
Efficient Zero-Knowledge Arguments For Paillier Cryptosystem

Borui Gong
The Hong Kong Polytechnic University

borui.gong@connect.polyu.hk

Wang Fat Lau
The Hong Kong Polytechnic University

wf-franky.lau@connect.polyu.hk

Man Ho Au*
The Hong Kong Polytechnic University

mhaau@polyu.edu.hk

Rupeng Yang
University of Wollongong

orbbyrp@gmail.com

Haiyang Xue
The Hong Kong Polytechnic University

haiyangxc@gmail.com

Lichun Li
Ant Group

lichun.llc@antgroup.com

Abstract—We present an efficient zero-knowledge argument of
knowledge system customized for the Paillier cryptosystem.
Our system enjoys sublinear proof size, low verification cost,
and acceptable proof generation effort, while also supporting
batch proof generation/verification. Existing works specialized
for Paillier cryptosystem feature linear proof size and veri-
fication time. Using existing sublinear argument systems for
generic statements (e.g., zk-SNARK) results in unaffordable
proof generation cost since it involves translating the relations
to be proven into an inhibitive large Boolean or arithmetic
circuit over a prime order field. Our system does not suffer
from these limitations.

The core of our argument systems is a constraint system
defined over the ring of residue classes modulo a composite
number, together with novel techniques tailored for arguing
binary values in this setting. We then adapt the approach from
Bootle et al. (EUROCRYPT 2016) to compile the constraint
system into a sublinear argument system. Our constraint
system is generic and can be used to express typical relations
in Paillier cryptosystems including range proof, correctness
proof, relationships between bits of plaintext, relationships
of plaintexts among multiple ciphertexts, and more. Our
argument supports batch proof generation and verification,
with the amortized cost outperforming state-of-the-art protocol
specialized for Paillier when the number of Paillier ciphertext
is in the order of hundreds.

We report an end-to-end prototype and conduct compre-
hensive experiments across multiple scenarios. Scenario 1 is
Paillier with packing. When we pack 25.6K bits into 400
ciphertexts, a proof that all these ciphertexts are correctly
computed is 17 times smaller and is 3 times faster to verify
compared with the naive implementation: using 25.6K OR-
proofs without packing. Furthermore, we can prove additional
statements almost for free, e.g., one can prove that the sum of
a subset of the witness bits is less than a threshold t. Another
scenario is range proof. To prove that each plaintext in 200
Paillier ciphertexts is of size 256 bits, our proof size is 10
times smaller than the state-of-the-art. Our analysis suggests

* corresponding author

that our system is asymptotically more efficient than existing
protocols, and is highly suitable for scenarios involving a large
number (more than 100) of Paillier ciphertexts, which is often
the case for data analytics applications.

1. Introduction

Additive homomorphic encryption (AHE) allows en-
crypted messages to be added without decryption or knowl-
edge of the secret key. It is widely used in multiparty compu-
tation [1]–[3], federated learning [4], [5], private information
retrieval [6], [7], oblivious transfer [8], and electronic voting
[9], [10] for privacy guarantee. Since this characteristic
facilitates data flow across mutually distrusted organizations,
many privacy-preserving data aggregation schemes1 [11]–
[13], [13]–[20] have been proposed.

Among these aggregation applications, we consider a
2-party aggregation2 between data providers P1 and P2,
in which P1 holds a set of binary vectors, {bi} = {(bi,1,
bi,2,. . . , bi,F)}, while P2 holds a set of weights, {Wi}, for
each entity i. P1 aims to analyze its data with the help of P2.
Such scenario constitutes a basic building block within ma-
chine learning algorithms [17], network traffic statistics [18],
recommendation systems [19], frequency estimation [21],
[22], and attribute-weighted sum [23], etc.

We can treat P1 as a proxy possessing data collected
from multiple users, organizations, or devices while treating
P2 as a weight provider. We use bi,j to indicate a particular
record of entity i towards unit j and Wi to denote “weight”
for each entity, where i ∈ [1,M] and j ∈ [1, F]. They aim
to jointly and securely compute the weighted sum for each
unit j as,
Sj =

∑
i

bi,j ∗Wi = b1,j ∗W1 + b2,j ∗W2 + · · · bM,j ∗WM .

1. We refer to various aggregation scenarios here, including but not
limited to, computing sum, mean, minimum or maximum value, and
counting frequency among other advanced statistics in machine learning.

2. Note that our focus is on diverse analytical scenarios where latency
is not critical. For example, in our voter analysis example, our objective
is to conduct statistical aggregations, not real-time tallying for an entire
election.

Here, we restrict bi,j to be Boolean and Wi to be an integer.
If the i-th entity supports/owns the j-th unit, then bi,j = 1;
otherwise, bi,j = 0. Using a binary vector to represent the
possession of attributes is quite common. For example, it can
indicate whether a user has a certain disease [17], a phone
has installed an app [17], a person has visited a specific
country [18], or the presence in a certain restaurant [14],
browsing history, and so on.

1.1. AHE for Secure Data Analytics - An Example

We take voter analysis as an example. Suppose poll-
ster company P1 (e.g., CNN or Fox News) collects voter
preferences pre or post election through interviews. P2

holds voters’ personal information such as age or salary.
P1 aims to gain an indication of the average age or income
group favoring each candidate with the help of P2, without
revealing raw data to each other. In this example, each entity
represents a voter while each unit represents a candidate.
bi,j = 1 denotes that the i-th voter prefers the j-th candidate.
Wi denotes the age or salary of the i-th voter. P1 intends
to compute Sj . This can be viewed as frequency estima-
tion [21], [22], which generalizes the boolean predicate of
attribute-weighted sum [23] where Wi is Boolean.

To preserve data privacy, the aforementioned voter anal-
ysis can be conducted securely by utilizing AHE. P1 gener-
ates the AHE key, encrypts {bi}, and sends the ciphertext
to P2. P2 computes the weighted sum (in the ciphertext
domain) and returns the result to P1. P1 decrypts the result
to obtain the total age of voters for each candidate. Finally,
P1 divides this sum by the number of voters who aim to
support that candidate to calculate the average age.

The Paillier cryptosystem [24] is a prominent example of
AHE has been standardized by ISO [25]. Since Paillier sup-
ports a very large message space, typically 2048-bit, packing
is often used [26], [27] to reduce ciphertext expansion. In
more detail, assume that M · max{Wi} ≤ U , where U
is a chosen slot size. P1 packs all records associated with
the same entity into one Paillier plaintext mi such that
mi :=

∑
j 2U∗(j−1)bi,j . P1 encrypts each mi into ci and

sends them to P2. P2 then computes C̄ =
∏
i c
Wi
i and sends

the result back. P1 decrypts C̄ and obtains m̄. It can parse
m̄ to obtain Sj =

∑
i bi,j ·Wi.

In this paper, we call U the slot size, and the number of
records packed into one ciphertext the number of slots.

1.2. The Need for Proofs of Well-formedness

While the above approach protects the privacy of P1’s
data, it does not guarantee the privacy of P2’s data. Specif-
ically, a malicious P∗1 can obtain the weight of a specific
entity, say, the i∗-th entity, by biasing the message struc-
ture. P∗1 computes mi∗ as, mi∗ =

∑
j 2U∗(j−1)+U/2bi∗,j .

Consequently, the value of Wi∗ appears in the higher part
of Sj (provided that U >> Sj). In other words, the
above approach only provides honest-but-curious security.
To guard against this kind of attack, P2 should require P∗1

to prove that all ciphertexts are well-formed. We list three
requirements regarding the well-formedness in our running
example of voter analysis.

• Packing with Binary Messages. To support Paillier
with packing, P1 needs to prove that each bi,j is bi-
nary and it should be located in the correct position.

• Equality Proof for Sum of Records. In a plurality-at-
large election, there are multiple, say, t, seats to be
elected. Each voter can vote for at most t candidates.
This kind of electoral system is utilized for electing
Senate nominees in Canada (Alberta) [28], Federal
Senate in Brazil [29], Council of States in Switzer-
land (2019) [30], and the election committee in
Hong Kong [31]. To prove that ci correctly encrypts
entity i’s preference, P1 should prove that there are
at most t 1’s in each voter’s vote mi.

• Range Proof for Sum of Units. Even if the protocol
is secure, a voter’s weight may be leaked from the
output of the analysis. For example, if only one
voter supports candidate j, Sj reveals that voter’s
weight. Therefore, P2 requires a proof that there are
more than T 1’s in the records {bi,j} towards each
candidate (i.e., unit) j.

The challenge here is that the proof should leak no
information about P1’s data, otherwise, it will compromise
its data privacy. Zero-knowledge proof/argument (ZKP) sys-
tems [32] enable a prover to convince a verifier of the truth
of a statement without revealing any additional information,
making them ideal tools to mitigate the above tension.

1.3. Limitation of Existing ZKPs for Paillier

Developing ZKPs for different relations among Paillier
plaintexts is valuable. A rich body of work has focused on
range proofs [33], [34], proving the plaintext is 0 [35], mul-
tiplication [10], a sequence of power relations [36], and so
on. However, none of the existing works specifically address
Paillier with packing. Furthermore, even without packing,
proof size and verification time are linear in the number of
entities. In the case of the voter analysis scenario (or others
discussed in Subsection 1.6), P1 may transmit its collected
data for analysis on a daily basis, as observed in [37], [38].
Each election poll or evaluation campaign produces at least
hundreds to thousands of data pieces each day. Moreover,
if P1 commences the analysis after the data collection, the
message volume could reach millions, as noted in [39], [40].
Consequently, a proof whose size does not scale linearly
with the number of plaintexts would be beneficial. It is also
important to note that P1 often collaborates with multiple
weight providers, making a proof that is non-interactive,
small, and efficient in verification highly desirable.

One might consider utilizing existing zk-SNARKs. Sig-
nificant progress has been made recently in constructing
efficient ZKPs supporting statements expressed in arithmetic
(over a prime field) or Boolean circuits [41]–[52]. However,
directly applying these ZKPs to our problem results in proof
of unacceptable efficiency. The main problem is that the cost

of utilizing an arithmetic or Boolean circuit to represent
Paillier encryption is huge. Specifically, Paillier Encryption
involves modular exponentiations over N2, and it is unclear
how to represent this operation efficiently using Boolean
or addition/multiplication gates over a prime field. Thus,
representing the well-formedness of Paillier ciphertext (with
packing) will lead to an impractical circuit size. For exam-
ple, proving one plaintext-ciphertext pair is valid involves a
circuit with 13335083 gates, even in the modest setting of
|N | = 1024.3 More discussions are given in Section 8.

Looking ahead, the corresponding relation can be repre-
sented by 1536 constraints (i.e., gates) using our constraint
system. The number grows to around three thousand con-
straints when N is 2048-bit.

1.4. Our Approach

The source of inefficiency in using existing zk-SNARKs
lies in representing statements related to Paillier encryption
with an arithmetic circuit over a prime field. In this paper,
we investigate a different approach, namely, representing the
statement to be proven using an arithmetic circuit over the
ring of residue classes modulo a composite number (ZN2),
which matches the ciphertext space of the Paillier cryp-
tosystem. Modular arithmetic can then be expressed using
a simple gate, significantly simplifying the representation
of Paillier encryption. Consequently, we investigate how to
adapt the existing ZKPs for arithmetic circuits over a prime
field into our setting.

The main obstacle when working in ZN2 instead of a
prime field is that it is unclear how to prove a message
is binary. In a prime field, b ∗ (b − 1) = 0 implies that
b is binary. However, in our setting, non-trivial roots exist
because N2 is not prime. To solve this problem, we develop
an innovative approach: the prover additionally provides the
sum of a random subset (of the verifier’s choice) of the
witness “bits”. If this sum is small, the verifier is convinced
that all witness “bits” are binary.4 To offer zero-knowledge,
the sum is not provided in the clear but is masked by a small
“noise” value.

1.5. Our Contributions

We propose several zero-knowledge arguments of
knowledge for various relations within the Paillier cryp-
tosystem, including: (1) the well-formedness of multiple
Paillier ciphertexts with packing of binary messages; (2) an
extension that additionally proves the number of one’s in
each ciphertext is no larger than a certain threshold and the
number of one’s in each unit exceeds a certain threshold;
and (3) range proof of multiple Paillier ciphertexts. Their
corresponding argument systems, ZKAoK∗, ZKAoK+ and
ZKAoK′, are presented in Sections 4 and 5 respectively. Our

3. We are unable to generate the circuit for |N | = 2048 on our PC with
Intel Core i9-12900K CPU and 160 GB of memory.

4. One needs to show that all non-trivial roots are large.

proof system features sublinear proof size and efficient veri-
fication time, while maintain an acceptable proof generation
time. Specifically, we made the following contributions.

• We design a constraint system defined over ZN2 to
represent correct encryption of Paillier cryptosystem
with plaintext satisfying various properties. We show
how to compile the constraint system into an zero-
knowledge argument of knowledge (ZKAoK), en-
abling a prover to convince a verifier the knowledge
of witnesses satisfying the constraint system without
revealing extra information.

• We design new techniques to prove that a witness is
binary, even when the constraint system is defined
over ZN2 for an RSA modulus N . We believe that
our new techniques can be used for other scenarios
where using arithmetic constraints over composite
order field is desirable.

• Based on the above, we give efficient ZKAoKs
suitable for aggregation applications. We implement
an end-to-end prototype and conduct a series of
experiments to examine its practicability. In the voter
analysis scenario, when proving packed Paillier, our
proof size (in ZKAoK∗) is 27x smaller than using
a standard OR-proof [53] for proving 51.2K bits
when |N | = 2048. For proving 800 messages as
256-bit numbers, our proof size (in ZKAoK′) is 27x
smaller compared with state-of-the-art range proof.
Since our system is asymptotically more efficient,
the difference is even larger with more ciphertexts.
Please refer to TABLE 1 for detailed comparisons.

1.6. More Application Scenarios

We further explore potential scenarios that could benefit
from our approaches. Practical applications, including trans-
action evaluation [55], [56], advertisement targeting [57],
[58], and social relationship analysis [59], [60], may find
our approaches advantageous. For instance, in transaction
evaluation, our method enables companies to identify target
consumers’ income groups in collaboration with banks,
where Wi represents their salary. Additionally, entities like
Google [61], [62], which provide advertising campaigns
based on online ad targeting [63], [64], can use our approach
to assess campaign effectiveness. Typically, these entities
utilize binary vectors to represent various marketing strate-
gies. Their effectiveness can be privately evaluated through
our method by calculating the average conversion value,
where Wi denotes the cost paid by each consumer.

Beyond these specific applications, our methodology
offers potential advantages in scenarios requiring the use of
correctly-structured binary vectors, a common occurrence
in fields such as machine learning [65], [66], cryptographic
schemes [67], [68], image and audio processing [69], [70],
graph theorems, and so on. For instance, utilizing binary (or
one-hot) vectors to encode labels is a common practice in
classification [71], [72] or regression tasks [73], [74], which
require that each vector can only contain a “1” and others

TABLE 1. SUMMARIZATION AND COMPARISON OF OUR PROTOCOLS WITH STATE-OF-THE-ART APPROACHES IN DIFFERENT SCENARIOS WITH
|N | = 2048-BIT SETTING. The inputs for ZKAoK∗ are packed Paillier messages. ZKAoK′ is for range proving 256-bit plaintexts. Np and
Nb represent the number of proved plaintexts and bits, respectively. A “–” denotes non-applicability. In the scenario proving many

binary records, the amortized cost measures the cost per bit, while in a range proof, it measures the cost per message.

Scenario Protocol Np N b Amo. Proof Size Amo. Proof Time Amo. Verification Time

multiple binary records

OR-proof [53] 1 1 >16384 bits 35.31 ms 18.04 ms
800 51.2K 605.08 bits 0.70 s 3.79 ms
1M 64M 18.85 bits 0.31 s 2.01 msZKAoK∗

10M 640M 7.90 bits 0.31 s 1.97 ms

multiple range proofs

[33], [54] 1 - > 128 KB 0.24 s 199.32 ms
800 - 4.73 KB 44.91 s 249.60 ms
1M - 932.84 bits 20.03 s 121.08 msZKAoK′

10M - 232.12 bits 19.46 s 118.48 ms

should be “0”. Similarly, in computing a special case of
inner product [67], a “selection vector” is required, where
only one coordinate is set to 1. We would like to emphasize
that any constructions involving (structured) binary vectors
can gain adaptive security through our approach.

1.7. Related Works

As we provide a ZKAoK protocol for Paillier, we now
review and compare existing ZKPs customized for Paillier.
Existing works can be mainly divided into two categories,
one focuses on proving the validity of an RSA modulus
(i.e., Paillier public key) while the other focuses on proving
plaintext relations (including range). We use pk = N to
denote a Paillier public key and PL.Encpk(m; r) to denote
Paillier encryption of message m with randomness r.

Proving the Validity of A Paillier Public Key. [75]
first proposed a ZKP on a number that is the product of
two safe prime integers. It can be directly used for proving
a valid Paillier public key. [76] also sketched the folklore
method of proving the validity of an RSA modulus where
it proves that gcd(N,φ(N)) = 1. Although the standard
Paillier public key is generated from two prime numbers,
this statement still suffices to provide all properties of Pail-
lier (e.g., additive homomorphism) through this requirement
(see [33] Sec. 3.1). Besides, [36] also suggests combining
methods in [77] and [78] for proving an RSA composite (we
refer [36] for more detailed discussions). This category of
proofs is orthogonal to ours. Looking ahead, in our protocol,
P2 (verifier) should request P1 (prover) to provide a proof
that: 1). the Paillier encryption key N is the product of two
primes p and q and 2). p and q are sufficiently large. The
first condition can be proved using the protocol introduced in
Section 5.2 of [75]. The second can be achieved by proving
the knowledge of a discrete logarithm that lies in a given
range, utilizing techniques in Section 2.2 of [75], or [79].

Proving Paillier Plaintexts Relation. Another class
mainly focuses on proving relations among Paillier plain-
texts. [35] gives a construction on proving knowledge of an
encrypted plaintext. For proving that the plaintext is 0, [10]
gives constructions which is actually a proof of Nth power in
Paillier. For proving multiplicative relations among Paillier
plaintexts, [10] gives constructions on Πmul. That is, we can

prove that a message is the product of two other messages.
For proving a more advanced relation, a sequence of powers,
[36] constructs Πpow based on Πmul. In [33], they bridged
two different worlds, Paillier encryption and Elliptic curve
groups, and proposed a zero-knowledge proof for language
Rpl−ec. That is, it can prove that the message in a given
Paillier ciphertext is the discrete log of a given Elliptic
curve point. Later, [34] gives constructions on Paillier and
Pedersen commitments. It proves that the same value is
used in encryption and commitment schemes. Besides, [33]
and [34] also gave a range proof that is customized for
Paillier, where [33] was adapted from the range proof in
[54]. However, to achieve efficiency, both of them can only
give range proofs with slack (i.e., inexact proofs).

For devising an exact range proof in Paillier, one may
utilize a tight range proof, such as [49], [54], with some
adaption. Since these range proofs do not work on Paillier,
an integer commitment scheme [80] is needed as a bridge.
In more detail, let Enc(x) be the Paillier encryption of x. Let
CMTI be an integer commitment scheme in which efficient
range proofs exist. To prove that x lies in an exact range,
the prover first produces commitments c1 := Enc(x) and
c2 := CMTI(x). He then engages the following protocols
to prove i) Πc1: c1 is a Paillier encryption of x ii) Πc2: the
same value, x, is committed in c2 iii) Πrange: the committed
value in c2 is in some range. Πrange can be achieved by
invoking the existing range proofs on c2. Although the range
proof is efficient, auxiliary commitments may give a lower
bound on the proof size.

1.8. Paper Organization

The rest of the paper is organized as follows. We give a
technical overview in Section 2 and Preliminaries in Section
3. Then we present our main protocol in Section 4. We give
our range proof protocol in Section 5. Security analysis is
given in Section 6. We evaluate the performance in Section
7, followed by discussions in Section 8.

2. Technical Overview of Our Results

We provide a technical overview of our solution (main
protocol) that proves correctness of packed Paillier en-
cryption with multiple binary messages. We further show

TABLE 2. EXISTING ZERO-KNOWLEDGE PROOFS AND OUR PROTOCOLS CUSTOMIZED FOR PAILLIER CRYPTOSYSTEM.

Paper Proved Relation Corresponding Protocol

[75] Rcomposite = {(N, (p, q)) : N = p · q ∧ p, q are primes} Πcomposite

[76] Rrsa = {(N,φ(N)) : gcd(N,φ(N)) = 1} Πrsa

[10] Rzero = {((c,N), r) : c = PL.Encpk(0; r)} Πzero

Rmul = {(c1, c2, c3, N), (m1, r1,m2, r2, r3) : c1 = PL.Encpk(m1; r1) ∧ c2 = PL.Encpk(m2; r2) ∧ c3 = PL.Encpk(m1 ·m2; r3)} Πmul

[35] Renc = {(c,N), (m, r) : c = PL.Encpk(m; r)} Πenc

[36] Rpow = {(c1, c2, · · · , cd, N), (m, r1, · · · , rd) : ∀i ∈ [1, d], ci = PL.Encpk(m
i; ri)} Πpow

[33] Rpl.range = {(c,N), (m, r) : c = PL.Encpk(m; r) ∧m ∈ Zq} Πpl.range

Rpl−ec = {(c,N,Gec, Q,Gec, q), (m, r) : c = PL.Encpk(m; r) ∧Q = m ·Gec ∧m ∈ Zq} Πpl−ec

[34] Rpl−ped = {(c,N, c′, g, h,N ′), (m, r, ρ) : c = PL.Encpk(m; r) ∧ c′ = gm · hρ mod N ′} Πpl−ped

Rpl.range′ = {(c,N), (m, r) : c = PL.Encpk(m; r) ∧ x ∈ Zq} Πpl.range′

R∗ = {({ci}i∈[1,Np], N), (mi, ri, b
(i)
32(s−1)

)i∈[1,Np],s∈[1,64] : ∀ i ∈ [1,Np] and s ∈ [1, 64], ci = PL.Encpk(mi, ri)∧
mi =

∑
s∈[1,64] 232(s−1) · b(i)

32(s−1)
mod N ∧ b

(i)
32(s−1)

∈ {0, 1}} ZKAoK∗

ours
R′ = {({ci}i∈[1,Np], N, β), (mi, ri, b

(i)
k)i∈[1,Np],k∈[0,|β|−1] : ∀ i ∈ [1,Np], ci = (1 +N)mi · rNi mod N2 ∧mi ≤ β} ZKAoK′

how we can prove correctness of polynomially many such
ciphertexts.
Representing Arithmetic Circuit. Following the terminol-
ogy of [46], the statements to be proved are represented as
a list of equations known as constraints. For example, the
following list of 5 constraints represents the circuit shown
in Fig. 1. Note that all constraints are modulo N2 unless
otherwise indicated.

a1 ∗ b1 = c1

a2 ∗ b2 = c2

a3 ∗ b3 = c3

3 ∗ c1 = a3

c1 + c2 = b3

Figure 1. An Arithmetic Circuit

The knowledge of wire assignment to satisfy the circuit
directly translates to the assignment of variables satisfying
the set of constraints. There are two types of constraints,
namely, multiplication and linear constraints. A multipli-
cation constraint is of the form ax ∗ bx = cx while a
linear constraint is of the form

∑
x w

(a)
x ax +

∑
x w

(b)
x bx =∑

x w
(c)
x cx + c0, where constants {w(a)

x , w
(b)
x , w

(c)
x , c0} de-

pend solely on the circuit and the public values while
{ax, bx, cx} are the wire assignments (depends on values
known only to the prover, or say witness). Note also that
only wires of multiplication gates of intermediate values
are labeled. Wires of addition gates and multiplication gates
with public inputs (constants) are handled by linear con-
straints. To prove that the prover knows some input such
that the output of the circuit above is some specific number,
say 0, one can add another linear constraint as c3 = 0.

Bootle et al. [46] showed how to transform a circuit
into constraints, and their zero-knowledge argument system
works directly over a set of constraints.
Constraints for Correctness of Paillier Encryption. Our
first contribution is a (compact) set of constraints hand-
crafted to represent correct encryption. The prover wants to
prove that he knows a pair, (m, r), satisfying c = (1+N)m ·
rN mod N2, which can be computed as c = (1+mN)·rN
mod N2, where N is an RSA modulus. Note that (1+mN)
is readily a linear constraint. We focus on our set of con-
straints for representing rN .

Let α = dlogNe and {nα, . . . , n2, n1} be the binary
decomposition of N . That is, N = 2α−1·nα+· · ·+2·n2+n1.
Define a sequence R̃ = {R̃1 = r, R̃2 = r2, . . . , R̃α =
r2
α−1}. Let β be the hamming weight of N . Define an index

set D̃ = {γ|nγ = 1}, including all index positions of 1’s in
the decomposition of N . We have |D̃| = β. We use d1, . . .,
dβ to denote elements of D̃ with di < dj if i < j.

Define sequence S̃ = {S̃1, . . . , S̃β} such that S̃1 = R̃d1 ,
S̃k = S̃k−1 · R̃dk for k ∈ [2, β]. We have S̃β = rN

since R̃1 = r. Note that R̃, S̃ are the intermediate values
when we calculate rN from r using the square-and-multiply
algorithm. One can uniquely compute (α, β, D̃) from N .

As an example, consider N = 11, which can be rep-
resented as 1011 in binary. Then α = 4 and β = 3.
To compute r11, the sequence R̃ is set as, R̃ = {R̃1 =
r, R̃2 = r2, R̃3 = r4, R̃4 = r8}. The sequence D̃ is,
D̃ = {d1 = 1, d2 = 2, d3 = 4}. We have S̃ = {S̃1 =
R̃1 = r, S̃2 = S̃1 · R̃2 = r3, S̃3 = S̃2 · R̃4 = r11}.

The correctness of R̃ and S̃ implies that rN is computed
correctly. Thus, correct encryption of Paillier ciphertext can
be represented using the following constraints.

c = T̀ ∗ S̃β
T̀ = 1 +m ∗N
R̃1 = r //for clarity
R̃i+1 = R̃i ∗ R̃i i ∈ [1, α− 1]

S̃1 = R̃d1 //for clarity
S̃k = S̃k−1 ∗ R̃dk k ∈ [2, β]

(1)

For ease of writing, we define the above set of con-
straints as Const{c,m,r}, with respect to c, m, and r. Note
that R̃1, r (resp. S̃1, R̃d1) can be combined into one wit-

ness. Thus, Const{c,m,r} contains α+ β − 1 multiplication
constraints and one linear constraint.
Proof that A Message Is Binary. Very often, we need to
prove that a variable in the constraint is binary. For example,
we need to prove that c is the encryption of a binary message
m. If the constraints are defined over a prime field, adding
the following constraint is sufficient:

m ∗ (m− 1) = 0.

However, we work in ZN2 and the above constraint does
not guarantee that m is binary. According to the Chinese
Reminder Theorem, there are 4 values satisfying this con-
straint:

m = 0

m = 1

m = q2 · [(q2)−1 mod p2] (= X)

m = p2 · [(p2)−1 mod q2] (= Y),

One of the core technical contributions of this work is
an innovative statistical argument to ensure that m is binary.
Specifically, our solution requires that the prover commits
a random “noise” value, R′, chosen from a relatively small
range L5, say, L := {1, . . . , 2256}. The verifier chooses a
random challenge, ` ∈ {0, 1}, and the prover is required to
give L′ := `m+R′, along with a proof that L′ is computed
correctly. For simplicity, we will also use Paillier encryption
for the “commitment” of R′. The proof that L′ is correctly
computed can be represented by a linear constraint.

More concretely, the prover computes and sends c′ =
(1+N)R

′ ∗r′N mod N2 to the verifier, who replies with a
challenge bit `, and the prover sends L′ along with a proof
that the following constraints are satisfied:

Const{c,m,r}
m ∗ (m− 1) = 0

` ∗m+R′ = L′

Const{c′,R′,r′}.
Besides checking the proof, the verifier also checks whether
L′ ≤ max{L} + 1. For an honest prover, a statistical
argument ensures L′ leaks negligible information about m,
since R′ is much larger than m. A cheating prover may use
X or Y as a witness. Recall that X and Y are large (on
the order of p2 or q2), the only way for a cheating prover
to ensure L′ := ` ∗ m + R′ ≤ max{L} + 1 is to guess `
and pick R′ accordingly. If he/she guesses ` = 1, he/she
should pick a large R′ such that X (or Y) plus R′ modulo
N2 is within the expected range. Likewise, if he/she guesses
` = 0, he/she should pick a small R′, i.e., R′ ≤ max{L}+1.
Therefore, with probability 1/2, a cheating prover will be
caught. To amplify soundness, the above process could be
repeated κ times (say κ = 128).
Proof that Polynomially Many Messages are Binary.
Our method can be extended to prove that polynomially
many witnesses are binary. Specifically, assume we would
like to prove that there are Np ciphertexts, each of which
encrypts a binary message. We use (mi, ci) to denote one

5. Here, we also require the prover to attach a range proof for R′.

message-ciphertext pair, where i ∈ [1,Np]. Same as be-
fore, the auxiliary information generated by the prover
is {R′j}j∈[1,κ], encrypted in {c′j}j∈[1,κ] using randomness
{r′j}j∈[1,κ]. Now, the random challenges from the verifier
are {`(i)j }i∈[1,Np],j∈[1,κ]. The corresponding constraints are:

Const{ci,mi,ri}, i ∈ [1,Np]
mi ∗ (mi − 1) = 0, i ∈ [1,Np]
Np∑
i=1

`
(i)
j ∗mi +R′j = L′j , j ∈ [1, κ]

Const{c′j ,R′j ,r′j}, j ∈ [1, κ].

Same as above, in addition to checking the proof, the veri-
fier checks whether L′j≤ max{L}+Np for each j ∈ [1, κ].
We would like to remark that the amortized cost for proving
one message, say m, being binary is 1 (i.e., satisfying the
constraint m ∗ (m − 1) = 0). Intuitively, if any of the mi

is malformed (say, mi = X or mi = Y), the probability
that all {L′j} satisfy, L′j ≤ max{L}+Np, is 2−κ, which is
negligible when we set κ to 128.

The actual analysis is much more involved since we need
to show no matter how a cheating prover chooses his mi’s,
the probability that it can pass the verification is bounded
(in fact, we show that it is at most 1/2) if any of the mi is
X or Y (and is independent of the number of messages).
The analysis is shown in Lemma 6.1.
Proof of Messages with Correct Structure. Recall our
goal is to prove the correctness of encryption for messages
with specific formats such as packing. For example, we may
consider packing two binary messages into one ciphertext,
where the first two slots are 32-bit. That is,

m = 00 . . . 0︸ ︷︷ ︸
32−bit

. . . 00 . . . b32︸ ︷︷ ︸
32−bit

00 . . . b0︸ ︷︷ ︸
32−bit

.

We can make use of the constraint 232 ·b2+b1 = m to shift
the bits to the correct position. For instance, the following
set of constraints represents all Np ciphertexts encrypt 2
bits, each occupying a 32-bit slot:

Const{ci,mi,ri}

232 · b(i)32 + b
(i)
0 = mi

b
(i)
0 ∗ (b

(i)
0 − 1) = 0

b
(i)
32 ∗ (b

(i)
32 − 1) = 0

Const{c′j ,R′j ,r′j}∑(
l
(i)
j,0b

(i)
0 + l

(i)
j,32b

(i)
32

)
+R′j = L′j ,

for i ∈ [1,Np] and j ∈ [1, κ].
One may wish to directly extend the above method to

support Paillier with packing for an arbitrary number of slots
and plaintexts, e.g.,

mi = 0 . . . 0b
(i)
32·63︸ ︷︷ ︸

32−bit

0 . . . 0b
(i)
32︸ ︷︷ ︸

32−bit

. . . 0 . . . 0b
(i)
0︸ ︷︷ ︸

32−bit

,

where |N | = 2048, and we pack 64 bits into 64 slots. How-
ever, our analysis showed that this is not straightforward.
The reason is that we have to ensure “bits” {b(i)32·63, . . . , b

(i)
0 }

and auxiliary input {R′j} are fixed before random chal-
lenges {l(i)j,32(s−1)} are chosen. However, given (1) ci =

(1+miN)rNi mod N2; (2) mi =
∑

s 232(s−1)b
(i)
32(s−1) mod

N2; and (3) b(i)32(s−1) ∗ (b
(i)
32(s−1) − 1) = 0 mod N2, the

set {b(i)32(s−1)} is not unique (despite m is fixed due to the
injective nature of encryption).

This counter-intuitive observation arises from the fact
that at this point we cannot ensure {b(i)32(s−1)}’s are binary

and thus m =
∑

s 232(s−1)b
(i)
32(s−1) mod N2 may have mul-

tiple solutions. There is a possibility that a malicious prover
may choose different {b(i)32(s−1)} after seeing challenges, and
the analysis in Lemma 6.1 crucially relies on the fact that
the prover’s “bits” are fixed before seeing these challenges.

We tackle this subtlety by carefully identifying the con-
dition under which the prover’s “bits” are fixed. Specifically,
we observe that if message m satisfies |m| < min{|p|, |q|}
(where p and q is the factorization of N), fulfilling con-
straints (1) m =

∑
s 232(s−1)b32(s−1); and (2) b32(s−1) ∗

(b32(s−1) − 1) = 0 (for s ∈ [1, 64]), then the set {b32(s−1)}
is unique. The formal analysis is shown in Lemma 6.2.

Since under this condition the set {b32(s−1)} satisfying
the constraints is unique, the “bits” are fixed given c and
above constraints. Consequently, when the message space
is 2048-bit, it is only safe to use 1024 bits. In other words,
we can only use 32 32-bit slots to achieve provable security.
This is not ideal and we describe our final solution below.
Our Final Solution. We construct auxiliary messages to ful-
fill the above “length requirement”. Assuming |N | = 2048
and we divide the message space into 64 slots (each of
which is 32-bit), we need to introduce one new auxiliary
message m∗t for every 15 messages. Thus there will be
Np/15 auxiliary messages in total. Here we give an example
to see how we construct m∗t from messages m15t−14 to m15t

(t ∈ [1,Np/15]),
m∗t = b

(15t)
32·63 . . . b

(15t)
0︸ ︷︷ ︸

from m15t

. . . b
(15t−14)
32·63 . . . b

(15t−14)
0︸ ︷︷ ︸

from m15t−14

,

where b
(i)
32(s−1) indicates the last bit in the s-th slot of

message mi, for s ∈ [1, 64] and i ∈ [1,Np]. Each auxiliary
message is 960-bit, and they satisfy,

(2959 ∗ b(15t)32·63 + . . .+ 2896 ∗ b(15t)0) + . . .

+ (263 ∗ b(15t−14)32·63 + . . .+ b
(15t−14)
0) = m∗t ,

for t ∈ [1,Np/15]. We use c∗t to denote Paillier ciphertexts
of m∗t . As the length of m∗t satisfies above requirement, we
can use our proposed method to prove that all {b(i)32(s−1)}’s
are 0 or 1. Constraints in our final solution are given below:

Const{ci,mi,ri}∑
s

232(s−1)b
(i)
32(s−1) = mi

b
(i)
32(s−1) ∗ (b

(i)
32(s−1) − 1) = 0

Const{c′j ,R′j ,r′j}∑
i,s

`
(i)
j,32(s−1)b

(i)
32(s−1) +R′j = L′j∑

s

∑
k

232(k−1)+s−1 · b15(t−1)+k32(s−1) = m∗t

Const{c∗t ,m∗t ,r∗t },

where j ∈ [1, κ], s ∈ [1, 64], k ∈ [1, 15], i ∈ [1,Np]
and t ∈ [1,

Np
15]. We use `(i)j,32(s−1) to indicate the random

challenges. Since there are more bits now in the computation
of L′j , range L will be slightly enlarged, say, L := {0, 2281}.

3. Preliminaries

In what follows, we use an adversary A as an interac-
tive probabilistic polynomial time Turing Machine, whose
running time is polynomial in the security parameter λ.

Assumptions. Let Setup be an algorithm outputting
(G, N2, g), with input 1λ. G is the description of a finite
cyclic group with composite order N2, where N = pq is a
RSA modulus,

∣∣N2
∣∣ = λ and g is the generator6.

Definition 3.1. (Discrete Logarithm Relation Assumption
on Composite Group). This assumption holds if for all n ≥ 1
and non-uniform PPT adversaries A,

Pr

 ∃ai 6= 0 (G, N2, g)← Setup(1λ),
and g1, . . . , gn ← G ,

ga0
∏n
i=1 g

ai
i = 1 a0, . . . , an ← A(G, N2, g, {gi}i)

 ≈ 0,

relative to Setup. We say ga0
∏n
i=1 g

ai
i = 1 a non-trivial

discrete log relation between g1, . . . , gn. It is known that it
is equivalent to the discrete logarithm assumption.

Pedersen Commitment. In our protocol, we require a
Pedersen commitment scheme, which works over the group
G of Definition 3.1. Informally, it contains 2 polynomial
algorithms PDC = (PDC.Gen,PDC.Com) where the com-
mitment has the form ct = gm · hr. We use a variant,
that allows to commit to multiple values at once. Its formal
definition is given in Appendix A.

Paillier Encrption. The Paillier encryp-
tion consists of three polynomial algorithms,
PL = (PL.Gen,PL.Enc,PL.Dec). Its formal definition
is deferred in Appendix A.

4. Our Main Protocol

We present the constructions of our main protocol
ZKAoK∗ and its extension, ZKAoK+.7 Since the ZKP sys-
tem proposed in [46] requires constraints as inputs, it is
sufficient for us to specify constraints for corresponding
relations under modulo N2. It is straightforward to adapt
[46] to work over ZN2 except how the cyclic group with
order N2 can be generated. Here we describe one poten-
tial method. Given N2, one first finds a prime Q, s.t.,
Q = fN2 + 1 for some small integer f . Then, choose an
arbitrary element g in Z∗Q, s.t., gN

2

= 1 mod Q. We use g
to generate G. Besides, we provide a discussion of how to
prove other Paillier plaintext relations in Appendix C.

In our protocols, the verifier should also require the
prover to prove that N = pq is a valid RSA modulus,
where p and q are large primes. This one-time setup can
be implemented using existing methodologies [75], [79].
Further elaboration is provided in Subsection 1.7.

6. To find such a group G, one can use methods specified in Sec. 4
7. Looking ahead, our three protocols are specifically designed for 3

requirements presented in Section 1.2 respectively.

4.1. Constraints for A Valid Paillier Message Ci-
phertext Pair

We recall a building block, Const{c,m,r}, that specifies
constraints for proving a valid Paillier message-ciphertext
pair (m, c) with randomness r. Let α = dlogNe and
SN = {nα, . . . , n2, n1}, the set containing the binary
decomposition bits of N , satisfying N =

∑
k∈[1,α] 2k−1 ·nk.

Define the sequence R̃ := {R̃k : ∀k ∈ [1, α], R̃k = r2
k−1}.

Let β be the hamming weight of N . Define the index
sequence as,

D̃ := {dγ |∀γ ∈ [1, β], ndγ = 1 ∧ ndγ ∈ SN
∧ ∀γ ∈ [1, β − 1], dγ < dγ+1}.

We have |D̃| = β. Define sequence,

S̃ := {S̃k|∀k ∈ [1, β], S̃k = S̃k−1 · R̃dk ∧ S̃0 = 1},

where |S̃| = β and S̃β = rN (with setting R̃1 = r). We
denote the constraints for proving that c is a valid Paillier
ciphertext of m with r as Const{m,c,r}, the same as Equ. 1.

4.2. Our Main Protocol ZKAoK∗

Relation R∗ for Main Protocol. Our goal is to prove
that given Np ciphertexts, {ci}i∈[1,Np], where ci is the
encryption of mi satisfies,
mi = 0 . . . 0b

(i)
32·(64−1)︸ ︷︷ ︸

32−bit

0 . . . 0b
(i)
32·(63−1)︸ ︷︷ ︸

32−bit

. . . 0 . . . 0b
(i)
0︸ ︷︷ ︸

32−bit

. (2)

That is to say, each message contains 64 32-bit slots, and
all bits except the last bit in each slot are 0. (One can easily
prove that each message contains 32 32-bit slots when |N | =
1024 using the same technique with s ∈ [1, 32].) Formally,
the relation we prove can be described byR∗ defined below:

R∗ = {({ci}i∈[1,Np], N), (mi, ri, b
(i)
32(s−1))i∈[1,Np],s∈[1,64] :

∀ i ∈ [1,Np] and s ∈ [1, 64],

mi =
∑

s∈[1,64] 232(s−1) · b(i)32(s−1) mod N

∧ b(i)32(s−1) ∈ {0, 1} ∧ ci = (1 +N)mi · rNi mod N2}.

(3)

Main Protocol ZKAoK∗. We define,
m∗t = b

(15t)
32·31 . . . b

(15t)
0︸ ︷︷ ︸

from m15t

. . . b
(15t−14)
32·31 . . . b

(15t−14)
0︸ ︷︷ ︸

from m15t−14

.

Then m∗t satisfies,
m∗t = 2959 · b(15t)64 + · · ·+ b

(15t−14)
1 mod N2

=
∑

s∈[1,64],k∈[1,15]

264(k−1)+s−1 · b(15(t−1)+k)s mod N2,

where t ∈ [1,Np/15]. We also define c∗t as its encryption,
c∗t = (1 +N)m

∗
t · rNt mod N2.

We show our protocol, ZKAoK∗, in Fig. 2. We take L =
[0, 2281]. In addition, the prover should also prove that each
R′j is chosen from L. This can be done by a standard range
proof or ZKAoK′, which will be discussed in Section 5.

4.3. An Extended Protocol ZKAoK+

Relation R+. We now extend our main protocol to
ZKAoK+, proving that structured messages satisfy addi-
tional requirements (i.e., sum of records and sum of entities).
Its formal relation R+ is,
R+ = {({ci}i∈[1,Np], N, t, T), (mi, ri, b

(i)
32(s−1))i∈[1,Np],s∈[1,64] :

∀ i ∈ [1,Np] and s ∈ [1, 64], ci = (1 +N)mi · rNi mod N2

∧ mi =
∑

s∈[1,64] 232(s−1) · b(i)32(s−1) mod N ∧ b
(i)
32(s−1) ∈ {0, 1}

∧
∑

s∈[1,64] b
(i)
32(s−1) ≤ t ∧

∑
i∈[1,Np] b

(i)
32(s−1) ≥ T}.

(4)
Our Solution. The sum of records property requires that
there are at most t 1’s packed in {b(i)32(s−1)}s∈[1,64] for
each message mi. Suppose t = 2x. We define ui as the
summation of all {b(i)32(s−1)}’s towards the same entity i. It
is sufficient to prove that each ui can be decomposed by x
bits, {w(i)

x , . . . , w
(i)
2 , w

(i)
1 }, s.t., ui =

∑
s∈[1,64] b

(i)
32(s−1) =∑

v∈[1,x] 2v−1w
(i)
v , where w(i)

v ∈ {0, 1}. We define cui as
the Paillier encryption of ui with randomness rui .

The sum of units property requires that there are at
least T 1’s among {b(i)32(s−1)}i∈[1,Np] towards each unit
s. Assume T = 2y. We use ψs to denote the sum-
mation of binary records towards the same s as, ψs =∑

i∈[1,Np] b
(i)
32(s−1). Suppose ψs can be decomposed into n

binary bits, {ψ(s)
n , . . . , ψ

(s)
2 , ψ

(s)
1 }, s.t, ψs =

∑
ρ∈[1,n] 2ρ−1 ·

ψ
(s)
ρ . Define φs as the summation of decomposition bits

from ψ
(s)
n to ψ(s)

y+1 as, φs =
∑

k∈[y+1,n] ψ
(s)
k . It is sufficient

to prove that for every s ∈ [1, 64], there exists an integer γs
s.t., φs · γs = θs, where θs is a random integer challenge.

Besides, it is required to prove that all the decomposition
bits ({w(i)

v }i∈[1,Np],v∈[1,x], {ψ
(s)
k }k∈[y+1,n],s∈[1,64]) are bits.

We employ the same technique as in the main protocol.
To fix {w(i)

v }, one needs to further encrypt its summation
ui to cui . {ψ

(s)
k } doesn’t need auxiliary encryption as the

verifier can compute
∏
i ci and parse the encryption of ψs

itself. Furthermore, one will need the statistical argument to
prevent a cheating prover. We re-use the statistical argument
in ZKAoK∗. We define constraints C′R∗ by changing original
constraint L′j =

∑
i,s `

(i)
j,32(s−1)b

(i)
32(s−1) +R′j into,

L′j =
∑

i,s,v,k `
(i)
j,32(s−1)b

(i)
32(s−1) + `

′(i)
v w

(i)
v + `

′(s)
k ψ

(s)
k +R′j ,

where {`(i)j,32(s−1)}, {`
′(i)
v }, and {`′(s)k } are randomly chosen

from {0, 1} by the verifier and i ∈ [1,Np], s ∈ [1, 64],
v ∈ [1, x], k ∈ [y + 1, n], and j ∈ [1, κ]. Then CR+ is,

C′R∗
Const{cui ,ui,rui} ∀i ∈ [1,Np]
ui =

∑64
s=1 b

(i)
32(s−1) ∀i ∈ [1,Np]

ui =
∑

v∈[1,x] 2v−1w
(i)
v ∀i ∈ [1,Np]

w
(i)
v (w

(i)
v − 1) = 0 ∀v ∈ [1, x],∀i ∈ [1,Np]

ψs =
∑

i∈[1,Np] b
(i)
32(s−1) s ∈ [1, 64]

ψs =
∑

ρ∈[1,n] 2n−1 · ψ(s)
ρ s ∈ [1, 64]

φs =
∑

k∈[y+1,n] ψ
(s)
k s ∈ [1, 64]

ψ
(s)
k (ψ

(s)
k − 1) = 0 ∀k ∈ [y + 1, n],∀s ∈ [1, 64]

φs · γs = θs s ∈ [1, 64],

(5)

P : (N, {(ci,mi, ri, b
(i)
32(s−1))}i∈[1,Np],s∈[1,64]) V : (N, {ci}i∈[1,Np])

∀j ∈ [1, κ], R′j ← L
∀t ∈ [1,Np/15], construct auxiliary messages m∗t
∀j ∈ [1, κ], compute c′j = PL.Encpk(R

′
j ; r
′
j)

∀t ∈ [1,Np/15], compute c∗t = PL.Encpk(m
∗
t ; r
∗
t)

({c′j}j∈[1,κ],{c
∗
t }t∈[1,Np/15])−−−−−−−−−−−−−−−−−−−−−−−→

∀i ∈ [1,Np],
∀s ∈ [1, 64],
∀j ∈ [1, κ],

l
(i)
j,32(s−1) ← {0, 1}

{l(i)
j,32(s−1)

}i∈[1,Np],s∈[1,64],j∈[1,κ]←−−−−−−−−−−−−−−−−−−−−−−−
∀j ∈ [1, κ], compute,
L′j =

∑Np
i=1

∑64
s=1 l

(i)
j,32(s−1)b

(i)
32(s−1) +R′j

{L′j}j∈[1,κ]−−−−−−−−−−−−−−−−→
∀j ∈ [1, κ],

checks L′j ≤ max{R′j}+ 64Np?
If yes, continue;

Otherwise, reject.
compute constraints CR∗ as,

∀i ∈ [1,Np], Const{ci,mi,ri}
∀j ∈ [1, κ], Const{c′j ,R′j ,r′j}

∀t ∈ [1,Np/15], Const{c∗t ,m∗t ,r∗t }

∀i ∈ [1,Np], mi =
∑64

s=1 232(s−1)b
(i)
32(s−1)

∀s ∈ [1, 64],∀i ∈ [1,Np], b
(i)
32(s−1) · (b

(i)
32(s−1) − 1) = 0

∀j ∈ [1, κ], L′j =
∑

i,s `
(i)
j,32(s−1)b

(i)
32(s−1) +R′j

∀t ∈ [1,Np/15], m∗t =
∑64

s=1

∑15
k=1 264(k−1)+s−1 · b15(t−1)+k32(s−1)

ZKAoK with inputs CR∗over ZN2←−−−−−−−−−−−−−−−−−−−−−→

Figure 2. Our Main Protocol ZKAoK∗ for Relation R∗

ZKAoK+ runs the same as our main protocol, based on
the above constraints. The verifier chooses {θs} along with
{`(i)j,32(s−1)}, {`

′(i)
v }, and {`′(s)k }. It is noted that we only give

a naive solution towards R+ and additional optimizations
are possible. One can easily optimize it by encrypting sev-
eral {ui}’s into one message, as each ui contains at most 64
bits while a Paillier plaintext is 2048 bits when |N | = 2048.

5. A Range Proof Protocol

We further construct a range proof protocol ZKAoK′.
Specifically, we are going to prove that polynomially many
plaintexts {mi} are in the same range, say, [0, 2256], the
relation R′ is set as follows,

R′ = {({ci}i∈[1,Np], N, 2
256), (mi, ri, b

(i)
k)i∈[1,Np],k∈[1,256] :

∀ i ∈ [1,Np], ci = (1+N)mi ·rNi mod N2∧mi ≤ 2256}.
(6)

We set |N | = 2048 where |p| = |q| = 1024. We use
{b(i)256, . . . , b

(i)
2 , b

(i)
1 } to denote the decomposition of mi. To

prove R′ with the above setting, it is sufficient to prove

that 1) the decomposition elements of mi are all 0 or 1; 2)
These 256 bits can re-construct mi; 3) ci is a valid ciphertext
for mi. One thing that should be addressed is that when
proving 256-bit messages satisfy the length requirement,
|mi| < min{|p|, |q|}, there is no need to construct auxiliary
messages m∗t . Then the constraints in C′ are,

Const{ci,mi,ri}, ∀i ∈ [1,Np]
Const{c′j ,R′j ,r′j}, ∀j ∈ [1, κ]

b
(i)
k−1 · (b

(i)
k−1 − 1) = 0, ∀i ∈ [1,Np],∀k ∈ [1, 256]

L′j =
∑256

k=1

∑Np
i=1 l

(i)
j,k−1 · b

(i)
k−1 +R′j , ∀j ∈ [1, κ]

mi =
∑256

k=1 2k−1 · b(i)k−1, ∀i ∈ [1,Np],
(7)

where l(i)j,k−1 ← {0, 1}, is randomly chosen from the verifier
for each b(s)k−1 and R′j ← L. We can set L = [0, 2281] to hide
bits when having millions of messages in the above setting.
Besides, same as our main protocol, the prover should send
{c′j} before the verifier chooses challenges {l(i)j,k}.

6. Security Proof

In this section, we analyze the security of our main
protocol, as others are similar to analyze. It is easy to
verify the completeness of the protocol. Also, special honest
verifier zero-knowledge property comes from the underlying
zero-knowledge argument system and security of the Paillier
encryption scheme. Next, we argue the special soundness of
our protocol. It is sufficient to show that R∗ is equivalent to
the constraints specified by CR∗ in Fig. 2 . Here, we focus
on showing that if CR∗ holds, then each b

(i)
32(s−1) is from

{0, 1} with all but negligible probability.
Let q̄ = q−1 mod p, p̄ = p−1 mod q, then b(i)32(s−1) =

b
(i)
32(s−1) · b

(i)
32(s−1) implies that b(i)32(s−1) ∈ {0, 1, q · q̄, p · p̄}.

Note that both q · q̄ and p · p̄ are much larger than p, q, with
high probability, thus, it is sufficient to show that b(i)32(s−1) is
small. We complete this task by revealing a random subset
sum of all b(i)32(s−1). If any b(i)32(s−1) is large, then at least half
of the subset sums will be large (as explained in Lemma
6.1). Thus, we can bound b(i)32(s−1) via showing that random

subset sums of all b(i)32(s−1) are always small. One subtle
issue here is that a (malicious) prover may use different
b
(i)
32(s−1) to answer different challenges. We solve this issue

by committing all b(i)32(s−1) in the beginning into {c∗t }, which
was proved in Lemma 6.2. Specifically, we formalize the
above proof idea in Theorem 6.1 and corresponding lemmas.

Theorem 6.1. If the condition Nb + max{R′j} <
min{X,Y } < N2 − Nb − max{R′j} holds, the argument
presented in our main protocol (ZKAoK∗) using the protocol
in [46] for relation R∗ satisfies perfect completeness, statis-
tical special honest verifier zero-knowledge and statistical
witness-extended emulation.

The proof of Theorem 6.1 is given in Appendix D.

Lemma 6.1. Let B be a set {b1, . . . , bk}, where bj ∈
{0, 1, X, Y } for 1 ≤ j ≤ k. Let L = b1 · l1 + b2 · l2 +
· · · + bk · lk + R mod N2, where lj ← {0, 1}, R ← L
and 1 ≤ j ≤ k. Define the event that there exists a j such
that bj /∈ {0, 1} as NonBits; Otherwise, define the event as
Bits. Let M = k+max{R}. Assuming that N is a correctly
generated RSA modulus and M < min{X,Y } < N2 −M ,
then,

Pr[L ≤M | NonBits] ≤ 1

2
.

Please note that L is computed under modulo N2. Then
for 1 ≤ i ≤ t, define Li = b1 · l(i)1 + b2 · l(i)2 + · · · + bj ·
l
(i)
j + · · ·+ bk · l(i)k +Ri mod N2, where l(i)j ← {0, 1} and
Ri ← L is chosen from the same range as R. We have,

Pr[L1 ≤M ∧ L2 ≤M ∧ · · · ∧ Lt ≤M | NonBits] ≤ 1

2t
.

Proof. (of Lemma 6.1) Let U = {0, 1}k be the challenge
space for random challenges, l1, l2, . . . , lk. Let M = k +

max{R}. If NonBits happens, there exists a j, s.t., bj =
{X,Y }. Let {l1, . . . , lj , . . . , lk} be challenge bits such that,

L = b1 · l1 + · · ·+ bj · lj + · · ·+ bk · lk +R ≤M mod N2.

Then for another challenge set, {l1, . . . , l̄j , . . . , lk}, we de-
fine,

L̄ = b1 · l1 + · · ·+ bj · l̄j + · · ·+ bk · lk +R mod N2,

where l̄j indicates the reverse of lj . We have, L̄ = L ±
X(resp. Y) > M mod N2, since X (resp. Y) is a big
integer. That is, there exists at least half of the challenges
in challenge space U satisfying L̄ > M mod N2. Thus,
Pr[L ≤M | NonBits] ≤ 1

2 .
Similarly, for the same set B with bj ∈ {X,Y }, if it

satisfies,
Li = b1 · l(i)1 + b2 · l(i)2 + · · ·+ bj · l(i)j + · · ·+ bk · l(i)k +Ri ≤M mod N2,

Then we can construct L̄i such that,

L̄i = b1 · l(i)1 + b2 · l(i)2 + · · ·+ bj · l̄(i)j + · · ·+ bk · l(i)k +Ri > M mod N2,

where Ri ← L is chosen from the same range as R.
Therefore for each Li ≤ M mod N2, we can construct
L̄i > M mod N2 as before. Similarly, we have,

Pr[Li ≤M | NonBits] ≤ 1

2
,

for all i. As all challenge bits are independently chosen,
then the probability that all Li’s satisfy Li ≤M mod N2

is,

Pr[L1 ≤M ∧ · · · ∧ Lt ≤M | NonBits]

= Pr[L1 ≤M | NonBits] · · ·Pr[Lt ≤M | NonBits]

≤1

2
· · · 1

2
=

1

2t
,

which completes the proof.

Lemma 6.2. For every m < N2 with ciphertext c, there
exists at most one possible witness set {b0, b1 . . . , bu} sat-
isfying the following constraints,

c = (1 +N)m · rN mod N2 (8)
m = 2u · bu + · · ·+ 2 · b1 + b0 mod N2 (9)
0 = bi · (bi − 1) for i ∈ [0, u] mod N2, (10)

provided that the following inequality holds,
u+ 1 < min{|p| , |q|},

where N = pq.

Proof. (of Lemma 6.2) To prove this lemma, we use contra-
diction. Assume that there exists two different sets, {bi}ui=0
and {b′i}ui=0 such that there exists a j where bj 6= b′j , for
0 ≤ j ≤ u, satisfying constraints 8 to 10. Suppose m
and m′ are two messages reconstructed from these two sets
following Constraint 9, with the same encryption c. We de-
note these two sets as, (c,m, {bi}ui=0) and (c,m′, {b′i}ui=0).
According to Constraint 8, we get m = m′+kN mod N2,
where k ≥ 0. Constraint 9 provides,

m = 2ubu + · · ·+ 2b1 + b0 mod N2 (11)
m′ = 2ub′u + · · ·+ 2b′1 + b′0 mod N2. (12)

Equation 11 minus Equation 12 yields,

d = kN = 2u(bu−b′u)+· · ·+2(b1−b′1)+b0−b′0 mod N2.
(13)

Consequently, d = 0 mod N . We use di = bi−b′i, to denote
the difference (in Z) between each element in {bi}ui=0 and
{b′i}ui=0. We get,

d = 2udu + · · ·+ 2d1 + d0 = 0 mod N. (14)
Let ei = di mod p and fi = di mod q. With N = pq, this
implies that d = 0 mod p (resp. q). Therefore, considering
modulo p,

2ueu + · · ·+ 2e1 + e0 = 0 mod p. (15)
According to Constraint 10, we have bi (resp. b′i) ∈
{0, 1, X, Y }. When it goes to modulo a prime number p,
they can only be 0 or 1. Thus, we have ei ∈ {−1, 0, 1}.
Given u + 1 < min{|p|, |q|}, Equation 15 is still satisfied
without the final modulo operation, and we have,

2ueu + · · ·+ 2e1 + e0 = 0. (16)
To satisfy the above equation, ei = 0 where i ∈ [0, u].

Similarly, we can prove that fi = 0. This implies that
di = 0 mod p and di = 0 mod q. Additionally, since
we have bi (resp. b′i) ∈ {0, 1, X, Y }, it follows that
di ∈ {0, 1, X, Y,−1,−X,−Y, 1−X, 1− Y,X − 1, X − Y,
Y −1, Y −X}. Assuming di 6= 0, we can prove that either
di 6= 0 mod p or di 6= 0 mod q. We first assume w.l.o.g.
that X = 1 mod p, X = 0 mod q, Y = 0 mod p, and
Y = 1 mod q. Then if di ∈ {1, X, 1−Y,X−Y }, we have
di = 1 mod p. If di ∈ {−1,−X,Y − 1, Y −X}, then we
have di = −1 mod p. If di ∈ {1, Y, 1 − X,Y − X} or
di ∈ {−1,−Y,X−1, X−Y }, we have that di = 1 mod q
or di = −1 mod q, respectively. As the above contradicts
the fact that di = 0 mod p or di = 0 mod q, di cannot be
other values except 0, which completes our proof.

7. Implementation and Evaluation

To facilitate our explanation, we first recall the no-
tations and their definitions in TABLE 3. We implement
our protocol as a proof-of-concept to verify its practical-
ity. Our implementation is written in C++ and we utilize
NTL [81], for big integer operations. Our implementa-
tion is single-threaded. Our code is available on GitHub:
https://github.com/RaeGBR/ZKP-Paillier-SP24. We experi-
ment on a Linux PC with an Intel i9-12900k CPU and 64GB
RAM. Our results are given in the non-interactive version.

TABLE 3. NOTATIONS AND DEFINITIONS.

Notation Definition

κ security parameter
U , Sb slot size, batch size
Np, Nb number of plaintexts, number of binary messages to be proved
SN2 , SQ element size in ZN2 , element size in ZQ
Nl, Nm linear constraints number, multiplication constraints number
Nom number of multiplication operations
Noe number of exponentiation operations
Tm time consumed in a single multiplication operation
Te time consumed in a single exponentiation operation

Micro-benchmarks. We perform a series of micro-
benchmarks to quantify the cost of each fundamental op-
eration or element size involved in our protocol, including

the time required for one exponentiation or multiplication
operation and the element size in ZN2 and ZQ respectively.
The corresponding data is reported in TABLE 5.8

TABLE 4. PARAMETERS USED IN OUR EXPERIMENT.Nb/msg
DENOTES THE NUMBER OF BITS TO BE PROVED IN ONE

PLAINTEXT.

Parameter |N | U N b/msg Sb κ

p1 1024 32 (bits) 32 15 80
p2 2048 32 (bits) 64 15 128

TABLE 5. MICRO-BENCHMARKS. The following data is the median
by running 1000 times of corresponding operations.

|N | T e (ms) T m (ns) SN2 (bits) SQ (bits)
1024 2.02 1253.54 2048 2056
2048 13.64 3770.00 4096 4112

7.1. Communication Efficiency

To demonstrate communication complexity, we test and
plot total and amortized proof size in Fig. 3. Total proof
size includes all the communication transmissions from the
prover to the verifier, while the amortized size is computed
by dividing the total size by the number of proved bits.

100200 400 600 800

0.6

0.8

1.0

1.2

1.4MB

(a). |N|=1024

100200 400 600 800
plaintext

1.5

2.0

2.5

3.0

3.5

4.0

(b). |N|=2048

400

600

800

1000

1200

1400

1600

500

1000

1500

2000

2500

bi
ts

total proof size (MB) average proof size (bits)

Figure 3. Total and Amortized Proof Size.

The amortized cost will decrease as the number of
plaintexts increases since the total proof size is not linear to
the number of proved bits. For example, when the number of
proved bits increases from 6.4K to 51.2K within |N | = 2048
setting, the total proof size expands from 1.87 MB to 3.69
MB. Consequently, this decreases the amortized proof size
from 2453 bits to 605 bits. To show the effect of batching,
more data is reported in Subsection 7.4.1.

7.2. Computation Efficiency

End-to-end Performance. We develop an end-to-end
prototype for two-party aggregation, which leverages the
voter analysis scenario discussed in Section 1 as context.
Its performance is reported in TABLE 6. The results are

8. Parameters, such as slot size U , can be adjusted to suit specific
requirements. please refer to Appendix C for more discussions.

given with Np = 800 under both p1 and p2 parameter sets.
For ease of clarity, we retain the notations introduced in
Section 1. The whole protocol comprises 3 phases: (1) P1

structures and encrypts messages for generating a proof π;
(2) P2 verifies π and computes C̄ =

∑Np
i=1 c

Wi
i ; (3) P1

decrypts C̄ and parses the result to obtain {Sj}.

TABLE 6. END-TO-END PERFORMANCE EVALUATION WITH Np = 800.

Parameter Phase 1 (s) Phase 2 (s) Phase 3 (ns) Proof (MB)
p1 2689.36 30.00 5955 1.29
p2 36785.80 194.07 9896 3.69

The first three columns denote the time cost of each
stage, while the last represents the proof size. When aggre-
gating 25.6K bits with |N | = 1024, the protocol completes
in 0.76 hours, requiring a total communication of 1.49 MB
(1.29 MB for proof + 0.20 MB for ciphertexts {ci}). For
aggregating 51.2K bits under |N | = 2048, the required time
is 10.27 hours with a total communication cost of 4.08 MB.

Examine the Workload of the Prover. As TABLE 6
indicates that the first phase requires the most computation
effort, we further examine P1’s (i.e., the prover’s) workload
in this phase, grouping the process into 4 stages: (1) En-
cryption stage. The prover does Paillier encryption for all
messages {mi}, {Rj}, and {c∗t }. (2) Circuit creation and
value assign stage. It generates all multiplication and linear
constraints specified in CR∗ , and assigns values to the circuit
wires according to the constraints. (3) Commitment stage.
This is an inner process in [46], where the prover mainly
does Pedersen commitment to circuit wires. (4) Remaining
stage. This internal process in [46], involves the prover
computing the remaining elements for proof.

TABLE 7. PROVER’S TIME CONSUMPTION IN EACH STAGE

Parameter Stage 1 (s) Stage 2 (s) Stage 3 (s) Stage 4 (s)
p1 0.84 18.69 2570.09 99.74
p2 6.16 51.83 35857.20 870.63

TABLE 7 illustrates the prover’s time consumption
across each stage of phase 1, given Np = 800 under both
p1 and p2 parameter settings. The commitment stage (stage
3) is the most time-consuming part. For |N | = 1024 and
|N | = 2048, this stage constitutes 95.57% and 97.48%
of the total proof time, respectively. Potential optimization
strategies for this stage are provided in Appendix C.

7.3. Proof and Verification Cost Estimation

We also introduce methods for estimating the proof and
verification costs of our main protocol. The results (TABLE
10) demonstrates that our estimation aligns well with the real
data. For proving 226 bits inserted into millions (i.e., 220) of
2048-bit Paillier plaintexts, our main protocol requires about
0.3 s and 2.01 ms for the prover and verifier, respectively.
Furthermore, the amortized proof size is reduced to 18.85
bits. More details are available in Appendix B.

7.4. Comparison

For further illustration, we compare our schemes with
potential solutions employing the state-of-the-art tools.

7.4.1. Compare ZKAoK∗ with An OR-Proof [53]- Ex-
amining the Value of Packing. To evaluate the utility
of packing used in our approach, we compare our main
protocol with a standard OR-proof [53], where the prover
uses more (unpacked) Paillier ciphertexts and proves that
each plaintext encrypts a Boolean value. Furthermore, as
our approach supports batch proving and verification, we
report more data on varying numbers of plaintexts (Np),
ranging from small (single or dozens) to large (hundreds),
to facilitate batch size selection in practice.

The comparison result is reported in TABLE 8. In
the OR-proof, the cost for each bit is constant, while in
our case, the amortized cost decreases when proving more
plaintexts (bits) simultaneously. In both the |N | = 1024 and
|N | = 2048 settings, our method yields a smaller amortized
proof size than the OR-proof when more than 20 plaintexts
are being proven. In the |N | = 2048 setting, when over
100 plaintexts are being proven, both our proof size and
verification time outperform using an OR-proof.

Our method becomes significantly more efficient as
the number of plaintexts increases. When proving between
25.6K and 51.2K bits under |N | = 2048 setting, our
amortized proof size is around 17.8x - 27x smaller. This
gap will further expand to 133x when proving 10 thou-
sand messages. As a result, our amortized bandwidth cost
(proof+encryption) is only 982-670 bits, which is 20x - 30x
lower than that of a standard OR-proof.

Indeed, when proving a single or a small number of
messages (i.e., 10-20), our cost could remain relatively high.
This is due to the need to construct auxiliary ciphertexts, c′j ,
to ensure soundness. Therefore, ZKAoK∗ is better suited
when the number of plaintexts is “larger”, typically on the
scale of hundreds. Conversely, for proving a single bit or
several bits, the naive solution is more appropriate. Nonethe-
less, we underscore that this requirement is compatible
with our motivating scenarios presented in Section 1, where
each election poll gathers at least hundreds to thousands of
messages daily. As such, our approach is ideally suited for
these large-scale scenarios.

While our proof time may be longer than an OR-proof,
this does not compromise the practicality of our approach
in real-world applications. For instance, in a |N | = 2048
setting, with 800 messages collected in a day, these could
be processed in one batch overnight, taking roughly 10
hours. Alternatively, if one generates proofs simultaneously
for smaller batches of 200 or 400 messages, this time will be
reduced to 4.73 or 6.76 hours respectively. Furthermore, one
can use parallelization to improve efficiency, for facilitating
deployment requirements in practice. We give more potential
optimization approaches in Appendix C.

7.4.2. Compare ZKAoK′ with Paillier Range Proofs [33],
[54]. There are state-of-the-art methods in [33], [54] for

TABLE 8. COMPARE OUR APPROACH AND A STANDARD OR-PROOF [53]. Data under p1 / p2 parameters represent amortized values for
ZKAoK∗ and averages from 1000 repetitions for OR-proof. A “−′′ indicates non-applicability of the attribute.

Schemes Para. Np N b
Proof Size Prove Time Verify Time Enc. Size

(bits) (s) (ms) (bits)

OR-proof [53] p1 / p2 – 1 >8192 / >16384 4.08*10−3 / 0.35 2.00 / 18.04 2048 / 4096

ZKAoK∗ p1 / p2

1 32 / 64 107.69K / 187.05K 14.65 / 143.38 147.94 / 779.91

64 / 64

10 320 / 640 11.27K / 19.26K 1.55 / 14.80 15.90 / 82.42
20 640 / 1.28K 5931.65 / 9978.29 0.83 / 7.94 8.56 / 43.43
40 1.28K / 2.56K 3228.11 / 5298.84 0.47 / 4.44 4.81 / 23.40

100 3.2K / 6.4K 1563.53 / 2453.29 0.25 / 2.14 2.57 / 11.42
200 6.4K / 12.8K 964.24 / 1461.24 0.17 / 1.33 1.80 / 7.04
400 12.8K / 25.6K 623.25 / 918.20 0.13 / 0.95 1.38 / 5.40
800 25.6K / 51.2K 422.57 / 605.08 0.10 / 0.70 1.17 / 3.79

range proving Paillier messages. Their implementation can
be found in [82]. We compare ZKAoK′ with them for range-
proving 256-bit messages under |N | = 2048 setting (with
parameter p2) and plot the result in TABLE 9.

TABLE 9. COMPARE ZKAoK′ WITH [33], [54] FOR RANGE PROVING
256-bit PAILLIER PLAINTEXTS IN |N | = 2048 SETTING.

Scheme Np Proof Size/Message Total Proof Size Proof time/Message Verify time/Message

[82] >128.00 KB >2.00 GB 241.43 ms 199.32 ms
Ours 10 thousand 0.93 KB 14.87 MB 25.51 s 146.15 ms
[82] >128.00 KB >128 GB 241.43 ms 199.32 ms

Ours 1 million 931.84 bit 116.48 MB 20.03 s 121.08 ms
[82] > 128.00 KB >2048.00 GB 241.43 ms 199.32 ms

Ours 10 million 232.12 bit 0.45 GB 19.46 s 118.48 ms

* We use 214, 220 and 224 to estimate 10 thousand, 1 million and 10 million.

The constant communication and computation costs per
plaintext in [33], [54] result in a proof size of 4096∗2∗128
bits = 128 KB for one plaintext, which is 256 times larger
than its encryption cost of 4096 bits. Besides, it requires
nearly equal time for verification and proof. Our method
is competitive in proof size and verification time while
providing precise range proof. Specifically, we require only
11.4KB per message when proving 200 messages simulta-
neously. When proving 10 million messages, their approach
requires > 2048 GB in total, while ours requires about
0.45 GB. Our protocol’s verification time per message is
approximately half of theirs, even though they optimized
their code with parallelization and ours uses a single thread.
(Without parallelization, they require 1.67 s and 1.25 s for
proof and verification, respectively.) Moreover, while they
can only guarantee x ∈ [0, q) with input x ∈ [0, bq/3c), our
method provides precise proof.

8. Discussions

Discussion of the trade-off between proof time and
proof size. Our approach significantly reduces the proof
size, with increased computational overhead on the prover.
This trade-off is particularly beneficial in our target appli-
cation of data aggregation, which typically involves asyn-
chronous processes of data collection and aggregation where
immediate results are not critical. In these scenarios, proof
generation usually occurs at or post data collection but be-
fore the aggregation phase, which might be scheduled weeks
or even months later. This scheduling makes the latency

in proof generation inconsequential in the overall timeline,
ensuring a smooth integration with the usual data aggrega-
tion schedules. For instance, in voter analysis, our emphasis
is on statistical aggregation rather than real-time tallying.
Data may be gathered pre- or post-election, followed by
statistical processing with various parties. The flexibility in
the timing of these statistical analyses mitigates the longer
proof generation time associated with our approach.

Moreover, considering a party may collaborate with dif-
ferent data providers, our approach’s extended proof genera-
tion time is offset by the reusability of proofs across multiple
parties. This feature significantly enhances overall efficiency,
since the proof generation time could be amortized over
multiple collaborations. Additionally, the smaller proof size
is a crucial advantage in such collaborative environments,
as it reduces the burden of data transfers and storage,
particularly when dealing with large-scale data sets.

Discussion of Alternative Approaches. To achieve
the same homomorphic functionality for the aggregation
scenario, one may choose alternative approaches such as
variants of Paillier over elliptic curves and lattice-based
schemes. Paillier encryption [24] was first extended into the
elliptic curve setting in [83]. Nevertheless, Galbraith [84]
pointed out that the schemes in [83] are not secure and
presented an alternative approach. As noted by the authors
in [84], this approach is mainly of theoretical interest,
and the resulting scheme is much slower than comparable
integer computations, since it is based on elliptic curves
over large numbers. Furthermore, its security analysis is not
well-studied and there are no public implementations so far.
Therefore, we believe that it is not mature and practical
enough to be employed in reality.

In examining RLWE-based homomorphic schemes such
as CKKS [85], one of the most practical homomorphic
schemes, we find that it supports homomorphic operations
over real numbers but is limited by error accumulation,
preventing the execution of unbounded depth circuits. Ac-
commodating a large scalar weight Wi requires a large
scaling factor, leading to significant computational overhead.
Its ciphertext size, at least 214 bits using parameters in [85],
exceeds our encryption and proof size for each message.
Besides, a scalar Wi around 215 will introduce a notice-
able decryption error in many of the existing RLWE-based
schemes. TFHE [86], while theoretically allowing unlimited

homomorphic operations, is impractical in our scenario due
to the large Boolean circuit and the overhead from numerous
bootstrapping operations. Thus, while lattice-based schemes
offer ideal properties for homomorphic operations, they
don’t align well with our scenario and may incur prohibitive
computation and communication costs.

Adapting existing sublinear proof systems to our sce-
nario is feasible but impractical due to the need to generate
a circuit over a prime field. For a modest |N | = 1024
setting, the circuit for one Paillier plaintext-ciphertext pair
comprises ten million gates (i.e., 224). Applying the Groth16
proof system, [45], [87], on this circuit, the trusted setup
phase requires up to 120 GB of memory. Despite having
a total of 132 GB memory (32 GB RAM and 100GB
swap), we are unable to generate a proof due to memory
limitations. The common reference string also occupies 2.88
GB, significantly larger than the ciphertext (2048 bits) itself.
In |N | = 2048 setting, even with 160 GB memory, circuit
generation remains unfeasible. Given that the best-reported
implementation in [88] only supports around 227 gates, and
the |N | = 2048 circuit will be much larger, we believe it’s
not feasible. Applying sublinear proofs for Boolean circuits
in the context of correct Paillier encryption with |N | = 1024
setting will lead to a circuit requiring much more than 224

gates due to the use of binary operations. While [89],
[90] provide efficient proofs for 0/1, they are not directly
applicable to the Paiilier system, since the resulting circuit
will be much larger. Therefore, directly applying existing
sublinear proofs to Paillier is also not feasible due to the
significant increase in the circuit size. Moreover, we provide
more discussions in Appendix C.

9. Acknowledgements

This work is supported by the National Natural
Science Foundation of China (Grant Nos. 61972332,
62172412), Hong Kong Research Grants Council (Project
Nos. 15211120, 17201421, R1012-21, C1029-22G), PolyU
Strategic Hiring Scheme (P0046340), and Ant Group.

References

[1] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference, ser.
Crypto’12, 2012, pp. 643–662.

[2] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security
and privacy (SP), ser. SP’17. IEEE, 2017, pp. 19–38.

[3] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making spdz great
again,” in Advances in Cryptology–EUROCRYPT 2018: 37th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, ser. Eurocrypt’18. Springer, 2018, pp. 158–189.

[4] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,”
in USENIX Annual Technical Conference (USENIX ATC), 2020.

[5] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in IEEE symposium on security and privacy, 2013.

[6] C. Gentry and S. Halevi, “Compressible fhe with applications to pir,”
in Theory of Cryptography Conference. Springer, 2019, pp. 438–464.

[7] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword
search and oblivious pseudorandom functions,” in Theory of Cryp-
tography Conference. Springer, 2005, pp. 303–324.

[8] A. Y. Lindell, “Efficient fully-simulatable oblivious transfer,” in Cryp-
tographers’ Track at the RSA Conference. Springer, 2008, pp. 52–70.

[9] A. Kiayias and M. Yung, “The vector-ballot e-voting approach,” in
International Conference on Financial Cryptography, ser. FC ’04.

[10] I. Damgård and M. Jurik, “A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system,” in
International workshop on public key cryptography, ser. PKC ’01.
Springer, 2001, pp. 119–136.

[11] M. Jawurek and F. Kerschbaum, “Fault-tolerant privacy-preserving
statistics,” in Privacy Enhancing Technologies, ser. PETS ’12.

[12] V. Rastogi and S. Nath, “Differentially private aggregation of dis-
tributed time-series with transformation and encryption,” in Pro-
ceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, p. 735–746.

[13] E. Shi, T.-H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data,” vol. 2, 01 2011.

[14] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li, “Privacy
and accountability for location-based aggregate statistics,” in Proceed-
ings of the 18th ACM Conference on Computer and Communications
Security, ser. CCS ’11, 2011, p. 653–666.

[15] M. Joye and B. Libert, “A scalable scheme for privacy-preserving
aggregation of time-series data,” in International Conference on Fi-
nancial Cryptography and Data Security, ser. FC’ 13, 2013.

[16] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggrega-
tion for privacy-preserving machine learning,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17, 2017, p. 1175–1191.

[17] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” ser. USENIX’17.

[18] T. Elahi, G. Danezis, and I. Goldberg, “Privex: Private collection of
traffic statistics for anonymous communication networks,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS’ 14, 2014, pp. 1068–1079.

[19] L. Melis, G. Danezis, and E. De Cristofaro, “Efficient private statistics
with succinct sketches,” arXiv preprint arXiv:1508.06110, 2015.

[20] Z. Erkin and G. Tsudik, “Private computation of spatial and temporal
power consumption with smart meters,” in Applied Cryptography and
Network Security, 2012.

[21] M. Zhou, T. Wang, T. Chan, G. Fanti, and E. Shi, “Locally dif-
ferentially private sparse vector aggregation,” in 2022 2022 IEEE
Symposium on Security and Privacy (SP), 2022, pp. 1565–1565.

[22] R. Bassily and A. Smith, “Local, private, efficient protocols for
succinct histograms,” in Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, ser. STOC’15, pp. 127–135.

[23] M. Abdalla, J. Gong, and H. Wee, “Functional encryption for
attribute-weighted sums from k-lin,” in Annual International Cryp-
tology Conference, ser. Crypto’ 20. Springer, 2020, pp. 685–716.

[24] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology — EUROCRYPT ’99.

[25] “Homomorphic standard. iso/textbakslash 18033-6:2019,” 2019.
[Online]. Available: https://www.iso.org/standard/67740.html

[26] S. Agrawal, S. Badrinarayanan, P. Mukherjee, and P. Rindal, “Game-
set-match: Using mobile devices for seamless external-facing biomet-
ric matching,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS’20.

[27] T. Ge and S. B. Zdonik, “Answering aggregation queries in a secure
system model,” in Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007. ACM, 2007, pp. 519–530.

[28] “Alberta senate election act,” https://www.alberta.ca/
alberta-senate-election-act.aspx.

[29] “Election news of federative republic of brazil,” https://www.
electionguide.org/countries/id/31/.

[30] “Election for swiss council of states 2019,” https://www.
electionguide.org/elections/id/3448/.

[31] “2021 election committee subsector ordinary elections,” https://www.
elections.gov.hk/ecss2021/eng/brief.html.

[32] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof-systems,” in STOC ’85, 1985, pp. 291–304.

[33] Y. Lindell, “Fast secure two-party ecdsa signing,” in Advances in
Cryptology – CRYPTO 2017, ser. Crypto ’17, 2017, pp. 613–644.

[34] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with prac-
tical distributed key generation and applications to cryptocurrency
custody,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 1837–1854.

[35] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation
from threshold homomorphic encryption,” in Advances in Cryptology
— EUROCRYPT 2001, ser. Eurocrypt ’01, 2001, pp. 280–300.

[36] C. Hazay and Y. Lindell, “Efficient oblivious polynomial evaluation
with simulation-based security,” Cryptology ePrint Archive, 2009.

[37] “Election administration and voting survey 2020 comprehensive
report (us).” [Online]. Available: https://www.eac.gov/sites/default/
files/document library/files/2020 EAVS Report Final 508c.pdf

[38] “Poll of polls - polling from across europe.” [Online]. Available:
https://www.politico.eu/europe-poll-of-polls

[39] “Number of early votes cast in the 2020 presidential election in the
united states.” [Online]. Available: https://www.statista.com/statistics/
1184422/presidential-election-number-early-votes-cast-us/

[40] “2022 general election early voting statistics.” [Online]. Available:
https://rpubs.com/ElectProject/early vote 2022

[41] J. Groth, “Linear algebra with sub-linear zero-knowledge arguments,”
in Annual International Cryptology Conference, ser. Crypto’ 09.
Springer, 2009, pp. 192–208.

[42] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” ser. SP, 2013.

[43] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“Snarks for c: Verifying program executions succinctly and in zero
knowledge,” in Annual cryptology conference. Springer, 2013.

[44] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, ser. CCS’ 13, 2013, pp. 955–966.

[45] J. Groth, “On the size of pairing-based non-interactive arguments,”
in Advances in Cryptology–EUROCRYPT 2016.

[46] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log
setting,” in Advances in Cryptology – EUROCRYPT 2016.

[47] I. Giacomelli, J. Madsen, and C. Orlandi, “Zkboo: Faster zero-
knowledge for boolean circuits,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1069–1083.

[48] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K.
Jakobsen, “Linear-time zero-knowledge proofs for arithmetic circuit
satisfiability,” ser. AsiaCrypt’ 17. Springer, 2017, pp. 336–365.

[49] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
in 2018 IEEE Symposium on Security and Privacy (SP).

[50] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updatable structured
reference strings,” ser. CCS’19.

[51] M. Hoffmann, M. Klooß, and A. Rupp, “Efficient zero-knowledge
arguments in the discrete log setting, revisited,” ser. CCS, 2019.

[52] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020.

[53] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial
knowledge and simplified design of witness hiding protocols,” in
Annual International Cryptology Conference, 1994.

[54] F. Boudot, “Efficient proofs that a committed number lies in an
interval,” in Advances in Cryptology — EUROCRYPT 2000.

[55] C. Ordonez, “Clustering binary data streams with k-means,” in Pro-
ceedings of the 8th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, 2003, pp. 12–19.

[56] M. Zhang and N. Hurley, “Avoiding monotony: improving the di-
versity of recommendation lists,” in Proceedings of the 2008 ACM
conference on Recommender systems, 2008, pp. 123–130.

[57] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Baro-
cas, “Adnostic: Privacy preserving targeted advertising,” in Proceed-
ings Network and Distributed System Symposium, 2010.

[58] S. Li, N. Vlassis, J. Kawale, and Y. Fu, “Matching via dimensionality
reduction for estimation of treatment effects in digital marketing
campaigns.” in IJCAI, 2016, pp. 3768–3774.

[59] R. Li, S. Wang, and K. C.-C. Chang, “Multiple location profiling
for users and relationships from social network and content,” arXiv
preprint arXiv:1208.0288, 2012.

[60] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Effects
of user similarity in social media,” in Proceedings of the fifth ACM
international conference on Web search and data mining, 2012.

[61] “Google adwords,” https://ads.google.com/home/.

[62] “Google adsense,” https://adsense.google.com.

[63] C. Wang, R. Raina, D. Fong, D. Zhou, J. Han, and G. Badros, “Learn-
ing relevance from heterogeneous social network and its application in
online targeting,” in Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval.

[64] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, “How
much can behavioral targeting help online advertising?” ser. WWW.

[65] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Diversified
texture synthesis with feed-forward networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017.

[66] H. Hajishirzi, W.-t. Yih, and A. Kolcz, “Adaptive near-duplicate detec-
tion via similarity learning,” in Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information
retrieval, 2010, pp. 419–426.

[67] E. Shi and K. Wu, “Non-interactive anonymous router,” in Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2021, pp. 489–520.

[68] D. Heath and V. Kolesnikov, “One hot garbling,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 574–593.

[69] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “Explicit filterbank
learning for neural image style transfer and image processing,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43,
no. 7, pp. 2373–2387, 2020.

[70] P. Zhang, M. Wu, H. Dinkel, and K. Yu, “Depa: Self-supervised audio
embedding for depression detection,” in Proceedings of the 29th ACM
international conference on multimedia, 2021, pp. 135–143.

[71] B. Guo, S. Han, X. Han, H. Huang, and T. Lu, “Label confusion
learning to enhance text classification models,” in Proceedings of the
AAAI conference on artificial intelligence, 2021.

[72] J. Li, X. Lan, Y. Long, Y. Liu, X. Chen, L. Shao, and N. Zheng,
“A joint label space for generalized zero-shot classification,” IEEE
Transactions on Image Processing, vol. 29, pp. 5817–5831, 2020.

[73] B. Liu, Y. Zhu, Z. Fu, G. De Melo, and A. Elgammal, “Oogan: Disen-
tangling gan with one-hot sampling and orthogonal regularization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[74] R. Diaz and A. Marathe, “Soft labels for ordinal regression,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, ser. CVPR’19, 2019, pp. 4738–4747.

[75] J. Camenisch and M. Michels, “Proving in zero-knowledge that a
number is the product of two safe primes,” ser. Eurocrypt’ 99.

[76] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi,
“Efficient rsa key generation and threshold paillier in the two-party
setting,” Journal of Cryptology, p. 265–323, 2019.

[77] J. Boyar, K. Friedl, and C. Lund, “Practical zero-knowledge proofs:
Giving hints and using deficiencies,” Journal of cryptology, 1991.

[78] J. v. d. Graaf and R. Peralta, “A simple and secure way to show
the validity of your public key,” in Conference on the Theory and
Application of Cryptographic Techniques. Springer, 1987.

[79] A. Chan, Y. Frankel, and Y. Tsiounis, “Easy come—easy go divisible
cash,” in International Conference on the Theory and Applications of
Cryptographic Techniques, ser. Eurocrypt’ 98. Springer, 1998, pp.
561–575.

[80] E. Fujisaki and T. Okamoto, “Statistical zero knowledge protocols
to prove modular polynomial relations,” in Annual International
Cryptology Conference, ser. Crypto’ 97. Springer, 1997.

[81] V. Shoup, “Ntl: a library for doing number theory,” 1996.

[82] “Range proof for paillier,” https://github.com/ZenGo-X/zk-paillier/
blob/master/src/zkproofs/range proof ni.rs, 2018.

[83] P. Paillier, “Trapdooring discrete logarithms on elliptic curves over
rings,” in Advances in Cryptology—ASIACRYPT 2000: 6th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security.

[84] S. D. Galbraith, “Elliptic curve paillier schemes,” Journal of Cryp-
tology, vol. 15, pp. 129–138, 2002.

[85] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryp-
tion for arithmetic of approximate numbers,” ser. ASIACRYPT’17.
Springer.

[86] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
2020.

[87] “Arkworks - an ecosystem for developing and programming with
zksnarks,” https://github.com/arkworks-rs.

[88] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk: Plonk with
linear-time prover and high-degree custom gates,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2023, pp. 499–530.

[89] I. Cascudo and E. Giunta, “On interactive oracle proofs for boolean
r1cs statements,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2022, pp. 230–247.

[90] Y. Gvili, S. Scheffler, and M. Varia, “Booligero: Improved sublinear
zero knowledge proofs for boolean circuits,” in Financial Cryptogra-
phy and Data Security: 25th International Conference, FC 2021.

[91] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Advances in Cryptology — CRYPTO
’91.

[92] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in 2013 IEEE Symposium on
Security and Privacy.

[93] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole: Re-
ducing data transfer in garbled circuits using half gates,” in Advances
in Cryptology-EUROCRYPT 2015.

[94] P. Rindal and M. Rosulek, “Faster malicious 2-party secure compu-
tation with online/offline dual execution,” in 25th USENIX Security
Symposium, 2016.

[95] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” ser. CCS’17.

[96] N. Dottling, S. Ghosh, J. B. Nielsen, T. Nilges, and R. Trifiletti, “Tiny-
ole: Efficient actively secure two-party computation from oblivious
linear function evaluation,” ser. CCS’17.

Appendix A.
Additional Preliminaries

In this section, we present additional definitions of the
underlying preliminaries. Roughly speaking, the decisional
composite residuosity assumption says that given an RSA
modulus N with an element z ∈ Z∗N2 , the adversary cannot
distinguish (except with negligible probability) whether z is
an N -th residue.

Definition A.1. (Decisional Composite Residuosity (DCR)
Assumption). This assumption holds relative to the key
generation algorithm PL.Gen in Paillier system, if for all
non-uniform PPT adversaries A, the following holds,∣∣Pr
[
A(N, z1) = 1

∣∣(N, p, q)← PL.Gen(1λ), r1 ← Z∗N , z1 = rN1 mod N2
]

−Pr
[
A(N, z2) = 1

∣∣(N, p, q)← PL.Gen(1λ), r2 ← Z∗N2 , z2 = r2
]∣∣ ≈ 0.

Paillier encryption, based on the DCR assumption, con-
tains 3 algorithms, PL = (PL.Gen,PL.Enc,PL.Dec). Since
there are many variants, we use a simpler version in our
paper where p and q are set as equal length and N = pq
with setting base as (1 +N). Readers can refer to [24] for
its formal definition and security proof.

A Pedersen commitment scheme over composite or-
der group contains 2 polynomial algorithms, PDC =
(PDC.Gen,PDC.Com). With input security parameter λ,
PDC.Gen outputs the commitment key, ck = (G, g, h),
where G is a cyclic group of composite order satisfying
Def.3.1, g denotes its generator and h is a randomly chosen
element. With input ck and message m, PDC.Com outputs
its commitment as, ct = gm ·hr mod Q, s.t., Q = f ·N2+1
is a prime where f is a random small integer. In our protocol,
we use a variant of the above form. The commitment key
is set as ck = (G, g, g1, g2, . . . , gn) and a commitment of
a series of messages, (m1, . . . ,mn), is, ct = gr ·Πn

i=1g
mi
i .

We refer [91] for more details.

A.1. Zero-knowledge Argument of Knowledge

Our protocol is a zero-knowledge argument of knowl-
edge (ZKAoK) 9, which should satisfy perfect completeness,
statistical witness-extended emulation, and statistical special
honest-verifier zero-knowledge. We use witness emulation
to define knowledge soundness, as used in [46]. Informally,
it states that there exists an emulator that can produce an
argument with identical distribution, along with a witness,
whenever an adversary can produce an argument satisfying

9. Our protocol is actually an “argument” and we do not specifically
distinguish two terms, “argument” and “proof”, in our paper.

the verifier with some probability. For zero-knowledge, it
means that given the verifier’s challenge values in advance, it
is possible to efficiently simulate the entire argument without
knowing the witness. Due to space limitations, we refer [46]
for a more detailed and formal definition.

Appendix B.
Estimation of Proof and Verification Cost

In this section, we present detailed estimation ap-
proaches for communication and computation costs, towards
our main protocol. We denote the number of multiplication
and linear constraints as Nm and Nl respectively, where Nm
can be computed as,

Nm =
|N |
U
· Np + (Np + κ+ d |N |

Sb
e) · (dlogNe+ h(N)− 1)

We estimate the total communication cost as,

SN2 ·O(Np/U +
√
Np + κ) + SQ ·O(

√
Nm +

√√
Nm).

We use commitment time, the most significant component,
to represent the proof time, as analyzed in Section 7.2. We
denote the quantities of exponentiation and multiplication
operations as Noe and Nom, which can be calculated as,

Noe = (|N |/4 + 1) ∗ (3
√
Nm + 1)/2

Nom = |N | ∗ (3
√
Nm + 1) ∗ (

√
Nm + 512)/4.

We use T est.
prf = Noe ∗ Te +Nom ∗ Tm to estimate the total

proof time. For verification time, it can be estimated as,

T est.
vrf = O(Nl +Nm) ∗ Tm +O(2

√
Nm + 1) ∗ Te.

TABLE 10. COMPARISON OF REAL AND ESTIMATED AMORTIZED
DATA.

Par. Np
Proof Size Prove Time Verify Time

est. (bits) est. (bits) real (s) est. (s) real (ms) est. (ms)

p1
200 964.242 969.35 0.17 0.20 1.80 1.88
400 623.25 626.68 0.13 0.15 1.38 1.42

p2
200 1461.24 1464.77 1.33 1.57 7.04 8.20
400 918.20 920.93 0.95 1.08 5.40 5.78

We compare our estimated amortized data towards proof
size, proof and verification time with the real data in TABLE
10. The amortized cost is calculated by dividing the total
cost by the number of proved bits (i.e., binary records). The
result demonstrates that our estimation aligns closely with
the real data. For proving 226 bits inserted into millions of
2048-bit Paillier plaintexts, it will cost about 0.3 s and 2.01
ms for proving and verifying one bit respectively, while the
amortized proof size will be 18.85 bits only.

Appendix C.
Potential Optimizations and Discussions

Optimization. Much of the workload in the commitment
phase can be pre-computed, allowing for a division of our

protocol into online-offline phases. Here we have a closer
look at the involved multiplication constraints. Most of them
have the Paillier encryption form as, c = (1 + N)m · rN
(while others have the form, b ∗ (b − 1) = 0). We need
to construct 1 linear constraint and (dlogNe + h(N) − 1)
multiplication constraints to represent 1 + m · N and rN

respectively. As these multiplication constraints are only
related to randomness, not witness, one could pre-commit
them before running our protocol. The number of multipli-
cation constraints that can be pre-computed is,

(Np + κ+ dNp
Sb
e) · (dlogNe+ h(N)− 1).

That is, over 98% of commitments can be pre-computed.
Besides, as our implementation uses single-thread, we can
further optimize it by applying parallelization.

Discussion of Proving Other Plaintext Relations Us-
ing Our Approach. Here we discuss how to additionally
prove other Paillier plaintext relations using our approach.
For example, to prove the relation Rmul in [10], one can use
our method by adding one constraint, m3 = m1 ∗m2, into
the system. One thing that needs to be argued is that our
constraint is under modulo N2 where the original relation is
under modulo N . We now give the following observation.

If we have m3 = m1 ·m2 mod N2, then we can rewrite
it as m3 = m1 ·m2 + kN2 for some k ∈ Z. Then we have,
m3 = m1 · m2 + kN · N = m1 · m2 mod N . We use
c1, c2, c3 to denote their corresponding ciphertexts. Even if
we put m1 > N , say, m1 = m′1 + k1N (resp. m2 = m′2 +
k2N and m3 = m′3 + k3N) into the encryption, the actual
value being encrypted is still m′1 (resp. m′2 and m′3). So if
m3 = m1 ·m2 mod N2 holds with having PL.Enc(m1; r1),
PL.Enc(m2; r2) and PL.Enc(m3; r3), we can only get m′1,
m′2 and m′3 after decryption. Therefore we still have m′3 =
m′1 ·m′2 mod N .

Discussion of Using a Generic Two-party Computa-
tion Protocol. While generic two-party computation pro-
tocols can potentially provide similar functionality, current
efficient advances [92], [93] can only achieve semi-honest
security. To achieve malicious security, one can additionally
use a generic ZKP. However, this will bring in large over-
head and break its efficiency advantage. Although one might
consider using adaptive-secure two-party computation pro-
tocols, existing works [94], [95] fall short in terms of round
and communication efficiency. Customized maliciously se-
cure OT/OLE schemes [96] could be an alternative but these
require greater computation and communication resources.
We emphasize our non-interactive approach wherein P1 can
reuse proofs across collaborations. In contrast, a two-party
computation protocol necessitates P1 to rerun the scheme
with each collaborator, increasing the complexity.

Discussion of the choice of slot size and the number
of slots. For ease of concreteness, we have fixed these
parameters, although they can be adjusted according to the
problem size and its requirements. For instance, the slot size
U can be decreased or increased, provided that it meets
the condition, Np ∗max{Wi} < 2U . Similarly, the number
of slots (Nb/msg) in each plaintext can also be adjusted
but should satisfy Sb ∗ Nb/msg < |N |/2. This condition is

derived from Lemma 6.2 and is necessary for constructing
auxiliary message m∗t .

Appendix D.
Deferred Security Analysis

D.1. Lemma D.1 and Its Proof

Lemma D.1. Assume N is the RSA modulo, says N = pq
where p, q are primes. There exists 4 roots of bi for the
following equation,

bi(bi − 1) = 0 mod N2.

Specifically, the roots are 0, 1, X = q2 · [(q2)−1 mod p2]
and Y = p2 · [(p2)−1 mod q2].

Proof. (of Lemma D.1) We start by showing that x(x −
1) = 0 mod p2 (resp. mod q2) has exactly two roots, 0
mod p2 and 1 mod p2 (resp. 0 mod q2 and 1 mod q2).
It is obvious that x(x − 1) = 0 mod p has two roots, 0
mod p and 1 mod p. Thus, for equaiton x(x − 1) = 0
mod p2, the root must be in the form, kp + 0 mod p2 or
kp+ 1 mod p2, for some number k. We further have that
k = 0 mod p. Finally, x(x − 1) = 0 mod p2 has exactly
two roots, 0 mod p2 and 1 mod p2. Similarly, the roots
for x(x− 1) = 0 mod q2 are, 0 mod q2 and 1 mod q2.

According to the Chinese Reminder Theorem, and illus-
trated in TABLE 11, the roots for bi(bi − 1) = 0 mod N2

are 0, 1, X and Y , where X = q2 · [(q2)−1 mod p2] and
Y = p2 · [(p2)−1 mod q2].

TABLE 11. POSSIBLE VALUES OF bi

Value of bi 0 1 X Y
Value of bi mod p2 0 1 1 0
Value of bi mod q2 0 1 0 1

D.2. Proof of Theorem 6.1

Since the proof of Theorem 6.1 requires the condition
Nb + max{R′j} < min{X,Y } < N2 − Nb − max{R′j}
to apply Lemma 6.1, we first show that this condition is
fulfilled in our application scenario. Define sd and λ as the
statistical and security parameters.

Let M = Nb + max{R′j}. We show that if
min{p2, q2} > M holds, the condition M < min{X,Y } <
N2 − M is satisfied. First, recall that w.l.o.g. X = q2 ·
[(q2)−1 mod p2] and Y = p2 · [(p2)−1 mod q2]. It fol-
lows that max{X} = q2 · (p2 − 1) = N2 − q2 and
max{Y } = N2 − p2. Similarly, we have min{X} = q2

and min{Y } = p2. Given min{p2, q2} > M , it leads
to min{X,Y } = min{p2, q2} > M , thereby satisfying
the first inequality. For the second inequality, we have
min{X,Y } < max{X,Y } = max{N2 − p2, N2 − q2} =
N2 −min{p2, q2} < N2 −M .

In our application scenario with Np ≤ 220, we have
Nb = |N | ∗ Np/32, where N = PL.Gen(1λ). We set

max{R′j} = 2sd ∗Nb. For λ = 128, |N | = 2048, we can set
sd = 255. Then Nb ≤ 226 and M < 2400. Assuming p and
q are of equal length, then min{p2, q2} > M is readily met.
To ensure this is true, we can require the private key owner
to prove in zero-knowledge that N is correctly generated
(from 2 equal-length primes).

Proof. (of Theorem 6.1) Define security and statistical
parameters as λ and sd. We have κ = poly(λ) and
Nb = |N | ∗ Np/32, where N = PL.Gen(1λ). We set
max{R′j} = 2sd ∗ Nb. Perfect completeness is derived
from the completeness property of the underlying protocol
and straightforward inspection, as all valid witnesses satisfy
the constraints specified in CR∗ . Special honest verifier
zero-knowledge comes from the security of Paillier encryp-
tion and the underlying zero-knowledge argument system.
Specifically, (an honestly generated) S′j always satisfies,
S′j =

∑Np
i=1

∑|N |/32
s=1 l

(i)
j,32(s−1)b

(i)
32(s−1) ≤ Nb (where we fix

the slot size as 32-bit). Consequently, the statistical distance
between the distributions of R′j and L′j = S′j + R′j is
bounded by 1

2sd . With choosing an appropriate value of sd,
the two distributions will be statistically indistinguishable
ensuring that L′j will not leak information about S′j .

For witness extended emulation, it is sufficient to prove
that R∗ is equivalent to CR∗ , since the underlying pro-
tocol already satisfies this property. It is easy to check
that R∗ implies CR∗ . To prove that CR∗ implies R∗, we
show that if CR∗ holds, then each b

(i)
32(s−1) is from {0, 1}

with all but negligible probability. Using Lemma 6.2, we
show that the Paillier encryption, with input message sat-
isfying |m| < min{|p| , |q|}, can be treated as a commit-
ment scheme with the binding property. Consequently, all
{b(i)32(s−1)}’s (which are decomposition bits of {m∗t }’s) are
fixed, as m∗t satisfies this length requirement. By applying
Lemma E.1, we can have that b(i)32(s−1) ∈ {0, 1, X, Y }.
Therefore, by deploying Lemma 6.1, we can prove that if
every L′j satisfies L′j ≤ M , where M = Nb + max{R′j}
and j ∈ [1, κ], then all {b(i)32(s−1)}’s, where i ∈ [1,Np] and
s ∈ [1, |N |/32], are from 0 or 1 except with probability
1
2κ = 1

2poly(λ) (i.e., soundness error), which is negligible in
λ. We can, therefore, prove that our main protocol satisfies
witness extended emulation by calling the extractor in the
underlying protocol to extract a valid witness.

In particular, when we set λ = 128, |N | = 2048,
sd = 255, and Np ≤ 220 in our application scenario,
we have Nb ≤ 226 and max{R′j} = 2281. Therefore, the
statistical distance between the two distributions of R′j and
L′j is bounded by 1

2255 , which is negligible. As a result,
the zero-knowledge property can be satisfied. The soundness
error is bounded by 1

2κ = 1
2poly(128)

, which is also negligible.
This implies that our protocol satisfies perfect completeness,
statistical special honest verifier zero-knowledge, and statis-
tical witness-extended emulation in our considered scenario,
which completes our proof.

