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Abstract We are using the extended Maiorana-McFarland construction to
create new bent functions. When we start with a bent function of dimension
s − r, we can produce a new function of dimension s + r while ensuring that
its balance is limited to the set of vectors with an even Hamming weight in its
domain. We also compare this approach with the case where r = 1 and apply
it multiple times. Finally, we provide an algorithm as an example, focusing on
the case where r = 2 and another algorithm using r = 1 two times.

Kewords: Bent functions, Maiorana-McFarland, Affine spaces, Balancedness

1 Introduction

The bent functions are a special kind of boolean function [9]. These functions
reach maximum non-linearity, a maximum distance from the affine functions,
using Hamming distance. The mentioned functions are used in cryptography,
for example, to resist linear attacks, and various methods are used to find good
cryptographic properties [1], [8]. There are many methods to obtain unique
characteristics of boolean functions, and there is a particular interest due to
the large size of the search space (22

n

boolean functions with domain Fn
2 ). We

find distinct constructions in Tokareva’s book Chapter 8 [10].
We used the extended Maiorana-McFarland’s class [2]. We are generalizing

the particular case given in [4]. Hence, we consider an initial bent function g :
Fs−r
2 → F2. We define 2r affine spaces subsets of Fs

2 on which bent functions are
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defined, extensions of the original g. Finally, considering a specific ϕ : Fs
2 → Fr

2

function and using the previous definitions, we obtain a new bent function on
Fr+s
2 .
Is this general case r = l equal to applying l times the case r = 1. To

answer this, we give a specific expression of the last case, obtaining a similar
expression of the general case but with distinct new bent functions. To support
this, we provide an algorithm that considers r = 2 and one more, considering
the case r = 1 two times.

The particular way to array the elements of Fs
2 is significant because it

allows one to easily understand the structure of the affine spaces and helps
demonstrate the distinct results.

2 Background

Before introducing the bent functions, we need definitions, such as the Ham-
ming distance, affine functions, Fourier transform, and non-linearity. The lit-
erature provides all these, for example, [4], [5], [7], [10].

A boolean function is such that its images are 0 or 1. In general, they
are defined with domain Fn

2

Definition 1 Let f and g boolean functions. The Hamming distance be-
tween f and g is denoted dH(f, g), where dH(f, g) := ♯{x | f(x) ̸= g(x)}.

Definition 2 The algebraic normal form (ANF) of a boolean function f :
Fn
2 → F2 is expressed

f(x) =
⊕

u∈Fn
2

aux
u,

au ∈ F2, x
u = xu1

1 · · ·xun
n , x = (x1 . . . , xn), u = (u1, . . . , un).

Definition 3 A linear function is defined as la(x) := a ·x, for some a ∈ Fn
2 .

The set of affine functions is denoted An,

An := {la, la ⊕ 1̄ | a, 1̄ ∈ Fn
2}.

a · x = a1x1 ⊕ · · · ⊕ anxn, a = (a1, . . . , an), x = (x1, . . . , xn) ∈ Fn
2 .

The non-linearity of a boolean function f is the Hamming distance be-
tween f and the set of affine functions.

Theorem 1 The non-linearity of a boolean functions f : Fn
2 → F2 is charac-

terized by

Nl(f) = 2n−1 − 1

2
maxa∈Fn

2
|Ŵf (a)|,

where
Ŵf (a) :=

∑
x∈Fn

2
(−1)f(x)⊕a·x, a ∈ Fn

2 .
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Ŵf is called the Hadamard Transform of f .

Now, the definition of bent functions is extended to an affine subspace C
(a subset of Fn

2 ), as is mentioned in Proposition 1 of [2]. The non-linearity is
characterized as follows:

Theorem 2 Let be a function f : C ⊂ Fn
2 → F2, C be of dimension m. Then

Nl(f) = 2m−1 − 1

2
max
a∈Fn

2

|Ŵf (a)|,

Ŵf (a) :=
∑

x∈C(−1)f(x)⊕a·x.

Theorem 3 (Parseval’s equation) Let be a function f : C ⊆ Fn
2 → F2, C be of

dimension m. Then ∑
a∈Fn

2

Ŵ2
f (a) = 2m+n.

Immediately,
If f : Fn

2 → F2 is a bent function, then Ŵf (a) = ±2n/2 for all a ∈ Fn
2 .

If f : C → F2 is a bent function, then Ŵf (a) = ±2m/2 for all a ∈ Fn
2 .

The following theorem corresponds to a class of bent functions: extended
Maiorana–McFarland’s class.

Theorem 4 [2] Let the function ϕ(y) : Fs
2 → Fr

2 such that for all a ∈ Fr
2,

ϕ−1(a) is an affine space of dimension s− r. Let also a function ge(y) : Fs
2 →

F2, where ge|ϕ−1(a) is a bent function. Then, the function f : Fr+s
2 → F2,

(x, y) 7→ x · ϕ(y)⊕ ge(y), x ∈ Fr
2, is a bent function.

3 Constructing new Maiorana bent functions

We desire to construct bent functions using the above theorem. In [4], the
particular case r = 1 is considered. Using a similar technique, we consider a
general case r.

First of all, let g : Fs−r
2 → F2 be a bent function. Now, we define the

functions ϕ and ge:

Let ge|Ci
:= gei , i = 1, . . . , 2r, such that gei : Ci ⊂ Fs

2 → F2, where Ci is an
affine space, and

gei(x̄1|x̄2) := g(x̄1), x̄1 ∈ Fs−r
2 , x̄2 ∈ Fr

2.

For a good definition of ge, we need to define Ci, i = 1, . . . , 2r, in such a
way that there is a partition of Fs

2. First, we define ϕ in the following way,

C1 := ϕ−1(0, . . . , 0), . . . , C2r−1 := ϕ−1(0, 1, . . . , 1), C2r−1+1 := ϕ−1(1, 0, . . . , 0), . . . , C2r := ϕ−1(1, . . . , 1).
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The images can be considered in any order with respect to the affine spaces.
We illustrate the definition using lexicographic order.

In the case r = 1 given in [4], there are two inverse images, C1 = ϕ−1(0)
and C2 = ϕ−1(1), where C1 and C2 are the sets of elements of even and odd
Hamming weight of Fs

2, respectively. We maintain this definition for r = 1.

Now, we define the affine spaces for the general case. In this work, the
elements of Fs

2 are considered vectors, words, or rows of Fs
2 (assuming the

vector space is an array).

Let A1∪B1 = Fs
2, where A1 is the set of elements of even Hamming weight

and B1 the set of elements of odd Hamming weigh. For 0 < r < s, i = 1, . . . , r,
we can see that we are using the fundamental relations:

Ai+1 0̄i
Bi+1 1̄i

= Ai and
Ai+1 1̄i
Bi+1 0̄i

= Bi, i = 1, . . . , r.

0̄i =

0
...
0

, 1̄i =

0
...
0

are sets in arrays of dimension 2s−(i+1) × 1.

Then, we can write a general case:

Fs
2 =

A1

−−
B1

=

C1
...

C2r−1

−−−
C2r−1+1

...
C2r

=

Ar+1 0̄rx̄
r
1

Br+1 1̄rx̄
r
1

...
Ar+1 1̄rx̄

r
2r−1

Br+1 0̄rx̄
r
2r−1

−−−−−−−
Ar+1 0̄rx̄

r
2r−1+1

Br+1 1̄rx̄
r
2r−1+1

...
Ar+1 1̄rx̄

r
2r

Br+1 0̄rx̄
r
2r

.

The sets x̄r
i , i = 1, . . . , 2r, are considered as arrays of dimensions 2s−(r+1)×

(r − 1), with each row (an element of the set) a bit string of length r. For
i = 1, . . . , 2r, Ci is a 2s−r × s array, where

Ci :=
Ar+1 0̄rx̄

r
i

Br+1 1̄rx̄
r
i

if i is odd , Ci :=
Ar+1 1̄rx̄

r
i

Br+1 0̄rx̄
r
i

if i is even.

Remark 1 1. Ar+1 and Br+1 are sets ordered as arrays of dimensions 2s−(r+1)×
(s− r).

2. The union of Ar+1 and Br+1 is the set of all vectors in Fs−r
2 of even and

odd Hamming weights, respectively.
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3. For each i = 1, . . . , 2r, all the rows of x̄r
i are equal. Also,[⋃2r−1−1

i=1
(0̄rx̄

r
i ) ∪ (1̄rx̄

r
i )

] ⋃ [⋃2r−1

j=2
(1̄rx̄

r
j) ∪ (0̄rx̄

r
j)

]
= Fr

2,

[⋃2r−1

i=2r−1+1
(0̄rx̄

r
i ) ∪ (1̄rx̄

r
i )

] ⋃ [⋃2r

j=2r−1+2
(1̄rx̄

r
j) ∪ (0̄rx̄

r
j)

]
= Fr

2,

i odd, j even.
4. For i = 1, . . . , 2r−1, the element of x̄r

i has an even Hamming weight if i
is odd and an odd Hamming weight if i is even. For i = 2r−1 + 1, . . . , 2r,
the element of x̄r

i has an odd Hamming weight if i is odd and an even
Hamming weight if i is even.

Let’s provide an example using s = 5 and r = 3 to illustrate the general
array and definitions. Consider F5

2 = A1 ∪ B1.

F5
2 =

A1

−−
B1

=

C1
−−
C2
−−
C3
−−
C4
−−
C5
−−
C6
−−
C7
−−
C8

=

A4 0̄3
B4 1̄3

0̄2

−−−−
A4 1̄3
B4 0̄3

1̄2

0̄1

−−−−
A4 0̄3
B4 1̄3

1̄2

−−−−
A4 1̄3
B4 0̄3

0̄2

1̄1

−−−−
A4 0̄3
B4 1̄3

0̄2

−−−
A4 1̄3
B4 0̄3

1̄2

1̄1

−−−−
A4 0̄3
B4 1̄3

1̄2

−−−−
A4 1̄3
B4 0̄3

0̄2

0̄1

A1 =

00000
11000
10100
01100

00110
11110
10010
01010
−−−
00011
11011
10111
01111

00101
11101
10001
01001

B1 =

00001
11001
10101
01101

00111
11111
10011
01011
−−−
00010
11010
10110
01110

00100
11100
10000
01000

C1 =

00000
11000
10100
01100

C2 =

00110
11110
10010
01010

C3 =

00011
11011
10111
01111

C4 =

00101
11101
10001
01001
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C5 =

00001
11001
10101
01101

C6 =

00111
11111
10011
01011

C7 =

00010
11010
10110
01110

C8 =

00100
11100
10000
01000

A4 =
00
11

B4 =
10
01

0̄3 =
0
0

1̄3 =
1
1

Considering an arbitrary order,

Ci := ϕ−1(x1, x2, x3), i = 1, . . . , 8, (x1, x2, x3) ∈ F3
2, A4 ∪ B4 = F2

2.
A4 is the set of elements of even Hamming weight of F2

2.
B4 is the set of elements of odd Hamming weight of F2

2.

In order to have a good definition of ge and gei , i = 1, . . . , 2r:

Proposition 1 The set {C1, . . . , C2r} is a partition of Fs
2 and each element is

an affine space.

Proof We know that

1. For i = 1, . . . , 2r. If i is odd,

a) Ci =

Ar+1

0, xi(s−r+2), . . . , xis

...
0, xi(s−r+2), . . . , xis

−−−−−−−−−

Br+1

1, xi(s−r+2), . . . , xis

...
1, xi(s−r+2), . . . , xis

.

In particular, C1 is an vectorial subspace of dimension s−r and (x1(s−r+2), . . . , x1s) =
(0, . . . , 0).

If i is even,

b) Ci =

Ar+1

1, xi(s−r+2), . . . , xis

...
1, xi(s−r+2), . . . , xis

−−−−−−−−−

Br+1

0, xi(s−r+2), . . . , xis

...
0, xi(s−r+2), . . . , xis

.

Now, we can write Ci, i = 1, . . . , 2r as affine spaces:
Let Ci be of the form a) and x̄i = (x̄′

i, 0, xi(s−r+2), . . . , xis) ∈ Ci, x̄′
i ∈ Ar+1

a fix element. Then
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x̄i + C1 = Ci.

Let Ci be of the form b) and x̄i = (x̄′
i, 1, xi(s−r+2), . . . , xis), x̄

′
i ∈ Ar+1 a fix

element. Then

x̄i + C1 = Ci.

Additionally, the sets Ci, i = 1, . . . , 2r are distinct. Even more, their in-
tersections are empty. We divide the demonstration into two cases: when Ci,
i ∈ {1, . . . , 2r−1}, has an empty intersection with the other affine spaces and
when Ci, i ∈ {2r−1 + 1, . . . , 2r} has an empty intersection.

In the first case, let x̄i ∈ Ci, i ∈ {1, . . . , 2r−1}, x̄i = (x̄′
i, k, x̄

′′
i ), k = 0 or

k = 1, x̄′
i ∈ Ar+1 or x̄′

i ∈ Br+1, and x̄′′
i a row of x̄r

i .
We claim, x̄i /∈ Cj , j ̸= i, j = 1, . . . , 2r−1, because x̄′′

i is not a row of x̄r
j .

Also, x̄i /∈ Cj , j ̸= i, j = 2r−1 + 1, . . . , 2r, since in the unique case ,when
x̄′′
i = x̄′′

j , we have j = 2r − i + 1. In this case, x̄′
j ∈ Br+1 if x̄′

i ∈ Ar+1 and
x̄′
j ∈ Ar+1 if x̄′

i ∈ Br+1. Thus, x̄i /∈ Cj .

In the other case, when x̄i ∈ Ci, i ∈ {2r−1+1, . . . , 2r}, the proof is similar.

The union of the affine spaces is the set Fs
2. Therefore, we have the desired

result.
⊓⊔

Remark 2 [4]

1. Let g : Fs−r
2 → F2 be a bent function such that g|Ar+1

is balanced.

(a) If Ŵg(0̄) = 2
s−r
2 , then

|g−1
|Ar+1

(0)| = 2s−r−2

|g−1
|Ar+1

(1)| = 2s−r−2

|g−1
|Br+1

(0)| = 2s−r−2 + 2
s−r−2

2 .

|g−1
|Br+1

(1)| = 2s−r−2 − 2
s−r−2

2 .

(b) If Ŵg(0̄) = −2
s−r
2 , then

|g−1
|Ar+1

(0)| = 2s−r−2

|g−1
|Ar+1

(1)| = 2s−r−2

|g−1
|Br+1

(0)| = 2s−r−2 − 2
s−r−2

2 .

|g−1
|Br+1

(1)| = 2s−r−2 + 2
s−r−2

2 .

2. Similar observations if g|Br+1
is balanced.

The claim that if g is a bent function, then g|Ar+1
is balanced or g|Br+1

is
balanced [4] is essential to proving the following theorem.

Using the notation accorded above.
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Theorem 5 Let g : Fs−r
2 → F2 be a bent function. Then, gei : Ci → F2,

i = 1, . . . , 2r, are bent functions.

Proof Let b̄ = (b̄1, bs−r+1, b̄2) ∈ Fs
2, b̄1 ∈ Fs−r

2 , b̄2 ∈ Fr−1
2 , bs−r+1 ∈ F2 and

x̄ = (x̄1, xs−r+1, x̄2) ∈ Ci, x̄1 ∈ Fs−r
2 , x̄2 ∈ Fr−1

2 , xs−r+1 ∈ F2, i ∈ {1, . . . , 2r}.
Let lc(x̄1) = c · x̄1 be a linear function.

Let’s prove that gei : Ci → F2 is a bent function.

If x̄ = (x̄1, xs−r+1, x̄2) ∈ Ci, then x̄2 = c̄2, where c̄2 is a constant vector.

Ŵgei
(b̄)

=
∑
x̄∈Ci

(−1)gei (x̄)+x̄·b̄ =
∑
x̄∈Ci

(−1)gei (x̄)+x̄1·b̄1+xs−r+1bs−r+1+c̄2b̄2 .

If bs−r+1 = 0,

Ŵgei
(b)

= (−1)c̄2·b̄2
∑

x̄1∈Fs−r
2

(−1)g(x̄1)+x̄1·b1 = (−1)c̄2·b̄2Ŵg(b̄1).

If bs−r+1 = 1 and i is odd,

Ŵgei
(b)

= (−1)c̄2b̄2
∑
x̄∈Ci

(−1)gei (x̄1,0,x̄2)+x̄1·b̄1 + (−1)c̄2b̄2
∑
x̄∈Ci

(−1)gei (x̄1,1,x̄2)+x̄1·b̄1+1

= (−1)c̄2b̄2
∑

x̄1∈Ar+1

(−1)gei (x̄1,0,x̄2)+x̄1·b̄1 + (−1)c̄2b̄2+1
∑

x̄1∈Br+1

(−1)gei (x̄1,1,x̄2)+x̄1·b̄1

If bs−r+1 = 1 and i is even,

Ŵgei
(b)

= (−1)c̄2b̄2
∑

x̄1∈Br+1

(−1)gei (x̄1,0,x̄2)+x̄1·b̄1 + (−1)c̄2b̄2+1
∑

x̄1∈Ar+1

(−1)gei (x̄1,1,x̄2)+x̄1·b̄1

In all the cases when bs−r+1 = 1, given that (g + lb̄1)|Ar+1
is balanced or

(g + lb̄1)|Br+1
is balanced, then Ŵgei

(b) = ±Ŵg(b̄1). Since g is a bent function,

then gei is a bent function.
⊓⊔

Using the previous definitions, we can use Theorem 4 to give bent functions.
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Theorem 6 Let g : Fs−r
2 → F2 be a bent function, ge, and ϕ defined as above.

Then, the function

f : Fr+s
2 → F2, (x̄, ȳ) 7→ x̄ · ϕ(ȳ)⊕ ge(ȳ), x̄ ∈ Fr

2, ȳ ∈ Fs
2,

is a bent function.

Proof By definition of ϕ, ge, Proposition 1, and Theorem 5, we have all the
elements satisfying the conditions of Theorem 4. Then, f is a bent function.

⊓⊔

We want to achieve specific balancedness in the domain of a Maiorana
bent function. Hence, we will make some observations and provide additional
conditions in the following theorem.

Remark 3 1. Let la : {x ∈ Fn
2 : wH(x) even} → F2, la(x) := a · x.

If wH(a) ̸= n and wH(a) ̸= 0, then la is balanced.
If n is even and a = 1̄, then la({x ∈ Fn

2 : wH(x) even}) = {0}.
2. Let la : {x ∈ Fn

2 : wH(x) odd} → F2, la(x) := a · x.
If wH(a) ̸= n and wH(a) ̸= 0, then la is balanced.
If n is odd and a = 1̄, then la({x ∈ Fn

2 : wH(x) odd }) = {1}.

Theorem 7 Let r an integer odd, g : Fs−r
2 → F2 be a bent function, and ge

defined as above. Also, let ϕ(Ci) an image even if i = 1, . . . , 2r−1 and ϕ(Ci) an
image odd if i = 2r−1 + 1, . . . , 2r. Then, the bent function

f : Fr+s
2 → F2, (x̄, ȳ) 7→ x̄ · ϕ(ȳ)⊕ ge(ȳ), x̄ ∈ Fr

2, ȳ ∈ Fs
2,

satisfy that f|{(x̄,ȳ)|wH((x̄,ȳ)) even} is balanced.

Proof Consider without loss of generality the case g|Ar+1
balanced and Ŵg(0) =

2
s−r
2 .

Since we desire to find balancedness in Fr+s
2 restricted to the set of vectors

of even Hamming weight, then we consider the following necessary subcases:

1. x̄ even and ȳ ∈ Ci, i = 1, . . . , 2r−1

2. x̄ odd and ȳ ∈ Ci, i = 2r−1 + 1, . . . , 2r

In the first subcase, we know ϕ(Ci) has a constant even image, and ge|Ci
=

gei has 2
s−r−2 + 2s−r−2+2

s−r−2
2 images zero (Remark 2). Then, for each x̄ ∈

Fr
2, depending if x̄·ϕ(Ci) is zero or one, we have that f(x̄, Ci) = x̄·ϕ(Ci)⊕ge(Ci)

has

2s−r−2 + 2s−r−2 + 2
s−r−2

2 images zero or

2s−r−2 + 2s−r−2 − 2
s−r−2

2 images zero respectively.

On the other hand, ȳ 7→ x̄ · ϕ(ȳ) is balanced in A1 if x ̸= 0̄ given z̄ 7→ x̄ · z̄
is balanced when z̄ is restricted to the set of vectors of even Hamming weight
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of Fr
2 (by Remark 3 item 1). Since there are 2r−1 − 1 elements x̄ ∈ Fr

2 of even
Hamming weight, distinct of vector zero, the total number of images zero is

(2r−1−1)
[
2r−2[(2s−r−2 + 2s−r−2 + 2

s−r−2
2 ) + (2s−r−2 + 2s−r−2 − 2

s−r−2
2 )]

]
.

Also, 0̄ · ϕ(ȳ) = 0, ∀y ∈ A1. Then, we have additionally

2r−1(2s−r−2 + 2s−r−2 + 2
s−r−2

2 ) images zero.

The second subcase is similar, but ȳ 7→ x̄ · ϕ(ȳ) is balanced if wH(x̄) ̸= n,
now in B1. Since there are 2r−1 − 1 elements x̄ ∈ Fr

2 of odd Hamming weight,
the total number of images zero is

(2r−1−1)
[
2r−2[(2s−r−2 + 2s−r−2 + 2

s−r−2
2 ) + (2s−r−2 + 2s−r−2 − 2

s−r−2
2 )]

]
.

Also, 1̄ ·ϕ(ȳ) = 1, ∀y ∈ B1 by Remark 3 item 2. Then, we have additionally

2r−1(2s−r−2 + 2s−r−2 − 2
s−r−2

2 ) images zero.

Finally, we can see that adding the number of all images equal to zero
is 2s+r−2 Hence, f is balanced when restricted to the set of vectors of even
Hamming weight.

If we consider the other cases, following a similar analysis, we obtain the
same result.

⊓⊔

The previous results generalise the case r = 1 given in [4]. Now, we desire
to provide a relation between the particular case r = 1 and the general r.

4 Applying Maiorana many times

Suppose we have a bent function g : Fs−l
2 → F2, ȳ 7→ g(ȳ), and want to

obtain a bent function over Fl+s
2 , but applying l times the Theorem 6 using

the particular case r = 1. This is done in Algorithm 1 of [4] but does not obtain
a specific expression of this new function. First, we consider the function ϕ′

1

using the case r = 1 as in Theorem 6 over Fs−l
2 , then repeat the process l

times. Hence, we obtain l functions:

ϕ′
1 : Fs−l+2(1)−1

2 → F2, ϕ′
2 : Fs−l+2(2)−1

2 → F2, . . . , ϕ′
l : F

s−l+2(l)−1
2 → F2.

And then, we can define a function ϕ′ : Fs+l−1
2 → Fl

2 as follows:

ϕ′(x2, . . . , xl, ȳ1, ȳ2)

:= [ϕ′
l(x2, . . . , xl, ȳ1, ȳ2), . . . , ϕ

′
2(xl, ȳ1, ys−l+1, ys−l+2), ϕ

′
1(ȳ1, ys−l+1)] ,

where ȳ1 ∈ Fs−l
2 , ȳ2 = (ys−1+1, . . . , ys) ∈ Fl

2 and x2, . . . , xl ∈ F2.
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Observe that, if we consider a constant c̄ = (c2, . . . , cl), then for all (ȳ1, ȳ2) ∈
Ci, for each i ∈ {1, . . . , 2l}, the images of ϕ′(c̄, ȳ1, ȳ2) are equal. Also, the set
of images of ϕ′(c̄, ȳ1, ȳ2) have all the elements of Fl

2, repeat 2
s−l times. Do not

forget the initial order accorded of Fs
2.

More details in the next result.

Theorem 8 Let g : Fs−l
2 → F2, ȳ1 7→ g(ȳ1), be a bent function and ϕ′ defined

as above. Then, there is a bent function

gl : Fl+s
2 → F2, (x̄, ȳ1, ȳ2) 7→ x̄ · ϕ′(x2, . . . , xl, ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2),

ge(ȳ1, ȳ2) = g(ȳ1) ∀ȳ1 ∈ Fs−l
2 , ȳ2 ∈ Fl

2, x̄ = (x1, x2, . . . , xl) ∈ Fl
2.

Proof We proceed considering l times the particular case r = 1:

Step 1. Let g : Fs−l
2 → F2, ȳ1 7→ g(ȳ1), be a bent function. Then, ge :

Fs−l+1
2 → F2 and ϕ′

1 : Fs−l+1
2 → F2 are defined as in Theorem 6 (particular

case r = 1) in order to obtain a bent function g1 : Fs−l+2(1)
2 → F2. Hence,

g1(xl, ȳ1, ys−l+1) = xlϕ
′
1(ȳ1, ys−l+1) + ge(ȳ1, ys−l+1).

Step 2. Similarly to step 1, the bent function g1 : Fs−l+2(1)
2 → F2 define

g1e : Fs−l+2(1)+1
2 → F2 and ϕ′

2 : Fs−l+2(1)+1
2 → F2, as done in Theorem 6.

Hence, we obtain a g2 : Fs−l+2(2)
2 → F2 bent function. This bent function can

be expressed in the following way:

g2(xl−1,xl, ȳ1,ys−l+1, ys−l+2)

= xl−1ϕ
′
2(xl, ȳ1,ys−l+1, ys−l+2) + g1e(xl, ȳ1,ys−l+1, ys−l+2)

= xl−1ϕ2(xl, ȳ1, ys−l+1, ys−l+2) + xlϕ
′
1(ȳ1, ys−l+1) + ge(ȳ1, ys−l+1)

= (xl−1, xl) · [ϕ′
2(xl, ȳ1, ys−l+1, ys−l+2), ϕ

′
1(ȳ1, ys−l+1)] + ge(ȳ1, ys−l+1).

Note that the relation of the step 1 gives the second equality.

Step 3. Proceeding in the same way l times, a bent function gl : Fs−l+2l
2 →

F2 is obtained:

gl(x1,x2, . . . ,xl−1,xl, ȳ1,ys−l+1,ys−l+2, . . . ,ys−l+l−1, ys−l+l)

= x̄ · [ϕ′
l(x2, . . . , xl, ȳ1, ȳ2), . . . , ϕ

′
2(xl, ȳ1, ys−l+1, ys−l+2), ϕ

′
1(ȳ1, ys−l+1)]

+ge(ȳ1, ys−l+1)

= x̄ · ϕ′(x2, . . . , xl, ȳ1, ȳ2) + ge(ȳ1, ȳ2).

Observe that we are abusing notation by indistinctly using the extension
of g, namely ge, with r = 1 and r = l.

Therefore,

gl(x̄, ȳ1, ȳ2) = x̄ · ϕ′(x2, . . . , xl, ȳ1, ȳ2) + ge(ȳ1, ȳ2).
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⊓⊔

In the following result, we do not need r to be an odd integer to obtain
balancedness on the domain (restricted to the set of vectors of even Hamming
weight) of the obtained bent function. Also, we consider ϕ′ as in Theorem 8.

Corollary 1 Let g : Fs−r
2 → F2 be a bent function, with ge and ϕ′ defined as

above. Then, the bent function

gr : Fr+s
2 → F2, (x̄, ȳ1, ȳ2) 7→ x̄ · ϕ′(x2, . . . , xl, ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2),

will satisfy that f|{(x̄,ȳ1,ȳ2)|wH((x̄,ȳ1ȳ2)) even} is balanced, where ge(ȳ1, ȳ2) =

g(ȳ1) ∀ȳ1 ∈ Fs−r
2 , x̄ ∈ Fr

2, ȳ2 ∈ Fr
2, x̄ = (x1, x2, . . . , xr), ȳ2 = (ys−r+1, . . . , ys).

Proof The proof is direct. We use Theorem 8 many times (in particular case
l = 1). Each time, a balanced bent function restricted to the set of vectors of
even Hamming weight in its domain is constructed [4].

⊓⊔

5 Comparing constructions

We have obtained a similar expression considering the case r = l and the case
r = 1 l times. However, the obtained functions are different. First, we can
see the dependence of ϕ′ with the variables x2, . . . , xl. In the following result,
we demonstrate this claim. In this way, it rises to a greater variety of bent
functions.

Theorem 9 Let f be the bent function obtained using Theorem 6 when r = l,
and let gl be the bent function obtained using Theorem 8, r = 1 l times. Then,
f ̸= gl.

Proof Let ϕ be defined as Theorem 6 and ϕ′ = (ϕ′
1, . . . , ϕ

′
l) be as in Theorem

8. We can express, ϕ = (ϕ1, . . . , ϕl), where ϕ1, . . . , ϕl are component functions.
Let i ∈ {1, . . . , 2l | i even}.
Suppose ϕl(Ci) = {0} for some i. Then, ∀(ȳ1, ȳ2) ∈ Ci, ȳ1 ∈ Fs−l

2 , ȳ2 ∈ Fl
2,

f(0, . . . , 0, 1, ȳ1, ȳ2) = (0, . . . , 0, 1) · ϕ(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕl(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2) = ge(ȳ1, ȳ2).

On the other side,

gl(0, . . . , 0, 1, ȳ1, ȳ2) = (0, . . . , 0, 1) · ϕ′(0, . . . , 0, 1, ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕ′
1(ȳ1, ys−l+1) + ge(ȳ1, ȳ2) = 1⊕ ge(ȳ1, ȳ2).

Then, we have distinct images.

In other case, if ϕl(Ci) = {1}, ∀i ∈ {1, . . . , 2l | i even}.
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First, suppose ϕl−1(Ci) ̸= ϕ′
2(0, ȳ1, ys−l+1, ys−l+2), (ȳ1, ȳ2) ∈ Ci, ȳ2 =

(ys−l+1, ys−l+2, . . . , ys), for some i. Then,

f(0, . . . , 0, 1, 0, ȳ1, ȳ2) = (0, . . . , 0, 1, 0) · ϕ(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕl−1(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2).

On the other side,

gl(0, . . . , 0, 1, 0, ȳ1, ȳ2) = (0, . . . , 0, 1, 0) · ϕ′(0, . . . , 0, 1, 0, ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕ′
2(0, ȳ1, ys−l+1, ys−l+2) + ge(ȳ1, ȳ2)

Hence, we obtain distinct images.

Now, suppose ϕl−1(Ci) = ϕ′
2(0, ȳ1, ys−l+1, ys−l+2) = 0, (ȳ1, ȳ2) ∈ Ci, ȳ2 =

(ys−l+1, ys−l+2, . . . , ys), for some i. We know that exist 2l−2 of the i even
elements such that ϕ′

2(0, ȳ1, ys−l+1, ys−l+2) = 0.
For the same chosen i:

f(0, . . . , 0, 1, 1, ȳ1, ȳ2) = (0, . . . , 0, 1, 1) · ϕ(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕl−1(ȳ1, ȳ2)⊕ ϕl(ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2) = 0⊕ 1⊕ ge(ȳ1, ȳ2) = 1⊕ ge(ȳ1, ȳ2).

On the other side,

gl(0, . . . , 0, 1, 1, ȳ1, ȳ2) = (0, . . . , 0, 1, 1) · ϕ′(0, . . . , 0, 1, 1, ȳ1, ȳ2)⊕ ge(ȳ1, ȳ2)

= ϕ′
2(1, ȳ1, ys−l+1, ys−l+2)⊕ ϕ′

1(ȳ1, ys−l+1)⊕ ge(ȳ1, ȳ2) = 1⊕ 1⊕ ge(ȳ1, ȳ2).

= ge(ȳ1, ȳ2).

Again, we obtain distinct images.

Given the conclusions of all the cases, we have images where f and gl are
distinct. In this way, we obtain the desired result.

⊓⊔

In the following, we present two algorithms, one using the case r = 2 and
the other using two times the case r = 1. The algorithms are obtained mainly
by analysing the images of ϕ and ϕ′ functions. As we demonstrate, we can see
that, in this particular case, the bent functions constructed in each algorithm
are different.

We present an example for the general case r. Using a particular case r = 2,
we obtain bent functions over Fs+3

2 given a bent function over Fs−1
2 . We are

defining ϕ(C1) := (0, 0), ϕ(C2) := (1, 1), ϕ(C3) := (1, 0), and ϕ(C4) := (0, 1).
Note that this is a particular case for the ϕ function.

In Algorithm 1,the union of A3 and B3 is the set of all vectors in Fs−1
2 with

even and odd Hamming weights, respectively, and we are using

C1 :=
A3 0̄ 0̄
B3 1̄ 0̄

.

Also, we give an algorithm using r = 1 twice (Algorithm 2). Comparing it
with Algorithm 1, we can see that we obtain a different bent function.
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Algorithm 1 Extended Maiorana-McFarland r = 2

Input: s− 1 ≥ 2 even, gs−1(ȳ), gs−1 : Fs−1
2 → F2 be a bent function, {(x1, x2, ȳ, y1, y2) ∈

Fs−1+4
2 | x1, x2, y1, y2 ∈ F2, ȳ ∈ Fs−1

2 }
Output: f(x1, x2, ȳ, y1, y2) a bent function, f|A1

balanced
1: for x1, x2 from 0 to 1 do

2: if (ȳ, y1, y2) ∈ C2 :=
A3 1̄ 1̄
B3 0̄ 1̄

,

3: [(x1, x2) = (0, 1) and (x1, x2) = (1, 0)]
4: or

5: (ȳ, y1, y2) ∈ C3 :=
A3 0̄ 1̄
B3 1̄ 1̄

,

6: [(x1, x2) = (1, 0) and (x1, x2) = (1, 1)]
7: or

8: (ȳ, y1, y2) ∈ C4 :=
A3 1̄ 0̄
B3 0̄ 0̄

,

9: [(x1, x2) = (0, 1) and (x1, x2) = (1, 1)] then
10: f(x1, x2, ȳ, y1, y2) = 1⊕ gs−1(ȳ);
11: else
12: f(x1, x2, ȳ, y1, y2) = gs−1(ȳ);
13: end if
14: end for

Algorithm 2 Extended Maiorana-McFarland two times r = 1

Input: s− 1 ≥ 2 even, gs−1(ȳ), gs−1 : Fs−1
2 → F2 be a bent function, {(x1, x2, ȳ, y1, y2) ∈

Fs+3
2 | x1, x2, y1, y2 ∈ F2, ȳ ∈ Fs−1

2 }
Output: gs+3(x1, x2, ȳ, y1, y2) a bent function, gs+3|A1

balanced
1: for x1, x2, y1, y2 from 0 to 1 do
2: if ȳ is even,
3: [(x1, x2) = (0, 1) and [(y1, y2) = (1, 1) or (1, 0)]] or
4: [(x1, x2) = (1, 0) and [(y1, y2) = (0, 1) or (1, 0)]] or
5: [(x1, x2) = (1, 1) and [(y1, y2) = (0, 0) or (1, 0)]]
6: or
7: ȳ is odd,
8: [(x1, x2) = (0, 1) and [(y1, y2) = (0, 1) or (0, 0)]] or
9: [(x1, x2) = (1, 0) and [(y1, y2) = (1, 1) or (0, 0)]] or
10: [(x1, x2) = (1, 1) and [(y1, y2) = (1, 0) or (0, 0)]] then
11: gs+3(x1, x2, ȳ, y1, y2) = 1⊕ gs−1(ȳ);
12: else
13: gs+3(x1, x2, ȳ, y1, y2) = gs−1(ȳ);
14: end if
15: end for

6 Conclusions

We generalize Maiorana-McFarland’s construction of [4], now for a general
positive integer r; namely, given a bent function g : Fs−r

2 → F2, we construct
a bent function f : Fs+r

2 → F2.

For this, a particular way to array the elements of Fs
2 is considered, and

2r affine spaces Ci, i = 1, . . . , 2r, are provided, demonstrating that these are
a partition of Fs

2. Furthermore, a bent function on each Ci is defined for each
affine space.
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The images of ϕ : Fs
2 → Fr

2 can be defined in any order. Then, we obtain
many distinct bent functions only with one bent function, g. But if we want
to get a bent function f with balancedness restricted to the set of vectors of
even Hamming weight in its domain, we need to define the images ϕ(Ci) of
even Hamming weight if i ∈ {1, . . . , 2r−1}. And also, we need to consider r
odd.

This new bent function is distinct concerning the constructed bent function
when we repeat the case r = 1 many times: In Theorem 8, we obtain an
expression of the new bent functions applying r = 1 l times (with balancedness
restricted to the set of vectors of even Hamming weigh). The construction is
similar to Maiorana-McFarland’s expression, but ϕ′ (in place of ϕ) depends on
extras l − 1 variables of gl, the new bent function.

The two given algorithms can obtain distinct bent functions incremented in
four dimensions relative to the original bent function. We can follow the same
procedure to get new bent functions by increasing the dimension by multiples
of four.

A desired outcome is to find total balanced functions with high non-
linearity, initializing from bent functions [3], [6]. In future research, starting
from the Maiorana bent function’s partial balancedness, one can find a total
balancedness by reducing the non-linearity as little as possible.
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