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Abstract

Privacy-Preserving Machine Learning is one of the most
relevant use cases for Secure Multiparty Computation (MPC).
While private training of large neural networks such as VGG-
16 or ResNet-50 on state-of-the-art datasets such as Imagenet
is still out of reach, given the performance overhead of MPC,
private inference is starting to achieve practical runtimes.
However, we show that in contrast to plaintext machine learn-
ing, the usage of GPU acceleration for both linear and non-
linear neural network layers is actually counterproductive in
PPML and leads to performance and scaling penalties. This
can be observed by slow ReLU performance, high GPU mem-
ory requirements, and inefficient batch processing in state-of-
the-art PPML frameworks, which hinders them from scaling
to multiple images per second inference throughput and more
than eight images per batch on ImageNet.

To overcome these limitations, we propose PIGEON, an
open-source 1 framework for Private Inference of Neural Net-
works. PIGEON utilizes a novel ABG programming model
that switches between Arithmetic vectorization, Bitslicing,
and GPU offloading depending on the MPC-specific compu-
tation required by each layer.

Compared to the state-of-the-art PPML framework Piranha,
PIGEON achieves two orders of magnitude improvements
in ReLU throughput, reduces peak GPU memory utilization
by one order of magnitude, and scales better with large batch
size. This translates to one to two orders of magnitude im-
provements in throughput for large ImageNet batch sizes (e.g.
192) and more than 70% saturation of a 25 Gbit/s network.

1 Introduction

Over the past years, Machine Learning models have shown
prediction capabilities that outperform human experts in vari-
ous domains [3, 12, 20, 45]. Especially, Deep Learning [26], a
subset of Machine Learning that uses neural networks with

1Code Repository: https://github.com/chart21/hpmpc/

multiple layers, has shown to be particularly successful in im-
age and speech recognition [18,25], natural language process-
ing [47], and other domains. Today, Deep Learning models are
used in a wide range of applications, such as autonomous driv-
ing [14], medical diagnosis [44], and financial trading [37].
These models are trained on large datasets using powerful
GPUs, which require significant computational resources. As
a result, companies such as OpenAI or Anthropic train gen-
eral models on large datasets and offer services to clients who
want to use these models for inference on their data. This
introduces a dilemma: Either companies need to reveal their
proprietary model parameters to clients, or clients need to re-
veal their private data to the company. In practice, clients are
often on the short end of the stick, as they have to send their
data to company-owned servers where the model is stored
securely. The sensitive nature of data used in popular deep
learning applications such as images, voice recordings, and
medical records makes this a serious privacy concern.

Privacy-Preserving Machine Learning (PPML) [35] aims
to overcome this problem by enabling training and inference
of machine learning models while keeping model parame-
ters and input data secret. Over the last year, PPML frame-
works based on Secure Multiparty Computation (MPC) such
as CryptGPU [48] and Piranha [51] introduced GPU acceler-
ation to demonstrate for the first time that PPML can be used
for private inference of large convolutional neural networks.
However, training these large neural networks on state-of-
the-art datasets is still out of reach given the performance
overhead of MPC: Based on our benchmarks in ideal net-
work conditions, the state-of-the-art PPML framework Pi-
ranha would require more than 7 years to train ten epochs of
VGG-16 on the full-size ImageNet dataset. Private Inference,
on the other hand, is starting to achieve practical runtimes
and throughput: Piranha and CryptGPU reduced the inference
throughput of large convolutional neural networks from a few
inferences per hour to a few inferences per minute.

Despite these advancements, we show in §7 that state-
of-the-art frameworks are currently limited in performance
and scalability. Moreover, we show that these limitations are
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caused by evaluating the whole neural network on the GPU.
While this observation might be counter-intuitive given the
success of GPU-only computation in plaintext training, it is
critical to identify the following differences between plaintext
machine learning (ML) and PPML.

1.1 Unique Challenges in PPML

Plaintext ML generally benefits from high parallel processing
power and memory bandwidth. Layers that require a large
number of dot products, such as convolutional layers, con-
tribute the most to the inference and training runtime. How-
ever, PPML faces quite different limitations. In PPML, dis-
tributed parties need to communicate with each other to jointly
perform inference and training. As non-linear functions such
as ReLU require multiple communication rounds and sending
large chunks of messages between the parties, the non-linear
layers in PPML are typically the key bottleneck for inference
latency and throughput [50].

MPC Bottlenecks In realistic deployment scenarios of
MPC, the parties are distributed, and bandwidths beyond a
few Gbit/s can be hence considered unrealistic. A second con-
sideration is network latency, which can be overcome from
an implementation perspective only by amortizing the latency
overhead over a large batch of inputs. PPML frameworks
should, therefore, achieve a high level of network saturation
and support high batch sizes to overcome MPC bottlenecks. In
the context of this work, we consider an implementation that
achieves 25 Gbit/s of network throughput to be a safe thresh-
old to fully saturate the network bandwidth of any realistic
MPC setting. Consequently, any further engineering effort
should be invested in supporting large batch sizes. This opens
up a dilemma: GPU-based frameworks fail to support large
batch sizes due to their highly limited memory while CPU-
based frameworks truggle to achieve high throughput. We ob-
serve that we can group layers in PPML into three categories,
where layers within a category have similar bottlenecks and
benefit from the same acceleration techniques. We distinguish
between multiplication-based layers, conversion-based layers,
and matrix-multiplication-based layers. The layer type indi-
cates which MPC primitive is predominantly used to evaluate
a layer and will prove helpful for accelerating its evaluation.

Multiplication-based layers In PPML, average pooling
and batch normalization are characterized by independent
element-wise multiplications. The key to accelerating these
layers lies in the use of large register sizes one the CPU to vec-
torize multiple inputs of a neural network layer using SIMD
instructions. We refer to this acceleration technique as arith-
metic vectorization. In §4.1 we show that an efficient CPU
implementation can fully saturate 25 Gbit/s when utilizing
arithemtic vectorization for these layers.

Conversion-based layers In plaintext machine learning,
linear layers such as convolutions and fully connected layers
require more GPU memory than non-linear layers and there-
fore determine the peak GPU memory utilization. In PPML,
the opposite is the case. Computing non-linear functions such
as Softmax, ReLU, or MaxPool requires share conversion.
Share conversion consists of a bit decomposition followed
by evaluating a large boolean circuit, which inflates required
memory. This overhead is so severe that one key contribution
of Piranha [51], the state-of-the-art PPML framework, was to
evaluate the boolean circuit in place and reduce GPU memory
compared to CryptGPU [48]. Nevertheless, we show in §7
that compared to evaluating only linear layers on the GPU, Pi-
ranha still requires one order of magnitude higher peak GPU
memory and saturates less than 5% of available network band-
width in different settings. In §4.2 we show that an efficient
CPU implementation can fully saturate any realistic network
limit to compute the boolean circuit required by these layers
by utilizing Bitslicing.

Matrix-Multiplication-based Layers Convolutions and
Fully Connected layers are computationally demanding both
in plaintext ML and PPML. As evaluating a dot product re-
quires only communicating a single message between parties
in many MPC protocols [32], these layers are most likely to be
constrained by computation rather than computation. In §4.3
we show that by using cache optimizations and MPC-specific
tweaks, we can saturate up to 5Gbit/s of network bandwidth
using the CPU, while in §4.4 we show how to saturate more
than 10 Gbit/s using the GPU.

Minimizing data movement between CPU and GPU
While keeping all computations on the GPU minimizes
CPU/GPU data movement in plaintext ML, the opposite is
true in PPML. As parties need to communicate frequently
during operations, data from GPU-accelerated layers has to
be moved to the CPU and sent over the network to the other
parties. Also, data that has been received from other parties
needs to be moved from the CPU to the GPU. While GPU to
GPU networking exists [43], these solutions require servers
to be co-located in the same datacenter which is not a realistic
deployment scenario for MPC. Minimizing data movement
in PPML, therefore, implies maximizing CPU usage.

1.2 Our Contribution
While state-of-the-arty frameworks [48, 51] utilize a one-fits-
all approach and accelerate all layers on the GPU we find
that the unique challenges and bottlenecks in PPML require a
more targeted approach. We propose an ABG programming
model that utilizes Arithmetic vectorization, Bitslicing, and
GPU acceleration depending on the PPML layer type. To
switch between these techniques efficiently, PIGEON imple-
ments efficient CUDA transformations and Bitslicing conver-
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sions. We demonstrate that by using the ABG programming
model we can get the best of both worlds: High throughput
and large batch sizes. We provide the following contributions.

1. PIGEON fully saturates a 25 Gbit/s bandwidth for layers
such as Average Pooling and Batch Normalization by
utilizing arithmetic vectorization on the CPU (c.f §4.1).

2. PIGEON fully saturates a 25 Gbit/s bandwidth for
boolean circuits required by non-linear layers such as
MaxPool, Relu, and Argmax by utilizing Bitslicing on
the CPU (c.f §4.1). In §7 we show, that this design choice
leads to two orders of magnitude higher ReLU through-
put than Piranha [51].

3. PIGEON proposes various tweaks to saturate up to 5
Gbit/s of bandwidth for computationally intensive layers
such as convolutions on the CPU (c.f. §4.3) and more
than 10 Gbit/s on the GPU (c.f. §4.4).

4. PIGEON orchestrates these different acceleration tech-
niques by offering efficient conversion between different
computation domains (c.f §4.5). Along with pipelining
and networking tweaks (c.f. §5), this allows PIGEON
to saturate more than 70% of 25 Gbit/s over the entire
end-to-end inference, thus leaving little room for further
implementation-related optimizations (c.f §7).

5. By only outsourcing convolutions to the GPU PIGEON
reduces peak GPU memory utilization by one order of
magnitude and supports 24-96 times higher ImageNet
batch sizes than Piranha on the same hardware (c.f §7).

6. PIGEON is modular and protocol-agnostic. Existing
models and datasets can be imported from PyTorch di-
rectly into PIGEON and we provide implementations
of semi-honest three-party computation (3PC) and mali-
cious 4PC protocols [16] out of the box (c.f §6).

These improvements enable us to support large ImageNet
batch sizes (e.g. 192) for the first time in MPC-based PPML
and consistently improve Piranhas throughput for ImageNet
and CIFAR-10 inferences by one to two orders of magnitude.
To increase the accessibility of PPML frameworks, we also
provide a CPU-only version that achieves runtimes compara-
ble to Piranha for ImageNet inferences while utilizing only
a single CPU core. When utilizing multiple cores, the CPU-
only version even improves on Piranhas throughput by one
to two orders of magnitude. Our results are consistent for
different MPC settings and ring sizes, hence enabling us to
achieve Imagenet throughput beyond one image per second
in all these scenarios.

2 Related Work

Several MPC frameworks have been developed that support
private inference of machine learning models. Most of these
frameworks are based on additive secret sharing [11] and

are typically deployed in the multi-party (2PC,3PC, or 4PC)
settings. The semi-honest 3PC and malicous 4PC settings
tolerating up to one corruption are of particular relevance as
they are characterized by an input-independent preprocessing
phase that is less expensive than the input-dependent online
phase. By utilizing the outsourced computation model [10],
any number of input parties can secretly share their inputs to
a set of non-colluding computation nodes that carry out the
3PC or 4PC and transfer the final output shares to the parties
supposed to learn the result of the computation. This model is
suitable for private inference-as-a-service solutions, that simi-
lar to their plaintext equivalents handle multiple independent
client inference requests in parallel.

Recently, frameworks based on Function Secret Sharing [4]
have also shown impressive results, surpassing the perfor-
mance of frameworks based on additive secret sharing [15,19].
However, these evaluations do not consider the end-to-end
performance due to the expensive preprocessing phase of
FSS. FSS-based frameworks typically fall back on assuming
that all preprocessing material is provided by a trusted dealer
and is already stored in the local filesystem or even RAM of
each party. While the time of the preprocessing phase can
be ignored for low arrival rates of private inference requests,
Garimella et al. [13] show that under realistic assumptions,
PPML frameworks with high preprocessing costs may have
to wait for the entire preprocessing phase to finish before
starting the online phase thus limiting the scalability of these
approaches in practice. Given these limitations, we focus on
honest-majority protocols based on additive secret sharing
in this work and consider the full end-to-end performance of
PPML frameworks including both the preprocessing phase
and the online phase. Note that we provide an overview of
models and dataset commonly used in PPML in §A.

MPC-based PPML frameworks Early work on PPML
goes back as far as 2006 [2] but the first training of a deep
learning model on MNIST was only achieved in 2017 by Se-
cureML [33]. SecureML set a standard for PPML frameworks
by utilizing additive secret sharing for linear layers and Yao’s
garbled circuit protocol [52] for non-linear layers along with
efficient transformation between these sharing types. Over
the years, other PPML frameworks picked up on this idea
and improved PPML based on secret sharing mainly from the
protocol side. ABY3 [32] focused on an honest-majority 3PC
setting and proposed efficient conversion from arithmetic to
boolean secret sharing and Yao’s garbled circuits. The high
performance and efficient share conversion in the honest-
majority setting sparked the interest of several other PPML
frameworks in the 3PC and 4PC settings [5, 7–9, 22, 23, 41].

CryptGPU [48] first broke the trend of optimizing PPML
mainly from a protocol perspective but instead proposed
solely software and hardware optimizations to improve PPML
performance using GPU acceleration. This design choice led
to 2-8 times performance improvements over CPU-based
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frameworks for private inference of large neural networks.
CryptGPU implemented a wrapper for the popular Machine
Learning framework PyTorch [39] that allowed for easy inte-
gration of existing models and datasets but introduced some
trade-offs by using floating point CUDA [1] kernels for fixed
point computation. Piranha [51] improved on CryptGPU’s
performance by utilizing NVIDIA’s CUTLASS [36] library in
C++ which provides native integer kernels for fixed point com-
putations. This led to a four times performance improvement
over CryptGPU for private inference of VGG16.

In 2023 an SOK on PPML [35] was published that studied
53 PPML frameworks and identified Piranha as the fastest
PPML framework to date. Interestingly, with its focus on
software and hardware optimization but rather simple proto-
col design, Piranha is able to outperform PPML frameworks
that utilize more efficient underlying MPC protocols than
Piranha [7, 8, 23]. Also, in the SOK, Piranhas 3PC implemen-
tation of Falcon [49] achieved higher throughput on CIFAR-
10 than any other cryptographic PPML framework including
works that utilize Homomorphic Encryption. These prior re-
sults motivate further research into software and hardware
optimizations for MPC-based PPML frameworks.

3 Background: Privacy Preserving Machine
Learning based on MPC

Privacy-preserving training and inference can be implemented
using MPC with a small set of primitives. Similar to other
PPML frameworks [48,51], we focus on MPC protocols based
on linear secret sharing over a ring Z2ℓ . In line with existing
work, we assume real numbers are approximated using Fixed-
Point Arithmetic (FPA) [6, 34] and mixed circuits [8, 32, 40]
are used to evaluate comparisons.

3.1 MPC Primitives
We provide an overview of secret-sharing-based MPC and the
minimal set of primitives required to support PPML.

MPC Notations We use P to denote the set of parties and
Pi to denote the ith party carrying out the computation. We
use PI to denote a party submitting inputs to P and PO to
denote a party receiving output from P . Note that thanks to
the outsourced computation model [10], PI and PO are not
required to participate in the computation. We denote a linear
secret share of a secret value x by JxK where xi is the secret
share held by Pi ∈ P. A linear secret sharing has the property
that an individual secret reveals nothing about x but there
exists a threshold t such that holding t individual shares of JxK
allows to compute x using a linear combination of the shares.

Secret Sharing (ΠSh) and Reconstruction (ΠRec) Let x be
a secret held by PI . For each party Pi ∈ P , PI computes xi and

sends it to Pi. P then holds JxK. To reconstruct x, each party
Pi ∈ P , sends xi to PO. PO now holds all shares to compute x.

Addition (ΠAdd) and Multiplication by constants (ΠCMult)
Given public constants α,β,γ and secret-shares JxK,JyK, par-
ties can locally compute the shares of Jαx+βy+ γK.

Multiplication (ΠMult) and Matrix Multiplication
(ΠMatMul) Given two secret-shares JxK,JyK, parties can
interactively compute shares of JzK= JxK ·JyK. ΠMult typically
requires parties to send O(1) ring elements between each
other in one communication round. Naively evaluating a
matrix multiplication with ΠMultwould require O(mnk) local
operations and exchange of O(mnk) ring elements between
the parties given the input dimensions m× k and k×n of two
input matrices. However, optimizations [32] allow evaluating
a matrix multiplication with O(mnk) local operations but
only O(mn) ring elements.

Sign Bit Extraction (ΠBitExt) Given the arithmetic sharing
of x ∈ Z2ℓ , ΠBitExt generates a boolean sharing of the sign
bit b ∈ Z21 of x. The most common approach to evaluate
this conversion includes computing a parallel prefix adder
in the boolean domain, requiring P to exchange O(l · log2l)
boolean values in O(log2n) communication rounds. Note
that exchanging O(l · log2l) boolean values is equivalent to
exchanging O(log2l) ring elements in Z2ℓ .

Bit to Arithmetic Conversion (ΠBit2A) Given the boolean
sharing of a shared bit JbK ∈ Z21 , the protocol generates the
arithmetic equivalent shares JbK ∈ Z2ℓ . The most common
approach to evaluate this conversion requires computing an
arithmetic XOR, requiring P to exchange O(1) ring elements
in O(1) communication rounds.

Truncation (ΠTrunc) Protocols using Fixed-Point Arith-
metic require truncation to prevent overflows during com-
putation and maintain precision [6]. For a share JxK, ΠTrunc

outputs its truncated version (JxK)t = ⌊ JxK
2t ⌋. Here, t denotes

the number of fractional bits in the FPA representation.

3.2 Evaluating Neural Networks using MPC
The previously described MPC primitives are sufficient to
evaluate common neural network layers. We denote by X i,
Y i, and W i the input, output, and weight matrices of the i-th
Layer respectively.

Obtaining model parameters and data The parties hold-
ing the model weights and the parties holding data in plaintext
locally convert their respective inputs X0 and W to fixed point
values and use ΠSH to secretly share them among P .
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3.2.1 Matrix-Multiplication-based Layers

Layers such as Convolutional and Fully Connected layers
require parties to evaluate a large set of scalar multiplications
and additions. These layers are characterized by their high
computational complexity.

Convolutions and Fully Connected Layers Fully Con-
nected layers can be evaluated with ΠMatMul with the input
matrix X i having a row size of 1. To evaluate convolutions,
parties locally perform an im2col transformation on their
shares to obtain JX̂ iK,JŴ iK, followed by ΠMatMul to obtain
output matrix Y i.

3.2.2 Conversion-based Layers

Conversion-based layers require parties to convert between
arithmetic and boolean shares to extract the sign bit of a value
during computation. These layers are characterized by their
high communication and memory overhead caused by the
large boolean circuit evaluated as part of ΠBitExt.

DReLU and ReLU DReLU outputs 0 for all negative val-
ues and 1 for all positive values in X i. To compute a DReLU
layer, P use ΠBitExt to extract the sign bit Jb jK ∈ Z2 of all
individual shares Jx jK ∈ JX iK They, then use ΠBit2A to obtain
Jb jK∈Z2ℓ . Finally, for each y j ∈Y i, they set Jy jK= J(1−b j)K.
ReLU outputs max(0,x j) for each x j ∈ X i. To evaluate a
ReLU layer, P compute Y i = DReLU(X i) ·X i.

MaxPool and Softmax MaxPool requires parties to obtain
the maximum of adjacent values in X i. The maximum of k
elements can be computed using k pair-wise max operations
along a tree of height log(k). The pair-wise maximum of
two elements JxaK,JxbK can be computed as DReLU(JxaK−
JxbK) · (JxaK− JxbK)+ JxbK. During inference, Softmax can
be replaced by ArgMax, since parties are only interested in
the index of the maximum value to obtain the final inference
prediction. To compute ArgMax, parties use a similar tree-
based procedure as utilized in MaxPool. In some cases, it
might even be favorable to skip the Argmax layer to reveal
the probabilities of each class.

3.2.3 Multiplication-based Layers

Multiplication-based layers require parties to evaluate
element-wise multiplications and additions. These layers are
characterized by neither high computational nor high commu-
nication complexity.

Average Pooling : Average Pooling computes the average
of adjacent values in JX iK using a public denominator d. To

avoid division, each party locally computes d̂ = 1
d and con-

verts the result to FPA. The average of a vector J⃗xK can then
be computed as (∑d

j=0Jx jK) · Jd̂K followed by truncation.

Batch Normalization Batch Normalization computes Y i =
X i−µ√

σ2+ε
· γ+β. Note that the parameters µ,σ,γ,β are model

parameters obtained during training, and ε is a small public
constant to avoid division by zero. Thus, during inference,
the party holding the model parameters locally computes
σ̂ = γ · 1√

σ2+ε
and shares it along with µ and β among the

parties. Using these shares, the parties can compute output
JY iK = (JX iK− JµK) · Jσ̂K+ JβK.

4 The ABG Programming Model

PIGEON uses a novel ABG programming model to overcome
system challenges in PPML. The ABG programming model
utilizes Arithmetic vectorization to accelerate multiplication-
based layers, Bitslicing to accelerate conversion-based layers,
and GPU offloading to accelerate matrix-multiplication-based
layers. We show in this section that each of these techniques
suffices to saturate most of the network even in ideal network
settings with 25 Gbit/s network bandwidth. In the following
sections all evaluation are based on 3 to 4 nodes equipped
with a 32-Core AMD EPYC CPU and a 24GB NVIDIA L4
GPU.

4.1 Accelerating Multiplication-based Layers
using Arithmetic Vectorization

Multiplication-based layers, such as Average Pooling and
Batch Normalization, consist of large batches of element-
wise arithmetic operations on secret shares. Modern proces-
sors often provide SIMD (single instruction, multiple data)
instructions to allow a CPU to simultaneously perform the
same arithmetic operations on a vector of k-bit elements. For
example, x86’s AVX-512 instructions can process 16 64-bit
integers in parallel in one cycle, thus significantly improving
the throughput of large batches of element-wise operations.
PIGEON utilizes SIMD instructions like SSE, AVX-2, and
AVX-512 to achieve arithmetic vectorization. In §C, Figure 6
illustrates this vectorization process.

As the thousands or even millions of independent element-
wise operations are performed when evaluating multiplication-
based layers, these layers are ideal candidates for arithmetic
vectorization. To demonstrate this, Figure 1a shows how vec-
torization improves the throughput of Batch Normalization by
up to five times on a single core, and Figure 1b shows how this
approach scales with the number of cores. The results demon-
strate that PIGEON can saturate nearly 100% of the available
25 Gbit/s network bandwidth for multiplication-based layers.
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Figure 1: Accelerating PPML layers using Arithmetic Vectorization and Bitslicing.

4.2 Accelerating Conversion-based Layers us-
ing Bitslicing

Conversion-based layers are bottlenecks by addition circuit
evaluated in the boolean domain during ΠBitExt which consists
of hundreds of boolean gates per input. To make things worse,
inputs to those boolean gates are 1-bit variables, and it is
wasteful to evaluate boolean gates input by input on the GPU
or CPU with one instruction per gate on the smallest available
register. Instead, one can utilize Bitslicing to process a batch
of multiple boolean inputs packed in a large register using
only a single bit-wise instruction. The key idea of Bitslicing
is that computing a bit-wise logical operation on an m-bit
register effectively works like m parallel boolean conjunctions,
each processing a single bit [30]. For example, instead of
performing a single 1-bit XOR operation across two bits, one
could perform a single 32-bit bitwise XOR operation on a 32-
bit register that stores a batch of individual bits. Furthermore,
one can exploit hardware instruction sets such as AVX-2 to
pack 256 bits and compute 256 XOR operations in parallel.
In §C, Figure 6 shows how Bitslicing can replace multiple
independent CPU instructions with a single one.

PIGEON supports Bitslicing using standard register sizes
up to 64 bit but also larger register sizes provided by the
SSE, AVX-2, and AVX-512 instruction sets. Figure 1c shows
how Bitslicing improves the throughput of the Parallel Prefix

Adder required by ΠBitExt by up to one order of magnitude
on a single core, and Figure 1d shows how this throughput
scales with the number of cores. The results demonstrate that
PIGEON can saturate nearly 100% of the network bandwidth
for conversion-based layers.

4.3 Accelerating Matrix-Multiplication based
Layers using the CPU

Matrix-multiplication-based layers require parties to evalu-
ate a large number of scalar multiplications and additions.
Thanks to efficient Matrix Multiplication primitives provided
by most MPC protocols, the communication complexity of
these layers grows only quadratically with the input size. How-
ever, the computational complexity of matrix multiplication
primitives grows cubically with the input size. Hence, it is
challenging to saturate the network bandwidth for matrix-
multiplication-based layers. First, we show how PIGEON’s
CPU-only variant evaluates matrix multiplications using only
the CPU before moving to GPU accelerated approaches.

Reducing Cache Misses In general, matrix multiplications
suffer from potential cache misses and inefficient memory
access patterns [38]. In §D, algorithm 1 shows three different
algorithms to evaluate a matrix multiplication with different
memory access patterns. Line 5 of the Naive MatMult algo-
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Figure 2: Conv2D Throughput using Vectorization, Cache Optimizations, and GPU Acceleration

Input size: 224×224×64, 3×3 kernel, 1×1 stride, 1×1 padding, 64 filters

rithm shown in Algorithm 1 demonstrates this inefficiency
by accessing the elements of matrix B in a row-wise fash-
ion thus skipping over the cache line of the CPU. Line 6
of the Transposed MatMul algorithm shown in Algorithm
1 demonstrates how transposing matrix B first, can improve
the memory access pattern by accessing the elements of the
transposed matrix in a column-wise fashion. Finally, the Tiled
MatMul algorithm shown in Algorithm 1 demonstrates how
accessing all matrices in a block-wise fashion (tiles) can fur-
ther improve the memory access pattern. When picking a tile
size according to the cache size of the CPU, the Tiled MatMul
algorithm minimizes the number of cache misses.

Reducing Redundancy Existing frameworks typically eval-
uate a matrix multiplication on secret shares by replacing
the local multiplication and addition operators of a secure
multiplication protocol ΠMult with their matrix multiplica-
tion and addition counterparts. Following this approach, each
party needs to iterate over the same memory locations mul-
tiple times and thus introduces redundancy. To reduce this
redundancy, PIGEON instead evaluates a secure matrix mul-
tiplication by a series of local dot products where the local
multiplication operator is replaced with a fused multiplica-
tion that computes the individual local operations required by
ΠMult before communicating in a single pass.

To illustrate the different approaches, consider a party that
holds secret shares A1,A2 of matrix JAK and B1,B2 of matrix
JBK. Suppose the party’s matrix multiplication protocol re-
quires it to compute T 1 =A1B2+A2B1 and T 2 =A1B1, where
T 1 and T 2 are temporary matrices used later to compute mes-
sages and the final result. Instead of computing three individ-
ual matrix multiplications, the party can compute a single ma-
trix multiplication but calculate T 1[i][ j] += A[i][k] ·B[k][ j]+
B[i][k] ·A[k][ j] and T 2[i][ j] += A[i][k] ·B[k][ j] whenever the

plaintext matrix multiplication would calculate C[i][ j] +=
A[i][k] ·B[k][ j] as part of local dot product computation.

Interleaving Communication with Computation Dissect-
ing matrix multiplications into individual dot products also
allows PIGEON to interleave communication with computa-
tion. In the traditional approach, matrices are first multiplied,
then masked, and exchanged with each other to compute the
final result. Thus, the communication channels are idle until
all local matrix multiplications have been computed. In con-
trast, PIGEON can compute local dot products of the matrices
and immediately mask and exchange the result element-wise
with the other parties. Lines 7,8, and 16 of the Naive, Trans-
posed, and Tiled MatMul algorithms shown in Algorithm 1
show that communication for an individual matrix element
C[i][ j] is handled immediately after an individual dot product
has been computed in contrast to waiting for the entire matrix
multiplication to finish.

Figure 2 shows the throughput that the different approaches
achieve for a Convolutional layer using only the CPU. For
the parameters of the Convolutional layer, we use the largest
Convolutional layer of VGG-16 on ImageNet. The results
demonstrate that the tiled matrix multiplication approach can
achieve a throughput of more than 5 Gbit/s per second when
combined with PIGEON’s other optimizations.

4.4 Accelerating Matrix-Multiplication based
Layers using the GPU

While the earlier-mentioned CPU-based techniques suffice
to saturate most network settings, scaling beyond 5Gbit/s of
convolution throughput requires GPU acceleration. Similar to
Piranha [51], PIGEON uses NVIDIA’s CUTLASS library [36]
which provides highly optimized templated CUDA kernels for
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matrix multiplications and convolutions. PIGEON provides
these templated kernels as standalone executables for integers
ranging from 16 to 64 bits which might be of independent
interest to researchers aiming to integrate these into their
projects. PIGEON also supports Multi-GPU setups where
each individual GPU is assigned to a separate batch of inputs
during a forward pass.

Even though we cannot utilize our individual dot product
optimization on the GPU, since CUDA does not support cus-
tom operators and datatypes, we can still interleave commu-
nication with computation but in a less fine-grained fashion.
To do so, we split up a batch of k matrices into n batches of
size k/n and interleave the computation of a batch with the
communication of the previous batches. We will later show
that this approach is especially suitable for our ABG program-
ming model. Figure 2b shows that by using GPU acceleration,
PIGEON can saturate more than half of our 25 Gbit/s network
bandwidth for large convolutions.

4.5 Switching between Acceleration Tech-
niques

While we have shown that each of the acceleration techniques
achieves high throughput, these advantages only translate
into practice if converting between techniques is efficient.
PIGEON requires parties to switch between arithmetic Vec-
torization and Bitslicing during share conversion and between
arithmetic vectorization and GPU acceleration during matrix
multiplications.

Switching between Arithmetic Vectorization and Bitslic-
ing Efficiently converting k ℓ-bit integers stored in a single
register of size r = k · ℓ from a vectorized to a bitslicded
representation requires accumulating at least ℓ of these r-bit
variables first. This way, we can obtain a new set of ℓ r-bit
registers where register i contains the i-th bit of all k inte-
gers. Naively, this transposition would be performed bit by bit
in four cycles per bit [29]. However, USUBA observed that
this transposition can be optimized using a recursive matrix
transposition approach proposed by Knuth [21]. Using this in-
sight, USUBA reduced the number of cycles to transpose 512
AVX-512 variables to 0.09 cycles per bit [31] and provides
an open-source version of these transpositions for various
hardware architectures and block sizes.

Figure 3 shows an exemplary share conversion protocol
including a transformation from arithmetic vectorization to
Bitslicing. Share conversion of a value a from the arithmetic
to the boolean domain as proposed by ABY3 [32] requires the
parties to hold an arithmetic sharing of JaKA = a1 +a2 where
a subset of parties Pφ holds a1 and the remaining parties P φ

hold a2. To perform the conversion, the parties create boolean
sharings JaB

1 K and JaB
2 K followed by a boolean adder to obtain

the final boolean sharing JaKB. The figure shows that each
party can locally accumulate and transpose a vector of shares

before communicating with the other parties to ensure that all
parties obtain a bitsliced representation of a⃗. Protocol ΠBitExt

follows the same procedure as ΠA2B but uses a carry adder in
step 3 to only compute the sign bit of the addition.

1. Bitslicing Transformation:
Pφ: Transpose contiguous blocks of ℓ values in a⃗1 into Bit-
sliced representation.
Pφ: Transpose contiguous blocks of ℓ values in a⃗2 into Bit-
sliced representation.

2. Secret Sharing:
Pφ: Boolean Secret sharing of bitsliced representation of a⃗1.

Pφ: Boolean Secret sharing of bitsliced representation of a⃗2.
3. Jointly compute using Boolean Adder:

P : J⃗aKB = Ja⃗1KB + Ja⃗2KB

Protocol ΠA2B(J⃗aKA)→ J⃗aKB

Figure 3: Vectorized Arithmetic to Binary Conversion with
Bitslicing transformation

Switching between Arithmetic Vectorization and GPU Ac-
celeration To utilize GPU acceleration for convolutions,
PIGEON requires parties to convert their shares from arith-
metic vectorization to a layout supported by the CUDA kernel
provided by CUTLASS. Note that the raw transfer speed from
the CPU to the GPU is not a concern since modern mem-
ory bus standards such as PCI 5.0 and HBM2 can transfer
data at speeds that exceed any realistic network bandwidth
in MPC settings by multiple order of magnitudes. Moreover,
the CUDA kernel already takes care of the im2col transforma-
tion required for convolutions that expand the input matrices.
Therefore, only the raw input, kernel, and output matrices
need to be transferred between the CPU and the GPU.

However, we face a different challenge of converting lay-
outs to a format that is supported by the CUDA kernel. In-
ternally PIGEON uses PyTorch’s NCHW layout where N is
the batch size, C is the number of channels, H is the height,
and W is the width of the input matrix. The CUDA kernel
provided by CUTLASS instead requires an NHWC layout.
Thus, to convert between VCHW and V HWC, we provide
optimized CUDA kernels that closely follow NVIDIA’s refer-
ence implementations for matrix transpositions.

Note that we also intend to interleave communication and
computation and do not want to wait for the entire batch of
NCHWV matrices to be processed before transferring them
to the CPU and initiating communication. For this reason,
PIGEON splits up the input matrix into N batches of CHWV
matrices. As soon as the first batch has been computed, PI-
GEON converts it back to a CHWV layout and transfers it
back to the CPU to initiate communication. Fully Connected
layers already support different layouts and are usually small
enough to be processed on the CPU. Therefore, we do not
require any additional conversion for these layers.
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Table 1 shows that for batch sizes of 16, all transforma-
tions required by PIGEON achieve more than 250 Gbit/s of
throughput which is significantly higher than the 25 Gbit/s
network bandwidth that we assume in ideal network condi-
tions.

Table 1: Throughput of Transformations in Gbit/s

Batch Size Vectorization Bitslicing GPUa

1 b 87 25 94
16 617 264 680

a Layout change from VCHW to V HWC
b Utilizes only a single CPU core

4.6 Bringing It All Together
Finally, we show how PIGEON combines all acceleration
techniques to evaluate a neural network. Arithmetic vectoriza-
tion is used to accelerate secret sharing and revealing and thus
the starting and end point of each inference. When evaluating
a non-linear layer, r bits of ℓ vectorized inputs are packed
together for Bitslicing where r is the largest register size avail-
able on a system. Each individual boolean instruction then
operates on r bits in parallel. The result is then converted
back to arithemtic vectorization. Similarly, to perform a con-
volution or matrix multiplication weights and inputs for a
convolution are moved to the GPU in batches which allows
interleaving communication and computation. The results
are then transferred back to the CPU and loaded into vector-
ized variables. Table 2 shows the utilized accelerations and
transformation techniques for each common neural network
layer.

Table 2: Utilizing the ABG programming model in PIGEON

Layers Acceleration Transform

BatchNorm Arith. Vec -
AvgPool, Adaptive AvgPool Arith. Vec -
ReLU Bitslicing A↔ B
MaxPool Bitslicing A↔ B
Argmax Bitslicing A↔ B
Convolutiona GPU A↔ G
Fully Connected Layer a GPU A↔ G
a Can also be accelerated on the CPU using Arithmetic

Vectorization.

5 PPML Network Optimizations

In the previous section, we showed how PIGEON utilies the
ABG programming mode to accelerate each individual lay-
ers mainly from a computation perspective. In this section,

we describe how PIGEON optimizes the network utilization
during inference.

Interleaving Communication and Computation Inter-
leaving communication and computation for MPC workloads
is crucial to ensure that the communication channels are not
idle while the parties are performing local computations. PI-
GEON interleaves computation and communication by start-
ing to communicate as soon as the first elements of a layer
are processed as opposed to waiting for the entire layer to
be processed. As described in §4, PIGEON’s CPU-based im-
plementation communicates on a dot-product level while PI-
GEON’s GPU-based implementation splits up a large matrix
multiplication into smaller batches to interleave computation
and communication. To optimize the packet size when inter-
leaving communication and computation, PIGEON sends and
receives elements in chunks using a tunable buffer size. In
practice, we experienced good performance with a buffer size
of around 2MB for a wide range of applications.

Another way PIGEON interleaves communication and
computation is by sending and receiving data continuously
in parallel to local computation. This way, all incoming and
outgoing communication in PIGEON is non-blocking. Only
when the main thread requires a chunk of elements from the
receiving thread, it needs to wait for a condition variable to
be signaled.

A third way PIGEON interleaves communication and
computation is by mapping inference inputs to independent
CPU processes such that processes can evaluate layers asyn-
chronously and there is only a single spawning and joining
of independent processes at the beginning and end of the in-
ference. In combination with load balancing and pipelining
described in the following paragraphs, this enables PIGEON
to evaluate a computation-intensive layer in one process while
another independent process saturates the network bandwidth
by evaluating a communication-intensive layer.

Load Balancing and Pipelining In MPC frameworks, each
node typically performs all communication and computation
of a single party. However, since batches in neural networks
are independent, nodes can perform multiple MPC compu-
tations in parallel where each computation uses a different
party assignment. This way, a PPML framework can utilize
all communication channels and hardware resources evenly
across all nodes. For instance, if an MPC protocol does not
utilize the communication channel between P0 and P1 but
utilizes the communication channel between P0 and P2, swap-
ping the party assignment of P1 and P2 for an independent
batch also utilizes the otherwise idle communication channel.
By default, PIGEON runs all unique player permutations in
parallel which guarantees that all communication channels
are utilized evenly.

Additionally, different parties in MPC often have differ-
ent computation complexities. For instance, ΠMatMul might
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require P1 to perform two local matrix multiplication on its
shares while P2 only needs to perform one. This property
inherently leads to pipelining. A node that performs batch
one as P1 may not be able to fully saturate the whole net-
work bandwidth during the expensive convolutional layers.
If the same node performs a second batch as P2, it can uti-
lize this idle network bandwidth for communication-intensive
activations.

Interleaving MPC Phases Many MPC protocols provide a
preprocessing phase and an online phase while maliciously
secure protocols may additionally provide a postprocessing
phase where parties compute and exchange hashes to verify
the correctness of their computation. While separating these
phases is beneficial in settings where preprocessing and post-
processing costs are irrelevant, it is beneficial to interleave all
phases when optimizing for the total runtime of a protocol.
PIGEON provides an option to separate or interleave these
phases. When performing all phases sequentially, the parties
essentially perform multiple forward passes that operate on
the same blocks of memory. By merging all phases into a
single online phase, the parties perform only a single forward
pass. In this processing model, parties have an additional de-
pendency on data from the preprocessing phase. However,
in practice, the preprocessing in honest-majority protocols is
much faster than the online phase and the additional depen-
dency is unlikely to lead to a bottleneck. When interleaving
all phases, PIGEON achieves 40% faster end-to-end 4PC in-
ference runtime.

6 Software Architecture

PIGEON’s software architecture can be categorized into three
different modular software components: The Core compo-
nents, MPC components, and Neural-network components.
In this section, we describe the functionalities of each compo-
nent. Figure 4 shows PIGEON’s software architecture and its
key features.

Core Components PIGEON’s core components contain
over 20,000 lines of highly optimized C++ code to offer
the hardware acceleration techniques required to support
the ABG programming model for different architectures. As
a result, each function invoked by the higher-level compo-
nents automatically utilizes the introduced acceleration tech-
niques. On top of these, PIGEON also accelerates crypto-
graphic instructions. Most MPC protocols require sampling
shared pseudo-random numbers and in case of malicious ad-
versaries, secure cryptographic hash functions. X86 and ARM
processors have introduced instructions that accelerate the
underlying cryptographic primitives such as AES and SHA.
PIGEON utilizes VAES hardware instruction to generate up
to 512 bits of random bits at once using AVX-512 regis-
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Figure 4: PIGEON’s software architecture.

ters. To compute cryptographic hash functions, PIGEON uses
the X86 SHA hardware instruction. For ARM-based proces-
sors, PIGEON supports similiar hardware instructions and
also provides architecture-independent implementations for
systems that do not support any hardware acceleration for
cryptographic primitives. PIGEON uses the OpenSSL library
to TLS-encrypt communication between nodes.

MPC Software Components PIGOEN’s MPC software
components allow users to write generic MPC functions based
on high-level MPC primitives and to add new MPC protocols
with a few lines of code. Functions define operations that
can be implemented on top of any MPC protocol as long as
the protocol supports required basic primitives. For instance,
computing an average requires black-box access to the ΠAdd,
ΠCMult, and ΠTrunc primitives. Functions are based on MPC
datatypes such as Additive Shares that provide a common
templated interface for MPC primitives without specifying
the underlying protocol. PIGEON provides implementations
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of the Trio semi-honest 3PC and the Quad malicious 4PC
protocols out of the box [16]. Protocols in PIGOEN require
implementing the basic primitives introduced in §3. These
primitives can be implemented with just a few lines of code
as common local operations such as sampling shared random
numbers and sending or receiving messages are implemented
by PIGEON’s core components.

Neural Network Software Components CryptGPU [48]
innovated the user experience of PPML by providing a Py-
Torch wrapper that allows users to interact with PPML sim-
ilarly to plaintext PyTorch. However, this design choice in-
troduced performance overheads and workarounds to ensure
compatibility with PyTorch such as representing performing
matrix multiplications on fixed point numbers by using inter-
mediate floating point representations. Piranha [51] improved
the performance overhead of CryptGPU by relying solely
on a C++ library with custom CUDA kernels but gave up
on compatibility with common ML frameworks. PIGEON
combines the advantages of both approaches by providing a
PyTorch interface that allows users to export existing models
and datasets to PIGEON’s C++ inference engine after local
processing in PyTorch.

PIGEON’s C++ inference engine implements common neu-
ral network layers and their data flow during inference. The
inference engine relies on arithmetic operations in a black-
box fashion by using templates. This abstraction layer enables
developers to implement new neural network layers and ar-
chitectures without having to understand the underlying MPC
protocols that instantiate the templates with MPC primitives.

Out of the box, PIGEON supports various neural network
architectures such as VGG16 [46] and ResNet50 [17] and
common linear layers, pooling layers, activation functions,
and batch normalization.

7 Evaluation

Given that we identified Piranha [51] as the state-of-the-art
PPML framework for end-to-end private inference we com-
pare our framework mainly to Piranha. Our test setup is based
on 3-resp. 4 AWS nodes (for 3PC resp. 4PC evaluations)
equipped with 24 GB Nvidia L4 GPUs on a 25 Gbit/s net-
work and 0.3ms round-trip latency between nodes. As MPC
requires distributed nodes in real-world settings, we consider
this setup sufficient to stress-test whether our framework can
saturate all possible real-world network bandwidths. All mea-
surements include the total time spent on preprocessing, on-
line phase, and verification.

7.1 Overcoming PPML Limitations
With its ABG programming model, PIGEON overcomes mul-
tiple limitations of state-of-the-art PPML frameworks such as
Piranha.

GPU Memory Requirements Piranha improved over
CryptGPU’s memory requirements by utilizing native integer
GPU kernels and using efficient in-place memory implemen-
tations However, depending on the MPC setting and ring
size, Piranha still requires 2.4-7GB of GPU memory for a
single-image inference of VGG-16 on Imagenet. Thus, to en-
able batched ImageNet inference Piranha requires High-End
GPUs. In §4 we showed that by using the ABG programming
model, PIGEON can accelerate most layers on the CPU while
achieving nearly 100% network utilization. This insight al-
lows PIGEON to outsource only convolutions to the GPU,
thus achieving peak GPU memory utilization of only 205 MB
for a single inference of VGG-16 on Imagenet.

Supporting Large Batch Sizes Private inference requires
large batch sizes to overcome latency bottlenecks that are
present in most MPC settings. However, despite its memory
optimizations, Piranha still requires many GBs of GPU mem-
ory to evaluate state-of-the-art models. Table 3 shows that
even on our 24 GB Nvidia L4 GPUs per node, we are limited
to batch sizes between 2 and 8 before the framework crashes
when evaluating VGG-16 on Imagenet. By minimizing the
GPU memory footprint, PIGEON supports large batch sizes
such as 192 for VGG-16 on Imagenet while using only 5.5
GB of peak GPU memory. On CIFAR-10, PIGEON is even
able to perform inferences on the entire test dataset with a
batch size of 10,000 images without running out of memory.

Table 3: Highest supporteda inference batch size of Pi-
ranha on 24GB NVIDIA L4 GPUs (VGG16, ImageNet)

Setting
32 bit 64 bit

3PC 4PC 3PC 4PC

Maximum Batch Size 8 4 2 2
Peak GPU Memory (GB) 11.44 9.36 7.23 10.82

a Next power of two throws runtime error.

Scaling While Piranha effectively accelerates inferences
with a batch size of one, its throughput even decreases when
increasing the batch size: Table 4 shows that when gradually
increasing the batch size from 1 to 8 in the 3PC setting with a
32bit ring size, Pirnaha’s throughput drops consistently until
reaching a 25 % performance penalty for higher batch sizes.

Table 4: Piranha inference throughput in images per sec-
ond on VGG16, ImageNet, 3PC, 32-bit

Batch Size 1 2 4 8

Inferences per second 0.29 0.25 0.22 0.21
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Table 5: Layer-wise Benchmark: Imagenet, Batchsize 192, 3PC, 32bit

Model Layer GBc Runtime (s) Gbps

PIGEON CPU PIGEON GPU PIGEON CPU PIGEON GPU

VGG-16

LINEAR 0.01 0.62 ± 0.02 0.59 ± 0.02 0.09 ± 0.00 0.10 ± 0.00
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.39 0.15 ± 0.01 0.15 ± 0.02 21.33 ± 1.59 20.36 ± 3.23
ACTIVATION 45.30 12.29 ± 0.56 16.16 ± 0.43 29.50 ± 1.34b 22.42 ± 0.60
CONV2D 10.40 29.80 ± 0.48 9.14 ± 0.57 2.79 ± 0.04 9.10 ± 0.57

Total 56.11 40.32 ± 0.83 25.10 ± 0.33 11.13 ± 0.23 17.88 ± 0.24

ResNet152

LINEAR 0.00a 0.04 ± 0.00 0.13 ± 0.03 0.17 ± 0.02 0.05 ± 0.01
ADAPTIVEAVGPOOL2D 0.00a 0.00 ± 0.00 0.00 ± 0.00 6.08 ± 0.80 4.91 ± 0.77
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.05 0.04 ± 0.00 0.04 ± 0.00 10.49 ± 0.45 9.52 ± 0.96
ACTIVATION 70.39 17.87 ± 0.38 24.38 ± 2.15 31.51 ± 0.68b 23.10 ± 2.04
BATCHNORM2D 34.64 8.67 ± 0.65 12.22 ± 0.70 31.98 ± 2.38b 22.69 ± 1.30
CONV2D 17.32 23.79 ± 0.40 13.29 ± 0.52 5.83 ± 0.10 10.43 ± 0.40

Total 122.40 48.41 ± 0.66 47.39 ± 0.73 20.23 ± 0.28 20.66 ± 0.32
a Communication is greater 0 but less than 0.01GB
b Layer benefits from previous layer’s idle communication channels due to inter-batch pipelelining
c Communication per party in GB

Table 5 shows that by using its inter-batch concurrency
model and ABG programming model, PIGEON achieves
17.88 Gbit/s throughput in the 3PC setting for a batch size of
192 when evaluating VGG-16 on Imagenet. This constitutes
an improvement of over 20 times compared to PIGEON’s
single inference throughput.

ReLU Performance Piranha’s throughput is severely bot-
tlenecked by ReLU. ReLU layers require multiple commu-
nication rounds between the parties thus necessitating fre-
quent data movements from between the CPU and the GPU
to interact with the system’s network socket. Between these
communication rounds, the GPU is only used for small bursts
of computation. While Piranha improved over CryptGPU to
accelerate ReLU on the GPU, we find that it is still far from
saturating our network, even with high batch sizes and large
input sizes. For instance, in the 4PC, 64-bit setting, Piranha
saturates less than 2% of our available network bandwidth.
We conclude that the GPU is not the right hardware to fully
accelerate ReLUs for MPC. PIGEON instead utilizes Bitlsic-
ing and multiple CPU cores to saturate more than 90% of our
network. In §B, Figure 5 shows that this leads to around one
order of magnitude improvement for single inferences and
two orders of magnitude improvement for batched inferences.
Figure 5d shows our largest improvement: Our batch-wise
evaluation of 192 ReLU layers in the 4PC, 64-bit setting
closely matches Piranhas runtime when evaluating a single
ReLU layer.

7.2 Benchmark

We benchmark PIGEON and Piranha’s inference performance
in the 3PC and 4PC settings with different ring sizes. Ac-
cording to common practice, we replace MaxPooling layers
with AveragePooling layers which are more MPC-friendly.
Throughput measurements report Piranha’s best-performing
batch size for each model which almost exclusively is a batch
size of one due to Piranhas earlier mentioned scaling limita-
tions. We limit PIGEON’s batch size to 192. While PIGEON
supports higher batch sizes for most models and datasets on
our hardware, it might be unrealistic to assume that a real-
world setting would require processing more than 192 inputs
in parallel.

Throughput Table 6 shows the throughput the two frame-
works achieve when evaluating different models and datasets
using a ring size of 32 bits. In §B, Table 7 contains similar re-
sults for ring sizes of 64 bits. The results show that PIGEON
consistently outperforms Piranha by one to two orders of
magnitude. These performance improvements can be mainly
attributed to PIGEON’s efficient ReLU implementation which
showed similar performance improvements in Figure 5. When
comparing the PPML throughput to plaintext PyTorch infer-
ence on ImageNet, PIGEON reduces the overhead from more
than three orders of magnitude to two.

Network Saturation Given the large performance improve-
ment of PIGEON over Piranha, we investigate how close PI-
GEON’s throughput comes to the network limit of 25 Gbit/s.
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Table 6: Throughput (Images per second) 32bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet50 VGG16

3PC
Piranha 24.57 ± 0.06 3.10 ± 0.01 10.86 ± 0.01 1.03 ± 0.00 0.21 ± 0.00
PIGEON CPU 1409.30 ± 90.70 247.72 ± 10.89 208.70 ± 3.51 8.37 ± 0.15 4.76 ± 0.11
PIGEON GPU 48.81 ± 3.53 36.25 ± 0.80 42.37 ± 1.79 7.88 ± 0.12 7.65 ± 0.12

4PC
Piranha 9.19 ± 0.01 1.02 ± 0.00 4.19 ± 0.00 -a 0.08 ± 0.00
PIGEON CPU 1034.11 ± 55.13 171.03 ± 5.42 122.78 ± 4.74 5.70 ± 0.14 3.24 ± 0.16
PIGEON GPU 45.94 ± 2.53 31.68 ± 0.91 37.38 ± 1.26 6.05 ± 0.18 6.12 ± 0.09

a Rutime error

Table 5 contains the layer-wise and total runtimes with re-
sulting network saturation that PIGEON achieves. The total
runtime measures the entire forward pass of the CNN. The in-
dividual runtimes are measured independently by the runtime
of the slowest process multiplied by the number of processes.
We find that this way of reporting the throughput of individual
layers closely matches the total runtime of the forward pass.

The results show that fully connected layers only contribute
an insignificant percentage to the runtime of a CNN given
their small size. For pooling and activations, PIGEON is able
to saturate more than 20 Gbit/s of the available network band-
width with the exception of the average pooling layers in
ResNet-152 due to their small input size. For convolutional
layers, PIGEON GPU achieves around 10 Gbit/s of through-
put while PIGEON CPU achieves around 2-3 times lower
throughput. However, this gap is closed by PIGEON’s inter-
batch pipelining and load balancing as described in §5. The
table shows that the activation and batch nomalization layers
which typically appear directly after a convolutional layer
even exceed the network bandwidth of 25 Gbit/s for PIGEON
CPU based on our measurements. This of course does not
mean that at a certain point in time, the network is oversatu-
rated but rather that the fraction of processes computing an
activation can exploit that another fraction of processes is
still stuck in the compute-intensive convolutional layers. As
a result, even the slowest of n total processes is still able to
utilize more than 25/n Gbit/s of the network bandwidth when
evaluating an activation due to the asynchronous network
utilization of processes.

In total, PIGEON GPU is able to saturate more than 70% of
the network bandwidth which implies limited room for further
improvements from an engineering perspective. As expected,
achieving high throughput on VGG-16 is more challenging
than on ResNet-152 due to the higher computation complexity
of VGG-16’s convolutional layers.

7.3 Making PPML more accessible

In order to support ImageNet inference with large batch sizes,
existing GPU frameworks require High-End GPUs. While

CPU-only frameworks such as FALCON [49] exist, they
achieve less than one order of magnitude of throughput for
batched inference of large neural networks than their GPU-
only alternatives [51]. PIGEON addresses these limitations by
providing GPU acceleration with low memory requirements
and a high throughput CPU-only implementation.

PIGEON CPU As GPU hours are expensive, offering fast
CPU-only implementations can make PPML more accessi-
ble. Additionally, CPU-based frameworks have the potential
to support higher batch sizes as system memory is typically
larger than GPU memory. Along with our GPU implementa-
tion, we provide a CPU-only implementation that achieves
respectable convolution throughput by utilizing the techniques
described in §4 such as cache tiling. Table 6 shows that even
PIGEON CPU achieves one to two orders of magnitude higher
throughput than Piranha. For models with small convolution
sizes including all models evaluated on CIFAR-10, PIGEON
CPU even outperforms PIGEON GPU.

PIGEON with limited compute resources While we
showed that by using server-grade hardware PIGEON can
outperform Piranha by one to two orders of magnitude, we
also show that PIGEON is able to achieve state-of-the-art
performance while utilizing only a few compute resources. In
§B, Tables 8 and 9 contain the runtime of PIGEON compared
to Piranha while restricting PIGEON to utilize only a single
CPU core for local computation and a batch size of 1. The
table shows that PIGEON CPU and PIGEON GPU provide
comparable runtimes to Piranha under these restrictions. In
this setting, PIGEON GPU only requires 205 MB of GPU
memory. These results imply that PIGEON can enable fast
private ImageNet inference even on low-end hardware.

Modular Design and PyTorch Interface Finally, PIGEON
may also make PPML more accessible by enabling users
to import existing models and datasets from PyTorch with
a single command while PIGEON’s modular design allows
developers of different domains to extend either the neural net-
work, MPC, or low-level software components of PIGEON.
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A Benchmark models and datasets in PPML

Most PPML frameworks evaluate their performance using
convolutional neural networks (CNNs) on image datasets.
The following datasets are commonly used for this purpose:

• MNIST [28]: A small-scale dataset consisting of 60,000
grayscale images and 28×28×1 pixels per image.

• CIFAR-10 [24]: A dataset consisting of 60,000 color
images and 32×32×3 pixels per image.

• Imagenet [42]: A large-scale dataset with over 14 million
color images and 224×224×3 pixels per image.

The following neural network architectures are commonly
used for benchmarking PPML frameworks:

• LeNet [27] and AlexNet [25]: Historically important,
small CNNs with two and five convolutional layers re-
spectively.

• VGG-16 [46]: A CNN with 16 convolutional layers and
a large number of operations per layer.

• ResNet-18/50/101/152 [17]: Deep CNNs with 18 to 152
layers but fewer operations per layer than VGG-16.

Out of these different models and datasets, only VGG-16 and
the different ResNet architectures can be considered state-of-
the-art machine learning models based on their large number
of trainable parameters, while only Imagenet can be consid-
ered a state-of-the-art dataset based on its number of pixels
per image. In 2021, CryptGPU [48] was the first MPC-based
PPML framework to achieve private inference of VGG-16
and ResNet architectures on the full-size Imagenet dataset.
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B Additional Benchmark Results
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Figure 5: ReLU Inference Time with different Bitlengths

Minor ticks represent a 2 times increase, major ticks represent a 10 times increase.

Table 7: Throughput (Images per second) 64bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet18 VGG16

3PC
Piranha 17.99 ± 0.07 1.50 ± 0.00 5.08 ± 0.01 0.79 ± 0.01 0.11 ± 0.00
PIGEON CPU 941.51 ± 14.69 81.97 ± 1.72 76.85 ± 1.23 3.51 ± 0.06 1.77 ± 0.02

4PC
Piranha 4.19 ± 0.00 0.52 ± 0.00 1.86 ± 0.00 -a 0.04 ± 0.00
PIGEON CPU 681.68 ± 17.11 80.81 ± 0.89 75.92 ± 1.41 2.75 ± 0.03 1.40 ± 0.04

a Rutime error

17



Table 8: Single-Core Runtime (Seconds) 32bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.07 ± 0.00 0.22 ± 0.00 0.94 ± 0.00 0.16 ± 0.00 0.97 ± 0.00 3.50 ± 0.02
PIGEON CPU 0.05 ± 0.11 1.50 ± 0.20 2.86 ± 0.28 0.28 ± 0.00 1.50 ± 0.10 6.34 ± 0.04
PIGEON GPU 0.48 ± 0.13 1.55 ± 0.03 3.29 ± 0.12 0.60 ± 0.01 1.28 ± 0.05 1.58 ± 0.10

4PC
Piranhab 0.18 ± 0.00 0.52 ± 0.01 2.09 ± 0.01 0.44 ± 0.00 -a 9.91 ± 0.01
PIGEON CPU 0.08 ± 0.11 1.22 ± 0.00 2.84 ± 0.02 0.51 ± 0.02 3.45 ± 0.09 16.24 ± 0.17
PIGEON GPU 0.52 ± 0.13 1.60 ± 0.02 3.25 ± 0.00 0.66 ± 0.02 2.02 ± 0.14 2.97 ± 0.20

a Rutime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

Table 9: Single-Core Runtime (Seconds) 64bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.11 ± 0.00 0.26 ± 0.00 1.50 ± 0.00 0.27 ± 0.00 1.61 ± 0.00 8.37 ± 0.04
PIGEON CPU 0.21 ± 0.13 0.66 ± 0.01 1.37 ± 0.02 0.45 ± 0.00 3.19 ± 0.16 15.66 ± 0.04
PIGEON GPU 0.67 ± 0.06 1.10 ± 0.01 1.88 ± 0.03 0.74 ± 0.00 1.72 ± 0.15 2.61 ± 0.19

4PC
Piranhab a 0.64 ± 0.00 -a 0.74 ± 0.00 -a 23.01 ± 0.02
PIGEON CPU 0.16 ± 0.09 0.77 ± 0.00 1.55 ± 0.00 0.96 ± 0.02 7.39 ± 0.10 40.22 ± 0.06
PIGEON GPU 0.64 ± 0.13 1.20 ± 0.00 2.07 ± 0.01 0.85 ± 0.02 2.62 ± 0.10 4.54 ± 0.16

a Rutime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

C Bitslicing and Vectorization illustrated
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Figure 6: Bitslicing (left) and Vectorization (right) of independent integers replace multiple independent CPU instructions with a
single one
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D Matrix Multiplication Algorithms

Algorithm 1 Matrix Multiplication
Require: Matrices A of size M×K and B of size K×N
Ensure: Matrix C of size M×N, initalized with zeros

Naive MatMul
1: for i← 0 to M−1 do
2: for j← 0 to N−1 do
3: temp← 0
4: for k← 0 to K−1 do
5: temp += A[i][k] ×̂ B[k][ j]
6: end for
7: C[i][ j]← temp
8: Communicate C[i][ j]
9: end for

10: end for

Transposed MatMul

1: ˆ⃗b← transpose(B)
2: for i← 0 to M−1 do
3: for j← 0 to N−1 do
4: temp← 0
5: for k← 0 to K−1 do
6: temp += A[i][k]× ˆ⃗b[ j][k]
7: end for
8: C[i][ j]← temp
9: Communicate C[i][ j]

10: end for
11: end for

Tiled MatMul

1: ˆ⃗b← transpose(B)
2: for i← 0; i < M; i += TILE_SIZE do
3: for j← 0; j < N; j += TILE_SIZE do
4: for k← 0; k < K; k += TILE_SIZE do
5: for ii← i; ii < min(i+TILE_SIZE,M); ii += 1 do
6: for j j← j; j j < min( j+TILE_SIZE,N); j j += 1 do
7: temp← 0
8: for kk← k; kk < min(k+TILE_SIZE,K); kk += 1 do
9: temp += A[ii][kk]× ˆ⃗b[ j j][kk]

10: end for
11: C[ii][ j j]←C[ii][ j j]+ temp
12: end for
13: end for
14: for ii← i; ii < min(i+TILE_SIZE,M); ii += 1 do
15: for j j← j; j j < min( j+TILE_SIZE,N); j j += 1 do
16: Communicate C[ii][ j j]
17: end for
18: end for
19: end for
20: end for
21: end for

Note: Operator ×̂ denotes fused multiplication on the entire secret share as described in the text.
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