
SPADE: Digging into Selective and PArtial
DEcryption using Functional Encryption∗

Camille Nuoskala1 , Hossein Abdinasibfar1 , and Antonis Michalas1,2

1 Tampere University, Tampere, Finland
2 RISE Research Institutes of Sweden, Gothenburg, Sweden

{camille.nuoskala,hossein.abdinasibfar,antonios.michalas}@tuni.fi

Abstract. Functional Encryption (FE) is a cryptographic technique es-
tablished to guarantee data privacy while allowing the retrieval of specific
results from the data. While traditional decryption methods rely on a
secret key disclosing all the data, FE introduces a more subtle approach.
The key generation algorithm generates function-specific decryption keys
that can be adaptively provided based on policies. Adaptive access con-
trol is a good feature for privacy-preserving techniques. Generic schemes
have been designed to run basic functions, such as linear regression. How-
ever, they often provide a narrow set of outputs, resulting in a lack of
thorough analysis. The bottom line is that despite significant research,
FE still requires appropriate constructions to unleash its full potential
in securely analyzing data and providing more insights. In this article,
we introduce SPADE – a novel FE scheme that features multiple users
and offers fine-grained access control through partial decryption of the
ciphertexts. Unlike existing FE schemes, our construction also supports
qualitative data, such as genomics, expanding the applications of privacy-
preserving analysis to enable a comprehensive study of the data. SPADE
is a significant advancement that balances privacy and data analysis with
clear implications in healthcare and finance. To verify its applicability,
we conducted extensive experiments on datasets used in sleep medicine
(hypnogram data) and DNA analysis (genomic records).

Keywords: Access Control · Data Privacy · Functional Encryption · Ge-
nomic Analysis · Partial Decryption · Sleep Analysis

1 Introduction

Although data has always been important to society, its current role is more
crucial than ever before. Today, every aspect of human life is fueled with data.
When it comes to modern civilization, data is more like the air we breathe
than the oil we burn. However, the ability to collect huge amounts of data is a
double-edged sword. On the one hand, it empowers governments, businesses, and

∗This work was funded by the HARPOCRATES EU research project (No.
101069535).

https://orcid.org/0009-0001-6741-887X
https://orcid.org/0000-0001-9168-0555
https://orcid.org/0000-0002-0189-3520

2 C. Nuoskala et al.

individuals to make better decisions. On the other hand, it raises big questions
about how we can use that data while protecting people’s right to privacy.

However, as we have already seen multiple times, privacy is a large and very
nebulous target that is hard to approach directly. The main reason for this lies in
the fact that if data is collected, it can always be abused. Nevertheless, with the
development of several advanced cryptographic schemes that allow operations
on encrypted data, such as Homomorphic Encryption (HE) [23,12] and Func-
tional Encryption (FE) [7], we are not entirely outside the realm of possibility
in creating genuine privacy-respecting services.

FE enables the encryption of sensitive data under a master public key and
allows an analyst to learn about the results of a specific function by holding
the corresponding decryption key. This technique is based on creating decryp-
tion keys for particular functions, which, in contrast to HE, prevent access to
undesired computations, thus opening up various new applications in the field
of encrypted data operations. However, despite the apparent potential of FE,
research has been focused on designing standard schemes for a limited range of
functionality. For instance, a well-studied and popular FE construction, namely
Inner Product Functional Encryption (IPFE), consists of computing the inner
product, i.e., a weighted addition, on the entries of a ciphertext. Eventually, while
a plethora of FE schemes support the inner product [4,8,10,19,6], no construc-
tion has been proposed, to the best of our knowledge, to handle the encryption
and management of qualitative data.

This work tries to overcome this issue by creating SPADE – a construction
that allows an analyst to perform qualitative analysis on encrypted data. Hence,
being able to build richer ways of capturing knowledge in a privacy-preserving
manner. To do so, we distinguish two types of data: quantitative and qualita-
tive. The first refers to data that can be measured as numbers, such as revenue,
grades, and percentages. These data are practical as they support addition, mul-
tiplication, and inner product. On the other hand, qualitative data, if they can
be represented as numbers, do not support this kind of operation. They mostly
include medical data, such as DNA, Glasgow Coma Scale, and Hypnograms,
where addition and multiplication can be irrelevant when analyzing the collected
information.

To test our approach and verify the applicability of SPADE in qualitative
analysis, we take into consideration the following two use cases that are widely
used in medical research: (1) Analysis of Hypnogram Data for sleep medicine and
(2) Analysis of Genomic Records. In the first use case, we utilized hypnograms,
which are recordings of the different stages of sleep, and they are qualitative:
awaken state, deep sleep, abnormal sleep, etc. Similarly, for the second use case,
genomic records made from DNA sequences have been used, where each DNA
sequence is represented by very long lines of characters corresponding to the
four nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). So,
SPADE instead of just calculating a typical numerical function (e.g. addition)
over encrypted data, it is capable of counting and locating the number of oc-
currences of a given value in a dataset, like the number of occurrences of one

SPADE 3

particular basis in a DNA sequence – a process that is widely used when ana-
lyzing medical data.

It is important to note that, unlike most generic FE constructions, SPADE
can be used on both quantitative and qualitative data. This has the potential
to solve the confusing problem of what information you can and cannot share
because of patient privacy. In most cases, there are no easily available tools or
technology that facilitate broad data-sharing and access while at the same time
providing certain guarantees about the privacy of the users. SPADE has the
potential to simplify how researchers and data scientists around the world work
together, share, and analyze data in order to make advances in their field.

Contribution Our contribution can be summarized as follows:

C1. We formally define SPADE, a scheme that permits partial decryption of both
qualitative and quantitative encrypted data in a multi-user setup. Addition-
ally, we propose a system model for our scheme that fits realistic scenarios.

C2. We extend our construction with a decentralized variant that does not rely
on a trusted authority, permitting completely autonomous management of
the keys by the users themselves.

C3. To illustrate the applicability of SPADE, we provide an open-source im-
plementation along with experiments and benchmarks for two different use
cases, namely Analysis of Hypnogram Data and Analysis of Genomic Records.

2 Related Work

Functional Encryption FE was introduced by Boneh et al. in [7] as a general-
ization of Public-Key Encryption (PKE). This primitive has subsequently been
studied and applied to different approaches [14,13,28]. As its name suggests,
FE constructions are usually narrowed to specific functionalities for specific use
cases. For the last few years, one of the most studied FE techniques has been
IPFE. In terms of data analysis, this functionality is indeed particularly rele-
vant for linear regression models or other Privacy-Preserving Machine Learning
(PPML) techniques [24,17,20]. As a follow-up to IPFE, Quadratic Functional
Encryption (QFE) [24,27] is another emerging technique that aims at evalu-
ating both addition and multiplication. Their implementation in Go language
through the library GoFE [1] demonstrates the applicability of these schemes
and contributes to the craze for these techniques.

While these constructions are very promising, they are limited to standard
operations. However, data analysis often requires more complex and specific
functions, and it is important to broaden the range of functions that can be
used. Even though they can be represented as integers, genomics data are qual-
itative; hence, implementing IPFE or QFE does not make sense. To the best of
our knowledge, our article proposes the first FE-based protocol addressing this
problem, exploring a new scope of capabilities offered by FE.

4 C. Nuoskala et al.

Partial Decryption and Qualitative Data In this article, we mainly focus
on what we call partial decryption, that is, decrypting only part of the ciphertext.
While the field of FE does not properly address this question, partial decryption
has been studied in other fields. For example, the study of genomics data [15,5,16]
requires techniques identifying specific patterns or behaviours in a ciphertext.
To achieve the problem of count query, Hasan et al. approach [15] is to browse
an encrypted tree using the Paillier cryptosystem. As for Ayday et al. [5], they
essentially rely on permutations. In short, none of these approaches uses FE and
its assets in terms of key management.

3 Background

This section contains the tools used in our protocols. We start by providing the
notation employed in this article and present the mathematical concepts neces-
sary for understanding our constructions. Finally, we define the cryptographic
and security notions on which our protocols rely.

Notation For a positive integer n, JnK is the set {1, . . . , n}. Vectors are denoted
by bold lowercase letters. The inner product of two vectors x = (x1, . . . , xn),
y = (y1, . . . , yn) is ⟨x, y⟩ = x1y1 + . . . + xnyn. We denote y

$←− Y when y is
chosen uniformly at random from a set Y. For Y ⊂ R, Y∗ := Y − {0}. A is
said to be a PPT (probabilistic polynomial time) adversary if it is a randomized
algorithm such that there exists a polynomial p(y) such that for any input y, the
running time of A(y) is bounded by |p(y)|. For a ∈ N and g ∈ G, [a]g denotes
the exponentiation ga in G. Two elements a, b are said to be indistinguishable,
denoted a ∼ b, if Pr[β′ = β ; c← β ·a+(1−β) · b |β $←− {0, 1}] = 1/2+negl(·). A
function f : N 7→ R is negligible if ∀c ∈ N,∃ε0 ∈ N such that ∀ε ≥ ε0, f(ε) < ε−c.
An arbitrary negligible function is denoted negl(·).

Definition 1 (Cyclic Group). A cyclic (multiplicative) group is a finite group
G generated by a single element g ∈ G. The g is called generator of G and we
denote G = ⟨g⟩.

For the sake of readability, we denote exponentiation in a cyclic group with
brackets. For a ∈ N and g ∈ G, [a]g = ga. If there is no ambiguity in the choice
of g, we simply use [a] := ga.

Definition 2 (Fermat number). A Fermat number is a prime number of the
form 22k + 1, where k ∈ N.

Note that any prime number of the form 2n + 1 for n ∈ N∗ is a Fermat
number. Moreover, there is an infinite number of Fermat numbers. The proof of
these statements is omitted here as it goes beyond the scope of this article.

Theorem 1 (Lagrange’s theorem). Let G be a finite group of cardinal n
and neutral element 1. For an element g ∈ G, call order of g the smallest k ∈ Z∗

SPADE 5

such that gk = 1. Lagrange’s theorem states that the order of any element of G
divides n. It follows that if G is a cyclic group of generator g, the order of g
equals n.

We omit the proof of Lagrange’s theorem, as it is a well-known result in
group theory.

3.1 Functional Encryption

We now move on with the definition of FE – the core cryptographic primitive
this paper relies on. We consider a secret key setup where the encryption is
performed using a secret key, also called the private key or identifier. For the
rest of this article, we will refer to it as α or αj .

Definition 3 (Multi-Client Functional Encryption (MCFE)). Let M
and C be the message and ciphertext spaces, respectively. Denote F the set
of functionalities supported. A Multi-Client (Secret-Key) Functional Encryption
scheme MCFEM,C,F is a tuple of four algorithms (Setup, Enc, KDer, Dec) defined
as follow:

– Setup
(
1λ

)
: The setup algorithm is a probabilistic algorithm that takes as

input a security parameter λ and outputs the master secret key msk and the
master public key mpk;

– Enc (mpk, x, α) : The encryption algorithm is a probabilistic algorithm that
takes as input the master public key mpk, a message x = (x1, . . . , xn) ∈ M
and a private identifier α to output a ciphertext c = (c1, . . . , cn) ∈ C;

– KDer (msk, f, α) : The key derivation algorithm is a deterministic algorithm
that takes as input the master secret key msk, a function f ∈ F and a private
identifier α to output the decryption key dkf ;

– Dec (dkf , c) : The decryption algorithm is a deterministic algorithm that
takes as input a decryption key dkf and a well-defined ciphertext c = Enc(mpk,
x, α) ∈ C and outputs f(x1, . . . , xn) if dkf and c are generated using the same
identifier α, and ⊥ otherwise.

Correctness MCFE is correct, that is:

P[Dec (dkf , c) ̸= f(x1, . . . , xn) ∥ (msk, mpk)← Setup
(
1λ

)
c← Enc (mpk, x, α) ; dkf ← KDer (msk, f, α)]

is negligible.

4 Core construction of SPADE

In this section, we present the algorithms that constitute the construction of
SPADE. We rely on the MCFE construction defined in definition 3.

6 C. Nuoskala et al.

Parameters The space of messages is M = Zn
t where n > 0 is the number

of entries and t > 0 their range. For a power of prime q > t + 1, the space
of secret keys msk = (s1, . . . , sn) is Zn

q . The corresponding public key mpk =
([s1], . . . , [sn]) lies in Gn where G is a (cyclic) group of order q and generator g.
Additionally, we denote αj ∈ Zq the secret identifier of a user uj . In this section
we do not specify the parameters t and q but in practice we take q a Fermat
number, t < q − 1 and S = {2 k + 1, k ∈ Z⌊q/2⌋−1} the set of odd integers in Zq,
as detailed in subsection 4.2.

Following, we introduce the entities of our system model to describe the
main construction. The full system model, including the security assumptions,
is detailed in section 5.

System model’s entities The model we consider consists of three entities:
(i) Key Curator (KC), (ii) Users (U) and (iii) Data Analyst (DA). The role,
capabilities, and trust level of the different parties are detailed in section 5.

4.1 Algorithms

First of all, KC picks a group G = ⟨g⟩ and generates the master secret key and
master public key (msk, mpk) through the setup algorithm 1. Every user uj who
wants to register samples an element αj

$←− Zq and sends a registration request
containing [αj] to KC. The latter stores these values to generate the decryption
keys as detailed in algorithm 3.

Algorithm 1 Setup
(
1λ, n

)
1: Generate the master secret key msk = (s1, . . . , sn) $←− Zn

q

2: Compute the master public key mpk← ([s1], . . . , [sn])
3: for each user uj do
4: Generate αj

$←− Zq and send [αj] to KC

A user uj encrypts a message x = (x1, . . . , xn) using both the master public
key mpk and her private key [αj], as described in algorithm 2. To do so, she first
generates a n-tuple of random integers, or noise, sampled in a subset S of Zq.
The specification of S is detailed in subsection 4.2. Then, for each entry xi, she
produces both a helping information for the decryption hi = [αj + ri] and the
encryption itself ci = [αj si] · [ri xi]. Eventually, she sends the ciphertext to the
curator KC.

Consider now an external data analyst DA who wants to partially decrypt
c to know the position of v ∈ Zt in the vector x. To do so, he sends req(j, v) to
KC, where req(j, v) is a request for the identifier j of uj and a value v. The key
curator runs algorithm 3 and computes the decryption key dkj,v = (k1, . . . , kn),
where each ki = [αj (v − si)] is constructed with the entry si of the secret key

SPADE 7

Algorithm 2 Enc (mpk, x, αj)
User uj :

1: Samples r1, . . . , rn
$←− S ⊆ Zq

2: for i ∈ JnK do
3: Compute hi ← [αj + ri] and ci ← [αj si] · [ri xi]
4: Sets h = (h1, . . . , hn) and c = (c1, . . . , cn)
5: Outputs (h, c)

msk. Note that this decryption key is specific to both the user’s identifier j and
the value v. Eventually, the curator sends back dkj,v.

Algorithm 3 KDer (msk, v, j)
1: for i ∈ JnK do
2: ki ← [αj (v − si)]
3: Outputs dkj,v = (k1, . . . , kn)

With the knowledge of dkj,v, DA can run algorithm 4 to decrypt c partially.
For each entry of c, DA computes yi ← ci · h−v

i · ki, that is yi = [ri (xi − v)]. If
the parameters are chosen according to subsection 4.2, yi = 1 if xi = v and y′i
otherwise, with y′i providing no information on the plaintext xi. Therefore, DA
obtains the expected result and nothing more.

Algorithm 4 Dec (dkj,v, c)
1: for i ∈ JnK do
2: Computes yi ← ci · h−v

i · ki ; it follows:
3: yi = [αjsi + rixi] · [−v αj − v ri] · [αj (v − si)]
4: yi = [ri (xi − v)]
5: Outputs y = (y1, . . . , yn)

As stated, each entry of the vector y = (y1, . . . , yn) is equal to 1 iff q divides
ri (xi − v), where q is the modulus of the group G = ⟨g⟩ and ri ∈ S a noise
sampled during the encryption. We claim that if S is well-chosen, yi = 1 iff
xi = v hence the result. This matter is discussed in subsection 4.2.

4.2 Sampling the noise

Below, we prove that the set S ⊂ Zq from which the noise is sampled can be
adaptively chosen to guarantee the correctness of SPADE.

By theorem 1, the order of g is q − 1, since g is the generator of the cyclic
group G of order q − 1. Hence, [ri (xi − v)] = 1 iff ri (xi − v) is a multiple of

8 C. Nuoskala et al.

the order of g, that is q− 1. If xi = v, it is apparent that we retrieve the desired
result. However, we want to ensure that this is the only case by making sure that
ri (xi − v) is not a non-trivial multiple of q − 1. To do so, we propose to choose
a Fermat number 22k + 1, for k ∈ N, as described in definition 2. In that case,
q − 1 is a power of 2. By choosing r ∈ Zq odd, we ensure that q − 1 and ri are
relatively prime, hence q− 1 divides ri (xi − v) iff q− 1 divides (xi − v), that is
xi − v = 0 mod q − 1. If we choose xi, v ∈ Zt with t < q − 1, this equation has
a single solution xi = v.

5 SPADE protocol

This subsection defines the entities, system model, and threat model we endow
to our algorithms from subsection 4.1 when building our protocols. Our first
protocol relies on a pragmatic approach (subsection 5.1), where an authority
manages the keys and the users simply register to the system. Commonly called
SPADE, this is the protocol we refer to unless stated otherwise. Our second
approach relies on a decentralized setup, requiring greater involvement from the
users. This particular model is defined in subsection 5.2.

5.1 System and threat model

System model The model we consider consists of three entities: (i) Key Curator
(KC), (ii) Users (U) and (iii) Data Analyst (DA).

– Key Curator (KC): The curator is a fully trusted authority responsible for
the generation of user master keys msk, mpk and the storage of user pri-
vate keys α1, . . . , αm registered into the system. Upon request of an analyst
DA for a value v and user uj , it is responsible for the generation of the
corresponding decryption key dkj,v;

– Users (U = (u1, . . . , um)): The users are the owners of the data. They register
to the system by sending their private key αj to KC. They are responsible
for the encryption under mpk and αj of said data into ciphertexts. They
have to trust KC with their data but do not have to trust each other and
do not interact with DA. The set of users is not fixed, and we assume that
a rightful user um+1 can dynamically register to the system by sending a
request containing their private key αm+1 to KC;

– Data Analyst (DA): The analyst is an external party wishing to learn the
number of times a value v occurs in a message x. With exclusive access to
this as a ciphertext, DA sends a request to KC for this value and a specific
user uj , which provides the corresponding decryption key dkj,v, hence the
result of the computation.

Threat model We assume the key curator is a fully trusted authority. For the
users, KC has the ability to generate all the functional decryption keys, hence
accessing all data. Likewise, for the analyst, KC knows the information v and

SPADE 9

j requested by DA. Furthermore, the latter can not check if dkv,j is indeed the
key for the requested values v and j. It is important to highlight that verification
methods that rely on discrete logarithms exist to solve this last issue, but this is
out of the scope of this article. Finally, the users do not have to trust each other.
The existence of the secret integer αj not only ensures the privacy of data but
also guarantees that a user can not encrypt under the identifier of another user.

Limitations Relying on a trusted authority permits perfect management of
both encryption and decryption keys. However, trusting a third party signifi-
cantly constrains privacy-preserving protocols. In the above-mentioned system
model, our protocol revolves around the trusted authority.

To resolve this problem, we propose an alternate protocol, called decentral-
ized, that proposes the same functionalities as the classical SPADE presented in
section 5.

5.2 Decentralized protocol

The principle of a decentralized FE scheme is to rely only on users for key
management. As such, users are responsible for generating the public and private
keys and the functional decryption key. Due to this approach, one can avoid
relying on a trusted authority and using a server to store the ciphertexts.

Decentralized system model The decentralized construction consists of three
entities: (i) Server (S), (ii) Users (U) and (iii) Data Analyst (DA).

– Server (S): The server is responsible for storing the ciphertexts the users
produce. Upon request of an analyst, it can provide specific ciphertexts.

– Users (U = (u1, . . . , um)): Users are the owners of the data. In the decen-
tralized protocol, they are responsible for the system’s setup. Together, they
generate the master public key mpk using multi-party computation (MPC)
techniques described in section 5.3. They encrypt their data under mpk and
αj and store the corresponding ciphertexts on S. They do not have to trust
the server, nor do they have to trust each other. Upon request of DA, a user
uj generates the decryption key dkj,v corresponding to their own identifier
and a value v;

– Data Analyst (DA): The analyst is an external party wishing to learn the
number of times a value v occurs in a message x. Having only access to this
message as a ciphertext, DA sends a request to a user uj , who provides the
corresponding decryption key dkj,v, hence the result of the computation.

Remark that an external user um+1 can dynamically register to the system
by generating their own key αm+1 and encrypting their data under [αm+1] and
mpk. However, since the system has already been set up, she has to trust the
users u1, . . . , um with the master key mpk.

10 C. Nuoskala et al.

Threat model The threat model we propose is similar to section 5 other than
the fact that the trusted authority no longer exists.

– Users (U = (u1, . . . , um)): If the MPC generation of the master public key is
done securely, users do not have to trust each other. However, if an external
user um+1 dynamically registers to the system after the keys have been gen-
erated, she has to trust at least one of the users u1, . . . , um who participated
in generating the master key. Regarding functional decryption, in section 6
shows that a malicious data analyst, given a decryption key for a user, can
not forge a decryption key for another user. It follows that user data remains
secure if a malicious data analyst colludes with any number of other users.

– Data Analyst (DA): To retrieve the result of a computation, the data analyst
interacts with a user on one side and the server on the other. He has to trust
both parties with the data, as we do not provide the verification feature.
Thus, he has to trust that a ciphertext c is well-formed by the owner of the
data, stored properly by the server, and that the decryption key dkj,v indeed
corresponds to the value v and user j.

To this end, users need to communicate directly with the analyst.

5.3 Decentralized key generation

In the decentralized setup, users are responsible for generating the (master) pub-
lic key. In practice, it means that users (u1, . . . , um), m ∈ N generate altogether
([s1], . . . , [sn]), n ∈ N such that the two following properties are fulfilled: (i)
[si] depends on uj , ∀(i, j) ∈ JnK × JmK, (ii) ∀i ∈ JnK, [si] ∼ [sk] ∼ g′ are
indistinguishable for i ̸= k and g′

$←− G.
This article does not detail these techniques; we only claim their existence.

We refer the reader to related works [11,30] for papers addressing this spe-
cific field. Eventually, this MPC algorithm permits the generation of mpk =
([s1], . . . , [sn]) ∈ Gn where s1, . . . , sn are secret parameters unknown by the
users. This restriction guarantees the absence of a backdoor for the decryp-
tion. Additionally, this setup guarantees that no adversary can forge a valid
functional decryption key for a user uj , because the key derivation algorithm
requires the identifier αj . Indeed, (dkj,v)i = [v]αj · [si]αj . Without the secret key
msk = (s1, . . . , sn) previously possessed by KC, computing [si αj] requires αj .

6 Security Analysis

This section establishes the security of the construction given in section 4 and the
protocol described in section 5. We first properly define the notion of semantic
security for MCFE in definition 4 and prove that SPADE satisfies this definition
through a reduction to the Additive ElGamal scheme, detailed in appendix B. We
recall the definitions of Additive ElGamal and IND-CPA security in appendix A
and definition 5, respectively.

SPADE 11

Definition 4 (Semantic Security for MCFE). Let MCFE := (Setup, Enc,
KDer, Dec) be an MCFE scheme for message space M and functionality space
F . We say that MCFE is semantically secure if for all PPT adversary A, it holds
that the advantage of A:

Advind-cpa
MCFE,A(λ) =

∣∣∣2 · P [
Expind-cpa

MCFE,A(λ)→ true
]
− 1

∣∣∣
is negligible in λ, where the experiment is defined as follows.

Expind-cpa
MCFE,A(λ):

b
$←− {0, 1}; L← ∅

(msk, mpk) $←− Setup(1λ)
b′ ←− AOracles(1λ, mpk)
return (b = b′)

Oracles

Encrypt(mpk, x, id) :

If x ̸∈ M
return ⊥

c
$←− Enc(mpk, x, αid)

return c

Challenge(mpk, x0, x1, α) :

If x0, x1 ̸∈ M
return ⊥

If ∃f ∈ Lid : f(x0) ̸= f(x1)
return ⊥

c
$←− Enc(mpk, xb, α)

return c

KeyDerivation(f, id) :

If f ̸∈ F
return ⊥

dkf ← KDer(msk, f, αid)
Lid ← f : Lid
return dkf

Decrypt(dkf , c) :

If f ̸∈ F
return ⊥

x← Dec(dkf , c)
return x

This security game involves a challenger playing the role of the trusted au-
thority, and an adversary A represented as a PPT algorithm. The adversary’s
goal is to guess the bit b, and we consider that he wins if he can find b with a
probability significantly different than a random guess, that is, 1/2. A is pro-
vided access to four oracles he can call a finite number of times, according to its
capabilities: Encrypt, which allows the adversary to request the encryption of a
message for a user id, KeyDerivation, which provides the decryption key for a
function f and a user id, and Decrypt, which decrypts a ciphertext. This game
maintains a record of the decryption keys known by the adversary through a list
L = (L1, . . . , Lm). Hence, every call of the key generation oracle expands the list
L with a new key. Note that A can make these requests for a user’s identifier id
but never has access to the corresponding value αid. Finally, the challenge oracle
Challenge takes on input two plaintexts chosen by the adversary and outputs

12 C. Nuoskala et al.

the encryption of one of them depending on the bit b randomly chosen at the
beginning of the game.

The notion of indistinguishability of FE is hard to capture, given that its
very concept is to leak information. This leakage is obviously controlled, as
TA provides specific functional decryption keys, guaranteeing the anonymity of
non-allowed computation. However, to define indistinguishability in the sense of
public-key encryption, one has to restrict the Challenge oracle to messages
x0, x1 such that f(x0) = f(x1), i.e. A does not possess a decryption key that
could distinguish x0 from x1 in a trivial way.

Theorem 2. The MCFE scheme SPADE defined in section 4.1 is semantically
secure in the sense of definition 4.

Proof. We prove Theorem 2 in appendix B through a sequence of games, starting
with the SPADE game and ending with the Additive ElGamal scheme, recalled
in appendix A. We conclude that SPADE is semantically secure under the DDH
hardness assumption.

6.1 Unforgeability of the decryption key

Having proved the IND-CPA security, we analyze the leakage of information
produced by using a decryption key. In fact, in PKE, a decryption key dkj,v

could be simply seen as a trapdoor, that is an additional insight, exterior to
the protocol, leaking information on the public keys or ciphertexts. While this
leakage is voluntary in FE, it is mandatory to guarantee that dkj,v does not give
more insights than the requested result the analyst is allowed to possess. To this
end, we must proceed in two steps: (I) prove the decryption key’s unforgeability
for another value, and (ii) prove its unforgeability for another user’s identifier.
The two corresponding attacks are detailed thereunder.

Attack 1 ((Value) Key Forgery Attack) Let A be a PPT adversary. A suc-
cessfully performs a Key Forgery Attack for another value if they manage to forge
a decryption key dkj,v′ with the knowledge of nothing else than mpk, dkj,v for
v ̸= v′ and a polynomial number of ciphertexts.

Attack 2 ((Identifier) Key Forgery Attack) Let A be a PPT adversary. A
successfully performs a Key Forgery Attack for another user’s identifier if they
manage to forge a decryption key dkj′,v with the knowledge of nothing else than
mpk, dkj,v for j ̸= j′ and a polynomial number of ciphertexts c1, . . . , cn.

Value Key Forgery Attack Soundness Let A be a PPT adversary that
possesses a decryption key dkj,v for a user uj and a value v, the public parameters
and a polynomial number of ciphertexts. We hereby prove that A can not forge
dkj,w for the same user uj and value v ̸= w with non-negligible probability. In
this scenario, we assume that A does not know [αj]. This is a valid assumption
as this identifier is known only by the fully-trusted KC and by the user uj ,
who only leaks their data if they collude with A. Besides, to retrieve [αj] from

SPADE 13

a ciphertext, A has to be able to compute [αj] from [αj + ri] that requires the
knowledge of [ri]. To prove the unforgeability, we proceed by contrapose and
denote ϵ1 the advantage of A on forging [αj(si − w)] for any v ̸= w. We can
reduce to the case w = 0 as the knowledge of two decryption keys dkj,v and
dkj,w permits the construction of dkj,0. Forging dkj,w for w = 0 is equivalent to
retrieve [αj si] that is [αj(si− v)] · [−αj si] that is [αj]. It follows that, given the
DDH triplet ([αj], [si], [a]), A can determine if [a] = [αj (si − v)] or if a

$←− Z
with advantage ϵ1. However, as A can not distinguish these quantities with a
non-negligible advantage, ϵ1 is negligible. Finally, the advantage of forging dkj,w

knowing only dkj,v is negligible.

Identifier Key Forgery Attack Soundness Let A be a PPT adversary that
possesses a decryption key dkj,v for a user uj and a value v, the public pa-
rameters and a polynomial number of ciphertexts. We hereby prove that A can
not forge dkk,v for the same value v and user uk, k ̸= j with non-negligible
probability. As before, we reasonably assume that A does not know [αk]. To
prove the unforgeability, we proceed by contrapose and denote ϵ2 the advan-
tage of A on forging [αk(si − v)] for any k ̸= j. In particular, A can forge such
a key for αk = αj + 1, hence being able to retrieve [si] ← [si − v] · [v] from
[(si − v)(αk − αj)] ← [(si − v)αk] · [−(si − v)αj]. As in the previous proof, it
follows that A can distinguish dkj,v from a random value with advantage ϵ2.
Assuming that DDH is secure, this advantage is negligible.

7 Evaluation

In this section, we first examine the running time and memory usage of SPADE
through different benchmarks. Then, we present two real-world use cases of
SPADE namely (1) Analysis of Hypnogram Data and (2) Analysis of Genomic
Records in a client-server setting. In the first use case, SPADE will be used to an-
alyze hypnogram files and provide necessary information to an analyst for sleep
medicine. In the second use case, it will process DNA sequences and allow an an-
alyst to execute a search query on encrypted data. To make our implementation
more pragmatic, we implemented SPADE in a client-server setting using Golang
v1.21.5 as the programming language and the gRPC [2] and Protocol Buffer [3]
libraries. Employing gRPC as a remote procedure call tool and Protocol Buffer
to serialize structured data for handling messages enables inner communication
between SPADE’s components and the client-server communication for users and
service providers, regardless of the platform. Our experiments were conducted
in a single-threaded environment. The client-side operated on a laptop equipped
with an Intel Core i5-9300H CPU @ 2.40GHz and 16GB memory, and the server
side on a PC powered by an Intel Core i7-8700 CPU @ 3.20GHz and 64GB
memory.

14 C. Nuoskala et al.

7.1 Open Science

To support open science and reproducible research, we made our implementation
source code available online3.

7.2 SPADE Benchmarks

Following the four algorithms in section 4.1, we implemented our scheme with a
modular approach including different components as SPADE = {Setup, Register,
Encryption, KeyDerivation, Decryption}. We separated the user registration phase
from the setup phase to benchmark its performance precisely when we have
different numbers of users. To comprehensively compare performance across dif-
ferent system scales, we selected a set of benchmarks, denoted as Benchmarks =
{B1, B2, B3, B4}. The smallest benchmark, B1, involves 10 users, each with an
input vector containing 1,000 elements, while the largest one, B4, includes 10,000
users, each with an input vector containing 100,000 elements.

As presented in Table 1, with the security parameter λ = 128, the aver-
age running time and memory usage for each benchmark gradually increase.
For the smallest benchmark B1, the Setup for 10 users with input vectors con-
taining 1,000 elements takes 0.013ms and requires 1.79KB of memory. The
Register phase for 10 users takes 0.000072ms and uses 0.02KB of memory. Ad-
ditionally, the Encryption, KeyDerivation, and Decryption results are for plaintext
and ciphertext vectors, each containing 1,000 elements. Encrypting an input
vector takes 0.03ms and requires 5.52KB of memory. Similarly, key derivation
and decryption processes take 0.0065ms and 0.0022ms in running time and re-
quire 2.27KB and 0.86KB of memory, respectively.

While in the most significant benchmark, B4, the Setup for 10,000 users with
input vectors containing 100,000 elements takes 0.658ms and requires 179.69KB
of memory. The Register phase for 10,000 users takes 0.065ms and uses 17.81KB
of memory. Also, the Encryption, KeyDerivation, and Decryption results are for
plaintext and ciphertext vectors, each containing 100,000 elements. Encrypting
an input vector takes 3.905ms and requires 551.71KB of memory. Similarly, key
derivation and decryption processes take 0.756ms and 0.168ms in running time
and require 226.56KB and 85.94KB of memory, respectively.

As shown in Figure 1 and Figure 2, increasing the number of users and the
size of the input vectors results in a linear increase in running time and memory
usage, respectively. Furthermore, it reveals that, as expected, the most expensive
step of the SPADE scheme is the Encryption, which takes less than 4ms even for
the largest benchmark B4 and requires only 550KB memory.

7.3 SPADE Use Cases

As mentioned previously in section 5, a user (j) can encrypt a vector of integers
(x) using (mpk, αj). This encrypted vector can then be stored on an untrusted

3https://github.com/hosseinabdinf/SPADE

https://github.com/hosseinabdinf/SPADE

SPADE 15

Table 1. SPADE Benchmarks

Component Time Memory Allocations
(ms/op) (KB/op)

B1: Number of Users=10 – Vector Size=1,000

Setup 0.013474 1.798828125
Register 0.000072 0.019531251
Encryption 0.030317 5.520507813
KeyDerivation 0.006535 2.267578125
Decryption 0.002233 0.860351563

B2: Number of Users=100 – Vector Size=10,000

Setup 0.072073 17.97949219
Register 0.001419 0.179687511
Encryption 0.216872 55.20800781
KeyDerivation 0.078610 22.66503906
Decryption 0.015531 8.597656252

B3: Number of Users=1,000 – Vector Size=50,000

Setup 0.326208 89.84765625
Register 0.006678 1.783203125
Encryption 1.024057 275.8828125
KeyDerivation 0.353401 114.0654297
Decryption 0.078852 42.97363281

B4: Number of Users=10,000 – Vector Size=100,000

Setup 0.65899 179.6943359
Register 0.06459 17.81347656
Encryption 3.90593 551.7138672
KeyDerivation 0.75656 226.5664063
Decryption 0.16835 85.94628906

server for later use. An analyst who holds the corresponding decryption key
(dkj,v) can request access to the user’s vector of ciphertexts and decrypt it for
further analysis. As shown in Figure 3, as the result of decryption, the analyst
will have a vector consisting of ones (1) for the indices that match the query
value (v) and unknown values (❆) for the remaining indices.

Use Case#1: Analysis of Hypnogram Data Studying sleep behaviour for
sleep medicine has been a focus in healthcare research for a long time [26].
The American Academy of Sleep Medicine (AASM) provides standardized rules
to score sleep stages. The sleep stages are assigned to each 30-second epoch
in the recording. The assigned epochs are visualized in a hypnogram file, and
quantitative measures are extracted to provide more information about the sleep
cycle [29]. As an application, assume that an analyst wants to extract information
regarding a specific sleep stage (v) by running a query over a hypnogram file to
answer the following questions:
Q1. How many times does the value v appear in the hypnogram’s values? This

reveals the total length of the sleep stage v.
Q2. How many changes exist where the value v jumps to the other values? This

shows the changes from the sleep stage v to other sleep stages.
Q3. How many times does the value v appear in a sequence? This indicates the

length of sleep stage v before a change in sleep stage happens.

16 C. Nuoskala et al.

B1 B2 B3 B4
0

1

2

3

4

T
im

e
(m

s
/

o
p

)

Setup Register Encryption KeyDerivation Decryption

Fig. 1. Running Time for Different Benchmarks

To do so, we implemented a client-server application, utilizing the SPADE
scheme with a Server/Curator and two different types of clients, namely, User
and Analyst. The trusted entity (Curator) generates the system parameters and
master public/private keys. Then, it shares the public parameters with all other
entities. The curator transfers the keys to users and handles the user’s registra-
tion phase. The user encrypts a hypnogram file and sends it to an untrusted
server to be stored. An analyst with the corresponding decryption key for value
v requests access to the user’s encrypted hypnogram to partially decrypt the
ciphertexts and extract the information for sleep stage v.

Storage Costs Our experiments were conducted on 590 hypnogram files from
the SIESTA dataset [21], each with 1,000 elements ranging from 1 to 10, indi-
cating different sleep stages. As shown in Table 2, the storage cost for saving
a single hypnogram file is around 2KB, increasing to 53.98KB after encryp-
tion by SPADE. Likewise, the entire hypnogram dataset requires 1138.7KB to
be stored, whereas the storage cost for all encrypted hypnograms on the server
is 31, 911.94KB. Therefore, in this use case, the SPADE’s storage cost increases
by 28× for each 1KB of data for the security parameter λ = 128.

Table 2. Storage Costs for Use Case #1

Description Size (KB)

Plain Hypnogram Record 1.93
Encrypted Hypnogram Record 53.98

Plain Hypnograms Dataset 1138.7
Encrypted Hypnograms Dataset 31911.94

SPADE 17

B1 B2 B3 B4
0

200

400

600

M
em

or
y

(K
B

/
o

p
)

Setup Register Encryption KeyDerivation Decryption

Fig. 2. Memory Usage for Different Benchmarks

x1 x2 x3 . . . xn−1 xn

c1 c2 c3 . . . cn−1 cn

❆ 1 1 . . . ❆ 1

Enc
(

mpk, x, αj

)
Dec

(
dkj,v, c

)

Fig. 3. Encryption and Decryption in SPADE

Running Time & Communication Costs We conducted the experiments
using a 1GB/s LAN connection. On the user side, the process involves sending a
request for public parameters {q, g, mpk}, encrypting hypnogram data, and send-
ing a message that contained {id, gαid , cid} to the server. As shown in Table 3,
each user took approximately 36ms to complete the process, requiring 54.05KB
of network bandwidth. Similarly, the analyst sends a request to the server for
public parameters. Then, the analyst sends a request to the server, including
the user identifier and the sleep stage value as {id, v}, respectively. In response,
the analyst receives decryption keys and the user’s encrypted hypnogram, repre-
sented as {dkid,v, cid}, respectively. The analyst can then partially decrypt the
user’s hypnogram. It takes approximately 16ms for each analyst to complete the
process and requires 72.02KB of network bandwidth.

Use Case#2: Analysis of Genomic Records The collection of genomic
data has grown remarkably in many applications in the healthcare sector. Med-
ical researchers use genetic information for various applications, including se-
quencing [18], genomic sequence assembly [25], and Genomic-Wide Association

18 C. Nuoskala et al.

Table 3. Running Time & Communication of Use Case #1

Client Running Time (ms) Communication (KB)

User 35.59 54.05
Analyst 15.75 72.02

Studies (GWAS) [9]. The size of genomic databases is enormous and contains
DNA sequences. Each DNA sequence represents each individual’s genetic varia-
tion. These sequences are typically represented by characters corresponding to
the four nucleotides, adenine (A), cytosine (C), guanine (G), and thymine (T),
and are extensively long.

One of the main purposes of DNA sequence analysis is to investigate the
relationship between various genomic variations in humans and biological or
health-related traits by querying genomic databases [16]. For example, an an-
alyst wants to know how many users in a dataset have specific genotypes at
certain locations in their genome. Despite the importance of running analy-
sis queries over genomic databases, preserving genomic data privacy is crucial.
Researchers in [15,16] analyzed and proposed different privacy-preserving ap-
proaches to perform the Count Query over genomic databases. The comparison
of these approaches is out of the scope of this article. Yet, we found their research
question “How many records in a genomic database contain a specific
set of genotypes at a certain location?” as an interesting application for
our scheme. By utilizing SPADE, analysts can query specific genotypes (value v)
to access the number and location of matches.

Storage Costs We utilized the publicly available Harvard dataset of Single
Nucleotide Polymorphisms (SNPs) [22] as input for our experiment. Due to
the dataset’s size, we selected 5,012 files and transformed the DNA sequences
into dinucleotides, as already represented by the authors in [15] for conducting
count queries. A dinucleotide is a pair of two different nucleotides, for example,
"AG", "CC", and so on. As given in Table 4, the SNP file in our dataset has a
storage size of 0.078MB and contains DNA sequences with 78,214 elements, each
representing a dinucleotide. Since SPADE only works with integers, we mapped
the total possible combinations of nucleotide pairs into an integer set ranging
from 1 to 16 for using them in our scheme. After encryption, the storage size
for the DNA record increases to 4.223MB. Similarly, the entire DNA dataset
requires 392.02MB to be stored, whereas the storage cost for all encrypted DNA
sequences on the server is 21, 186.14MB. Therefore, in this use case, the SPADE’s
storage cost increases by 54× for each 1KB of data for the security parameter
λ = 128.

Running Time & Communication Costs Similarly, we conducted the ex-
periments using a 1GB/s LAN connection for this use case. On the user side,
the process involves sending a request for public parameters {q, g, mpk}, encrypt-
ing the DNA data, and sending a message that contains {id, [αid]g, cid} to the

SPADE 19

Table 4. Storage Costs for Use Case #2

Description Size (MB)

Plain DNA Record 0.078
Encrypted DNA Record 4.223

Plain DNA Dataset 392.02
Encrypted DNA Dataset 21186.14

server. As given in Table 5, each user took approximately 1750ms (1.75s) to
complete the process, requiring 4.22MB of network bandwidth. Similarly, the
analyst sends a request to the server for public parameters. Then, the analyst
sends a request to the server, including the user identifier and the sleep stage
value as {id, v}, respectively. In response, the analyst receives decryption keys
and the user’s encrypted DNA, represented as {dkid,v, cid}, respectively. The
analyst can then partially decrypt the user’s DNA. Each analyst takes approxi-
mately 770ms (0.77s) to complete the process and requires 5.63MB of network
bandwidth.

Table 5. Running Time & Communication of Use Case #2

Client Running Time (ms) Communication (MB)

User 1750 4.22
Analyst 770 5.63

7.4 Comparing Two Use Cases

We presented the results of two different use cases for our scheme: (1) the hypno-
gram use case for quantitative data analysis, and (2) the DNA use case for quali-
tative data analysis to show the potential of SPADE. Despite the different nature
of each use case, to perform encryption and decryption using SPADE, the input
data should be vectors of integers. Therefore, it is necessary to map non-integer
data into integers through a pre-processing function. The mapping process can
be relatively cheap since it does not require complicated operations; for example,
in the case of DNA data, the mapping function only takes tens of milliseconds.
Besides, it can be done offline or during data collection.

The number of users (number of input files, one per user) for the DNA use
case is 5,012, while for the hypnogram use case is 590. Also, each input vector
for the DNA use case contains 78,214 elements, while the hypnogram use case
contains 1,000 elements. Regarding storage costs, on the user side, each DNA
file is approximately 40× larger than the hypnogram file, while on the server
side, each DNA file is approximately 78× larger than the hypnogram file.

20 C. Nuoskala et al.

The size of the ciphertext depends on the maximum size of the input vector.
During the setup phase, the key curator generates the keys (msk, mpk) based on
the maximum size of the input vector. Hence, we have larger input vectors in the
DNA use case; the ciphertext size is expected to be larger than the ciphertext
size in the hypnogram use case, which results in more storage costs. The same
results apply to the communication costs since the users send their ciphertexts
to be stored in the server, and the analyst also asks the server to receive them.
Thus, to clearly present the storage and communication costs, we used different
measurement units for each use case: Kilobytes (KB) for the hypnogram use
case and Megabytes (MB) for the DNA use case.

Regarding the running time and computation costs, as shown in Table 1,
the most expensive operation is encryption, where the users encrypt the input
vector using the master public key (mpk) and their private key (αj). Based on the
difference in the input vector size between the two use cases, in the hypnogram
application, all operations for the users and analysts can be completed in tens
of milliseconds. For the DNA application, these operations can take up to 2
seconds.

8 Conclusion

As every aspect of human life is nowadays fueled with data, the need for secure
solutions to use that data while protecting people’s privacy continues to grow.
In this work, we proposed and implemented a practical and efficient FE solution
for analyzing qualitative data in a multi-user setup. Our scheme is capable of
providing targeted insights on qualitative datasets, such as counting the occur-
rences of a specific value in a DNA sequence. Our goal is to illustrate the wide
range of applications that modern cryptographic methods like FE can enable.
By doing so, we aim to pave the way for creating trustworthy privacy-respecting
services.

References

1. Gofe. Online: https://github.com/fentec-project/gofe (06 2024), goFE
2. grpc v1.64. Online: https://github.com/grpc/grpc-go (06 2024), gRPC
3. protobuf v1.34. Online: https://github.com/protocolbuffers/protobuf-go (06

2024), protocol Buffers
4. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-

product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology – ASIACRYPT 2019. pp. 552–582. Springer International Publishing,
Cham (2019)

5. Ayday, E., Raisaro, J.L., Hengartner, U., Molyneaux, A., Hubaux, J.P.: Privacy-
preserving processing of raw genomic data. In: Garcia-Alfaro, J., Lioudakis, G.,
Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) Data Privacy Manage-
ment and Autonomous Spontaneous Security. pp. 133–147. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

https://github.com/fentec-project/gofe
https://github.com/grpc/grpc-go
https://github.com/protocolbuffers/protobuf-go

SPADE 21

6. Bakas, A., Michalas, A., Dimitriou, T.: Private lives matter: A differential private
functional encryption scheme. In: Proceedings of the Twelfth ACM Conference on
Data and Application Security and Privacy. p. 300–311. CODASPY ’22, Associa-
tion for Computing Machinery, New York, NY, USA (2022)

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Theory of Cryptography Conference. pp. 253–273. Springer (2011)

8. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted in-
ner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 733–764. Springer International
Publishing, Cham (2018)

9. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using mul-
tiparty computation. Nature biotechnology 36(6), 547–551 (2018)

10. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k-linear assumption. In: Abdalla, M., Da-
hab, R. (eds.) Public-Key Cryptography – PKC 2018. pp. 245–277. Springer Inter-
national Publishing, Cham (2018)

11. Dimitriou, T., Michalas, A.: Multi-party trust computation in decentralized en-
vironments in the presence of malicious adversaries. Ad Hoc Networks 15, 53–66
(2014), smart solutions for mobility supported distributed and embedded systems

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. p. 169–178.
STOC ’09, Association for Computing Machinery, New York, NY, USA (2009)

13. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques (2014)

14. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Annual Cryptology Conference. pp.
536–553. Springer (2013)

15. Hasan, M.Z., Mahdi, M.S.R., Sadat, M.N., Mohammed, N.: Secure count query on
encrypted genomic data. Journal of Biomedical Informatics 81, 41–52 (2018)

16. Jiang, B., Seif, M., Tandon, R., Li, M.: Answering count queries for genomic data
with perfect privacy. IEEE Transactions on Information Forensics and Security
(2023)

17. Marc, T., Stopar, M., Hartman, J., Bizjak, M., Modic, J.: Privacy-enhanced ma-
chine learning with functional encryption. In: Computer Security – ESORICS
2019: 24th European Symposium on Research in Computer Security, Luxembourg,
September 23–27, 2019, Proceedings, Part I. p. 3–21. Springer-Verlag, Berlin, Hei-
delberg (2019)

18. Motahari, A.S., Bresler, G., David, N.: Information theory of dna shotgun sequenc-
ing. IEEE Transactions on Information Theory 59(10), 6273–6289 (2013)

19. Nuoskala, C., Rabbaninejad, R., Dimitriou, T., Michalas, A.: Fe[r]chain: Enforcing
fairness in blockchain data exchanges through verifiable functional encryption. In:
Proceedings of the 29th ACM Symposium on Access Control Models and Tech-
nologies. p. 183–191. SACMAT 2024, Association for Computing Machinery, New
York, NY, USA (2024)

20. Panzade, P., Takabi, D., Cai, Z.: Privacy-preserving machine learning using func-
tional encryption: Opportunities and challenges. IEEE Internet of Things Journal
PP, 1–1 (01 2023)

21. Penzel, T., Glos, M., Garcia, C., Schoebel, C., Fietze, I.: The siesta database and
the siesta sleep analyzer. In: 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. pp. 8323–8326. IEEE (2011)

22 C. Nuoskala et al.

22. Ricke, D.: 11 Million SNP Profiles datasets (2018)
23. Rivest, R., Adleman, L., Deaouzos, M.: On data banks and privacy homomorphism.

In: Foundations of Secure Computation, Academic Press, New York, 169-179 (1978)
24. Ryffel, T., Dufour-Sans, E., Gay, R., Bach, F., Pointcheval, D.: Partially encrypted

machine learning using functional encryption. Curran Associates Inc., Red Hook,
NY, USA (2019)

25. Si, H., Vikalo, H., Vishwanath, S.: Information-theoretic analysis of haplotype
assembly. IEEE Transactions on Information Theory 63(6), 3468–3479 (2017)

26. Swihart, B.J., Caffo, B., Bandeen-Roche, K., Punjabi, N.M.: Characterizing sleep
structure using the hypnogram. Journal of Clinical Sleep Medicine 4(4), 349–355
(2008)

27. Tomida, J.: Unbounded quadratic functional encryption and more from pairings.
In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp.
543–572. Springer Nature Switzerland, Cham (2023)

28. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Annual Cryptology Conference. pp. 678–697. Springer (2015)

29. van der Woerd, C., van Gorp, H., Dujardin, S., Sastry, M., Garcia Caballero,
H., van Meulen, F., van den Elzen, S., Overeem, S., Fonseca, P.: Studying sleep:
towards the identification of hypnogram features that drive expert interpretation.
Sleep p. zsad306 (2023)

30. Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C.Z., Li, H., an Tan, Y.: Secure
multi-party computation: Theory, practice and applications. Information Sciences
476, 357–372 (2019)

A Preliminary security definitions

This section gives the background on security we rely on to establish the semantic
security of SPADE. Additive ElGamal is a PKE scheme that relies on the Discrete
Logarithm and the DDH hardness assumptions. We recall its definition below.

Additive ElGamal Algorithms

EG.KGen
(
1λ

)
:

Sample sk $←− Zq and compute pk← [sk]
Return (pk, sk)

EG.Enc (pk, x):

Sample r
$←− Zq and compute c $←− ([r], [r]pk · [x]) = ([r], [r · sk + x])

Return c

EG.Dec (sk, c) :

Compute y ← [r · sk + x] · [r]−sk = [x]
Then solve the discrete logarithm [x] 7→ x
Return x

Remark that it is correct provided that x is small enough for the discrete
logarithm [x] 7→ x to be computed easily. However, SPADE does not suffer this
restriction, and we only use this scheme as a support to prove its security.

SPADE 23

Definition 5 (IND-CPA Security for PKE). Let PKE := (KGen, Enc, Dec)
be a PKE scheme for message spaceM. We say that PKE is semantically secure
if for all PPT adversary A, it holds that the advantage of A:

Advind-cpa
PKE,A (λ) =

∣∣∣2 · P [
Expind-cpa

PKE,A (λ)→ true
]
− 1

∣∣∣
is negligible in λ, where the experiment is defined as follows.

Expind-cpa
PKE,A (λ):

b
$←− {0, 1}

(sk, pk) $←− KGen(1λ)
b′ ←− AOracles(1λ, pk)
return (b = b′)

Oracles

Encrypt(pk, x) :

If x ̸∈ M
return ⊥

c
$←− Enc(pk, x)

return c

Challenge(pk, x0, x1) :

If x0, x1 ̸∈ M
return ⊥

c
$←− Enc(pk, xb)

return c

This security game involves a challenger playing the role of the trusted au-
thority and an adversary A represented as a PPT algorithm. The adversary’s
goal is to guess the bit b, and we consider that he wins if he can find b with
a probability significantly different than a random guess, that is 1/2. A is pro-
vided access to two oracles he can call a finite number of times, according to
its capabilities: Encrypt, which allows the adversary to request the encryption
of a message and Challenge that takes on input two plaintexts chosen by the
adversary and outputs the encryption of one of them depending on the bit b
randomly chosen at the beginning of the game.

B Security proof of Theorem 2

We prove Theorem 2 through a sequence of games, starting with the genuine
SPADE game and ending with a game where the advantage of A is negligible.
We denote ϵi the advantage of A for game i and ϵEG(λ) its advantage for the
Additive El-Gamal game defined in appendix A.

Game 0: This is the initial genuine SPADE game for the semantic security defi-
nition in definition 4. The challenger initializes the game by picking at random a
bit b

$←− {0, 1} and generating the keys (mpk, msk) $←− Setup(1λ). She sends mpk

24 C. Nuoskala et al.

to the adversary A, who has access to the oracles Encrypt, KeyDerivation,
Decrypt and Challenge. Eventually, A outputs a guess b′ on the value of b
with an advantage ϵ0. In the following, we define fv : x 7→ {i : xi = v} as the
function that outputs the list of indexes for which xi = v. To respect the indistin-
guishability properties of the decryption key, we require the oracle Challenge
to take as input x0, x1 such that fv(x0) = fv(x1) for every fv ∈ L, as described
in definition 4.

Game 1: This game proceeds as the previous one, except that we replace the
Decrypt oracle with a new oracle DecryptG1 defined as follows:

DecryptG1(dkid,v, c) :
If v ̸∈ Zt

return ⊥
y← Dec(dkid,v, c)
y′ $←− Gn ; fv(y) = fv(y′)
return y′

In this game, the challenger does not return the result of the decryption y,
but a random vector y′ in Gn such that fv(y) = fv(y′), that is yi = y′i = 1, for
i ∈ JnK such that xi = v.
Claim 1. |ϵ1 − ϵ0| ≤ n ϵDDH(λ), where ϵDDH(λ) is the advantage of an efficient
adversary that breaks the DDH.

To prove this claim, we show that the output of the genuine Decrypt oracle
is indistinguishable from the output of DecryptG1, under the DDH hardness
assumption. Assume that A has access to hi = [αid + ri], v and hence [xi−v]. In
this proof, we make the stronger assumptions that the adversary A has access
to [αid] to consider the DDH triplet ([ri], [xi− v], [ri (xi− v)]). The advantage of
A to distinguish between [αid(si − v)] and a random element [a] $←− G is exactly
the advantage to distinguish the DDH distribution from a random distribution,
that is ϵDDH.

Game 2: This game is similar to the previous one, except that the oracle
KeyDerivation is replaced by an oracle KeyDerivationG1 defined as follows:

KeyDerivationG1(v, id) :
If v ̸∈ Zt:

return ⊥
dkid,v

$←− Gn

Lid ← v : Lid
return dkid,v

In short, when A calls the KeyDerivation oracle to obtain the keys (k1,
. . ., kn) ← KDer(msk, v, id), the challenger runs the KeyDerivationG1 oracle
instead, which returns a random element in Gn. We prove thereunder that a
PPT adversary cannot distinguish this game from the previous one (with a non-
negligible advantage).

SPADE 25

Claim 2. |ϵ2 − ϵ1| ≤ ϵDDH, where ϵDDH is the advantage of an efficient adversary
on the DDH hard problem.

To prove this claim, we show that the indistinguishability of the decryption
key dkid,v relies on the DDH hardness assumption. Assume that A has access
to hi = [αid + ri], pki = [si] and (dkid,v)i = [αid(si − v)], the two first being
public parameters and the latter being a component of the decryption key. In
this proof, we make the stronger assumptions that the adversary A knows v and
also has access to [αid] to consider the DDH triplet ([αid], [si], [αid si]). We show
that if A has a non-negligible advantage to distinguish between [αid(si− v)] and
a random element [a] $←− G, he has a non-negligible advantage to distinguish
the DDH distribution from a random distribution. Denote ϵ the advantage of A
to distinguish between ([αid], [si], [αid(si − v)]) and ([αid], [si], [a]). A can easily
forge [αid si]← [αid(si−v)] · [αid]v hence giving him an advantage ϵ to distinguish
[αid si] from a random value [a]. As the last scenario is the traditional DDH hard
problem, ϵ = ϵDDH is negligible, which concludes.
Claim 3. ϵ2 ≤ n · ϵEG(λ), where ϵEG(λ) is the advantage of an efficient adversary
that breaks the Additive ElGamal game.

To prove this claim, we introduce a game consisting of n instances of Ad-
ditive ElGamal. These games are played between the challenger and a PPT
adversary B and proceed as follows. The challenger generates n pairs of keys
(pki, ski) ← EG.KGen(1λ) and sends (pk1, . . . , pkn) to A. The latter picks two
n-tuples of distinct messages x = (x1, . . . , xn) and y = (y1, . . . , yn) and sends
them to the challenger, who randomly picks one of them. Without a lack of
generality, assume that the challenger encrypts x. She produces a ciphertext
c← ([r], c1, . . . , cn), with ci = [xi + r · ski] and sends it to A. Following, A gen-
erates a noise r′

$←− S according to SPADE parameters and produces the cipher-
text c′ ← ([r · r′], [r′ · x1 + r′ · ski], . . . , [r′ · xn + r′ · r · ski]) from c. By renaming
α← r·r′ and computing [α+r′]← [α]·[r′] she can submit ([α+r′], [r′ ·x1+α·sk1],
. . . , [r′ · xn + α · skn]), A obtains a SPADE ciphertext. It follows that A has at
least an advantage ϵ2 on the n instances of ElGamal, that is ϵ2 leqn · ϵEG, which
concludes.

Conclusion: The overall advantage ϵMCFE of A in the MCFE game defined
in definition 4 is ϵMCFE = 2 · ϵDDH +n · ϵEG. As a finite sum of negligible elements,
ϵMCFE is negligible, which concludes.

	SPADE: Digging into Selective and PArtial DEcryption using Functional Encryption

