
FHEW-like Leveled Homomorphic Evaluation:
Refined Workflow and Polished Building Blocks

Ruida Wang1,2⋆, Jincheol Ha3⋆, Xuan Shen1,2, Xianhui Lu1,2(�)⋆⋆, Chunling
Chen1,2, Kunpeng Wang1,2, and Jooyoung Lee3(�)⋆ ⋆ ⋆

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{wangruida,shenxuan,luxianhui,chenchunling,wangkunpeng}@iie.ac.cn
2 School of Cybersecurity, University of Chinese Academy of Sciences, Beijing, China

3 Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
{smilecjf,hicalf}@kaist.ac.kr

Abstract. In FHEW-like cryptosystems, the leveled homomorphic eval-
uation (LHE) mode performs bootstrapping after circuit evaluation rather
than after each gate. The core procedure and the performance bottleneck
are known as circuit bootstrapping (CBS). This paper revisits the LHE
mode by refining the workflow and proposing polished building blocks:
1. Algorithmic Enhancements
– We introduce an NTT-based CBS algorithm, patched from WWL+

[Eurocrypt24], achieving up to a 2.9× efficiency improvement.
– We present an FFT-based CBS that is 3.5× faster than the most

efficient FFT-CBS implementation, with a key size reduction of 37.5×.
2. Refined Leveled Homomorphic Evaluation and Applications
– We propose the HalfCBS algorithm, which is 2.4× faster than the

traditional CBS algorithm, enabling a flexible leveled evaluation.
– By applying these improvements to evaluate general look-up tables

(LUTs), we can evaluate a 16-8 LUT in 311 ms, which is 213.61×
faster than the trivial FHE mode implementation.

– When applied to AES transciphering, our enhancements yield a 2.9×
improvement in efficiency and a 31.6× reduction in key size compared
to the state of the art, Thunderbird [TCHES24].

3. High-Precision LHE
– To handle multi-bit inputs, we propose a high-precision LHE frame-

work. Compared to the WoP-PBS [JoC23], the compute efficiency
(resp. key size) is improved by factors from 9.7 to 16.2 (resp. 3.4 to
4.4) according to the parameters.

Keywords: Homomorphic Encryption, FHEW/TFHE, Leveled Homomorphic
Evaluation, Circuit Bootstrapping, High-Precision

⋆ Both authors contributed equally to this work.
⋆⋆ Xianhui Lu was supported by Chinese Academy of Sciences Project for Young Sci-

entists in Basic Research [NO.YSBR-035].
⋆ ⋆ ⋆ Jooyoung Lee was supported by Institute of Information & communications Technol-

ogy Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
[NO.2022-0-01047, Development of statistical analysis algorithm and module using
homomorphic encryption based on real number operation].

1 Introduction

Fully Homomorphic Encryption (FHE) has long been a cornerstone in the field of
privacy-enhancing technologies, enabling computations on encrypted data with-
out decryption. TFHE [10, 11, 12], proposed as an extension of FHEW [18], is
a homomorphic encryption scheme that supports fast bootstrapping to refresh
noise. Recently, Micciancio et al. unified these schemes into a single framework
of FHEW-like cryptosystems [23].

FHEW-like cryptosystems are friendly to Boolean evaluation, where each
gate is integrated with a fast bootstrapping operation. This concept later be ex-
tended to the evaluation of negacyclic univariate functions, known as functional
bootstrapping [6] or programmable bootstrapping [14] (PBS4). The evaluation
strategy using PBS, also referred to as FHE mode, combines function evaluation
(Eval.) and noise refreshing (Refr.) steps, making it user-friendly by eliminat-
ing the need to manage noise growth. However, it faces a computational burden
when dealing with large-scale circuits due to the huge number of bootstrapping.

To deal with this issue, Chillotti et al. [14] proposed the Leveled Homomor-
phic Evaluation (LHE) mode for FHEW-like cryptosystem that decouples gate
evaluation from bootstrapping. The LHE mode uses external product to evaluate
controlled selector gates (CMux) to build the circuits, reducing the complexity
of the evaluation step from O(nN logN)5 to O(N logN) per gate, achieving
hundreds times improvement. However, in LHE mode, the input and output of
the circuit evaluations are two different ciphertext types, which destroys its com-
posability. Therefore, unlike FHE mode, LHE mode requires both a refreshing
step and a conversion (Conv.) step to transform the ciphertext form. The cur-
rent evaluation methods [11, 14, 27], as shown in Figure 1, combine them into a
circuit bootstrapping (CBS) algorithm.

(a) FHE: O(nN logN) per gate (b) LHE: O(N logN) per gate

Fig. 1: Toy examples to evaluate a 2-digit LUT in the FHE mode and LHE mode.

Despite the advancement in the evaluation step, the high cost of circuit boot-
strapping in the LHE mode diminishes the efficiency. To provide a clearer demon-
stration, we divide the fully homomorphic evaluation into three steps in Table

4 In this paper, we use PBS as the abbreviation for this technique.
5 n denotes the Learning with Error (LWE) dimension and N denotes the ring dimen-
sion in General LWE (GLWE).

2

Mode
Refr. Conv. Eval. (per Gate)

Method NTT/FFTs Storage Method NTT/FFTs Storage Method NTT/FFTs Storage

FHE - - PBS O(nN logN) O(nN)
LHE[11] ℓ PBS O(nN logN) O(nN) Private KS O(N2) O(N2) CMux O(N logN) -
LHE[14] PBSmanyLUT O(nN logN) O(nN) Private KS O(N2) O(N2) CMux O(N logN) -
LHE[27] PBSmanyLUT O(nN logN) O(nN) HomTrace, SS O(N log2 N) O(N logN) CMux O(N logN) -

Table 1: Dividing Bit-Wise FHEW-like solutions in a novel perspective. We
divids the circuit bootstrapping in the LHE mode into Refr. and Conv. steps.

1, with more comprehensive content in Table 2. As shown in Table 1, while the
LHE mode reduces the computational complexity of the Eval. step, the storage
and computational costs of the Refr. and Conv. steps are significantly higher.

There are two works representing milestone breakthroughs for the Refr. and
Conv. steps: Chillotti et al. [14] introduced the PBS evaluating multiple look-up
tables (PBSmanyLUT), reducing the computational cost of the Refr. step from
ℓ PBS to that of a single PBS, where ℓ denotes the gadget length of the GSW
ciphertext6. Building on this, Wang et al. [27] proposed a faster and smaller cir-
cuit bootstrapping framework using homomorphic trace evaluation (HomTrace)
[8] and scheme switching (SchemeSwitch) [16] to replace private key switching
during the Conv. step (called WWL+ method in this paper). This method re-
duces the computational complexity (rsp. storage) of the Conv. step from O(N2)
to O(N log2 N) (rsp. O(N logN)), rendering it negligible compared to the Refr.
step in terms of both computation time and evaluation key size.

However, the LHE mode still faces several challenges:

A The Phase Amplification Issue in WWL+7: The circuit bootstrapping
algorithm proposed by Wang et al. encounters phase amplification issues
during the Conv. Step. Specifically, HomTrace amplifies the noise generated
in the Refr. Step by a factor of N . This necessitates their work increasing
the gadget length ℓep in the Refr. step to manage the noise and achieve
the desired decryption failure probability. This adjustment will significantly
impact the efficiency of the circuit bootstrapping (see Appendix A).

B The Discrepancy Between Asymptotic Complexity and Concrete
Cost: WWL+ leveraged the inverse of N to improve the Conv. step, restrict-
ing this method to NTT-based systems. However, there is a gap between their
theoretical optimizations and the implementation performance. This is due
to the concrete cost of NTT is higher than FFT for the large modulus sizes
in LHE mode (54-bit in NTT setting, 64-bit in FFT setting), although they
have a same asymptotic complexity8. Consequently, the CBS implementa-
tion in WWL+ only achieves a 1.31× speedup compared to the FFT-based

6 There is another method called multiple-value programmable bootstrapping (MV-
PBS) [6] that enables multiple look-up tables, but it is not suitable in CBS that
evaluates several functions of different scaling factors.

7 The authors of [27] confirmed this issue and presented adjusted parameter sets and
performance at Eurocrypt 2024 conference.

8 For small-sized modulus, NTT may have an advantage due to its better parallelism.

3

TFHEpp CBS (see Table 9 in [27]). Considering issue A, this improvement
further reduces to 1.1×, failing to deliver their theoretical performance.9

C The Inflexibility and Computational Intensity Problem: In the cur-
rent LHE framework [11, 14, 27], the Refr. and Conv. steps are bonded
executed, known as circuit bootstrapping. It leads to a inflexibility and un-
necessary overhead for evaluating small-scale circuits. Specifically, even if
the Eval. step computes only one gate, it still requires consecutive execution
of the heavy Refr. step with the Conv. step.

D User-Unfriendly Concerns: The LHE mode requires more computational
steps compared to the FHE mode. This often necessitates expert interven-
tion to configure the various parameters, balancing noise management and
efficiency. This complexity also makes it challenging to provide a clear and
comparative evaluation of the efficiency benefits of LHE mode over FHE
mode. As a result, few developers opt to use the LHE mode when building
applications based on the FHEW-like systems.

E A Lack of Efficient High-Precision LHE Solution: In LHE mode, cir-
cuits are constructed by CMux gates, which limits the inputs to bit-wise ci-
phertext. However, real-world applications often encode data into integer (or
multi-bit chunks) rather than single bits. To process high-precision inputs in
the LHE mode, Bergerat et al. proposed the new WoP-PBS (programmable
bootstrapping without padding) algorithm in JoC23 [3]. It involves to ex-
tract (Extr.) and convert multi-bit data into single bit GGSWs for CMux
evaluation, and support higher precision to handle multi-bit plaintext spaces.
Despite its capabilities, the WoP-PBS algorithm itself is too heavy, so that
it is better than previous works [21, 14] only for large-size input LUT (e.g.
larger than 8-bit) [3]. For instance, processing 8-bit inputs with WoP-PBS
takes more than 4,400 ms and requires a 375 MB key size.

1.1 Our Contributions

In this paper, we address the aforementioned issues and comprehensively en-
hance the efficiency of the LHE mode in the FHEW-like cryptosystems. For
algorithms, we propose two improved CBS algorithms by introducing Contri-
butions I and II. These two algorithms are complementary, achieving optimal
performance in the NTT and FFT domains, respectively. For LHE evaluation
and applications, we design a flexible LHE framework (Contribution III). This
framework, combined with our improved CBS algorithm, is applied to general
homomorphic look-up tables and AES transciphering, achieving the best practi-
cal performance to date, as detailed in Contribution IV. Finally, to address the
newly identified challenge of handling high-precision inputs in LHE mode, we
propose the HP-LHE framework. It incorporates our enhanced CBS algorithm
and has been comprehensively optimized for high-precision inputs (Contribution
V). The details of each contribution are as follows:

9 We do not intend to undermine Wang et al.’s work; their circuit bootstrapping
algorithm remains the fastest to date and compresses key sizes by 13 times compared
to TFHEpp.

4

Fig. 2: A Flexible Leveled Homomorphic Evaluation (LHE) Framework.

I. Patched NTT-Based Circuit Bootstrapping (CBS): To address the
phase amplification issue identified in WWL+ (Challenge A), we propose an
NTT-based CBS leveraging a newly designed pre-processing method. It reduces
the noise growth from (N2Vpbs + ...) to (Vpbs + ...) compared to WWL+, where
Vpbs denotes the variance of the error generated in the Refr. step. Under the same
decryption failure probability, we can then reduce the gadget length in the Refr.
step from 2/4/7 to 1/2/2, respectively, decreasing the latency (rsp. compressing
the key size) of CBS by factors up to 2.9 (rsp. 3.4).

II. FFT-Based CBS: In response to the performance discrepancy between
theory and implementation (Challenge B), we introduce an FFT-based circuit
bootstrapping algorithm. It is important to note that this is not merely an
implementation difference, as we detailed in the technique overview subsection.
Our implementation on TFHE-rs achieves a speedup up to 15.4× compared
to WWL+ OpenFHE-based implementation, and is 3.1 times faster than their
AVX-512 NTT-based implementation10. Additionally, our method outperforms
the state-of-the-art FFT-based CBS implementation in the TFHEpp library by
3.5× (rsp. 37.5×) in terms of the time efficiency (rsp. key size compression).

III. A Flexible Leveled Homomorphic Evaluation (LHE) Framework:
To tackle the inflexibility and computational intensity of the LHE mode (Chal-
lenge C), we propose a flexible LHE framework using a newly designed HalfCBS
algorithm to achieve the circuit composability as illustrated in Figure 2, and
thereby decouples the Refr. and Conv. steps. This algorithm is particularly suited
for small-scale circuit evaluations since the HalfCBS is 2.4 times faster than CBS.

IV. Crypto Tools & Applications: To address the user-unfriendly concerns
(Challenge D), we first provide a suite of parameter evaluation tools to lower the
barrier to using the LHE mode. We then compare the efficiency of LHE mode
and FHE mode in computing general look-up tables under reasonable parameter
settings. Our result shows that we can evaluate an 8-8 LUT in 136 ms, which is
111× faster than the FHE mode using gate bootstrapping. Finally, we highlight

10 Since WWL+ implementation based on AVX-512 NTT is not open-source, the latter
result is derived from their paper.

5

Ciphertext

Error

LWEs(∆m)

e

GLWES((N
−1vi) ·m+ . . .)

ebr + u1X + . . .

BlindRotation

GLWES(vi ·m)

Nebr + Etr(X)

HomTrace

(a) WWL+ method

Ciphertext

Error

LWEs(∆m)

e

GLWES(vi ·m+ . . .)

ebr + u1X + . . .

BlindRotation

LWEs(vi ·m)

ebr

SampleExtraction

LWEs(N
−1(vi ·m))

N−1ebr

Preprocessing

Ciphertext

Error

GLWES((N
−1vi) ·m+ . . .)

N−1ebr + u′
1X + . . .

LWEtoGLWEConst

GLWES(vi ·m)

ebr + Etr(X)

HomTrace

(b) A patched method using Chen et al.’s [8] preprocessing

Ciphertext

Error

LWEs(∆m)

e

GLWES(vi ·m+ . . .)

ebr + u1X + . . .

BlindRotation

GLWES(N
−1(vi ·m+ . . .))

N−1ebr +N−1u1X + . . .

Preprocessing

GLWES(vi ·m)

e+ Etr(X)

HomTrace

(c) Our improved method

Fig. 3: The Circuit Bootstrapping Workflow

transciphering as a scenario to demonstrate the power of the LHE mode. For
instance, we implement AES transciphering within 15.6 seconds, which is more
than 6.6× faster than the FHE mode solutions [26, 4], and outperforms the
state of the art [28] by 2.9×. Additionally, our approach achieves the lowest
decryption failure probability among the aforementioned implementations.

V. High Precision LHE (HP-LHE) Framework: To deal with high-precision
inputs (Challenge E), we propose an HP-LHE framework optimized from WoP-
PBS proposed by Bergerat et al.. Our method can process a message of 4/6/8-bit
precision in 64/113/310 milliseconds. Compared to the state-of-the-art method
[3] implemented in tfhe-rs library, the evaluation time (resp. key size) is im-
proved by factors from 9.7 to 16.2 (resp. 3.4 to 4.4).

1.2 Technique Overview

Patched NTT-Based Circuit Bootstrapping (CBS):WWL+ sets the scal-
ing factor of the PBSmanyLUT output to N−1∆ mod q to guarantee the cor-
rectness of the Conv. step. However, it causes error amplification from trace
evaluation as Figure 3a. A possible solution to address this issue is to execute
the efficient conversion algorithm from LWE to GLWE ciphertext proposed by
Chen et al. [8] after PBSmanyLUT. The key point is to multiply N−1 to both

6

Ciphertext

Error

LWEs(∆m)

e

GLWES((vi/N) ·m+ . . .)

ebr + u1X + . . .

BlindRotation

GLWES(vi ·m)

Nebr + Etr(X)

HomTrace

Fig. 4: Adjusting the input scaling factor by vi/N in FFT domain.

the message and error term, such that only homomorphic trace evaluation error
is added after the conversion. We further decompose this workflow as Figure 3b,
and then simplify and improve this method as Figure 3c.

FFT-Based CBS: There are two technical subtleties that prevent the above
improved WWL+ method from being applied in the FFT domain: (a) there
does not exist an inverse of N mod q in FFT domains for the aforementioned
pre-processing, and (b) the inherent errors in FFT will be amplified by HomTrace
and compromise the correctness of circuit bootstrapping.

For the first issue, one possible solution is to set the scaling factor of the
input LWE ciphertext to ∆/N . However, the initial error is still amplified by
N (see Figure 4). Inspired by this limited approach, we present a new pre-
processing method that divides both the scaling factor and the initial error by
N using modulus switching and modulus raising, see Figure 5 for the pictorial
description. Then the phase amplification by N is canceled out only except for
the modulus switching error, which is much smaller than the homomorphic trace
evaluation error for practical parameters.

To overcome the second barrio, we propose a split FFT method to reduce
the FFT error by splitting the automorphism key of 64-bit precision into two
parts, using them in separate multiplications, and then combining the results.
To give a theoretical issuance, we bound the failure probability of this method
following the FFT error analysis proposed by Bergerat et al. [3].

A Flexible Leveled Homomorphic Evaluation (LHE) Framework: Our
approach is based on two key observations: (a) the cost of the Conv. step is
less than the Refr. step; (b) using CBS for small-scale circuits results in wasted
depth. Based on these insights, we developed the HalfCBS algorithm, which only
converts the ciphertext form but does not refresh the noise (as illustrated in Fig-
ure 2). This algorithm embeds the conversion from LWEs(vi ·m) to GLWES(vi ·
m+ . . .) within the circuit evaluation, rather than using PBSmanyLUT, thereby
creating a decoupled LHE computation framework. The Refr. step is only in-
voked when the noise is near overflow. Intuitively, this approach aligns more
closely with the construction of LHE schemes such as BGV/BFV/CKKS.

Crypto Tools & Applications: Our parameter evaluation tool is distinguished
by its accuracy and automation. Accuracy comes from precise and compact noise
analysis. Automation is achieved through our discovery that the noise in gadget
decomposition exhibits a V-shaped relationship with the decomposition length
and base. This insight allows for the automated adjustment of gadget parame-
ters. Under reasonable parameter selection, we optimize AES transciphering by

7

FHE Solution Mode Extr. Refr. Conv. Eval.

BGV/BFV/CKKS LHE - Bootstrapping Relinearization +, Tensor Product

Bit-Wise FHE - PBS per Gate
FHEW/TFHE LHE [11] - PBS Private KS CMux Gate

LHE [14] - PBSmanyLUT Private KS CMux Gate
LHE [27] - PBSmanyLUT HomTrace, SS CMux Gate

High-Precision FHE - Tree-PBS
FHEW/TFHE LHE [3] δ PBS δℓ PBS Private KS CMux-Tree

LHE Ours ⌈ δ
τ
⌉ PBSmanyLUT GLWE HomTrace, SS CMux-Tree

Table 2: Dividing FHE solutions in our new perspective.

using our proposed FFT-based CBS algorithm and our flexible LHE framework.
Additionally, we employ following techniques to further improve the performance
of the AES transciphering: (a) Using dimension-2 GLWE ciphertexts to manage
noise growth from CMux operations following Bon et al. [4]. (b) Designing a
keyed-Sbox to minimize noise growth during the AddRoundKey. (c) Introducing
the 8-24 LUT proposed by Wei et al. [28] to replace 8-8 LUTs to reduce noise
growth from the MixColumns.

High Precision LHE (HP-LHE) Framework: We show some details of the
WoP-PBS framework proposed by Bergerat et al. [3] in Table 2 and Figure
7a. We further enhance this approach with our HP-LHE framework using the
following techniques with a pictorial description in Figure 7b:

(a) Observing that both the extraction and refreshing steps deal with the cipher-
text scaling factors, we integrate them together and redesign a PBSmanyLUT
to achieve both the Extr. and Refr. operations. This integration reduces the
total number of PBS operations from δ(ℓ + 1) to δ, where δ is the message
bit-size in a single LWE ciphertext and ℓ is the gadget length for PBS.

(b) We further propose a multi-bit extraction algorithm that can extract τ bits
from ciphertext LWE(m) at the cost of a single PBS, reducing the number
of PBS to ⌈ δτ ⌉. Specifically, we divide a δ-bit message into some τ -bit chunks

of the form
∑τ−1

j=0 mj2
j , each of which can be extracted into (mτ−1,mτ−1⊕

mτ−2, . . . ,mτ−1 ⊕ m0) at the cost of single PBS. We then use a modified
LUT accordingly that outputs L[m] based on the extracted bits.

(c) Managing the HomTrace noise by adjusting the gadget length has a lower
bound, which prevents HomTrace from being used in high-precision evalua-
tion. We present a high-precision HomTrace algorithm based on the GLWE
dimension switching, which breaks through the noise lower bound, enabling
it to be used in our HP-LHE framework. We can then reduce the computa-
tional complexity of the conversion step from O(N2) to O(N log2 N).

1.3 Paper Organization

In Section 2, we briefly review the FHEW-like cryptosystems. In Section 3, we
propose our patched NTT-based circuit bootstrapping and FFT-based circuit

8

bootstrapping, then show the benchmark from our implementation. Section 4
presents the HalfCBS algorithms and a flexible LHE framework, and shows the
LHE application performance in look-up table evaluations and AES transci-
phering. Section 5 introduces the high-precision LHE framework, and compares
it with WoP-PBS and the FHE mode solution. Section 6 concludes this paper.

2 Preliminaries

2.1 Notations

Throughout the paper, bold letters denote vectors (or matrices). The nearest
integer to r is denoted ⌊r⌉. For real numbers a and b such that a < b, we write
[a, b[= {x ∈ R : a ≤ x < b}. For two integers a and b, Z ∩ [a, b[is denoted
Ja, bJ. For an integer q, we identify Zq = Z/qZ with J−q/2, q/2J, and [·]q denotes
the modq reduction into Zq. The set B and [n] denote {0, 1} and {1, 2, . . . , n},
respectively, for a positive integer n. The set N denotes the set of all positive
integers. The set Z×

q denotes the multiplicative subgroup of Zq. For a set S, we
will write a ← S to denote that a is chosen from S uniformly at random. For
a probability distribution D, a← D denotes that a is sampled according to the
distribution D. Unless stated otherwise, all logarithms are to the base 2.

For a polynomial P (X) = p0 + p1X + · · · + pN−1X
N−1 ∈ Zq[X], its ℓ1,

ℓ2 and ℓ∞ norms are defined as ℓ1(P) = |p0| + |p1| + · · · + |pN−1|, ℓ2(P) =√
|p0|2 + |p1|2 + · · ·+ |pN−1|2, ℓ∞(P) = max0≤i≤N−1 |pi|.

2.2 FHEW-like Cryptosystem

In this section, we briefly review the core concepts of the FHEW-like scheme.
We use p and q to denote the moduli of messages and ciphertexts, respectively.
For a power-of-two N , the cyclotomic ring Z[X]/(XN + 1) is denoted ZN [X].
We also write Rq,N = Zq[X]/(XN + 1) and BN [X] = B[X]/(XN + 1).

LWE, RLWE, and GLWE Ciphertexts. Under a secret key S ∈ Rk
q,N , a

message M ∈ Rp,N is encrypted into a generalized LWE (GLWE) ciphertext
C ∈ Rk+1

q,N with a scaling factor ∆ such that ∆ ≤ q/p as follows [5].

C = GLWEq,S(∆ ·M) = (A1, . . . , Ak, B =

k∑
i=1

Ai · Si + [M ·∆]q + E)

where S = (S1, . . . , Sk), Ai ← Rq,N for i = 1, 2, . . . , k, and E ← χσ for some
Gaussian distribution χσ as the error distribution. (A1, . . . , Ak) and B are called
the mask and the body of the GLWE ciphertext C, respectively, and k is called
the GLWE dimension. It is common to use the binary secret key in the FHEW-
like scheme, so we only deal with the binary secret key in this paper. Some of
the subscripts q,S might be omitted when they are clear from the context.

A GLWE ciphertext with N = 1 is called an LWE ciphertext. In this case,
it is common to use n to denote the LWE dimension instead of k, so that an

9

LWE ciphertext is usually denoted (a1, . . . , an, b) ∈ Zn+1
q . When k = 1, a GLWE

ciphertext is called a ring LWE (RLWE) ciphertext. In this paper, we distinguish
LWE ciphertexts from GLWE ciphertexts of N > 1.

The decryption of a GLWE ciphertext is to compute its phase, which is
defined as B − ⟨(A1, . . . , Ak),S⟩, followed by rounding the phase by the scaling
factor ∆. The decryption works correctly if the error contained in the ciphertext
is small enough to be eliminated during the rounding by ∆.

From the definition of the GLWE ciphertext, the sum of two GLWE cipher-
texts under the same secret key results in the sum of their internal plaintexts
in Rp,N . Multiplying the ciphertext by a scalar is possible by iterating addition
several times. Both the addition and the scalar multiplication increase the error
of the resulting ciphertext linearly.

Lev and GLev Ciphertexts. Let B ∈ N be a power-of-two and ℓ ∈ N. A
GLev ciphertext of C ∈ R(k+1)ℓ

q,N of M ∈ Rq,N with a decomposition base B

and a decomposition length ℓ under a GLWE secret key S ∈ BN [X]k is defined
as a vector of ℓ GLWE ciphertexts of M ∈ Rq,N with scaling factors q/Bj for
j = 1, . . . , ℓ as follows.

C = GLev
(B,ℓ)
S (M) =

(
GLWES

(⌈ q

Bj

⌉
·M
))

j∈[ℓ]
.

When N = 1, it is called a Lev ciphertext.

GGSW Ciphertexts. In the case of nonlinear operations such as multiplica-
tion, FHEW-like cyptosystems use another type of ciphertext called generalized
GSW (GGSW) [20]. Let B ∈ N be a power-of-two and ℓ ∈ N. A GGSW cipher-

textC ∈ R(k+1)ℓ×(k+1)
q,N of a messageM ∈ Rq,N with a decomposition base B and

a decomposition length ℓ under a secret key S ∈ BN [X]k is an (k+1)ℓ× (k+1)
matrix over Rq,N defined as follows.

C = GGSW
(B,ℓ)
S (M) =

(
GLWES

(⌈ q

Bj

⌉
(−Si ·M)

))
(i,j)∈[k+1]×[ℓ]

where S = (S1, . . . , Sk), Sk+1 = −1, and each GLWE ciphertext is considered a

row having k + 1 columns of polynomials in Rq,N . One can also represent C as

a vector of k + 1 GLev ciphertexts (GLev
(B,ℓ)
S (−Si ·M))k+1

i=1 .

Gadget Decomposition. Let B ∈ N be a power-of-two and ℓ ∈ N. The gadget
decomposition GadgetDecomp(B,ℓ) with a base B and a length ℓ decomposes an
input a ∈ Zq into a vector (a1, . . . , aℓ) ∈ Zℓ

q such that

a =

ℓ∑
j=1

aj ·
⌈ q

Bj

⌉
+ e

where aj ∈ J−B/2, B/2J for all j = 1, . . . , ℓ and the decomposition error e
satisfies |e| ≤ ⌈ q

2Bℓ ⌉. The gadget decomposition can be extended to a polynomial
in Rq (or Rq,N) by applying the decomposition to its coefficients. When it is

10

applied to a vector of polynomials, it outputs a vector of decomposition vectors
of the input polynomials.

External Product and CMux Gate. The external product � between a

GGSW ciphertext C1 and a GLWE ciphertext C2 is defined as

C1 � C2 = GadgetDecomp(B,ℓ)(C2) ·C1

where (B, ℓ) is the decomposition parameter of C1 and GadgetDecomp(B,ℓ) is
the gadget decomposition with a base B and a length ℓ.

The controlled mux gate, dubbed CMux, is the key operation used in FHEW-
like cryptosystem. Suppose that two GLWE ciphertexts C0 and C1 are given

along with a secret boolean value b encrypted to a GGSW ciphertext C, where
all three ciphertexts are encrypted with the same key S. Then one may select
Cb without knowing b by

CMux(C,C0,C1) = (C1 −C0) � C+C0.

Programmable Bootstrapping. The programmable bootstrapping (PBS) of
FHEW/TFHE supports an extra functionality that evaluates a function for free
during the bootstrapping. Suppose that an LWE ciphertext c = (a1, . . . , an, b) ∈
Zn+1
q of a phase µ = ∆m+ e under a secret key s = (s1, . . . , sn) ∈ Bn is given.

The PBS operation outputs a refreshed LWE ciphertext c′ ∈ ZkN
q of the message

f(m) under a secret key s′ ∈ BkN by the following steps.

1. Encode the function f on a new GLWE ciphertext under a different secret
key S′ ∈ BN [X]k. The half of the function values of f are redundantly
encoded in the coefficients of the plaintext of the (trivial) GLWE ciphertext.

2. (Modulus switching) Compute c̃ = (ã1, . . . , ãn, b̃) ∈ Zn+1
2N where

ãi = ⌊ai · (2N)/q⌉ and b̃ = ⌊b · (2N)/q⌉,

obtaining an LWE ciphertext of a phase µ̃ ≈ ⌊µ · (2N)/q⌉.
3. (Blind rotation) Multiply X−b̃+

∑n
i=1 ãisi = X−µ̃ to the GLWE ciphertext

encoding the function using a bootstrapping key {GGSWS′(si)}ni=1; multiply
either 1 or X−ãi according to si ∈ {0, 1} by the CMux gate.

4. (Sample extraction) Extract the constant term of the GLWE ciphertext,
obtaining an LWE ciphertext of f(m) under the secret key s′ ∈ BkN which
is a reordering of the coefficients of S′.

Since XN = −1 in the ring Rq,N , it is only possible to evaluate a negacyclic
function f : Zp → Zq such that f(x+p/2) = −f(x) by encoding only half of the
function values. To evaluate an arbitrary function, FHEW-like schemes require
one padding bit of zero in the MSB of µ to guarantee µ̃ < N .

LWE Keyswitching. The input and output LWE dimensions might be different
for the PBS operation. To improve the performance of PBS, it is common to use

11

a smaller input LWE dimension than the output LWE dimension. Hence, one
needs to switch the LWE dimension before the PBS operation, and this step
is called the keyswitching. In practice, the keyswitching operation is performed
only once just before the PBS operation to match the LWE dimension rather
than after every PBS operation.

2.3 Circuit Bootstrapping

The circuit bootstrapping is a bootstrapping process that converts an LWE
ciphertext of a single bit into the corresponding GGSW ciphertext [12]. In this
paper, we describe it in two steps: LWE to Lev, and Lev to GGSW conversion.

The first step is LWE to Lev conversion by PBS. Given an LWE ciphertext
LWEs(∆m) of a single bit message m with some scaling factor ∆, one can com-

pute Lev(B,ℓ)
s (m) by gathering its internal LWE ciphertexts LWEs(q/B

j · m)
for j = 1, . . . , ℓ using PBS. Since it computes ℓ PBS operations on the same
LWE input, PBSmanyLUT proposed by Chillotti et al. [14] can improve this step
without increasing the PBS error.

The next step is Lev to GGSW conversion by private functional keyswitching.
For a GLWE secret key S = (S1, . . . , Sk), the private functional keyswitching op-

eration converts LWEs(q/B
j ·m) contained in Lev(B,ℓ)

s (m) into GLWES(q/B
j(−Si·

m)) for i = 1, . . . , k + 1 and j = 1, . . . , ℓ where Sk+1 = −1 for convenience, ob-

taining GLev ciphertexts {GLev
(B,ℓ)
S (−Si ·m)}k+1

i=1 . These are the internal GLev

ciphertexts of the GGSW ciphertext GGSW
(B,ℓ)
S (m) of m, so the Lev cipher-

text can be converted into the GGSW ciphertext using k + 1 private functional
keyswitchings.11 We refer to Appendix B.3 for a brief overview of the functional
keyswitching.

2.4 Automorphism and Trace

The automorphism and trace can be defined on the polynomial ring RN =
Z[X]/(XN + 1) and its residue ring Rq,N = RN/qRN modulo q. For d ∈ Z×

2N ,
the automorphism τd on RN (or Rq,N) is defined by τd : µ(X) 7→ µ(Xd), and
the trace function Tr on RN (or Rq,N) is defined by

Tr(µ(X)) :=
∑

d∈Z×
2N

τd(µ(X)) = Nµ0. (1)

We then refer Algorithm 1 to describe the algorithm evaluating homomorphic
automorphism, and Algorithm 2 to describe the algorithm evaluating homomor-
phic trace. We present more detailed descriptions in Appendix B.4.

11 To be precise, it requires k private functional keyswitchings and a single public
functional keyswitching since Sk+1 = −1.

12

Algorithm 1: Evaluating Automorphism EvalAuto(C, d)

Input: C = GLWES(X)(M(X)), d ∈ Z×
2N

Input: AutoKeyd = KSS(Xd)→S(X) with decomposition base B and length ℓ

Output: C′ = GLWES(X)(M(Xd))
1 C = (A1, . . . , Ak, B)

2 C′ ← (A′
1, . . . , A

′
k, B

′) = (A1(X
d), . . . , Ak(X

d), B(Xd))
3 C′ ← GLWE KS(C′,AutoKeyd)
4 return C′

Algorithm 2: Evaluating Trace HomTrace(C)

Input: C = GLWES(X)(M(X)) where
M(X) = m0 +m1X + · · ·+mN−1X

N−1

Input: AutoKeyd = KSS(Xd)→S(X) for all d ∈ Z×
2N

Output: C′ = GLWES(X) (N ·m0)
1 C′ ← C
2 for d = 1 to log(N) do

3 C′ ← C′ + EvalAuto(C′, 2logN−d+1 + 1)

4 return C′

3 Our Improved Circuit Bootstrapping Algorithms

3.1 Patched NTT-Based CBS

We first briefly introduce the phase amplification issue in WWL+, and propose
our patched NTT-based circuit bootstrapping algorithm.

Phase Amplification. WWL+ employed HomTrace and SchemeSwitch to con-
struct their faster and smaller circuit bootstrapping [27]. It is crucial to point
that the trace evaluation will amplify the phase of the ciphertext containing both
message and error, see Equation 1. However, WWL+ just set the scaling factor
to N−1∆ mod q to deal with the message amplification, causing an error ampli-
fied by a factor of N . Without removing this error amplification, one has to use
a larger gadget decomposition length to decrease the PBS error, degrading the
overall performance, see Appendix A. We then propose our patched NTT-based
CBS algorithm with a novel pre-processing method.

Patched NTT-Based CBS. Our patched NTT-based circuit bootstrapping
method can be described as the following two steps.

Step 1 Refr. LWEs(∆m) to refreshed GLevS(m+ · · ·) by:
– PBSmanyLUT [14] without sample extraction, or
– automorphism-based multi-value blind rotation [27].

Step 2 Conv. GLevS(m+ · · ·) to GGSWS(m) conversion by:
– Preprocess ×N−1 : GLevS(m+ · · ·)→ GLevS(N

−1m+ · · ·)
– HomTrace: GLevS(N

−1m+ · · ·)→ GLevS(m)

13

– SchemeSwitch [16]: GLevS(m)→ GGSWS(m).

We present Theorem 1 to analyze the noise growth in our patched algorithm.
Additionally, we provide a detailed re-analysis of the CBS algorithm proposed
by Wang et al. [27] in Appendix A. Our method can significantly reduce the
noise growth from (N2Vpbs+

N
2 Vtr+Vss) to (Vpbs+

N
2 Vtr+Vss), removing an N2

multiplicative factor in the error variance.

Theorem 1. Let c be an LWE ciphertext of phase µ = ∆m+ ein under a secret
key s = (s1, . . . , skN) where the ciphertext modulus q is a prime. Then, our
patched NTT-based CBS algorithm returns a GGSW ciphertext C of phase m+
Ecbs(X) under the GLWE secret key S = (S1, . . . , Sk) corresponding to s where
the variance Vcbs of Ecbs(X) is given as follows.

Vcbs ≤ Vpbs +
N

2
Vtr + Vss.

where Vpbs denotes the PBSmanyLUT12 error variance, Vtr denotes the HomTrace
error variance, and Vss denotes the scheme switching error variance.

Proof Sketch. After pre-processing with N−1, the phase of the ciphertext is

N−1
⌈ q

Bj

⌉
m+N−1y1X + . . .+N−1yN−1X

N−1 +N−1Epbs(X).

Then the trace evaluation change the phase to⌈ q

Bj

⌉
m+ epbs + Etr(X),

where epbs is the constant term of Epbs without amplify it. We give the full proof
in Appendix G for self-completeness.

3.2 FFT-Based CBS

Under the large modulus used by circuit bootstrapping, FFT outperforms NTT
in terms of the concrete cost and implemented performance [30, 1]. We then
propose an FFT-based CBS method following our patched method. Compared
to the algorithm described in Section 3.1, our FFT-based CBS algorithm uses
the following techniques: (a) New pre-processing method designed for the FFT
domains, and (b) Split FFT-based evaluation to handle the FFT error.

New Pre-processing. In the patched NTT-based CBS, we use N−1 mod q to
mitigate the phase amplification. However, the existence of N−1 is guaranteed
when (N, q) are co-prime, while it is not the case in the FFT domain where
both N and q are powers-of-two. To overcome this limitation, we propose a new
pre-processing method using modulus switching (see Section 2.2 for details) and
modulus raising, as shown in Figure 5.

12 In this paper, we focus on PBSmanyLUT, the conclusions deduced from the
automorphism-based multi-value blind rotation are similar.

14

0q

e∆m

0q/N

ModSwitch

1
N e+ ems

∆
Nm

0q

ModRaise

1
N e+ ems

∆
Nm

q
N u

Fig. 5: New pre-processing method on an FFT domain.

Let C = GLWEq,S(∆m) be an LWE ciphertext of phase µ = ∆m+e modulo
q under a GLWE secret key S ∈ BN [X]k, where q and N are both powers of
two. The modulus switching of C from q to q/N divides its phase by N at the
cost of additional modulus switching error Ems, obtaining a GLWE ciphertext
C′ = GLWE q

N ,S(
∆
Nm) of phase µ′ = 1

N µ+ Ems =
∆
Nm+ 1

N e+ Ems modulo q
N .

As the input message and error are both divided by N , one can cancel out
the phase amplification from trace evaluation. Additionally, only the constant
ems of Ems survives after HomTrace. However, the modulus switching consumes
the ciphertext modulus, reducing it from q to q/N . To recover the ciphertext
modulus, we use the modulus raising from q/N to q. Let C′ = (A1, . . . , Ak, B) ∈
Rk+1

q/N . Then,

B − ⟨(A1, . . . , An),S⟩ = µ′ +
q

N
· U (2)

for some U ∈ Z[X]/(XN + 1) since the phase of C′ is µ′ modulo q
N under

the secret key S. The modulus raising interprets each coefficient of C′ in Zq/N

as an element of Zq of the same value, obtaining a GLWE ciphertext C′′ =
(A1, . . . , Ak, B) ∈ Rk+1

q of phase µ′ + q
N · U modulo q by (2).

After the above modulus switching and modulus raising, the input GLWE
ciphertext of phase µ is changed to the GLWE ciphertext of phase µ′′ = 1

N µ +
ems+

q
N ·U under the same GLWE secret key and modulus q. Although the value

of U is unknown, the term q
N · U will vanish by trace evaluation that multiplies

it by N modulo q.
This pre-processing takes negligible time compared to the homomorphic trace

evaluation. In terms of error, the modulus switching error ems is amplified by N
after HomTrace, while it is still small enough compared to other terms. We refer
to Appendix B.1 for the details.

Finally, one can replace the pre-processing step in the patched WWL+ al-
gorithm with this new method. Then, the homomorphic trace evaluation after
blind rotation outputs a GLWE ciphertext of a phase

Nµ′′ + Etr = µ+Nems + Etr (3)

under the corresponding GLWE secret key S where Etr is the error of the homo-
morphic trace evaluation.

Split FFT. Most error analyses in TFHE on FFT domains, especially for PBS,
do not deal with the errors generated from the FFT-based polynomial multi-

15

plication. However, one cannot ignore the impact of the FFT error in the CBS
automorphism-based conversion step, since it will be amplified by N during
HomTrace, possibly making it the largest term among output errors.

To reduce the FFT errors, we split a polynomial of 64-bit precision into two
parts. For instance, let F ∈ R264,N such that ∥F∥∞ ≤ B/2 and G ∈ R264,N .
Then one can represent G as

G = G0 +G1 · 2b

where the coefficients ofG0 (resp.G1) are all contained in J0, 2bJ (resp. J0, 264−bJ)
and b ∈ J0, 64J. Splitting the multiplier G decomposes the polynomial multipli-
cation F ·G into two polynomial multiplications with smaller multipliers:

F ·G = (F ·G0) + 2b · (F ·G1) .

If the multiplication F ·G1 whose result is scaled by 2b can be computed exactly
by FFT, then one can compute F ·G with a smaller FFT error at the cost of two
FFT multiplications. We call this strategy to compute polynomial multiplication
by FFT with a smaller error as split FFT.

A key point to use split FFT is finding a proper b such that F · G1 can
be computed exactly with a negligible failure probability and F · G0 has as
small FFT error as possible. To do this, we should first estimate the FFT error.
Let ∥F∥∞ ≤ B1, ∥G∥∞ ≤ B2 and χ be the bit-precision of the floating point
representation, which is 53 for double-precision. Let Efft(X) ∈ R[X]/(XN + 1)
be the error of the output of F ·G computed by FFT before rounding. Bergerat
et al. [3] proposed an estimation for the variance of FFT error in PBS as

2−2χ−2.6 · nℓq2B2N2(k + 1)13,

where (B, ℓ) is the gadget decomposition parameters for PBS and k is the GLWE
dimension. Since the FFT error variance of PBS is n times the FFT error variance
of the external product, we then derive the formula for the FFT error of a single
polynomial multiplication F ·G as 2−2χ−2.6B2

1B
2
2N

2. When it comes to the split
FFT-based GLWE keyswitching, the FFT error variance of the lower part (resp.
the upper part) is given by

22(b−χ)−2.6ℓB2N2k (resp. 22(64−b−χ)−2.6ℓB2N2k). (4)

Using (4), one can find a proper b to guarantee the exact computation on the
upper part with a negligible failure probability. For instance, the value of b for
each parameter set used in this paper is chosen to obtain the failure probability
of the split FFT smaller than about 2−2000, enabling one to ignore the failure
probability of the split FFT compared to that of PBS. On the other hand, there
might be an FFT error for the lower part, which should be added to the final
error. The split FFT reduces the FFT error significantly, making it much smaller

13 There is also an FFT error estimate proposed by Klemsa et al., we analysis the
difference in Appendix C.

16

than the additive error of the GLWE keyswitching for the parameters used in
this paper. We refer to Appendix C for the detailed analysis.

We then present Theorem 2 to analyze the noise growth in our FFT-based
circuit bootstrapping algorithm.

Theorem 2. Let c be an LWE ciphertext of phase µ under a secret key s =
(s1, . . . , skN) where the ciphertext modulus q is a power-of-two. Then, our FFT-
based CBS algorithm returns a GLWE ciphertext C of phase µ+Ecbs(X) under
the GLWE secret key S = (S1, . . . , Sk) corresponding to s where the variance
Vcbs of Ecbs(X) is given as follows.

Vcbs ≤ Vpbs +N2Vms +
N

2
Vtr + Vss

where Vpbs denotes the PBSmanyLUT output error variance, Vms denotes the
modulus switching error, Vtr denotes the HomTrace output error variance, and
Vss denotes the scheme switching output error variance. Vpbs, Vtr and Vss should
contain their FFT error variance.

Proof Sketch. The proof is analogous to that of Theorem 1 except that there
are additional pre-processing error and FFT error. We give the full proof in
Appendix G for self-completeness.

3.3 Performance

3.3.1 Patched NTT-Based CBS

Parameters. We employ the same security parameters as outlined in Table
3 of [27]. By using our novel pre-processing method to mitigate phase amplifi-
cation, we enhance the effectiveness of noise management. This allows us to re-
calibrate the noise control parameters while maintaining the similar max depth
(our parameter-gen tool is provided14 to lower the barrier to using CBS and the
LHE mode). The newly recommended parameters are presented in Table 3.

The parameters n, N and k represent the dimension of the LWE, the di-
mension of the ring polynomial, and the dimension of the GLWE, respectively.
ℓ, ℓep, ℓtr, ℓss and B,Bep, Btr, Bss denote the gadget decomposition length and base
in the circuit evaluation, external product, HomTrace and scheme switching, re-
spectively.
Performance. We implement our patched NTT-based circuit bootstrapping
algorithm as shown in Table 4 in OpenFHE library[1], which supports the
the FHEW scheme in the NTT settings. The implementation of patched CBS
are provided15. The evaluation environment is a PC with 11th Gen Intel (R)
Core(TM) i5-11500 @ 2.70GHz and 32GB of RAM, running Ubuntu 22.04.2
LTS. The execution time is the average on 1000 trails of CBS.

14 https://github.com/LightFHE/CircuitBootstrap/blob/main/parameters_gen.

py
15 https://github.com/LightFHE/CircuitBootstrap/tree/main

17

https://github.com/LightFHE/CircuitBootstrap/blob/main/parameters_gen.py
https://github.com/LightFHE/CircuitBootstrap/blob/main/parameters_gen.py
https://github.com/LightFHE/CircuitBootstrap/tree/main

Sets n N k ℓep Bep ℓtr Btr ℓss Bss ℓ B Max Depth

CMux 1 571 2048 1 1 226 3 213 1 228 4 23 38
CMux 2 571 2048 1 2 217 3 213 2 219 4 24 533
CMux 3 571 2048 1 2 217 6 28 2 219 4 25 73,951

Table 3: The recommended parameter sets for patched NTT-based CBS noise
management. For each parameter set, we have listed the max supported depth.

Implementations Sets Key Size (MB) Run Time (ms)

TFHE-NTT TFHEpp 202.04 877
WWL+ CMux O 1 30.6 102.5
Our-NTT CMux 1 15.5 77.5

TFHEpre-NTT TFHEpp 1147.5016 484.08
WWL+ CMux O 2 45.9 128.2
Our-NTT CMux 2 30.57 102.8

WWL+ CMux O 3 107 298.3
Our-NTT CMux 3 31.01(3.5×) 103.9(2.9×)

Table 4: Our patched circuit bootstrapping performance.

Comparison. We compare our patched circuit bootstrapping with the state-
of-the-art NTT-based CBS implementations, as shown in Table 4. According to
the analysis in Table 7 of [27], the original TFHE method supports a maximum
circuit depth of 9, while the pre-computed version, TFHEpre, supports 294. To
ensure fairness, our comparison uses parameter sets supporting similar depths.

Compared to the TFHE method, our result achieves a 11.3× performance
improvement and 13.0× key size compression. Compared to the faster TFHEpre

method, the key size is 37.5× smaller, while it remaining 4.7× faster. Finally,
compared to WWL+ under the similar decryption failure prob., our NTT-based
CBS decreases the latency (rsp. compresses the key size) by factors up to 2.9 (rsp.
3.5). The key size used in this paper is the compressed size (see Appendix B.7).

3.3.2 FFT-Based CBS

Parameters. For a fair comparison with our patched NTT-based CBS, we em-
ploy the same level of security parameters by migrating it into the FFT setting
in this section. We have set the LWE standard deviation σLWE (resp. GLWE
standard deviation σGLWE) by σ/Qks (resp. σ/Q) where σ is the standard devi-
ation for the error, Qks (resp. Q) is the maximum modulus size under the LWE
dimension of n (resp. kN) in the NTT setting. For the LWE keyswitching, we
use a gadget length of ℓks = 5 with a base Bks = 22. The ciphertext modulus of
q = 264 is used in our FFT-based CBS.

The recommended parameter sets for our FFT-based circuit bootstrapping
are summarized in Table 5. The additional column of btr denotes the split FFT
base to reduce the FFT error of HomTrace. One can find that our FFT-based

16 We update the key size by revising a parameter flaw in WWL+.

18

CBS uses a smaller gadget base compared to the NTT-based CBS. The reason is
that we have to consider the FFT error, making the optimal parameters slightly
different from the NTT-based CBS and reducing the max supported depth.

Sets n N k ℓep Bep ℓtr Btr btr ℓss Bss ℓ B Max Depth

CMux 1 571 2048 1 1 223 3 213 242 1 226 4 23 8
CMux 2 571 2048 1 2 215 3 213 242 2 217 4 24 1194
CMux 3 571 2048 1 2 215 6 28 237 2 217 4 25 13410

Table 5: The recommended parameter sets for our FFT-based CBS noise man-
agement. For each parameter set, we have listed the max supported depth.

We also provide a parameter analysis tool for the FFT-based LHE mode that
considers the FFT error.17

Performance. We implement our FFT-based circuit bootstrapping algorithm
using the TFHE-rs library [30] of version 0.5.3, which supports the TFHE scheme
in the FFT settings. The implementation of our FFT-based CBS are provided18.
For the benchmark in the FFT setting, we used Intel i5-13600K @ 5.30 GHz
with 128 GB RAM. The time is measured by criterion benchmarking module
of Rust with 1,000 samples.

Comparison. We compare our FFT-based circuit bootstrapping with the other
FFT-based libraries: TFHEpp and MOSFHET. The detailed results are shown
in Table 6. Compared to the faster TFHEpre method, our FFT-based CBS enjoys
3.45× faster running time and 37.5× smaller key size.

4 Improved Leveled Homomorphic Evaluation

4.1 A Flexible LHE Framework

The LHE framework is inflexible since the Conv. step is always bonded executed
with the heavy Refr. step, denoted as circuit bootstrapping (CBS). However,
given that the supported circuit evaluation depth increases exponentially with
the circuit bootstrapping parameters, using CBS for small-scale circuits to con-
vert ciphertext types results in wasted depth.

We then propose a HalfCBS algorithm inputs C = GGSWS(m) and out-
puts C = GGSWS(L[m]) to achieve the circuit composability without refresh-
ing noise. Compared to our proposed CBS algorithms described in Section 3.1
and Section 3.2, the HalfCBS algorithm (Algorithm 3) does not have a Refr.
step. Specifically, it use ℓ look up table circuits Circuitm→vi·L[m] instead of
PBSmanyLUT to generate GLevS(m+ · · ·), where ℓ denotes the GGSW gadget
length. Then its computational complexity can be reduced from O(nN logN) to
O(N log2 N) compared to the whole CBS algorithm, significantly improving the
efficiency. We then propose Theorem 3 to analyze the noise growth in HalfCBS.

17 https://github.com/KAIST-CryptLab/FFT-based-CircuitBootstrap/tree/main/

fft_error_analysis
18 https://github.com/KAIST-CryptLab/FFT-based-CircuitBootstrap/tree/main

19

https://github.com/KAIST-CryptLab/FFT-based-CircuitBootstrap/tree/main/fft_error_analysis
https://github.com/KAIST-CryptLab/FFT-based-CircuitBootstrap/tree/main/fft_error_analysis
https://github.com/KAIST-CryptLab/FFT-based-CircuitBootstrap/tree/main

Methods Sets Key Size (MB) Run Time (ms)

TFHEpre-FFT TFHEpp 1360 63.20
TFHEpre-FFT MOSFHET 5201.88 152.83

Our-FFT CMux 2 36.31 18.34

Our-FFT CMux 1 18.44 13.28
Our-FFT CMux 3 36.83 19.38

Table 6: Our proposed FFT-based circuit bootstrapping performance compared
to TFHEpp and MOSFHET.
Algorithm 3: HalfCBS

Input: C = GGSWS(m)
Input: ℓ look up table circuits Circuitm→vi·L[m], i ∈ {1, . . . , ℓ}
Input: Automorphism keys under S
Input: Scheme switching key under S
Output: C = GGSWS(L[m])

1 for i = 1 to ℓ do
2 C′

i ← Circuitm→vi·L[m](C)

3 C′ ← {C′
i}i∈{1,...,ℓ}

4 C′ ← Preprocess(C′)
5 C′ ← HomTrace(C′)
6 C← SchemeSwitch(C′)
7 return C

Theorem 3. Let C be a GGSW ciphertext of phase µ = m+ ein under a secret
key S = (S1, . . . , Sk). Then our HalfCBS algorithm returns a GGSW ciphertext
C of phase m + Ehalf-cbs(X) where the variance Vhalf-cbs of Ehalf-cbs(X) is given
as follows.

Vhalf-cbs(X) ≤ Vcircuit + Vpre +
N

2
Vtr + Vss.

where Vcircuit ≤ (1 + kN)
(

q2−B2ℓ

24B2ℓ + 1
12

)
+ (k + 1)ℓN

(
B2+2
12

)
σ2
in denotes the

circuit evaluation error variance, where d is the circuit depth. Vpre denotes the
pre-processing error variance, Vtr denotes the trace evaluation error variance,
and Vss denotes the scheme switching error variance, and σ2

in = Var(ein). Vcircuit,
Vtr and Vss should contain their FFT error variance in the FFT setting.

Proof. One can directly derive the equation Vcircuit ≤ (1 + kN)
(

q2−B2ℓ

24B2ℓ + 1
12

)
+

(k+1)ℓN
(

B2+2
12

)
σ2
in from the CMux construction and Lemma 4. Vpre = N2Vms

comes from Theorem 2 in the FFT setting, otherwise Vpre = 0 in the NTT setting
following our new proposed pre-processing method.

Theorem 3 demonstrates that the HalfCBS algorithm amplifies the input
noise in each round rather than refreshing it. Therefore, it is more suitable for
tasks with a small number of circuits and low circuit depth. However, our flexible
LHE framework can incorporate the following optimization methods to handle
complex tasks. For simplicity, these methods are not included in Algorithm 3:

20

Hybrid use of HalfCBS and CBS algorithms: Our LHE framework can
make a flexible and mixed use of both HalfCBS and CBS algorithms. Specifically,
based on a compact noise assessment, the HalfCBS algorithm can be used when
the noise level is low, and the CBS algorithm can be employed when the noise
is about to overflow. This technique is conducted in the AES transciphering
implementation in Section 4.3, where a HalfCBS round is shown to be 2.4 times
faster than a CBS round.

4.2 General Look-Up Table Evaluation

To demonstrate the power of LHE mode, we introduce the general Look-Up
Table(LUT) evaluation. Specifically, LUT is commonly used in homomorphic
applications since it can represent general functions [13]. In the FHE mode,
LUT is evaluated using PBS-tree [6, 21]. On the other hand, in the LHE mode,
LUT is evaluated via circuit bootstrapping and CMux-tree [11, 12, 3].

For an LUT L : Bd → Rs, it can be expressed with s sub-LUT Li : Bd → R,
each of which contains a list of 2d inputs and 1 output. Then in order to evaluate
Li in the LHE mode, we need to convert the d inputs and build a binary decision
tree composed of 2d−1 CMux gates. Therefore the total complexity of evaluation
L requires d times circuit bootstrappings and s · (2d−1) CMux gates. We denote
the latency using d · Tcbs + (s(2d − 1)) · Tcmux, where Tcbs and Tcbs denote the
execution time of circuit bootstrapping and CMux gates, respectively. On the
other hand, in FHE mode, the LUT evaluation time is (d + s(2d − 1)) · Tpbs

accordingly [12], where Tpbs denotes the PBS time.
We then implement the general LUT in both the NTT domain with OpenFHE

and FFT domain with TFHE-rs. Furthermore, we adopted the packing strategy
proposed in [11] to further optimize performance as detailed in Appendix D.

0 5 10 15
5

10

15

20

25

d

lo
g
2
T
im

e
(m

s)

NTT-based LUT

0 5 10 15

5

10

15

20

d

lo
g
2
T
im

e
(m

s)

FFT-based LUT

LHE (CMux 1) H-Pack (CMux 1) V-Pack (CMux 1)

LHE (CMux 3) H-Pack (CMux 3) V-Pack (CMux 3)

FHE

Fig. 6: Comparison of LUT evaluation using GBS and CBS.

21

Our experimental results demonstrates that, based on our FFT-based circuit
bootstrapping algorithm, we can evaluate 8/16-bit (to 8-bit) look-up tables in
136.2/310.8 milliseconds in the LHE mode, respectively. Compared to the FHE
mode, the performance improvement factors are 26.8/213.61, respectively. This
factor tends to 222 for lager input size (221.84 for 32-bit input), see Figure 8 in
Appendix D for pictures until d = 32 to check the details.

4.3 AES Transciphering

Homomorphic AES evaluation is one of the relevant applications of the tran-
sciphering framework, which combines a symmetric cipher with a homomorphic
encryption scheme, see details in Appendix E. This hybrid approach aims to
reduce computation and communication costs of the client-side at the cost of
homomorphic decryption of the symmetric cipher on the server-side [24]. Sev-
eral works evaluating AES have been proposed [19, 9, 15, 17, 4, 26, 29, 27, 28].
Among these, the fastest method to date (in a single thread) is based on the
LHE mode in the FHEW-like cryptosystem [27, 28].

In the LHE mode, single-bit message encoding makes bit shifting operations
nearly cost-free. Additionally, homomorphic XOR can be efficiently implemented
using homomorphic addition, which incurs minimal computational overhead. As
a result, the LHE mode allows for almost free evaluation of AddRoundKey,
ShiftRows, and MixColumns in AES transciphering in terms of computation
time. Consequently, the primary cost arises from computing the 8-bit AES S-
box (SubBytes) using 8-8 lookup tables and performing circuit bootstrapping.
For a detailed step-by-step evaluation, please refer to Appendix E.1.

n N k ℓks Bks

HalfCBS CBS (ϑ = 3) Failure
Prob.ℓtr Btr ℓss Bss ℓ B ℓpbs Bpbs ℓtr Btr ℓss Bss ℓ B

768 1024 2 3 24 8 26 2 219 6 24 1 223 3 213 2 219 7 22 2−36.8

Table 7: Parameters for the AES evaluation.

We then implement the AES transciphering based on our FFT-based CBS.
For our implementation, we use the parameter set as listed in Table 7. We used
the LWE standard deviation of 2−17.12 that achieves 128-bit security according
to the lattice-estimator [2]. For the GLWE standard deviation, we use the same
value as in the recommended parameters of TFHE-rs. Additionally, we propose
the following techniques to further improve the performance:

1. Flexible LHE: We use our proposed flexible LHE framework. For instance,
the latency of the HalfCBS round is 808.78 ms, which is 2.4 times faster than
the CBS round (1920.1 ms). However, the whole AES transciphering is too
large to use HalfCBS for all of the procedures. We currently use it 1 time
without affecting the decryption failure prob., and one can adjust it flexibly.

2. Modified AES evaluation: We embed the AES round key into the Sbox
to generate a keyed Sbox encrypted by FHE. Then we can eliminate the

22

Scheme Evaluation Mode Hardware F.P. Performance

BGV LHE [19] i5-3320M 2−40 1,080s19

FHEW-like

FHE [26] i7-12700H 2−23 270s
FHE [4] / 2−23 103s
LHE [29] i5-12500 / 86s
LHE [27] i5-11500 2−32 73.8s20

LHE [28] i5-11500 / 46s (769 MB)
LHE (Our) i5-13600K 2−37 16.5s (19.10 MB)

Flex. LHE (Our) i5-13600K 2−37 15.6s (24.32 MB)

Table 8: Our AES evaluation performance compared with the state of the art.

homomorphic addition (AddRoundKey) before look-up tables in AES tran-
sciphering. Furthermore, we mix SubBytes, MixColumns, and ShiftRows to-
gether into four 8-24 LUTs following Wei et al.’s method [28], reducing the
number of homomorphic additions and the noise growth.

Table 8 shows the benchmark result and comparison with previous works.
Although the benchmark environments are varying, one can find that our results
outperform all the previous results.

5 High-Precision Input LHE

In Section 3 and Section 4, we show the advantage of LHE mode dealing with
bit-wise input. However, there is also a common approach for FHEW-like cryp-
tosystems to handle large-size messages, which involves decomposing the input
into multi-bit chunks21, and thereby supporting some linear operations without
modulus and tree-based LUT [6, 13, 14, 21].

These evaluation methods lead to a challenge for the LHE mode to deal
with high-precision inputs instead of bits. To respond to this issue, Bergerat et
al.[3] proposed the WoP-PBS algorithm, as shown in Figure 7a. This algorithm
extracts each bit from the ciphertext chunks, and converts them into GGSWs to
perform CMux evaluation. In this section, we propose a new HP-LHE framework
by improving the WoP-PBS algorithm, as shown in Figure 7b.

19 Gentry et al. also proposed an AES evaluation without bootstrapping, with a latency
of 240s. However, the output from this method does not support further evaluation,
so that it is not suitable for transciphering.

20 Wang et al. evaluate AES transciphering with their WWL+ circuit bootstrapping
method [27], achieved a latency of 26 seconds. However, this method is affected by
phase amplification, resulting in a higher decryption failure probability. Therefore,
we reanalyzed their method in Appendix A, provided new parameter sets, and used
the performance under these parameters as a benchmark.

21 There is a general parameter setting method in tfhe-rs library for shortint type,
called PARAM MESSAGE a CARRY b. It encodes a message bits and b carry bits, where
the carry bits are reserved for linear operations.

23

(a) WoP-PBS Method [3] (b) Our HP-LHE Method

Fig. 7: The High-Precision Solutions in the LHE Mode.

5.1 New HP-LHE Framework

We present our insightful observation and idea for the construction in technique
overview, and further detailed full algorithm in Appendix F. For short, we im-
prove WoP-PBS and present our HP-LHE by using the following techniques:

– We integrate the extraction and refreshing step by modified PBSmanyLUT.
– We propose a high-precision HomTrace to improve the conversion step.
– We present a multi-bit extraction method to enhance the extraction step.

Integrate Extr. with Refr. Suppose that an LWE ciphertext of a δ-bit mes-
sagem scaled by∆ = ⌈q/2δ⌉ is given wherem =

∑δ−1
j=0 mj2

j andm0, . . . ,mδ−1 ∈
{0, 1}. In the original WoP-PBS, each bit of the message requires (ℓ + 1) PBS
operations where ℓ is the gadget length of the CBS output.22

The bit extraction step and the CBS step are separated in the algorithm of
the original WoP-PBS, while we can describe it together as follows. For each
iteration, the LWE ciphertext LWE(⌈q/2⌉ ·m0) of the LSB m0 is obtained by
multiplying LWE(∆m) by 2δ−1. Given LWE(⌈q/2⌉ ·m0) as an input,

– the bit extraction step outputs LWE(∆m) by a single PBS operation, and
– the CBS step outputs Lev(m) by ℓ PBS operations and converts it into

GGSW(m) by the followed Conv. step.

The output LWE(∆m) of the bit extraction step is subtracted from the input
ciphertext LWE(∆m), obtaining an input ciphertext LWE(∆′m′) to the next

iteration where ∆′ = ⌈q/2δ−1⌉ and m′ =
∑δ−1

j=1 mj2
j .

From the above description, one can find that the PBS operations take the
same input ciphertext LWE(⌈q/2⌉ ·m0). Furthermore, the output LWE(∆m0) of
the bit extraction step can be obtained from the output GGSW(m) of the CBS
step. So that we can generate GGSW(m) by a single PBSmanyLUT, reducing
the number of blind rotations from δ(ℓ+ 1) to δ.

22 To be precise, the MSB does not require a PBS operation for the bit extraction.

24

Algorithm 4: High Precision Conversion

Input: Ci = GLWES(vi ·m+ u1,iX + · · ·+ uN−1,iX
N−1) for i = 1, . . . , ℓ

Input: GLWE keyswitching keys KSS→S′ and KSS′→S where S = (S1, . . . , Sk)
is the corresponding GLWE secret key of s and S′ = (S′

1, . . . , S
′
k′)

wheres k′ > k
Input: Automorphism keys under S′

Input: Scheme switching key under S

Output: C = GGSWS(m)
1 for i = 1 to ℓ do
2 C′

i ← GLWE KS(Ci,KSS→S′)
3 C′

i ← Preprocess(C′
i)

4 C′
i ← HomTrace(C′)

5 C′
i ← GLWE KS(C′,KSS′→S)

6 C′ ← {C′
i}ℓi=1

7 C← SchemeSwitch(C
′
)

8 return C

Improved Conv. with HP-HomTrace The Conv. step takes the blind ro-
tation output and converts it into a GGSW ciphertext. The WWL+ method
replaces the heavy private functional key switching with HomTrace and scheme
switching, improving both computation cost and key size. However, in terms
of error growth, this method cannot support higher precision because the error
variance of the evaluation key is amplified by O(N3) during the conversion step.
Although the error induced by HomTrace was small enough to be used in the
bit-input LHE mode, we need high-precision HomTrace evaluation method to
support the multi-bit input LHE mode.

We propose a high-precision HomTrace approach by combining GLWE di-
mension switching as follows. Let S be a GLWE secret key of a dimension k,
we first switch the GLWE ciphertext into the corresponding GLWE ciphertext
under a new GLWE secret key S′ of a larger dimension k′ than k by GLWE key
switching (see Algorithm 5 in Appendix B.2). Then, after pre-processing on the
switched GLWE ciphertext to handle phase amplification, we evaluate the trace
on the large dimension. Finally, we switch it back into the origin.

We propose Algorithm 4 for high precision conversion step, and present The-
orem 4 to bound the conversion noise. We note that HomTrace is evaluated in
the larger GLWE dimension k′ in Algorithm 4, so one can make Vtr in Theorem 4
much smaller than that in Theorem 1 and 2 for the same N .

Theorem 4. Let c be an LWE ciphertext of a message m under a secret key
s = (s1, . . . , skN) and S = (S1, . . . , Sk) be the GLWE ciphertext corresponding
to s. Let S′ = (S′

1, . . . , S
′
k) be a GLWE secret key of a dimension k′ such that

k′ > k. Provided that the FFT error is negligible when the FFT domain is used,
our CBS algorithms along with high-precision conversion (Algorithm 4) returns

a GGSW ciphertext C of m under S whose error variance Vhp-cbs is given as

25

follows.

Vhp-cbs = Vpbs + Vpre + VS→S′ +
N

2
(Vtr + VS′→S) + Vss

where VS→S′ (resp. VS′→S) is the GLWE keyswitching noise variance from S to
S′ (resp. S′ to S), Vpre is the pre-processing noise variance, and Vtr is the trace
evaluation variance under S′.

Proof. Compared to our previous CBS algorithms, additional GLWE keyswitch-
ing errors are induced during Conv. step. For the first keyswitching error (from
S to S′), the subsequent pre-processing prevents the error amplification by
HomTrace and only its constant term is remained after HomTrace, so the mul-
tiplication factor N/2 of the scheme switching is not multiplied. For the second
keyswitching error (from S′ to S), the multiplication factor of the scheme switch-
ing is multiplied together with the HomTrace error.

Multi-Bit Extraction Algorithm. By the above two techniques, one can
extract and convert each bit of the message using a single blind rotation. To
reduce it further, we try to process several message bits (τ bits) in a single blind
rotation. We then propose multi-bit extraction algorithm as follows.

Suppose that a scaled input ciphertext LWE(⌈q/2τ⌉) · (m) of a τ -bit chunk

m is given where m =
∑τ−1

j=0 mj · 2j . After obtaining GLev(⌈q/2⌉ ·mτ−1 + . . .)
by PBSmanyLUT, one can also compute GLev(⌈q/2⌉ · (mτ−1 ⊕ mj) + . . .) by
MV-PBS [21]. We refer to Appendix F for the details of the MV-PBS opera-
tion for the multi-bit extraction. Building on this, the conversion step outputs(
GGSW(m′

j)
)τ−1

j=0
, wherem′

τ−1 = mτ−1 andm′
j = mτ−1⊕mj for j = 0, . . . , τ−2.

Then, by easily building a circuit Circuit(m′
τ−1,...,m

′
0)7→∆·L[m], one can compute

LWE(∆L[m]) by evaluating the circuit using
(
GGSW(m′

j)
)τ−1

j=0
.

5.2 Performance

Environments and Parameters. We implement our new HP-LHE framework
using the TFHE-rs library [30] of version 0.5.3. The overall benchmark environ-
ment is the same as that of Section 3.3.2.

We used the same security parameters for our new HP-LHE framework with
that of the recommended parameter sets for WoP-PBS in the TFHE-rs library,
named WOPBS PARAM MESSAGE a CARRY a KS PBS for a ∈ {2, 3, 4}, all of which
uses N = 2048 and k = 1. The name of these parameter sets indicates that
its plaintext encoding has no padding bit and a-bit carry and a-bit message.
We denote such plaintext encoding as WOPBS a a in short. The recommended
parameter sets for each of the encodings are summarized in Table 9. We note
that our parameter set for WOPBS 3 3 uses a smaller PBS gadget length than
that of the TFHE-rs library.

Comparison with WoP-PBS. We compare our new HP-LHE framework with
the WoP-PBS implemented in the TFHE-rs library. The detailed results are

26

Encoding n ℓks Bks ℓpbs Bpbs ℓtr Btr btr ℓss Bss ℓk→k′ Bk→k′ bk→k′ ℓk′→k Bk′→k bk′→k ℓ B ϑ

WOPBS 2 2 769 3 24 2 215 7 27 236 2 216 - - - - - - 4 24 2
WOPBS 3 3 873 2 27 3 211 4 212 241 4 210 3 215 244 3 213 242 4 25 2
WOPBS 4 4 953 2 27 4 29 6 29 239 4 210 3 215 244 4 210 240 8 23 3

Table 9: Recommended parameter sets for our new HP-LHE framework.

Encoding Method δ τ
Time (ms) Max Depth Key Size

(MB)Extr. Refr. Conv. Total F.P.-32 F.P.-80 F.P.-128

WOPBS 2 2 TFHE-rs 4 1 69.73 253.40 231.91 555.04 171 62 37 170.01
Ours 4 1 82.19 18.12 100.31 558 203 119 49.33

4 2 39.55 17.93 57.48 516 161 77 49.33

WOPBS 3 3 TFHE-rs 6 1 217.79 761.12 696.09 1675.00 1017 315 150 365.13
Ours 6 1 196.81 40.99 237.80 1393 507 299 82.80

6 2 91.46 41.09 132.55 1289 404 196 82.80
6 3 62.15 41.32 103.47 292 - - 82.80

WOPBS 4 4 TFHE-rs 8 1 337.86 2237.5 1897.5 4472.86 6669 2428 1429 375.13
Ours 8 1 365.54 150.23 515.77 17073 5335 2572 120.45

8 2 178.64 149.75 328.39 11523 - - 120.45

Table 10: Our new HP-LHE framework performance.

shown in Table 10. The maximum CMux depth after circuit bootstrapping is
computed according to various failure probabilities. Our method has a larger
max-depth (only except for the case of (δ, τ) = (6, 3)), so our performance im-
provement does not come from degrading success probability.

According to the plaintext encoding, our HP-LHE framework improves the
running time of the WoP-PBS method by factors from 9.7 to 16.2 for the pa-
rameters supporting failure probability of 2−128. For the relaxed parameters that
only support failure probability of 2−32, our method is even more than 16.19×
faster. In terms of the key size, our method reduces it by factors from 3.4 to 4.4.

6 Conclusion

The current design and application of FHEW-like schemes are mainly focused on
gate bootstrapping, which hides the sophisticated parameter configuration and
provides a user-friendly interface to the application developers. However, for
most of the applications, leveled homomorphic evaluation presents more com-
petitive solutions. In this paper, we refined the workflow of leveled homomorphic
evaluation based on FHEW-like schemes, making it clearer, more flexible and
easy to use. By decoupling the most expensive circuit bootstrapping into three
fine-grained operations, we significantly reduce the need for time consuming op-
erations. In addition to workflow improvements, main building blocks such as
HomTrace, FFT multiplication, parameter evaluation, multi-bits LUT are care-
fully polished. Based on the improvement above, the homomorphic of AES can
be speed up by 2.9× and the evaluation of 8-32 LUT can be speed up by 221.84×.

27

References

[1] Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: Openfhe: Open-source fully homomorphic encryption library. In:
Proceedings of the 10th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. pp. 53–63. WAHC’22, Association for Computing Ma-
chinery, New York, NY, USA (2022). https://doi.org/10.1145/3560827.3563379,
https://doi.org/10.1145/3560827.3563379

[2] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learn-
ing with Errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015).
https://doi.org/doi:10.1515/jmc-2015-0016

[3] Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.:
Parameter Optimization and Larger Precision for (T)FHE. Journal of Cryptology
36, 28 (2023). https://doi.org/10.1007/s00145-023-09463-5

[4] Bon, N., Pointcheval, D., Rivain, M.: Optimized Homomorphic Eval-
uation of Boolean Functions. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024(3), 302–341 (Jul 2024).
https://doi.org/10.46586/tches.v2024.i3.302-341

[5] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomor-
phic Encryption without Bootstrapping. In: Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference. p. 309–325. ACM (2012).
https://doi.org/10.1145/2633600

[6] Carpov, S., Izabachène, M., Mollimard, V.: New Techniques for Multi-value Input
Homomorphic Evaluation and Applications. In: Matsui, M. (ed.) CT-RSA 2019.
pp. 106–126. Springer (2019). https://doi.org/10.1007/978-3-030-12612-4 6

[7] Chen, H., Chillotti, I., Ren, L.: Onion Ring ORAM: Efficient Constant Bandwidth
Oblivious RAM from (Leveled) TFHE. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 345–360. CCS ’19,
ACM (2019). https://doi.org/10.1145/3319535.3354226

[8] Chen, H., Dai, W., Kim, M., Song, Y.: Efficient Homomorphic Conversion Be-
tween (Ring) LWE Ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) Applied
Cryptography and Network Security. pp. 460–479. Springer (2021)

[9] Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Advances in
Cryptology–EUROCRYPT 2013: 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-
30, 2013. Proceedings 32. pp. 315–335. Springer (2013)

[10] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016. vol. 10031, pp. 3–33. Springer
(2016)

[11] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomor-
phic operations and efficient circuit bootstrapping for tfhe. In: Takagi, T., Peyrin,
T. (eds.) Advances in Cryptology – ASIACRYPT 2017. Springer International
Publishing, Cham (2017)

[12] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Ho-
momorphic Encryption Over the Torus. Journal of Cryptology 33, 34–91 (2020).
https://doi.org/10.1007/s00145-019-09319-x

28

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1007/s00145-019-09319-x

[13] Chillotti, I., Joye, M., Paillier, P.: Programmable Bootstrapping Enables Ef-
ficient Homomorphic Inference of Deep Neural Networks. In: Dolev, S., Mar-
galit, O., Pinkas, B., Schwarzmann, A. (eds.) Cyber Security Cryptography and
Machine Learning. pp. 1–19. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-78086-9 1

[14] Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved Programmable Bootstrap-
ping with Larger Precision and Efficient Arithmetic Circuits for TFHE. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021. pp. 670–699. Springer (2021).
https://doi.org/10.1007/978-3-030-92078-4 23

[15] Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Public-Key Cryptography–PKC 2014: 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceedings 17. pp. 311–328. Springer (2014)

[16] De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster Amortized FHEW Boot-
strapping Using Ring Automorphisms. In: Tang, Q., Teague, V. (eds.) Public-Key
Cryptography – PKC 2024. pp. 322–353. Springer Nature Switzerland, Cham
(2024)

[17] Doröz, Y., Hu, Y., Sunar, B.: Homomorphic aes evaluation using the modified ltv
scheme. Designs, Codes and Cryptography 80, 333–358 (2016)

[18] Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015. vol. 9056, pp. 617–640. Springer (2015)

[19] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit.
In: Annual Cryptology Conference. pp. 850–867. Springer (2012)

[20] Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. vol. 8042, pp. 75–92. Springer
(2013). https://doi.org/10.1007/978-3-642-40041-4 5

[21] Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems pp.
229–253 (2021)

[22] Klemsa, J.: Fast and Error-Free Negacyclic Integer Convolution Using Extended
Fourier Transform. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.)
Cyber Security Cryptography and Machine Learning. pp. 282–300. Springer In-
ternational Publishing, Cham (2021)

[23] Micciancio, D., Polyakov, Y.: Bootstrapping in fhew-like cryptosystems. In: Pro-
ceedings of the 9th on Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography. pp. 17–28 (2021)

[24] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can Homomorphic En-
cryption be Practical? In: Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop. p. 113–124. ACM (2011).
https://doi.org/10.1145/2046660.2046682

[25] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124 (2011)

[26] Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: A Homomorphic AES Evalu-
ation in Less than 30 Seconds by Means of TFHE. In: Proceedings of the 11th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography. p.
79–90. WAHC ’23, Association for Computing Machinery, New York, NY, USA
(2023). https://doi.org/10.1145/3605759.3625260

29

https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/3605759.3625260

[27] Wang, R., Wen, Y., Li, Z., Lu, X., Wei, B., Liu, K., Wang, K.: Circuit Bootstrap-
ping: Faster and Smaller. In: Joye, M., Leander, G. (eds.) Advances in Cryptology
– EUROCRYPT 2024. pp. 342–372. Springer Nature Switzerland, Cham (2024)

[28] Wei, B., Lu, X., Wang, R., Liu, K., Li, Z., Wang, K.: Thunderbird: Efficient
homomorphic evaluation of symmetric ciphers in 3gpp by combining two modes
of tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems
2024(3), 530–573 (2024)

[29] Wei, B., Wang, R., Li, Z., Liu, Q., Lu, X.: Fregata: Faster Homomorphic Evalu-
ation of AES via TFHE. In: Athanasopoulos, E., Mennink, B. (eds.) Information
Security. pp. 392–412. Springer Nature Switzerland, Cham (2023)

[30] Zama: TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data (2022), https://github.com/

zama-ai/tfhe-rs

30

https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

Supplementary Materials

A Re-analysis of WWL+

This section reanalyzes the circuit bootstrapping proposed in [27] and fixes pre-
vious errors.

The original NTT-based circuit bootstrapping method can be described as
the following two steps.

Step 1 Refr. LWEs(∆m) to refreshed GLevS(N
−1m+ · · ·) by:

– PBSmanyLUT [14] without sample extraction, or
– automorphism-based multi-value blind rotation [27].

Step 2 Conv. GLevS(N
−1m+ · · ·) to GGSWS(m) conversion by:

– HomTrace: GLevS(N
−1m+ · · ·)→ GLevS(m)

– SchemeSwitch: GLevS(m)→ GGSWS(m).

We propose Theorem 5 to provide a detailed re-analysis of the noise growth
in the CBS algorithm proposed by Wang et al. [27].

Theorem 5. Let c be an LWE ciphertext of phase µ under a secret key s =
(s1, . . . , skN) where the ciphertext modulus q is a prime. Then, our patched NTT-
based CBS algorithm returns a GGSW ciphertext C of phase µ+Ecbs(X) under
the GLWE secret key S = (S1, . . . , Sk) corresponding to s where the variance
Vcbs of Ecbs(X) is given as follows.

Vcbs ≤ N2Vpbs +
N

2
Vtr + Vss.

where Vpbs denotes the PBSmanyLUT 23 output error variance, Vtr denotes the
HomTrace output error variance, and Vss denotes the scheme switching output
error variance.

Proof. The Refr. step outputs a GLev ciphertext, where the phase of the j-th
GLWE ciphertext is

N−1
⌈ q

Bj

⌉
m+ y1X + . . .+ yN−1X

N−1 + Epbs(X),

where yiX
i are some redundant terms and Epbs(X) is the PBSmanyLUT error.

Subsequent trace evaluation can eliminate the power terms of X and multiply
the constant term by a factor of N . Therefore the phase of HomTrace is⌈ q

Bj

⌉
m+Nepbs + Etr(X),

23 In this paper, we focus on PBSmanyLUT, the conclusions deduced from the
automorphism-based multi-value blind rotation are similar.

31

where epbs is the constant term of Epbs and Etr(X) is the error induced by
HomTrace. Lastly, the phase after scheme switching with Si is(⌈ q

Bj

⌉
m+Nepbs + Etr(X)

)
· Si + Ess(X)

=
⌈ q

Bj

⌉
mSi +NepbsSi + Etr(X)Si + Ess(X),

where Ess(X) is the error induced by scheme switching.
Since all of the additive errors epbsSi, Etr(X)Si and Ess(X) are independent,

the noise variance

Vcbs = N2V (epbsSi) + V (Etr(X)Si) + Vss.

Since the secret key Si follows uniform binary distribution, we have V (epbsSi) =
Vpbs thanks to epbs is only a constant term. Furthermore, V (Etr(X)Si) ≤ N

2 Vtr,

where N
2 is the ring expansion factor. Substituting these estimates into the above

formula, we obtain

Vcbs ≤ N2Vpbs +
N

2
Vtr + Vss.

Based on the noise analysis from Theorem 5, we have adjusted the noise
control parameters, as listed in Table 11 and implemented them in OpenFHE.
We note that the key size in this paper assumes that the evaluation keys are
compressed (see Appendix B.7).

Sets ℓep Bep ℓtr Btr ℓss Bss ℓ B Max Depth Key Size # of NTTs Time (ms)

CMux O 1 2 217 3 213 1 228 4 23 8 30.6 MB 3610 102.5
CMux O 2 3 213 5 29 1 228 4 24 520 45.9 MB 4840 128.2
CMux O 3 7 27 7 27 2 219 4 25 271,500+ 107 MB 9500 298.3

Table 11: The recommended parameter sets for refined NTT based CBS noise
management. For each parameter set, we have listed the corresponding max
supported circuit depth, circuit bootstrapping key size, and the number of needed
NTT/FFTs.

B FHEW-like Cryptosystem Operations

As in most TFHE/FHEW-like cryptosystems, we analyze the noise growth based
on the heuristic assumption such that the noises of coefficient in ciphertexts
follow independent Gaussian distribution (or sub-Gaussian) centered at 0 of some
standard deviation σ. We denote the noise variance of a key in terms of ℓ∞-norm,
giving an upper bound of the variance of all coefficients of the key components.

32

For the gadget decomposition with a base 2B and a length ℓ, we assume the
decomposition error is uniformly sampled from J− q

2Bℓ ,
q

2Bℓ J as analogous to [14].
As mentioned in Section 2.2, we only deal with the binary secret key in this
section.24 The proofs given in this section comes from [8, 14, 16, 7] with a slight
modification generalizing GLWE dimension k.

B.1 Modulus Switching

Let q and q′ be ciphertext moduli such that q′ < q. Given a GLWE ciphertext
C = (A1, . . . , Ak+1) ∈ Rk+1

q,N of M under S = (S1, . . . , Sk), the modulus switch-

ing from q to q′ outputs a GLWE ciphertext C′ = (A′
1, . . . , A

′
k+1) ∈ Rk+1

q′,N of
q′

q M under S where A′
i =

⌊
q′

q Ai

⌉
for i = 1, . . . , k + 1.

Lemma 1 (Modulus Switching). Let C ∈ Rk+1
q,N be a GLWE ciphertext of

a phase µ under S. Then, modulus switching outputs a GLWE ciphertext C′ ∈
Rk+1

q′,N of a phase q′

q µ + Ems under S where the variance Vms of Ems is given as
follows.

Vms ≤
kN + 1

12
.

Proof. Let C = (A1, . . . , Ak+1) and C′ = (A′
1, . . . , A

′
k+1) where A′

i = ⌊ q
′

q Ai⌉ for
i = 1, . . . , k + 1. Then, one can represent A′

i as

A′
i =

q′

q
Ai + E′

i

where coefficients of E′
i are uniformly and independently sampled from [− 1

2 ,
1
2).

The phase of C′ under S is given as follow.

⟨C′, (−S, 1)⟩ = q′

q

(
Ak+1 −

k∑
i=1

AiSi

)
+

(
E′

k+1 −
k∑

i=1

E′
iSi

)
.

Let Ems = E′
k+1 −

∑k
i=1 E

′
iSi. From E′

i ← [− 1
2 ,

1
2) and S is a binary secret key,

one obtain

Var(Ems) ≤
kN + 1

12
.

For an LWE ciphertext, the modulus switching error increment ems has vari-
ance bounded above by n+1

12 . We note that ems (and Ems) does not depend on q
and q′.

24 The result is the same for the ternary secret key, while is not for the Gaussian secret
key.

33

B.2 GLWE Keyswitching

Let S and S′ be two GLWE secret keys of dimensions k and k′, respectively,
and of the same polynomial size N . The GLWE keyswitching from S to S′

changes a GLWE ciphertext of M under S to another GLWE ciphertext of M
under S′ using the GLWE keyswitching key {GLevS′(Si)}ki=1, a set of k GLev
ciphertexts of Si, i = 1, . . . , k. The precise description of the algorithm is given
in Algorithm 5.

Algorithm 5: GLWE keyswitching GLWE KS

Input: C = GLWES(M) under S = (S1, . . . , Sk)

Input: KSS→S′ [i] = GLev
(B,ℓ)

S′ (Si) for i = 1, . . . , k with decomposition base B
and length ℓ under S′ = (S′

1, . . . , S
′
k′)

Output: C′ = GLWES′(M)
1 C = (A1, . . . , Ak, Ak+1)
2 KSS→S′ [i][j] = GLWES′

(
q
Bj · Si

)
for i ∈ [k] and j ∈ [ℓ]

3 C′ ← (0, · · · , 0, Ak+1) = GLWE0
S′(Ak+1) ∈ Rk′+1

q,N

4 for i = 1 to k do

5 Decompose Ai as
∑ℓ

j=1 A
′
i,j · q

Bj +E′
i with ∥A′

i,j∥∞ ≤ B
2
and ∥E′

i∥∞ ≤ q

2Bℓ

6 C′ ← C′ −
∑ℓ

j=1 A
′
i,j ·KSS→S′ [i][j]

7 return C′

Lemma 2 (GLWE Keyswitching). Let C be a GLWE ciphertext of a phase
µ under S. Let σ2

S→S′ be the noise variance of the GLWE keyswitching key from
S to S′. Then, Algorithm 5 returns a GLWE ciphertext C′ of a phase µ+Eks(X)
under S′ where the variance Vks of Eks(X) is given as follows.

Vks ≤ kN

(
q2 −B2ℓ

24B2ℓ
+

1

12

)
+ kℓN

(
B2 + 2

12

)
σ2
S→S′ .

Proof. The output C′ can be represented as follows.

C′ = GLWE0
S′(Ak+1)−

k∑
i=1

ℓ∑
j=1

A′
i,j ·KSS→S′ [i][j].

34

From KSS→S′ [i][j] = GLWES′(q
Bj ·Si), let ⟨KSS→S′ [i][j], (−S′, 1)⟩ = q

Bj ·Si+Ei,j

where Var(Ei,j) = σ2
S→S′ for i ∈ [k] and j ∈ [ℓ]. Then, one obtain

⟨C′, (−S′, 1)⟩ = Ak+1 −
k∑

i=1

ℓ∑
j=1

A′
i,j

(q

Bj
· Si + Ei,j

)

= Ak+1 −
k∑

i=1

(Ai + E′
i) · Si +

ℓ∑
j=1

A′
i,j · Ei,j

= µ−

k∑
i=1

E′
i · Si +

k∑
i=1

ℓ∑
j=1

A′
i,j · Ei,j .

Since E′
i ← J− q

2Bℓ ,
q

2Bℓ J, Ai,j ← J−B/2, B/2J and S is a binary secret key, the

variance of Eks = −
∑k

i=1 E
′
i · Si +

∑k
i=1

∑ℓ
j=1 A

′
i,j · Ei,j is given as follows.

Var(Eks) ≤ kN

(
q2 −B2ℓ

24B2ℓ
+

1

12

)
+ kℓN

(
B2 + 2

12

)
σ2
S→S′ .

B.3 Functional Keyswitching

In this subsection, we summarize the LWE to GLWE public/private functional
keyswitching. For the detailed analysis of the keyswitching, we refer to [12, 14].

Let s = (s1, . . . , sn) be a LWE secret key and S = (S1, . . . , Sk) be a GLWE

secret key. The keyswitching key is given by KSi = GLev
(B,ℓ)
S (si) for i = 1, . . . , n

where B and ℓ are decomposition base and length, respectively, for the LWE to
GLWE keyswitching.

Given an LWE ciphertext c = (a1, . . . , an, b) ∈ Zn+1
q of m with respect

to s, let (ai,1, . . . , ai,ℓ) be the gadget decomposition of ai for i = 1, . . . , n and
j = 1, . . . , ℓ. Let KSi,j = GLWES(q/B

j ·si) be the GLWE ciphertext of si with a
scaling factor q/Bj contained in KSi. The LWE to GLWE keyswitching outputs
a GLWE ciphertext C of m given as follows.

C = GLWE0(b)−
n∑

i=1

ℓ∑
j=1

ai,j ·KSi,j

where GLWE0(b) denotes the trivial GLWE encryption of b, namely,

(0, . . . , 0, b) ∈ Rk+1
q,N .

By the linear property of the inner product and gadget decomposition, one can
check that C is a GLWE encryption of m (with the same scaling factor as the
input c) with respect to S.

35

Public Functional Keyswitching The LWE to GLWE keyswitching can be
generalized to evaluate a public Lipschitz function while converting LWE ci-
phertexts into the GLWE ciphertext. Let f : Zt

q → Zq be a public Lipschitz

function to evaluate on t LWE ciphertexts c(z) = (a
(z)
1 , . . . , a

(z)
n , b(z)) of mz for

z = 1, . . . , t. Then, the following C is a GLWE ciphertext of f(m1, . . . ,mt).

C = GLWE0(f(b(1), . . . , b(t)))−
n∑

i=1

ℓ∑
j=1

ãi,j KSi,j

where (ãi,1, . . . , ãi,ℓ) is the gadget decomposition of the value f(a
(1)
i , . . . , a

(t)
i)

for i = 1, . . . , n and j = 1, . . . , ℓ. The above keyswitching that evaluates a public
function f is called the LWE to GLWE public functional keyswitching.

Private Functional Keyswitching When the Lipschitz function f : Zt
q → Zq

to evaluation during the keyswitching is private, it requires an private func-

tional keyswitching key {KS
(f)
z,i }(z,i)∈[t]×[n+1] defined as follows (sn+1 = −1 for

convenience).

KS
(f)
z,i = GLev

(B,ℓ)
S (f(0, . . . , 0, si, 0, . . . , 0))

where si is at position z and B (resp. ℓ) is the decomposition base (resp. length).

Let KS
(f)
z,i,j = GLWES(q/B

j ·f(0, . . . , 0, si, 0, . . . , 0)) be the GLWE ciphertext of

f(0, . . . , 0, si, 0, . . . , 0) with the scaling factor of q/Bj contained in KS
(f)
z,i .

Let c(z) = (a
(z)
1 , . . . , a

(z)
n+1) be an LWE ciphertext of mz for z = 1, . . . , t.

Then, the following C is a GLWE ciphertext of f(m1, . . . ,mt).

C = −
t∑

z=1

n+1∑
i=1

ℓ∑
j=1

ã
(z)
i,j KS

(f)
z,i,j

where (ã
(z)
i,1 , . . . , ã

(z)
i,ℓ) is the gadget decomposition of a

(z)
i for z = 1, . . . , t and

i = 1, . . . , n + 1. The above keyswitching that evaluates the private function f
is called the LWE to GLWE private functional keyswitching.

B.4 Homomorphic Automorphism and Trace

Let K = Q[X]/(XN + 1) be the number field where N is a power-of-two. Since
K is a Galois extension of Q, its Galois group Gal(K/Q) consists of the automor-
phisms τd : µ(X) 7→ µ(Xd) for d ∈ Z×

2N . Then the field trace TrK/Q : K → Q,
defined by

TrK/Q(µ(X)) =
∑

σ∈Gal(K/Q)

σ(µ(X))

satisfies the following equation.

TrK/Q(µ(X)) = Nµ0

36

where µ(X) = µ0 + µ1X + · · ·+ µN−1X
N−1.

The automorphism and trace can be defined analogously on the ring of integer
RN = Z[X]/(XN + 1) and its residue ring Rq,N = RN/qRN modulo q.

Computing the trace by its definition requires one to compute the auto-
morphism N times. For efficient homomorphic trace evaluation, Chen et al. [8]
proposed a recursive algorithm as follows: let Kn = Q[X]/(Xn + 1) be the 2n-
th cyclotomic field for a power-of-two n. Then the field extension K ≥ Q can
be described as a tower of fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q. For
1 ≤ i < j ≤ logN , the trace TrK2j /K2i

can be expressed as a composition

TrK2j /K2i
= TrK2j /K2j−1

◦ · · · ◦ TrK2i+1/K2i
.

Since Gal(K2k/K2k−1) = {τ1, τ2k+1} for all k = 1, . . . , logN , computing TrK2j /K2i

using the above composition requires only j − i automorphisms, where Kn is
identified with

{a0 + a1X
N
n + · · ·+ an−1X

N−N
n : a0, . . . , an−1 ∈ Q} ⊆ KN .

As an analogue, let TrN/n be the trace on Rq,N/Rq,n where n and N are
power-of-two such that n | N . Then, TrN/n : Rq,N → Rq,n satisfies the following
equation.

TrN/n(µ(X)) = TrN/(N/2) ◦ · · · ◦ Tr2n/n(µ(X)) (5)

=
N

n
(µ0 + µN

n
X

N
n + · · ·+ µN−N

n
XN−N

n)

where Rq,n is identified with

{a0 + a1X
N
n + · · ·+ an−1X

N−N
n : a0, . . . , an−1 ∈ Zq} ⊆ Rq,N .

Using the above relation, one can compute Tr = TrN/1 on RN (or Rq,N) by
only logN automorphisms. The number of automorphisms for the trace evalua-
tion is important since the trace function is evaluated by a series of homomor-
phic automorphisms based on GLWE keyswitching. For d ∈ Z×

2N , the automor-
phism τd maps M(X) into M(Xd). Given a GLWE secret key S(X) ∈ Rk

q,N ,
a GLWE ciphertext GLWES(X)(M(X)) of M(X) under S(X) can be regarded

as one GLWES(Xd)(M(Xd)) of M(Xd) under S(Xd). By switching the key of

GLWES(Xd)(M(Xd)) from S(Xd) to S(X), one can obtain the GLWE cipher-

text of M(Xd) under the original secret key S(X). We refer to Appendix B.2
for the details of GLWE keyswitching.

Finally, we give Lemma 3 to measure the HomTrace output noise:

Lemma 3 (HomTrace Evaluation). Let C be a GLWE ciphertext of a phase
µ under S. Let Vauto be the variance of the noise increment by the homomorphic
automorphism evaluation. Then, Algorithm 2 returns a GLWE ciphertext C′ of
a phase Tr(µ) + Etr under S where the variance Vtr of Etr is given as follows.

Vtr ≤
N2 − 1

3
Vauto.

37

where Vauto is the variance of the noise increment by homomorphic automorphism
evaluation EvalAuto in Line 3.

Proof. Let Ed be the increased error polynomial after the d-th iteration of Line 3.
Then, Ed satisfies the following relation.

Ed = Ed−1 + τ2log N−d+1(Ed−1) + Eauto,d

where Eauto,d is the error increment by EvalAuto in the d-th iteration. Then, one
obtain

Var(Ed) ≤ 22 Var(Ed−1) + Vauto.

From E0 = 0, Vtr = Var(logN) satisfies the following.

Vtr ≤
logN−1∑

d=0

4dVauto ≤
N2 − 1

3
Vauto.

We note that Vauto can be upper bounded by Lemma 2 since EvalAuto eval-
uates a single GLWE keyswitching operation.

B.5 Scheme Switching

Let S = (S1, . . . , Sk) be a GLWE secret key. The scheme switching changes a

GLev ciphertext GLev
(B,ℓ)
S (M) of M to a GGSW ciphertext GGSW

(B,ℓ)
S (M) of

M using the scheme switching key {GGSW
(Bss,ℓss)
S (Si)}k+1

i=1 , a set of k+1 GGSW
ciphertexts of Si for i = 1, . . . , k + 1 under S where Sk+1 = −1. The precise
algorithm is given in Algorithm 6.

Algorithm 6: SchemeSwitch

Input: C = GLev
(B,ℓ)
S (M) under S = (S1, . . . , Sk)

Input: SS[i] = GGSW
(Bss,ℓss)
S (−Si) for i = 1, . . . , k + 1 where Sk+1 = −1

Output: C′ = GGSW
(B,ℓ)
S (M) such that C′

i,j = GLWES(− q
Bj ·MSi) for

i = 1, . . . , k + 1 and j = 1, . . . , ℓ
1 Cj = GLWES(

q
Bj ·M) for j = 1, . . . , ℓ

2 for i = 1 to k + 1 do
3 for j = 1 to ℓ do
4 C′

i,j ← SS[i] � Cj

5 return C′

38

Lemma 4 (External Product). Let C = GGSW
(B,ℓ)
S (M) be a GGSW ci-

phertext of M having variance σ2
ext under S and c be a GLWE ciphertext of a

phase µ under S. Then, external product C� c outputs a GLWE ciphertext of a
phase µ ·M + Eext under S where the variance Vext of Eext is given as follows.

Vext ≤ (1 + kN)

(
q2 −B2ℓ

24B2ℓ
+

1

12

)
ℓ2(M)2 + (k + 1)ℓN

(
B2 + 2

12

)
σ2
ext.

Proof. Let S = (S1, . . . , Sk) and C = (Ci,j)(i,j)∈[k+1]×[ℓ] such that

Ci,j = GLWES

(q

Bj
(−Si ·M)

)
where ⟨Ci,j , (−S, 1)⟩ = q

Bj (−Si·M)+Ei,j and Var(Ei,j) = σ2
ext for i = 1, . . . , k+1

and j = 1, . . . , ℓ. Let c = (A1, . . . , Ak+1) and

Ai =

ℓ∑
j=1

A′
i,j ·

q

Bj
+ E′

i

be the gadget decomposition of Ai such that ∥A′
i,j∥∞ ≤ B

2 and ∥E′
i,j∥∞ ≤ q

2Bℓ

for i = 1, . . . , k+1. Then the output of external product C�c can be represented
as
∑k+1

i=1

∑ℓ
j=1 A

′
i,j ·Ci,j . Then, the phase of the output is given as follows.

⟨C � c, (−S, 1)⟩ =
k+1∑
i=1

ℓ∑
j=1

A′
i,j

(q

Bj
(−Si ·M) + Ei,j

)

=

ℓ∑
j=1

A′
k+1,j ·

(q

Bj
M + Ek+1,j

)
−

k∑
i=1

ℓ∑
j=1

A′
i,j

(q

Bj
M − Ei,j

)

= µ ·M +

(
E′

k+1 −
k∑

i=1

E′
iSi

)
M +

k+1∑
i=1

ℓ∑
j=1

A′
i,jEi,j .

Let Eks = (E′
k+1−

∑k
i=1 E

′
iSi)M+

∑k+1
i=1

∑ℓ
j=1 A

′
i,jEi,j . Since E

′
i ← J− q

2Bℓ ,
q

2Bℓ J,
A′

i,j ← J−B/2, B/2J and S is a binary secret key, the variance of Eks is given as
follows.

Var(Eks) ≤ (1 + kN)

(
q2 −B2ℓ

24B2ℓ
+

1

12

)
ℓ2(M)2 + (k + 1)ℓN

(
B2 + 2

12

)
σ2
ext.

Since scheme switching computes the output GGSW ciphertext using exter-
nal output by the scheme switching key, the noise increment of scheme switching
can be analyzed by Lemma 4.

Lemma 5 (Scheme Switching). Let C be a GLev ciphertext of M having
variance σ2

in. Let σ
2
ssk be the noise variance of the scheme switching key. Then,

39

Algorithm 6 returns a GGSW ciphertext C′ of M having variance Vout such that
Vout ≤ N

2 · σ2
in + Vss where

Vss ≤
(1 + kN)N

2

(
q2 −B2ℓ

24B2ℓss
+

1

12

)
+ (k + 1)ℓN

(
B2

ss + 2

12

)
σ2
ssk.

B.6 Programmable Bootstrapping and Its Failure Probability

All the homomorphic operations increase the internal noise, while only pro-
grammable bootstrap refreshes it. Hence, the error variance of the output ci-
phertext of PBS is independent of that of the input ciphertext, provided that the
PBS operation succeeds. Chillotti et al. [14] proposed a theorem about the error
variance of PBSmanyLUT and its failure probability. It describes PBSmanyLUT
on FFT domains where only one ciphertext modulus q is used and it is switched
into 2N temporarily just before PBSmanyLUT, while it is analogous on NTT
domains where various ciphertext moduli are used.

Suppose that an LWE ciphertext of input noise variance σ2
in and a scaling

factor ∆in is given to PBSmanyLUT evaluating 2ϑ LUTs. Then the failure prob-

ability of PBSmanyLUT is at most P = 1− erf
(

Γ√
2

)
, where Γ = ω∆in

2qσ and

σ2 =
ω2

q2

(
σ2
in −

1

12

)
+

n

48

(
ω2

q2
+ 2

)
+

1

12

for ω = 2N · 2−ϑ. Provided that PBSmanyLUT does not fail, the error variance
Vpbs of the output satisfies the following.

Vpbs ≤ nℓ(k+1)N
B2 + 2

12
σ2
bsk+n

q2 −B2ℓ

24B2ℓ

(
1 +

kN

2

)
+

nkN

32
+

n

16

(
1− kN

2

)2

where B and ℓ are gadget decomposition base and gadget length, respectively,
and σ2

bsk is the error variance of the bootstrapping key. We refer to [14] for the
details.

B.7 Evaluation Key Size

In this subsection, we describe the size of various evaluation keys used in FHEW/TFHE
according to the parameters, summarizing the result in Table 12. As evaluation
keys are encryptions of secret information, we begin with the description of ci-
phertext sizes.

Ciphertext Size An LWE ciphertext (a1, . . . , an, b) ∈ Zn+1
q consists of n + 1

elements in Zq, so its size is given by (n + 1) log q bits. If the LWE ciphertext
is a fresh one such that no homomorphic operation is performed on it yet, then
one can compress the random mask a into a seed for generating it. Such LWE ci-
phertexts are called seeded LWE ciphertexts. Ignoring the seed size by assuming

40

that one seed generates all the random masks for multiple seeded ciphertexts,
the size of the seeded LWE ciphertext is only log q.25 In the case of a GLWE
ciphertext (A1, . . . , Ak, B) ∈ Rk+1

q,N , it is size of (k + 1)N log q bits. When it is
compressed similarly, the seeded GLWE ciphertext is of N log q bits. For GLev
and GGSW ciphertexts, they can be considered as a vector of ℓ and ℓ(k + 1)
GLWE ciphertexts, respectively. Table 12a summarizes the size of each type of
FHEW/TFHE ciphertext.

GLWE Keyswitching Key A GLWE keyswitching key from a key Ssrc ∈ Rksrc

q,N

of dimension ksrc to another key Sdst ∈ Rkdst

q,N of dimension kdst with the same

polynomial size N is a set of ksrc GLev ciphertexts {GLev
(Bks,ℓks)
Sdst

(Si)}ksrc
i=1 where

Ssrc = (S1, . . . , Sksrc).

Trace Evaluation Key A trace evaluation key on a GLWE secret key S ∈ Rk
q,N

of dimension k is a set of logN automorphism keys, each of which is a GLWE
keyswitching key on the same GLWE dimension k and a gadget decomposition
parameters of (Btr, ℓtr).

Scheme Switching Key A scheme switching key on a GLWE secret key S ∈
Rk

q,N of dimension k is a set of k GGSW ciphertexts {GGSW
(Bss,ℓss)
S (Si)}ki=1

where S = (S1, . . . , Sk).

Packing Keyswitching Key A packing keyswitching key from a LWE secret
key s ∈ Zn

q of dimension n to a GLWE secret key S ∈ Rk
q,N of dimension k is

a set of GLev ciphertext {GLevS(si)}ni=1. Table 12b summarizes the evaluation
key size.

PBS Key Let s = (s1, . . . , sn) ∈ Bn be an LWE secret key and S′ = (S′
1, . . . , S

′
k) ∈

BN [X]k be a GLWE secret key with its corresponding LWE secret key s′ ∈ BkN .

A PBS key is from s to s′ a set of n GGSW ciphertexts {GGSW
(Bpbs,ℓpbs)
S′ (si)}ni=1.

Since the PBS operation takes an input LWE ciphertext under a different LWE
secret key, one needs a corresponding LWE keyswitching key for the PBS oper-
ation, which is a set of kN Lev ciphertexts {Lev(Bks,ℓks)

s (s′i)}kNi=1.

Circuit Bootstrapping Key Let s ∈ Bn, S ∈ BN [X]k and s′ ∈ BkN be
defined the same as above. The (previous) circuit bootstrapping takes an in-
put LWE ciphertext under s and outputs a corresponding GGSW ciphertext
under S using a sequence of PBS operations and private functional keyswitch-
ing operations. The private functional keyswitching operation for the circuit

25 In the tfhe-rs library, auxiliary information such as the LWE dimension or cipher-
text modulus type is saved together. We ignore such additional data size assuming
that it is fixed in the transciphering framework.

41

bootstrapping, which switches an LWE ciphertext LWEs(m) into a GLWE ci-
phertext GLWES(−Si · m) for i = 1, . . . , k + 1, requires a set of k + 1 GLev

ciphertexts {GLev
(Bpriv,ℓpriv)
S (−Si)}k+1

i=1 where S = (S1, . . . , Sk) and Sk+1 = −1.26
Table 12c summarizes the evaluation keys for the bootstrapping operations in
FHEW/TFHE.

LWE Lev GLWE GLev GGSW

Normal (n+ 1) log q ℓ(n+ 1) log q (k + 1)N log q ℓ(k + 1)N log q ℓ(k + 1)2N log q
Seeded log q ℓ log q N log q ℓN log q ℓ(k + 1)N log q

(a) Size of FHEW/TFHE ciphertexts in bits.

GLWE KS Key Trace Evaluation Key Scheme Switching Key Packing KS Key

Normal ℓksksrc(kdst + 1)N log q ℓtrk(k + 1)N logN log q ℓssk(k + 1)2N log q ℓpackn(k + 1)N log q
Seeded ℓksksrcN log q ℓtrkN logN log q ℓssk(k + 1)N log q ℓpacknN log q

(b) Size of various FHEW/TFHE evaluation keys in bits.

LWE KS Key PBS Key Private Functional KS Key

Normal ℓks(n+ 1)kN log q ℓpbs(k + 1)2nN log q ℓprivk(k + 1)2N2 log q
Seeded ℓkskN log q ℓpbs(k + 1)nN log q ℓprivk(k + 1)N2 log q

(c) Size of evaluation keys for the FHEW/TFHE bootstrapping operations in bits. The
PBS operation requires the LWE keyswitching key and the PBS key, and the circuit
bootstrapping operation requires all kinds of keys in the table.

Table 12: Size of FHEW/TFHE ciphertexts and evaluation keys in bits. The size
of seeds or auxiliary information is ignored.

C Error Analysis of the Split FFT

Klemsa [22] proposed an upper bound for the FFT error of (negacyclic) polyno-
mial multiplication as follows27:

log ∥Efft∥∞ ≤ (2 logN − 4) · log(
√
2 + 1) + logB1 + logB2 − χ+ 9/2 + log 3,

log Var(Efft) ≤ 4 logN + 2 logB1 + 2 logB2 − 2χ− 3.

However, the experimental result shows that the above theoretical bound
is a loose upper bound to be used in practice. It seems to come from the gap

26 To be precise, the private keyswitching from LWE(m) to GLWE(−Sk+1 · m) is a
packing keyswitching since −Sk+1 ·m = m.

27 The second-order terms are neglected.

42

between the worst-case and average-case analysis, since most FHEW/TFHE
parameters are chosen based on the average-case analysis using the independence
heuristic [12, 14]. So that we use Bergerat et al.’s method [3] to estimate the
FFT error in this paper.

We then analyze the error variance of the split FFT, described in Section 3.2.
The split FFT is based on the observation that the FFT error increases as
the bound B of the input polynomial increases. Considering its application to
GLWE keyswitching, we measure the FFT error of the summation of products
of gadget decomposed polynomials and random polynomials. Table 13 shows
standard deviation of the split FFT error on the parameters used in this paper.
The Std. Dev. column denotes the standard deviation computed by square root
of (4). The Failure Prob. column denotes the failure probability of the exact
polynomial multiplication of the upper part in the split FFT, computed by the
Std. Dev. column. We compare the FFT error induced by the lower part to the
gadget decomposition error q/B2ℓ, and conclude that the split FFT allows us to
neglect the FFT error during HomTrace.

N k B ℓ b
Upper Part Lower Part

Std. Dev. Failure Prob. Std. Dev. q/B2ℓ

WOPBS 2 2 2048 1 27 7 36 2−6.90 2−2565 21.10 214

WOPBS 3 3 2048 2 212 4 41 2−6.80 2−2245 211.2 215

2048 1 215 3 44 2−7.51 2−5978 216.49 218

2048 2 213 3 42 2−7.01 2−2992 212.99 224

WOPBS 4 4 2048 2 29 6 39 2−7.51 2−5978 26.49 29

2048 1 29 6 39 2−7.51 2−5978 216.49 218

2048 2 29 6 39 2−6.80 2−2245 27.20 223

CMux 1 2048 1 213 3 42 2−7.51 2−5978 212.49 224

CMux 2 2048 1 213 3 42 2−7.51 2−5978 212.49 224

CMux 3 2048 1 28 6 37 2−7.01 2−2992 22.99 215

AES (LHE) 1024 2 213 3 41 2−7.01 2−2992 210.99 215

AES (flex. LHE) 1024 2 26 8 35 2−7.30 2−4485 2−1.30 215

Table 13: Standard deviations of the split FFT for the GLWE keyswitching under
the parameters used in this paper.

D Packing Method in The LHE Mode

1. Horizontal packing: The core idea of horizontal packing is to compute
all sub-LUTs Li simultaneously, rather than separately. Specifically, the s
sub-LUT results Li(x) corresponding to the same input x are embedded
into a single GLWE ciphertext using coefficient encoding and evaluate the
binary decision tree as described before. Finally using the cost-free sample

43

extraction to extract the s results simultaneously, thereby reducing the total
number of CMux gates from s ·(2d−1) to 2d−1. It is noteworthy that under
coefficient encoding, a RLWE sample can accommodate up to N messages,
and in practice s is always less than N .

2. Vertical packing: In vertical packing, the N inputs of the sub-LUT fi are
encoded into a single GLWE sample. Consequently, for each sub-LUT, the
inputs are divided into 2d/N blocks. Now we only need the d− logN most
significant bits to compute a CMux tree with depth d − logN , rather than
the full CMux tree. After that, we obtain the block that contains Li(x).
And the logN least significant bits are utilized in blind rotation to bring the
coefficient Lj(x) in constant term and followed with sample extraction. Using
this method, the total number of CMux gates is reduced to 2d/N−1+logN .

0 10 20 30

10

20

30

40

d

lo
g
2
T
im

e
(m

s)

NTT-based LUT

0 10 20 30

10

20

30

40

d

lo
g
2
T
im

e
(m

s)

FFT-based LUT

FHE LHE H-Pack V-Pack

Fig. 8: Comparison of LUT evaluation using GBS and CBS.

E Transciphering and AES Evaluation

Transciphering is an innovative approach that combines the strengths of sym-
metric encryption with FHE to address the challenges of ciphertext expansion.

Specifically, FHE ciphertexts are typically much larger than the original
plaintext, posing significant challenges for devices with limited resources. Tran-
sciphering, first proposed by Naehrig et al. [25], offers a solution to this prob-
lem. The core idea is to use symmetric encryption for data transmission, which is
then converted into homomorphic ciphertext by the server for further processing.
Here’s how it works:

44

1. Symmetric encryption for transmission: The client encrypts the data
using a symmetric encryption scheme, resulting in a ciphertext Ek(m). Then
it generates a homomorphic encryption of the symmetric key, Enc(k), sends
both of them to the server.

2. Homomorphic decryption and evaluation on the server: The server
homomorphically evaluates the decryption circuit of the symmetric encryp-
tion using Enc(k) and Ek(m) to obtain the homomorphic ciphertext of the
data, then perform homomorphic evaluation.

EvalE−1(Enc(k), Ek(m)) = Enc(E−1(k, Ek(m))) = Enc(m)

E.1 AES Round Function Evaluation

Since the AES circuit is basically a repetition of its round function, it is enough
to describe how to evaluate the AES round function. The AES round function
consists of SubBytes, ShiftRows, MixColumns and AddRoundKey.

LWE Keyswitching Prior to SubBytes, one has to perform LWE keyswitching
on the LWE ciphertexts to use PBS for SubBytes evaluation. Although the LWE
keyswitching operation takes a smaller computation time compared to the PBS
operation, one cannot simply neglect it. Instead of using the previous LWE
keyswitching method, we employ the following optimization based on GLWE
dimension switching, which is an extension of the method proposed by Chen et
al. [8] based on GLWE keyswitching.

Consider LWE keyswitching from an LWE secret key ssrc ∈ Znsrc
q to another

one sdst ∈ Zndst
q where there is a power-of-two N such that N divides both nsrc

and ndst. Then, there are corresponding GLWE secret keys Ssrc and Sdst to ssrc
and sdst where their GLWE dimensions are ksrc = nsrc/N and kdst = ndst/N ,
respectively. Using the GLWE keyswitching from Ssrc to Sdst, one can perform
LWE keyswitching as follows.

1. Given an input LWE ciphertext c of m under ssrc, one computes a GLWE
ciphertext C of m+v1X+ · · ·+vN−1X

N−1 under Ssrc by LWEtoGLWEConst
where v1, . . . , vN−1 are unknown coefficients.

2. The GLWE ciphertext C under Ssrc is switched to a GLWE ciphertext C′ of
the same plaintext m+ v1X + · · ·+ vN−1X

N−1 under the different key Sdst

by GLWE keyswitching.
3. Then, an LWE ciphertext c′ ofm under sdst can be extracted from the GLWE

ciphertext C′ under Sdst.

Chen et al. [8] have proposed the above method as an efficient LWE keyswitch-
ing only for the case where nsrc = ndst = N , while our extended algorithm
using GLWE dimension switching enables to change LWE dimension if there is
a common power-of-two divisor N of the input and output LWE dimensions.
To employ this optimization, we choose n = 768 = 3 · 256 for the input LWE
dimension of PBS.

45

SubBytes The AES S-box is evaluated using the GGSW ciphertext of the input
bits obtained by our FFT-based CBS. In our LHE mode, the AES S-box from
8-bit input to 8-bit output is decomposed into the corresponding 8 tables of 8-bit
input to 1-bit output to keep the plaintext encoding.

When our flexible LHE mode is used, the S-box output is redundantly ob-
tained in a gadget decomposed form. Since the scaling factors are smaller than
⌈q/2⌉, homomorphic addition no longer corresponds to XOR, so the subsequent
linear operations work as integer addition, increasing the magnitude of the in-
ternal message. To reduce the error growth by non-binary message space in the
flexible LHE mode, it is important to reduce the number of additions.

For that purpose, we adopt two modified AES evaluation techniques. The
first one is evaluating 8-24 LUT to pre-compute the field multiplication in the
MixColumns layer. Since the cost of evaluating LUT is much smaller than that of
circuit bootstrapping, we can almost freely pre-compute the field multiplication
for the MixColumns layer, reducing the number of additions in the subsequent
linear layer. The other one is using keyed S-box to skip the AddRoundKey layer.
By transferring the keyed S-box instead of the ciphertexts of the round key, one
can integrate AddRoundKey and SubBytes.

Linear Operations Since XOR operation is free under the plaintext encoding
that places a single bit plaintext in the MSB of the ciphertext, the other op-
erations such as ShiftRows, MixColumns and AddRoundKey that only require
XOR operations can be evaluated freely. That said, we note that homomorphic
XOR operation is free only in terms of computation time, so the error growth by
the linear operations should be considered in the selection of parameters. In this
perspective, 8-24 LUT and keyed S-box evaluation allow us to choose a compact
parameter in the (flexible) LHE mode.

F Detailed Description for Our HP-LHE Mode

Idea. First, we integrate the Extr. step with the Refr. step by PBSmanyLUT,
reducing the number of overall PBS operations. The Extr. step extracts each bit
of the message from the ciphertext, obtaining ciphertexts containing message
bits scaled by ⌈q/2⌉. To extract the message bit by PBS without increasing the
polynomial size, the Extr. step moves the LSB to the MSB by constant multi-
plication, changes its scaling factor to subtracts it from original the ciphertext,
and repeats this process until all the bits are extracted. The followed Refr. step
changes the scaling factor of the extracted ciphertext to the gadget components
by PBS. We found that both Extr. and Refr. perform PBS operations to change
the scaling factor of a single-bit ciphertext, so we integrate them into a single
PBSmanyLUT operation per each bit.

After the Refr. step, the resulting GLev ciphertext is converted to the GGSW
ciphertext in the Conv. step. The WWL+ method has improved the Conv. step
significantly in terms of both computation time and key sizes in the bit-wise input
LHE setting, while it’s higher error growth compared to private key switching

46

makes it hard to be used in the high-precision input LHE mode. We resolved
this issue by proposing a high-precision HomTrace method based on GLWE di-
mension switching. By performing HomTrace under a larger GLWE dimension,
we obtained high enough precision at the cost of increased computation cost.

Lastly, we propose a multi-bit extraction method to reduce the number of
PBSmanyLUT operations further. The number of PBSmanyLUT operations is
the same with the number of the extraction operations, so we extracts message
bits in a small chunk of τ -bit, where τ ∈ {2, 3}, using a single PBSmanyLUT
operation combined with the MV-PBS method [6]. The extracted bit is masked
by the MSB of the extracted chunk, while we can evaluate LUT correctly by
modifying the function to evaluate using the masked input bits.

Algorithm 7: CBS of HP-LHE Framework

Input: c = LWEs(⌈q/2δ⌉ ·m) where τ | δ
Input: ℓ test polynomials Fi to compute vi

2
· (−1)xτ−1+1 from a τ -bit input

x =
∑τ−1

k=0 xk · 2k for i = 1, . . . , ℓ
Input: τ − 2 polynomials Gj such that Gj · Fi becomes a test polynomial to

compute vi
2
· (−1)(xτ−1⊕xj)+1 from a τ -bit input x =

∑τ−1
k=0 xk · 2k for

j = 0, . . . , τ − 2
Input: Bootstrapping keys under S
Input: Automorphism keys under S
Input: Scheme switching key under S

Output: Cj = GGSW(m′
j) for j = 0, . . . , δ − 1 where m′

j = mj if τ | (j + 1)
and m′

j = m⌈(j+1)/τ⌉·τ ⊕mj otherwise.
1 for k = 0 to δ/τ − 1 do

2 c′ ← 2δ−(k+1)∗τ · c /* c′ = LWE(q
2τ
·
∑τ−1

j=0 mk·τ+j · 2j) */

3 Ck·τ+(τ−1) ← PBSmanyLUT
(
c′; (Fi)

ℓ
i=1

)
(except sample extraction)

/* Ck·τ+(τ−1)[i] = GLWE(vi
2
· (−1)mk·τ+(τ−1)+1 + . . .) */

4 for i = 1 to ℓ do
5 for j = 0 to τ − 2 do

6 Ck·τ+j [i]← Gj ·Ck·τ+(τ−1)

/* Ck·τ+j [i] = GLWE(vi
2
· (−1)(mk·τ+(τ−1)⊕mk·τ+j)+1 + . . .) */

7 Ck·τ+j [i]← Ck·τ+j [i] + GLWE0(vi/2)

/* Ck·τ+j [i] = GLWE(vi · (mk·τ+(τ−1) ⊕mk·τ+j) + . . .) */

8 Ck·τ+(τ−1)[i]← Ck·τ+(τ−1) +GLWE0(vi/2)

/* Ck·τ+(τ−1)[i] = GLWE(vi ·mk·τ+(τ−1) + . . .) */

9 for j = 0 to τ − 1 do

10 Ck·τ+j ← Conv(Ck·τ+j) /* Ck·τ+j = GGSW(m′
k·τ+j) */

11 C′′ ← Circuit
(m′

k·τ+(τ−1)
,...,m′

k·τ)→ q

2δ−k·τ ·L[
∑τ−1

j=0 mk·τ+j ·2j]

((
Ck·τ+j

)τ−1

j=0

)
12 c′′ ← SampleExtract(C′′) /* c′′ = LWE(q

2δ−k·τ

∑τ−1
j=0 mk·τ+j · 2j) */

13 c← c− c′′ /* c = LWE(q

2δ−(k+1)τ

∑δ−(k+1)τ
j=0 mj+(k+1)τ · 2j) */

14 return
(
Cj

)δ−1

j=0

47

Multi-Bit Extraction. For simplicity, we only describe the case of τ = 2.
Suppose that an input ciphertext LWE(⌈q/22⌉ · (2m1 +m0)) of a 2-bit message
chunk is given. Then one can output both LWE(v · m1) and LWE(v · (m1 ⊕
m0)) by 1-depth PBS where v is a component of the gadget vector. Although
WoP-PBS originally outputs GGSW(m0) and GGSW(m1) to use them evaluate
LUT by CMux, it is also possible to evaluate the same function using CMux by
GGSW(m0 ⊕m1) and GGSW(m1) by slightly modifying the table.

To compute both {LWE(vj · m1)}ℓj=1 and {LWE(vj · (m1 ⊕ m0))}ℓj=1 in a
single PBSmanyLUT operation, ϑ should be increased by 1 to evaluate twice
many functions. However, using a larger ϑ increases the failure probability of
the PBSmanyLUT operation. Combined with the small scaling factor ⌈q/22⌉ of
the input ciphertext in the multi-bit extraction, increasing ϑ might lead too
large failure probability. To keep the value of ϑ, we opted the multi-value PBS
proposed by Carpov et al. [6].

The test polynomial to compute LWE(v ·m1) from LWE(⌈q/22⌉(2m1+m0))
using PBS is given as follows.

fm1
(X) = −v

2

(
1 +X + · · ·+XN−1

)
.

Blind rotation on this test polynomial outputs GLWE((−1)m1+1 v
2+. . .), and one

can obtain GLWE(v ·m1 + . . .) by adding a constant v/2. The test polynomial
fm1

is, in fact, the same with the common test polynomial used in the MV-
PBS, so one can evaluate additional functions (of the same scaling factor) by
multiplying some polynomial to the blind rotation output on fm1 . For example,
the test polynomial fm1⊕m0 to compute LWE(v ·(m1⊕m0)) from the same input
is given as follows.

fm1⊕m0(X) = −v

2

(
1 +X + · · ·+XN/2−1 −XN/2 − · · · −XN−1

)
.

From fm1⊕m0
(X) = −XN/2 · fm1

(X), the MV-PBS method evaluates fm1⊕m0

on the same input by multiplying −XN/2 to the blind rotation output on fm1
.

G Proofs

G.1 Theorem.1

Proof. The Refr. step outputs a GLev ciphertex, where the phase of the j-th
GLWE ciphertext is⌈ q

Bj

⌉
m+ y1X + . . .+ yN−1X

N−1 + Epbs(X),

where yiX
i are some redundant terms and Epbs(X) is the PBSmanyLUT error.

After pre-processing by multiplying with N−1, the phase is

N−1
⌈ q

Bj

⌉
m+N−1y1X + . . .+N−1yN−1X

N−1 +N−1Epbs(X).

48

Subsequent trace evaluation can eliminate the the power terms ofX and multiply
the constant term by a factor of N . Therefore the phase of HomTrace is⌈ q

Bj

⌉
m+ epbs + Etr(X),

where epbs is the constant term of Epbs and Etr(X) is the error induced by
HomTrace. Lastly, the phase after i-th scheme switching is(⌈ q

Bj

⌉
m+ epbs + Etr(X)

)
· Si + Ess(X)

=
⌈ q

Bj

⌉
mSi + epbsSi + Etr(X)Si + Ess(X),

where Ess(X) is the error induced by scheme switching. Since all of the additive
errors epbsSi, Etr(X)Si and Ess(X) are independent, the noise variance is

Vcbs = V (epbsSi) + V (Etr(X)Si) + Vss.

Given that the secret key Si follows uniform binary distribution, we have V (epbsSi) =
Vpbs thanks to epbs is only a constant term. Furthermore, V (Etr(X)Si) ≤ N

2 Vtr,
where N is the ring expansion factor. Substituting these estimate into the above
formula, we obtain

Vcbs ≤ Vpbs +
N

2
Vtr + Vss.

G.2 Theorem.2

Proof. The proof is analogous to that of Theorem 1 except that there is an
additional pre-processing error. The Refr. step outputs a GLev ciphertext whose
j-th GLWE ciphertext is

q

Bj
m+ y1X + · · ·+ yN−1X

N−1 + Epbs(X),

where yiX
i are some redundant terms and Epbs(X) is the PBSmanyLUT error.

After pre-processing, one obtains a GLev ciphertext whose j-th GLWE cipher-
text has a phase of

1

N

(q

Bj
m+ y1X + · · ·+ yN−1X

N−1 + Epbs(X)
)
+ Ems(X) +

q

N
U(X)

where Ems(X) is the modulus switching error from q to q/N and U(X) is a
redundant terms caused by modulus raising from q/N to q. Subsequent trace
evaluation eliminates all the coefficients except the constant term, which is mul-
tiplied by N . Hence, the phase after HomTrace is

q

Bj
m+ epbs +Nems + Etr(X)

49

where epbs (resp. ems) is the constant term of Epbs(X) (resp. Ems(X)) and Etr(X)
is the error induced by HomTrace. The final scheme switching operation converts
GLev(m) obtained from HomTrace into GGSW(m), whose error variance Vcbs is
given as follows.

Vcbs ≤ Vpbs +N2Vms +
N

2
Vtr + Vss

where Vss is the scheme switching error.

50

	FHEW-like Leveled Homomorphic Evaluation: Refined Workflow and Polished Building Blocks

