
©IACR 2024. This is the full version of an article that will be published in the proceedings of ASIACRYPT 2024.

Tightly Secure Non-Interactive BLS Multi-Signatures

Renas Bacho 1,2 Benedikt Wagner 3

August 30, 2024

1 CISPA Helmholtz Center for Information Security
renas.bacho@cispa.de

2 Saarland University

3 Ethereum Foundation
benedikt.wagner@ethereum.org

Abstract
Due to their simplicity, compactness, and algebraic structure, BLS signatures are among the

most widely used signatures in practice. For example, used as multi-signatures, they are integral
in Ethereum’s proof-of-stake consensus. From the perspective of concrete security, however, BLS
(multi-)signatures suffer from a security loss linear in the number of signing queries. It is well-known
that this loss can not be avoided using current proof techniques.

In this paper, we introduce a new variant of BLS multi-signatures that achieves tight security
while remaining fully compatible with regular BLS. In particular, our signatures can be seamlessly
combined with regular BLS signatures, resulting in regular BLS signatures. Moreover, it can easily
be implemented using existing BLS implementations in a black-box way. Our scheme is also one
of the most efficient non-interactive multi-signatures, and in particular more efficient than previous
tightly secure schemes. We demonstrate the practical applicability of our scheme by showing how
proof-of-stake protocols that currently use BLS can adopt our variant for fully compatible opt-in
tight security.

Keywords: Non-Interactive, Multi-Signatures, BLS Signatures, Tightness, Pairings

https://orcid.org/0009-0007-7037-2458
https://orcid.org/0000-0002-4620-7264
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }

Contents
1 Introduction 3

1.1 Our Contribution . 3
1.2 More on Related Work . 4
1.3 Paper Organization . 6

2 Technical Overview 6
2.1 Tightly Secure and Structured BLS Signatures . 6
2.2 Tightly Secure BLS Multi-Signatures . 7

3 Preliminaries 9

4 Variants of BLS Multi-Signatures 11
4.1 Parameterized Construction . 11
4.2 Security with One Key: BLS Multi-Signatures . 12
4.3 Two Keys and Tight Security . 13

5 Application: PoS Blockchains with Opt-In Tightness 17

A Postponed Security Proofs 22

2

1 Introduction
One of the most widely used digital signature schemes is due to Boneh, Lynn, and Shacham (BLS) [BLS01].
BLS signatures play a crucial role in many decentralized applications such as Chia [con22, Inc24],
randomness beacons [BL22, Org20], lotteries [BLL+23, GHM+17], and Ethereum’s proof-of-stake (PoS)
consensus [Edg23]. They are not only simple and efficient, but they also possess several attractive
algebraic properties. A particularly useful property is their support for efficient non-interactive multi-
signatures [Bol03, BDN18]. For instance, suppose Alice, Bob, and Charlie each have a BLS secret key
and use it to sign a message m individually. These individual signatures can be aggregated into a single
BLS signature for m, which can be verified against a combination of their public keys. Informally, this
aggregated signature certifies that all three parties have signed m. This multi-signature feature is central
to Ethereum’s PoS mechanism, and it is also the subject of this work. In particular, we focus on the
concrete security of BLS multi-signatures, as explained next.
Concrete Security of BLS. The security proof for BLS (multi-signatures) follows a straightforward
reduction approach: assuming an efficient adversary A breaking BLS, one can construct an efficient
reduction R that breaks the Computational Diffie-Hellman (CDH) assumption. Specifically, if A breaks
BLS with probability ϵ, then R breaks CDH with probability at least ϵ′ = ϵ/Θ(qs), where qs denotes the
number of signatures that A learns. For practical values of qs, this results in a relatively loose security
bound: if qs = 230 and CDH is 128-bit hard, this proof only guarantees 98 bits of security for BLS.
Tightness and Impossibility. It would be highly desirable to have a tight security proof, meaning a
proof where ϵ′ ≈ ϵ. Unfortunately, such a tight proof is not possible for BLS multi-signatures. This is
because a tight proof for BLS multi-signatures would imply a tight proof for single-signer BLS signatures,
and existing impossibility results rule this out for unique signatures like BLS [BJLS16, Cor02, KK12]. In
contrast, a certain non-unique variant of BLS signatures can be proven tightly secure [GJKW07, KW03].
However, this variant sacrifices many of the desirable algebraic properties of the original BLS scheme.
Our Goal. While BLS cannot achieve tight security, we can still explore the following question:

Is there a tightly secure and non-interactive multi-signature compatible with standard BLS signatures?

Here, we should clarify what we mean by compatibility. Clearly, it cannot mean that signature verification
is exactly the same as in BLS, due to the aforementioned impossibility results [BJLS16, Cor02, KK12].
Instead, the minimal requirement for compatibility should be: (1) verification and signing algorithms can
easily be obtained by invoking BLS signing and verification in a black-box manner, and (2) signers using
the new scheme should be able to combine their signatures with those of legacy signers using plain BLS,
without requiring significant changes in the verification process.

1.1 Our Contribution
We affirmatively address this question by constructing a variant of BLS multi-signatures that is efficient,
tightly secure, and compatible with standard BLS signatures, as outlined next.
Security. Our scheme achieves tight security based on the CDH assumption in the random oracle model
(ROM). In particular, we do not rely on the algebraic group model (AGM) [FKL18] or the knowledge
of secret key model (KOSK) [Bol03]. We compare the security guarantees of our scheme with existing
non-interactive multi-signatures in Table 1.
Efficiency. We compare the efficiency of non-interactive multi-signatures in Table 2. Our scheme
is (almost) as efficient as regular BLS multi-signatures: signing involves computing one hash followed
by calling regular BLS signing, while verification and aggregation maintain the same efficiency as
regular BLS. Notably, our scheme outperforms the previous tightly secure schemes, BNN07 [BNN07] and
QLH12 [QLH12], in terms of efficiency.
Compatibility and Applications. The core of our result is a new tightly secure signature scheme.
Intuitively, a signer randomly uses one of two BLS keys for each message. Consequently, our signatures
can be aggregated with regular BLS signatures, resulting in a standard BLS signature1. Our scheme
can be implemented on top of existing BLS implementations in a black-box manner. As an application,
we consider proof-of-stake (PoS) blockchains utilizing BLS, such as Ethereum [Edg23]. In this context,

1The signature is not unique because it is valid for one of multiple possible keys.

3

Scheme Assumption Loss Idealization
BLS [Bol03] CDH Θ(qs) ROM
RY07 [RY07] CDH Θ(qs) ROM
BDN18 [BDN18] CDH Θ(q2

h/ϵ) ROM
LOSSW06 [LOS+06] CDH Θ(ℓqs) KOSK
QX10 [QX10] CDH Θ(q2

sqh/ϵ) ROM
DGNW20 [DGNW20] wBDHI Θ(qh) ROM
BNN07 [BNN07] CDH Θ(1) ROM
QLH12 [QLH12] CDH Θ(1) ROM
BLSMS2 CDH Θ(1) ROM

Table 1: Comparison of non-interactive multi-signature schemes in the pairing setting. We compare under
which hardness assumption the scheme is proven secure, the asymptotic tightness loss of the security
proof, and under which idealized model the scheme is proven secure. Here, we do not consider proofs in
the algebraic group model (AGM). We denote the number of random oracle and signing queries by qh and
qs, respectively, and the advantage of an adversary against the scheme by ϵ. For LOSSW06 [LOS+06], ℓ
denotes the bit-length of messages. Further, wBDHI denotes the weak bilinear Diffie-Hellman inversion
assumption [BBG05], ROM denotes the random oracle model, and KOSK denotes the knowledge of secret
key model [Bol03].

our results demonstrate how to operate a validator with tight security while remaining compatible with
existing validators. For further details, we refer to Section 5.

Remark 1 (Tightness and Compatibility). We argue that compatibility issues are often a reason why many
tight schemes are not even being considered for deployment in practice. As an example, note that a long
line of research has focused on Schnorr-compatible multi-party signatures, e.g. [AB21, CKM21, NRS21]
and references therein. Such schemes are currently being implemented in Bitcoin and even about to be
standardized. On the contrary, tightly secure variants which are not compatible (e.g., [PW23, PW24]) are
not even considered for deployment and purely academic. Our scheme stands out as being compatible and
tightly secure at the same time, which means that it is much more likely that this will find applications
in practice.

1.2 More on Related Work
In this section, we discuss related work in more detail. Especially, we discuss previous results on
non-interactive multi-signatures in general, and results specifically on BLS multi-signatures.
Multi-Signatures. Multi-signatures have been introduced by Itakura and Nakamura [IN83] and later
formalized in the plain public key model by Bellare and Neven [BN06]. In this model, each signer
independently generates its own public-secret key pair. A major concern in this setting are rogue-key
attacks, in which the adversary would choose its public key as a function of an honest user’s key, allowing
him to create forgeries easily. Such attacks have hindered progress in early stages [Lan96, LHL95,
MOR01, MH96, OO93]. In order to prevent rogue-key attacks, Boldyreva [Bol03] has introduced the
knowledge of secret key (KOSK) model for multi-signature schemes which was adopted by many subsequent
works [CKM21, DEF+19, LOS+06]. In this model, it is assumed that the adversary must reveal its secret
keys at public key registration directly. For a discussion on this model with its drawbacks, we refer
to [BN06, RY07]. Many multi-signature schemes with several rounds of communication per signature have
been proposed. Three-round multi-signature schemes have been constructed in [BCJ08, BN06, BDN18,
FH20, MPSW19, MOR01], all of which base their security on standard assumptions, specifically the
Decisional Diffie-Hellman (DDH) assumption and the Discrete Logarithm (DLOG) assumption. Further,
two-round multi-signature schemes have been constructed [AB21, BD21, BTT22, CKM21, DOTT21,
NRS21, NRSW20, PW23, PW24, TZ23], some of which are partially non-interactive (i.e., the first signing
round is message-independent and can be preprocessed) [NRS21, TZ23], while others achieve tight
security [PW23, PW24]. In this work, we focus specifically on non-interactive multi-signatures.

4

Scheme Public Key Sig Share Signature Cost (Sig) Cost (Ver)
BLS [Bol03] 1⟨G⟩ 1⟨G⟩ 1⟨G⟩ 1ex 2pr
RY07 [RY07] 1⟨G⟩ 1⟨G⟩ 1⟨G⟩ 1ex 2pr
BDN18 [BDN18] 1⟨G⟩ 1⟨G⟩ 1⟨G⟩ 1ex 2pr
LOSSW06 [LOS+06] 1⟨GT ⟩ 2⟨G⟩ 2⟨G⟩ 2ex + 1exℓ 2pr + 1exℓ

QX10 [QX10] 1⟨G⟩ 1⟨G⟩ 1⟨G⟩ 1ex 2pr + 1exN+1

DGNW20 [DGNW20] 1⟨G⟩ 2⟨G⟩ 2⟨G⟩ 4ex 3pr + 1ex
BNN07 [BNN07] 1⟨G⟩ 1⟨G⟩+ 1 1⟨G⟩+N 1ex (N + 1)pr
QLH12 [QLH12] 1⟨G⟩ 2⟨G⟩+ 1 4⟨G⟩ 2ex 4pr
BLSMS2 2⟨G⟩ 1⟨G⟩+ 1 1⟨G⟩+N 1ex 2pr

Table 2: Comparison of non-interactive multi-signature schemes in the pairing setting. We assume that all
constructions are instantiated with a symmetric pairing e : G×G→ GT and compare the size of a public
key, signature share, the size of the signature, the computational cost per signer, and the computational
cost for verification. We denote the size of a group element by ⟨G⟩ (respectively ⟨GT ⟩), the number of
signers by N , and the number of exponentiations, pairings, and k-multi-exponentiations for k ∈ N by ex,
pr, and exk, respectively. For LOSSW06 [LOS+06], ℓ denotes the bit-length of messages.

Non-Interactive Multi-Signatures. A non-interactive multi-signature scheme is a multi-signature
scheme which requires only a single round of communication among a set of n parties to produce a
signature. Namely, each party outputs a signature share, and then the n signature shares can be (publicly)
combined into a single short signature. Despite its practical relevance, there are only a few non-interactive
multi-signatures in the literature, which we briefly discuss next. The first non-interactive multi-signature
scheme is the BLS multi-signature proposed by Boldyreva [Bol03]. As for single-signer BLS, its security
is based on the Computational Diffie-Hellman (CDH) assumption and has a security loss of Θ(qs) where
qs denotes an upper bound on the number of allowed signing queries. Further, the security proof relies
on the KOSK model. Several follow-up works [BCG+23, BDN18, RY07] have proposed variants of the
BLS multi-signature, eliminating the KOSK assumption. We will later elaborate in more detail on
these schemes. Subsequently, several other schemes have been proposed [BNN07, LOS+06]. The scheme
proposed by Lu et al. [LOS+06] is based on the Waters signature scheme [Wat05]. Its security is based on
the CDH assumption and it has a security loss of Θ(ℓqs) where ℓ denotes the bit-length of messages. The
security proof relies on the KOSK model. The scheme proposed by Bellare et al. [BNN07] is based on
the aggregate signature scheme of Boneh et al. [BGLS03]. Here, a user i’s signature σi is a key-prefixed
BLS signature H(pki,m)ski with the multi-signature being simply the product of individual signatures.
Its security is based on the CDH assumption and comes with a security loss of Θ(qs). Further, by using
the Katz-Wang technique [GJKW07], the authors obtain a tight multi-signature. Notably, their schemes
do not rely on the KOSK model. However, the final signatures require n + 1 pairing evaluations for
verification. Later, Qian and Xu [QX10] have proposed a multi-signature scheme that only requires
two pairing evaluations (and one multi-exponentiation) for verification. Its security is based on the
CDH assumption and it has a large security loss of Θ(q2

sqh/ϵ) where qh denotes an upper bound on
the number of allowed hash queries. A follow-up work by Qian et al. [QLH12] improves upon this by
proposing the first non-interactive multi-signature scheme with tight security and efficient verification.
Their scheme is based on the Waters signature scheme and uses the Katz-Wang technique to obtain a tight
security reduction from the CDH assumption. Notably, their scheme does not rely on the KOSK model.
Finally, Drijvers et al. [DGNW20] have proposed a multi-signature scheme based on the Boneh-Boyen-Goh
hierarchical identity-based encryption (HIBE) scheme [BBG05]. Its security is based on the weak bilinear
Diffie-Hellman inversion (wBDHI) assumption [BBG05] for type-3 pairings and has a security loss of
Θ(qh). Notably, their scheme does not rely on the KOSK model.
BLS Multi-Signatures. As stated above, the proof of security for the original BLS multi-signature by
Boldyreva [Bol03] relies on the KOSK model. This was improved upon by the scheme of Ristenpart and
Yilek [RY07] leveraging proofs of possession (POPs) of secret keys to prevent rogue-key attacks without
relying on the KOSK model. Still, the security is based on the CDH assumption and has a security loss
of Θ(qs). Later, Boneh et al. [BDN18] have proposed another variant of the BLS multi-signature without
relying on the KOSK model. Essentially, this is achieved by rerandomization of public keys of users as

5

pk′
i := pkai

i where ai := Hrand(pki, {pk1, . . . , pkN}) for a random oracle Hrand. Their security proof is still
based on the CDH assumption, but now additionally relies on rewinding which results in a very loose
bound of Θ(q2

h/ϵ). More recently, Baldimtsi et al. [BCG+23] gave a tight security reduction for the BLS
multi-signature with rerandomization of public keys based on the DLOG assumption. However, their
security proof relies on the algebraic group model (AGM) [FKL18]. The recent Internet Engineering
Task Force (IETF) draft [BGW+22] specifies BLS signatures with proofs of possession for use in practical
deployments. In fact, this is how BLS signatures on the Ethereum blockchain are used [Edg23]. As such,
none of the proposed variants for BLS multi-signatures has a tight security proof without relying on the
AGM.

1.3 Paper Organization
In Section 2, we give an informal but detailed technical overview of our constructions and proof techniques.
In Section 3, we formally recall relevant cryptographic background and definitions. Then, in Section 4,
we formally present our construction and its analysis. We conclude in Section 5, where we discuss an
application to proof-of-stake blockchains.

2 Technical Overview
In this section, we give an informal overview of our constructions and our proof techniques. We do so in
two steps: first, we introduce a new tightly secure variant of standard BLS signatures. While there is
already a tightly secure variant of BLS [KW03], our variant is structurally more compatible with standard
BLS as we will see. In the second step, we then show how to lift this construction to the multi-signature
setting while preserving tight security.

2.1 Tightly Secure and Structured BLS Signatures
Let us first review BLS signatures and existing ways to construct tightly secure variants thereof. For
simplicity, most of this overview will be written assuming a symmetric pairing e : G×G→ GT , where G
is a cyclic group of prime order p with generator g.
BLS Signatures. A regular BLS signature for a message m with respect to public key pk = gsk is
given as σ = H(m)sk, where H : {0, 1}∗ → G is a random oracle. It will be instructive to review the
non-tight security proof of BLS [BLS01]: the goal is to give a reduction from the CDH assumption. This
reduction gets as input two group elements X = gx and Y = gy, and its goal is to compute gxy. To
this end, the reduction simulates the EUF-CMA security game with public key pk = X for the adversary.
While doing so, it splits the message space into two partitions: (1) for most messages m, it will program
H(m) := gγm , where γm ∈ Zp is a random exponent known to the reduction. Note that for these messages,
the reduction can efficiently provide signatures to the adversary by returning σ = Xγm , i.e., γm serves
as a trapdoor; (2) for all other messages, it will embed the challenge Y into the hash: H(m) := Y · gγm .
For these messages, the reduction can efficiently obtain a CDH solution from a valid signature output
by the adversary. As long as the adversary only queries signatures for messages from the first partition,
and forges for a message in the second partition, the reduction succeeds. Unfortunately, this partitioning
leads to a security loss linear in the number of signing queries. Indeed, it is known that such a loss is
inherent for unique signatures like BLS [BJLS16, Cor02].
Random Bits for Tight Security. It is well-known that with a minimal change, BLS signatures can
be made tightly secure: to sign a message m, a signer would pseudorandomly derive a bit βm ∈ {0, 1}
from the message, and then compute the signature as σ = H(m, βm)sk. This is often called the Katz-Wang
technique [GJKW07], and it enables the following tight security proof: for each message m, the reduction
programs H(m, βm) := gγm and H(m, 1 − βm) := Y · gγ′

m . That is, the reduction embeds a trapdoor in
one branch, and the challenge in the second branch for each message. Obviously, the reduction can now
compute σ using the trapdoor. On the other hand, the bit βm∗ for the forgery message m∗ remains
pseudorandom for the adversary, and so with probability 1/2, the (1− βm∗)-branch is used in the forgery,
which ultimately allows the reduction to solve CDH. Observe that this proof does not partition the
message space.

6

Algebraic Structure Lost. While the Katz-Wang technique gives an elegant way to obtain tight security,
we pay a price: BLS signatures have many desirable algebraic features, which the random bit variant does
not. For instance, assume we have two BLS signatures σA = H(m)skA and σB = H(m)skB under different
keys for the same message m. Then, the product σA · σB = H(m)skA+skB is a valid signature under the
product of the keys pkA · pkB. This observation underlies the design of BLS multi-signatures. Now,
consider the same setting for the Katz-Wang variant: as each signer has to compute its bit pseudorandomly,
the two signatures are likely of the form σA = H(m, 0)skA and σB = H(m, 1)skB . When we multiply them,
we do not get a BLS signature under the product of keys.
Towards a Solution. The above example shows that, in order to preserve the algebraic structure of
BLS signatures, it is essential to ensure every signer uses the same basis H(m) for a given message m.
Still, resorting to standard BLS can not lead to tight security [BJLS16, Cor02], as already explained. To
make progress towards a solution, let us assume that we still have a pseudorandom bit βm, but use it
differently. Concretely, say a signer now holds two BLS public keys pk0 = gsk0 and pk1 = gsk1 . Then, we
could define the signature to be σ = H(m)skβm . For now, it is not clear at all that this leads to a tight
security proof, but we can already see that this is much more compatible with BLS than the Katz-Wang
variant: suppose Alice uses this variant, but Bob still uses regular BLS. Now say we have their two
signatures σA = H(m)skA,βm and σB = H(m)skB . Then, the product σA · σB is a regular BLS signature for
m with respect to the key pkA,βm · pkB .
Proving Security. As the previous example shows, the variant above is structurally compatible with
regular BLS signatures. The question is if this variant is also tightly secure. Indeed reusing the Katz-Wang
proof technique does not work: we only have one branch for each message. This means that for each
message m, we have to decide whether we would embed the challenge or a trapdoor, i.e., we have to
partition the message space. Fortunately, it turns out that we can still get a tight security proof. Say
our reduction gets as input the CDH challenge X = gx and Y = gy. As in the proof for regular BLS
signatures, we want to embed X in the key and Y in some of the random oracle outputs. Of course,
embedding X in a fixed key, say in pk0, is not a good idea. This is because an adversary could potentially
always choose to use pk1 in its forgery and the scheme degenerates to regular BLS. Instead, say we
embed X randomly: we sample a bit β̂ $← {0, 1} at random and define pkβ̂ := X, and make sure that the
reduction knows sk1−β̂ . Next, the reduction partitions the message space. This has to be done in a way
that ensures that the reduction can always simulate signatures, namely:

• Trapdoor Partition. If βm = β̂, i.e., the signature is σ = H(m)x, the reduction embeds a trapdoor
into H(m).

• Challenge Partition. Otherwise, the signature is σ = H(m)sk1−β̂ , and the reduction can embed Y
into H(m) because it can always simulate such signatures using sk1−β̂ .

Now, consider the adversary’s forgery (m∗, σ∗). We can argue that the bit bm∗ is hidden from the
adversary, so with probability 1/2 over the choice of this bit, the message m∗ is in the challenge partition.
Similarly, with probability 1/2 over the choice of β̂ the forgery is with respect to pkβ̂ . This means that
with probability 1/4, the forgery contains gxy, which the reduction can use to solve CDH. In this way, we
get a tight security proof.

2.2 Tightly Secure BLS Multi-Signatures
Equipped with our tightly secure variant of BLS signatures, we now turn our focus to multi-signatures.
We will first recall common techniques to securely turn BLS signatures into multi-signatures. Throughout,
we consider the simplified setting of two parties, Alice and Bob, signing a message m. Alice will generally
be assumed to be our honest party, whereas Bob is assumed to be adversarial.
BLS Multi-Signatures. As we have mentioned above, we can combine the two BLS signatures
σA = H(m)skA of Alice and σB = H(m)skB of Bob into a single signature σ = σA ·σB for the key pkA · pkB .
It is a well-established fact that without further modification, this naive BLS multi-signature is insecure
due to so-called rogue-key attacks: Bob could choose its key as pkB := pk−1

A · gδ, which allows him to
create valid multi-signatures for public key pkA · pkB = gδ without talking to Alice. Prominently, there
are two ways to solve this issue:

7

• Random Linear Combinations. Instead of defining the multi-signature as σA · σB, we define it as
σaA

A · σaB

B and the aggregate public key as pkaA

A · pkaB

B , where (aA, aB) ∈ Zp are random coefficients
derived using a random oracle.

• Proofs of Possession. A public key is only considered valid if it comes with a proof of possession2 of
the secret key [RY07]. Concretely, this proof is usually implemented as G(pkB)skB (for Bob), i.e., as
a BLS signature using a different random oracle.

The latter approach is often used in practice, e.g., in Ethereum [Edg23], and it will also be our focus.
Ristenpart and Yilek [RY07] have shown that this approach is provably secure for regular BLS. Interestingly,
their proof does not add any additional security loss: the security loss for the multi-signature is the same
as the one for regular BLS. Luckily, their proof technique also applies to our tightly secure variant, except
for some complications in the asymmetric pairing setting. This holds even if Alice uses our variant, and
Bob uses regular BLS. In the following, we review the challenge, the proof strategy by Ristenpart and
Yilek [RY07], and explain the complications when using asymmetric pairings.
A Closer Look at the Proof. When we want to prove the security of the BLS multi-signature with
proofs of possession, we have to simulate our honest signer Alice for the adversary, and we have to turn
the adversary’s forgery into a CDH solution. While the former task did not change compared to the case
of standard signatures, the latter task is more challenging in the multi-signature setting. This is because
a forgery σ∗ is now valid for a message m∗ and some combined key pkA · pkB , where pkB is made up by
Bob. More concretely, say we have embedded our CDH challenge (X,Y) = (gx, gy) in Alice’s key, such
that skA = x, and say we have managed that H(m∗) contains the challenge Y , i.e., H(m∗) = Y · gγm∗ for
some γm∗ known to the reduction. For simplicity, assume γm∗ = 0 for now. Then, the forgery has the
form

σ∗ = H(m∗)skA+skB = gxy · Y skB .

So, if the reduction wants to compute the CDH solution gxy from σ∗, it has to compute Y skB = gyskB .
But the reduction does not know y and pkB = gskB is made up by the adversary!
The Adversary Solves Our Problem. As already observed by Ristenpart and Yilek [RY07], we can
let the adversary solve our problem via proofs of possession: The reduction would embed Y into random
oracle G as well. In simplified terms, assume that G(pkB) = Y . In this case, the proof of possession
G(pkB)skB is exactly the desired term Y skB , and the reduction can use it to compute gxy.
Complications in the Asymmetric Setting. So far, we have simplified notation by using the
symmetric pairing setting. Indeed, the technique by Ristenpart and Yilek [RY07] for regular BLS
multi-signatures only works in the symmetric pairing setting and the type-2 pairing setting where there is
an efficiently computable isomorphism ψ : G2 → G1. Making the analysis work for an asymmetric pairing
without such an isomorphism, also known as the type-3 setting3, leads to subtle challenges, which we
outline next. Namely, recall that above we have assumed γm∗ = 0. In general, this will of course not be
the case and the forgery will have the form

σ∗ = H(m∗)skA+skB = (Y · gγm∗)skA+skB = gxy ·Xγm∗ · Y skB · gγm∗ skB .

We have already discussed how the reduction can eliminate the term Y skB using the proofs of possession.
It can of course also eliminate the term Xγm∗ using knowledge of X and γm∗ . In the symmetric pairing
setting, the reduction can also compute and remove the final term gγm∗ skB = pkγm∗

B . In the asymmetric
setting, however, the reduction has the adversarially chosen keys pkB only in one group, say G2, but
the signature σ∗ is in the other group G1, so the reduction needs to compute gγm∗ skB

1 over G1. It is
not clear how to do that4. Our solution is to define the random oracles multiplicatively, namely, we set
H(m) := pkγm

1−bm
for each message m. It turns out that this enables a tight proof in the type-3 setting.

2Enforcing such a valid proof of possession can of course be modeled as just another check in the signature verification
algorithm.

3The type-3 setting is indeed the most common setting in practice.
4We could of course force Bob to additionally output its public key pkB over G1, but this is generally not what happens

in practice, so we refrain from doing so.

8

3 Preliminaries
Here, we define our notation and recall relevant cryptographic primitives and assumptions.
Notation. We denote the security parameter by λ and assume that all algorithms get 1λ implicitly as
input. We use standard cryptographic terminology like negligible, overwhelming, PPT. To sample an
element x uniformly at random from a set W , we write x $←W . We write x← D if D is a distribution
or a probabilistic algorithm. That is, writing y ← A(x) means that algorithm A is run with uniformly
sampled random coins on input x and y is the output. If A is known to be deterministic, we write
y := A(x) instead. We write T(A) to denote the running time of A. We define [N] := {1, . . . , N} ⊆ N.
Computational Assumptions. Throughout this paper, we assume an algorithm PGGen(1λ) that
outputs cyclic groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2, and a non-degenerate5

pairing e : G1 ×G2 → GT into some target group GT .

Definition 1 (CDH Assumption). We say that the CDH assumption holds relative to PGGen, if for all
PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

z = xy

∣∣∣∣∣∣
(G1,G2, g1, g2, p, e)← PGGen(1λ),
x, y $← Zp, X1 := gx

1 , X2 := gx
2 , Y := gy

1
gz

1 ← A(G1,G2, g1, g2, p, e,X1, Y,X2)

Digital Signatures. We define the syntax of digital signatures and the standard notion of unforgeability
under chosen-message attacks [GMR88].

Definition 2 (Signature Scheme). A signature scheme is a tuple of PPT algorithms SIG = (Setup,Gen,
Sig,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters
par. We assume that par implicitly defines sets of public keys, secret keys, messages and signatures,
respectively. All algorithms related to SIG take par at least implicitly as input.

• Gen(par)→ (pk, sk) takes as input system parameters par, and outputs a public key pk and a secret
key sk.

• Sig(sk,m)→ σ takes as input a secret key sk and a message m and outputs a signature σ.

• Ver(pk,m, σ)→ b is deterministic, takes as input a public key pk, a message m, and a signature σ,
and outputs a bit b ∈ {0, 1}.

We require that SIG is complete in the following sense. For all par ∈ Setup(1λ), all (pk, sk) ∈ Gen(par),
and all messages m, we have

Pr [Ver(pk,m, σ) = 1 | σ ← Sig(sk,m)] = 1.

Definition 3 (EUF-CMA Security for Signatures). Let SIG = (Setup,Gen,Sig,Ver) be a signature scheme.
Consider an adversary A. Further, consider the game EUF-CMAA

SIG(λ) defined as follows:

1. Run par← Setup(1λ) and (pk, sk)← Gen(par).

2. Initialize Q := ∅ and let O be the following oracle:

• O(m) : Take as input m, set Q := Q∪ {m}, and return σ ← Sig(sk,m).

3. Run A on input (par, pk) and with access to oracle O. Obtain (m∗, σ∗) from A.

4. Output 1 if and only if Ver(pk,m∗, σ∗) = 1 and m∗ /∈ Q.

We say that SIG is EUF-CMA secure, if for all PPT adversaries A, the following advantage is negligible:

AdvEUF-CMA
A,SIG (λ) := Pr

[
EUF-CMAA

SIG(λ)⇒ 1
]
.

5Non-degenerate means that e (g1, g2) is a generator of the group GT .

9

Next, we recall the signature scheme due to Boneh, Lynn, and Shacham [BLS01]. It is well-known
that it is (non-tightly) EUF-CMA secure based on the CDH assumption [BLS01, Cor00]. Throughout, we
assume that signatures are in G1 and public keys are in G2. By symmetry, all of our results apply if the
roles are reversed.

Definition 4 (BLS Signatures [BLS01]). Consider a random oracle H : {0, 1}∗ → G1. The signature
scheme6 BLS = (BLS.Setup,BLS.Gen,BLS.SigH,BLS.VerH) is defined via the following algorithms:

• BLS.Setup(1λ)→ par: Define par := (G1,G2, g1, g2, p, e)← PGGen(1λ).

• BLS.Gen(par)→ (pk, sk): Sample sk $← Zp and set pk := gsk
2 .

• BLS.SigH(sk,m)→ σ: Set σ := H(m)sk.

• BLS.VerH(pk,m, σ)→ b: Return b = 1 if e (H(m), pk) = e (σ, g2). Otherwise, return b = 0.

Lemma 1. If the CDH assumption holds relative to PGGen and H : {0, 1}∗ → G1 is modeled as a random
oracle, then BLS is EUF-CMA secure. More precisely, for every PPT algorithm A that makes at most Q
queries to O, there is a PPT algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLS (λ) ≤ Θ(Q) · AdvCDH

B,PGGen(λ).

Multi-Signatures. Next, we give a definition for multi-signatures, specifically, non-interactive multi-
signatures. In such a scheme, each signer independently generates its key pair via a key generation
algorithm Gen. To sign a message, each signer locally uses its secret key to compute a signature via
an algorithm Sig. A list of such signatures for the same message can then be combined into a single
signature via an algorithm Combine. As a result, one obtains a signature that verifies for the given message
and with respect to the list of public keys. Note that trivially, we obtain a multi-signature scheme by
letting Combine concatenate the signatures. However, the goal should always be to construct non-trivial
multi-signatures in a sense that Combine outputs a signature much smaller than the concatenation.

Definition 5 (Multi-Signature Scheme). A multi-signature scheme is a tuple of PPT algorithms MS =
(Setup,Gen,Sig,Combine,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters
par. We assume that par implicitly defines sets of public keys, secret keys, messages and signatures,
respectively. All algorithms related to MS take par at least implicitly as input.

• Gen(par)→ (pk, sk) takes as input system parameters par, and outputs a public key pk and a secret
key sk.

• Sig(sk,m)→ σ takes as input a secret key sk and a message m and outputs a signature σ.

• Combine((pk1, σ1), . . . , (pkN , σN),m)→ σ is deterministic, takes as input a list of keys and signatures
(pk1, σ1), . . . , (pkN , σN), and a message m, and outputs a signature σ.

• Ver(pk1, . . . , pkN ,m, σ) → b is deterministic, takes as input a list of public keys pk1, . . . , pkN , a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We require that MS is complete in the following sense. For all par ∈ Setup(1λ), all N ∈ N, all (pki, ski) ∈
Gen(par) for every i ∈ [N], and all messages m, we have

Pr
[
Ver(pk1, . . . , pkN ,m, σ) = 1

∣∣∣∣ ∀i ∈ [N] : σi ← Sig(ski,m),
σ := Combine((pk1, σ1), . . . , (pkN , σN),m)

]
= 1.

6For BLS signatures, we make the hash function H an explicit parameter, which will simplify notation later. Concretely,
the proofs of possession in BLS multi-signatures are implemented using BLS on a different hash function. For our
constructions, we omit adding every hash function as an explicit parameter to avoid clutter.

10

Below, we define unforgeability for multi-signatures following our syntax. As in the unforgeability
game for signatures, the adversary gets access to a target public key and to a signing oracle. The only
difference to the game for signatures is that the forgery is now a combined signature, and is expected to
come with a list of public keys that includes the target public key.

Definition 6 (EUF-CMA Security for Multi-Signatures). Let MS = (Setup,Gen,Sig,Combine,Ver) be a
multi-signature scheme. Consider an adversary A and the game EUF-CMAA

MS(λ) defined as follows:

1. Run par← Setup(1λ) and (pk, sk)← Gen(par).

2. Initialize Q := ∅ and let O be the following oracle:

• O(m) : Take as input m, set Q := Q∪ {m}, and return σ ← Sig(sk,m).

3. Run A on input (par, pk) and with access to oracle O. Obtain a list of keys (pk∗
1, . . . , pk∗

N) and a
pair (m∗, σ∗) from A.

4. Output 1 if and only if there is an index i ∈ [N] such that pk = pk∗
i , and it holds that

Ver(pk∗
1, . . . , pk∗

N ,m∗, σ∗) = 1, and that m∗ /∈ Q.

We say that MS is EUF-CMA secure, if for all PPT adversaries A, the following advantage is negligible:

AdvEUF-CMA
A,MS (λ) := Pr

[
EUF-CMAA

MS(λ)⇒ 1
]
.

4 Variants of BLS Multi-Signatures
In this section, we present our new tightly secure variant of BLS multi-signatures. To avoid repetition and
to highlight the similarity to BLS, we do not only define a single scheme, but rather a class of schemes
BLSMSL, where L ∈ N is a parameter. Informally, this parameter specifies how many instances of BLS
are combined. The interesting cases for this paper are as follows:

• L = 1: This corresponds to standard BLS multi-signatures with proofs of possession as used for
example in Ethereum [Edg23]. Here, we give the to this date tightest known proof without the
algebraic group model. Essentially, the security is not larger than for (single-signer) BLS signatures.

• L = 2: In this case, we obtain a tightly secure multi-signature based on CDH.

Interestingly, these constructions are fully compatible, i.e., one signer may use L = 1 whereas a different
signer may choose to use L = 2 or even7 L = 3. As corollaries of the case L = 2, we obtain new tightly
secure variants of (single-signer) BLS signatures.

4.1 Parameterized Construction
Let H : {0, 1}∗ → G1 be a random oracle which informally takes the role of the random oracle in BLS
signatures. We first define helper algorithms KeyProve and KeyVer. Roughly, these are used to prove
possession of secret keys, which is a common method to prevent rogue-key attacks [Edg23]. The way they
are commonly implemented is as BLS signatures on the public key itself, using a different random oracle
G : {0, 1}∗ → G1:

• KeyProve(pk, sk)→ π: Set π := BLS.SigG(sk, pk)

• KeyVer(pk, π)→ {0, 1}: Return b := BLS.VerG(pk, pk, π).

Finally, we use a third random oracle Ĥ : {0, 1}∗ → {0, . . . , L− 1} that will be used to randomly decide
which key to use for signing. With these algorithms at hand, we now define BLSMSL for L ∈ N.

• BLSMSL.Setup(1λ)→ par:
7One can also use our technique to prove tight security from CDH for L = 3, but we do not see a good reason to use this

scheme, so we omit presenting this proof.

11

1. par← BLS.Setup(1λ)

• BLSMSL.Gen(par)→ (pk, sk):

1. seed $← {0, 1}λ

2. For all β ∈ {0, . . . , L− 1} : (pkβ , skβ)← BLS.Gen(par)
3. sk := (sk0, . . . , skL−1, seed)
4. For all β ∈ {0, . . . , L− 1}: πβ := KeyProve(pkβ , skβ)
5. π := (π0, . . . , πL−1), pk :=

(
(pk0, π0), . . . , (pkL−1, πL−1)

)
• BLSMSL.Sig(sk,m)→ σ:

1. βm := Ĥ(seed,m)
2. σ := BLS.SigH(skβm ,m)

• BLSMSL.Combine((pk1, σ1), . . . , (pkN , σN),m)→ σ:

1. For all i ∈ [N]: parse pki =
(
(pki,0, . . . , pki,L−1), (πi,0, . . . , πi,L−1)

)
2. For all i ∈ [N]: βi := min{β ∈ {0, . . . , L− 1} | BLS.VerH(pki,β ,m, σi) = 1}

3. σ̄ :=
∏N

i=1 σi, σ := (σ̄, β1, . . . , βN)

• BLSMSL.Ver(pk1, . . . , pkN ,m, σ)→ b:

1. For all i ∈ [N]: parse pki =
(
(pki,0, . . . , pki,L−1), (πi,0, . . . , πi,L−1)

)
2. Parse σ = (σ̄, β1, . . . , βN)
3. p̄k :=

∏N
i=1 pki,βi

4. b := BLS.VerH(p̄k,m, σ̄) ∧
∧

i∈[N] KeyVer(pki,βi
, πi,βi

)

Remark 2. In many applications, one would verify the proofs πi,β contained in public keys once when a
party registers.

Remark 3. For the case L = 1, this scheme is exactly the standard BLS multi-signature scheme with
proofs of possesion, noting that the step βm := Ĥ(seed,m) can safely omitted as βm is fixed in this case in
the signing algorithm. Similarly, the bits βi can be omitted from the combined signature.

Remark 4. A combined signature has size size(G1) +N logL, where size(G1) denotes the size of a single
group element. That is, the size of the signature still scales linearly with the number of signers N .
However, for the interesting parameters L ∈ {1, 2}, this means at most one bit per signer. In practice,
this can be ignored, as this only exceeds a small number of group elements for a very large number of
signers. Constructions with similar efficiency have been proposed before [PW23, PW24].

Remark 5. One interesting feature of these multi-signatures is that they are interoperable: one signer may
decide to keep using standard BLS signatures BLSMS1, and another signer may choose to use BLSMS2
or BLSMSL for arbitrary L ∈ N. The signatures can still be combined using obvious adaptations of
algorithm Combine. It is also clear that from the perspective of a single signer using BLSMSL to sign,
the security of BLSMSL applies even if the adversary may use a different L. For example, a signer using
L = 2 has tight security from CDH even when other users use standard BLS multi-signatures.

4.2 Security with One Key: BLS Multi-Signatures
Regular BLS multi-signatures correspond to the case L = 1. Ristenpart and Yilek [RY07] gave a proof for
this variant with a security loss similar to standard BLS signatures (cf. Lemma 1). Their proof is in the
type-2 pairing setting (following the well-known classification in [GPS06]), i.e., it relies on the existence
of an efficiently computable isomorphism ψ : G2 → G1. As outlined in the technical overview, we give
a proof with the same security loss without this assumption. In this way, our proof also applies to the
type-3 pairing setting. We postpone the proof to Appendix A and note that the proof is a simplified
version of the proof of Theorem 2.

12

Theorem 1. Assume that H : {0, 1}∗ → G1, and G : {0, 1}∗ → G1 are random oracles. If the CDH
assumption holds relative to PGGen, then BLSMS1 is EUF-CMA secure. More precisely, for every PPT
algorithm A, there is a PPT algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLSMS1

(λ) ≤ 8QS + 4QSQH + 4QSQG
p

+ 4QS · AdvCDH
B,PGGen(λ),

where QH, QG, QS denote the number of queries to H,G, and O, respectively.

4.3 Two Keys and Tight Security
With L = 2, we get tight security from CDH, which is stated in the following theorem.

Theorem 2. Assume that H : {0, 1}∗ → G1, G : {0, 1}∗ → G1, and Ĥ : {0, 1}∗ → {0, 1} are random
oracles. If the CDH assumption holds relative to PGGen, then BLSMS2 is EUF-CMA secure. More
precisely, for every PPT algorithm A, there is a PPT algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLSMS2

(λ) ≤
QĤ
2λ

+ 8 + 4QH + 4QG
p

+ 4 · AdvCDH
B,PGGen(λ),

where QH, QG, QĤ denote the number of queries to H,G, and Ĥ, respectively.

Proof. We present our proof as a sequence of games, where the first game G0 is the EUF-CMA game. In
games G1 to G2, we guess whether the adversary forges with respect to public key pk0 or pk1. Say our
guess is β̂ ∈ {0, 1}, meaning we now assume that the forgery is with respect to pkβ̂ . Similarly, we ensure
that pkβ̂ is not the key that the honest signer would have used for the forgery message. In games G3 and
G4, we embed a random group element v into random oracle outputs for oracle H and establish that we
can simulate the signing oracle efficiently without using skβ̂ . Intuitively, v and pkβ̂ will correspond to the
CDH instance. At this point, the proof for the single signer setting would end with a reduction to the
CDH assumption. As we are in the multi-signature setting, the following steps are needed: in game G5,
we establish that the proof of possession for pkβ̂ can be simulated without using skβ̂ . In game G6, we
then embed v into the adversary’s proofs of possession. This is essential for eliminating terms related to
adversarially chosen keys in the forgery when we then reduce to CDH. Let us now make all of this more
precise.
Game G0: This is the EUF-CMA game for scheme BLSMS2 and adversary A, with a conceptual modifi-
cation in the winning condition. We recall this game to fix notation. The game does the following to
generate parameters and keys:

1. Set par := (G1,G2, g1, g2, p, e)← PGGen(1λ).

2. Set Q := ∅ and initialize empty maps h[·], ĥ[·], and g[·].

3. Sample seed $← {0, 1}λ and sk0, sk1
$← Zp.

4. Set pk0 := gsk0
2 , pk1 := gsk1

2 and p̃k0 := gsk0
1 , p̃k1 := gsk1

1 .

5. Set π0 := G(pk0)sk0 and π1 := G(pk1)sk1 .

6. Set pk := ((pk0, π0), (pk1, π1))

Note that p̃k0 and p̃k1 are not used yet, but will be used in the following games. The game gives par and
pk to the adversary A. In addition, A gets access to random oracles H, Ĥ, G, and a signing oracle O. For
the proof it will be useful that Ĥ(seed, ·) is implemented indirectly via a random oracle B : {0, 1}∗ → {0, 1}
that is implemented lazily and only known to the game. In this way, the game will be able to distinguish
queries made by A from queries it made itself. With this in mind, the oracles are implemented as follows:

• H(m) : If h[m] = ⊥, sample h[m] $← G1. Return h[m].

• Ĥ(seed′,m) : If ĥ[seed′,m] = ⊥, do:

1. If seed′ = seed, set ĥ[seed′,m] := B(m).

13

2. Else, sample ĥ[seed′,m] $← {0, 1}.

Return ĥ[seed′,m].

• G(pk) : If g[pk] = ⊥, sample g[pk] $← G1. Return g[pk].

• O(m) : Set Q := Q∪ {m}, set βm := Ĥ(seed,m), return σ := H(m)skβm .

Finally, the adversary A outputs a list of public keys and a forgery. In the actual EUF-CMA game for this
scheme, each such public key is a pair of BLS keys with associated proofs of possession, and the signature
would contain one bit for each such pair indicating which key is used. Without loss of generality8, we
simplify the game here by assuming that A directly outputs a set of BLS keys with their proofs of
possession. More precisely, we assume that A outputs a list of N pairs (pk∗

i , π
∗
i) ∈ G2 ×G1, i ∈ [N] and

a forgery (m∗, σ∗) ∈ {0, 1}∗ ×G1. The game does the following to determine if it outputs 0 or 1:

1. If m∗ ∈ Q, terminate with output 0.

2. Set V0 := {i ∈ [N] | pk∗
i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗

i = pk1}.

3. If V0 ∪ V1 = ∅, terminate with output 0.

4. If there is an i ∈ [N] with e (G(pk∗
i), pk∗

i) ̸= e (π∗
i , g2), terminate with output 0.

5. Set h∗ := H(m∗) and p̄k∗ =
∏N

i=1 pk∗
i .

6. If e
(
h∗, p̄k∗) ̸= e (σ∗, g2) terminate with output 0. Otherwise, terminate with output 1.

We have
AdvEUF-CMA

A,BLSMS2
(λ) ≤ Pr [G0 ⇒ 1].

Game G1: In this game, we change the winning condition, such that the game now additionally outputs 0
if the adversary ever queried Ĥ(seed,m∗). More precisely, the new check to evaluate the winning condition
is as follows:

1. If m∗ ∈ Q, terminate with output 0.

2. If ĥ[seed,m∗] ̸= ⊥, terminate with output 0.

3. Set V0 := {i ∈ [N] | pk∗
i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗

i = pk1}.

4. If V0 ∪ V1 = ∅, terminate with output 0.

5. If there is an i ∈ [N] with e (G(pk∗
i), pk∗

i) ̸= e (π∗
i , g2), terminate with output 0.

6. Set h∗ := H(m∗) and p̄k∗ =
∏N

i=1 pk∗
i .

7. If e
(
h∗, p̄k∗) ̸= e (σ∗, g2) terminate with output 0. Otherwise, terminate with output 1.

Here, the highlighted line is what we added. If m∗ ∈ Q, the change has no effect. Otherwise, if G0 and
G1 differ in their output, then A must have queried Ĥ(seed,m) for some m, concretely, for m∗. As A
obtains no information about seed, and seed is uniform over {0, 1}λ, the probability that this happens is
at most 1/2λ for each fixed random oracle query. With a union bound over all random oracle queries, we
get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
QĤ
2λ

.

Game G2: We let the game sample a bit β̂ $← {0, 1} at the beginning, and again change the winning
condition. Now, it is as follows:

1. If m∗ ∈ Q, terminate with output 0.
8A reduction can just drop the unused keys that it got from the adversary, and remove the bits from the forgery.

14

2. If ĥ[seed,m∗] ̸= ⊥, terminate with output 0.

3. Set V0 := {i ∈ [N] | pk∗
i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗

i = pk1}.

4. If V0 ∪ V1 = ∅, terminate with output 0.

5. Set βm∗ := Ĥ(seed,m∗). If Vβ̂ = ∅ or β̂ ̸= 1− βm∗ , terminate with output 0.

6. If there is an i ∈ [N] with e (G(pk∗
i), pk∗

i) ̸= e (π∗
i , g2), terminate with output 0.

7. Set h∗ := H(m∗) and p̄k∗ =
∏N

i=1 pk∗
i .

8. If e
(
h∗, p̄k∗) ̸= e (σ∗, g2) terminate with output 0. Otherwise, terminate with output 1.

If V0 ∪ V1 = ∅ or ĥ[seed,m∗] ̸= ⊥, the change has no effect. Otherwise, note that A’s view is independent
of β̂ and βm∗ . Therefore, we get

Pr [G2 ⇒ 1] ≥ Pr
[
1− βm∗ = β̂ ∧ Vβ̂ ̸= ∅

]
· Pr [G1 ⇒ 1].

As V0 ∪ V1 ̸= ∅, the probability of the event Vβ̂ ̸= ∅ is at least 1/2. Also, even conditioned on a fixed β̂,
the probability of 1− βm∗ = β̂ is 1/2, as β̂ and βm∗ are independent random variables. So we get

Pr [G2 ⇒ 1] ≥ 1
4 · Pr [G1 ⇒ 1].

Game G3: We change how oracle H is implemented. For this, we let the game sample an element v $← G1
at the beginning. Further, the game now internally holds a random oracle Γ: {0, 1}∗ → Zp, implemented
lazily in the standard way, and implements H as follows:

• H(m) : If h[m] = ⊥, do:

1. If 1− B(m) = β̂, set h[m] := vΓ(m).
2. Else, set h[m] := g1

Γ(m).

Return h[m].

Assuming v ̸= 1 ∈ G1, the outputs of H are still uniform and independent of the rest of the game and
each other. The probability that v = 1 is at most 1/p, so that we get9

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ 1
p
.

Game G4: We change how the signing oracle O is implemented. After this change, the secret key skβ̂

will no longer be used by the signing oracle:

• O(m) : Set Q := Q∪ {m}, set βm := Ĥ(seed,m), and do:

1. If βm = β̂, return σ := p̃kΓ(m)
β̂

.

2. Else, return σ := H(m)sk1−β̂ .

Clearly, we did not change the signing oracle for the case that βm = 1− β̂. For the other case, i.e., βm = β̂,
we have

H(m)skβm =
(
g1

Γ(m)
)skβm = g

Γ(m)·skβ̂

1 = p̃kΓ(m)
β̂

.

Therefore, we get
Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: We change how the game computes πβ̂ . Namely, from now on, the initial steps of the game
are:

9For the interested reader, this is where we use the indirection given by implementing Ĥ(seed, ·) via B. If we would have
queried Ĥ in the implementation of H, then A could easily make the output of G2 and G3 differ by querying H(m∗).

15

1. Sample β̂ $← {0, 1} and v $← G1 and set par := (G1,G2, g1, g2, p, e)← PGGen(1λ).

2. Set Q := ∅ and initialize empty maps h[·], ĥ[·], and g[·].

3. Sample seed $← {0, 1}λ and sk0, sk1
$← Zp.

4. Set pk0 := gsk2
2 , pk1 := gsk1

2 and p̃k0 := gsk0
1 , p̃k1 := gsk1

1 .

5. Sample δ $← Zp and set g[pkβ̂] := gδ
1.

6. Set π1−β̂ := G(pk1−β̂)sk1−β̂ and πβ̂ := p̃kδ

β̂ .

7. Set pk := ((pk0, π0), (pk1, π1))

It is easy to see that the distribution of the outputs of G remains unchanged, as δ is sampled uniformly.
Also, the distribution of πβ̂ is not changed because

G(pkβ̂)skβ̂ = g
δskβ̂

1 = p̃kδ

β̂ .

We get
Pr [G4 ⇒ 1] = Pr [G5 ⇒ 1].

Note that the game can now be simulated without ever using skβ̂ , assuming pkβ̂ and p̃kβ̂ are given.
Game G6: We change oracle G. Namely, the game now internally holds a random oracle ∆: {0, 1}∗ → Zp,
implemented lazily in the standard way, and implements G as follows:

• G(pk) : If g[pk] = ⊥, set g[pk] := v∆(pk). Return g[pk].

If v ̸= 1 ∈ G1, the distribution remains unchanged, and the probability that v = 1 is at most 1/p, so

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ 1
p
.

Final Reduction: Before we give the final reduction breaking CDH, we examine the forgery signature
σ∗ after the changes we have made and provide intuition how the reduction can solve CDH. To this end,
assume G6 outputs 1. For ease of notation, set x := skβ̂ and let y ∈ Zp be such that v = gy

1 . We assume
that a reduction is given gx

1 , gx
2 , and gy

1 , and its goal is to output gxy
1 . By the changes we have made, such

a reduction never explicitly needs x or y over Zp to simulate G6. Recall that the final forgery (m∗, σ∗) of
the adversary comes with a list of pairs (pk∗

i , π
∗
i) for i ∈ [N]. Denote by C ⊆ [N] the set of indices i such

that pk∗
i ̸= pkβ̂ . Intuitively, this corresponds to the set of indices for which the list contains adversarially

chosen public keys. For each i ∈ C, let sk∗
i ∈ Zp be such that pk∗

i = g
sk∗

i
2 . We set ℓ := |[N] \ C|. Due to

the change in G2, we know that ℓ ̸= 0. By the verification equation, we know that

σ∗ = H(m∗)s̄k∗
for s̄k∗ = ℓx+

∑
i∈C

sk∗
i .

By definition of H(m∗) (see G3) and recalling that 1 − βm∗ = β̂ (see G2), we know that the discrete
logarithm of σ∗ with respect to g1 is

Γ(m∗) · y · s̄k∗ = Γ(m∗) · y ·
(
ℓx+

∑
i∈C

sk∗
i

)
= Γ(m∗) ·

(
ℓxy + y ·

∑
i∈C

sk∗
i

)
.

Rearranging and taking to the exponent yields

gxy
1 =

(
σ∗1/Γ(m∗) ·

∏
i∈C

g
−ysk∗

i
1

)1/ℓ

, (1)

16

assuming Γ(m∗) ̸= 0 for now. Further, for every i ∈ C, we get from the definition of G (see G6), from
v = gy

1 , and from the verification equation that

π∗
i = G(pk∗

i)sk∗
i = g

y∆(pk∗
i)sk∗

i
1 . (2)

Assuming ∆(pk∗
i) ̸= 0, rearranging Equation (2) and plugging it into Equation (1), we get

gxy
1 =

(
σ∗1/Γ(m∗) ·

∏
i∈C

π∗
i

−1/∆(pk∗
i)

)1/ℓ

. (3)

Now our main observation is that the right-hand side of Equation (3) can efficiently be computed. We
now turn this into a reduction B solving the CDH problem if G6 outputs 1 and assuming Γ(m∗) ̸= 0 and
∆(pk∗

i) ̸= 0:

1. The reduction B gets as input parameters G1,G2, g1, g2, p, e and elements X1 = gx
1 , X2 = gx

2 , and
Y = gy

1 . Its goal is to output gxy
1 .

2. The reduction sets par := (G1,G2, g1, g2, p, e) ← PGGen(1λ), samples β̂ $← {0, 1} as in G6, and
defines pkβ̂ := X2, p̃kβ̂ := X1, and v := Y . It sets up the remaining parameters and then simulates
G6 for A, which is possible efficiently without the knowledge of x and y.

3. When A outputs a forgery and G6 would output 1, the reduction aborts if Γ(m∗) = 0 or ∆(pk∗
i) = 0

for any i ∈ C. Otherwise, it computes gxy
1 as in Equation (3) and outputs it.

We see that B perfectly simulates game G6 for A and the running time of B is dominated by the running
time of A. The probability that B has to abort before using Equation (3) is at most (QH +QG)/p. By
the discussion above, we get

Pr [G6 ⇒ 1] ≤ QH +QG
p

+ AdvCDH
B,PGGen(λ).

Corollary 1. Consider the digital signature scheme obtained by fixing N = 1 signer in the multi-signature
scheme BLSMS2. If the CDH assumption holds relative to PGGen, then this scheme is EUF-CMA secure,
with a tight proof.

5 Application: PoS Blockchains with Opt-In Tightness
We anticipate that the insights presented in this paper will prove valuable in the context of proof-of-
stake (PoS) blockchain systems utilizing BLS multi-signatures, such as Ethereum [Edg23]. Within this
domain, the interoperability of our construction with regular BLS (see Remark 5) makes it particularly
advantageous.
PoS Blockchains and Multi-Signatures. Let us begin by revisiting, in simplified terms, the relevant
aspects of a proof-of-stake blockchain. In such a system, participants can lock (aka stake) a designated
quantity of coins and publicly declare a BLS public key to register as validators. When a block is
proposed, it has to be attested by enough validators to be deemed valid. These attestations consist of
BLS signatures of the block with respect to the validators’ keys. What ends up on chain is the combined
BLS multi-signature.
Our Multi-Signatures for Opt-In Tightness. Now envision a system in which each validator can
register a (small) number of BLS keys, such that signing with one of these keys means the validator
attested the block. A natural motivation to use this setup is to ensure that validators can continue
functioning even if access to some keys is lost. We argue that such a system allows for opt-in tightness
without mandating a departure from BLS: Namely, consider Alice taking the role of a validator. As she
prioritizes concrete security, she would register two BLS keys. Whenever she had to sign a block, she
would pseudorandomly decide which key to use, thereby implementing our scheme. Note that she can do
so by implementing minimal logic on top of existing BLS implementations. Conversely, if Bob prefers

17

to adhere to regular BLS signatures, he can simply register a single key as usual. Importantly, Alice’s
signatures and Bob’s remain compatible and can be aggregated seamlessly, even without awareness of
Alice’s adoption of our scheme. Thus, each validator retains the autonomy to independently select their
preferred variant.

We remark that while some proof-of-stake chains indeed allow multiple BLS keys [Blo22] and can
directly implement the setting above, Ethereum currently does not10. Consequently, our research can be
viewed as an argument for the integration of such functionality in the future.

References
[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via

delinearized witnesses. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 157–188, Virtual Event, August 2021. Springer, Heidelberg.
(Cited on page 4.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, Heidelberg, May 2005. (Cited on page 4, 5.)

[BCG+23] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Francois Garillot, Jonas Lindstrom, Ben
Riva, Arnab Roy, Mahdi Sedaghat, Alberto Sonnino, Pun Waiwitlikhit, and Joy Wang.
Subset-optimized bls multi-signature with key aggregation. Cryptology ePrint Archive, Paper
2023/498, 2023. https://eprint.iacr.org/2023/498. (Cited on page 5, 6.)

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458. ACM Press, October
2008. (Cited on page 4.)

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 650–678. Springer, Heidelberg, December 2021. (Cited on page 4.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Heidelberg, December 2018. (Cited on
page 3, 4, 5.)

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of
LNCS, pages 416–432. Springer, Heidelberg, May 2003. (Cited on page 5.)

[BGW+22] Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, Christopher A. Wood, and
Zhenfei Zhang. BLS Signatures. Internet-Draft draft-irtf-cfrg-bls-signature-05, Internet
Engineering Task Force, June 2022. Work in Progress. (Cited on page 6.)

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight crypto-
graphic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 273–304. Springer, Heidelberg, May 2016. (Cited on
page 3, 6, 7.)

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature
scheme. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 193–207. ACM Press, November 2022. (Cited on page 3.)

10One potential workaround would involve registering multiple validators. However, this approach necessitates locking
twice the amount of funds as previously required, underscoring the potential benefits of a native support for multiple keys.

18

https://eprint.iacr.org/2023/498

[BLL+23] Erica Blum, Derek Leung, Julian Loss, Jonathan Katz, and Tal Rabin. Analyzing the real-
world security of the algorand blockchain. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 830–844. ACM Press, November
2023. (Cited on page 3.)

[Blo22] Harmony Blockchain. Harmony – Creating A Validator. https://docs.harmony.one/
home/network/validators/creating-a-validator, 2022. Accessed: 2024-05-07. (Cited
on page 18.)

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer,
Heidelberg, December 2001. (Cited on page 3, 6, 10.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.
(Cited on page 4.)

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP
2007, volume 4596 of LNCS, pages 411–422. Springer, Heidelberg, July 2007. (Cited on
page 3, 4, 5.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003. (Cited on page 3, 4, 5.)

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–305. Springer, Heidelberg, August
2022. (Cited on page 4.)

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375,
2021. https://eprint.iacr.org/2021/1375. (Cited on page 4.)

[con22] Chia contributors. Chia network: Implementation of bls signatures. GitHub repository,
November 2022. The green cryptocurrency with Chialisp. (Cited on page 3.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, Heidelberg, August 2000.
(Cited on page 10.)

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In
Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 272–287. Springer,
Heidelberg, April / May 2002. (Cited on page 3, 6, 7.)

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium
on Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019. (Cited
on page 4.)

[DGNW20] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures
for consensus. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020,
pages 2093–2110. USENIX Association, August 2020. (Cited on page 4, 5.)

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-
of-n and multi-signatures and trapdoor commitment from lattices. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130. Springer, Heidelberg, May 2021.
(Cited on page 4.)

19

https://docs.harmony.one/home/network/validators/creating-a-validator
https://docs.harmony.one/home/network/validators/creating-a-validator
https://eprint.iacr.org/2021/1375

[Edg23] Ben Edgington. Upgrading Ethereum - A technical handbook on Ethereum’s move to proof of
stake and beyond. Edition 0.3: Capella [wip] edition, 2023. (Cited on page 3, 6, 8, 11, 17.)

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. A tightly secure ddh-based multisignature
with public-key aggregation. In 2020 Eighth International Symposium on Computing and
Networking Workshops (CANDARW), pages 321–327, 2020. (Cited on page 4.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 3, 6.)

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 51–68, New York, NY, USA, 2017. Association
for Computing Machinery. (Cited on page 3.)

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514,
October 2007. (Cited on page 3, 5, 6.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April
1988. (Cited on page 9.)

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165, 2006. https://eprint.iacr.org/2006/165. (Cited on
page 12.)

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983. (Cited on page 4.)

[Inc24] Chia Network Inc. Chialisp primer: 5. bls signatures, 2024. (Cited on page 3.)

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 537–553. Springer, Heidelberg, April 2012. (Cited on page 3.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 2003, pages 155–164. ACM Press, October 2003. (Cited on page 3, 6.)

[Lan96] Susan K. Langford. Weakness in some threshold cryptosystems. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 74–82. Springer, Heidelberg, August 1996. (Cited
on page 4.)

[LHL95] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-multisignature schemes
where suspected forgery implies traceability of adversarial shareholders. In Alfredo De Santis,
editor, EUROCRYPT’94, volume 950 of LNCS, pages 194–204. Springer, Heidelberg, May
1995. (Cited on page 4.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, Heidelberg, May / June
2006. (Cited on page 4, 5.)

[MH96] Markus Michels and Patrick Horster. On the risk of disruption in several multiparty signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology —
ASIACRYPT ’96, pages 334–345, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. (Cited
on page 4.)

20

https://eprint.iacr.org/2006/165

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 245–254. ACM Press, November 2001. (Cited on page 4.)

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Designs, Codes and Cryptography, 87:2139 –
2164, 2019. (Cited on page 4.)

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of
LNCS, pages 189–221, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 4.)

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731. ACM Press, November 2020.
(Cited on page 4.)

[OO93] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the Fiat-Shamir
scheme. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT’91,
volume 739 of LNCS, pages 139–148. Springer, Heidelberg, November 1993. (Cited on page 4.)

[Org20] Drand Organization. Drand - a distributed randomness beacon daemon. GitHub repository,
2020. (Cited on page 3.)

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Heidelberg, April 2023. (Cited on
page 4, 12.)

[PW24] Jiaxin Pan and Benedikt Wagner. Toothpicks: More efficient fork-free two-round multi-
signatures. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part I, volume
14651 of LNCS, pages 460–489, Zurich, Switherland, May 26–30, 2024. Springer, Heidelberg.
(Cited on page 4, 12.)

[QLH12] Haifeng Qian, Xiangxue Li, and Xinli Huang. Tightly secure non-interactive multisignatures
in the plain public key model. Informatica (Vilnius), 3, 01 2012. (Cited on page 3, 4, 5.)

[QX10] Haifeng Qian and Shouhuai Xu. Non-interactive multisignatures in the plain public-key
model with efficient verification. Information Processing Letters, 111(2):82–89, 2010. (Cited
on page 4, 5.)

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 228–245. Springer, Heidelberg, May 2007. (Cited on page 4, 5, 8, 12.)

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023. (Cited on page 4.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidel-
berg, May 2005. (Cited on page 5.)

21

Appendix

A Postponed Security Proofs
Proof of Theorem 1. Essentially, the proof is a simplification of the proof of Theorem 2, and readers
familiar with this proof can simply note that the main difference is that signatures are simulated via
a guessing argument. On the other hand, readers familiar with the standard proof for BLS signatures
may note that games G0 to G3 are used to simulate signing as in the standard proof. These readers
may especially be interested in the steps starting from G4, which deal with extracting a solution from a
combined signature. This part differs from standard BLS signatures and uses the techniques developed in
this paper.
Game G0: We start with G0, which is the EUF-CMA game for BLSMS1 and adversary A. To fix notation,
we recall this game here. Note that the random oracle Ĥ can be omitted, see Remark 3. Initially, the
game generates parameters and a pair of keys, and sets up maps to simulate random oracles. This is
done as follows:

1. Set par := (G1,G2, g1, g2, p, e)← PGGen(1λ).

2. Set Q := ∅ and initialize empty maps h[·] and g[·].

3. Sample sk $← Zp and set pk := gsk
2 and p̃k := gsk

1 .

4. Set π := G(pk)sk.

The key p̃k will be used in the following games. It gives par and (pk, π) to the adversary A. In addition,
A gets access to random oracles H, G, and a signing oracle O, implemented by the game as follows:

• H(m) : If h[m] = ⊥, sample h[m] $← G1. Return h[m].

• G(pk′) : If g[pk′] = ⊥, sample g[pk′] $← G1. Return g[pk′].

• O(m) : Set Q := Q∪ {m} and return σ := H(m)sk.

When A terminates, it outputs a list of public keys and a forgery. More precisely, A outputs a list of N
pairs (pk∗

i , π
∗
i) ∈ G2 ×G1, i ∈ [N] and a forgery (m∗, σ∗) ∈ {0, 1}∗ ×G1. The game does the following to

determine its output:

1. If m∗ ∈ Q, terminate with output 0.

2. Set V := {i ∈ [N] | pk∗
i = pk}. If V = ∅, terminate with output 0.

3. If there is an i ∈ [N] with e (G(pk∗
i), pk∗

i) ̸= e (π∗
i , g2), terminate with output 0.

4. Set h∗ := H(m∗) and p̄k∗ =
∏N

i=1 pk∗
i .

5. If e
(
h∗, p̄k∗) ̸= e (σ∗, g2) terminate with output 0. Otherwise, terminate with output 1.

By definition, we have
AdvEUF-CMA

A,BLSMS1
(λ) = Pr [G0 ⇒ 1].

Game G1: Starting from G1, the game internally holds a function B : {0, 1}∗ → {0, 1} such that each
B(m) is set to 1 independently with probability 1/(QS + 1). The game can efficientily implement this
function in a standard lazy way. We further change the signing oracle O as follows:

• O(m) : Set Q := Q∪ {m}. If B(m) = 1, terminate with output 0. Otherwise, return σ := H(m)sk.

Also, we change how the game evaluates the winning condition:

1. If m∗ ∈ Q or B(m∗) = 0, terminate with output 0.

2. Set V := {i ∈ [N] | pk∗
i = pk}. If V = ∅, terminate with output 0.

22

3. If there is an i ∈ [N] with e (G(pk∗
i), pk∗

i) ̸= e (π∗
i , g2), terminate with output 0.

4. Set h∗ := H(m∗) and p̄k∗ =
∏N

i=1 pk∗
i .

5. If e
(
h∗, p̄k∗) ̸= e (σ∗, g2) terminate with output 0. Otherwise, terminate with output 1.

In other words, the game aborts if for any signing query m we have B(m) = 1 or for the forgery m∗ we
have B(m∗) = 0. As A’s view is independent of B, we get

Pr [G1 ⇒ 1] ≥ 1
QS + 1

(
1− 1

QS + 1

)QS

· Pr [G0 ⇒ 1]

= 1
QS

(
1− 1

QS + 1

)QS+1
· Pr [G0 ⇒ 1] ≥ 1

4QS
· Pr [G0 ⇒ 1].

via a standard calculation and the fact that (1− 1/x)x ≥ 1/4 for all11 x ≥ 2.
Game G2: Let Y $← G1 be a random group element that G2 samples when it starts, and let Γ: {0, 1}∗ →
Zp be a random oracle that G2 holds internally, implemented lazily. The game now simulates random
oracle H differently:

• H(m) : If h[m] = ⊥, set h[m] := Y Γ(m) if B(m) = 1 and h[m] := g
Γ(m)
1 if B(m) = 0. Return h[m].

Clearly, unless Y = g0
1 , which happens with probability 1/p, the adversary’s view does not change. Hence

we get
|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ 1

p
.

Game G3: We change how the game implements the signing oracle:

• O(m) : Set Q := Q∪ {m}. If B(m) = 1, terminate with output 0. Otherwise, return σ := p̃kΓ(m).

Note that in G2, if O outputs a signature σ on a message m, then B(m) = 1, and therefore

σ = H(m)sk =
(
g

Γ(m)
1

)sk
= p̃kΓ(m)

.

Therefore, the view in G3 is the same, and we get

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1].

Note that we have now removed the secret key sk from the signing oracle, and it is only used for computing
the proof of possesion π. In the next game, we eliminate this use as well.
Game G4: We change how π is computed in the initil setup of the game:

1. Set par := (G1,G2, g1, g2, p, e)← PGGen(1λ).

2. Set Q := ∅ and initialize empty maps h[·] and g[·].

3. Sample sk $← Zp and set pk := gsk
2 and p̃k := gsk

1 .

4. Sample δ $← Zp and set g[pk] := gδ
1 and π := p̃kδ.

The distribution of the random oracle outputs of G remain unchanged because δ is sampled uniformly at
random. The distribution of π also did not change, because G(pk)sk = gδsk

1 = p̃kδ. Hence, we get

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: We change how the random oracle is implemented G. To this end, recall the definition of
element Y ∈ G1 from G2 and let ∆: {0, 1}∗ → Zp be a random oracle that the game implements lazily
and keeps to itself. The random oracle G is now implemented as follows:

11Without loss of generality, we can assume A makes at least one signing query.

23

1. G(pk′) : If g[pk′] = ⊥, set g[pk′] := Y ∆(pk′). Return g[pk′].

Note that as long as Y ̸= g0
1 , the distribution did not change. The probability that Y = g0

1 is at most
1/p, and so we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ 1
p
.

Final Reduction: Recall that when A terminates, it outputs a list of pairs (pk∗
i , π

∗
i) and a pair (m∗, σ∗).

Let us now examine the structure of this forgery, assuming that G5 outputs 1. We use the notation
x := sk and let y ∈ Zp be such that Y = gy

1 . Denote by C ⊆ [N] the set of indices i such that pk∗
i ̸= pk,

i.e., C := [N] \ V. Further, for each i ∈ C, let sk∗
i ∈ Zp be such that pk∗

i = g
sk∗

i
2 . Also, set ℓ := |V|. We

know that if G5 outputs 1, then ℓ > 0. With this notation, the verification equation implies that By the
verification equation, we know that

σ∗ = H(m∗)s̄k∗
for s̄k∗ = ℓ · x+

∑
i∈C

sk∗
i .

Now, we know that B(m∗) = 1 (cf. G1) and therefore

H(m∗) = Y Γ(m∗) = g
y·Γ(m∗)
1 .

In combination, we get that the discrete logarithm of σ∗ with respect to g1 is

y · Γ(m∗) · s̄k∗ = Γ(m∗) ·
(
ℓxy + y ·

∑
i∈C

sk∗
i

)
.

By rearranging and assuming Γ(m∗) ̸= 0, we obtain

gxy
1 =

(
σ∗1/Γ(m∗) ·

∏
i∈C

g
−ysk∗

i
1

)1/ℓ

. (4)

For every i ∈ C, we get (cf. G5) and the verification equation that

π∗
i = G(pk∗

i)sk∗
i = g

∆(pk∗
i)ysk∗

i
1 . (5)

Assuming ∆(pk∗
i) ̸= 0, rearranging Equation (5) and plugging it into Equation (4), we get

gxy
1 =

(
σ∗1/Γ(m∗) ·

∏
i∈C

π∗
i

−1/∆(pk∗
i)

)1/ℓ

. (6)

Now, observe that we can bound the probability that Γ(m∗) = 0 or ∆(pk∗
i) = 0 for some i ∈ [N] by

(QH + QG)/p. Assuming this does not happen, we now observe that a reduction that gets as input
X1 = gx

1 , X2 := gx
2 , and Y = gy

1 can efficiently simulate G5 with pk := X2 and p̃k := X1 for A. It can
then use Equation (6) to efficiently compute gxy

1 and solve CDH. We omit the details of the reduction,
but refer the reader to the proof of Theorem 2 for a similar reduction. We get

Pr [G5 ⇒ 1] ≤ QH +QG
p

+ AdvCDH
B,PGGen(λ).

24

	Introduction
	Our Contribution
	More on Related Work
	Paper Organization

	Technical Overview
	Tightly Secure and Structured BLS Signatures
	Tightly Secure BLS Multi-Signatures

	Preliminaries
	Variants of BLS Multi-Signatures
	Parameterized Construction
	Security with One Key: BLS Multi-Signatures
	Two Keys and Tight Security

	Application: PoS Blockchains with Opt-In Tightness
	Postponed Security Proofs

