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Abstract. Proving resistance to conventional attacks, e.g., differential,
linear, and integral attacks, is essential for designing a secure symmetric-
key cipher. Recent advances in automatic search and deep learning-based
methods have made this time-consuming task relatively easy, yet con-
cerns persist over expertise requirements and potential oversights. To
overcome these concerns, Kimura et al. proposed neural network-based
output prediction (NN) attacks, offering simplicity, generality, and re-
duced coding mistakes. NN attacks could be helpful for designing secure
symmetric-key ciphers, especially the S-box-based block ciphers. Inspired
by their work, we first apply NN attacks to Simon, one of the AND-
Rotation-XOR-based block ciphers, and identify structures susceptible
to NN attacks and the vulnerabilities detected thereby. Next, we take a
closer look at the vulnerable structures. The most vulnerable structure
has the lowest diffusion property compared to others. This fact implies
that NN attacks may detect such a property. We then focus on a biased
event of the core function in vulnerable Simon-like ciphers and build
effective linear approximations caused by such an event. Finally, we use
these linear approximations to reveal that the vulnerable structures are
more susceptible to a linear key recovery attack than the original one.
We conclude that our analysis can be a solid step toward making NN
attacks a helpful tool for designing a secure symmetric-key cipher.

Keywords: Block cipher · Simon · Design rationale · Neural network ·
Output prediction attack

1 Introduction

One of the most essential metrics when designing a new symmetric-key cipher is
to prove that the designed cipher is resistant to generic attacks for symmetric-key
ciphers, such as differential [8], linear [24], impossible differential [7, 19], zero-
correlation linear [9], and integral attacks [20]. A symmetric-key cipher generally
⋆ The part of this paper was presented at the 8th International Symposium on Cyber

Security, Cryptology and Machine Learning (CSCML 2024).
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consists of a combination of linear and nonlinear operations, and each operation
has many design choices (e.g., the rotation parameter). This implies that design-
ers must evaluate the security of all candidate ciphers that can be constructed
from these choices; thus, designing a new cipher may be very time-consuming.

Automatic search methods [15, 16, 26–29] based on the mixed integer linear
programming (MILP), Boolean satisfiability problem (SAT), and constraint pro-
gramming (CP) have rapidly developed over the past ten years as helpful tools
that make this time-consuming task relatively easy. However, the use of these
tools has the following concerns: 1) it requires high-level expertise in analysis and
modeling methods; 2) modeling methods differ depending on the attack vectors;
and 3) unknown vulnerabilities may be overlooked due to coding mistakes. Ac-
tually, there have been several cases where unknown vulnerabilities unexpected
for the designers were discovered shortly after the new design specification was
released. Consequently, the target cipher was subsequently broken. For example,
a differential attack on SPEDDY [10], a differential attack on Friet [30], and an
algebraic attack on Chaghri [23]. Along with the automatic search methods, deep
learning-based analysis methods have rapidly developed over the past five years.
To the best of our knowledge, these methods have never been used to design
a new symmetric-key cipher. Then, this work examines the possibility of using
these methods for such purposes.

Since Gohr [14] reported a new differential-neural cryptanalysis method at
CRYPTO 2019, deep learning-based analysis methods for symmetric-key ciphers
have significantly progressed, such as [2,3,5,6]. However, most existing methods
mainly combined differential attacks and deep learning techniques. Thereby, the
use of the existing methods may also have the same three concerns regarding the
automatic search methods. To overcome these concerns, Kimura et al. [17, 18]
proposed a new method called neural network-based output prediction (NN)
attacks, and the use of this method has the following three properties: 1) it does
not require high-level expertise in analysis and modeling methods1; 2) it has the
potential to deal with all attack vectors; and 3) it is less prone to coding mistakes
because it requires only input/output interfaces (e.g., block sizes) as inputs. They
applied NN attacks to S-box-based block ciphers and finally concluded that NN
attacks have the potential to be a helpful tool for designing a new symmetric-key
cipher, especially S-box-based ciphers.

This study aims to propose a step forward toward making NN attacks a
helpful tool for designing all types of symmetric-key ciphers. To achieve this
goal, we apply NN attacks to Simon, which is one of the AND-Rotation-XOR-
based block ciphers designed by the National Security Agency (NSA) [4]. When
designing a Simon-like cipher, many candidates can be considered depending on
the combination of the three rotation parameters, i.e., (a, b, c); then, by varying
the rotation parameters, we attempt to gain new insight into considering the
design rationale of symmetric-key ciphers, especially Simon-like ciphers.

Our study is inspired by Kölbl et al.’s and Kondo et al.’s works [21,22], and
we aim to answer the following questions from a perspective to their works:

1 In other words, it enables us to code with basic knowledge of neural networks.
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1. Which structures in Simon-like ciphers are vulnerable to NN attacks?

2. What types of vulnerabilities are detected by NN attacks?

3. If a vulnerability is detected, can we figure out its root cause?

4. How resistant are the vulnerable ciphers to key recovery attacks?

Unraveling these questions will be a solid step toward making NN attacks a
helpful tool for designing a new symmetric-key cipher.

Our contributions are summarized as follows:

Identifying Vulnerable Structures. In Sect. 3, we unravel the first question.
Specifically, we compare the maximum number of rounds that NN attacks
can be successful with the maximum number of rounds for building a differ-
ential/linear distinguisher. Then, we clarify which structures in Simon-like
ciphers are more vulnerable to NN attacks than differential and linear at-
tacks. Our experimental results show that Simon-like ciphers containing one
of the following two cases have unknown vulnerabilities: 1) “a = c” or “b = c”
and 2) “n− a = c” or “n− b = c”, where n denotes the block size.

Comprehensive Analysis of the Vulnerable Structures. In Sect. 3.3, we
consider the answer to the second question based on the above results. Specif-
ically, we conduct additional experiments on vulnerable Simon-like ciphers
to explore them more deeply and discuss what types of vulnerabilities are de-
tected by NN attacks. These vulnerabilities include not only differential and
linear attacks but also impossible differential, zero-correlation linear, and
integral attacks. As a result, NN attacks have the possibility of detecting
vulnerabilities caused by integral attacks, and Simon-like ciphers containing
“a = c” or “b = c” and ‘0’ or ‘n/2’ have the most vulnerable structure.

Unraveling the Root Cause of Vulnerable Structures. In Sect. 4, we ad-
dress the third question in the following two aspects. The first one is the
well-known diffusion property. We demonstrate that the most vulnerable
Simon-like cipher has the lowest diffusion property compared to others. The
second one is the effect of the biased output value of the core function in
the target cipher. This biased output event enables us to find effective linear
approximations. Based on our findings, the linear distinguisher with up to
30 rounds can be built for the most vulnerable Simon-like cipher.

Towards Key Recovery on Vulnerable Simon-like ciphers. In Sect. 5, we
provide one possible answer to the fourth question. We use the linear ap-
proximation we found to perform a linear key recovery attack based on the
well-known Matsui’s algorithm 1 [24]. Our experimental results show that
the vulnerable Simon-like ciphers are vulnerable to the key recovery attack
compared to the original one. In addition, we gain new insight into the fact
that the attack ability does not improve as the number of samples increases.
Solving this problem will be our future challenge.
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Fig. 1: Round function of Simon.

2 Preliminaries

2.1 Specification of Simon

Simon, designed by NSA in 2013 [4], is a family of lightweight block ciphers
based on the Feistel construction. It has ten variants combining a 2n-bit block
and an mn-bit secret key, where n ∈ {16, 24, 32, 48, 64} and m ∈ {2, 3, 4}. The
Simon variant is denoted as Simon2n/mn in general, but for simplicity, we use
Simon2n throughout this paper because the key length is out of scope for our
analysis. The main target of this study is Simon32 with 32 rounds. In addition,
to demonstrate the validity of our analysis, we design Simon16 as a toy model
of the Simon variants.

As illustrated in Fig. 1, the round function of Simon is composed of three
n-bit operations: AND (∧), left rotation (≪), and XOR (⊕). Let x be an n-bit
input of the core function f in the round function; then, f is defined as

f(x) =
(
(x ≪ a) ∧ (x ≪ b)

)
⊕ (x ≪ c), (1)

where (a, b, c) denotes a rotation parameter, and (a, b, c) = (1, 8, 2) is used for
the original Simon32. For simplicity, we refer to Simon2n with all possible
rotation parameters as Simon2n variants throughout this paper2. Besides, let
(Li−1, Ri−1) be a 2n-bit input of the i-th round function; then, its output (Li, Ri)
is computed as

Li = f(Li−1)⊕Ri−1 ⊕ ki, (2)
Ri = Li−1, (3)

where ki denotes the subkey for the i-th round. For the r-round Simon, the
plaintext is (L0, R0), and the ciphertext is (Lr, Rr).
2 Note that this is a different notation from Simon variants, which include the original

versions of Simon32, Simon48, Simon64, Simon96, and Simon128.
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2.2 Considerations on the Design Rationale of Simon Variants

Kölbl, Leander, and Tiessen [21] considered the design rationale of Simon vari-
ants from the following three aspects. First, they measured the number of rounds
after which full diffusion is reached for all Simon variants with all possible ro-
tation parameters. Next, they computed the optimal differential/linear charac-
teristic for 10 rounds of Simon32, Simon48, and Simon64 variants that satisfy
a > b and gcd(a− b, n) = 1; then, they listed the optimal 20 parameters with re-
spect to 10-round differential characteristics (see Appendic C in [21] for details).
Finally, they conducted further evaluations to obtain differential characteristics
for Simon32, Simon48, and Simon64 variants with the following three example
parameters: (12, 5, 3), (7, 0, 2), and (1, 0, 2). In conclusion, they clarified that the
original rotation parameter may not always be optimal.

Kondo, Sasaki, Todo, and Iwata [22] focused on the design rationale for Si-
mon32 and extended Kölbl et al.’s work [21] to integral and impossible differ-
ential attacks against Simon32 variants. Regarding integral attacks, they used
a supercomputer to evaluate the number of rounds for building integral distin-
guishers with 231 plaintexts. Regarding impossible differential attacks, they used
a general-purpose computer to explore the number of rounds for building im-
possible differential distinguishers with the miss-in-the-middle approach. Based
on these results, they classified Simon32 variants into 20 groups (see Table 6
in [22] for details) and clarified which parameter is optimal for Simon32 against
integral and impossible differential attacks.

2.3 Deep Learning-based Output Prediction Attacks

Kimura et al. [17] proposed deep learning-based output prediction (DLOP) at-
tacks in a black-box setting and first applied it to the following three toy block
ciphers with a 16-bit block size: two toy SPN block ciphers (small PRESENT and
small AES) and one toy Feistel block cipher (small TWINE). Then, based on the
analysis results for the toy block ciphers, they also applied the proposed attacks
to the following three block ciphers with 32- and 64-bit block sizes: PRESENT,
AES-like, and TWINE-like ciphers. Kimura et al. proposed a deep learning-based
output prediction attack using LSTM (long short-term memory) as a neural
network model and applied it to toy models of block ciphers PRESENT, AES,
and TWINE. In conclusion, for PRESENT, they demonstrated that the proposed
attacks are equivalent to building the differential and linear distinguishers. For
AES-like and TWINE-like ciphers, they conjectured that the proposed attacks
are also equivalent to building the differential and linear distinguishers when the
amount of training data is increased more.

In their subsequent study [18], they extended their previous work [17] to ex-
plore clues for designing symmetric-key ciphers that are secure against DLOP
attacks. To this end, they employed two weak small PRESENT variants by re-
placing the original S-box with weak S-boxes, which are known to be vulnerable
to differential and linear attacks, and applied DLOP attacks to those variants
in the same way as their previous work. In conclusion, they demonstrated that
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DLOP attacks can be effective in estimating the number of rounds for building
differential and/or linear distinguishers. Still, it remains unclear how to provide
feedback on their results for designing DL-resistant symmetric-key ciphers.

2.4 SAT/CP-based Automatic Search Methods

We extend the existing works [17, 18, 21, 22] and deeply consider the design
rationale for Simon32 from the perspective of NN attacks. Unlike Kölbl et al.’s
and Kondo et al.’s works [21, 22], our analysis clarifies which parameter is non-
optimal for Simon32 variants; then, this will help us decide which parameter
should not be chosen when designing Simon-like ciphers.

We also clarify what vulnerabilities are detected by NN attacks. To this
end, we use existing SAT/CP-based automatic search tools. Fortunately, many
automatic tools are available as open-source to search for various types of dis-
tinguishers using generic attacks for symmetric-key ciphers, such as differential,
linear, impossible differential, zero-correlation linear, and integral attacks. Then,
we customize and use the following three tools to analyze Simon32 variants that
satisfy a > b and gcd(a− b, n) = 13:

– To evaluate the maximum number of rounds for building differential and
linear distinguishers, we use the SAT-based tool proposed by Sun et al. at
IACR ToSC 2021(1) [29]. The source codes are available at GitHub4.

– To evaluate the maximum number of rounds for building impossible differ-
ential and zero-correlation linear distinguishers, we use the CP-based tool
proposed by Hadipour et al. at IACR ToSC 2024(1) [16]. The source codes
are available at GitHub5.

– To evaluate the maximum number of rounds for building integral distin-
guishers, we use the SAT-based tool proposed by Hadipour et al. at IACR
ToSC 2022(2) [15]. The source codes are available at GitHub6.

2.5 Complexity Estimation and Success Probability

We consider NN attacks to be a type of distinguishing attack. In other words,
if NN attacks can predict a certain output bit string with a higher probability
than a random prediction, we consider the attack to be successful.

To estimate the number of samples and success probability to distinguish two
distributions with respect to an output bit string, we use the following theorem
provided by Baignères et al. at ASIACRYPT 2004 [1].

Theorem 1 ( [1, Theorem 6]). Let Z1, . . . , Zn be independent and identically
distributed random variables over the set Z of distribution D, D0 and D1 be two
3 These conditions must be specified to search for differential characteristics by using

Sun et al.’s methods [29].
4 https://github.com/SunLing134340/Accelerating_Automatic_Search
5 https://github.com/hadipourh/zeroplus
6 https://github.com/hadipourh/mpt

https://github.com/SunLing134340/Accelerating_Automatic_Search
https://github.com/hadipourh/zeroplus
https://github.com/hadipourh/mpt
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distributions of same support which are close to each other, and n be the number
of samples of the best distinguisher between D = D0 or D = D1. Let d be a real
number such that

n =
d∑

z∈Z
ϵ2z
pz

, (4)

where pz and pz + ϵz are probabilities of a random variable z following D0 and
D1, respectively. Then, the overall probability of error is Pe ≈ Φ(−

√
d/2), where

Φ(·) is the distribution function of the standard normal distribution.

Let D0 and D1 be a distribution of the result of random prediction and a dis-
tribution of the result of NN attacks, respectively. In this case, the target event
occurs in D0 and D1 with probabilities of 1

2 and 1
2 · (1 + ϵ), respectively (i.e.,

p0 = p1 = 1
2 , |ϵ0| = 0, and |ϵ1| = ϵ

2 ). Based on this, the number of samples of the
best distinguisher between D = D0 and D = D1 can be estimated as 2dϵ−2 with
an overall error probability of Pe ≈ Φ(−

√
d/2); thus, the success probability can

be estimated as 1− Pe.

3 On the Effects of NN attacks on Simon32 Variants

In this section, we conduct some experiments on NN attacks and five generic at-
tacks for symmetric-key ciphers (e.g., differential, linear, impossible differential,
zero-correlation linear, and integral attacks) and discuss the design rationale for
Simon-like ciphers. First, we apply SAT/CP-based automatic search methods
described in Sect. 2.4 to Simon32 variants and derive the maximum number of
rounds that can build a distinguisher for each generic attack. Next, we mainly
focus on the experimental results of differential and linear attacks and classify
Simon32 variants into four groups for each maximum number of rounds that can
build their distinguishers. We randomly pick up 32 Simon32 variants for each
group and apply NN attacks described in Sect. 2.3 to these variants. Then, we
compare the experimental results of NN attacks with the experimental results
of differential and linear attacks and clarify which Simon32 variant is more vul-
nerable to NN attacks than differential and linear attacks. In other words, this
implies that NN attacks may detect vulnerabilities caused by attacks other than
differential and linear attacks. Finally, to take a deeper look at Simon32 vari-
ants with vulnerable parameters, we conduct additional experiments on these
variants and discuss what types of vulnerabilities are detected by NN attacks.
These vulnerabilities include not only differential and linear attacks but also
impossible differential, zero-correlation linear, and integral attacks. This allows
us to clarify that NN attacks can be a helpful tool for designing symmetric-key
ciphers, especially Simon-like ciphers.

3.1 Revisiting Generic Attacks on Simon32 Variants

As described in Sect. 2.2, Kölbl et al. [21] considered the design rationale of
Simon variants from the perspective of differential and linear attacks. Inspired
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by their work, Kondo et al. [22] took a deeper look at Simon32 variants from the
perspective of integral and impossible differential attacks. We could have used
their experimental results, but not all of them are publicly available; thus, we
have to obtain the experimental results ourselves.

We customize and use the existing SAT/CP-based automatic search tools
described in Sect. 2.4 to comprehensively analyze the security of Simon32 vari-
ants against five generic attacks for symmetric-key ciphers, such as differential,
linear, impossible differential, zero-correlation linear, and integral attacks. The
overview of our experimental results is as follows:

– The range of the maximum number of rounds that can build differential and
linear distinguishers with 215 data7 is from 7 to 15 rounds.

– The range of the maximum number of rounds that can build impossible
differential and zero-correlation linear distinguishers is from 9 to 17 rounds.

– The range of the maximum number of rounds that can build an integral
distinguisher with 231 data is from 14 to 32 rounds.

As mentioned at the beginning of this section, we first focus on the exper-
imental results of differential and linear attacks and classify Simon32 variants
into four groups based on the experimental results of differential and linear at-
tacks. More specifically, we assign Simon32 variants whose maximum number
of rounds that can build differential and linear distinguishers is 15, 11, 8, and 7
to the group A, B, C, and D, respectively.

3.2 NN attacks on Simon32 Variants

In this subsection, we randomly pick up 32 Simon32 variants for each group
classified in the previous subsection and apply NN attacks (especially a plaintext
prediction attack) to these variants. First, we explain the experimental procedure
for our analysis and the conditions for a successful attack. Next, we show the
experimental results of NN attacks on the target variants. Finally, to confirm the
correctness of our experimental results, in the same way as above, we conduct
experiments on NN attacks for Simon16 designed as a toy cipher.

Experimental Procedure. Basically, we follow the experimental procedure
explained in Sect. 3.1 of Kimura et al.’s paper [17]. The differences from their
procedure are as follows:

– We do not conduct the hyperparameter optimization because it is difficult
to determine the optimal hyperparameters for all target variants. Instead,
we use the hyperparameters used in the plaintext prediction attack against
the 4-round small PRESENT listed in Table 3 of Kimura et al.’s paper [17].
This is because the accuracy of NN attacks against small PRESENT is the

7 The reason why the data complexity is limited to 215 is that the number of samples
used for NN attacks is 215, and we mainly compared the ability of differential and
linear attacks with that of NN attacks.
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Table 1: Experimental hyperparameters.
Number of training data† 215

Number of test data† 215

Method LSTM (Long short-term memory)
Number of input layer nodes (i.e., block sizes) 16, 32
Number of output layer nodes (i.e., block sizes) 16, 32
Number of hidden nodes 300
Number of hidden layers 1
Loss function Mean squared error
Optimizers Adam
Initial value of learning rates 0.01
Batch size 250
Number of epochs 100

† Number of plaintext/ciphertext pairs (no duplicates in training and test data).

highest among the target ciphers, and the maximum number of rounds where
the plaintext prediction attack against small PRESENT is successful is four
rounds. Table 1 lists hyperparameters for our experiments.

– We use 10 randomly chosen keys instead of 100 randomly chosen keys be-
cause of the execution time for our experiments. Surprisingly, Kimura et al.
demonstrated in Sect. 3.3 of their paper [17] that the experiments with a
small number of secret keys are sufficient to obtain the best average success
probability; thus, we believe that reducing the number of keys will have little
impact on our experiments.

The experimental environment is as follows: four Linux machines with eight
NVIDIA Tesla K40M GPUs. Our experiments covered 1 to 16 rounds of Simon32
variants and were conducted with ten trials for each round8. We obtained the
experimental results for 10 Simon32 variants within one day using the above
experimental environment.

Conditions for a Successful NN Attack. As a condition for determining the
success or failure of NN attacks, Kimura et al. [17] defined the exact match rate,
which is the probability that the predicted and true values exactly match for a
2n-bit output string. Specifically, when the block size is 2n bits, and the number
of training data is 2x, the attack is considered successful if the exact match
rate is higher than (22n − 2x)−1. This condition is valid when 22n = 2x + 2y,
where 2y is the number of test data. For example, we can use this condition in
our experiments on Simon16 variants. However, when it’s not, since we limit
2x = 2y = 215, i.e., 22n > 2x +2y, we cannot precisely compute the exact match
rate; thus, we cannot strictly determine the success or failure of the attack on
Simon32 variants.
8 If NN attacks are successful for up to 16 rounds, we continue the experiment by

increasing the number of rounds until the attack fails.
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Table 2: Experimental results of NN attacks for a Simon32 variant with (4, 1, 12).
‘’DCP‘ and LCP’ stand for differential and linear characteristic probabilities,
respectively.
Round DCP LCP Average match rate Exact match rate success (✓) or failure (–)

1 1 1 0.99047 2−0.44 ✓

2 2−2 2−2 0.57558 2−25.5 ✓

3 2−4 2−4 0.55783 2−26.9 ✓

4 2−6 2−6 0.54309 2−28.2 ✓

5 2−8 2−8 0.52027 2−30.2 ✓

6 2−10 2−10 0.51634 2−30.5 ✓

7 2−12 2−12 0.51215 2−30.9 ✓

8 2−14 2−14 0.50619 2−31.4 ✓

9 2−18 2−16 0.50413 2−31.6 –

To tackle this problem, we define the average match rate. Specifically, the
average match rate is derived by computing the predicted probability for each
bit and then calculating the average value of all the predicted probabilities for
2n bits. For example, if the average match rate is 2−1, we can use 2−32 as
the approximated value of the exact match rate, especially for NN attacks on
Simon32 variants.

Here, we follow Theorem 1 and define a condition for determining the success
or failure of our experiments using the average match rate. Assuming that the
success probability of distinguishing attacks is 0.7, we can get d ≈ 1.12 from
the theorem. Then, since the number of test data is 215 = 2dϵ−2, we can get
ϵ ≈ 0.00826; thus, we can also get 2−1 · (1+ ϵ) ≈ 0.504, which can be considered
as a distribution of the result of NN attacks. This means that NN attacks can be
successful with a probability of 0.7 when the average match rate is higher than
0.504. To summarize, we consider a slight margin and define a successful attack
when the average match rate is 0.505 or higher.

Experimental Results. We conduct experiments on NN attacks on Simon32
variants and classify our experimental results into four groups, as listed in Ta-
ble 3. Specifically, this table shows a comparison of the maximum number of
rounds that can build differential/linear distinguishers (‘D/L’ column) and the
maximum number of rounds that can be successful for NN attacks (‘NN’ column)
for each Simon32 variant, where ‘Group’ column is as defined in Sect. 3.1. As a
concrete example, the details of our experimental results for a Simon32 variant
with (4, 1, 12) in Table 2. It can be seen from this table that the attack can be
successful up to eight rounds from the perspective of both differential and linear
characteristic probabilities (see ‘DCP’ and ‘LCP’ columns)9, indicating that the
abilities of differential, linear, and NN attacks are consistent.
9 Strictly speaking, differential (resp. linear) probabilities should be considered here,

but since DL-based analysis is expected to detect single differential (resp. linear)
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Table 3: Comparison of the maximum number of rounds that can build differ-
ential/linear distinguishers (‘D/L’ column) and the maximum number of rounds
that can be successful for NN attacks (‘NN’ column) for each Simon32 variant.
Group D/L NN Rotation parameter

A 15

27 (13,8,13)
26 (9,8,9),(8,7,8)
25 (8,1,1)
13 (4,1,4),(5,4,5),(10,7,10),(12,1,12),(12,3,3),(14,5,14),(15,4,4),(15,10,10),(15,12,12)
12 (4,3,3),(5,2,2),(5,2,5),(9,2,2),(10,1,1),(10,9,10),(11,2,2),(13,10,10)
11 (2,1,1),(2,1,2),(3,2,2),(3,2,3),(4,3,4),(5,2,2),(6,1,1),(6,3,6),(6,5,6),(7,2,2),(7,6,7)

B 11 7
(2,1,8),(3,2,8),(4,1,8),(4,3,8),(5,2,8),(5,4,8),(6,1,8),(6,3,8),(6,5,8),(7,2,8),(7,4,8),
(7,6,8),(9,2,8),(9,4,8),(9,6,8),(10,1,8),(10,3,8),(10,5,8),(10,7,8),(12,5,8),(12,11,8),
(13,4,8),(14,1,2),(14,11,8),(14,13,8),(15,6,8),(15,10,8)

4 (11,6,8),(11,10,8),(13,6,8),(14,7,8),(15,4,8)

C 8

9 (12,5,4)
8 (4,1,12),(5,4,12),(12,1,4)
5 (2,1,10),(4,3,11),(4,3,12),(9,2,1),(9,8,1)
4 (4,1,9)

2 (3,2,4),(3,2,11),(3,2,13),(3,2,14),(4,1,15),(8,7,9),(9,2,12),(9,4,1),(9,6,1),(10,1,12),
(10,7,2),(11,8,12),(11,10,3),(13,2,5),(14,1,15),(14,5,13),(15,8,7),(15,10,12)

1 (2,1,9),(3,2,12),(6,1,4),(7,6,12)

D 7

3 (3,2,5)

2

(2,1,6),(2,1,11),(3,2,1),(3,2,7),(4,1,2),(4,1,11),(4,1,14),(5,4,7),(5,4,14),(6,1,5),
(6,5,7),(7,2,6),(7,2,13),(7.4.13),(8,1,11),(8,5,15),(8,5,7),(9,2,3),(9,4,2),(9,4,3),
(9,8,13),(10,1,5),(10,3,5),(10,9,5),(11,2,1),(11,2,9),(11,8,15),(15,12,9),(15,12,10),
(15,14,10),(15,14,13)

From Table 3, we consider that NN attacks on Simon32 variants have the
following features:

– For Simon32 variants belonging to groups B and D, NN attacks cannot
outperform differential and linear attacks.

– For a part of Simon32 variants belonging to groups A and C, NN attacks can
outperform differential and linear attacks. More specifically, Simon32 vari-
ants with (8, 1, 1), (8, 7, 8), (9, 8, 9), and (13, 8, 13) in group A, and (12, 5, 4)
in group C fall into that case.

We will take a deeper look at these features in Sect. 3.3.

Experimental Verification. In our experiments for Simon32 variants, we
have determined the success or failure of the attacks using the average match
rate. To verify the correctness of this condition, we conduct experiments on NN
attacks for all Simon16 variants in the same way as above. We can use the
exact match rate as a condition for determining the success or failure of the

characteristic rather than the clustering effect of differential (resp. linear) character-
istics, we consider differential (resp. linear) characteristic probabilities in this study.
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Table 4: Comparison of the maximum number of rounds that can build differ-
ential/linear distinguishers (‘D/L’ column) and the maximum number of rounds
that can be successful for NN attacks (‘NN’ column) for each Simon16 variant.
Group D/L NN Rotation parameter

A 15

29 (4,1,1),(5,4,4),(5,4,5),(7,0,0)
28 (1,0,0),(3,0,0),(5,0,5),(7,0,7)
27 (3,0,3),(4,1,4),(5,0,0)
26 (1,0,1),(4,3,3),(4,3,4),(7,4,7)
24 (7,4,4)
15 (6,1,1),(7,6,7)
14 (2,1,2),(6,5,6)
13 (2,1,1),(3,2,2),(5,2,2),(5,2,5),(6,3,6),(6,5,5),(7,2,2),(7,2,7),(7,6,6)
12 (3,2,3),(6,1,6),(6,3,3)
7 (2,1,0)

B 11

10 (4,3,0),(5,0,4)
9 (1,0,4),(3,0,4),(3,2,0),(4,1,0),(5,2,4),(5,4,0),(6,5,4),(7,0,4),(7,4,0)
8 (2,1,4),(3,2,4),(6,1,0),(6,5,0),(7,6,4)
7 (5,2,0),(6,1,4),(6,3,0),(6,3,4),(7,2,0),(7,2,4),(7,6,0)

C 8

10 (3,2,6)
9 (6,3,2),(7,2,6)
8 (2,1,6),(2,1,7),(5,2,6),(6,5,2),(7,6,1)
7 (6,1,2)
5 (3,0,7),(4,1,5),(5,2,3),(5,4,1),(6,1,7),(6,3,5),(7,0,3),(7,2,1)

4 (1,0,3),(1,0,5),(1,0,7),(2,1,5),(3,0,1),(3,0,5),(3,2,5),(3,2,7),(4,1,7),(4,3,7),(5,0,1),
(5,2,1),(5,4,3),(6,1,5),(6,3,7),(6,5,1),(6,5,3),(7,2,3),(7,4,3),(7,6,3)

3 (3,0,2),(4,3,5),(5,0,3),(5,4,6),(7,0,1),(7,4,1),(7,6,1)

2 (1,0,2),(1,0,6),(3,0,6),(4,1,2),(4,1,6),(4,3,2),(4,3,6),(5,0,2),(5,0,6),(5,4,2),(7,0,2),
(7,0,6),(7,4,2),(7,4,6)

D 7 4 (6,1,3),(6,3,1),(6,5,7),(7,0,5),(7,2,5),(7,4,5),(7,6,5),(2,1,3),(3,2,1),(4,1,3),(4,3,1),
(5,0,7),(5,2,7),(5,4,7)

attack in the experiments for Simon16 variants; thus, our analysis of Simon32
variants can be considered valid if the experimental results of Simon16 variants
are similar to those of Simon32 variants.

Our experimental results are classified into four groups in the same manner
as the case of Simon32 variants, as listed in Table 4. From this table, we consider
that NN attacks on all Simon16 variants have the following features:

– For Simon16 variants belonging to groups B and D, NN attacks cannot
outperform differential and linear attacks.

– For a part of Simon16 variants belonging to groups A and C, NN attacks
can outperform differential and linear attacks. More specifically, Simon16
variants with (1, 0, 0), (1, 0, 1), (3, 0, 0), (3, 0, 3), (4, 1, 1), (4, 1, 4), (4, 3, 3),
(4, 3, 4), (5, 0, 0), (5, 0, 5), (5, 4, 4), (5, 4, 5), (7, 0, 0), (7, 4, 4), and (7, 4, 7) in
group A, and (3, 2, 6), (6, 3, 2), and (7, 2, 6) in group C fall into that case.
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To summarize, the experimental results of Simon16 variants are similar to those
of Simon32 variants; therefore, it can be concluded that the experimental results
of Simon32 variants can be considered valid.

3.3 Discussions

In this subsection, based on the experimental results presented in Sect. 3.2, we
discuss which structures of Simon32 variants are vulnerable to NN attacks and
then which types of vulnerabilities are detected by NN attacks.

Identifying Vulnerable Structures of Simon32 Variants. In Sect. 3.2,
we have clarified that NN attacks can outperform differential and linear attacks
against Simon32 variants with (8, 1, 1), (8, 7, 8), (9, 8, 9), and (13, 8, 13) in group
A, and (12, 5, 4) in group C. In addition, we have obtained similar results for
Simon16 variants. These results show that Simon32 variants (and Simon16
variants) which make them more vulnerable to NN attacks than differential and
linear attacks have the following features:

– Focusing on the rotation parameters in group A, Simon32 (and Simon16)
variants with a rotation parameter containing “a = c” or “b = c” are more
vulnerable to NN attacks than differential and linear attacks. For example,
Simon32 variants with (8, 7, 8), (9, 8, 9), and (13, 8, 13) are the case of “a =
c”, and a Simon32 variant with (8, 1, 1) is the case of “b = c”. Similar cases
can be seen for Simon16 variants.

– Focusing on the rotation parameters in group C, Simon32 (and Simon16)
variants with a rotation parameter containing “n − a = c” or “n − b = c”
are more vulnerable to NN attacks than differential and linear attacks. For
example, a Simon32 variant with (12, 5, 4) is the case of “n−a = c”. Similarly,
a Simon16 variant with (6, 3, 2) is the case of “n − a = c”, and Simon16
variants with (3, 2, 6) and (7, 2, 6) are the case of “n− b = c”.

It can be seen that Simon32 variants with such a rotation parameter in group A
are most likely to cause vulnerabilities against NN attacks; then, we comprehen-
sively analyze these Simon32 variants and clarify which types of vulnerabilities
are detected by NN attacks. Nevertheless, the above rotation parameters regard-
ing group C are also interesting; thus, the detailed analysis of these will be our
future work.

A Comprehensive Analysis of the Vulnerable Structure. We comprehen-
sively analyze Simon32 variants with the vulnerable structure (i.e., its rotation
parameter contains “a = c” or “b = c”) from the following two aspects:

– We have conducted experiments on NN attacks for only 32 Simon32 vari-
ants with a rotation parameter in group A, as shown in Sect. 3.2. Then,
we conduct additional experiments on NN attacks for all the remaining Si-
mon32 variants with a rotation parameter in group A in the same way as
the previous experiments.
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Table 5: Comparison of the maximum number of rounds that can build
differential/linear (‘D/L’ column), impossible differential/zero-correlation lin-
ear (‘ID/ZC’ column), and integral (‘I’ column) distinguishers and the maximum
number of rounds that can be successful for NN attacks (‘NN’ column) for each
Simon32 variants with rotation parameters that satisfy “a = c” or “b = c”.
Group D/L ID/ZC I NN Rotation parameter

A 15

17

32

29 (1,0,0)
28 (1,0,1),(8,7,7),(11,8,11),(13,8,8),(15,0,0),(15,0,15)

27
(3,0,0),(3,0,3),(5,0,0),(5,0,5),(7,0,0),(7,0,7),(8,1,8),(8,3,3),(8,3,8),
(8,5,5),(8,5,8),(9,0,0),(9,0,9),(9,8,8),(11,0,11),(11,8,8),(13,0,0),
(13,8,13),(15,8,8),(15,8,15)

26 (8,7,8),(9,8,9),(11,0,0),(13,0,13)
25 (8,1,1)

20

13 (2,1,1),(2,1,2),(5,2,5),(6,3,3),(10,5,5),(13,2,13),(14,7,14),(15,14,14),
(15,14,15)

12 (5,2,2),(9,2,2),(9,2,9),(10,1,1),(10,1,10),(10,5,10),(10,9,9),(10,9,10),
(11,6,11),(13,10,10),(13,10,13),(14,11,11),(14,11,14),(15,6,15)

11 (6,3,6),(7,6,6),(7,6,7),(11,6,11),(13,2,2),(14,3,3),(14,3,14),(14,7,7),
(15,6,6)

13

20
13

(4,1,1),(4,1,4),(5,4,4),(5,4,5),(7,4,4),(7,4,7),(9,4,4),(9,4,9),(11,4,4),
(11,4,11),(12,1,1),(12,1,12),(12,3,3),(12,3,12),(12,5,5),(12,5,12),
(12,7,7),(12,7,12),(12,9,9),(12,9,12),(12,11,11),(12,11,12),(13,4,4),
(13,4,13),(15,4,4),(15,4,15),(15,12,12),(15,12,15)

12 (13,12,13)
11 (4,3,3),(4,3,4),(13,12,12)

18
13

(6,5,5),(9,6,6),(9,6,9),(10,3,3),(10,3,10),(10,7,7),(10,7,10),(11,2,11),
(11,10,10),(11,10,11),(13,6,13),(14,5,14),(14,13,13),(14,13,14),
(15,2,2),(15,10,10)

12 (7,2,7),(11,2,2),(13,6,6),(14,1,14),(14,9,9),(14,9,14),(15,10,15)
11 (3,2,2),(3,2,3),(6,1,6),(6,5,6),(7,2,2),(14,1,1),(14,5,5),(15,2,15)

– We compare the differences in ability with NN attacks from the perspec-
tives of differential and linear attacks as well as impossible differential, zero-
correlation linear, and integral attacks.

Table 5 shows a comparison of the maximum number of rounds that can build
differential/linear (‘D/L’ column), impossible differential/zero-correlation lin-
ear (‘ID/ZC’ column), and integral (‘I’ column) distinguishers and the maximum
number of rounds that can be successful for NN attacks (‘NN’ column) for each
Simon32 variant, where ‘Group’ column is as defined in Sect. 3.1. From this
table, we can see the following features:

– NN attacks rarely detect vulnerabilities caused by impossible differential and
zero-correlation linear attacks.

– NN attacks have the possibility of detecting vulnerabilities caused by integral
attacks. Specifically, for Simon32 variants where the maximum number of
rounds for building integral distinguishers is 32, the maximum number of
rounds for a successful NN attack is relatively high, ranging from 25 to 29
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rounds. A notable point is that the rotation parameters in such a case all
contain ‘0’ or ‘8 (= n/2)’.

Identifying why NN attacks detect these features is challenging and remains for
our future work. To summarize, we have revealed through NN attacks that Si-
mon32 variants containing “a = c” or “b = c” and ‘0’ or ‘8 (= n/2)’ become
the most vulnerable structure. NN attacks are somewhat simple, but the attacks
help identify vulnerable structures from the perspectives of five generic attacks
for symmetric-key ciphers (i.e., differential, linear, impossible differential, zero-
correlation linear, and integral attacks); thus, this fact should suggest that NN
attacks can be a helpful tool for designing secure symmetric-key ciphers, espe-
cially Simon-like ciphers.

4 Closer Look at the Vulnerable Structure

In this section, we take a closer look at Simon32 variants with the vulnerable
structure, containing “a = c” or “b = c” and ‘0’ or ‘8 (= n/2)’.

4.1 Effect of a Rotation Parameter Containing “a = c” or “b = c”

We first consider how the structure of the f function changes when the rotation
parameter in Simon32 variants contains “a = c” or “b = c”. For example, when
the rotation parameter in Simon32 variants contains “a = c”, the f function
expressed by Eq. (1) can be converted into

f̂(x) =
(
(x ≪ a) ∧ (x ≪ b)

)
⊕ (x ≪ a)

= (x ≪ a) ∧
(
(x ≪ b)⊕ (11 . . . 11)

)
= (x ≪ a) ∧ ¬(x ≪ b), (5)

where ‘¬’ denotes the logical negation operator. The f̂ function of Simon32
variants containing “b = c” can also be converted in the same way as Eq. (5).
A notable point here is that when the rotation parameter in Simon32 variants
contains “a = c” or “b = c”, the f̂ function can be expressed only by AND
operation, as illustrated in Fig. 2. Based on this, we further analyze the effects
on rotation parameters containing not only “a = c” or “b = c” but also ‘0’ or
‘n/2’ in Sect. 4.2 and the biased output of the f̂ function in the subsequent
subsections in Sect. 4.3.

4.2 Effect of a Rotation Parameter Containing ‘0’ or ‘n/2’

Here, we focus on the diffusion property, which is the ease of spreading the
effect of a plaintext bit to the internal state of the intermediate rounds. If the
diffusion property is low, the correlation occurs between the plaintext bits and
the ciphertext bits in the large rounds. We speculate that NN attacks may recover
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(b) Rotation parameter: “b = c”.

Fig. 2: Round function when the rotation parameter in Simon32 variants con-
tains “a = c” or “b = c”.

the plaintext bits from the ciphertext bits with a higher probability than a
random search by using the correlation in the large round.

In this section, we verify the ease of spreading the effect of the least significant
bit (LSB) of L0 for several rotation parameters that satisfy “a = c” or “b = c”
and include ‘0’ or ‘n/2’10.

Local Observation. We first focus on the rotation parameter of (1, 0, 1), which
contains “a = c” and ‘0’, and consider the ease of spreading the effect of the LSB
of L0 to the 2-round internal state. Fig. 3 illustrates how the effect of the LSB of
L0 is spread to (L2, R2). In the first round, the effect of the LSB of L0 propagates
into the least significant two bits of L1 and the LSB of R1. Then, the effect of
the LSB of L0 included in the LSB of L1 is merged into the LSB of R1 from
the output of 0-bit left rotation of L1. This means that the spread of the effect
of a plaintext bit decreases by one bit after two rounds. Next, we focus on the
rotation parameter of (8, 1, 1), which contains “b = c” and ‘n/2’. Similar to the
former case, the spread of the effect of a plaintext bit decreases one bit after two
rounds. More precisely, the effect of the LSB of L0 propagates into the lower
(n/2)-th bit of R0 from the output of (n/2)-bit left rotation of L0. Then, the
effect of the LSB of L0 included in the lower (n/2)-th bit of L1 is merged into
the LSB of R1 from an output of n/2-bit left rotation of L1.

Long-term Round Observation. Finally, we conduct experiments targeting
the rotation parameters of (1, 0, 1), (5, 2, 2), and (1, 8, 2) to evaluate the ease
10 To simplify the explanation, we considered the effect of the LSB of L0 as an example,

but it is obvious that by considering the effect of a certain bit in R0, the number of
rounds that satisfies the diffusion property can be extended by one round.
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Fig. 3: Diffusion property for the rotation parameter of (1, 0, 1).

of spreading the effect of a plaintext bit to the internal state of the long-term
rounds. Note that the rotation parameter of (5, 2, 2) contains “b = c” but not ‘0’
or ‘n/2’, and the rotation parameter of (1, 8, 2) is for the original Simon32.

Before going into the details of our experimental results, we explain the proce-
dure of our computer simulation. In this simulation, we compute the probability
that the effect of a plaintext bit is included for each bit position in the internal
state of each round. To this end, we define the following five propagation rules
to evaluate the spread of the effect of the certain bit probabilistically:

Rule 1 (Initialize). The target plaintext bits are set to 1.0, and the remaining
bits are set to zero.

Rule 2 (Rotation/Swap). The probability, including the effect of the plain-
text bits in the rotation and swap operations, is propagated according to the
target operation.

Rule 3 (AND). In the AND operation, only when one input bit value is 1,
whose probability is assumed to be 1

2 , the effect of the plaintext bits in the
corresponding another input bit propagates to the corresponding output bit.
Then, the probability, including the effect of the plaintext bits in two inputs
of the AND operation, is multiplied by 1

2 and propagates to the correspond-
ing output bit.

Rule 4 (XOR). In the XOR operation, there is a possibility that the effect
of the plaintext bits is propagated to the output bit without depending
on the corresponding two input bits. Then, the probability, including the
effect of the plaintext bits in two inputs of the XOR operation, is added
and propagates to the corresponding output bit. If the resulting probability
exceeds 1.0, it is corrected to 1.0.
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Table 6: Simulation result for the rotation parameter of (1, 0, 1). We set only the
LSB of L0 to 1.0 and check its effect to the r-round internal state.
Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
R0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50
R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

L2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 1.00
R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50

...
...

L22 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R22 0.27 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R23 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rule 5 (Stop). The simulation stops when all the probabilities, including the
effect of the plaintext bits, become 1.0.

This evaluation aims to visualize the spread of the effect of the plaintext bits as
much as possible and to focus on the changes in the probabilities affecting the
output. Therefore, the cancellation of the effect is not considered.

Table 6 lists our simulation result for the Simon32 variant with (1, 0, 1). This
table shows that our simulation stopped after 24 rounds; thus, the target variant
is considered to satisfy the diffusion property in 24 rounds. We also evaluate the
same experiments for the rotation parameters of (5, 2, 2) and (1, 8, 2), and their
results are listed in Tables 7 and 8. These tables show that the number of rounds
that satisfy the diffusion property is 13 and 7 for the rotation parameters of
(5, 2, 2) and (1, 8, 2), respectively. To summarize, our experimental results show
the diffusion property of Simon32 variants is reduced when a rotation parameter
containing ‘0’ or ‘n/2’ and “a = c” or “b = c” holds.

4.3 Effect of a Biased Output Value of the f̂ Function

This subsection clarifies the effect of a biased output value of the f̂ function. To
this end, we mainly focus on the case of Simon32 variants with “a = c” and first
consider the following bit-wise representation of Eq. (5):

f̂j(x) = (x ≪ a)j ∧ ¬(x ≪ b)j , (6)
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Table 7: Simulation result for the rotation parameter of (5, 2, 2). We set only the
LSB of L0 to 1.0 and check its effect to the r-round internal state.
Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
R0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

L2 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.50 0.00 0.00 0.25 0.00 0.00 0.00 1.00
R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00

...
...

L11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R11 1.00 1.00 0.12 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.51 1.00 1.00 1.00

L12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 8: Simulation result for the rotation parameter of (1, 8, 2). We set only the
LSB of L0 to 1.0 and check its effect to the r-round internal state.
Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
R0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

L2 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.00 1.00
R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00

L3 0.00 0.00 0.00 1.00 1.00 0.38 0.00 1.00 0.00 1.00 1.00 0.75 0.13 1.00 1.00 0.00
R3 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.00 1.00

L4 0.00 1.00 1.00 1.00 0.25 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.94 0.00 1.00
R4 0.00 0.00 0.00 1.00 1.00 0.38 0.00 1.00 0.00 1.00 1.00 0.75 0.13 1.00 1.00 0.00

L5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00 1.00
R5 0.00 1.00 1.00 1.00 0.25 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.94 0.00 1.00

L6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00 1.00

L7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

where xj denotes the j-th bit of the value of x for j ∈ {0, 1, . . . , n− 1}11. From
Eq. (6), the necessary and sufficient condition under which f̂j(x) = 1 holds is(

(x ≪ a)j = 1
)
∧
(
(x ≪ b)j = 0

)
.

11 It is important to note that the indices of L and R represent the number of rounds.



20 H. Watanabe et al.

Let p be the ratio of xj = 1 for the input x to the f̂ function. Then, assuming
that the probability of xj = 1 at all bit positions for j ∈ {0, 1, . . . , n − 1} is
unbiased, we can derive the following equation:

Pr
(
(x ≪ a)j = 1

)
= Pr

(
(x ≪ b)j = 1

)
= p. (7)

According to Eq. (7), the probability that f̂j(x) = 1 holds is as follows:

Pr
(
(x ≪ a)j ∧ ¬(x ≪ b)j = 1

)
= Pr

((
(x ≪ a)j = 1

)
∧
(
(x ≪ b)j = 0

))
= Pr

(
(x ≪ a)j = 1

)
· Pr

(
(x ≪ b)j = 0

)
= p · (1− p). (8)

Since 0 ≤ p ≤ 1, it is obvious that the probability expressed by Eq. (8) always
remains below 1

4 .
In other words, by exploiting this biased event in the f̂ function, the proba-

bility that f̂j(x) = 0 holds for j ∈ {0, 1, . . . , n− 1} is at least 3
4 . Based on these

considerations, we can assume that f̂j(Li−1) = 0 holds with a relatively high
probability, and then the i-th round function is expressed as

Li = f̂(Li−1)⊕Ri−1 ⊕ ki = Ri−1 ⊕ ki, (9)
Ri = Li−1. (10)

Finding an Effective Linear Approximation. We assume that f̂j(Li−1) = 0
holds for i ∈ {2, 4, . . . , 2(r − 1)}, i.e., all the even-numbered rounds excluding
the last round of the 2r-round Simon32 variant with the vulnerable structure.
Under the known plaintext attack scenario, an attacker can get multiple known
plaintext/ciphertext pairs. Then, if the above assumption holds, the attacker
can use the following equation for the j-th bit position:

(L0 ⊕ L2r ⊕ f̂(R2r))j =
⊕

x∈{1,2,...,r−1}

(k2x)j , (11)

where L0 denotes a left side of the plaintext, and (L2r, R2r) denotes the ci-
phertext. Therefore, Eq. (11) indicates a linear approximation expressed by a
plaintext bit, a ciphertext bit, and a linear sum of the subkey bits. For a better
understanding, we provide a schematic diagram for visualizing the 4-round linear
approximation expressed by Eq. (11), as illustrated in Fig. 4. Here, we provide
the following theorem.

Theorem 2. For the 2r-round Simon32 variants with the vulnerable structure,
the probability that the linear approximation expressed by Eq. (11) holds is given
by

Pr(X = Y ) =


1 if r = 1;
⌊ r−1

2 ⌋∑
i=0

(
r − 1

2i

)(
1

4

)2i(
3

4

)r−2i−1

otherwise,
(12)

where X = (L0 ⊕ L2r ⊕ f̂(R2r))j and Y =
⊕

x∈{1,2,...,r−1}(k2x)j.
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Fig. 4: Schematic diagram for visualizing the 4-round linear approximation ex-
pressed by Eq. (11) as an example. We assume that f̂j(Li−1) = 0 holds in all
the even-numbered rounds excluding the last round. For this, our linear approx-
imation does not consider the gray-colored lines.

Proof. We first target the case where r = 1. In this case, we can derive(
L0 ⊕ L2 ⊕ f̂(R2)

)
j
= (k2)j (13)

from Eq. (11), which obviously holds with a probability of 1.
Next, we target the case where r = 2. To compute the probability of the

target event, we must consider the unknown output value of the f̂ function in
the second round, i.e., f̂j(L1). If f̂j(L1) = 0, which holds with a probability of
approximately 3

4 , the target event occurs with a probability of 1; otherwise, it
never occurs. Then, we can get the probability of approximately 3

4 when r = 2.
Finally, we target the case where r > 2, but it can be generalized to include

the case where r = 2. Similar to the case where r = 2, we must consider the
unknown output values of the f̂ function in the even-numbered rounds excluding
the last round, i.e., f̂j(L1), f̂j(L3), . . . , f̂j(L2r−3). In other words, the number of
f̂ functions that must be considered is r−1. Then, the condition that the target
event occurs with a probability of 1 is given by

f̂j(L1)⊕ f̂j(L3)⊕ · · · ⊕ f̂j(L2r−3) = 0, (14)

and this condition holds in the following two cases:

Case 1. The output value of the target f̂ functions are all zero.
Case 2. The number for which the output value of the target f̂ function is 1 is

an even number.

Considering these two cases, we can get(
r − 1

0

)(
1

4

)0(
3

4

)r−1

+

(
r − 1

2

)(
1

4

)2(
3

4

)r−2−1

+ · · ·

=

⌊ r−1
2 ⌋∑

i=0

(
r − 1

2i

)(
1

4

)2i(
3

4

)r−2i−1

(15)

when r ≥ 2. This concludes the proof. 2
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Fig. 5: Comparison between the theoretical and experimental probabilities.

Experimental Verification for Theorem 2. We verify the accuracy of the
theoretical values in Theorem 2. To this end, we conducted experiments with 28

trials (i.e., randomly generated 28 secret keys) using 228 samples for each trial.
Fig. 5 shows a comparison between the theoretical and experimental prob-

abilities. The vertical axis represents the probability, and the horizontal axis
represents the number of rounds for the target cipher. The blue line represents
the theoretical probabilities provided in Theorem 2. The purple, green, and or-
ange dot lines represent the experimental probabilities for Simon32 variants
with a rotation parameter of (1, 8, 2), (1, 8, 1)12, and (5, 2, 2), respectively.

It can be seen from this graph that the theoretical values almost match the
experimental values for Simon32 variants with the vulnerable structure (i.e., a
rotation parameter of (1, 8, 1) and (5, 2, 2)). For this reason, it can be considered
that the theoretical values provided in Theorem 2 are correct. In addition, it
can also be seen from the graph that the theoretical values for the original Si-
mon32 (i.e., the rotation of (1, 8, 2)) are converged to the probability of random.
This fact demonstrates that there is a big difference in randomness between the
original Simon32 and Simon32 variants with the vulnerable structure.

Building a Linear Distinguisher. The linear approximation expressed by
Eq. (11) enables the attacker to build an effective linear distinguisher. Table 9
lists the theoretical probabilities of the linear approximation and the data com-
plexity for building linear distinguishers with a success probability of 0.7 for each
12 A rotation parameter of (1, 8, 1) is equal to that of (8, 1, 1). This is very similar to

the original parameter of (1, 8, 2).
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Table 9: Theoretical probabilities of the linear approximation expressed by
Eq. (11) and the data complexity for building linear distinguishers with a success
probability of 0.7 for each even-numbered round.

Round Probability Data (log2) Success rate

4 0.750000 5.164 0.7
6 0.625000 7.164 0.7
8 0.562500 9.164 0.7
10 0.531250 11.164 0.7
12 0.515625 13.164 0.7
14 0.507812 15.164 0.7
16 0.503906 17.164 0.7
18 0.501953 19.164 0.7
20 0.500976 21.164 0.7
22 0.500488 23.164 0.7
24 0.500244 25.164 0.7
26 0.500122 27.164 0.7
28 0.500061 29.164 0.7
30 0.500030 31.164 0.7
32 0.500015 33.164 0.7

even-numbered round, which are derived from based on Theoerms 1 and 2. It
can be seen from this table that the linear distinguisher with up to 30 rounds
can be built for Simon32 variants with the vulnerable structure. Given that NN
attacks have been successful up to 29 rounds, as listed in Table 5, this suggests
that NN attacks may detect these types of linear distinguishers. The detailed
analysis will be our future challenge.

Other Linear Approximations. We briefly introduce three linear approxi-
mations that are very similar to the linear approximation expressed by Eq. (11).

The first linear approximation is given by

(R0 ⊕ f̂(L0)⊕R2r)j =
⊕

x∈{1,2,...,r}

(k2x−1)j . (16)

This can be useful for computing a linear sum of all the odd-numbered rounds
of subkey bits (i.e., k1 ⊕ k3 ⊕ · · · ⊕ k2r−1) for the even-numbered rounds (i.e., 2r
rounds) of the target Simon32 variant.

The next linear approximation is given by

(L0 ⊕R2r+1)j =
⊕

x∈{1,2,...,r}

(k2x)j . (17)

This can be useful for computing a linear sum of all the even-numbered rounds
of subkey bits (i.e., k2⊕k4⊕· · ·⊕k2r) for the odd-numbered (i.e., 2r+1 rounds)
rounds of the target Simon32 variant.



24 H. Watanabe et al.

The last linear approximation is given by

(R0 ⊕ f̂(L0)⊕ L2r+1)j =
⊕

x∈{1,2,...,r,r+1}

(k2x−1)j . (18)

This can be useful for computing a linear sum of all the odd-numbered rounds of
subkey bits (i.e., k1 ⊕ k3 ⊕ · · · ⊕ k2r+1) for the odd-numbered rounds (i.e., 2r+1
rounds) of the target Simon32 variant.

The probability that each linear approximation holds can also be derived in
a similar way as Theorem 2, but this is beyond the scope of the paper.

5 Towards Key Recovery on Simon32 Variants with the
Vulnerable Structure

We mainly use the linear approximation expressed by Eq. (11) in this section, but
it is expected that the other linear approximations expressed by Eqs. (16)–(18)
can also be used for our analysis.

Focusing on Eq. (11), this is expressed by a plaintext bit, a ciphertext bit,
and a linear sum of subkey bits. This means that we have found an effective
linear approximation, which is the primary purpose of linear cryptanalysis [24].
In other words, this linear approximation can be used to develop a key recovery
attack based on linear cryptanalysis.

Linear cryptanalysis was first reported by Matsui at EUROCRYPT 1993 [24].
He proposed two simple but powerful algorithms, famously known as Matsui’s
algorithm 1 and algorithm 2. His subsequent work [25] provided an improved
version of linear cryptanalysis and applied it to the first successful computer
experiment in breaking the full 16-round DES. After that, key recovery attacks
based on linear cryptanalysis have been improved by using several techniques,
such as Walsh transformation (or fast Fourier transformation) [11], affine pruned
Walsh transformation [12], Walsh spectrum puncturing [13], and more.

Here, we use simple but powerful Matsui’s algorithm 1 to show that a linear
sum of subkey bits for Simon32 variants with the vulnerable structure can be
recovered with a relatively high probability. Using other techniques [11–13, 25]
may lead to further improvements, but this is beyond the scope of this paper.

5.1 Revisiting Matsui’s Algorithm 1

This subsection briefly reviews Matsui’s algorithm 1 [24]. The fundamental idea
of linear cryptanalysis is to find the following effective linear approximation for
a given cipher:

Pi1 ⊕ · · · ⊕ Pia ⊕ Cj1 ⊕ · · · ⊕ Cjb = Kk1
⊕ · · · ⊕Kkc

, (19)

where Pi, Cj , and Kk denote the i-th plaintext bit, the j-th ciphertext bit, and
the k-th secret key (or subkey) bits, respectively. Also, i1, . . . , ia, j1, . . . , jb, k1,
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Fig. 6: Experimental results of the key recovery attack on Simon32 variants with
a rotation parameter of (5, 2, 2).

. . . , kc denote the fixed bit position, and Eq. (19) holds with a probability of
p ( ̸= 1

2 ) for randomly generated plaintext and the corresponding ciphertext.
We can recover a linear sum of subkey bits (i.e., K̂ = Kk1

⊕ · · · ⊕Kkc
) using

the following algorithm:

Step 1. Let T be the number of plaintexts such that the left side of Eq. (19) is
equal to zero, and let N be the number of plaintext/ciphertext pairs obtained
under the known plaintext attack scenario.

Step 2. If T > N
2 , then we guess K̂ = 0 when p > 1

2 or K̂ = 1 when p < 1
2 .

Otherwise, we guess K̂ = 1 when p > 1
2 or K̂ = 0 when p < 1

2 .

We follow Theorem 1 to estimate the number of plaintext/ciphertext pairs and
the success probability for the attack based on Matsui’s algorithm 1.

5.2 Experimental Verifications

We verify the validity of the key recovery attack based on Matsui’s algorithm 1
against Simon32 variants with the vulnerable structure. To this end, we conduct
experiments with 28 trials (i.e., 28 secret keys) using 2d samples for each trial,
where d ∈ {6, 7, . . . , 24}. The following two 2r-round variants for r ∈ {1, 2, . . . , 9}
are targeted for our analysis: the first one has a rotation parameter of (5, 2, 2),
which contains “b = c” but not ‘0’ or ‘n/2’; and the second one has a rotation
parameter of (8, 1, 1), which contains both “b = c” and ‘n/2’.

We provide the details of our experimental results on Figs. 6 and 7. In their
figures show the experimental results of the key recovery attack on Simon32
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Fig. 7: Experimental results of the key recovery attack on Simon32 variants with
a rotation parameter of (8, 1, 1).

variants with a rotation parameter of (5, 2, 2) and (8, 1, 1), respectively. More
precisely, these figures show the average number of recovered bits of a linear
sum of 16-bit subkeys for each number of known plaintext/ciphertext pairs. The
following can be seen from these figures:

– We can recover the full 16 bits of the linear sum of subkeys with a probability
of 1 for the target variants with up to four rounds.

– For the target variants with more than six rounds, the average number of
recovered bits gradually decreases, and the number of rounds that reaches
the same level of attack ability with random guessing (i.e., 8 out of 16 bits
can be recovered) is almost 18.

– Surprisingly, increasing the number of known plaintext/ciphertext pairs only
slightly improves attack ability. We speculate that this factor is due to the
diffusion property of Simon32 variants with the vulnerable structure dis-
cussed in Sect. 4.2, but the detailed analysis is our future challenge.

Additionally, we conduct the same experiments against the original Simon32
and have verified that the key recovery attack is valid for up to two rounds, which
is a trivial attack. To summarize, the above type of attack on Simon32 variants
with the vulnerable structure compared to the original Simon32 is relatively
valid, and we gain new insight into the fact that the attack ability does not
improve as the number of known plaintext/ciphertext pairs increases.
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6 Conclusion and Future Challenges

We have proposed a step forward toward making neural network-based output
prediction (NN) attacks a helpful tool for designing a secure symmetric-key
cipher, especially a Simon-like cipher. Our analysis has provided new insight
into evaluating the security of the target cipher using NN attacks. A notable
point is that NN attacks can identify a vulnerable structure of the target cipher.
This has the advantage that similar ciphers with a vulnerable structure can be
excluded from all design candidates.

NN attacks can be a helpful tool for detecting vulnerabilities, but unfor-
tunately, the use of this tool alone cannot determine the attack vectors that
cause such vulnerabilities. For this reason, we recommend effectively combining
NN attacks and automatic search methods to maximize the advantages of both
approaches. This would enable more reliable and faster security analysis when
designing a secure symmetric-key cipher.

We hope that addressing the following five challenges will be a further step
toward making NN attacks a helpful tool for designing a secure symmetric-key
cipher: 1) We mainly focused on the case of “a = c” or “b = c” to take a closer look
at vulnerable structures. Similarly, analyzing the case of “n−a = c” or “n−b = c”
may provide new insight into the applications of NN attacks. 2) Interestingly, NN
attacks may detect a vulnerability due to integral attacks. In our experiments,
we limited the number of training data to 215, and our observation may seem
intuitively suspicious from the perspective of the integral attack methodology.
However, if we can prove that our observation is correct, the applicability of
NN attacks will further expand. 3) The maximum number of rounds that NN
attacks can be successful is very similar to that for building a linear distinguisher
based on the linear approximation expressed by Eq. (11). This may suggest that
NN attacks can detect a vulnerability due to linear attacks. 4) Surprisingly,
increasing the number of known plaintext/ciphertext pairs only slightly improves
the ability of key recovery attacks. Identifying its root cause may be able to
contribute to developing linear key recovery attacks. 5) This study targeted only
the AND-Rotation-XOR-based cipher. To achieve our primary goal, we must
consider the effectiveness of NN attacks against more types of symmetric-key
ciphers, such as the Addition-Rotation-XOR-based and arithmetization-oriented
ciphers.
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