk, xβ)

 ≤ 1
2
+ negl(λ)

where A is admissible if and x0, x1 ∈ M and C(xb) = 0 for b ∈ {0, 1}.

Definition 3.4 (Unconditional Security against Semi-Honest Authority). We say that a PCE scheme satisfies
unconditional security against a semi-honest authority if the above holds for any (unbounded) admissible adversary A.

Definition 3.5 (Security against Semi-Malicious Authority). We say that a PCE scheme satisfies (computa-
tional/unconditional) security against a semi-malicious authority exactly as (Definition 3.3/3.4) except that in the
beginning of the game A outputs the challenge circuit C ∈ CL as well as randomness r ← {0, 1}poly(λ).
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Definition 3.6 (Security against Malicious Authority). A PCE scheme is said to satisfy security against malicious
authority if there exists an admissible (possibly inefficient) extractor Ext such that for any non-uniform (stateful) PPT
and admissible adversary A, the following holds

Pr
[
A(ctβ) = β : (pk, x0, x1)← A;

β← {0, 1}; ctβ ← Enc(pk, xβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if (i) C ∈ CL where C ← Ext(1λ, pk), and (ii) C(xβ) = 0 for β ∈ {0, 1}. We say that Ext is
admissible if for every C ∈ CL and randomness r, we have that C = C′, where (i) (pk, sk)← Setup(1λ, C; r) and (ii)
C′ ← Ext(1λ, pk).
Definition 3.7 (Unconditional Security against Malicious Authority). We say that a PCE scheme satisfies unconditional
security against a malicious authority if the above holds for any (unbounded) admissible adversary A.

Definition 3.8 (Security against Outsiders). A PCE scheme is said to satisfy security against outsiders if for any PPT
adversary A, any x0, x1 ∈ M, any C ∈ CL, the following holds

Pr

 β′ = β :
(pk, sk)← Setup(1λ, C);
β← {0, 1}; ctβ ← Enc(pk, xβ);
β′ ← A(pk, ctβ)

 ≤ 1
2
+ negl(λ).

We note that if a PCE scheme satisfies constraint-hiding and security against a semi-honest authority, then it also
satisfies security against outsiders.

Lemma 3.9. If PCE is constraint-hiding and secure against a semi-honest authority, PCE is also secure against outsiders.

Proof Sketch. Recall that in the security against outsiders we prove that Enc(pk, x0) ≈c Enc(pk, x1) where pk ←
Setup(1λ, C) for any circuit C and messages x0, x1 ∈ M. To prove this, we define the first hybrid game as follows.
We change the circuit C to C0 where C0(y) = 0 for any y ∈ {0, 1}L. By the constraint-hiding property of the PCE
scheme, the first hybrid game is indistinguishable from the original game where x0 is encrypted. Next, we define the
second hybrid game as follows. We encrypt x1 instead of x0. By the security against the semi-honest authority, it holds
Enc(pk, x0) ≈c Enc(pk, x1) and the first and second games are indistinguishable since C0(x0) = 0 = C0(x1). The
second hybrid game is indistinguishable from the original game where x1 is encrypted due to the constraint-hiding
property. Thus, we obtain the lemma.

Special case PCE. We also consider a special case of PCE, for circuit class CL = {C : {0, 1}L → {0, 1}}, attribute
space {0, 1}L and message spaceM.

Definition 3.10. In a special case of PCE, we split the plaintext into two parts: an attribute x ∈ {0, 1}L and a message
m ∈ M. For correctness, we want that Dec(sk, Enc(pk, (x, m))) = m if C(x) = 1. The security requirements are
similar to those defined in Section 3, except that if the scheme does not hide the attribute then we refer to the security
against authority/outsiders as message-hiding security against authority/outsider.

3.2 PCE from SSP-OT and Garbled Circuits
In this section we construct a PCE scheme satisfying computational security against a malicious authority for the circuit
class CL = {C : {0, 1}L → {0, 1}} and a message spaceM = {0, 1}L. For a circuit C ∈ CL, we denote the circuit C
using a binary string of length ℓ.

Building blocks. We use the following ingredients for our construction.

1. A garbling scheme GC = (GC.Garble, GC.Eval) for universal circuit U[x], with x ∈ M hardwired, that takes as
input a circuit from circuit class CL. This can be instantiated from Yao’s scheme [Yao82], which can be based on
any one way function.

2. A two-message SSP-OT scheme OT = (OTR, OTS, OTD) with input space as the space of labels of the above
garbled circuit scheme. This can be instantiated from a wide variety of assumptions as discussed in Section 2.2.
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Construction. We describe our construction below.

Setup(1λ, C)→ (pk, sk). The setup algorithm does the following.

− Parse C as an ℓ bit string and let C[i] denote the i-th bit of C.
− For i = 1, · · · , ℓ, compute (ot1,i, sti)← OTR(1λ, C[i]).
− Output pk = {ot1,i}i∈[ℓ] and sk = {sti, C[i]}i∈[ℓ].

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Define the circuit U[x], with x hardwired, as follows :
On input a circuit C, U[x](C) = x if C(x) = 1 and ⊥ if C(x) = 0.5

− Compute (Ũ, {lbi,b}i∈[ℓ],b∈{0,1})← GC.Garble(1λ, U[x]).
− Parse pk = {ot1,i}i∈[ℓ]

− Compute ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all i ∈ [ℓ].
− Output ct = (Ũ, {ot2,i}i∈[ℓ]).

Dec(sk, ct)→ y. The decryption algorithm does the following.

− Parse sk = {sti, C[i]}i∈[ℓ] and ct = (Ũ, {ot2,i}i∈[ℓ]).

− For i = 1, · · · , ℓ, compute lb′i = OTD(1λ, C[i], sti, ot2,i).
− Compute y← GC.Eval(Ũ, {lb′i}i∈[ℓ]).
− Output y.

Theorem 3.11. (Correctness.) Suppose the OT scheme and the GC scheme satisfy correctness as defined in Definition 2.2
and Definition 2.20, respectively. Then the PCE construction satisfies perfect correctness as defined in Definition 3.1.

Proof. We note that for any ct← Enc(pk, x), we have ct = (Ũ, {ot2,i}i∈[ℓ]), where (Ũ, {lbi,b})← GC.Garble(1λ, U[x])
and ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for i ∈ [ℓ]. By the correctness of the OT scheme we have for all i ∈ [ℓ],
OTD(1λ, C[i], sti, ot2,i) = lbi,C[i] with probability 1. Also, from the correctness of the GC scheme it follows that
GC.Eval(Ũ, {lbi,C[i]}i∈[ℓ]) = U[x](C) with probability 1.
Now, if C(x) = 1, we get U[x](C) = x with probability 1. Hence the scheme is perfectly correct.

Constraint-hiding. Constraint-hiding directly follows from the receiver security of the underlying OT scheme since
the public key consists of OT messages encoding the bits of the receiver. We prove it formally in Theorem B.1.

Security against malicious authority. This follows from the statistical sender security of the underlying OT scheme
and the simulation security of GC scheme.

Theorem 3.12. Suppose the OT scheme satisfies statistical sender-privacy (Definition 2.4) and the GC scheme satisfies
simulation security (Definition 2.21). Then the construction of the PCE scheme satisfies security against a malicious
authority (Definition 3.6).

Proof. Recall that to prove security against a malicious authority, we want

Enc(pk, x0) ≈c Enc(pk, x1)

where C(x0) = C(x1) = 0, for the circuit C associated with the, possibly malformed, public key pk.
Here we let the extractor Ext of PCE to be the extractor OT.Ext of the underlying statistically sender private OT scheme.
The admissibility of the Ext follows from the admissibility of OT.Ext. The proof proceeds via the following sequence
of hybrid games between the challenger and a non-uniform PPT adversary A.

5Here, ⊥ is a fixed special string. We set ⊥ = 0ℓ.
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Hyb0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the input x0. We write the
complete game here to set up the notations and easy reference in later hybrids.

1. A outputs a public key pk and two inputs x0, x1 ∈ {0, 1}L where |x0| = |x1|.
2. The challenger defines the circuit U[x0] as in the construction and computes (Ũ, {lbi,b}i∈[ℓ],b∈{0,1}) ←

GC.Garble(1λ, U[x0]). It parses pk = {ot1,i}i∈[ℓ] and computes ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all
i ∈ [ℓ]. It sets ct = (Ũ, {ot2,i}) and returns ct to A.

3. A outputs a guess bit β′.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes ot2,i differently, i.e., ot2,i ←
OTS(1λ, lbi,b, lbi,b, ot1,i) for all i ∈ [ℓ], where b = OT.Ext(ot1,i) and OT.Ext is the extractor in the statistical
sender private security of the OT scheme.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and
the labels differently using GC.Sim, i.e., (Ũ, {lbi}i∈[ℓ]) ← GC.Sim(1λ, U[x0](C)) where C = C[1] . . . C[ℓ];
C[i] = OT.Ext(ot1,i) for i ∈ [ℓ].

Hyb3. This hybrid is same as the previous hybrid except that the challenger runs the GC.Sim on U[x1](C), i.e.,
(Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, U[x1](C)).

Hyb4. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and the labels
honestly for the circuit U[x1], i.e., (Ũ, {lbi,b}i∈[ℓ],b∈{0,1})← GC.Garble(1λ, U[x1]).

Hyb5. This hybrid is same as the previous hybrid except that the challenger computes ot2,i honestly, i.e., ot2,i ←
OTS(lbi,0, lbi,1, ot1,i). This is the real world with β = 1.

Indistinguishability of hybrids. We prove the indistinguishability of the above hybrids in Appendix B.1

Security against outsiders. This follows from Lemma 3.9.

We observe that the PCE construction can achieve unconditional security against a malicious authority if we restrict
the circuit class to NC1.

Lemma 3.13. Using an information theoretic version of Yao’s garbled circuit [IK02], efficient for NC1, and a statistically
sender private OT scheme, we can achieve unconditional security against a malicious authority for PCE scheme for
circuits in NC1.

3.3 PCE with Unconditional Security from FHE
In this section we provide our construction of a PCE scheme, for circuit family CL = {C : {0, 1}L → {0, 1}} and a
message spaceM = {0, 1}L, satisfying unconditional security against a malicious authority. For a circuit C ∈ CL, we
denote the circuit C using a binary string of length ℓ.

Building block. We use a FHE scheme FHE = FHE.(KeyGen, Enc, Eval, Dec) satisfying malicious circuit privacy.
This can be instantiated from LWE (Theorem 2.10).

Construction. We describe our PCE construction below.

Setup(1λ, C)→ (pk, sk). The setup algorithm does the following.

− Generate (FHE.pk, FHE.sk)← FHE.Gen(1λ).
− Parse C as an ℓ bit string and compute FHE.ctC ← FHE.Enc(FHE.pk, C).
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− Output pk = (FHE.pk, FHE.ctC) and sk = FHE.sk.

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Parse pk = (FHE.pk, FHE.ctC).
− Let G[x] : {0, 1}ℓ → {0, 1}L be a circuit with x hardwired defined as:

On input a circuit C, G[x](C) = x if C(x) = 1, else it outputs ⊥6.
− Compute FHE.ct← FHE.Eval(FHE.pk, G[x], FHE.ctC)

− Output ct = FHE.ct.

Dec(sk, ct)→ y. The decryption algorithm does the following.

− Parse sk = FHE.sk and ct = FHE.ct.
− Return FHE.Dec(FHE.sk, FHE.ct).

Theorem 3.14. (Correctness.) Suppose the FHE scheme is correct. Then the PCE construction satisfies perfect
correctness as defined in Definition 3.1.

Proof. Note that for any ciphertext ct← Enc(pk, x), we have ct = FHE.ct, where FHE.ct← FHE.Eval(FHE.pk, G[x],
FHE.ctC). Also, for any key-pair (pk, sk) ← Setup(1λ, C), we have pk = (FHE.pk, FHE.ctC) and sk = FHE.sk,
where (FHE.pk, FHE.sk) ← FHE.Gen(1λ) and FHE.ctC ← FHE.Enc(FHE.pk, C). So, from the correctness of the
Eval algorithm of FHE scheme, we have

FHE.Dec(FHE.sk, FHE.ct) = G[x](C)

with probability 1. Now, if C(x) = 1, then Dec(sk, ct) = FHE.Dec(FHE.sk, FHE.ct) = x with probability 1. Hence
the construction satisfies correctness.

Constraint-hiding. This follows immediately from the semantic security of underlying FHE. We prove it formally
using the following theorem.

Theorem 3.15. Assume that the FHE scheme satisfies semantic security ( Definition 2.6). Then the construction of the
PCE scheme satisfies constraint-hiding ( Definition 3.2).

Proof. Recall that to show constraint-hiding, we want

{pk | (pk, sk)← Setup(1λ, C0)} ≈c {pk | (pk, sk)← Setup(1λ, C1)}

for any circuits C0, C1 ∈ CL. We show that if there exists a PPT adversary A who can distinguish between the above
two distributions with non-negligible advantage ϵ, then there exists a PPT adversary B against the semantic security of
the FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge circuits C0, C1 such that C0, C1 ∈ CL.

2. B parses C0 and C1 as an ℓ bit string and forwards it to the FHE challenger as challenge inputs. The
FHE challenger generates (FHE.pk, FHE.sk) ← FHE.Gen(1λ), samples β ← {0, 1}, computes FHE.ctβ ←
FHE.Enc(FHE.pk, Cβ), and returns FHE.pk and FHE.ctβ to B.

3. B sets pk = (FHE.pk, FHE.ctβ) and forwards it to A.

4. In the end A outputs a bit β′. B forwards β′ to the FHE challenger.

We observe that if the FHE challenger samples β = 0, thenB simulated the distribution D0 = {pk|pk← Setup(1λ, C0)}
, else D1 = {pk|pk← Setup(1λ, C1)} withA. Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| =
|Pr(β′ = 1|D0)− Pr(β′ = 1|D1)| = ϵ (by assumption).

6We note that ⊥ is a fixed special string. We set ⊥ = 0ℓ, which lies in the output space of the circuit G[x].
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Unconditional security against malicious authority. This follows from the malicious circuit privacy property of
the underlying FHE. Recall that maliciously circuit-private FHE [OPP14] ensures that even for possibly malformed
pk∗, ct∗, there exists m∗ such that for all G, Sim(G(m∗)) is statistically indistinguishable from FHE.Eval(pk∗, G, ct∗).

Thus, if the challenge circuit C∗ satisfies C∗(xβ) = 0 for β ∈ {0, 1}, and if ct∗ is the (possibly malicious)
encryption of C∗, then the challenge ciphertext FHE.Eval(pk∗, G[xβ], ct∗) is statistically indistinguishable from
Sim(G[xβ](C)) = Sim(⊥) which is clearly independent of xβ and hence the challenge bit β. We prove this formally
below.

Theorem 3.16. Assume that the FHE scheme satisfies unconditional malicious circuit privacy (Definition 2.7). Then
the construction of the PCE scheme satisfies unconditional security against a malicious authority (Definition 3.7).

Proof. Recall that to show unconditional security against a malicious authority, we want

Enc(pk, x0) ≈s Enc(pk, x1)

where C(x0) = C(x1) = 0, for the circuit C associated with the, possibly malformed, public key pk.
Here we let the extractor Ext of PCE to be the extractor of the underlying malicious circuit private FHE. The admissibility
of the Ext follows from the admissibility of FHE extractor. The proof proceeds via the following sequence of hybrid
games between the challenger and an unbounded adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the input x0. We write the
complete game here to set up the notations and easy reference in later hybrids.

1. The adversary outputs a public key pk and two inputs x0, x1 ∈ {0, 1}L where |x0| = |x1|.
2. The challenger parses pk = (FHE.pk, FHE.ctC), defines G[x0] as in the construction, and computes

FHE.ct← FHE.Eval(FHE.pk, G[x0], FHE.ctC). It sets ct = FHE.ct, and returns ct to the adversary.
3. The adversary outputs a guess bit β′.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes FHE.ct as

FHE.ct← FHE.Sim(FHE.pk, FHE.ctC, G[x0](C))

where C = FHE.Ext(FHE.pk, FHE.ctC).

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes FHE.ct as

FHE.ct← FHE.Sim(FHE.pk, FHE.ctC, G[x1](C)).

Hyb3. This hybrid is same as the previous hybrid except that the challenger computes FHE.ct as

FHE.ct← FHE.Eval(FHE.pk, G[x1], FHE.ctC)

where G[x1] is as defined in the construction.
This is the real world with β = 1.

Indistinguishability of hybrids. We now show that the consecutive hybrids are indistinguishable.

Claim 3.17. Assume that FHE satisfies malicious circuit privacy, then Hyb0 ≈s Hyb1.

Proof. We show that if there exists an unbounded adversary A who can distinguish between Hyb0 and Hyb1 with
non-negligible advantage ϵ, then there exists an unbounded adversary B against the malicious circuit privacy security of
FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs a public key pk and two inputs x0, x1.
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2. B parses pk = (FHE.pk, FHE.ctC) and defines the circuit G[x0] as in the Enc algorithm. It sends FHE.pk,
FHE.ctC and G[x0] as the challenge query to the FHE challenger. The FHE challenger computes C =
FHE.Ext(FHE.pk, FHE.ctC) and returns FHE.ctβ∗ toB, where FHE.ct0 ← FHE.Eval(FHE.pk, G[x0], FHE.ctC)
and FHE.ct1 ← FHE.Sim(FHE.pk, FHE.ctC, G[x0](C)).

3. B sets and forwards ct = FHE.ctβ∗ to A.

4. In the end, A outputs a bit β′. B sends β′ to the FHE challenger.

We observe that if the FHE challenger samples β∗ = 0, then B simulated Hyb0, else Hyb1 withA. Hence, advantage of
B = |Pr(β′ = 1|β∗ = 0)− Pr(β′ = 1|β∗ = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

We note that Hyb1 = Hyb2. By the admissibility ofA, we have C(x0) = C(x1) = 0 and thus G[x0](C) = G[x1](C) =
⊥.
Also, we note that Hyb2 ≈s Hyb3. The indistinguishability follows from the malicious circuit privacy of underlying
FHE scheme and the proof is similar to that of indistinguishability of Hyb0 and Hyb1, hence omitted.

Security against outsiders. This follows from Lemma 3.9.

PCE for Database with Unconditional Security from SSP-OT. We also construct a PCE scheme that supports the
database checking constraint, for a database D ⊆ {0, 1}ℓ consisting of a single element, D = {y} and message space
M = {0, 1}len, satisfying unconditional security against a malicious authority using a two-message SSP-OT scheme.
For the database functionality, we need to consider special case PCE as described in Definition 3.10, where a plaintext
consists of two parts: attribute part x and message part m. We provide this construction in Appendix B.2.

Pre-Constrained Group Signatures from PCE. We observe that our PCE schemes can be used to achieve pre-
constrained group signatures for general constraints with simpler game based definitions as compared to the simulation
style definitions of [BGJP23] for database constraint. We give our definitions, constructions and security proof in
Appendix E.

4 Pre-Constrained Static Functional Encryption
We introduce pre-constrained static functional encryption (PCSFE) in this section. This notion is a relaxation of
pre-constrained FE introduced by Ananth et al. [AJJM22]. The big difference is that our PCSFE does not have a
delegation mechanism. Although we can generate functional decryption keys, all functions are fixed at the setup phase.

4.1 Definition
A pre-constrained static functional encryption scheme (PCSFE) for a function family F = { f : X → Y} with input
space X and output space Y consists of three algorithms (Setup, Enc, Dec) defined as follows.

Setup(1λ, { f1, . . . , fQ}) → (pk, sk f1 , . . . , sk fQ). The setup algorithm takes as input the security parameter λ, and
functions f1, . . . , fQ ∈ F , and returns the public key pk and secret keys sk f1 , . . . , sk fQ .

Enc(pk, x) → ct. The encryption algorithm takes as input the public key pk and an input x ∈ X , and outputs a
ciphertext ct.

Dec(sk, ct)→ y. The decryption algorithm takes as input a secret key sk and a ciphertext ct, and outputs y ∈ Y .

Definition 4.1 (Correctness). A PCSFE scheme is said to be correct if for any f ∈ F and x ∈ X , the following holds

Pr
[
Dec(sk fi

, Enc(pk, x)) = fi(x)
]
≥ 1− negl(λ)
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where i ∈ [Q] and (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}).

If correctness holds with probability 1, the scheme is said to be perfectly correct.

Definition 4.2 (Function-Hiding). A PCSFE scheme is said to satisfy function-hiding security if for any PPT adversary
A, the following holds

Pr

 A(pkβ) = β :
{( f 0

1 , f 1
1 ), . . . , ( f 0

Q, f 1
Q)} ← A;

β← {0, 1};
(pkβ, skβ

f1
, . . . , skβ

fQ
)← Setup(1λ, { f β

1 , . . . , f β
Q});

 ≤ 1
2
+ negl(λ)

where A is admissible if | f 0
i | = | f

1
i | and f 0

i , f 1
i ∈ F for all i ∈ [Q].

Definition 4.3 (SIM Security Against Semi-Malicious Authority). For a PCSFE scheme, an adversary A and a PPT
simulator SIM we define the experiment for security against semi malicious authority ExptSMS

β,A (1λ) as follows.

1. A outputs functions { f1, . . . , fQ} and randomness r ∈ {0, 1}λ.

2. On input 1λ, { f1, . . . , fQ} and randomness r, the challenger generates (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}; r).
It sends the public key pk to A.

3. A outputs x. the challenger samples β ← {0, 1}. If β = 0, it computes ct0 ← Enc(pk, x) else if β = 1, it
computes ct1 ← SIM(pk, 1|x|, { f1(x), . . . , fQ(x)}). It sends ctβ to A.

4. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvSMS
A (λ) of A in the above game as

AdvSMS
A (λ) :=

∣∣∣Pr
[
ExptSMS

0,A (1λ) = 1
]
− Pr

[
ExptSMS

1,A (1λ) = 1
]∣∣∣ .

We say that a PCSFE scheme satisfies security against a semi malicious authority if there exists a PPT simulator SIM
such that for every PPT adversary A, we have AdvSMS

A (λ) ≤ negl(λ).

Definition 4.4 (Unconditional SIM Security against Semi-Malicious Authority). We say that a PCSFE scheme
satisfies unconditional simulation security against a semi malicious authority if there exists a PPT simulator SIM such
that for any (unbounded) adversary A, the advantage of AdvSMS

A (λ) of A (as defined in Definition 4.3) is negligible in
the security parameter.

Definition 4.3 is slightly strong compared with the simulation-based security of standard FE [GVW12] in the
sense that Sim takes only ( f1(x), . . . , fQ(x)). In the standard simulation-based security [GVW12], Sim can take
( f1(x), . . . , fQ(x)), ( f1, . . . , fQ), and (sk f1 , . . . , sk fQ). We consider this variant as a relaxed definition.

Definition 4.5 (Relaxed-SIM Security against a Semi-Malicious Authority). We define relaxed-SIM security
against a semi-malicious authority exactly as above except that the simulator SIM takes as input (pk, 1|x|,V) where
V =

{
fi(x), fi, sk fi

}
i∈[Q]

.

This relaxed definition is also meaningful since Sim does not use information about x beyond { fi(x)}i∈[Q] (and |x|).

Definition 4.6 (SIM Security against Malicious Authority). For a PCSFE scheme, an adversary A and a PPT
simulator Sim we define the experiment for security against malicious authority ExptMS

β,A(1
λ) as follows.

1. A outputs a public key pk and an input x.

2. The challenger samples a random bit β ← {0, 1}. If β = 0, it computes ct0 ← Enc(pk, x) else if β = 1, it
computes ct1 ← Sim(pk, 1|x|, f1(x), . . . , fQ(x)), where ( f1, . . . , fQ)← Ext(1λ, pk). It sends ctβ to A. Here
Ext is an extractor algorithm.
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3. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvMS
A (λ) of A in the above game as

AdvMS
A (λ) :=

∣∣∣Pr
[
ExptMS

0,A(1
λ) = 1

]
− Pr

[
ExptMS

1,A(1
λ) = 1

]∣∣∣ .

We say that a PCSFE scheme satisfies security against a malicious authority if there exists a PPT simulator Sim and an
admissible (possibly inefficient) extractor Ext such that for every PPT adversary A, we have AdvMS

A (λ) ≤ negl(λ).
We say that Ext is admissible if for every ( f1, . . . , fQ) and randomness r, we have that ( f1, . . . , fQ) = ( f ′1, . . . , f ′Q),
where (i) (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}; r) and (ii) ( f ′1, . . . , f ′Q)← Ext(1λ, pk).

Definition 4.7 (Unconditional SIM Security against Malicious Authority). We say that a PCSFE scheme satisfies
unconditional simulation security against a malicious authority if there exists a PPT simulator Sim such that for any
(unbounded) adversary A, the advantage of AdvMS

A (λ) of A (as defined in Definition 4.6) is negligible in the security
parameter.

Definition 4.8 (Security against Outsiders). A PCSFE scheme for function family F is said to satisfy security against
outsiders if for any PPT adversary A, any x0, x1 ∈ X , { f1, . . . , fQ} ∈ F , the following holds

Pr
[
A(pk, ctβ) = β : (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ});

β← {0, 1}; ctβ ← Enc(pk, xβ)

]
≤ 1

2
+ negl(λ).

Lemma 4.9. If a PCSFE scheme satisfies function-hiding and is secure against a (semi-malicious/malicious) authority,
then it is also secure against outsiders.

Proof. Recall that in the security against outsiders we prove that Enc(pk, x0) ≈c Enc(pk, x1) where pk ←
Setup(1λ, f1, . . . , fQ) for any functions ( f1, . . . , fQ) and inputs x0, x1 ∈ {0, 1}L. To prove this, we define the
first hybrid game as follows. We change functions fi to f0 for all i where f0(x) = 0 for any x ∈ {0, 1}L. By function-
hiding property of the PCSFE scheme, the first hybrid game is indistinguishable from the original game where x0 is
encrypted. Next we define the second hybrid game as follows. We encrypt x1 instead of x0. By the simulation security
against the malicious authority, it holds that Enc(pk, x0) ≈c Sim(pk, 1|x0|, { f0(x0), . . . , f0(x0)}). Since |x0| = |x1|
and f0(x0) = f0(x1) = 0, we have Sim(pk, 1|x0|, { f0(x0), . . . , f0(x0)}) = Sim(pk, 1|x1|, { f0(x1), . . . , f0(x1)}).
Again using the simulation security against the authority, we have Sim(pk, 1|x1|, { f0(x1), . . . , f0(x1)}) ≈c Enc(pk, x1).
The second hybrid game is indistinguishable from the original game where x1 is encrypted due to the function-hiding
property. Thus, we obtain the lemma.

Definition 4.10 (Succinct Public Key). We say that a PCSFE scheme has succinct public keys when the size of the
public key is sublinear in Q, that is |pk| = O(Q1−γ) for some 0 < γ < 1.

On non-trivial PCSFE. We observe that the notion of PCSFE is trivially achievable if both of the following properties
hold.

1. The public key size |pk| is linear in Q (i.e., non-succinct public keys).

2. The public key pk reveals the information about ( f1, . . . , fQ) (i.e., non-function-hiding).

We can easily achieve non-function-hiding PCSFE that does not have succinct public keys. The public key consists
of ( f1, . . . , fQ), and the encryptor computes and sends ( f1(x), . . . , fQ(x)) as the ciphertext. The notion is primarily
meaningful when the public key hides the functions, or (ideally) is sublinear in Q.
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4.2 Lower Bounds for Succinct PCSFE
We present lower bounds of PCSFE in this section. These lower bounds hold even for a weaker IND style security
definition provided below.

Definition 4.11 (IND Security against Malicious Authority). A PCSFE scheme is said to satisfy indistinguishability
against a malicious authority if for any PPT and admissible adversary A, the following holds

Pr
[
A(ctβ) = β : pk, (x0, x1)← A;

β← {0, 1}; ctβ ← Enc(pk, xβ)

]
≤ 1

2
+ negl(λ)

A is admissible if (i) f1, . . . , fQ ∈ F where ({ f1, . . . , fQ})← Ext(1λ, pk), where Ext is an extractor algorithm and
(ii) fi(x0) = fi(x1) for all i ∈ [Q].

We observe that for an indistinguishability-based security definition, if |ct| is sublinear in Q (we call it weakly
CT-collusion-succinct in this paper), PCSFE implies IO by known results (via [LPST16b]). In addition, this holds even
for security against semi-honest authority since the transformation from single-key weakly succinct PKFE to IO needs
the indistinguishability-based security for standard FE. Thus, we can say achieving PCSFE with succinct ciphertexts is
as hard as achieving IO. We formalise it using the following lemma

Lemma 4.12. If there exists a PCSFE scheme that supports all polynomial size circuits, satisfies indistinguishability
against semi-honest authority and the succinct ciphertexts property (i.e., |ct| is O(Q1−γ) for some 0 < γ < 1), there
exists IO for all polynomial size circuits.

Proof. To prove the lemma, it suffices to show that a PCSFE scheme with succinct ciphertext satisfying IND security
implies IO. We observe that

1. We can construct single-key weakly CT-succinct PKFE from Q-key weakly CT-collusion-succinct PCSFE via
the transformation by [KNT21, Section 4] (almost the same as [BV18, Section 4.2]). This transformation
works since weakly selective security for standard FE (both target plaintexts and functions are fixed at the
beginning of the game) is sufficient for our purpose. Note that the syntax of single-key PKFE by Bitansky and
Vaikuntanathan [BV18] is the same as single-key PCSFE. Although the transformation by Kitagawa et al. or
Bitansky and Vaikuntanathan is for weakly succinct schemes (i.e., the encryption circuit is weakly succinct), it
works for weakly CT-succinct schemes if the goal is weakly CT-succinct.)

2. We can construct single-key weakly succinct PKFE from single-key weakly CT-succinct and PKFE and the LWE
assumption via the transformation by [LPST16a]. This implies IO [BV18]. Or we can use output compressing
randomized encoding in the CRS model in [LPST16b]. We can construct weakly sublinear compact randomized
encoding scheme for Turing machines in the CRS model from single-key weakly CT-succinct and PKFE (note
that [LPST16b] calls weakly CT-succinct as weakly sublinear compact).

We also show that it is impossible to achieve PCSFE with succinct public key which is secure against a malicious
authority, using a natural incompressibility style argument inspired from [AGVW13]. Moreover, in our setting, the
impossibility holds even for the indistinguishability-based definition of PCSFE. We prove it using the following theorem.

Theorem 4.13. There does not exist a PCSFE scheme that supports all polynomial size circuits, satisfies indistinguisha-
bility against malicious authority, and whose public key size is O(Q1−γ) for some 0 < γ < 1 where Q is the number
of the functions used in the setup algorithm.

Proof. We consider the following constant function C[ρ] where a uniformly random string ρ← {0, 1}λ is hardwired.
The function C[ρ] takes x ∈ {0, 1}λ/2 as as input, and outputs ρ. Let Fc := {C[ρ] : {0, 1}λ/2 → {0, 1}λ}. Assume
that there exists a PCSFE scheme that is indistinguishable against malicious authority and has succinct public keys for
all polynomial size circuits. Then, there also exists such a PCSFE scheme that supports the function family Fc above.
This implies that there exists an adversaryA that outputs a public key pk and two inputs (x0, x1) ∈ ({0, 1}λ/2)2. There
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also exists a (possibly inefficient) extractor Ext that takes pk and outputs (C[ρ1], . . . , C[ρQ]). Note that it holds that
C[ρi](x0) = C[ρi](x1) for all i ∈ [Q]. The extractor can also compute ρi = C[ρi](x′) for all i ∈ [Q] where x′ is an
arbitrary input. Here, |pk| = O(Q1−γ) holds due the succinct public key property. That is, A compressed a uniformly
random Q× λ bit string into an O(Q1−γ) bit string since the extractor can recover a uniformly random Q× λ bit
string from pk, which is an O(Q1−γ) bit string. O(Q1−γ) is asymptotically smaller than Q× λ. This compression is
information theoretically impossible since the Kolmogorov complexity of a uniformly random Q× λ string is at least
Q× λ by the definition. Thus, the proof is concluded.

The high level idea is as follows. We consider uniformly random strings for functions fi. That is, for any input
x, fi[ρi](x) outputs ρi where ρi ∈ {0, 1}λ is uniformly random. The compressor is the malicious authority and
decompressor is the challenger in the malicious security game. In more detail:

1. The malicious authority A generates (pk, x)← A( f1, ..., fQ) from Q functions where |pk| is sublinear in Q. So
the size of (pk, x) is O(Q1−γ) + λ.

2. The challenger can reconstruct f1(x), ..., fQ(x) from pk and x by running the extractor. Note that such an extractor
exists since we assume malicious security7. In more detail, the challenger obtains ( f1, ..., . fQ)← Ext(pk) and
f1(x), ..., fQ(x).

3. The length of f1(x), ..., fQ(x) is λ×Q, which is asymptotically larger than O(Q1−γ) + λ.

4. This is impossible since f1(x), ..., fQ(x) are uniformly random strings. In more detail, the adversary compressed
random strings linear in Q into the short pk sublinear in Q, which is impossible.

4.3 PCSFE with Security against Malicious Authority
For security against a malicious authority, we achieve the following.

1. We can construct a PCSFE scheme for general constraints from a two-message SSP-OT scheme and GC scheme.
The construction is similar to that in Section 3.2. Please see Appendix C.1 for the details.

2. We can construct a PCSFE scheme for general constraints from a circuit-private FHE scheme, achieving
unconditional security against a malicious authority. The construction is similar to that in Section 3.3. Please see
Appendix C.2 for the details.

4.4 PCSFE with Succinct PK and Semi-Malicious Security in ROM
We must consider semi-malicious security to achieve succinct public keys due to the impossibility result in Section 4.2.
In this section we provide a two-step construction for PCSFE with succinct public keys, as follows.

• First we provide a PCSFE construction, with succinct public key, that does not achieve function-hiding (and
consequently security against outsiders).

• Next, we show how to compile the above PCSFE into a function-hiding PCSFE.

4.4.1 Construction without Function-Hiding.

Building blocks. We use the following ingredients for our construction.

1. A reusable, dynamic MPC protocol RDMPC = (CktEnc, InpEnc, Local, Decode) with N = Θ(R2λ), t =

Θ(Rλ), and and n = Θ(t). This can be instantiated from one way functions (Theorem 2.13). We use ℓ̂ to denote
the size of the output of InpEnc algorithm. We also denote the size of the circuit Local(Ĉj, ·) by ŝ(λ, |C|), where
Ĉj is the output of CktEnc on input a circuit C.

7The extractor may be inefficient but this does not affect the argument, which is information theoretic.

26



2. A garbled circuit scheme GC = (GC.Garble, GC.Eval) for circuit class C
ℓ̂
, where C

ℓ̂
is the set of all polynomial

size circuits with input length ℓ̂. 8

3. A hash encryption scheme HE = (HE.Gen, HE.Hash, HE.Enc, HE.Dec) for hash domain {−1, 0, 1}ℓ satisfying
succinctness and semi-malicious security. This can be instantiated using LWE in ROM (Appendix C.5).

Construction. We describe the construction of the succinct PCSFE scheme below.

Setup(1λ, { f1, . . . , fQ}). The setup algorithm does the following.

1. For each fi, where i ∈ [Q], do the following.
(a) Parse fi as an ℓ bit string.
(b) Compute f̂i ← InpEnc(1λ, 1ℓ, fi) and let | f̂i| = ℓ̂.

2. For each i ∈ [Q], sample random set ∆(i) ⊂ [N] such that |∆(i)| = n.
If
∣∣∣⋃i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)∣∣∣ > t, abort.

3. For i ∈ [Q], let Si = {(i, j, k, f̂i[k])}j∈∆(i),k∈[ℓ̂], where f̂i[k] is the k-th bit of f̂i. Set S := ∥i∈[Q]Si.

4. Let str be a binary string of length with ℓ = Q · N · ℓ̂, indexed as (i, j, k), for i ∈ [Q], j ∈ [N] and k ∈ [ℓ̂],
where

stri,j,k =


1, if (i, j, k, 1) ∈ S
0, if (i, j, k, 0) ∈ S
−1, if j /∈ ∪i∈[Q]∆(i)

5. Generate key← HE.Gen(1λ, ℓ) and compute hstr ← HE.Hash(key, str).
6. Output pk = (key, hstr) and for i ∈ [Q],

sk fi
=

(
i, ∆(i), f̂i

)
. (1)

Enc(pk, x, 1Q). On input the public key pk = (key, hstr), an input x and the query bound 1 ≤ Q ≤ 2λ in unary form,
do the following.

1. Define circuit Cx, which on input a function f , outputs f (x).

2. Compute (Ĉi,1, . . . , Ĉi,N)← CktEnc(1λ, 1λ, 1ℓ, Cx) for i ∈ [Q].

3. Define the circuit Li,j(·) := Local(Ĉi,j, ·) with input length ℓ̂.
For all i ∈ [Q] and j ∈ [N], do the following.
(a) Run the garbling algorithm({

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute 9

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k,b).

8For the ease of notations, we will use the syntax of the garbling scheme by [AMVY21], where the output of the Garble algorithm and the input to
the Eval algorithm consists of only labels. This can be shown equivalent to the standard syntax (Section 2.6), by including the garbled circuit into a
label.

9Note that we do not generate any ciphertext for b = −1, as it is not required for the functionality of our scheme. We want to recover the labels
labi,j,k,b when stri,j,k = b using the secret key as generated in the setup phase and we set stri,j,k = −1 only when j /∈ ∪i∈[Q]∆(i), i.e., for those
j ∈ [N] which is not a part of any of the secret keys. So, we do not need HE.ct corresponding to b = −1.
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4. Output

ct =
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

. (2)

Dec(ct, sk, 1Q). On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ in unary form, do the
following.

1. Parse the secret key as Eq. (1) and the ciphertext as Eq. (2).
2. For all j ∈ ∆(i), do the following.

(a) Compute lab′i,j,k := HE.Dec(key, (hstr, i, j, k, f̂i[k]), HE.cti,j,k, f̂i [k]
), for all k ∈ [ℓ̂], where f̂i[k] is the

k-th bit of f̂i.
(b) Compute ŷ′i,j := GC.Eval({lab′i,j,k}k∈[ℓ̂]).

3. Compute and output zi = Decode({ŷ′i,j}j∈∆(i) , ∆(i)).

Succinct public keys. We note that in the above construction pk = (key, hstr), where key ← HE.Gen(1λ, ℓ) and
hstr ← HE.Hash(key, str). For the succinct public keys we instantiate the underlying HE scheme as described in
Appendix C.5, where |key| = λ and |hstr| = λ. So it follows that |pk| = 2λ, which is independent of the number of
functions(Q) in the setup phase. Hence the above construction achieves full succinctness.

Correctness. We prove that the above construction of PCSFE is correct via the following theorem.

Theorem 4.14. Suppose the HE scheme, GC and RDMPC scheme satisfies correctness as defined in Definition 2.14,
2.20 and 2.11 respectively. Then the above construction of PCSFE is correct.

Proof. By the correctness of HE scheme, we have

labi,j,k, f̂ [k] = HE.Dec(key, (Hash(key, str), i, j, k, f̂ [k]), HE.cti,j,k, f̂ [k])

with all but negligible probability, since stri,j,k = f̂ [k] by the definition of str. So, lab′i,j,k = labi,j,k, f̂ [k] holds for all
lab′i,j,k recovered in Step 2a of the decryption algorithm. Next, by the correctness of GC scheme, we have

Li,j( f̂i) = GC.Eval(L̃i,j, {labi,j,k, f̂ [k]}k∈[ℓ̂]).

So, ŷ′i,j = Li,j( f̂i) = Local(Ĉi,j, f̂i) for all ŷ′i,j recovered in Step 2b of the decryption algorithm. Finally, since |∆(i)| = n
we have

Cx( fi) = Decode({Local(Ĉi,j, f̂i)}j∈∆(i) , ∆(i))

by the correctness of the RDMPC scheme. So, zi = Cx( fi) = fi(x) for zi recovered in Step 3 of the decryption
algorithm.

Relaxed-SIM security against a semi-malicious authority. We prove the security of our succinct PCSFE scheme
using the following theorem.

Theorem 4.15. Assume that HE scheme is secure against a semi malicious setup , GC is a secure garbled circuit scheme,
and RDMPC is secure as per Definition 2.15, 2.21, and 2.12 respectively. Then the above construction of succinct
PCSFE scheme satisfies security against a semi malicious authority Definition 4.5.

We prove the theorem in Appendix C.3.
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4.4.2 Construction with Function-Hiding.

In this section we provide a compiler to convert a succinct and semi-malicious PCSFE without function-hiding
and security against outsiders into a PCSFE with function-hiding and security against outsiders using a maliciously
circuit-private FHE with linear efficiency. We also show that the resulting scheme retains the succinctness and security
against a semi-malicious authority property of the underlying PCSFE scheme.

Building Blocks. We use the following ingredients for our construction.

1. A PCSFE scheme SFE = (SFE.Setup, SFE.Enc, SFE.Dec) satisfying (SIM/relaxed-SIM) security against a
semi-malicious authority with succinct public keys.

2. A compact maliciously circuit-private FHE scheme with linear efficiency FHE = (FHE.KeyGen, FHE.Enc, FHE.Dec).

Construction. Below we provide the description of our compiler.

Setup(1λ, f1, . . . , fQ). The setup algorithm does the following.

1. Generate (FHE.pk, FHE.sk)← FHE.KeyGen(1λ) and
(SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)← SFE.Setup(1λ, f1, . . . , fQ).

2. Compute FHE.ct← FHE.Enc(FHE.pk, SFE.pk).
3. Output pk = (FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q].

Enc(pk, x). The encryption algorithm does the following.

1. Parse pk = (FHE.pk, FHE.ct).
2. Choose encryption randomness r for SFE.Enc.
3. Let G[x, r] be a circuit that on input key evaluates SFE.Enc(key, x; r) (this notation means encryption

randomness is r).
4. Compute FHE.ĉt← FHE.Eval(FHE.pk, G[x, r], FHE.ct).
5. Output ct = FHE.ĉt.

Dec(sk, ct). The decryption algorithm does the following.

1. Parse sk = (FHE.sk, SFE.sk fi
) for some i ∈ [Q] and ct = FHE.ĉt.

2. Compute y← FHE.Dec(FHE.sk, FHE.ĉt).
3. Output SFE.Dec(SFE.sk fi

, y).

Succinct public keys. First we note that |SFE.pk| = O(Q1−γ) since SFE has succinct public keys. Also, it is easy to
see that |FHE.pk| is independent of Q and |FHE.ct| = poly(λ) · |SFE.pk| = poly(λ) ·O(Q1−γ) due to the linear
efficiency of FHE. Hence, we have |pk| = O(Q1−γ).

Next, we show that the above compiler satisfies function hiding. We refer the readers to Appendix C.4 for the
correctness and other security properties of the scheme.
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Function-hiding. This follows from the semantic security of underlying FHE scheme. We prove it using the following
theorem.

Theorem 4.16. Assume that the FHE scheme satisfies semantic security (Definition 2.6). Then the above construction
of the PCSFE scheme satisfies function-hiding (Definition 4.2).

Proof. Recall that to show constraint hiding, we want

{pk|pk← Setup(1λ, f 0
1 , . . . f 0

Q)} ≈c {pk|pk← Setup(1λ, f 1
1 , . . . f 1

Q)}

where f b
i ∈ F for i ∈ [Q] and b ∈ {0, 1}. We show that if there exists a PPT adversaryA who can distinguish between

the above two distributions with non-negligible advantage ϵ, then there exists a PPT adversary B against the semantic
security of the FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge functions {( f 0
1 , f 1

1 ), . . . , ( f 0
Q, f 1

Q)}.

2. B computes (SFE.pkb, SFE.skb
f1

, . . . , SFE.skb
fQ
)← SFE.Setup(1λ, f b

1 , . . . , f b
Q) for b ∈ {0, 1}.

3. B sends (SFE.pk0, SFE.pk1) to the FHE challenger. The challenger generates (FHE.pk, FHE.sk)← FHE.KeyGen(1λ),
samples a bit β← {0, 1}, computes FHE.ct← FHE.Enc(FHE.pk, SFE.pkβ), and returns FHE.pk, FHE.ct to B.

4. B sets pk = (FHE.pk, FHE.ct) and forwards it to A.

5. In the end A outputs a bit β′. B forwards β′ to the FHE challenger.

We observe that if the FHE challenger samples β = 0, then B simulated the distribution D0 = {pk|pk ←
Setup(1λ, f 0

1 , . . . f 0
Q)} , else D1 = {pk|pk← Setup(1λ, f 1

1 , . . . f 1
Q)}withA. Hence, advantage ofB = |Pr(β′ = 1|β = 0)−

Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|D0)− Pr(β′ = 1|D1)| = ϵ (by assumption).

4.5 Heuristic: PCSFE with Succinct PK and Semi-Malicious Security
In this section, we provide a heuristic construction for succinct PCSFE with semi-malicious security in the standard
model. While the random oracle is itself a heuristic, the hope here is to rely on a weaker heuristic than ROM. For this, it
suffices to construct a succinct hash encryption scheme with semi-malicious security as described above.

Recap of DGHM [DGHM18] Hash Encryption from LWE.

Gen(1λ, m) : Sample A ∈ Zm×λ
p .

Hash(key, x ∈ {0, 1}m) : Interpret key = A. Output x⊤ A.

Enc(key, (h, i ∈ [m], β ∈ {0, 1}), µ) : Do the following:

1. Sample s← Zλ
p and e← Dm

α .

2. Compute c1 = A−is + e−i and c2 = (h− β ai)s + ei + ⌊p/2⌉ ·m.
3. Output ct = (c1, c2)

Dec(key, x, ct) :. The decryption algorithm does the following.

1. Parse ct = (c1, c2).
2. Compute c2 − x⊤−ic1. If this is closer to p/2 output 1, else output 0.

Above the parameter α for the discrete Gaussian distribution only needs to be small enough so that the error incurred in
the decryption equation permits correct decryption. Dottling et al. [DGHM18] choose α = o( 1√

λ log(λ)
). We refer the

reader to [DGHM18] for additional details.
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Semi-Malicious Security. To understand the intuition for our construction, let us consider possible adversarial
strategies in the construction of hash encryption above, where the matrix A can be arbitrarily chosen. The view of the
adversary, when the ith bit of the witness does not match the bit value input to the encrypt algorithm, comprises

c1 = A−is + e−i, c2 = ⟨ai, s⟩+ ei + ⌊p/2⌉µ

where A is adversarially chosen. We must establish that µ remains hidden in such a scenario.
Clearly, if A were a random matrix, the privacy of µ would hold by the hardness of LWE. However, if A is

adversarial, then it is easy to break security. For instance, one strategy for the adversary, discussed in [AJJM21]
(henceforth AJJM) is to simply choose A with a trapdoor, which trivially allows to recover the message. Another
possibility is that ai could simply be chosen as the zero vector, or it could be the sum of two other vectors, say a1 and
a2 in A−i. In the former case, the message is revealed trivially, while in the latter case, the mask ⟨ai, s⟩ in cm can be
trivially computed (upto noise) given c1. Other attack strategies may also be possible.

The approach of AJJM. A similar challenge was encountered by AJJM [AJJM21] in the context of an attribute-based
secure function evaluation scheme. Their goals and final construction are quite different from ours and the details are
not relevant here. The key idea they use (which in turn builds upon [BD18]) to achieve security against a semi-malicious
receiver is: (i) choose A to have some special structure, which should allow to “isolate” the entropy of the LWE secret
used during encryption, (ii) using an extractor during encryption allows to extract this entropy and use it to mask the
message.

In more detail, instead of choosing A randomly, they choose it as:

A =
(
A′, A′ · S + E

)
∈ Zm×λ

p

Thus, A is a structured matrix with λ/2 short vectors. This ensures that the mapping from s to As + e is lossy in s,
which allows to “save” λ/2 bits of entropy from s. Then, the encryptor can extract the entropy of s using a strong
extractor, which is used to mask the message. To decrypt, the decryptor is given a “hint”, which is a trapdoor to a matrix
– this allows to recover the randomness s which in turn can be fed into the extractor to recover the mask used to hide the
message.

However, the above approach, applied to our setting, quickly gets stuck – if we use an extractor on s to derive the
message mask, then it becomes necessary to recover s in order to decrypt. However, in a hash encryption scheme, the
decryptor does not have a secret key, or any privileged information that would allow it to recover s – indeed, the ability
to recover s would harm security.

In the absence of an extractor, the above technique appears insufficient, and to protect against an arbitrary A seems
very challenging.

Our Approach. We do not have a complete solution to this problem. However, below we suggest some mechanisms
to reduce the power of the adversary. This in turn allows us to weaken the requirement that the hash function must
behave like a random oracle.

1. As a first counter-measure, we mimic the technique of AJJM to choose A as a structured matrix with λ/2 short
vectors. This ensures that the mapping from s to As + e is lossy in s, letting us “save” λ/2 bits of entropy from s
which we can then hope to use for masking the message.

2. As a second counter-measure, we restrict the space of attacks that an adversary can perform to linear attacks
by moving the LWE ciphertexts to the exponent of a group where discrete log is hard. By matching the LWE
modulus with the group order, such a “composition” is possible and it is not difficult to show that decryption for
the HE scheme still works. A similar approach was used by Agrawal and Yamada in the context of broadcast
encryption [AY20].

3. Next, we randomize the ciphertext using a random scalar r in the exponent. By modifying the decryption
procedure suitably, it can be ensured that decryption still works, and having fresh randomness which cannot be
cancelled provides extra heuristic security as discussed below.
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4. Next, to protect against the linear attacks described earlier, we generate A′ using a hash function which ensures
that:

(a) The rows of A′ have large entries.
(b) The rows of A′ should not have “small” linear dependencies between them, i.e. it should be hard to find a

vector y with small (polynomial) coefficients such that A′ y = 0 mod p.

Note that the above two requirements are satisfied if A′ is sampled randomly but that is exactly what we are trying
not to assume! We conjecture that these are the only possible linear attacks on the scheme, and that by protecting
against these, the only remaining attacks are non-linear, which in turn are ruled out by the generic group.

Construction. We now provide our heuristic construction.

Gen(1λ, m)→ key. The setup algorithm does the following.

• Sample r1, r2 ← {0, 1}λ.
• Choose a group G of order p on which discrete log is hard. Let g be its generator.
• Output key = (r1, r2, g).

Hash(key, x)→ h. The hash algorithm does the following.

• Parse key = (r1, r2, g).

• Compute A′ := H(PRG(r1)) ∈ Zm×λ/2
p .

• Using randomness from H(PRG(r2)), sample S ∈ Dλ/2×λ/2
σ and E ∈ Dm×λ/2

σ .
• Let A =

(
A′, A′ · S + E

)
∈ Zm×λ

p

• Output h = xTA.

Enc(key, (h, i, c), µ). The encryption algorithm does the following.

• Parse key = (r1, r2, g).

• Compute A′ := H(PRG(r1)) ∈ Zm×λ/2
p .

• Using randomness from H(PRG(r2)), sample S ∈ Dλ/2×λ/2
σ and E ∈ Dm×λ/2

σ .
• Let A =

(
A′, A′ · S + E

)
∈ Zm×λ

p .
• Sample s← DZλ ,α, e← DZm ,α, and compute

c′1 := A−is + e−i

c′2 := (h− c · ai)s + ei +
⌊ p

2

⌉
· µ

where A−i denotes the matrix obtained after dropping the i-th row of A and ai denotes the i-th row of A.
Similarly, e−i denotes the vector obtained after removing the i-th component of e and ei denotes the i-th
component of e.

• Sample random scalar r ∈ Zp and let c0 = gr, c1 = gr·c′1 , c2 = gr·c′2 .
• Output ct = (c0, c1, c2).

Dec(key, x, ct)→ {0, 1}. The decryption algorithm does the following:

1. Compute d = gr·(c2−xT
−ic1).

2. Given c0 = gr, check if (c2 − xT
−ic1) is small via brute force discrete log. In more detail, check whether

cj
0 = d for j ∈ [B], where B is a parameter described below.

3. If yes, output 0, else output 1.
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Correctness. For correctness, observe that since c1 := A−is + e−i and c2 := (h − c · ai)s + ei +
⌊ p

2
⌉
· µ and

h = xTA, we have that c2 − xT
−ic1 =

⌊ p
2
⌉
· µ + ei − x−ie−i. We set the parameters α and the bound B such that

ei − x−ie−i is bounded by B – for this it suffices to set α = o( 1√
λ log λ

) and B = m · α. Thus, B is polynomially

bounded and we can check whether cj
0 = d for j ∈ [B] via brute force discrete logarithm.

Security. We leverage the fact that only generic non-linear attacks are possible due to the message being in the
exponent of a group. The randomizer r which is additionally used in the construction “spreads” ⟨ai, s⟩ to the whole
domain – in particular, if ⟨ai, s⟩ is in a bounded range then r · ⟨ai, s⟩ still takes values over the entire range. Note
that r cannot be cancelled by the adversary. Finally, we expect the hash function to output a matrix whose entries are
large and whose rows do not have small linear dependencies. This requirement is weaker than the requirement that the
hash function produce a random output, and may be satisfied more easily by hash functions used in practice. Basing a
construction in the standard model on any meaningful assumption is a fascinating open problem.

5 Pre-Constrained Input Obfuscation
In this section we introduce the notion of pre-constrained input obfuscation (PCIO) in this section. This notion is a
relaxation of virtual black-box obfuscation or indistinguishability obfuscation. A notable difference is that we can
compute outputs of obfuscated circuits only for pre-determined polynomially many inputs.

A pre-constrained input obfuscation for circuit family C = {C : X → Y} with input space X and output space Y
consists of three algorithms (Setup,O, Eval) defined as follows.

Setup(1λ,S)→ (pk, ek). The setup algorithm takes as input a set of input S where S ⊂ X and |S| = poly(λ), and
outputs a public key pk and evaluation key ek.

O(pk, C)→ C̃. The obfuscation algorithm takes as input the public key pk and a circuit C, and outputs an obfuscated
circuit C̃.

Eval(ek, C̃, x)→ y. The evaluation algorithm takes as input the evaluation key ek, obfuscated circuit C̃, and an input
x ∈ X , and outputs an y ∈ Y .

Here, pk is reusable for multiple C.

Definition 5.1 (Correctness). A PCIO scheme is correct if for any S ⊂ X , |S| = poly(λ), and (pk, ek) ←
Setup(1λ,S), the following holds

1. ∀x ∈ S , Pr[Eval(ek,O(pk, C), x) = C(x)] ≥ 1− negl(λ).

2. ∀x ∈ X \ S , Pr[Eval(ek,O(pk, C), x) = ⊥] ≥ 1− negl(λ).

Definition 5.2 (Input-Set-Hiding). A PCIO scheme satisfies input-set-hiding security if for any PPT adversary A, the
following holds

Pr
[
A(pkβ) = β : (S0,S1)← A;

β← {0, 1}; (pkβ, ekβ)← Setup(1λ,Sβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if Sb ⊂ X and Sb = poly(λ) for b ∈ {0, 1}.

Definition 5.3 (Virtual Black-Box Security against Malicious Authority). For a PPT adversaryA and a PPT simulator
Sim, consider the following experiment ExpPC-VBB

β,A,Sim (1λ).

1. A outputs the public key pk and circuit C.
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2. On input (pk, C), the challenger samples a random bit β uniformly and generates C̃ ← O(pk, C) if β =

0. Otherwise, the challenger generates C̃ ← Sim(1λ, 1|C|, pk, C(x1), . . . , C(xq)) where (x1, . . . , xq) ←
Ext(1λ, pk) and Ext is an (possibly inefficient) extractor. It returns C̃ to A.

3. A outputs a guess bit β′ as the output of the experiment.

We say that a PCIO scheme satisfies the virtual black-box security against malicious authority if there exists an (possibly
inefficient) extractor Ext such that for any PPT adversary A,∣∣∣Pr

[
ExpPC-VBB

0,A,Sim (1λ) = 1
]
− Pr

[
ExpPC-VBB

1,A,Sim (1λ) = 1
]∣∣∣ = negl(λ).

Definition 5.4 (Indistinguishability against Malicious Authority). A PCIO scheme satisfies input-set-hiding security
if there exists an admissible (possibly inefficient) extractor Ext such that for any PPT and admissible adversary A, the
following holds

Pr
[
A(ctβ) = β : pk, (C0, C1)← A;

β← {0, 1}; ctβ ← Enc(pk, Cβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if (i) S ⊂ X and |S| = poly(λ) where S ← Ext(1λ, pk), and (ii) Cb ∈ C for b ∈ {0, 1},
|C0| = |C1|, and ∀x ∈ S , C0(x) = C1(x). We say that Ext is admissible if for every S = (x1, . . . , xQ) and randomness
r, we have that (x1, . . . , xQ) = (x′1, . . . , x′Q), where (i) (pk, ekx1 , . . . , ekxQ) ← Setup(1λ, {x1, . . . , xQ}; r) and (ii)
S ′ = (x′1, . . . , x′Q)← Ext(1λ, pk).
In addition, if A is unbounded, we say that PCIO is unconditional IND secure.

Definition 5.5 (Succinct Public Key). We say that a PCIO scheme has succinct public keys when the size of the public
key is sublinear in S , that is |pk| = O(|S|1−γ) for some 0 < γ < 1 where (pk, ek)← Setup(1λ,S).

Constructions and Implications to PCSFE. We observe that a PCSFE scheme implies PCIO scheme. The implication
also holds the other way round. We prove both the implications in Appendix D.

6 Pre-Constrained Group Signatures
In this section, we provide our definition and construction for pre-constrained group signatures. Our definition largely
follows the definition of [BGJP23] except that we generalize the constraint of database membership to arbitrary
constraints, and favour simpler game based definitions for security against authorities as compared to the simulation
style definitions of [BGJP23]10. We provide the details in Appendix E.

10Their definition also includes the step of authorizing the database while ours does not. We note that such an authorization can be performed via a
separate protocol (using zero-knowledge or multiparty computation protocols).
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A Additional Preliminaries
A.1 Dual-Mode Non-Interactive Zero-Knowledge Proof Systems
Let L be a language in NP, and let R be the associated binary relation such that for every x ∈ {0, 1}∗, x ∈ L if and
only if there exists a witness w such that (x, w) ∈ R. A dual-mode non-interactive proof system for R consists of the
following probabilistic polynomial-time algorithms.

Hsetup(1λ)→ crs. This algorithm takes as input the security parameter λ and outputs a hiding common reference
string crs.

Bsetup(1λ) → (crs, tdext). This algorithm takes as input the security parameter λ and outputs a binding common
reference string crs and an extraction trapdoor tdext.

Prove(crs, x, w)→ π. This algorithm takes as input a crs, a statement x, and a witness w, and outputs a proof π.
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Verify(crs, x, π) → 0/1. The verification algorithm takes as input a crs, a statement x, and a proof π, and outputs
either 1 (accept) or 0 (reject).

We require the dual mode NIZK proof system to satisfy the following properties.

Definition A.1 (Perfect completeness in both modes). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy perfect completeness if for any λ ∈ N, any statement x ∈ L and
corresponding witness w, the following holds

Pr[Verify(crs, x, Prove(crs, x, w)) = 1] = 1

where crs← Hsetup(1λ) or (crs, tdext)← Bsetup(1λ) .

Definition A.2 (CRS indistinguishability). A dual-mode NIZK proof system for the language L and the associated
binary relation R is said to satisfy CRS indistinguishability if there exists a negligible function negl(·) such that for any
adversary A, the following two distribution ensembles are computationally indistinguishable

{crs | crs← Hsetup(1λ)} ≈c {crs | (crs, tdext)← Bsetup(1λ)}.

Definition A.3 (Statistical zero-knowledge in hiding mode). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy statistical zero-knowledge if there exists a probabilistic polynomial-time
simulator Sim such that for any (x, w) ∈ R, the following two distribution ensembles are statistically indistinguishable
for any λ ∈N

{(crs, π) : (crs, π)← Sim(1λ, x)} ≈s {(crs, Prove(crs, x, w)) : crs← Hsetup(1λ)}.

Definition A.4 (Common random string). If crs output by Hsetup (resp. Bsetup) is uniformly random, we call it
common random string in the hiding (resp. binding) mode.

Definition A.5 (Knowledge extraction in the binding mode). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy knowledge extraction if there exists an extractor Ext, such that for any
PPT adversary A, the following holds

Pr

 Verify(crs, x, π) = 0∨ (x, w) ∈ R :
(crs, tdext)← Bsetup(1λ);
(x, π)← A(crs);
w← Ext(tdext, x, π)

 ≥ 1− negl(λ).

Remark A.6. In the standard definition of dual-mode NIZK, we do not require that the CRS is a uniformly random string
in the hiding mode. However, the construction based on the LWE assumption [CCH+19, PS19] has this property.

The dual-mode NIZK by Canetti et al. [CCH+19] satisfies the following adaptive soundness instead of Definition A.5
(in the binding mode).

Definition A.7 (Adaptive Soundness). A dual-mode NIZK proof system for the language L and the associated binary
relation R is said to satisfy adaptive soundness if for any PPT adversary A, the following holds

Pr
[

Verify(crs, x, π) = 1∧ x /∈ L : (crs, tdext)← Bsetup(1λ);
(x, π)← A(crs)

]
≤ negl(λ).

We can upgrade adaptive soundness to knowledge extraction by the following theorem.

Theorem A.8 ([KNYY19]). If a NIZK proof system is adaptively sound, and there exists PKE, we can convert the
NIZK proof system into a NIZK that has the knowledge extraction property.

It is easy to see that this conversion preserves the dual-mode property and the uniformly random CRS property in
the hiding mode if we use lossy PKE [PVW08, BHY09, KN08] with uniformly random lossy public keys [CCH+19] for
the conversion. This is because the conversion adds a public key to the NIZK CRS, appends a ciphertext of a witness to
a NIZK proof for proving the knowledge and the ciphertext is an encryption of the witness.
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Theorem A.9 ([Reg09]). The Regev PKE is lossy encryption with uniformly random lossy public keys under the LWE
assumption.

Theorem A.10 ([CCH+19, PS19]). There exists a dual-mode non-interactive zero-knowledge proof system for any
NP language, based on the plain LWE problem with (small) polynomial approximation factors, satisfying statistical
zero-knowledge with common random string in the hiding mode and adaptive soundness in the binding mode.

We can obtain the following corollary from the theorems above.

Corollary A.11. There exists a dual-mode non-interactive zero-knowledge proof system for any NP language, based
on the plain LWE problem with (small) polynomial approximation factors, satisfying statistical zero-knowledge with
common random string in the hiding mode and knowledge extraction in the binding mode.

A.2 One-Way Relation
Next, we provide the definition of one-way relation.

A one-way relation for a relationR consists of two algorithms (Gen, Sample) with the following syntax.

Gen(1λ)→ pp. The generation algorithm takes as input the security parameter and outputs the public parameter pp.

Sample(pp)→ (x, w). The sample algorithm outputs an instance witness pair (x, w).

A one-way relation satisfies the following properties.

Definition A.12 (Correctness). A one-way relation for a relationR is said to be correct if for any pp← Gen(1λ), the
following holds

Pr[(pp, x, w) ∈ R | (x, w)← Sample(pp)] ≥ 1− negl(λ).
Definition A.13 (Security). A one-way relation for a relationR is said to be secure if for any PPT adversary A, the
following holds

Pr

 (pp, x, w′) ∈ R :
pp← Gen(1λ);
(x, w)← Sample(pp);
w′ ← A(pp, x)

 ≤ negl(λ).

A.3 Digital Signatures
A digital signature scheme for a message spaceM consists of three algorithms (Gen, Sign, Verify) with the following
syntax.

Gen(1λ)→ (vk, sk). The key generation algorithm takes as input the security parameter λ and outputs a verification
key vk and a signing key sk.

Sign(sk, m) → σ. The signing algorithm takes as input the signing key sk and a message m ∈ M, and outputs a
signature σ.

Verify(vk, m, σ) → 0/1. The verification algorithm takes as input a verification key vk, a message m ∈ M and a
signature σ, and outputs either 1 (accept) or 0 (reject).

A digital signature scheme satisfies the following properties.

Definition A.14 (Correctness). A digital signature scheme is sad to be correct if for any (vk, sk)← Gen(1λ), and any
m ∈ M, the following holds

Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.

Definition A.15 (EUF-CMA Security). A digital signature scheme is existentially unforgeable under chosen message
attacks if for any PPT adversary A, the following holds

Pr
[

m /∈ Q ∧ Verify(vk, m, σ) = 1 : (vk, sk)← Gen(1λ);
(m, σ)← ASign(sk,·)(vk)

]
≤ negl(λ)

where Q ⊂M is the set of messages for which A makes the signing queries to Sign(sk, ·).
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B Missing details from Section 3
B.1 Proofs from Section 3.2
In this section, we prove the security properties of our PCE scheme constructed from two-message SSP-OT and garbling
scheme in Section 3.2.

Proof for Constraint-hiding.

Theorem B.1. Suppose the OT scheme satisfies receiver privacy (Definition 2.3). Then the construction of the PCE
scheme satisfies constraint-hiding (Definition 3.2).

Proof. Recall that to show constraint-hiding, we want

{pk | (pk, sk)← Setup(1λ, C0)} ≈c {pk | (pk, sk)← Setup(1λ, C1)}

for any circuits C0, C1 ∈ CL. The proof proceeds via the following sequence of hybrid games between the challenger
and a PPT adversary A.

Hyb0. This is the real world with bit β = 0, i.e., the challenge public key is computed using the circuit C0. We write
the complete game to set up the notations and easy reference in the later hybrids.

1. A outputs two circuits C0, C1 ∈ CL where |C0| = |C1|.
2. The challenger computes (ot1,i, sti)← OTR(1λ, C0[i]) for all i ∈ [ℓ] where C[i] denotes the i-th bit of C.

It returns pk = {ot1,i} to A.
3. In the end A outputs a bit β′.

Hybk;1≤k≤ℓ. This hybrid is same as the previous hybrid except that the challenger computes (ot1,i, sti) ←
OTR(1λ, C1[i]) for 1 ≤ i ≤ k and (ot1,i, sti) ← OTR(1λ, C0[i]) for k + 1 ≤ i ≤ ℓ, where Cb[i] de-
notes the i-th bit of the circuit Cb for b ∈ {0, 1}.
Note that Hybℓ is the real world with bit β = 1, i.e., the challenge public key is computed using the circuit C1.

We note that it is sufficient to argue Hybk−1 ≈c Hybk, k ∈ [ℓ], to complete the proof. We show that if there exists a
PPT adversary A who can distinguish between the two hybrids with non-negligible advantage ϵ, then there exists a
PPT adversary B against the receiver privacy of the OT scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge circuits C0, C1 such that C0, C1 ∈ CL.

2. B parses C0 and C1 as ℓ bit strings and forwards C0[k] and C1[k] to the OT challenger, where Cb[k] denotes
the k-th bit of the circuit Cb for b ∈ {0, 1}. The OT challenger samples a bit β ← {0, 1} and computes
(ot1,k, st1,k)← OTR(1λ, Cβ[k]) and returns otk,1 to B.

3. B computes (ot1,i, st1,i) ← OTR(1λ, C1[i]) for 1 ≤ i ≤ k− 1 and (ot1,i, sti) ← OTR(1λ, C0[i]) for k + 1 ≤
i ≤ ℓ, sets pk = {ot1,i}i∈[ℓ] and forwards it to A.

4. In the end A outputs a bit β′. B forwards β′ to the OT challenger.

We observe that if the OT challenger samples β = 0, then B simulated the distribution Hybk−1 , else Hybk with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hybk−1)− Pr(β′ = 1|Hybk)| = ϵ
(by assumption).
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Security against malicious authority. Recall that to prove security against a malicious authority (Theorem 3.12), we
want to show that the consecutive hybrids are indistinguishable.

Hyb0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the input x0. We write the
complete game here to set up the notations and easy reference in later hybrids.

1. A outputs a public key pk and two inputs x0, x1 ∈ {0, 1}L where |x0| = |x1|.
2. The challenger defines the circuit U[x0] as in the construction and computes (Ũ, {lbi,b}i∈[ℓ],b∈{0,1}) ←

GC.Garble(1λ, U[x0]). It parses pk = {ot1,i}i∈[ℓ] and computes ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all
i ∈ [ℓ]. It sets ct = (Ũ, {ot2,i}) and returns ct to A.

3. A outputs a guess bit β′.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes ot2,i differently, i.e., ot2,i ←
OTS(1λ, lbi,b, lbi,b, ot1,i) for all i ∈ [ℓ], where b← OT.Ext(ot1,i) and OT.Ext is the extractor in the statistical
sender private security of the OT scheme.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and the labels
differently using GC.Sim, i.e., (Ũ, {lbi}i∈[ℓ]) ← GC.Sim(1λ, U[x0](C)) where C = C[1] . . . C[ℓ]; C[i] ←
OT.Ext(ot1,i) for i ∈ [ℓ].

Hyb3. This hybrid is same as the previous hybrid except that the challenger runs the GC.Sim on U[x1](C), i.e.,
(Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, U[x1](C)).

Hyb4. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and the labels
honestly for the circuit U[x1], i.e., (Ũ, {lbi,b}i∈[ℓ],b∈{0,1})← GC.Garble(1λ, U[x1]).

Hyb5. This hybrid is same as the previous hybrid except that the challenger computes ot2,i honestly, i.e., ot2,i ←
OTS(lbi,0, lbi,1, ot1,i). This is the real world with β = 1.

Indistinguishability of hybrids. We now prove that the consecutive hybrids are indistinguishable.

Claim B.2. Assume that OT satisfies statistical sender privacy, then Hyb0 ≈s Hyb1.

Proof. To prove the claim we consider sub hybrids Hyb0.k for k = 0 to ℓ, where Hyb0.k is same as Hyb0 except that ot2,i
is generated differently for all i ≤ k, i.e., ot2,i ← OTS(1λ, lbi,b, lbi,b, ot1,i), where b ← OT.Ext(ot1,i) for 1 ≤ i ≤ k
and ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for k + 1 ≤ i ≤ ℓ. We note that Hyb0 = Hyb0.0 and Hyb0.ℓ = Hyb1.
To prove the above claim it suffices to show that Hyb0.k−1 ≈ Hyb0.k for k ∈ [ℓ]. We show that if there exists an
unbounded adversary A who can distinguish between Hyb0.k−1 and Hyb0.k with non-negligible advantage ϵ, then there
exists an unbounded adversary B against the statistical sender privacy security of OT scheme with the same advantage
ϵ. The reduction is as follows.

1. B first runs A. A outputs a public key pk and two inputs x0, x1.

2. B parses pk = {ot1,i}i∈[ℓ], defines the circuit U[x0] as in the construction and computes (Ũ, {lbi,b}) ←
GC.Garble(1λ, U[x0]) for all i ∈ [ℓ] and b ∈ {0, 1}.

3. B sends (lbk,0, lbk,1), ot1,k to the OT challenger. The challenger samples a bit β ← {0, 1} and computes
ot2,k ← OTS(1λ, lbk,0, lbk,1, ot1,k) if β = 0, else if β = 1, it computes ot2,k ← OTS(1λ, lbk,b, lbk,b, ot1,k) where
b← OT.Ext(ot1,k). It returns ot2,k to B.

4. B computes ot2,i ← OTS(1λ, lbi,b, lbi,b, ot1,i), where b ← OT.Ext(ot1,i) for 1 ≤ i ≤ k − 1 and ot2,i ←
OTS(1λ, lbi,0, lbi,1, ot1,i) for k + 1 ≤ i ≤ ℓ. It sets ct = (Ũ, {ot2,i}i∈[ℓ]) and returns ct to A.

5. A outputs a guess bit β′. B forwards β′ to the OT challenger.
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We observe that if the OT challenger samples β = 0, then B simulated the distribution Hyb0.k−1 , else Hyb0.k with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0.k−1)− Pr(β′ = 1|Hyb0.k)| =
ϵ (by assumption).

Claim B.3. Assume that GC satisfies simulation security, then Hyb1 ≈c Hyb2.

We show that if there exists a PPT adversary A who can distinguish between Hyb1 and Hyb2 with non-negligible
advantage ϵ, then there exists an adversary B against the security of GC scheme with the same advantage ϵ. The
reduction is as follows.

1. B first runs A. A outputs a public key pk and two inputs x0, x1.

2. B parses pk = {ot1,i}i∈[ℓ] and computes C = C[1] . . . C[ℓ] where C[i]← OT.Ext(ot1,i) for i ∈ [ℓ].

3. B defines the circuit U[x0] as in the construction and sends U[x0] and C to the GC challenger as the challenge
circuit and challenge input. The challenger chooses a bit β← {0, 1} and does the following:

• If β = 0, it computes (Ũ, {lbi,b}i∈[ℓ],b∈{0,1})← GC.Garble(1λ, U[x0]). It sets U′ = Ũ and lbi = {lbi,C[i]}
for i ∈ [ℓ].

• If β = 1, it computes (Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, U[x0](C)). It sets U′ = Ũ.

The GC challenger returns (U′, {lbi}i∈[ℓ]) to B.

4. B computes ot2,i ← OTS(lbi, lbi, ot1,i) for all i ∈ [ℓ]. It returns ct = (U′, {ot2,i}i∈[ℓ]).

5. In the end, A outputs a bit β′. B sends β′ to the GC challenger.

We observe that if the GC challenger samples β = 0, then B simulated Hyb1, else Hyb2 with A. Hence, advantage of B
= |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption). We note
that Hyb2 = Hyb3, since by the admissibility of A, we have C(x0) = C(x1) = 0 and thus U[x0](C) = U[x1](C) =
⊥. Also the rest of the hybrids, Hyb4 and Hyb5 are simply unwinding the previous hybrids and their proofs of
indistinguishability are same as their corresponding counterparts in the first set of hybrids and hence, omitted.

B.2 PCE for Database with Unconditional Security from SSP-OT
In this section we construct a PCE scheme that supports the database checking constraint, for a database D ⊆ {0, 1}ℓ
consisting of a single element, D = {y} and message spaceM = {0, 1}len, satisfying unconditional security against a
malicious authority using a two-message SSP-OT scheme. For the database functionality, we need to consider special
case PCE as described in Definition 3.10, where a plaintext consists of two parts: attribute part x and message part
m. If x ∈ D, the receiver can recover m. Although we can consider both attribute-hiding and message-hiding against
malicious authority, our construction satisfies only message-hiding against malicious authority. That is, m is hidden, but
x is revealed.

Building blocks. We use a two-message statistically sender-private oblivious transfer scheme OT = (OTR, OTS, OTD)

with input space {0, 1}len+len′ . This can be instantiated from a wide variety of assumptions as discussed in Section 2.2.

Construction. We describe our PCE construction below.

Setup(1λ, y)→ (pk, sk). The setup algorithm does the following.

− Parse y = y[1], . . . , y[ℓ] as an ℓ bit string.
− For i = 1, · · · , ℓ, compute (ot1,i, sti)← OTR(1λ, y[i]).
− Output pk = {ot1,i}i∈[ℓ] and sk = {y[i], sti}i∈[ℓ].
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Enc(pk, x, m)→ ct. The encryption algorithm does the following.

− Choose ℓ− 1 uniformly random strings s1, . . . , sℓ−1, where si ∈ {0, 1}len+len′ for all i ∈ [ℓ− 1].

− Compute sℓ :=
⊕ℓ−1

i=1 si ⊕ (m∥0len′) ∈ {0, 1}len+len′ .
− Parse pk = {ot1,i}i∈[ℓ]. For each i ∈ [ℓ] do the following:

− Choose uniformly random ri ← {0, 1}len+len′ .
− If x[i] = 0, compute ot2,i ← OTS(1λ, (si, ri), ot1,i).
− Else if x[i] = 1, compute ot2,i ← OTS(1λ, (ri, si), ot1,i).

− Output ct = {ot2,i}i∈[ℓ].

Dec(sk, ct)→ {m/⊥}. The decryption algorithm does the following.

− Parse sk = {y[i], sti}i∈[ℓ] and ct = {ot2,i}i∈[ℓ].

− Compute s′i = OTD(1λ, y[i], sti, ot2,i) for i ∈ [ℓ].

− Compute s′ :=
⊕ℓ

i=1 s′i.

− Parse s′ = m′∥pad where m′ ∈ {0, 1}len and pad ∈ {0, 1}len′ .

− If pad = 0len′ , output m′. Otherwise, output ⊥.

A receiver can know that the recovered value is a correct message by the padding mechanism. It is easy to extend the
above construction to one handing multiple elements: if we have n elements in a database, we prepare ℓ× n instances
of OT.

Correctness. We now show that the PCE construction satisfies correctness via the following theorem.

Theorem B.4. Suppose that the OT scheme is correct (Definition 2.2). Then the PCE construction satisfies perfect
correctness as defined in Definition 3.1.

Proof. We note that for any ct← Enc(pk, x, m), we have that ct = {ot2,i}i∈[ℓ], where m is split into ℓ shares s1, . . . , sℓ
and ot2,i ← OTS(1λ, (si, ri), ot1,i) if x[i] = 0, else ot2,i ← OTS(1λ, (ri, si), ot1,i). Now if x = y, then the following
holds for i = 1 . . . ℓ

• if x[i] = 0 = y[i], OTD(1λ, y[i], sti, ot2,i) = OTD(1λ, y[i], sti, OTS(1λ, (si, ri), ot1,i)) = si,

• if x[i] = 1 = y[i], OTD(1λ, y[i], sti, ot2,i) = OTD(1λ, y[i], sti, OTS(1λ, (ri, si), ot1,i)) = si,

with probability 1 by the correctness of OT scheme. So, we have s1 ⊕ . . .⊕ sℓ = m∥0len′ with probability 1. The
decryption outputs m since we have pad = 0len′ . Hence, the correctness follows.

Constraint-hiding. Constraint-hiding directly follows from the receiver security of the underlying OT scheme.

Theorem B.5. Suppose the oblivious transfer OT scheme satisfies receiver privacy (Definition 2.3). Then the construction
of the PCE scheme satisfies constraint-hiding (Definition 3.2).

Proof. The proof is the same as the proof of Theorem B.1, hence omitted.
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Unconditional message-hiding against malicious authority. This follows from the statistical sender security of the
underlying OT scheme.

Theorem B.6. Suppose the oblivious transfer OT scheme satisfies statistical sender-privacy (Definition 2.4). Then the
construction of the PCE scheme satisfies unconditional message-hiding against a malicious authority (Definition 3.7).

Proof. Recall that to prove unconditional message-hiding security against a malicious authority, we want

Enc(pk, x, m0) ≈s Enc(pk, x, m1)

where x ̸= y, for the database string y associated with the, possibly malformed, public key pk.
Here we let the extractor Ext of PCE to be the extractor OT.Ext of the underlying statistically sender private OT scheme.
The admissibility of the Ext follows from the admissibility of OT.Ext. The proof proceeds via the following sequence
of hybrid games between the challenger and an unbounded adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the input m0. We write the
complete game here to set up the notations and easy reference in later hybrids.

1. A outputs a public key pk, an input x and a message pair m0, m1 ∈ {0, 1}len.
2. The challenger parses pk = {ot1,i}i∈[ℓ]. It chooses ℓ− 1 uniformly random strings s1, . . . , sℓ−1, where

si ← {0, 1}len+len′ and computes sℓ :=
⊕ℓ−1

i=1 si ⊕ (m0∥0len′). For each i ∈ [ℓ], it computes ot2,i as in the
construction. It returns ct = {ot2,i}i∈[ℓ] to A.

3. A outputs a guess bit β′.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes ot2,i, for all i ∈ [ℓ] differently, i.e.,
ot2,i ← OTS(1λ, si, si) if y′[i] = x[i] and ot2,i ← OTS(1λ, ri, ri) if y′[i] ̸= x[i], where y′[i] = OT.Ext(ot1,i).

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes sj differently for j ∈ [ℓ], where j
is the first index such that y′[j] ̸= x[j] and y′[j] = OT.Ext(ot1,j). The challenger sets

sj :=
ℓ⊕

i=1,i ̸=j

si ⊕ (m1∥0len′).

Hyb3. This hybrid is same as the previous hybrid except that the challenger computes ot2,i, for all i ∈ [ℓ] honestly as
in the construction, i.e., if x[i] = 0, then ot2,i ← OTS(1λ, (si, ri), ot1,i), else ot2,i ← OTS(1λ, (ri, si), ot1,i),
where ri ← {0, 1}len+len′ .
This is the real world with bit β = 1.

Indistinguishability of hybrids. We now prove that the consecutive hybrids are indistinguishable.

Claim B.7. Assume that OT satisfies statistical sender privacy, then Hyb0 ≈s Hyb1.

Proof. To prove the above claim we consider sub hybrids Hyb0.k for k = 0 to ℓ, where Hyb0.k is same as Hyb0 except
that ot2,i is generated differently for all i ≤ k. We note that Hyb0 = Hyb0.0 and Hyb0.ℓ = Hyb1.
To prove the above claim it suffices to show that Hyb0.k−1 ≈ Hyb0.k for k ∈ [ℓ]. We show that if there exists an
unbounded adversary A who can distinguish between Hyb0.k−1 and Hyb0.k with non-negligible advantage ϵ, then there
exists an unbounded adversary B against the statistical sender privacy security of OT scheme with the same advantage
ϵ. The reduction is as follows.

1. B first runs A. A outputs a public key pk, an input x and a message pair m0, m1 ∈ {0, 1}len.

2. B parses pk = {ot1,i}i∈[ℓ] and computes y′i = OT.Ext(ot1,i) for all i ∈ [ℓ].
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3. It chooses ℓ− 1 uniformly random strings s1, . . . , sℓ−1 and computes sℓ :=
⊕ℓ−1

i=1 si ⊕ m0. It also samples
ri ← {0, 1}len+len′ uniformly for i ∈ [ℓ].

4. For each i ≤ k − 1 if x[i] = y′[i] then B computes ot2,i ← OTS(1λ, si, si) else it computes ot2,i ←
OTS(1λ, ri, ri). For i ≥ k + 1, it computes ot2,i as in the construction.

5. For i = k, if x[k] = 0, B sets µ0 = sk and µ1 = rk, else it sets µ0 = rk and µ1 = sk. It sends (µ0, µ1) and ot1,ℓ
to the OT challenger. The challenger samples a bit β← {0, 1} and computes ot2,ℓ ← OTS(1λ, µ0, µ1, ot1,k) if
β = 0, else if β = 1, it computes ot2,ℓ ← OTS(1λ, µb, µb, ot1,k) where b = OT.Ext(ot1,k). It returns ot2,k to
B.

6. B sets ct = {ot2,i}i∈[ℓ] and returns ct to A.

7. A outputs a guess bit β′. B forwards β′ to the OT challenger.

We observe that if the OT challenger samples β = 0, then B simulated the distribution Hyb0.k−1 , else Hyb0.k with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0.k−1)− Pr(β′ = 1|Hyb0.k)| =
ϵ (by assumption).

Claim B.8. Hyb1 and Hyb2 are statistically indistinguishable.

Proof. We observe that by the admissibility of A, we have x ̸= y, so there exists at least one j ∈ [ℓ] such that
y′[j] ̸= x[j] where y′[j] = OT.Ext(ot1,j). Note that sj is a uniformly random string, as each share of a secret shared
message is distributed uniformly at random. Also sj is not used anywhere because of the change we introduced in Hyb1

and hence it does not effect the adversary’s view. So, we set sj :=
⊕ℓ

i=1,i ̸=j si ⊕ (m1∥0len′), which is again a uniformly
random string because of the randomness of si’s for i ∈ [ℓ] and i ̸= j.

Hyb2 ≈s Hyb3 assuming the statistical sender privacy of the OT scheme and the proof is similar to that of
indistinguishability of Hyb0 and Hyb1, hence omitted.

Security against outsiders. We prove that the PCE construction satisfies security against the outsiders using the
following theorem.

Theorem B.9. Suppose the OT scheme satisfies receiver privacy (Definition 2.3) and statistical sender-privacy
(Definition 2.4).Then the construction of the PCE scheme satisfies security against outsiders (Definition 3.8).

Proof. Recall that to show security against outsiders, we want

Enc(pk, x, m0) ≈c Enc(pk, x, m1)

where pk← Setup(1λ, y) for any database string y. We consider the following two cases.

1. x ̸= y. Here the proof follows from the similar arguments as in the proof of Theorem B.6.

2. x = y. In this case we first replace y with a uniformly random string ȳ← {0, 1}ℓ while generating the public
key pk, using arguments as in the proof of Theorem B.5. Note that y = ȳ with negligible probability 1/2ℓ, which
implies x ̸= ȳ with all but negligible probability. Now, the proof follows as in the case above.

C Missing Details from Section 4
In this section we detail out the missing details from Section 4.
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C.1 PCSFE from SSP-OT and Garbled Circuits
We construct a single-key pre constrained static functional encryption scheme PCSFE = (Setup, Enc, Dec) for function
family F = { f : X → Y}. We consider the boolean representation of the functions in F using an ℓ bit string.

Building Blocks. We use the following ingredients for our construction.

1. A garbling scheme GC = (Garble, GCEval) for universal circuit U[x], with x ∈ M hardwired, that takes as input
a function from function family F . This can be instantiated from Yao’s scheme [Yao82], which can be based on
any one way function.

2. A two-message SSP-OT scheme OT = (OTR, OTS, OTD) with input space as the space of labels of the above
garbled circuit scheme. This can be instantiated from a wide variety of assumptions as discussed in Section 2.2.

Construction. The construction is similar to that in Section 3.2. We give the full description below for completeness.

Setup(1λ, f )→ (pk, sk). The setup algorithm does the following.

• Parse f as an ℓ bit string and let f [i] denote the i-th bit of f .
• For i = 1, · · · , ℓ, compute (ot1,i, sti)← OTR(1λ, f [i]).
• Output pk = {ot1,i}i∈[ℓ] and sk f = { f [i], sti}i∈[ℓ].

Enc(pk, x)→ ct. The encryption algorithm does the following.

• Define the circuit U[x], with x hardwired, as follows :
On input a function f , U[x]( f ) = f (x).

• Compute (Ũ, {lbi,b})← Garble(1λ, U[x]) for i ∈ [ℓ], b ∈ {0, 1}.
• Parse pk = {ot1,i}i∈[ℓ] and compute ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all i ∈ [ℓ].

• Output ct = (Ũ, {ot2,i}i∈[ℓ]).

Dec(sk, ct)→ {m/⊥}. The decryption algorithm does the following.

• Parse sk = { f [i], sti}i∈[ℓ] and ct = (Ũ, {ot2,i}i∈[ℓ]).

• For each i ∈ [ℓ], compute lbi,j ← OTD(1λ, f [i], sti, ot2,i) where j ∈ {0, 1}.
• Compute y← GCEval(Ũ, {lbi,j}i∈[ℓ]).
• Output y.

Correctness. We now show that the above construction satisfies correctness via the following theorem.

Theorem C.1. Suppose the OT scheme and the GC scheme satisfy correctness as defined in Definition 2.2 and Defini-
tion 2.20, respectively. Then the above construction satisfies perfect correctness as defined in Definition 4.1.

Proof. We note that for any ct← Enc(pk, x), we have ct = (Ũ, {ot2,i}i∈[ℓ]), where (Ũ, {lbi,b})← Garble(1λ, U[x])
and ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for i ∈ [ℓ]. By the correctness OT scheme we have for all i ∈ [ℓ], lbi, f [i] =

OTD(1λ, f [i], sti, ot2,i) with probability 1. Also, from the correctness of the GC scheme it follows that f (x) =
U[x]( f )← GCEval(Ũ, {lbi, f [i]}i∈[ℓ]) with probability 1.
So we get Dec(sk, ct) = f (x) with probability 1. Hence the above scheme is perfectly correct.
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Function-hiding. This follows directly from the receiver privacy of the underlying OT scheme.

Theorem C.2. Suppose the OT scheme satisfies receiver privacy (Definition 2.3). Then the above construction of the
PCSFE scheme satisfies function-hiding (Definition 4.2).

Proof. The proof follows from similar arguments as in Theorem B.1, by replacing the circuits C0, C1 with functions
f0, f1.

SIM security against malicious authority. This follows from the statistical sender security of the underlying OT
scheme and the simulation security of GC scheme.

Theorem C.3. Suppose the OT scheme satisfies statistical sender-privacy (Definition 2.4) and the GC scheme satisfies
simulation security (Definition 2.21). Then the above construction of the PCSFE scheme satisfies SIM security against
a malicious authority (Definition 4.6).

Proof. To prove the theorem, we first construct the simulator Sim for the security against malicious authority of the
PCSFE scheme. Note that the simulator is given pk, 1|x|, f (x), where pk = {ot1,i}i∈[ℓ] as input. We now provide the
description of the simulator Sim.
On input pk = {ot1,i}i∈[ℓ], 1|x|, f (x)

1. Compute (Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, f (x)).

2. Compute ot2,i ← OTS(1λ, lbi, lbi, ot1,i) for all i ∈ [ℓ].

3. Output ct = (Ũ, {ot2,i}i∈[ℓ]).

To prove the security, we consider the following sequence of hybrids.

Hyb0. This is the real world, i.e., challenge ct is computed by honestly running the Enc algorithm.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes ot2,i differently, i.e., ot2,i ←
OTS(1λ, lbi,b, lbi,b, ot1,i) for all i ∈ [ℓ], where b← OT.Ext(ot1,i).

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and the
labels differently using GC.Sim, i.e., (Ũ, {lbi}i∈[ℓ]) ← GC.Sim(1λ, f (x)) where f = f [1] . . . f [ℓ]; f [i] ←
OT.Ext(ot1,i) for i ∈ [ℓ].

We note that Hyb2 is the ideal world.

Indistinguishability of hybrids. The proof is identical to the proof of Theorem 3.12, hence omitted.

Security against outsiders. This follows from Lemma 4.9.

Unconditional security for NC1. We note that by using an information theoretic version of Yao’s garbled circuit
[IK02], efficient for NC1, in the above construction we can achieve a PCSFE scheme, for class NC1, with unconditional
security against a malicious authority.

Bounded key setting. We observe that it is easy to extend the construction above to bounded multi-key construction
by simply preparing more OT instances for fi. Note that this makes |pk| linear in the number of functions for which we
generate the secret keys.

C.2 PCSFE with Unconditional Security from FHE
In this section we see that by using a slightly stronger assumption we can achieve unconditional security against a
malicious authority. We construct a single-key PCSFE scheme for function family F = { f : X → Y}. We consider
the boolean representation of the functions in F using an ℓ bit string.
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Construction. The construction is similar to that of the pre-constrained encryption scheme from maliciously circuit
private FHE in Section 3.3, where we can think of the circuit C implementing the function f , except that the circuit
G[x] in the encryption algorithm, on input f , outputs f (x).

Theorem C.4. The construction of PCSFE from maliciously circuit private FHE is correct and satisfies function-hiding,
unconditional security against a malicious authority and security against outsiders.

Proof. We note that the proof for the correctness and function-hiding is identical to the proof of Theorem 3.14 and 3.15,
respectively.
We prove the security against the authority. First, we construct a simulator Sim for the security against malicious
authority of the PCSFE scheme. Note that the simulator is given pk, 1|x|, f (x), where pk = (FHE.pk, FHE.ct f ) as
inputs. The simulator proceeds as follows:

1. Runs the FHE simulator to compute FHE.ct← FHE.Sim(FHE.pk, FHE.ct f , f (x)).

2. Output ct = FHE.ct.

To prove the security, we consider the following sequence of hybrids.

Hyb0. This is the real world, i.e., challenge ct is computed by honestly running the Enc algorithm, using the possibly
malformed public key pk.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes FHE.ct as

FHE.ct← FHE.Sim(FHE.pk, FHE.ct f , G[x]( f ))

where f = FHE.Ext(FHE.pk, FHE.ct f ). We note that this is the ideal world.

The indistinguishability of the above two hybrids follows from the malicious circuit private security of the underlying
FHE scheme. Recall that maliciously circuit-private FHE ensures that even for possibly malformed FHE.pk, FHE.ct,
FHE.Eval(FHE.pk, G[x], FHE.ct f ) is statistically indistinguishable from
FHE.Sim(G[x]( f )) = FHE.Sim( f (x)). The proof is similar to that of Theorem 3.16, hence omitted.
Also, the security against outsiders follows from Lemma 4.9.

C.3 Missing Details from Section 4.4.1
Relaxed-SIM security against a semi-malicious authority. We prove the security of our succinct PCSFE scheme
from Section 4.4.1.

Theorem C.5 (Restate of Theorem 4.15). Assume that HE scheme is secure against a semi malicious setup , GC is a
secure garbled circuit scheme, and RDMPC is secure as per Definition 2.15, 2.21, and 2.12 respectively. Then the above
construction of succinct PCSFE scheme satisfies security against a semi malicious authority Definition 4.5.

Proof. To prove the theorem, we first construct the simulator Sim for the security against malicious authority of the
PCSFE scheme. Note that the simulator is given pk = (key, hstr), 1|x|, and V , where

V =
{

fi(x), fi, sk fi
=

(
i, ∆(i), f̂i

)}
i∈[Q]

.

We begin with setting up few notations. We define sets Scrr and Sdis as follows.

Scrr :=
⋃

i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)
, Sdis :=

 ⋃
i∈[Q]

∆(i)

 \Scrr.

We now describe the PCSFE ciphertext simulator SIM. On input pk = (key, hstr), 1|x|, and V , it runs as follows.
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1. For each i ∈ [Q], run({
Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
where Cx is the universal circuit with x hardwired.

2. For all i ∈ [Q] and j ∈ [N], do the following.

− If j ∈ Scrr, do the following.

(a) Set Li,j(·) := Local(Ĉi,j, ·) and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k,b).

− If j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and do the
following.
(a) Compute (

L̃i,j, {labi,j,k}k∈[ℓ̂]

)
← GC.Sim(1λ, ŷi,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k).

− If j /∈ Scrr ∪ Sdis, do the following.

(a) Set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len)

where len is the length of the labels.

3. Output the ciphertext

ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
.

To prove the security, we consider following hybrids.

Hyb0. This is the real world. We write the complete game here to set up notations and for easy reference in the later
hybrids.

1. The adversary outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. Abort and output ⊥
if either of the following is true.

−
∣∣∣∆(i)

∣∣∣ ̸= n, for i ∈ [Q].
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− |Scrr| =
∣∣∣⋃i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)∣∣∣ > t.

2. The challenger computes Si = {(i, j, k, f̂i[k])}j∈∆(i),k∈[ℓ̂], and defines S and string str as in the construction.

It lets the key = r and computes hstr ← Hash(key, str). It sets pk = (key, hstr) and sk fi
=

(
i, ∆(i), f̂i

)
and returns pk and {sk fi

}i∈[Q] to A.
3. A outputs the challenge input x. The challenger defines Cx and computes

ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
as in the construction. It returns ct to A.

4. In the end, A outputs a guess bit β′.

Hyb1. In this hybrid we change the way ciphertext is generated. In particular, we change the way HE.cti,j,k,b is
computed in the following cases.

− If j ∈ Sdis, the challenger computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k, f̂i [k]
)

where i is the unique index such that j ∈ ∆(i).
− If j /∈ Scrr ∪ Sdis, the challenger computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len)

where len is the length of the labels.

Hyb2. In this hybrid, we further change the way ciphertext is generated. In particular, we change the way L̃i,j and
labi,j,k,b is computed in the following cases.

− If j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and compute

(L̃i,j, {labi,j,k}k∈[ℓ̂])← GC.Sim(1λ, ŷi,j)

where ŷi,j = Local(Ĉi,j, f̂i). Then it sets

labi,j,k, f̂i [k]
:= labi,j,k

for k ∈ [ℓ̂].

− If j /∈ Scrr ∪ Sdis, the challenger sets Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and
computes (

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

Hyb3. In this hybrid, we further change the way ciphertext is generated. In particular, we change the way the circuit
encoding Ĉi,j and local output encodings ŷi,j are generated as follows. For each i ∈ [Q], run({

Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
where Cx is the universal circuit with x hardwired. We note that we only have Ĉi,j for all j ∈ Scrr and this suffices
for the ciphertext generation due to the changes made in Hyb0 and Hyb1.
We also note that this is the ideal world with the simulator SIM defined above.
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Indistinguishability of hybrids. We now prove that the consecutive hybrids are indistinguishable.

Claim C.6. Assume HE is a semi malicious secure hash encryption scheme, then Hyb0 ≈c Hyb1.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb0 and Hyb1 with non-negligible
advantage ϵ, then there exists an adversary B against the semi malicious secure hash encryption scheme with the same
advantage ϵ. The reduction is as follows.

1. The HE challenger samples a bit β← {0, 1} and initiates the multi challenge HE security game with B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B computes f̂i for i ∈ [Q], defines the set S and the string str as in the construction. It sends the string str and the
randomness r to the HE challenger and gets back the hash key key.

4. B computes hstr = Hash(key, str). It sets pk = (key, hstr) and sk fi
=

(
i, ∆(i), f̂i

)
and returns pk and {sk fi

}i∈[Q]

to A.

5. A outputs the challenge input x. B computes
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
for all i ∈ [Q] and j ∈ [N] as in

the construction.

6. B computes
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

as follows

− If j ∈ Sdis and b ̸= f̂i[k], it first retrieves i such that j ∈ ∆(i) and then sends the index (i, j, k) and two
messages (labi,j,k,1− f̂i [k]

, labi,j,k, f̂i [k]
) to the HE challenger. The challenger computes

HE.cti,j,k,b ←
{

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k,1− f̂i [k]
) if β = 0

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k, f̂i [k]
) if β = 1

and returns HE.cti,j,k,b to B.

− If j /∈ Scrr ∪ Sdis, for each b ∈ {0, 1}, it sends the index (i, j, k) and two messages (labi,j,k,b, 0len) to the HE
challenger, where len is the length of the labels. The challenger computes

HE.cti,j,k,b ←
{

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k,b) if β = 0
HE.Enc(key, (Hash(key, str), (i, j, k), b), 0len) if β = 1

and returns HE.cti,j,k,b to B.
− Else, it computes HE.cti,j,k,b as in the construction.

7. B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

8. A outputs a guess bit β′.

We observe that if the HE challenger samples β = 0, then B simulated the distribution Hyb0, else Hyb1 with A.
Hence, the advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ
(by assumption).

Claim C.7. Assume GC is a secure garbled circuit scheme, then Hyb1 ≈c Hyb2.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb1 and Hyb2 with non-negligible
advantage ϵ, then there exists an adversary B against the security of GC scheme with the same advantage ϵ. The
reduction is as follows.
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1. The GC challenger samples a bit β← {0, 1} and initiates the multi challenge GC security game with B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B computes f̂i for i ∈ [Q], defines the set S and the string str as in the construction. B generates key ←
HE.Gen(1λ, r) and computes hstr = Hash(key, str). It sets pk = (key, hstr) and sk fi

=
(

i, ∆(i), f̂i

)
and returns

pk and {sk fi
}i∈[Q] to A.

4. A outputs the challenge input x. B defines the circuit Cx as in the construction and computes (Ĉi,1, . . . , Ĉi,N)←
CktEnc(1λ, 1λ, 1ℓ, Cx) for i ∈ [Q].

5. For all i ∈ [Q] and j ∈ [N], B does the following.

− If j ∈ Scrr, set Li,j(·) := Local(Ĉi,j, ·) and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

− If j ∈ Sdis, it first retrieves i such that j ∈ ∆(i) and then sends the circuit Li,j(·) := Local(Ĉi,j, ·) and input f̂i
to the GC challenger. The challenger computes(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j) if β = 0

or (
L̃i,j,

{
labi,j,k

}
k∈[ℓ̂]

)
← GC.Sim(1λ, Local(Ĉi,j, f̂i)) if β = 1

and returns
(

L̃i,j,
{

labi,j,k, f̂i [k]

}
k∈[ℓ̂]

)
to B, where labi,j,k, f̂i [k]

= labi,j,k for β = 1.

− If j /∈ Scrr ∪ Sdis, set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

6. For all i ∈ [Q] and j ∈ [N], B does the following.

− If j ∈ Scrr, it computes {HE.cti,j,k,b}k∈[ℓ̂],b∈{0,1} as in the construction.

− If j ∈ Sdis, it computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k, f̂i [k]
) for all k ∈ [ℓ̂] and b ∈

{0, 1}.
− If j /∈ Scrr ∪Sdis, then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len),

where len is the length of the labels.

7. B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

8. A outputs a guess bit β′.

First, we note that for j /∈ Scrr ∪ Sdis, the way B generates
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
does not effect the adversary’s

view because of the change we introduced in Hyb1. In particular, we do not use the labels labi,j,k,b generated for
j /∈ Scrr ∪ Sdis anywhere in Hyb1 or Hyb2 and hence the adversary does not have sufficient information to compute on the
garbled circuit L̃i,j for the corresponding set of labels. Next, we observe that if the GC challenger samples β = 0, then B
simulated the distribution Hyb1 , else Hyb2 withA. Hence, advantage of B = |Pr(β′ = 1|β = 0)−Pr(β′ = 1|β = 1)|
= |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption).
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Claim C.8. Assume RDMPC is a secure reusable dynamic MPC scheme, then Hyb2 ≈c Hyb3.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb2 and Hyb3 with non-negligible
advantage ϵ, then there exists an adversary B against the security of RDMPC scheme with the same advantage ϵ. The
reduction is as follows.

1. The RDMPC challenger samples a bit β← {0, 1} and initiates the multi challenge RDMPC security game with
B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B sends the query bound 1Q, input length 1ℓ, where | fi| = ℓ to the challenger. Note that this defines the
total number of parties N = (λ, Q), number of parties n = n(λ, Q) participating in any session, threshold
t = t(λ, Q). It also sends Scrr, ∆(1), . . . , ∆(Q) to the challenger.

4. B sends the functions f1, . . . , fQ as the input encoding query to the RDMPC challenger. The challenger computes
and returns f̂i ← InpEnc(1λ, 1ℓ, fi) for each fi, where i ∈ [Q], to B.

5. B generates key← HE.Gen(1λ, ℓ) and computes hstr ← HE.Hash(key, str), where the string str is as defined in
the construction. It sends pk = (key, hstr) and sk fi

=
(

i, ∆(i), f̂i

)
, for i ∈ [Q], to the adversary A.

6. A outputs the challenge input x. B does the following.

(a) It defines the circuit Cx as in the construction and sends the circuit Cx as the challenge for all the input
encoding queries to the RDMPC challenger. For each i ∈ [Q], the challenger does the following:
- If β = 0, it computes (Ĉi,1, . . . , Ĉi,N) ← CktEnc(1λ, 1λ, 1ℓ, Cx) for each i ∈ [Q] and yi,j :=

Local(Ĉi,j, f̂i) for all i ∈ [Q] and j ∈ ∆(i).
- If β = 1, it computes({

Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
- It returns

({
Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
to B.

(b) For all i ∈ [Q] and j ∈ [N],
- if j ∈ Scrr, sets Li,j(·) := Local(Ĉi,j, ·) and computes (L̃i,j, {labi,j,k,b}k∈[ℓ̂],b∈{0,1}) and {HE.cti,j,k,b}k∈ℓ̂,b∈{0,1}

honestly as in the construction.
- if j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and

computes
(

L̃i,j,
{

labi,j,k

}
k∈[ℓ̂]

)
← GC.Sim(1λ, ŷi,j). Then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k).

- if j /∈ Scrr ∪ Sdis, set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

Then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len)

where len is the length of the labels.
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(c) B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

7. A outputs a guess bit β′.

We observe that if the RDMPC challenger samples β = 0, then B simulated the distribution Hyb2 , else Hyb3 with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb2)− Pr(β′ = 1|Hyb3)| = ϵ (by
assumption).

We also note that Hyb3 is the ideal world where the ciphertext is simulated using the simulator SIM. Hence, the
proof.

C.4 Missing Details from Section 4.4.2
Correctness. We show that the above construction is correct via the following theorem.

Theorem C.9. Assume that the FHE scheme and the SFE scheme satisfies correctness. Then the above construction is
correct.

Proof. For any sk = (FHE.sk, SFE.sk fi
) and ct = FHE.ĉt = FHE.Eval(FHE.pk, G[x, r], FHE.ct), where FHE.ct←

FHE.Enc(FHE.pk, SFE.pk), we have

FHE.Dec(FHE.sk, FHE.ĉt) = G[x, r](SFE.pk) = SFE.Enc(SFE.pk, x; r)

with probability 1 by the correctness of the underlying FHE scheme. So we have y = SFE.Enc(SFE.pk, x; r) in Step 2
of the decryption algorithm. Next, by the correctness of the underlying SFE scheme, we have

SFE.Dec(SFE.sk fi
, y) = SFE.Dec(SFE.sk fi

, SFE.Enc(SFE.pk, x)) = fi(x)

with all but negligible probability. Hence, the correctness follows.

Security against semi-malicious authority. This follows from the security of the underlying maliciously circuit
private FHE and the semi-malicious secure SFE scheme.

Theorem C.10. Assume that FHE is maliciously circuit-private (Definition 2.7) and SFE is (SIM/relaxed-SIM)
secure against a semi malicious authority (Definition 4.5). Then the above construction of PCSFE scheme satisfies
(SIM/relaxed-SIM) security against a semi malicious authority (Definition 4.5).

Proof. To prove the theorem, we first construct the simulator SIM for the security against the semi-malicious authority
of the PCSFE scheme. Note that the simulator takes as input (pk, 1|x|,V) where

V 11 =
{

fi(x), fi, sk fi

}
i∈[Q]

.

We now provide the description of the simulator SIM. On input (pk, 1|x|,V), do the following.

1. Parse pk = (FHE.pk, FHE.ct) and sk fi
= (FHE.sk, SFE.sk fi

) for i ∈ [Q].

2. Let V ′ =
{

fi(x), fi, SFE.sk fi

}
i∈[Q]

.

3. Compute SFE.pk← FHE.Dec(FHE.sk, FHE.ct).

4. Compute SFE.ct← SFE.Sim(SFE.pk, 1|x|,V ′).

5. Compute FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ct).

11If the underlying SFE scheme satisfies SIM security against a semi-malicious authority, then we have V = { fi(x)}i∈[Q]
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6. Output ct = FHE.ĉt.

To prove the security, we consider the following sequence of hybrids.

Hyb0. This is the real world. We write the complete game here to set up notations and for easy reference in the later
hybrids.

1. The adversary outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r correspond-
ing to the randomness used in the FHE.KeyGen, FHE.Enc and SFE.Setup algorithms respectively.

2. The challenger computes (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)←
SFE.Setup(1λ, f1, . . . , fQ; SFE.r), and FHE.ct ← FHE.Enc(FHE.pk, SFE.pk; FHE.r2). It returns pk =
(FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to the adversary.

3. The adversary outputs the challenge input x. The challenger computes ct = FHE.ĉt as in the construction
and returns ct to the adversary.

4. In the end, the adversary outputs a guess bit β′.

Hyb1. In this hybrid we change the way ciphertext is generated. In particular, we change the way FHE.ĉt is computed.
The challenger computes FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ct), where SFE.ct← SFE.Enc(pk, x).

Hyb2. In this hybrid we further change the way ciphertext is generated. In particular, we change the way SFE.ct is com-
puted. The challenger computes SFE.ct← SFE.Sim(SFE.pk, 1|x|,V ′), where V ′ =

{
fi(x), fi, SFE.sk fi

}
i∈[Q]

.

We also note that this is the ideal world with the simulator SIM defined above.

Indistinguishability of hybrids. We now show that the consecutive hybrids are indistinguishable.

Claim C.11. Assume that FHE satisfies malicious circuit privacy, then Hyb0 ≈s Hyb1.

Proof. We show that if there exists an unbounded adversary A who can distinguish between Hyb0 and Hyb1 with
non-negligible advantage ϵ, then there exists an unbounded adversary B against the malicious circuit privacy security of
FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r.

2. B computes (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)← SFE.Setup(1λ, f1,
. . . , fQ; SFE.r), and FHE.ct ← FHE.Enc(FHE.pk, SFE.pk; FHE.r2). It returns pk = (FHE.pk, FHE.ct) and
sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to A.

3. A outputs the challenge input x. B defines the circuit G[x, r] as in the construction and sends FHE.pk, FHE.ct,
and G[x, r] to the FHE challenger. The FHE challenger computes SFE.pk = FHE.Ext(FHE.pk, FHE.ct),
samples β ← {0, 1} and returns FHE.ĉtβ to B, where FHE.ĉt0 ← FHE.Eval(FHE.pk, G[x, r], FHE.ct) and
FHE.ĉt1 ← FHE.Sim(FHE.pk, FHE.ct, SFE.Enc(SFE.pk, x)) (since G[x, r](SFE.pk) = Enc(SFE.pk, x; r)).

4. B sets and forwards ct = FHE.ĉtβ to A.

5. In the end, A outputs a bit β′. B sends β′ to the FHE challenger.

We observe that if the FHE challenger samples β = 0, then B simulated Hyb0, else Hyb1 with A. Hence, advantage of
B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Claim C.12. Assume that SFE satisfies relaxed-SIM security against a semi malicious authority. Then Hyb1 ≈c Hyb2.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb1 and Hyb2 with non-negligible
advantage ϵ, then there exists a PPT adversary B against the malicious circuit privacy security of SFE scheme with the
same advantage ϵ. The reduction is as follows.
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1. B first runs A. A outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r.

2. B sends the functions f1, . . . , fQ and the randomness SFE.r to the SFE challenger and gets back (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ).

3. B generates (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), and computes FHE.ct← FHE.Enc(FHE.pk, SFE.pk; FHE.r2).
It returns pk = (FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to A.

4. A outputs the challenge input x. B forwards x to the SFE challenger as the challenge ciphertext. The SFE
challenger samples a bit β ← {0, 1} and returns SFE.ctβ to B where SFE.ct0 ← SFE.Enc(SFE.pk, x) and
SFE.ct1 ← SFE.Sim(SFE.pk, 1|x|,V ′) where V ′ =

{
fi(x), fi, SFE.sk fi

}
i∈[Q]

.

5. B computes FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ctβ) and forwards ct = FHE.ĉt to A.

6. In the end, A outputs a bit β′. B sends β′ to the SFE challenger.

We observe that if the SFE challenger samples β = 0, then B simulated Hyb1, else Hyb2 with A. Hence, advantage of
B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption).

Security against the outsiders. This follows from Lemma 4.9.

C.5 Succinct Hash Encryption with Semi-Malicious security in ROM.
In this section, we provide a construction of hash encryption satisfying semi-malicious security. To begin, we observe
that the construction of HE from LWE by Döttling et al. [DGHM18] already satisfies semi-honest security. To make it
succinct and semi-malicious secure in the ROM, we make the following two modifications:

1. Succinctness: We use a pseudorandom generator PRG to generate key.

2. Semi-malicious security: Let H be a hash function modelled as the random oracle. Let R be the (potentially bad)
randomness sampled by the adversary in the semi-malicious game. Then, the key of HE is set R, using which the
parties compute H(PRG(R)).

We also note that for our purpose we need a hash encryption scheme with hash domain {−1, 0, 1}m satisfying
semi-malicious security. We use the HE scheme for binary hash domain from [DGHM18] as a black box to construct
our hash encryption scheme with hash domain {−1, 0, 1}m satisfying semi-malicious security.

Building blocks. We use the following ingredients for our construction.

1. A pseudorandom generator PRG : {0, 1}λ → {0, 1}∗.

2. A random oracle H : {0, 1}∗ → Z2m×λ
p .

3. A hash encryption scheme HE = (HE.Gen, HE.Hash, HE.Enc, HE.Dec) satisfying semi-honest security for the
hash domain {0, 1}2m and message spaceM. This can be instantiated from LWE assumption (Theorem 2.18).

4. A mapping ϕ : X → {0, 1}2m, where, X ⊆ {−1, 0, 1}m and ϕ(x1 . . . xm) = y1 . . . y2m where y2i−1 = y2i = 0
if xi = 0, y2i−1 = y2i = 1 if xi = 1, and y2i−1 = 1, y2i = 0 if xi = −1.
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Construction. We describe our construction below.

Gen(1λ, m)→ key. The setup algorithm does the following.

1. Sample r ← {0, 1}λ.
2. Compute A = H(PRG(r)) and set HE.key = A.
3. Output key = r and set the CRS as HE.key.

Hash(key, x ∈ {−1, 0, 1}m)→ h. The hash algorithm does the following.

1. Parse key = r and compute HE.key := H(PRG(r)).
2. Let ϕ(x) = y and compute HE.hash← HE.Hash(HE.key, y).
3. Output h = HE.hash.

Enc(key, (h, i ∈ [m], c ∈ {−1, 0, 1}), µ). The encryption algorithm does the following.

1. Parse key = r, h = HE.hash and compute HE.key := H(PRG(r)).
2. Sample random s0 ←M and set s1 = µ⊕ s0.
3. Let ϕ(c) = c0c1 and compute HE.ct0 ← HE.Enc(HE.key, (HE.hash, 2i − 1, c0), s0) and HE.ct1 ←

HE.Enc(HE.key, (HE.hash, 2i, c1), s1).
4. Output ct = (HE.ct0, HE.ct1).

Dec(key, x, ct)→ {0, 1}. The decryption algorithm does the following.

1. Parse key = r and compute HE.key := H(PRG(r)).
2. Let ϕ(x) = y.
3. Parse ct = (HE.ct0, HE.ct1) and compute s′0 ← HE.Dec(HE.key, y, HE.ct0) and s′1 ← HE.Dec(HE.key, y, HE.ct1).
4. Output µ′ = s0 ⊕ s1.

Collusion resistance. First we note that ϕ is a one to one mapping, i.e. if x1 ̸= x2 =⇒ ϕ(x1) ̸= ϕ(x2). This along
with the fact that HE.Hash is a collusion resistant hash, implies that the Hash algorithm in the above construction is a
collusion resistant hash for hash domain {−1, 0, 1}m.

Correctness. For any Enc(key, (h, i, c), µ) = ct = (HE.ct0, HE.ct1), where HE.ct0 ← HE.Enc(HE.key, (HE.hash, 2i−
1, c0), s0) and HE.ct1 ← HE.Enc(HE.key, (HE.hash, 2i, c1), s1) and for any x such that Hash(key, x) = h =
HE.Hash(HE.key, y), where y = ϕ(x), we observe that with all but negligible probability

1. if y2i−1 = c0,

HE.Dec(HE.key, y, HE.ct0) = HE.Dec(HE.key, y, HE.Enc(HE.key, (HE.hash, 2i− 1, c0), s0)) = s0

2. and if y2i = c1

HE.Dec(HE.key, y, HE.ct1) = HE.Dec(HE.key, y, HE.Enc(HE.key, (HE.hash, 2i, c1), s1)) = s1

by the correctness of the underlying HE scheme. Now, if xi = c, it implies that ϕ(xi) = ϕ(c) =⇒ y2i−1y2i = c0c1.
So we recover s0, s1 in Step 3 of the decryption algorithm and s0 ⊕ s1 = µ in the Step 4 by the correctness of secret
sharing. Hence, the correctness follows.
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Semi-malicious security. We show that the above construction of a hash encryption scheme is secure via following
theorem.

Theorem C.13. Assume that HE is a secure hash encryption scheme for hash domain {0, 1}2m in the semi-honest
setting (Definition 2.15). Then the above construction is a secure hash encryption scheme in the semi-malicious setting
for hash domain {−1, 0, 1}m.

Proof. Recall that to prove the security we need to show that

Enc(key, (h, i, ci), µ0) ≈c Enc(key, (h, i, ci), µ1)

where h = Hash(key, x) for some x ∈ {−1, 0, 1}m and xi ̸= ci for some ci ∈ {−1, 0, 1}.
We consider the following sequence of hybrid games.

Hyb0. This is the real world where the ciphertext is computed for message µ0, We write the complete game to setup
notations and for easy reference in the later hybrids.

1. The adversary outputs x ∈ {−1, 0, 1}m and a randomness r.
2. The challenger computes y = ϕ(x), generates A← HE.Gen(HE.key, 12m) and sets A := H(PRG(r)). It

sets key = r.
3. The adversary outputs an index i ∈ [m], two messages µ0, µ1 and a ci ∈ {−1, 0, 1} such that xi ̸= ci. The

challenger does the following.
(a) It computes ϕ(ci) = d2i−1d2i, where d2i−1, d2i ∈ {0, 1}.
(b) It samples s(2i−1)

0 , s(2i−1)
1 ← M and sets s(2i)

0 = µ0 ⊕ s(2i−1)
0 , s(2i)

1 = µ1 ⊕ s(2i−1)
1 (s(ind)

b denotes
the share of message µb at position ind ).

(c) It computes HE.ct(2i−1) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), 2i− 1, d2i−1), s(2i−1)
0 ) and HE.ct(2i) ←

HE.Enc(HE.key, (HE.Hash(HE.key, y), 2i, d2i), s(2i)
0 ).

4. The challenger returns ct = (HE.ct(2i−1), HE.ct(2i)) to the adversary.
5. The adversary outputs a guess bit β.

Hyb1. In this hybrid we change the way the ciphertext is generated. In particular for j ∈ {2i− 1, 2i} such that yj ̸= dj
(since xi ̸= ci, then by the definition of ϕ, it implies there exists such an index j), the challenger computes
HE.ct(j) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), j, dj, s(j)

1 ).

Hyb2. This hybrid is same as the previous hybrid except that we set s(j′)
0 := s(j)

1 ⊕ µ1, where j′ ∈ {2i− 1, 2i} such
that j′ ̸= j.
We note that this hybrid is the real world where the ciphertext is computed for message µ1.

Indistinguishability of hybrids. Now we show that the above consecutive hybrids are indistinguishable.

Claim C.14. Assume that HE is a secure hash encryption scheme in the semi-honest setting. Then Hyb0 ≈c Hyb1.

Proof. We show that if there exists a PPT adversaryA who can distinguish between the two hybrids with non-negligible
advantage ϵ, then there exists a PPT adversary B against the semi-honest security of the underlying HE scheme with
the same advantage ϵ. The reduction is as follows.

1. B first runs A. The adversary outputs x ∈ {−1, 0, 1}m and a randomness r.

2. B computes y = ϕ(x) and sends y to the HE challenger. The challenger generates A← HE.Gen(HE.key, 12m)
and returns the HE.key = A to B.

3. B sets the H(PRG(r)) = A and returns A to the adversary A.
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4. A outputs an index i ∈ [m], two messages µ0, µ1 and a ci ∈ {−1, 0, 1} such that xi ̸= ci. B does the following.

− It computes ϕ(ci) = d2i−1d2i, where d2i−1, d2i ∈ {0, 1}.

− It samples s(2i−1)
0 , s(2i−1)

1 ←M and sets s(2i)
0 = µ0 ⊕ s(2i−1)

0 , s(2i)
1 = µ1 ⊕ s(2i−1)

1 .

− For j ∈ {2i− 1, 2i} such that yj ̸= dj, B sends (j, (s(j)
0 , s(j)

1 ), dj) as the ciphertext challenge to the HE chal-
lenger. The HE challenger samples a bit β← {0, 1} and computes HE.ct(j) ← HE.Enc(HE.key, (HE.Hash
(HE.key, y), j, dj), s(j)

β ) and returns HE.ct(j) to B.

− Let j′ ∈ {2i− 1, 2i} s.t j′ ̸= j. B computes HE.ct(j′) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), j′, dj′), s(j′)
0 ).

− B sets ct = (HE.ct(j), HE.ct(j′)) if j = 2i− 1, else it sets ct = (HE.ct(j′), HE.ct(j)) and sends ct to A.

5. In the end A outputs a bit β′. B forwards β′ to the HE challenger.

We observe that if the HE challenger samples β = 0, then B simulated the real world where µ0 is encrypted , else
the real world where µ1 is encrypted with A. Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| =
|Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Claim C.15. Hyb1 and Hyb2 are statistically indistinguishable.

Proof. We note that s(j′)
0 is a uniformly random string, since each share of µ0 is distributed uniformly at random. Also,

since the other share of µ0, which is s(j)
0 , does not appear in Hyb1 and Hyb2, we can set s(j′)

0 = s(j)
1 ⊕ µ1, which is

again a uniformly random string due to the randomness of s(j)
1 and the guarantee of secret sharing. We also note that

now HE.ct(j′) encrypts the message s(j)
1 ⊕ µ1.

D Missing details from Section 5
In this section we show that pre-constrained input obfuscation (PCIO) is equivalent to pre-constrained static functional
encryption (PCSFE).

D.1 From PCSFE to PCIO.
We construct a PCIO scheme, for circuit family C = {C : X → Y}, from a PCSFE = (PCSFE.Setup,
PCSFE.Enc, PCSFE.Dec) scheme as defined in Section 4.

Setup(1λ,S)→ (pk, ek). The setup algorithm does the following.

− Parse S = (x1, . . . , xQ).
− Let U[x] be a universal circuit, which on input a circuit C, outputs C(x).
− Run (fe.pk, fe.sk1, . . . , fe.skQ)← PCSFE.Setup(1λ, U[x1], . . . , U[xQ]).
− Output pk := fe.pk and ek := (fe.sk1, . . . , fe.skQ). (We assume that fe.ski includes xi.)

O(pk, C)→ C̃. The obfuscating algorithm does the following.

− Parse pk = fe.pk.
− Run fe.ct← PCSFE.Enc(fe.pk, C).

− Output C̃ := fe.ct.

Eval(ek, C̃, x)→ y. The evaluation algorithm does the following.
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− Parse ek = (fe.sk1, . . . , fe.skQ) and C̃ = fe.ct.
− Find fe.ski corresponding to x. If there is no such ski, output ⊥.
− Otherwise, run and output y← PCSFE.Dec(fe.ski, fe.ct).

Correctness. We show the correctness of our PCIO scheme via the following theorem.

Theorem D.1. Suppose PCSFE satisfies correctness as defined in Definition 4.1. Then the above construction satisfies
correctness as defined in Definition 5.1.

Proof. From the correctness of PCSFE, it holds that y = U[xi](C) where y = PCSFE.Dec(fe.ski, fe.ct). By the
definition of U[x], it holds that y = C(xi). Next, if x ∈ X \ S , there is no ski corresponding to x in ek. In this case,
the decryption algorithm outputs ⊥. Thus, the theorem holds.

Input-set-hiding. We show that the above construction satisfies the input-set-hiding property.

Theorem D.2. Suppose PCSFE satisfies the function-hiding property as defined in Definition 4.2. Then the above
construction satisfies input-set-hiding as defined in Definition 5.2.

Proof. We construct an adversary B of the function-hiding game for PCSFE by using an adversary A of the input-set-
hiding game for PCIO. B works as follows.

1. When A sends S0 = (x(0)1 , . . . , x(0)Q ) and S1 = (x(1)1 , . . . , x(1)Q ), B sets f (b)i := U[x(b)i ] for b ∈ {0, 1} and

sends := ( f (0)1 , f (1)Q ), . . . , ( f (0)Q , f (1)Q ) to its challenger.

2. B receives fe.pk from its challenger.

3. B sends pk := fe.pk to A.

4. B outputs whatever A outputs.

B perfectly simulates the input-set-hiding game for A. Thus, if A breaks the input-set-hiding property, B also breaks
the function-hiding game. This completes the proof.

Security against malicious authority. We show that the above construction satisfies security against malicious
authority.

Theorem D.3. Suppose PCSFE satisfies security SIM security (resp. indistinguishability) against malicious authority.
Then the above construction satisfies VBB security (resp. indistinguishability) against malicious authority. In addition, if
PCSFE has unconditional (SIM or IND) security, the above construction also has unconditional (VBB or IND) security.

We focus on the proof for the simulation-based security. The proof for the indistinguishability-based definition is
similar to the simulation-based one, and we omit it.

Proof. We define Ext(1λ, pk) as follows.

• Parse pk = fe.pk.

• Run ( f1, . . . , fQ)← PCSFE.Ext(1λ, fe.pk).

• Interpret fi as a universal circuit U[x′i ] for all i ∈ [Q].

• Output (x′1, . . . , x′Q).

We also define Sim(1λ, 1|C|, pk, C(x′1), . . . , C(x′Q)) as follows.

• Parse pk = fe.pk.

62



• Run fe.ct1 ← PCSFE.Sim(fe.pk, 1|C|, C(x′1), . . . , C(x′Q)).

• Output C̃ := fe.ct1.

We construct an adversary B of the SIM security for PCSFE by using an adversaryA of the VBB security for PCIO.
B works as follows.

1. When A sends pk and C, B sends fe.pk := pk and x := C to its challenger.

2. B receives a challenge ciphertext fe.ct from its challenger.

3. B sends C̃ := fe.ct to A

4. B outputs whatever A outputs.

If β = 0, B receives fe.ct0 ← PCSFE.Enc(fe.pk, C). If β = 1,B receives fe.ct1 ← PCSFE.Sim(fe.pk, 1|C|, U[x′1](C),
. . . , U[x′Q](C)) where (U[x′1], . . . .U[x′Q]) ← PCSFE.Ext(1λ, FE.pk). So, B perfectly simulates the VBB security
game for A. Thus, if A breaks the VBB security, B also breaks the SIM security. This completes the proof.

D.2 From PCIO to PCSFE.
It is easy to see that we can construct PCSFE from PCIO. Let PCIO := PCIO.(Setup,O, Eval) be a PCIO scheme.

Setup(1λ, f1, . . . , fQ)→ (pk, sk f1 , . . . , sk fQ). The setup algorithm does the following.

− Set S := ( f1, . . . , fQ)

− Run (pcio.pk, pcio.ek)← PCIO.Setup(1λ,S).
− Output pk := pcio.pk and sk fi

:= (pcio.ek, fi) for all i ∈ [Q].

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Parse pk = pcio.pk.
− Run Ũ ← PCIO.O(pcio.pk, U[x]) where U[x] is a universal circuit that takes as input f , and outputs f (x).

− Output ct := Ũ.

Dec(sk fi
, ct)→ y. The decryption algorithm does the following.

− Parse sk fi
= (pcio.ek, fi) and ct = Ũ.

− Compute and output PCIO.Eval(pcio.ek, Ũ, fi).

Correctness. Correctness of the above scheme follows from the correctness of the PCSFE scheme.

Theorem D.4. Suppose PCIO satisfies correctness as defined in Definition 5.1. Then the above construction satisfies
correctness as defined in Definition 4.1.

Input-set-hiding. The input-set-hiding property of the above scheme follows from the function-hiding of the PCSFE
scheme.

Theorem D.5. Suppose PCIO satisfies input-set-hiding as defined in Definition 5.2. Then the above construction
satisfies the function-hiding property as defined in Definition 4.2.
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Security against malicious authority. This follows from the security against malicious authority of the PCSFE
scheme.

Theorem D.6. Suppose PCIO satisfies VBB security (resp. indistinguishability) against malicious authority. Then the
above construction satisfies security SIM security (resp. indistinguishability) against malicious authority. In addition, if
PCIO has unconditional (VBB or IND) security, the above construction also has unconditional (SIM or IND) security.

The proofs of Theorems D.4 to D.6 are almost the same as those of Theorems D.1 to D.3, so we omit them.

E Missing Details from Section 6
In this section, we provide our definition and construction for pre-constrained group signatures.

E.1 Definition
A pre-constrained group signature (PCGS) scheme for a circuit family C = {C : {0, 1}n → {0, 1}} for n = n(λ), a
message spaceM = {0, 1}n, an identity space ID consists of five algorithms (Setup, KeyGen, Sign, Verify, Open)
with the following syntax.

Setup(1λ, C)→ (mpk, msk). The setup algorithm, run by the group manager GM, takes as input the security parameter
λ and a circuit C ∈ C, and outputs a master public key mpk and a master secret key msk.

KeyGen⟨GM(msk), U⟩ → (id, skid). This is an interactive protocol between the group manager GM with msk and the
user U. It delivers an identity id ∈ ID to both GM and U and a user secret signing key skid to U.

Sign(mpk, skid, m)→ σ. The signing algorithm takes as input the master public key mpk, the user signing key skid
and a message m, and outputs a signature σ.

Verify(mpk, m, σ)→ {0, 1}. The verification algorithm takes as input the master public key mpk, a message m and a
signature σ, and outputs a bit indicating accept or reject.

Open(msk, σ)→ {id,⊥}. The opening algorithm on input the master secret key msk and a signature σ outputs either
an identity id ∈ ID or ⊥.

Definition E.1 (Correctness). A PCGS scheme is said to be correct if for any C ∈ C, m ∈ M, the following holds

Pr[Verify(mpk, m, Sign(mpk, skid, m)) = 1] ≥ 1− negl(λ)

where (mpk, msk)← Setup(1λ, C) and (id, skid)← KeyGen⟨GM(msk), U⟩.

Definition E.2 (Constraint-Hiding). A PCGS scheme is said to satisfy constraint-hiding security if for any PPT
adversary A, the following holds

Pr

 β′ = β :
C0, C1 ← A;
β← {0, 1}; (mpkβ, msk)← Setup(1λ, Cβ);
β′ ← A(mpkβ)

 ≤ 1
2
+ negl(λ)

where A is admissible if |C0| = |C1| and C0, C1 ∈ C.

Definition E.3 (Traceability). For a PCGS scheme and an adversary A, let us define the traceability experiment as
follows.

1. A outputs a challenge circuit C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends mpk to A.
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3. A can make the following queries to the challenger.

(a) H-KeyGen. A can request the joining of an user U to the group. The challenger executes the KeyGen
protocol where it acts both as the group manager and the user. The challenger receives an id ∈ ID and the
respective signing key skid. It forwards id to A and maintains a set of these identities Hid. It also maintains
a list Hkey of the identity and the respective signing key pair (id, skid) for the queried identities.

(b) C-KeyGen. A can request to join the group as an user U. Then the challenger and the adversary executes
the KeyGen protocol where the challenger acts as the group manager and A as the user U. The challenger
andA receives an id ∈ ID andA additionally receives the signing key skid. The challenger maintains a set
of these identities Cid.

(c) Sign. A can request a signature on message m. It sends (m, id) to the challenger, where the id is the user
identity corresponding to some user in the group. If id /∈ Hid, the challenger outputs ⊥ else it returns
σ ← Sign(mpk, skid, m) to A. The challenger maintains a list Sid of (m, id) for which it returns the
signature to A.

(d) Open. A can request to open a signature σ. The challenger runs Open(msk, σ) and forwards the output to
A.

4. A outputs a message m∗ and a signature σ∗.

A wins if the following conditions hold

1. Verify(mpk, m, σ) = 1 and C(m) = 1.

2. id← Open(msk, σ) ∧ ((m, id) /∈ Sid) ∧ (id /∈ Cid).

We say that a PCGS scheme is traceable if for any PPT adversary A, the probability that A wins the traceability
experiment is negl(λ).

Definition E.4 (Unframeability). For a PCGS scheme and an adversary A, let us define the unframeability experiment
as follows.

1. A outputs a circuit C ∈ C.

2. On input 1λ, C, the challenger generates (mpk, msk)← Setup(1λ, C). It sends (mpk, msk) to A.

3. A can make the H-KeyGen and Sign queries to the challenger as defined in Definition E.3. The challenger
maintains the list Hid and Sid for the respective queries.

4. A outputs a message m∗ and a signature σ∗.

A wins if the following conditions hold

1. Verify(mpk, m, σ) = 1.

2. id← Open(msk, σ) ∧ ((m, id) /∈ Sid) ∧ (id ∈ Hid).

We say that a PCGS scheme satisfies unframeability if for any PPT adversary A, the probability that A wins the
unframeability experiment is negl(λ).

Definition E.5 (Client-Authority Anonymity against Malicious Authority). For a PCGS scheme and an adversary A,
let us define the experiment for anonymity against malicious authority ExptCAA

β,A (1λ) as follows.

1. A outputs the challenge master public key mpk∗, a message m∗ and two identities (id∗0 , id∗1) and the respective
signing keys (sk∗id0

, sk∗id1
).

2. The challenger samples a bit β← {0, 1} and computes σβ ← Sign(mpk∗, sk∗idβ
, m∗) and returns σβ to A.
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3. A outputs a bit β∗ as the output of the experiment.

We say that an adversary A is admissible if (i) C ∈ C where C ← Ext(1λ, mpk∗), and (ii) C(m∗) = 0.
We define the advantage of A in the above experiment as

AdvCAA
A (λ) =

∣∣∣Pr
[
ExptCAA

0,A (1λ) = 1
]
− Pr

[
ExptCAA

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies anonymity against malicious authority if there exists an (possibly inefficient)
extractor Ext such that for any admissible PPT adversary A, AdvCAA

A (λ) ≤ negl(λ).

Definition E.6 (Unconditional Client-Authority Anonymity against Malicious Authority). We say that a PCGS
scheme satisfies unbounded anonymity against a malicious authority if for any (unbounded) admissible adversary A,
AdvCAA

A (λ) (as defined in Definition E.5) is negligible in the security parameter.

Definition E.7 (Client-Authority Unlinkability against Malicious Authority). For a PCGS scheme and an adversary
A, let us define the experiment for unlinkability against malicious authority ExptCAU

β,A (1λ) as follows.

1. A outputs the challenge master public key mpk∗, two messages (m∗0 , m∗1) and two identities (id∗0 , id∗1) and the
respective signing keys (sk∗id0

, sk∗id1
).

2. The challenger computes σ0 ← Sign(mpk, sk∗id0
, m∗0), samples a bit β ← {0, 1} and computes σ1 ←

Sign(mpk∗, sk∗idβ
, m∗1) and returns (σ0, σ1) to A.

3. A outputs a bit β∗ as the output of the experiment.

We say that an adversary A is admissible if (i) C ∈ C where C ← Ext(1λ, mpk∗), and (ii) C(m∗0) = C(m∗1) = 0.
We define the advantage of A in the above experiment as

AdvCAU
A (λ) =

∣∣∣Pr
[
ExptCAU

0,A (1λ) = 1
]
− Pr

[
ExptCAU

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies unlinkability against malicious authority if there exists an (possibly inefficient)
extractor Ext such that for any admissible PPT adversary A, AdvCAU

A (λ) ≤ negl(λ).

Definition E.8 (Unconditional Client-Authority Unlinkability against Malicious Authority). We say that a PCGS
scheme satisfies unbounded unlinkability against a malicious authority if for any (unbounded) admissible adversary A,
AdvCAU

A (λ) (as defined in Definition E.7) is negligible in the security parameter.

Definition E.9 (Client-Client Anonymity). For a PCGS scheme and an adversary A, let us define the experiment for
client-client anonymity ExptCCA

β,A (1λ) as follows.

1. A outputs a circuit C ∈ C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends the master public key mpk to A.

3. A can make the H-KeyGen, C-KeyGen and Sign queries to the challenger as defined in Definition E.3. The
challenger maintains the list Hid, Hkey, Cid and Sid for the respective queries.

4. A outputs a message m∗ and two user identities (id0, id1). If id0 ∨ id1 ∈ Cid then abort, else the challenger
samples β← {0, 1} and computes σβ ← Sign(mpk, skidβ

, m∗), where skidβ
is the signing key corresponding to

idβ from the list Hkey, and returns this to the adversary.

5. A outputs a bit β′ as the output of the experiment.

We define the advantage of A in the above experiment as

AdvCCA
A (λ) =

∣∣∣Pr
[
ExptCCA

0,A (1λ) = 1
]
− Pr

[
ExptCCA

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies client-client anonymity if for any PPT adversary A, AdvCCA
A (λ) ≤ negl(λ).
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Definition E.10 (Client-Client Unlinkability). For a PCGS scheme and an adversary A, let us define the experiment
for client-client unlinkability ExptCCU

β,A (1λ) as follows.

1. A outputs a circuit C ∈ C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends the master public key mpk to A.

3. A can make the H-KeyGen, C-KeyGen and Sign queries to the challenger as defined in Definition E.3. The
challenger maintains the list Hid, Hkey, Cid and Sid for the respective queries.

4. A outputs messages m0, m1 and two user identities id0, id1. If id0 ∈ Cid or id1 ∈ Cid then abort, else the challenger
computes σ0 ← Sign(mpk, skid0 , m0), samples β ← {0, 1} and computes σ1 ← Sign(mpk, skidβ

, m1), where
skidβ

is the signing key corresponding to idβ from the list Hkey. It returns (σ0, σ1) to A.

5. A outputs a bit β′ as the output of the experiment.

We define the advantage of A in the above experiment as

AdvCCU
A (λ) =

∣∣∣Pr
[
ExptCCU

0,A (1λ) = 1
]
− Pr

[
ExptCCU

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies client-client unlinkability if for any PPT adversary A, AdvCCU
A (λ) ≤ negl(λ).

E.2 Construction
Our construction of PCGS follows from the compiler provided by [BGJP23] and is secure in ROM. As we will see
below, we can use our LWE based PCE scheme achieving unconditional security together with dual-mode NIZK to
obtain unconditional anonymity against malicious authority.

Building Blocks We use the following ingredients for our construction.

1. A special PCE encryption scheme PCE = (PCE.Setup, PCE.Enc, PCE.Dec) as defined in Definition 3.10. This
can be instantiated from a variety of assumptions as described in Sections 3.2 and 3.3 and Appendix B.2.

2. A dual-mode NIZK proof system ZK = (ZK.Hsetup, ZK.Bsetup, ZK.Prove, ZK.Verify) satisfying statistical
zero-knowledge in. This can be instantiated from LWE (Corollary A.11).

3. A one-way relationR = (R.Gen,R.Sample) for the relationR.

4. A digital signature scheme S = (S .Setup,S .Sign,S .Verify).

5. A random oracle H.

Construction. We now describe the construction of PCGS scheme, adapted from [BGJP23].

Setup(1λ, C)→ (mpk, msk). The setup algorithm does the following.

− GenerateR.pp← R.Gen(1λ), (PCE.pk, PCE.sk)← PCE.Gen(1λ, C) and (S .vk,S .sk)← S .Gen(1λ).
− Output mpk = (R.pp, PCE.pk,S .vk) and msk = (PCE.sk,S .sk).

KeyGen⟨GM(msk), U⟩ → (id, skid). The key generation protocol is as follows.

− The user U samples s ← {0, 1}r and computes an instance-witness pair (id, w) = R.Sample(R.pp; s). It
sends id to the group manager GM.

− The group manager parses msk = (PCE.sk,S .sk) and computes σid ← S .Sign(S .sk, id) and returns it to the
user.
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− The user sets skid = (s, σid).

Sign(mpk, skid, m)→ σ. The signing algorithm does the following.

− Parse mpk = (R.pp, PCE.pk,S .vk) and skid = (s, σid).
− Compute (id, w) = R.Sample(R.pp; s).
− Sample r ← {0, 1}λ and compute ct = PCE.Enc(PCE.pk, m, id; r).
− Let crs← H(m, ct), and compute π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m, ct), (id, s, w, σid, r)) for the

relation that checks that:
1. ct = PCE.Enc(PCE.pk, m, id; r).
2. (id, w) = R.Sample(R.pp; s).
3. S .Verify(S .vk, id, σid)

− Output σ = (ct, crs, π).

Verify(mpk, m, σ)→ {0, 1}. The verification algorithm does the following.

− Parse mpk = (R.pp, PCE.pk,S .vk) and σ = (ct, crs, π).
− Check H(m, ct) = crs. If true, output ZK.Verify(crs, (R.pp, PCE.pk,S .vk, m, ct), π).

Open(msk, σ)→ {id,⊥}. The open algorithm does the following.

− Parse msk = (PCE.sk,S .sk) and σ = (ct, crs, π).
− Output PCE.Dec(PCE.sk, ct).

Correctness. We now show that the above construction is correct via the following theorem.

Theorem E.11. Suppose that S is a correct digital signature scheme and ZK satisfies completeness (Definition A.1).
Then the above construction of PCGS satisfies correctness (Definition E.1).

Proof. We observe that for σ = (ct, crs, π), we have ct = PCE.Enc(PCE.pk, m, id; r), crs = H(m, ct) and
π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m, ct), (id, s, w, σid, r)), where (id, w) = R.Sample(R.pp; s) and σid ←
S .Sign(S .sk, id).
By the correctness of the signature scheme, we have with all but negligible probability, S .Verify(S .vk, id, σid) = 1.
Hence, the completeness of ZK scheme implies ZK.Verify(crs, (R.pp, PCE.pk,S .vk, m, ct), π) = 1 with all but
negligible probability.
So, Verify(mpk, m, σ) = (crs = H(m, ct)) ∧ (ZK.Verify(crs, (R.pp, PCE.pk,S .vk, m, ct), π)) = 1 with all but
negligible probability . Hence the above construction satisfies correctness.

Instantiation Below we describe the properties inherited by the resulting PCGS scheme for each instantiation of PCE
scheme that we construct.

1. If we use PCE as in Section 3.2, we achieve anonymity and unlinkability against a malicious authority for general
circuits. For circuits in NC1, we can achieve unconditional anonymity and unlinkability against a malicious
authority.

2. If we PCE as in Section 3.3, we can achieve unconditional anonymity and unlinkability against a malicious
authority for general circuits.

3. If we use PCE for database as in Appendix B.2, we can achieve unconditional anonymity against a malicious
authority, but not unlinkability.

Next, we prove the security properties of the above PCGS scheme.
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Constraint-Hiding. This follows immediately from the constraint-hiding property of the underlying PCE scheme.
We prove it formally using the following theorem.

Theorem E.12. Suppose that PCE scheme satisfies constraint-hiding (Definition 3.2). Then the above construction of
PCGS satisfies constraint-hiding (Definition E.2).

Proof. Recall that to show constraint-hiding, we want

{mpk | mpk← Setup(1λ, C0)} ≈c {mpk | mpk← Setup(1λ, C1)}

for any circuits C0, C1 ∈ C. We show that if there exists a PPT adversary A who can distinguish between the above two
distributions with non-negligible advantage ϵ, then there exists a PPT adversary B against the constraint-hiding of the
PCE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge circuits C0, C1 such that C0, C1 ∈ C.

2. B sends C0 and C1 to the PCE challenger as challenge circuits. The PCE challenger samples β ← {0, 1},
generates (PCE.pk, PCE.sk)← PCE.Setup(1λ, Cβ), and returns PCE.pk to B.

3. B generates R.pp ← R.Gen(1λ) and (S .vk,S .sk) ← S .Gen(1λ). It forwards mpk = (R.pp, PCE.pk,S .vk)
to A.

4. In the end A outputs a bit β′. B forwards β′ to the PCE challenger.

We observe that if the PCE challenger samples β = 0, then B simulated the distribution D0 = {mpk|mpk ←
Setup(1λ, C0)} , else D1 = {mpk|mpk← Setup(1λ, C1)} with A. Hence, advantage of B = |Pr(β′ = 1|β = 0)−
Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|D0)− Pr(β′ = 1|D1)| = ϵ (by assumption).

Traceability. We show that the above scheme satisfies traceability using the following theorem.

Theorem E.13. Suppose that PCE scheme satisfies perfect correctness (Definition 3.1) and security against outsiders
(Definition 3.8), ZK satisfies statistical zero-knowledge in the hiding mode (Definition A.3) and knowledge extraction in
the binding mode (Definition A.5), one way relationR is secure (Definition A.13) and the signature scheme S satisfies
EUF-CMA security. Then the above construction of PCGS satisfies traceability (Definition E.3) in the random oracle
model.

Proof. The proof is identical to the proof of traceability in Theorem 4, [BGJP23] and is hence omitted.

Unframeability. We show that the above scheme satisfies unframeability using the following theorem.

Theorem E.14. Suppose that PCE scheme satisfies perfect correctness (Definition 3.1) and security against outsiders
(Definition 3.8), ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Definition A.3)
and knowledge extraction in the binding mode (Definition A.5), and the one way relationR is secure (Definition A.13).
Then the above construction of PCGS satisfies unframeability (Definition E.4) in the random oracle model.

Proof. The proof is identical to the proof of unframeability in Theorem 4, [BGJP23] and is hence omitted.

Client-Authority Anonymity against Malicious Authority.

Theorem E.15. Suppose that PCE scheme satisfies (computational/unconditional) security against malicious authority
(Definition 3.7) and ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Defini-
tion A.3). Then the above construction of PCGS satisfies (computational/unconditional) client-authority anonymity
against a malicious authority (Definition E.6) in the random oracle model.
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Proof. Recall that in the client-authority anonymity against a malicious authority, we want to show that

Sign(mpk, skid0 , m) ≈s Sign(mpk, skid1 , m)

where C(m) = 0, for the circuit C associated with the, possibly malformed, master public key mpk.
Here we let the extractor Ext of PCGS scheme to be the extractor of the underlying PCE scheme, say PCE.Ext, which
is secure against a malicious authority. The proof proceeds via the following sequence of hybrid games between the
challenger and an unbounded adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge signature is computed using the signing key skid0 associated
with the identity id0. We write the complete game here to set up the notations and easy reference in later hybrids.

1. A outputs the challenge master public key mpk, a message m and two identities (id0, id1) and the respective
signing keys (skid0 , skid1).

2. The challenger parses mpk = (R.pp, PCE.pk,S .vk) and skid0 = (s0, σid0). It computes ct = PCE.Enc(PCE.pk, m, id0; r0),
crs ← H(m, ct) and proof π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m, ct), (id0, s0, w0, σid0 , r0)) as in
the Sign algorithm of the construction. It returns σ = (ct, crs, π) to A.

3. A outputs a bit β as the output of the experiment.

Hyb1. This hybrid is same as the previous hybrid except that the random oracle H is lazily sampled, i.e., the challenger
generates (crs, π) using ZK.Sim on the instance (R.pp, PCE.pk,S .vk, m, ct) and sets H(m, ct) = crs.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes ct differently as ct ←
PCE.Enc(PCE.pk, m, id1).

Hyb3. This hybrid is same as the previous hybrid except that the challenger generates (crs, π) differently . It computes
crs← H(m, ct) and the proof π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m, ct), (id1, s1, w1, σid1 , r1)) as in the
Sign algorithm of the construction.
This is the real world with β = 1.

Indistinguishability of hybrids. We now show that the above consecutive hybrids are indistinguishable.

Claim E.16. Assume that ZK satisfies statistical zero-knowledge with common random string, then Hyb0 ≈s Hyb1.

Proof. We show that if there exists an unbounded adversary A who can distinguish between Hyb0 and Hyb1 with
non-negligible advantage ϵ, then there exists an unbounded adversary B against the statistical zero-knowledge of ZK
scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge master public key mpk, a message m and two identities (id0, id1) and the
respective signing keys (skid0 , skid1).

2. B parses mpk = (R.pp, PCE.pk,S .vk) and skid0 = (s0, σid0) and does the following

• Computes (id0, w0) = R.Sample(R.pp; s0).
• Samples r0 ← {0, 1}λ and computes ct = PCE.Enc(PCE.pk, m, id; r0).
• Sets x = (R.pp, PCE.pk,S .vk, m, ct) and w = (id0, s0, w0, σid0 , r0) and sends (x, w) to the ZK challenger.

The ZK challenger generates crs0 ← Setup(1λ) and computes π0 ← ZK.Prove(crs, x, w). It also computes
(crs1, π1)← ZK.Sim(1λ, x). It samples a bit β← {0, 1} and returns (crsβ, πβ) to B.

• B sets crsβ = H(m, ct) and forwards (ct, crsβ, πβ) to A.

3. In the end, A outputs a bit β′. B sends β′ to the ZK challenger.

We observe that if the ZK challenger samples β = 0, then B simulated Hyb0, else Hyb1 with A. Hence, advantage of B
= |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).
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Claim E.17. Assume that PCE satisfies unconditional security against malicious authority, then Hyb1 ≈s Hyb2.

Proof. We show that if there exists an unbounded adversary A who can distinguish between Hyb1 and Hyb2 with
non-negligible advantage ϵ, then there exists an unbounded adversary B against the malicious authority security of the
PCE scheme with the same advantage ϵ. The reduction is as follows.

1. B first run A. A outputs the challenge master public key mpk, a message m and two identities (id0, id1) and the
respective signing keys (skid0 , skid1).

2. B parses mpk = (R.pp, PCE.pk,S .vk), skid0 = (s0, σid0), skid1 = (s1, σid1), and does the following

• It computes (id0, w0) = R.Sample(R.pp; s0) and (id1, w1) = R.Sample(R.pp; s1).
• It sets (x0, m0) = (m, id0), (x1, m1) = (m, id1), and sends PCE.pk, (x0, m0), (x1, m1) to the PCE

challenger as the challenge query. The challenger samples a bit β ← {0, 1}, computes and returns
ct← PCE.Enc(PCE.pk, xβ, mβ) to B.

• It computes (crs, π) ← ZK.Sim(1λ, (R.pp, PCE.pk,S .vk, m, ct)), sets H(m, ct) = crs and sends
(ct, crs, π) to A.

3. In the end, A outputs a bit β′. B sends β′ to the PCE challenger.

We observe that if the PCE challenger samples β = 0, then B simulated Hyb1, else Hyb2 with A. Hence, advantage of
B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Admissibility of B Observe that B sends PCE.pk corresponding to a circuit C, and (x0, m0) = (m, id0) and
(x1, m1) = (m, id1) as the challenge query to the PCE challenger. It follows from the admissibility ofA that C(m) = 0
and hence C(x0) = C(x1) = C(m) = 0, as desired.

Claim E.18. Assume that ZK satisfies statistical zero-knowledge with common random string, then Hyb2 ≈s Hyb3.

Proof. The proof of this claim follows the same steps as the proof of Claim E.16, hence omitted.

Client-Authority Unlinkability against Malicious Authority. 12

Theorem E.19. Suppose that PCE scheme satisfies (computational/unconditional) security against malicious authority
(Definition 3.7) and ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Defini-
tion A.3). Then the above construction of PCGS satisfies (computational/unconditional) client-authority unlinkability
against a malicious authority (Definition E.7) in the random oracle model.

Proof. Recall that in the client-authority unlinkability against a malicious authority, we want to show that

Sign(mpk, skid0 , m0) ≈s Sign(mpk, skidb , m1)

where b ∈ {0, 1} and C(m0) = 0 = C(m1) , for the circuit C associated with the, possibly malformed, master public
key mpk.
Here we let the extractor Ext of PCGS scheme to be the extractor of the underlying PCE scheme, say PCE.Ext, which is
secure against a malicious authority. We prove the above for b = 0 and b = 1 separately.

1. Sign(mpk, skid0 , m0) ≈s Sign(mpk, skid0 , m1).
The proof proceeds via the following sequence of hybrid games between the challenger and an unbounded
adversary A.

12We note that this property does not hold when we use our construction of PCE for database (Appendix B.2) as it doesn’t satisfy attribute-hiding.
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Hyb0. This is the real world with β = 0, i.e., the challenge signature is computed for message m0 using the
signing key skid0 associated with the identity id0. We write the complete game here to set up the notations
and easy reference in later hybrids.
(a) A outputs the challenge master public key mpk, two messages m0, m1 and two identities (id0, id1) and

the respective signing keys (skid0 , skid1).
(b) The challenger parses mpk = (R.pp, PCE.pk,S .vk) and skid0 = (s0, σid0).

It computes ct = PCE.Enc(PCE.pk, m0, id0; r0), crs ← H(m0, ct) and proof π ← ZK.Prove(crs,
(R.pp, PCE.pk,S .vk, m0, ct), (id0, s0, w0, σid0 , r0)) as in the Sign algorithm of the construction. It
returns σ = (ct, crs, π) to A.

(c) A outputs a bit β as the output of the experiment.
Hyb1. This hybrid is same as the previous hybrid except that the random oracle H is lazily sampled, i.e.,

the challenger generates (crs, π) using ZK.Sim on the instance (R.pp, PCE.pk,S .vk, m0, ct) and sets
H(m0, ct) = crs.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes ct differently as
ct ← PCE.Enc(PCE.pk, m1, id0) and the corresponding proof using ZK simulator as (crs, π) ←
ZK.Sim(R.pp, PCE.pk,S .vk, m1, ct).

Hyb3. This hybrid is same as the previous hybrid except that the challenger generates (crs, π) differently. It com-
putes crs← H(m1, ct) and the proof π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m1, ct), (id0, s0, w0, σid0 , r0))
as in the Sign algorithm of the construction.
This is the real world with β = 1.

Indistinguishability of hybrids. We note that Hyb0 ≈s Hyb1 using the statistical zero-knowledge with common
random string of the underlying ZK scheme and the proof follows the same steps as that of Claim E.16.
Hyb1 ≈s Hyb2 using the unconditional security of the underlying PCE scheme against a malicious authority and the
proof follows the same steps as that of Claim E.17. We note that here the reduction B sends (x0, m0) = (m0, id0),
(x1, m1) = (m1, id0) as the challenge query to the PCE challenger and we have C(m0) = C(m1) = 0, by the
admissibility of A, so B is admissible.
Hyb2 ≈s Hyb3 using the similar arguments as of Hyb0 ≈s Hyb1.

2. Sign(mpk, skid0 , m0) ≈s Sign(mpk, skid1 , m1). The indistinguishability of these two distribution follows from
the similar sequence of hybrids as above except the following changes:

• In Hyb2 we generate ct differently as ct← PCE.Enc(PCE.pk, m1, id1).
• In Hyb3 we generate the proof as π ← ZK.Prove(crs, (R.pp, PCE.pk,S .vk, m1, ct), (id1, s1, w1, σid1 , r1)).

Client-Client Anonymity.
Theorem E.20. Suppose that PCE scheme satisfies security against outsiders (Definition 3.8) and ZK satisfies statistical
zero-knowledge in the hiding mode (Definition A.3). Then the above construction of PCGS satisfies client-client
anonymity (Definition E.9) in the random oracle model.

Proof. The proof is identical to the proof of client-client anonymity in Theorem 4, [BGJP23] and is hence omitted.

Client-Client Unlinkability. 13

Theorem E.21. Suppose that PCE scheme satisfies security against outsiders (Definition 3.8) and ZK satisfies statistical
zero-knowledge with common random string in the hiding mode (Definition A.3). Then the above construction of PCGS
satisfies client-client unlinkability (Definition E.10) in the random oracle model.

Proof. The proof is identical to the proof of client-client unlinkability in Theorem 4, [BGJP23] and is hence omitted.

13We note that this property does not hold when we use our construction of PCE for database (Appendix B.2) as it doesn’t satisfy attribute-hiding.
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