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Abstract
Secure join queries over encrypted databases, the most expressive

class of SQL queries, have attracted extensive attention recently.

The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join

queries on encrypted relational databases without pre-computing

all possible joins. However, JXT can merely support join queries

over two tables (in encrypted databases) with some high-entropy

join attributes.

In this paper, we propose an equi-join query protocol over two

tables dubbed JXT+, that allows the join attributes with arbitrary

names instead of JXT requiring the identical name for join attributes.

JXT+ reduces the query complexity from 𝑂 (ℓ1 · ℓ2) to 𝑂 (ℓ1) as
compared to JXT, where ℓ1 and ℓ2 denote the numbers of matching

records in two tables respectively. Furthermore, we present JXT++,

the first equi-join queries across three or more tables over encrypted

databases without pre-computation. Specifically, JXT++ supports

joins of arbitrary attributes, i.e., all attributes (even low-entropy)

can be candidates for join, while JXT requires high-entropy join

attributes. In addition, JXT++ can alleviate sub-query leakage on

three or more tables, which hides the leakage from the matching

records of two-table join.

Finally, we implement and compare our proposed schemes with

the state-of-the-art JXT. The experimental results demonstrate that

both of our schemes are superior to JXT in search and storage costs.

In particular, JXT+ (resp., JXT++) brings a saving of 49% (resp., 68%)
in server storage cost and achieves a speedup of 51.7× (resp., 54.3×)
in search latency.
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1 Introduction
Encrypted search protocol enables the client to perform efficient

search over encrypted databases. Symmetric searchable encryption

(SSE), initiated by Song et al. [35], is a promising primitive for

realizing efficient encrypted search, which has been extensively

studied in the past two decades [9–13, 20, 21, 25, 32, 36, 37]. A

long line of research has been conducted to achieve better trade-

offs between security, functionality, and performance by revealing

well-defined leakage information.

We note that, however, almost all SSE constructions support

only keyword-based search on encrypted documents. As claimed in

[25], most real-world data is usually stored and shared in relational

databases. Roughly speaking, a relational database is a collection

of tables with rows representing records and columns representing

attributes, and most relational databases are equipped with the

structured query language (SQL) for data querying and updating. A

significant puzzle to be solved is how to perform expressive queries

on encrypted relational database [25].

Hacigümüş et al. [18] first explicitly initiated the study of search

on encrypted relational databases, where each attribute domain

is split into a sequence of buckets and the associated bucket of

the queried data will be returned. In 2011, Popa et al. [32] devel-

oped a SQL-aware encrypted database system called CryptDB, that

can support a large class of SQL queries by assembling property-

preserving encryption (PPE). Nevertheless, it has been witnessed

in [29] that the PPE-style approach is vulnerable to leakage-abuse

attacks.

https://doi.org/10.1145/3658644.3690377
https://doi.org/10.1145/3658644.3690377
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Table 1: Comparison with prior secure join schemes.

Schemes Pre-computation Storage Cost

Query Computation Multi-table Arbitrary

Client Computation Server Computation Joins Join Attribute

SPX [25]  𝑂 (𝑚𝑛)+𝑂 (𝑚2𝑇 ) 𝑂 (1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 𝑂 (ℓ1 + ℓ2 + |𝑅𝐽 |)EMMqry
† ✓ ✓

CNR [11] G# 𝑂 (𝑚𝑛)+𝑂 (𝑚𝑇 ) 𝑂 (1)𝑃𝑟 𝑓 +𝑂 (ℓ1+ℓ2)𝐷𝑒𝑐
𝑂 (ℓ1+ℓ2) (EMMqry+𝑃𝑟 𝑓 ) ✗ ✓+ 𝑂 (ℓ1ℓ2) 𝐽𝑜𝑖𝑛

JXT [22] # (2𝑇 +1)𝑚𝑛+𝑚𝑇 𝑂 (ℓ1+ℓ2)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐
𝑂 (ℓ1 + ℓ2)EMMqry ✗ ✗+ 𝑂 (ℓ1ℓ2)𝑋𝑜𝑟

JXT+ #
3𝑚𝑛𝑇 (Worst)/

𝑂 (ℓ1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐
𝑂 (ℓ1) (EMMqry+𝑋𝑜𝑟 ) ✗ ✗

2𝑚𝑛𝑇+𝑛𝑇 (Best) + 𝑂 ( |𝑅 |)𝐻

JXT++ #
3.23𝑚𝑛𝑇 (Worst)/ 𝑂 (𝑙𝑚𝑎𝑥 )𝑃𝑟 𝑓 + 𝑂 (ℓ1)EMMqry+ ✓ ✓

1.23𝑚𝑛𝑇 +2𝑛𝑇 (Best) 𝑂 (ℓ1𝑙𝑚𝑎𝑥 )𝐷𝑒𝑐 𝑂 (ℓ1𝑙𝑚𝑎𝑥 ) (𝑋𝑜𝑟+𝐻 )
Assume that the database consists of two tables, Tab1 and Tab2, and each has 𝑚 rows, 𝑛 columns, and 𝑇 join attributes. We consider

performing a query 𝑞 = (Select 𝑖𝑛𝑑𝑠 From Tab1, Tab2 Join On 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
Where𝑤1 ∧𝑤2). The symbols ,G#, and# denote fully, partially,

and without pre-computation of all possible joins, respectively. Let ℓ𝑖 = |DBTab𝑖 (𝑤𝑖 ) | and 𝑙𝑚𝑎𝑥 be the maximum occurrence number of

the combinations of each join-attribute value of 𝑎𝑡𝑡𝑟∗
1
and all attribute-value pairs in Tab1. 𝑅 is the search result of the query 𝑞, and 𝑅𝐽 is

the search result of the join query 𝑞′, where 𝑞′ = (Select 𝑖𝑛𝑑𝑠 From Tab1, Tab2 Join On 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
). 𝑃𝑟 𝑓 is the pseudorandom function

operation, 𝐷𝑒𝑐 is the decryption operation for symmetric encryption algorithm, 𝐻 is the hash function, 𝑋𝑜𝑟 is the exclusive-or operation.

EMMqry refers to the operation of retrieving an entry from the encrypted multi-map, and 𝐽𝑜𝑖𝑛 refers to the equality test over plaintext.

†: If 𝑅𝐽 = ∅, the server computation can be reduced to constant (i.e., 𝑂 (1)).

To mitigate the leakage of join queries, Kamara et al. [25] in-

troduced the first structured encryption scheme supporting join

query named SPX, which relies crucially on pre-computing all pos-

sible joins and storing all the results in an encrypted version of

the database. While it achieves optimal search complexity, SPX

brings non-trivial storage overhead in some cases, especially when

the database contains a large number of join attributes and the

value distribution exhibits low entropy across all joinable attributes.

That is, lower entropy across join attributes leads to a larger num-

ber of possible joins in pre-computation mode. Thus, SPX tends

to configure high-entropy attributes as join attributes for storage

efficiency. Subsequently, Cash et al. [11] presented a variant of SPX

by introducing the technique of partially pre-computed joins, which
can achieve less leakage and communication size at the expense of

moderate client-side computation.

Recently, Jutla et al. [22] presented JXT, a novel join queries

scheme without join pre-computation. Specifically, inspired by OXT

[10], this protocol generates two new table-wise data structures

TSet and XSet for each table, where TSet refers to an inverted in-

dex for attribute/value pairs to perform single-keyword search

within a single table, and XSet contains all combinations of record

identifier/join-attribute value pair. The basic idea is to retrieve the

corresponding record identifiers matching the queried keywords

for two tables, respectively. Later, the server computes all the cross-

combinations of the matching record identifiers and join-attribute

value pairs between two tables and checks whether the above com-

binations belong to the XSet. Thus, the query complexity is𝑂 (ℓ1 ·ℓ2),
where ℓ1 and ℓ2 denote the numbers of matching records in two

tables. Although JXT can achieve two-table join queries without

pre-computation, it requires the joinable attributes across tables

with the same attribute name (i.e., natural join). In addition, JXT

cannot be trivially extended to three or more tables due to the

complication of generating join tokens on three or more tables.

In this work, we further investigate equi-join queries over en-

crypted databases without join pre-computation that can support

low-entropy join attributes, even handling three or more tables.

More precisely, it performs SQL queries in the following form:

Select 𝑖𝑛𝑑𝑠 From 𝑡𝑎𝑏𝑙𝑒𝑠 Join On (𝑎𝑡𝑡𝑟∗
1
= ... = 𝑎𝑡𝑡𝑟∗

𝑘
)

Where (𝑤1 ∧ ... ∧𝑤𝑘 ),
where 𝑖𝑛𝑑𝑠 denotes record identifiers, 𝑎𝑡𝑡𝑟∗

𝑖
and𝑤𝑖 refer to the join

attribute and the attribute-value pair in table Tab𝑖 , respectively.

1.1 Our Contributions
In this paper, we make affirmative progress to secure join queries

over encrypted relational databaseswithout pre-computation. Specif-

ically, we propose an efficient equi-join query scheme over two

tables and further extend to scalable equi-join queries across three

or more tables. Both of the constructions outperform the state-of-

the-art JXT [22] in terms of query complexity and storage overhead.

In addition, similar to JXT [22], our protocols can support flexible

table addition by constructing index for newly added tables sepa-

rately, while SPX [25] requires performing the setup process across

all tables. Table 1 shows a brief comparison with prior works. More

concretely, our main contributions can be summarized as follows:

• We propose JXT+, which supports equi-join queries over

two tables without join pre-computation. Compared with

the state-of-the-art JXT [22], JXT+ allows join attributes with

arbitrary names, as opposed to the identical join attribute

name in JXT. The query complexity of JXT+ is reduced from

𝑂 (ℓ1 · ℓ2) to𝑂 (ℓ1), where ℓ1 and ℓ2 are the numbers of match-

ing records in the two queried tables. In addition, JXT+ can

avoid the leakage information on join attributes by binding

non-join-attribute value and join-attribute name in TSet.
• We present JXT++, to our best knowledge, the first equi-join
queries over three or more tables without pre-computation.

In particular, JXT++ can achieve joins of arbitrary attributes
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even low-entropy attributes, eliminating the limitation of

high-entropy join-attribute in JXT. Moreover, JXT++ can mit-

igate the sub-query leakage, stemming from multiple-table

join, while surpassing JXT in query and storage efficiency.

• We implement our two protocols and perform a compre-

hensive comparison with the state-of-the-art JXT [22]. The

experiment results demonstrate that both of our schemes

outperform JXT in terms of query time and storage cost.

Particularly, JXT+ (resp., JXT++) brings a saving of 49% (resp.,
68%) in server-side storage cost and achieves a speedup of

51.7× (resp., 54.3×) in search latency.

1.2 Technical Overview
Equi-Join Queries over Two Tables. Inspired by OXT [10], JXT

[22] mainly construct two data structures, TSet and XSet, for each
table in databases. Here, TSet serves as an inverted index for all

attribute-value pairs, while XSet contains all combinations of record

identifier and join-attribute value pair. The essential idea of JXT is

to retrieve the records matching with specific attribute-value pairs

from the TSet of table Tab1 (resp. Tab2), and then determine if the

matching records from Tab2 can be joined with those from Tab1.

This is achieved by checking whether the combinations of identi-

fiers of ℓ2 matching records from Tab2 and join-attribute value pairs

of ℓ1 matching records from Tab1 appear in the XSet. In addition,

we note that the queried join attributes in JXT must be sent to the

server to locate the corresponding entry in TSet, which leads to

some extra leakages, i.e., the queried join attributes. Overall, JXT

suffers from heavy join query complexity 𝑂 (ℓ1 · ℓ2) and cannot

handle equi-join queries because the join-attribute name and value

are jointly stored into XSet for each record.

To support equi-join queries, a trivial solution is to decouple the

join-attribute name from its corresponding value in JXT. Specifically,

all join-attribute value pairs, in TSet and XSet, can be split into two

components: join-attribute name 𝑎𝑡𝑡𝑟∗ and join-attribute value𝑤∗.
Informally speaking, the original combination (ind, ⟨𝑎𝑡𝑡𝑟∗,𝑤∗⟩) is
replaced with a triple of (ind, 𝑎𝑡𝑡𝑟∗,𝑤∗), where the record identi-

fier ind and join-attribute name 𝑎𝑡𝑡𝑟∗ are from one table and join-

attribute value𝑤∗ from another. Here, the only required change to

achieve join with different join-attribute names is to include both

queried join-attribute names in the search token. However, this

approach still requires performing single-keyword search on both

tables and then joining on their results, resulting in𝑂 (ℓ1 · ℓ2) query
complexity. Meanwhile, the queried join attributes will be revealed.

We observe that equi-join can be achieved by checking the combi-

nation of join-attribute name and join-attribute value from different

tables (e.g., (𝑎𝑡𝑡𝑟∗
1
,𝑤∗

2
)). To further reduce join cost, our initial idea

is to build TSet to store all combinations of attribute-value pair

and join-attribute value (e.g., (𝑤1, 𝑤
∗
1
)) in each table, which is in-

dexed by the combination of attribute-value pair and any possible

join-attribute name. Then, the join can be done by checking the

combination of (𝑤2, 𝑎𝑡𝑡𝑟
∗
2
,𝑤∗

1
) in XSet. Note that only a single table

is queried, the query complexity is reduced to 𝑂 (ℓ1). Further, we
introduce an additional data structure CSet indexed by the combi-

nation (e.g., (𝑤1, 𝑎𝑡𝑡𝑟
∗
1
,𝑤∗

1
)) for each table, which stores “together”

all the corresponding encrypted record identifiers. Thus, all the

matching identifiers can be retrieved at a constant cost. In addition,

our solution can hide the join-attribute information by binding it

with non join-attribute value in TSet (i.e.,𝑤 | |𝑎𝑡𝑡𝑟∗).
Equi-Join Queries over Multiple Tables. An open question,

“How to extend JXT to support join queries over three or more
tables without join pre-computation?” is posed by Jutla et al. [22].

A straightforward answer is to divide the whole database into a col-

lection of subsets including two designated tables and execute JXT

protocol on them, then filter out the final result locally. Specifically,

given a database with 𝑁 tables (Tab1, . . . , Tab𝑁 ), to achieve join

queries over 𝑘 tables (𝑘 ≤ 𝑁 ), the client performs JXT repeatedly

on two-table pairs of (Tab𝑡1
, Tab𝑡𝑖 )𝑖∈[2,𝑘 ] . After that, the client de-

crypts all the record identifiers matching each two-table join and

determines the final result by obtaining the intersection. However,

this naïve solution suffers from heavy query cost, i.e.,𝑂 (∑𝑘
𝑖=2

ℓ1 ·ℓ𝑖 ),
where ℓ𝑖 denotes the numbers of matching records in Tab𝑖 .

To achieve efficient equi-join over multiple tables, our start-

ing point is to extend our proposed JXT+ to support multiple-join

queries. Specifically, the client first retrieves ℓ1 entries matching𝑤1

from the TSet of Tab1, and then checks whether the combinations

(𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡2

,𝑤∗
1
), . . . , (𝑤𝑘 , 𝑎𝑡𝑡𝑟

∗
𝑡𝑘
,𝑤∗

1
) include in XSet, where join-

attribute value𝑤∗
1
is from Tab1, attribute-value pairs (𝑤2, . . . ,𝑤𝑘 )

and attribute names (𝑎𝑡𝑡𝑟∗𝑡2

, . . . , 𝑎𝑡𝑡𝑟∗𝑡𝑘 ) are from the rest 𝑘 − 1 ta-

bles. When all checks are passed, the client obtains the final result

by retrieving all the matching record identifiers from all the 𝑘 ta-

bles. Obviously, the query cost is only dependent on the matching

record identifiers in the first table, i.e., 𝑂 ((𝑘 − 1) · ℓ1). Neverthe-
less, this simple extension of JXT+ leaks non-trivial leakage. Par-

ticularly, the server might learn sub-query leakages
1
, i.e., all the

record identifiers matched with each two-table join. Additionally,

it also leaks the frequency of join-attribute values associated with

the queried attribute-value pairs, i.e., the number of occurrences

of (𝑤,𝑤∗), which is more harmful to low-entropy join attributes.

To address this issue, an intuitive solution is to pad all the occur-

rences of each (𝑤,𝑤∗) with dummy strings to themaximum volume

𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗], which is the biggest occurrence of𝑤∗ in a table for

all𝑤 . Thus, this naïve strategy suffers from a large server storage

cost 2𝑚𝑛𝑇 + 𝐿𝑚𝑎𝑥𝑚𝑛𝑇 .

To achieve better storage efficiency, our basic idea is to assign

each pair ((𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗), 𝑐𝑡) in CSet to XOR filter [15, 37] and then

pad the remaining empty locations with dummies. Thus, the total

storage overhead is 3.23𝑚𝑛𝑇 at the worst case (cf. Section 6.1),

where the storage of CSet is reduced from 𝐿𝑚𝑎𝑥𝑚𝑛𝑇 to 1.23𝑚𝑛𝑇 .

Interestingly, sub-query results are obfuscated based on the padding

strategy, preventing the server from accessing the exact records

matching with any two-table join. Therefore, we can achieve equi-

join queries over multiple tables without join pre-computation,

while enjoying join over low-entropy attributes with 𝑂 (ℓ1) query
complexity and 3.23𝑚𝑛𝑇 storage overhead.

1.3 Related Work
In 2000, Song et al. introduced the notion of symmetric searchable

encryption (SSE), which enables the server to perform keyword-

based search on encrypted data, while maintaining data and query

1
When the query involves three or more tables, sub-query leakage (SRP) reveals

whether some records are present in the join of two tables but not in the multi-table

join. SRP is formalized as sub-query result pattern (SRP), as described in Section 5.
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privacy. A variety of research progress has been done on enhanced

security [5, 6, 8, 13, 26, 38], expressive queries [10, 11, 22, 24, 25, 32],

and optimized performance [1, 9, 27, 36, 37]. Although SSE can

achieve efficient search over encrypted documents, such as NoSQL

databases and cloud storage, it is still challenging to design secure

SQL queries over encrypted relational databases.

Hacigümüş et al. [18] firstly explored the study of SQL queries

on encrypted relational databases, where each attribute domain

is mapped into a series of non-overlapping data buckets and all

the items of the corresponding bucket will be returned. Thus, it

leads to high communication overhead and leaks the exact range

of queried data. Popa et al. [32] presented a practical encrypted

relational database system named CryptDB by integrating property-

preserving encryption (PPE), such as deterministic encryption [2]

and order-preserving encryption [4, 31]. That is, each column in

the table will be encrypted with the composition of different types

of PPE-encryption schemes (i.e., onion encryption). To perform cer-

tain SQL queries, the server decrypts the composition ciphertext by

layer until the corresponding layer is reached. However, it has been

reported in [16, 29] that PPE-based constructions leak non-trivial

information, e.g., data sorting and frequency. Although existing

leakage-abuse attacks [3, 17, 23, 30, 33] focus mainly on exact or

range queries, Hoover et al. [20] take the first step to explore the

SQL-oriented leakage-abuse attacks relying on access pattern, e.g.,

volume leakage from selections or joins. We note that the above at-

tacks are mitigated effortlessly using the volume-hiding technique.

Interestingly, our final protocol (JXT++) conceals the volumes of

selection and join operations, which is not susceptible to the men-

tioned attacks. Nevertheless, it is essential to develop SQL queries

over encrypted relational databases that reveal as little information

as possible.

To design SQL queries with reduced leakage, Kamara et al. [25]

presented a novel SQL queries scheme named SPX based on struc-

ture encryption, where all possible joins are pre-computed and

stored in the encrypted database by heuristic normal form (HNF)

representation. Although SPX reveals less leakage than PPE-style

construction, it inevitably brings considerable storage blowup due

to equi-join computation. Later, Cash et al. [11] introduced the

notion of partially pre-computed joins and transferred certain join

operations to the client. In addition, Hahn et al. [19] presented a

fine-granularly secure join by adopting attribute-based encryption,

that reveals only the equality pattern for records matching the se-

lection criterion. Shafieinejad et al. [34] further designed secure

equi-join for multiple queries from function-hiding inner prod-

uct encryption, which leaks only the sum of the leakage of each

query. Nevertheless, it suffers from performance bottlenecks due

to expensive public-key operations.

Recently, Jutla et al. [22] extended the well-known OXT [10]

to join queries over two tables, and presented a new join queries

scheme dubbed JXT without join pre-computation. More concretely,

the server performs single-keyword search for two queried tables

separately and checks the existence of all combinations of thematch-

ing record identifiers and join-attribute value pairs across tables.

However, JXT only supports natural join (i.e., the same name for

join attributes) over two tables. Thus, it is imperative to design

secure equi-join queries over multiple tables.

2 Preliminaries
In this section, we provide some required primitives throughout

this paper, such as encrypted multi-map and join queries.

2.1 Symmetric Encryption
A symmetric encryption (SE) scheme is composed of three polynomial-

time algorithms SE = (Gen, Enc,Dec):
Gen(1𝜆): On input of security parameter 𝜆, it outputs a secret

key 𝐾 .

Enc(𝐾,𝑚): On inputs of a secret key 𝐾 and a message 𝑚, it

outputs a ciphertext 𝑐𝑡 .

Dec(𝐾, 𝑐𝑡): On inputs a secret key 𝐾 and a ciphertext 𝑐𝑡 , it out-

puts the corresponding message𝑚 or an error symbol ⊥.
Correctness. A symmetric encryption scheme is computationally

correct if for any message 𝑚 and secret key 𝐾 , the probability

of the corresponding ciphertext 𝑐𝑡 can be correctly recovered is

overwhelming, i.e., Pr[Dec(𝐾, 𝑐𝑡) =𝑚] = 1.

Security. Informally, a standard IND-CPA secure SE scheme en-

sures that an adversary, with access to encryption oracle, cannot

distinguish ciphertexts from two messages with the same length.

Definition 2.1. A symmetric encryption scheme SE = (Gen, Enc,Dec)
is IND-CPA secure if for all PPT adversaries 𝒜, its advantage

𝐴𝑑𝑣 IND-CPASE,𝒜 (𝜆) = | Pr[ExpIND-CPASE,𝒜 (𝜆) = 1] − 1/2|

is negligible in 𝜆, where the experiment ExpIND-CPASE,𝒜 (𝜆) between a

challenger and an adversary 𝒜 is defined as follows.

Setup: The challenger generates a key 𝐾 ← Gen(1𝜆).
Query 1: The adversary 𝒜 adaptively accesses the encryption

oracle, meaning that when 𝒜 queries on𝑚 ∈ℳ, the challenger

returns 𝑐𝑡 ← Enc(𝐾,𝑚).
Challenge: The adversary𝒜 sends twomessages𝑚0 and𝑚1 with

the same length to the challenger. Then the challenger generates

two ciphertexts 𝑐0 ← Enc(𝐾,𝑚0) and 𝑐1 ← Enc(𝐾,𝑚1). After that,
the challenger chooses a bit 𝑏 ∈ {0, 1} randomly and gives 𝑐𝑏 to 𝒜.

Query 2: The adversary 𝒜 adaptively accesses the encryption

oracle again, similar toQuery 1, and subsequently it outputs a bit

𝑏′ ∈ {0, 1}.
Guess: The adversary𝒜 outputs a bit𝑏′ ∈ {0, 1}. The experiment

returns 1 if 𝑏′ = 𝑏 and 0 otherwise.

2.2 XOR Filter
Graf and Lemire [15] first introduced the notion of XOR filter,

which can be used to achieve membership checking with near-

optimal storage overhead. Later, Wang et al. [37] provided its formal

description and applied it to encrypted data search
2
.

Let 𝒰 be the universe of all possible inputs (i.e., strings) and 𝐵 an

array of 𝜆-bit values. As shown in Algorithm 1, a (𝑏, 𝑟 )-XOR filter

XF = (XF.Setup, XF.Update, XF.Query) consists of the following

algorithms:

XF.Setup(𝑏, 𝑟 ): It takes as input𝑏, 𝑟 ∈ N, and samples a collection

of universal hash functions ℋ = {ℎ𝑡 : 𝒰 → [ 𝑡𝑟 𝑏,
𝑡+1
𝑟 𝑏)}, where

2
As stated in [37], XOR filter can achieve data retrieving by replacing 𝐻 (𝑥 ) with any

data 𝑦 at the corresponding positions {ℎ𝑡 (𝑥 ) }𝑡 ∈ [0,𝑟−1] .
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Algorithm 1 XOR Filter

XF.Setup(𝑏, 𝑟 )
1: 𝐵 ← ∅, where |𝐵 | = 𝑏
2: 𝐻 : 𝒰 → {0, 1}𝜆
3: ℋ={ℎ𝑡 : 𝒰 → [ 𝑡𝑟 𝑏,

𝑡+1
𝑟 𝑏)}, where 𝑡 ∈ [0, 𝑟 − 1]

4: return (ℋ, 𝐵)
XF.Update(ℋ, 𝐵, 𝑆)
1: 𝑆𝑡𝑎𝑐𝑘 ← Mapping Step(ℋ, S)
2: for (𝑥, 𝑖) ∈ 𝑆𝑡𝑎𝑐𝑘 do
3: 𝐵 [𝑖] ← 𝐻 (𝑥)
4: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
5: if ℎ𝑡 (𝑥) ≠ 𝑖 then
6: if 𝐵 [ℎ𝑡 (𝑥)] = 𝑛𝑢𝑙𝑙 then
7: 𝐵 [ℎ𝑡 (𝑥)]

$←− {0, 1}𝜆
8: end if
9: 𝐵 [𝑖] ← 𝐵 [𝑖] ⊕ 𝐵 [ℎ𝑡 (𝑥)]
10: end if
11: end for
12: end for
13: for 𝑗 = 0 𝑡𝑜 𝑏 − 1 do
14: if 𝐵 [ 𝑗] = 𝑛𝑢𝑙𝑙 then
15: 𝐵 [ 𝑗] $←− {0, 1}𝜆
16: end if
17: end for
18: return 𝐵
XF.Query(ℋ, 𝐵, 𝑥)

1: 𝑅 ← 0
𝜆

2: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
3: 𝑅 ← 𝑅 ⊕ 𝐵 [ℎ𝑡 (𝑥)]

4: end for
5: return 𝑅

Mapping Step(ℋ, 𝑆)
1: 𝑆𝑡𝑎𝑐𝑘,𝑄𝑢𝑒𝑢𝑒 ← ∅
2: 𝑇 ← ∅, where |𝑇 | = 𝑏
3: for 𝑥 ∈ 𝑆 do
4: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
5: 𝑇 [ℎ𝑡 (𝑥)] ← 𝑇 [ℎ𝑡 (𝑥)] ∪ {𝑥}
6: end for
7: end for
8: for 𝑖 = 0 𝑡𝑜 𝑏 − 1 do
9: if |𝑇 [𝑖] | = 1 then
10: 𝑄𝑢𝑒𝑢𝑒 ← 𝑖

11: end if
12: end for
13: while (𝑄𝑢𝑒𝑢𝑒 ≠ 𝑛𝑢𝑙𝑙) do
14: 𝑖 ← 𝑄𝑢𝑒𝑢𝑒

15: 𝑥 ← 𝑇 [𝑖]
16: 𝑆𝑡𝑎𝑐𝑘 ← (𝑥, 𝑖)
17: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
18: 𝑇 [ℎ𝑡 (𝑥)] ← 𝑇 [ℎ𝑡 (𝑥)] \ {𝑥}
19: if |𝑇 [ℎ𝑡 (𝑥)] | = 1 then
20: 𝑄𝑢𝑒𝑢𝑒 ← ℎ𝑡 (𝑥)
21: end if
22: end for
23: end while
24: if |𝑆𝑡𝑎𝑐𝑘 | ≠ |𝑆 | then
25: return 𝐹𝑎𝑙𝑠𝑒
26: end if
27: return 𝑇𝑟𝑢𝑒 and 𝑆𝑡𝑎𝑐𝑘

𝑡 ∈ [0, 𝑟 − 1]. Finally, it outputsℋ and an initial empty array 𝐵 of

size 𝑏.

XF.Update(ℋ, 𝐵, 𝑆): It takes as input a family of hash functions

ℋ, an empty array 𝐵, and a data set 𝑆 ⊆ 𝒰 , then determines the

order of inserting all elements by runningMapping Step, and pushes

the elements to 𝑆𝑡𝑎𝑐𝑘 following the order. For each (𝑥, 𝑖) ∈ 𝑆𝑡𝑎𝑐𝑘 , it
sets 𝐵 [𝑖] ← 𝑥

⊕
𝑡 ∈[0,𝑟−1]\{𝑡 ′ }

𝐵 [ℎ𝑡 (𝑥)], where ℎ𝑡 ′ (𝑥) = 𝑖 , and finally

outputs array 𝐵.

XF.Query(ℋ, 𝐵, 𝑥): It takes as inputℋ, 𝐵 as well as an element

𝑥 , and returns 𝑅 =
⊕𝑟−1

𝑡=0
𝐵 [ℎ𝑡 (𝑥)].

Perfect Completeness. An XOR filter is perfectly complete if

for all integers 𝑏, 𝑟 ∈ N, all element set 𝑆 ⊆ 𝒰 , 𝑥 ∈ 𝑆 and 𝐵𝑆 ←
XF.Update(ℋ, 𝐵, 𝑆), it holds that Pr[XF.Query(ℋ, 𝐵𝑆 , 𝑥) = 𝑥] = 1.

This means that any inserted element can always be retrieved.

Parameter Choices. The storage cost of XOR filter is very close to

the lower bound𝑂 (𝑛) while supporting efficient data query, where

𝑛 denotes the size of set 𝑆 . As indicated in [7, 28], the Mapping

Step of XOR filter can assign all elements in set 𝑆 to a set of 𝑛 = |𝑆 |
edges generating an acyclic 𝑟 -partite hypergraph, where the storage

overhead is𝐶𝑟𝑛 + 𝛽 . The minimal value𝐶𝑟 is about 1.23 when 𝑟 = 3.

Thus, the size of 𝐵 is ⌊1.23𝑛⌋ + 𝛽 .

2.3 Encrypted Multi-Map
We recall multi-map, an abstract data structure for data retrieving

is formalized in [14, 26]. Specifically, multi-map enables to store

key/value pairs MM = {(𝑘, ®𝑣𝑘 )}. Here, we denote by MM[𝑘] all
values associated with key 𝑘 . A multi-map supports the following

operations:

Get(𝑘): On input of a key 𝑘 , it outputs the associated tuple

®𝑣𝑘 = MM[𝑘].
Put(𝑘, ®𝑣𝑘 ): On input of a key/value pair (𝑘, ®𝑣𝑘 ) and inserts it into

multi-map, i.e.,MM[𝑘] = ®𝑣𝑘 .
To design encrypted search protocol, we further recall the notion

of encrypted multi-map (EMM). Specifically, the syntax of response-

hiding EMM [24] EMM = (Setup, Search) is presented as follows:

Setup(1𝜆,MM): The client takes a security parameter 𝜆 and a

multi-map MM as input, and outputs a secret key K and an en-

crypted multi-map EMM.

Search(K, 𝑞; EMM): The client takes the secret key K as well as

a query 𝑞 as input and sends the corresponding search token 𝑡𝑘𝑞 to

the server. Then the server performs search on EMM with 𝑡𝑘𝑞 and

sends the encrypted search result EMM[𝑞] to the client. Finally,

the client recoversMM[𝑞] from EMM[𝑞] using the secret key K.
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Generally, EMM can be classified into response-revealing and

response-hiding. The former reveals the response in plaintext to

the server, whereas the latter requires the client to decrypt the

retrieved results locally. A response-revealing EMM scheme can

be achieved by having the server retrieve the response in plaintext

directly in Search algorithm.

Correctness. An encrypted multi-map scheme Σ is computation-

ally correct if any adversary 𝒜 has a negligible probability of win-

ning the following game CorΣ𝒜. The adversary selects a multi-map

MM and obtains EMM via Setup(1𝜆,MM). The adversary then

(non)-adaptively chooses a list of queries q, and the game runs

Search(K, q[𝑖]; EMM) for all 𝑖 ∈ [|q|] with client input (K, q[𝑖]) and
server input EMM. If any output from the client is not equal to the

corresponding MM[q[𝑖]] (𝑖 ∈ [|q|]), the game outputs 1; otherwise,

it outputs 0. Σ is computationally correct if Pr[CorΣ𝒜 (𝜆) = 1] ≤
negl(𝜆) for all 𝒜.

Security. We define the non-adaptive security of an encrypted

multi-map scheme using a leakage function ℒ, which represents

the information revealed to an adversary during real-world scheme.

Essentially, the scheme ensures that the adversary 𝒜 cannot gain

more information beyond what ℒ reveals.

Definition 2.2 (Non-adaptive Security of Encrypted Multi-map).
Let Σ = (Setup, Search) be an encrypted MM and ℒ be its leakage

function.We say Σ isℒ-semantically secure against non-adaptive at-

tacks if for all PPT adversaries𝒜, there exists an efficient simulator

𝒮 such that��
Pr[RealΣ𝒜 (𝜆) = 1] − Pr[IdealΣ𝒜,𝒮 (𝜆) = 1]

�� ≤ negl(𝜆),

where RealΣ𝒜 (𝜆) and IdealΣ𝒜,𝒮 (𝜆) are defined as follows:

RealΣ𝒜 (𝜆): 𝒜 chooses a multi-map MM and a list of queries q.
The experiment runs Setup(1𝜆,MM) and returns EMM to 𝒜. For

each 𝑖 ∈ [|q|], the experiment runs Search(K, q[𝑖]; EMM), and
returns the transcript and client’s output to𝒜. Finally,𝒜 outputs a

bit 𝑏 as the output of this experiment.

IdealΣ𝒜,𝒮 (𝜆): 𝒜 chooses a multi-map MM and a list of queries

q. The experiment runs 𝒮 (ℒ(MM, q)) and returns its outputs to𝒜.

Finally, 𝒜 outputs a bit 𝑏 as the output of this experiment.

To facilitate the description of our protocols, we further introduce

TSet [10, 22], which essentially serves as a response-revealing EMM.

It maintains a collection of fixed-size values indexed by keys, which

can be accessed through tokens. Formally, a TSet instantiation is

defined by three polynomial-time algorithms, described as follows:

TSetSetup(1𝜆, T): It takes as input a security parameter 𝜆 and

a multi-map T =
{(
𝑘, (𝑣𝑘 [1], . . . , 𝑣𝑘 [|T[𝑘] |])

)}
𝑘∈K, where K is the

set of keys in T, with each key 𝑘 ∈ K having a corresponding list of

values of equal bit length, i.e., 𝑣𝑘 [1], . . . , 𝑣𝑘 [|T[𝑘] |]. It then outputs

a secret key 𝐾𝑇 and an EMM TSet.
TSetGetTag(𝐾𝑇 , 𝑘): It takes as input the secret key 𝐾𝑇 and a

queried key 𝑘 , then outputs a search token stag.

TSetRetrieve(TSet, stag): It takes as input TSet and stag associ-

ated to 𝑘 , and finally outputs T[𝑘].
Note that TSet is a specialized type of EMM, and its correctness

and security definitions are closely similar to those of EMM. Thus,

we omit the details.

2.4 Join Queries over Encrypted Database
We recall the syntax of join queries over encrypted relational data-

base presented in [22]. A relational databaseDB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]
consists of a set of tables Tab𝑖 , where W𝑖 denotes all attribute-

value pairs in Tab𝑖 . For simplicity, assume that Tab𝑖 has𝑚𝑖 rows

(i.e., records) and 𝑛𝑖 columns (i.e., attributes), Tab𝑖 can be depicted

as {(ind𝑟 , {𝑤𝑐 }𝑐∈[𝑛] )}𝑟 ∈[𝑚] , where ind𝑟 ∈ {0, 1}𝜆 serves as the

record identifier, and𝑤𝑐 ∈ {0, 1}∗ denotes the attribute-value pair.
Note that ind𝑟 is used to retrieve the corresponding record in the

outsourced encrypted database. We present some critical notations

for join queries across tables as follows:

Record Identifiers: A record identifier, denoted as ind, is a unique

value assigned to each record within a table Tab𝑖 in a relational

database. The identifier can be disclosed to the server that stores the

relational database, enabling it to swiftly retrieve the corresponding

encrypted record and send it to the client. We suppose that each

record identifier in a table Tab𝑖 is attached to the table number 𝑖

throughout the paper. That is, there is no identical record identifier

in two distinct tables.

Join Attributes: Consider a table Tab𝑖 with a total of 𝑛 attributes,

among which 𝑇 special attribute are designated as “join attributes”

denoted by {𝑎𝑡𝑡𝑟∗
𝑖,𝑡
}𝑡 ∈[𝑇 ] . These join attributes with the size upper-

bounded are chosen at setup and are used for join queries across

tables.

Inverted Index: For each attribute-value pair𝑤 ∈ W𝑖 ,DBTab𝑖 (𝑤)
refers to the set of identifiers of records matching𝑤 , specifically:

DBTab𝑖 (𝑤) = {ind | (ind,𝑤) ∈ Tab𝑖 }.

The collection {DBTab𝑖 (𝑤)}𝑤∈W𝑖
is named “inverted index” of the

table Tab𝑖 .
Inverted Join Index: For each attribute-value pair 𝑤 ∈W𝑖 , we

denote DBJoinTab𝑖
(𝑤) as the set of identifiers of records satisfying𝑤 ,

along with all the pairs of join-attribute/value in the same record.

The formal description is as follows:

DBJoinTab𝑖
(𝑤) =

{
(ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) |

(ind,𝑤) ∈ Tab𝑖 ∧ ∀𝑡 ∈ [𝑇 ], (ind, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ) ∈ Tab𝑖
}
.

All the {DBJoinTab𝑖
(𝑤)}𝑤∈W𝑖

is called as “inverted join index” of

table Tab𝑖 .
JoinQuery: A join query over 𝑘 tables Tab𝑡1

, . . . , Tab𝑡𝑘 with cor-

responding attribute-value pair sets W𝑡1
, ...,W𝑡𝑘 , respectively, is

specified by a tuple

𝑞 = ({𝑡1, ..., 𝑡𝑘 }, {𝑤1, ...,𝑤𝑘 }, {𝑎𝑡𝑡𝑟∗𝑡1

, ..., 𝑎𝑡𝑡𝑟∗𝑡𝑘 })

where𝑤𝑖 ∈ W𝑡𝑖 , and 𝑎𝑡𝑡𝑟
∗
𝑡𝑖
is a join attribute of table Tab𝑡𝑖 which

defines the join relation across the tables for the query 𝑞.

WewriteDB(𝑞) to be the collection of tuples of the form (ind𝑡1
, . . . ,

ind𝑡𝑘 ) that satisfy the query 𝑞. Each tuple consists of 𝑘 record

identifier sets, each originating from Tab𝑡1
, . . . , Tab𝑡𝑘 , respectively.

Formally, for each (ind𝑡1
, ..., ind𝑡𝑘 ) ∈ DB(𝑞), this means that the

following conditions hold simultaneously:∧
𝑖∈[𝑘 ]

𝑗∈[ |ind𝑡𝑖 | ]

(ind𝑡𝑖 [ 𝑗],𝑤𝑖 ) ∈Tab𝑡𝑖 and∃𝛾s.t.
∧
𝑖∈[𝑘 ]

𝑗∈[ |ind𝑡𝑖 | ]

(ind𝑡𝑖 [ 𝑗], ⟨𝑎𝑡𝑡𝑟∗𝑡𝑖 , 𝛾⟩) ∈Tab𝑡𝑖
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Algorithm 2 Equi-join Queries over Two Tables (JXT+)

EDBSetup(1𝜆,DB)

1: 𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc
$←− {0, 1}𝜆 , DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array, XSet[𝑖] ← ∅
4: CSet[𝑖] ← empty multi-map

5: for𝑤 ∈ W𝑖 do
6: cnt← 1

7: 𝑍0 ← 𝐹 (𝐾𝑧 ,𝑤 | |0)
8: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
9: for (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB

Join
Tab𝑖
(𝑤) do

10: 𝑍cnt ← 𝐹 (𝐾𝑧 ,𝑤 | |cnt)
11: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
12: for 𝑡 ∈ [𝑇 ] do
13: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍cnt
14: Append 𝑦 to T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ]
15: xtag← 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍0

16: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
17: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
18: end for
19: cnt← cnt + 1

20: end for
21: end for
22: end for
23: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
24: K← (𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc), EDB← (TSet, XSet,CSet)
25: return (K; EDB)

Search(K, 𝑞; EDB)

Client:
1: (𝐾𝑧 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc)←K, ({𝑡1, 𝑡2}, {𝑤1,𝑤2}, {𝑎𝑡𝑡𝑟∗𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

})←𝑞

2: stag← TSetGetTag(𝐾𝑇 , (𝑡1,𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

))
3: Send ({𝑡1, 𝑡2}, stag) to the server

4: for cnt = 1, 2 . . . until server sends stop do

5: xjointoken
1
[cnt] ← 𝐹 (𝐾𝑧 ,𝑤1 | |0) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡1

)
⊕𝐹 (𝐾𝑧 ,𝑤1 | |cnt)

6: xjointoken
2
[cnt] ← 𝐹 (𝐾𝑧 ,𝑤2 | |0) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡2

)
⊕𝐹 (𝐾𝑧 ,𝑤1 | |cnt)

7: Send xjointoken
1
[cnt] and xjointoken

2
[cnt] to the server

8: end for
Server:
9: (TSet, XSet,CSet) ← EDB
10: T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] ← TSetRetrieve(TSet, stag)
11: Parse T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] = (𝑦1, 𝑦2, . . . , 𝑦 |T𝑡
1
[𝑤1 | |𝑎𝑡𝑡𝑟 ∗𝑡

1

] | )
12: for cnt = 1 to |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | do
13: if cnt = |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | then
14: Send stop to the client

15: end if
16: xtoken2 ← xjointoken

2
[cnt] ⊕ 𝑦cnt

17: if xtoken2 ∉ XSet[𝑡2] then
18: break
19: end if
20: xtoken1 ← xjointoken

1
[cnt] ⊕ 𝑦cnt

21: ct1 ← CSet[𝑡1] .Get(xtoken1)
22: ct2 ← CSet[𝑡2] .Get(xtoken2)
23: CT← CT ∪ {(ct1, ct2)}
24: end for
25: Send CT to the client

Client:
26: 𝐾enc,𝑤1

← 𝐹 (𝐾enc,𝑤1), 𝐾enc,𝑤2
← 𝐹 (𝐾enc,𝑤2), Res← ∅

27: for (ct1, ct2) ∈ CT do
28: for 𝑖 = 1 to 2 do
29: for 𝑗 = 1 to |ct𝑖 | do
30: Res[𝑖] [ 𝑗] ← Dec(𝐾enc,𝑤𝑖

, ct𝑖 [ 𝑗])
31: end for
32: end for
33: end for
34: return Res

3 Equi-Join Queries over Two Tables
In this section, we present JXT+, a new equi-join query scheme

over two tables without join pre-computation, which enjoys better

query and storage efficiency than the state-of-the-art JXT [22].

Assume that 𝐹 : {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆 is pseudorandom

function, SE = (Gen, Enc,Dec) is IND-CPA secure symmetric en-

cryption scheme, TSet = (TSetSetup, TSetGetTag, TSetRetrieve) is
a non-interactive response-revealing EMM, and CSet is a multi-

map. Our construction is comprised of one algorithm EDBSetup
and one protocol Search in Algorithm 8 and the details of JXT+ are

shown as follows:

EDBSetup(1𝜆,DB): The client first randomly picks secret keys

𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc ∈ {0, 1}𝜆 for PRF 𝐹 , and parses the database DB
as {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , whereW𝑖 denotes the set of all attribute-value

pairs in table Tab𝑖 . Then the client initializes an empty array T𝑖 ,
an empty set XSet[𝑖] and an empty multi-map CSet[𝑖] for each ta-

ble Tab𝑖 . After that, the client inserts each pair (𝑤,DBJoinTab𝑖
(𝑤))

of Tab𝑖 into encrypted database EDB (cf. line 5-21). More con-

cretely, for each pair of (𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ), the client first computes all the

values {𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝐹 (𝐾𝑧 ,𝑤 | |cnt)} and stores them at location

T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ], which can be used to determine the number of record

matching with𝑤 . Then, all {xtag} for each tuple (𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ) are
inserted into XSet[𝑖], which is the key component to achieve effi-

cient euqi-join across two tables. Moreover, an additional data struc-

ture CSet[𝑖] is used to store all pairs (xtag, 𝑐𝑡). Finally, it outputs
the secret key K = (𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc) and encrypted database

EDB = (TSet, XSet,CSet).
Search(𝐾,𝑞; EDB): To perform equi-join query 𝑞 over Tab𝑡1

and

Tab𝑡2
, the client sends stag for pair (𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

) 3
and table in-

dices {𝑡1, 𝑡2}, along with xjointoken
1
and xjointoken

2
arrays un-

til instructed by the server to stop
4
. Next, the server retrieves

the corresponding values T𝑡1
[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] by calling TSetRetrieve

3
It is unnecessary to reveal the join-attribute to the server in our protocol, while it

will leak to the server for determining the desirable entry in JXT.

4
JXT+ has only a single round of interaction similar as OXT and JXT,

and its communication cost is composed of ({𝑡1, 𝑡2 }, stag, { (xjointoken1
[1],

xjointoken
2
[1] ), . . . , (xjointoken

1
[cnt], xjointoken

2
[cnt] ) } ) .
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Algorithm 3 Equi-join Queries over Multiple tables (JXT++)

EDBSetup(1𝜆 , DB)

1: 𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc ← {0, 1}𝜆 , DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]
2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array, XSet[𝑖] ← ∅,M← empty map

4: for𝑤 ∈ W𝑖 do
5: C← empty map

6: 𝑍 ← 𝐹 (𝐾𝑧 ,𝑤), 𝑍 ′ ← 𝐹 (𝐾𝑧′ ,𝑤)
7: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
8: for (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB

Join
Tab𝑖
(𝑤) do

9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: for 𝑡 ∈ [𝑇 ] do
11: if C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] = null then
12: C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] ← [𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗𝑡 ]]
13: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍
14: Append 𝑦 to T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ]
15: xtag←𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 )⊕𝐹 (𝐾𝑤 ,𝑤∗𝑡 )⊕𝑍 ′⊕𝐹 (𝐾𝑐 ,1)
16: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
17: end if
18: Randomly choose cnt ∈ C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ]
19: C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] ← C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ]\{cnt}
20: xtag←𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 )⊕𝐹 (𝐾𝑤 ,𝑤∗𝑡 )⊕𝑍 ′⊕𝐹 (𝐾𝑐 ,cnt)
21: M[xtag] ← 𝑐𝑡

22: end for
23: end for
24: end for
25: (ℋ,CSet[𝑖]) ← XF.Setup(1.23|M| + 𝛽, 𝑟 )
26: CSet[𝑖] ← XF.Update(ℋ,M,CSet[𝑖])
27: end for
28: (TSet, 𝐾𝑇 ) ← TSetSetup(1𝜆, T1 | |...| |T𝑁 )
29: K←(𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc, 𝐾𝑇 ), EDB←(TSet, XSet,CSet)
30: return (K; EDB)
Search(K, 𝑞; EDB)
Client:
1: (𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑐 , 𝐾enc, 𝐾𝑇 ) ← K
2: ({𝑡1, . . . , 𝑡𝑘 }, {𝑤1, . . . ,𝑤𝑘 }, {𝑎𝑡𝑡𝑟∗𝑡1

, . . . , 𝑎𝑡𝑡𝑟∗𝑡𝑘 }) ← 𝑞

3: stag← TSetGetTag(𝐾𝑇 , (𝑡1,𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

))
4: Send ({𝑡1, . . . , 𝑡𝑘 }, stag) to the server

5: for 𝑖 = 1 to 𝑘 do
6: for cnt = 1 to 𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗𝑡𝑖 ] do

7: xjointoken[𝑖] [cnt] ← 𝐹 (𝐾𝑧′ ,𝑤𝑖 ) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡𝑖 )
⊕ 𝐹 (𝐾𝑧 ,𝑤1) ⊕ 𝐹 (𝐾𝑐 , cnt)

8: end for
9: end for
10: Send xjointoken to the server

Server:
11: (TSet, XSet,CSet) ← EDB
12: T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] ← TSetRetrieve(TSet, stag)
13: Parse T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] = (𝑦1, 𝑦2, . . . , 𝑦 |T𝑡
1
[𝑤1 | |𝑎𝑡𝑡𝑟 ∗𝑡

1

] | )
14: for cnt = 1 to |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | do
15: for 𝑖 = 2 to 𝑘 do
16: xtoken[𝑖] [1] ← xjointoken[𝑖] [1] ⊕ 𝑦cnt
17: if xtoken[𝑖] [1] ∉ XSet[𝑡𝑖 ] then
18: break
19: end if
20: if 𝑖 = 𝑘 then
21: for 𝑗 = 1 to 𝑘 do
22: for 𝑐 = 1 to |xjointoken[ 𝑗] | do
23: xtoken[ 𝑗] [𝑐] ← xjointoken[ 𝑗] [𝑐] ⊕ 𝑦cnt
24: ct𝑗 [𝑐]←XF.Search(ℋ,CSet[𝑡 𝑗 ], xtoken[ 𝑗] [𝑐])
25: end for
26: end for
27: CT← CT ∪ {(ct1, . . . , ct𝑘 )}
28: end if
29: end for
30: end for
31: Send CT to the client

Client:
32: Res← ∅
33: for 𝑖 = 1 to 𝑘 do
34: 𝐾enc,𝑤𝑖

← 𝐹 (𝐾enc,𝑤𝑖 )
35: end for
36: for (ct1, . . . , ct𝑘 ) ∈ CT do
37: for 𝑖 = 1 to 𝑘 do
38: for 𝑗 = 1 to |ct𝑖 | do
39: Res[𝑖] [ 𝑗] ← Dec(𝐾enc,𝑤𝑖

, ct𝑖 [ 𝑗])
40: end for
41: end for
42: end for
43: Return Res

and filters out the final result by checking whether the combina-

tion of (𝑤2, 𝑎𝑡𝑡𝑟
∗
2
,𝑤∗

1
,) is in XSet. Specifically, the server computes

xtoken2 = xjointoken
2
[𝑖] ⊕𝑦𝑖 for each value in T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] and
tests whether xtoken2 ∈ XSet. If hold, the server returns the match-

ing encrypted identifiers CT associated with xtoken1 and xtoken2,

where xtoken1 = xjointoken
1
[𝑖] ⊕ 𝑦𝑖 . For each (ct1, ct2) ∈ CT, the

client recovers thematching record identifiersRes = {(ind1, ind2) :

ind1 = Dec(𝐾enc,𝑤1
, ct1), ind2 = Dec(𝐾enc,𝑤2

, ct2)}.

Remark 1. Here, we briefly present a variant of JXT+, named
FJXT+, which enables to retrieve all rows matching 𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

without giving specific attribute-value pairs𝑤1 and𝑤2. Specifically,
to achieve full equi-join without a filter, the only required change
for FJXT+ is to insert an extra attribute column 𝑎𝑡𝑡𝑟 𝑖

0
for each table

Tab𝑖 filled with merely “#” at setup phase. When performing query
𝑞 = ({𝑡1, 𝑡2}, {𝑤1 = 𝑎𝑡𝑡𝑟1

0
| |#,𝑤2 = 𝑎𝑡𝑡𝑟2

0
| |#}, {𝑎𝑡𝑡𝑟∗𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

}), the
client generates stag for pair (𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

), and the server can retrieve
all rows (i.e., records) matching 𝑎𝑡𝑡𝑟∗𝑡1

from TSet, then the server can
check if the retrieved TSet entries satisfy the join query (cf. line 12-24).

To reflect the influence of change, we give a theoretical analysis
of FJXT+ in terms of storage and query efficiency. For simplicity,
assume that each table has𝑚 records and 𝑛 attributes, with 𝑇 join-
attribute. Similar to JXT+, the total storage size of FJXT+ is 3𝑚(𝑛 +
1)𝑇 in the worst case due to the insertion of an additional attribute
column. For query overhead, the client generates a token for the pair of
(𝑤1 = 𝑎𝑡𝑡𝑟1

0
| |#, 𝑎𝑡𝑡𝑟∗𝑡1

) and retrieves all the𝑚 rows (i.e., no filtering),
then generates 2𝑚 cross-tokens xjointoken. Thus, the computation
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complexity for token generation is 𝑂 (𝑚)𝑃𝑟 𝑓 . In addition, to retrieve
all rows (𝑚) in Tab𝑡1

, the server needs to perform𝑂 (𝑚) 𝑃𝑟 𝑓 and𝑂 (𝑚)
XOR operations for join with 𝑎𝑡𝑡𝑟∗𝑡2

. Then the server and the client are
required to compute 𝑂 ( |𝑅 |) hash and 𝑂 ( |𝑅 |) decryption operations,
respectively. Overall, the query overhead is 𝑂 (𝑚)𝑃𝑟 𝑓 + 𝑂 ( |𝑅 |)𝐷𝑒𝑐
for the client and 𝑂 (𝑚) (𝑃𝑟 𝑓 + 𝑋𝑜𝑟 ) +𝑂 ( |𝑅 |)𝐻 for the server.

4 Equi-Join Queries over Multiple Tables
In this section, we propose JXT++, the first equi-join query scheme

overmultiple tables without join pre-computation, by extending our

basic scheme JXT+, which can support join of arbitrary low-entropy

attributes and mitigate the sub-query leakage.

Let 𝐹 : {0, 1}𝜆×{0, 1}∗ → {0, 1}𝜆 be a PRF, SE = (Gen, Enc,Dec)
an IND-CPA secure SE scheme, and Σ = (TSetSetup, TSetGetTag,
TSetRetrieve) a non-interactive response-revealing EMM. Given

any database DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , the client initializes a two-

dimensional array 𝐿𝑚𝑎𝑥 with size 𝑁 × 𝑇 to store the maximum

occurrence number of each pair (𝑤,𝑤∗𝑡 )𝑤∈W𝑖 ,𝑡 ∈[𝑇 ] , where 𝑤
∗
𝑡 is

the corresponding value of join attribute 𝑎𝑡𝑡𝑟∗𝑡 in table Tab𝑖 . JXT++
consists of one algorithm EDBSetup and one protocol Search in

Algorithm 3 and the details are described as follows:

EDBSetup(1𝜆,DB): The client first parses the database DB as

{Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , and randomly picks keys𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc ∈
{0, 1}𝜆 for PRF 𝐹 . Then it initializes T𝑖 as an empty array, XSet[𝑖]
as an empty set, and M as an empty map for each table Tab𝑖 .
Later, the client inserts all the pairs (𝑤,DBJoinTab𝑖

(𝑤)) of Tab𝑖 into
EDB (cf. line 4-26). Specifically, the client computes all values

{𝐹 (𝐾𝑧 ,𝑤∗𝑡 ) ⊕ 𝐹 (𝐾𝑧 ,𝑤)} and appends into T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] for each
pair of (𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ). The client further computes xtag = 𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 )⊕
𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕𝑍 ′ ⊕ 𝐹 (𝐾𝑐 ,1) for (𝑤,𝑤∗𝑡 , 𝑎𝑡𝑡𝑟∗𝑡 ) and stores all {xtag}
into XSet[𝑖]. In addition, each encrypted identifier 𝑐𝑡 is stored into

map M indexing by a unique token (i.e., xtag = 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕
𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍 ′ ⊕ 𝐹 (𝐾𝑐 , cnt)). After that, all pairs (xtag, 𝑐𝑡 ) in M
is used to generate array CSet[𝑖] by invoking XF.Update, which
can hide the frequency of pair (𝑤,𝑤∗𝑡 ). Finally, it outputs the se-
cret key K = (𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc) and the encrypted database

EDB = (TSet, XSet,CSet).
Search(𝐾,𝑞; EDB): To perform equi-join over 𝑘 tables, the client

sends stag for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
𝑡1

), queried table indices {𝑡1, . . . , 𝑡𝑘 },
and xjointoken array to the server. Then, the server first retrieves

all values T𝑡1
[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] by invoking TSetRetrieve. Next, the server
generates𝑘−1 tokens for each retrieved value𝑦cnt (i.e., {xtoken[𝑖] [1]
= xjointoken[𝑖] [1] ⊕ 𝑦cnt}𝑖∈[2,𝑘 ] ), which is used to determine

whether it is in the join of Tab𝑡1
and Tab𝑡𝑖 . After all checkings

are successful, it computes xtoken[ 𝑗] [𝑐] = xjointoken[ 𝑗] [𝑐] ⊕ 𝑦cnt
and retrieves the corresponding ciphertext of record identifier

ct𝑗 [𝑐] by invoking XF.Search (cf. line 20-28). It then returns all

ciphertexts {(ct1, . . . , ct𝑘 )} to the client. Finally, the client decrypts
them and obtains the plaintexts Res = {(ind1, . . . , ind𝑘 ) : ind1 =

Dec(𝐾enc,𝑤1
, ct1), . . . , ind𝑘 = Dec(𝐾enc,𝑤𝑘

, ct𝑘 )}.

5 Security Analysis
Assume that a database DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] consists of 𝑁 ta-

bles, and each Tab𝑖 has 𝑚𝑖 rows and 𝑛𝑖 columns. We define a

sequence of 𝑄 queries as q, where the 𝑖-th query, for 1 ≤ 𝑖 ≤

𝑄 , is represented as q[𝑖] = ({t1 [𝑖], . . . , t𝑘 [𝑖]}, {w1 [𝑖], . . . ,w𝑘 [𝑖]},
{attr∗t1 [𝑖], . . . , attr

∗
t𝑘 [𝑖]}). Then the leakage functionℒJXT+ = (n,RP,

EP, SP1, JD) for JXT+ and ℒJXT++ = (n,RP, EP, JD) for JXT++ are

defined as follows:

• n is the size pattern of tables, representing the size of each

table in DB. Formally, n[𝑖] =𝑚𝑖𝑛𝑖 for 𝑖 ∈ [𝑁 ].
• RP is the result pattern, which is the set of records matching

each query. Formally, RP[𝑖] = DB(q[𝑖]), 𝑖 ∈ [𝑄].
• EP = (EP1, . . . , EP𝑘 ) represents the equality patterns over
w1 | |attr∗t1 , . . . ,w𝑘 | |attr∗t𝑘 , respectively. Specifically, EP1 indi-

cateswhich queries have equal combination ofw1 [𝑖] | |attr∗t1 [𝑖]
for 𝑖 ∈ [𝑄]. Formally, we represent EP1 as an integer vector

and each integer refers to a unique combination. That is,

EP1 [𝑖] = EP1 [ 𝑗] if (w1 [𝑖] | |attr∗t1 [𝑖]) = (w1 [ 𝑗] | |attr∗t1 [ 𝑗])
for 𝑖, 𝑗 ∈ [𝑄] and 𝑖 ≠ 𝑗 . EP2, . . . , EP𝑘 are defined similarly.

• SP = (SP1, . . . , SP𝑘 ) is the size patterns over the combina-

tionsw1 | |attr∗t1 , . . . ,w𝑘 | |attr∗t𝑘 . Concretely, SP1 indicates the

number of records matching w1 | |attr∗t1 in TSet during each
join query. Formally, SP1 [𝑖] = |Tt1 [𝑖 ] [w1 [𝑖] | |attr∗t1 [𝑖]] | for
𝑖 ∈ [𝑄].
• JD is the join-attribute distribution pattern, which mainly

leaks the join-attribute values corresponding to the combina-

tion of attribute-value pair w1 [𝑖] and join attribute attr∗t1 [𝑖]
in table Tabt1 [𝑖 ] . More formally, for each 𝑖 ∈ [𝑄], we denote
JD[𝑖] as a multi-set

JD[𝑖] = {encode(val∗) : (ind,w1 [𝑖]) ∈ Tabt1 [𝑖 ]
∧ (ind, ⟨attr∗t1 [𝑖], val

∗⟩) ∈ Tabt1 [𝑖 ] }.

Before presenting the formal security analysis of our schemes,

we first recall the conditional intersection pattern (IP) leakage in
[22] considering query on two tables, and introduce the sub-query

result pattern (SRP) leakage.

• IP is the conditional intersection pattern which is a 𝑄 × 𝑄
table. Specifically, for each 𝑖, 𝑗 ∈ [𝑄], IP[𝑖, 𝑗] is empty if one

of the following conditions holds:

– (t1 [𝑖], t2 [𝑖], attr∗t1 [𝑖], attr
∗
t2 [𝑖]) ≠

(t1 [ 𝑗], t2 [ 𝑗], attr∗t1 [ 𝑗], attr
∗
t2 [ 𝑗]).

– JD[𝑖] ∩ JD[ 𝑗] = ∅.
Otherwise, IP[𝑖, 𝑗] is defined as the intersection of all record

identifiers matching the attribute-value pairw2 [𝑖] andw2 [ 𝑗]
in table Tabt2 [𝑖 ] . More formally, we have

IP[𝑖, 𝑗] = DBTabt
2
[𝑖 ] (w2 [𝑖]) ∩ DBTabt

2
[ 𝑗 ] (w2 [ 𝑗]) .

• SRP is the sub-query result pattern, which is represented as a

collection of 𝑄 × (𝑘 − 1) sets. Formally, for 𝑖 ∈ [𝑄], we first
divide q[𝑖] into (𝑘 − 1) sub-queries, that is, for 𝑗 ∈ [𝑘 − 1],

q𝑗 [𝑖] = ({t1 [𝑖], t𝑗+1 [𝑖]}, {w1 [𝑖],w𝑗+1 [𝑖]},
{attr∗t1 [𝑖], attr

∗
t𝑗+1 [𝑖]}).

Then SRP[𝑖] [ 𝑗] is the search result for the 𝑗-th sub-query

q𝑗 [𝑖]. More formally, for 𝑖 ∈ [𝑄] and 𝑗 ∈ [𝑘 − 1], we have
SRP[𝑖] [ 𝑗] = DB(q𝑗 [𝑖]).

Leakage Comparison on Equi-join without Pre-computation:
Similar to JXT, our proposed schemes JXT+ and JXT++ can support

join queries without join pre-computation. So, we provide a detailed
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leakage comparison of the three schemes, as shown in Table 2. Note

that JXT and JXT+ support join query on two tables, while JXT++

works on multiple tables. In the following, we give the details.

All three schemes have the leakage of table size pattern n, which
comes from the size of TSet. The equality pattern EP can be derived

from the repetition of stag and xjointokenwhen performing a query

for the same attribute-value pair𝑤 and 𝑎𝑡𝑡𝑟∗. Specifically, in JXT,

the client generates stag(1) and stag(2) for the queried attribute-

value pair𝑤1 of Tab𝑡1
and𝑤2 of Tab𝑡2

, respectively. Thus JXT leaks

the exact equality patterns ofw1 andw2, being also denoted as EP1

and EP2. Additionally, the server in JXT proceeds to retrieve the

search results for𝑤1 and𝑤2 based on stag(1) and stag(2) , obviously
leaking the size patterns SP1 and SP2 of w1 and w2, respectively.

In contrast, JXT+ and JXT++ leak EP1 and EP2 but not reveal all the

size pattern SP. Note that in JXT+, the server can retrieve all records
matching 𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

, whereas in JXT++, the server only retrieves

one copy of records with the same (𝑤1, ⟨𝑎𝑡𝑡𝑟∗𝑡1

,𝑤∗𝑡1

⟩). Therefore,
JXT+ has SP1 leakage, while JXT++ does not.

In the following, we first analyze the subtle leakage JD. For some

query q[𝑖] (𝑖 ∈ [𝑄]), JD[𝑖] reflects the frequency distribution of

join-attribute values𝑤∗ corresponding to the join attribute attr∗𝑡1

[𝑖]
in the records matching the attribute-value pair w1 [𝑖] in Tabt1 [𝑖 ] .
In JXT and JXT+, this leakage comes from the fact that the records

share the same𝑤∗ in the 𝑖-th query (or the records in the 𝑖-th and 𝑗-

th queries). Thus, for two different queries q[𝑖] and q[ 𝑗], the server
may get the same xtoken corresponding to (w2 [𝑖],𝑤∗) to checking
whether it is in the XSet. This situation may occur if a condition

(w2 [𝑖] | |attr∗t2 [𝑖]) = (w2 [ 𝑗] | |attr∗t2 [ 𝑗]) holds. JXT++ leaks the JD
in different queries for reasons similar to those in JXT and JXT+.

However, JXT++ does not leak JD when considering a single query

(e.g. the 𝑖-th query), since JXT++ stores only one copy of records

with the same (𝑤1, ⟨𝑎𝑡𝑡𝑟∗𝑡1

,𝑤∗𝑡1

⟩).
JXT+ and JXT++ eliminate the IP leakage that is present in JXT.

Recall that IP leakage reveals the intersection of records matching

the attribute-value pair 𝑤2 in the Tab𝑡2
in different queries with

the condition that there exists two records from different queries

matching𝑤1 have identical𝑤
∗
. In JXT, this leakage comes from the

fact that xtag is the encrypted version of the pair (ind,𝑤∗). That
is, given a specific 𝑤∗, the server can get the identical xtoken if

two queries share the same ind. For clarity, we take an example

to illustrate. For the 𝑖-th and 𝑗-th query, assume that there is one

record matching w1 [𝑖] and another record matching w1 [ 𝑗] have
a common𝑤∗. In this case, if the server learns the xtoken for ind𝑖

from the results of w2 [𝑖] and ind𝑗 from the results of w2 [ 𝑗] are
identical, then ind𝑖 = ind𝑗 . In contrast, JXT+ and JXT++ remove

the IP leakage since the xtag is the encrypted version of the pair

(𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗). Therefore, the server cannot get the identical value
even when a record ind matches both w2 [𝑖] and w2 [ 𝑗].

SRP is a straightforward leakage for multi-table queries. Specifi-

cally, the idea of performing multi-table queries is that the server

first retrieves the results from Tab𝑡1
, and then filters the results

that satisfy the sub-queries for Tab𝑡2
, · · · , Tab𝑡𝑘 individually. Con-

sequently, it naturally reveals the results matching Tab𝑡1
and Tab𝑡𝑖

for 2 ≤ 𝑖 ≤ 𝑘 . However, we note that the search results in JXT++

contain some dummy values for each sub-query, thus it does not

have the SRP leakage.

Table 2: Leakage comparison with JXT.

Scheme n RP EP1 EP2 SP1 SP2 JD IP SRP
JXT [22]         –

JXT+      #  # –

JXT++  #   # # G# # #
The symbols  , G#, and # denote fully, partially, and without

revealing the leakage.

Theorem 1. Our JXT+ protocol is ℒ-semantically-secure against
non-adaptive attacks where the leakage function ℒ =

(
ℒJXT+ (DB, q),

ℒT (DB, t1,w1, attr∗t1 )
)
, assuming that 𝐹 is a secure PRF, SE is a stan-

dard IND-CPA secure symmetric encryption scheme, and TSet is a
non-adaptively ℒT-secure instantiation.

Theorem 2. Our JXT++ protocol is ℒ-semantically-secure against
non-adaptive attacks where the leakage functionℒ =

(
ℒJXT++ (DB, q),

ℒT (DB, t1,w1, attr∗t1 )
)
, assuming that 𝐹 is a secure PRF, SE is a stan-

dard IND-CPA secure symmetric encryption scheme, and TSet is a
non-adaptively ℒT-secure instantiation.

The proof of Theorem 1 is provided in Appendix A. Additionally,

the proof of Theorem 2 is similar to that of Theorem 1 and is omit-

ted. We remark that both of our protocols are also secure against

adaptive attacks. Here, the adaptive security proof is essentially an

extension of the non-adaptive proof. In brief, the key difference is

that the adaptive security proof involves using the adaptive TSet
simulator, XSet and CSet are be simulated to adaptively respond to

the adversary’s queries. Note that the proofs of adaptive security

for our protocols are also similar to those of [22], so we omit the

details.

6 Performance Evaluation
In this section, we provide a detailed asymptotic comparison be-

tween our proposed schemes and the most related works. We then

describe the implementation configuration and present the detailed

experimental results.

6.1 Theoretical Comparison
In the following, we present a performance comparison of JXT+

and JXT++ with SPX [25], CNR [11] and JXT [22] in terms of query

and storage efficiency. For simplicity, we consider a database in-

cluding two tables, Tab𝑡1
, Tab𝑡2

, each with𝑚 rows, 𝑛 columns, and

𝑇 join attributes, and suppose the query 𝑞 = (Select 𝑖𝑛𝑑𝑠 From

Tab𝑡1
, Tab𝑡2

Join On 𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

Where𝑤1 ∧𝑤2). A summary of

the comparison is given in Table 1.

Storage Overhead. We first focus on the storage size of SPX, CNR,

JXT, JXT+, and JXT++. Note that the storage of JXT and our schemes

is considered table-wise. Specifically, SPX produces three encrypted

multi-maps EMM𝑅 , EMM𝐶 , EMM𝑉 and an encrypted dictionary

EDX. EMM𝑅 is a row-wise representation of the database that maps

the row’s identifier to all the encrypted entries in that row. Simi-

larly, EMM𝐶 is a column-wise representation of the database that

maps the column’s identifier to the encrypted entries in that col-

umn. EMM𝑉 maps each value in a column to the rows’ identifiers

containing that value. In other words, each of the three encrypted

multi-maps encrypts every cell in a table, requiring 𝑂 (𝑚𝑛) stor-
age. EDX consists of a set of multi-maps, and each includes the

pre-computation of all the join results for a join attribute. Thus,

the size of EDX depends on the number of join attributes and the



Scalable Equi-JoinQueries over Encrypted Database CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

number of rows satisfying the join. In the best case, no results are

satisfying the join, then EDX will be empty; while in the worst case,

each join-attribute shares the common value in two tables, then

the size of EDX is 𝑂 (𝑚2𝑇 ). In summary, the storage size of SPX is

𝑂 (𝑚𝑛) +𝑂 (𝑚2𝑇 ).
CNR generates an encrypted multi-map EM and a filter HS of

a set SET. EM is similar to EMM𝑉 in SPX that maps each value

in every column to the row’s identifiers containing that value,

thus it requires 𝑂 (𝑚𝑛) storage. In contrast to EDX in SPX, SET
in CNR contains the pre-computation of joining rows from each

table separately to reduce the storage size. When the join attributes

share a common value (i.e., worst case), then the size of SET is

𝑂 (𝑚𝑇 ). Hence, the overall storage size of CNR is 𝑂 (𝑚𝑛) +𝑂 (𝑚𝑇 ).
JXT generates an encrypted multi-map TSet and a set XSet.

Specifically, for each attribute-value pair 𝑤 in the database, TSet

stores the encrypted record identifiers, the𝑇 combinations of record

identifier and join attribute, as well as the 𝑇 combinations of join-

attribute value and attribute-value pair, denoted as (𝑐𝑡, {𝑦𝑡 , 𝑦′𝑡 }𝑡 ∈[𝑇 ] ).
This results in a storage overhead of (2𝑇 + 1)𝑚𝑛. XSet stores all the
combinations of record identifiers and corresponding join-attribute

value pairs in the database, having𝑚𝑇 storage size. Therefore, the

total storage size of JXT is (2𝑇 + 1)𝑚𝑛 +𝑚𝑇 .
JXT+ produces an encrypted multi-maps TSet, a set XSet and a

multi-map CSet. For every attribute-value pair𝑤 and join attribute

𝑎𝑡𝑡𝑟∗, TSet encrypts the pair of the attribute-value pair and cor-

responding join-attribute value for the join-attribute name (e.g.,

(𝑤,𝑤∗)). Hence the storage size of TSet is𝑚𝑛𝑇 . For each attribute-

value pair𝑤 , XSet stores combinations of attribute-value pair, join-

attribute name, and join-attribute value (e.g., (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗)). Note
that only one copy is stored for the duplicated (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗) in
XSet. Specifically, it has a storage size of

∑
𝑖∈[𝑛], 𝑗∈[𝑇 ]𝑚

−
𝑖, 𝑗
, where

𝑚−
𝑖, 𝑗

denotes the number of distinct (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗) for the 𝑖-th at-

tribute column and the 𝑗-th join-attribute column. The correspond-

ing sizes are𝑚𝑛𝑇 and 𝑛𝑇 for the worst and best cases, respectively.

CSet is used to store all encrypted record identifiers indexed by

(𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗) and has a storage size of𝑚𝑛𝑇 . Overall the total stor-

age sizes of JXT+ are 3𝑚𝑛𝑇 and 2𝑚𝑛𝑇+𝑛𝑇 for the worst and best

cases, respectively.

Similar to JXT+, JXT++ produces an encrypted multi-map TSet,
a set XSet and a map CSet. To hide the frequency of join-attribute

values, both TSet and XSet in JXT++ will save a single copy for the

duplicated (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗). Besides, the CSet with the size of𝑚𝑛𝑇 is

mapped to an XOR filter by padding dummy values for removing

SRP leakage. This results in 1.23𝑚𝑛𝑇 storage overhead. Therefore,

the total storage sizes of JXT++ are 3.23𝑚𝑛𝑇 and 1.23𝑚𝑛𝑇+2𝑛𝑇 for

worst and best cases, respectively.

Search Efficiency. Next, we proceed to examine the efficiency

of performing a query 𝑞 = (Select 𝑖𝑛𝑑𝑠 From Tab𝑡1
, Tab𝑡2

Join On

𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

Where𝑤1 ∧𝑤2). During the search phase, the com-

putational costs are divided between the client and the server. In

detail, the client generates the search token and then the server

performs a search to retrieve the search results and finally the client

decrypts them.

In SPX, the client generates tokens for𝑤1,𝑤2 and 𝑎𝑡𝑡𝑟
∗
𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

respectively, resulting in 𝑂 (1)𝑃𝑟 𝑓 . Then the server queries EMM𝑉

based on the tokens of𝑤1 and𝑤2 to recover ℓ1 and ℓ2 records; and

queries EDX based on the tokens of 𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

to recover |𝑅𝐽 |
records, where |𝑅𝐽 | is the number of records satisfying the join

𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

; and performs intersection of the results to obtain

the final encrypted results 𝑅. The decryption of 𝑅 is performed

on the client side. Thus, the query computation cost is 𝑂 (ℓ1 + ℓ2 +
|𝑅𝐽 |)EMMqry (server side) and 𝑂 (1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 (client side),
respectively.

To reduce storage size, CNR introduces the technique of partially

pre-computed joins at the cost of additional client-side computation.

That is, the client requires constant PRF to generate the search token

of (𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

). On receiving the search token, the server

first retrieves the matching records (ℓ1 and ℓ2) from encrypted multi-

map EMwith𝑂 (ℓ1+ℓ2)EMMqry computation cost, and then checks

whether each result of𝑤1 (resp.𝑤2) joins with some value of 𝑎𝑡𝑡𝑟∗𝑡2

(resp. 𝑎𝑡𝑡𝑟∗𝑡1

) based on the filter HS by 𝑂 (ℓ1 + ℓ2) 𝑃𝑟 𝑓 operation.

Therefore, the server computational cost is 𝑂 (ℓ1 + ℓ2) (EMMqry +
𝑃𝑟 𝑓 ) in total. Note that the client needs to decrypt the search result

and perform join locally, so the search cost is 𝑂 (ℓ1 + ℓ2)𝐷𝑒𝑐 +
𝑂 (ℓ1ℓ2) 𝐽𝑜𝑖𝑛.

Both of the mentioned schemes involve (full or partial) join pre-

computation and lead to either high storage size or heavy client

computational cost. In contrast, JXT, JXT+, and JXT++ construct

table-wise index structureswith joinable attributes, avoiding prohib-

itive join pre-computation. More concretely, the client in JXT gener-

ates search tokens for𝑤1 and𝑤2 and computes ℓ1 + ℓ2 cross-tokens

xjointoken, incurring a cost of 𝑂 (ℓ1 + ℓ2)𝑃𝑟 𝑓 . On the server side, it

retrieves ℓ1 and ℓ2 encrypted identifiers matching with𝑤1 and𝑤2,

respectively, and then performs join with all possible combinations.

Thus, the total search cost is 𝑂 (ℓ1 + ℓ2)EMMqry +𝑂 (ℓ1ℓ2)𝑋𝑜𝑟 . The
decryption of identifiers is performed by the client and the entire

cost is 𝑂 (ℓ1 + ℓ2)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 .
To further reduce join cost, JXT+ stores all combinations of

attribute-value pair and join-attribute value (e.g., (𝑤1,𝑤
∗
1
)) in each

table and achieves the join by checking the combination of (𝑤2,

𝑎𝑡𝑡𝑟∗𝑡2

,𝑤∗
1
) in XSet. Specifically, it spends𝑂 (ℓ1)EMMqry to retrieve

the records matching 𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

, an additional 𝑂 (ℓ1)𝑋𝑜𝑟 to per-

form join with (𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡2

), and 𝑂 ( |𝑅 |)𝐻 to retrieve the matched

encrypted record identifiers 𝑐𝑡 . The total query cost for the server

is 𝑂 (ℓ1) (EMMqry + 𝑋𝑜𝑟 ) + 𝑂 ( |𝑅 |)𝐻 . In terms of client, the cost

consists of token generation for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
𝑡1

) and decryption on

𝑅 search result. i.e., 𝑂 (ℓ1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 .
JXT++ is derived from JXT+ to handle multiple tables. To hide the

real number of occurrences of (𝑤,𝑤∗), all the occurrences of each
pair of (𝑤,𝑤∗) are to pad with dummy strings to the maximum vol-

ume 𝑙𝑚𝑎𝑥 . This results in𝑂 (ℓ1)EMMqry+𝑂 (ℓ1𝑙𝑚𝑎𝑥 ) (𝑋𝑜𝑟+𝐻 ) in the
worst case (Assuming that all 𝑙1 records satisfying the query 𝑞) cost

due to the retrieving of dummy data. While the client needs to gen-

erate tokens for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
𝑡1

), compute cross-tokens xjointoken,
and decrypt all the result. Its computation cost is 𝑂 (𝑙𝑚𝑎𝑥 )𝑃𝑟 𝑓 +
𝑂 (ℓ1𝑙𝑚𝑎𝑥 )𝐷𝑒𝑐 .

6.2 Implementation Configuration
We implement our schemes and JXT [22] by using JAVA, employing

the JDK library for cryptographic operations like AES and SHA-256.

In our experiments, we adopt such a database consisting of 6 tables,

and each table owns 65,535 rows and 11 attribute columns (including
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Figure 1: Storage Overhead Comparison Figure 2: Query Time (all matched) Figure 3: Query Time (partly matched)

Figure 4: Setup Time Comparison Figure 5: Query Time With Tables Figure 6: Query Time With Volumes

Table 3: Storage cost evaluation.

Scheme 𝐻 (𝑋 )6 = 16 𝐻 (𝑋 ) = 14 𝐻 (𝑋 ) = 12

JXT [22] 55.1MB 53.6MB 53.2MB
JXT+ 39.5MB 29.6MB 27.1MB
JXT++ 43.7MB 22.5MB 17.2MB

one record identifier column). In total, the dataset involves 393,210

rows and 60 attribute columns. All experiments are conducted on

the same machine equipped with Intel i5-11500 2.70GHz CPU and

16GB RAM. To ensure precise cost measurement, all experiments

are executed on the same device for both the client and server. The

reported running times are the average values derived from 1000

experiments. Our source code is available on GitHub
5
.

We will provide a complete evaluation of setup and search costs

in JXT, JXT+, and JXT++. Specifically, we first evaluate the time

cost and storage size for generating an encrypted table with various

numbers of join attributes. We also discuss the required storage size

with different entropies of join-attribute. To achieve a reasonable

comparison on join query, we first perform equi-join queries over

two tables, covering all cases where the intermediate result from

TSet all or partly match the query criteria. We further evaluate the

time cost of equi-join query over multiple tables. Due to the origi-

nal JXT and JXT+ support only two-table join, the corresponding

variants (i.e., MJXT and MJXT+) are used to perform multiple-table

join comparison in our experiment. To reflect the influence of re-

sult volume, we compare the query time cost of JXT++ based on

different volume lengths 𝐿𝑚𝑎𝑥 .

5
https://github.com/CDSecLab/MJXT.

6𝐻 (𝑋 ) refers to the entropy of the distribution of join-attribute values 𝑋 .

In the following experiments, the XSet is implemented by Bloom

filter with approximate 10
−12

false positive rate. The CSet in JXT+

is constructed as the multi-map, and in JXT++ is realized as the XOR

filter whose storage capacity is ⌊1.23𝑛⌋ + 𝛽 . According to [15, 37],

to guarantee the probability of success and relatively less storage,

the parameter 𝛽 of the XOR filter is set to 2 in our construction.

6.3 Evaluation and Comparison
Storage Cost. We note that in JXT, JXT+, and JXT++, each table

in the database is stored independently, and the total storage cost

is essentially the sum of the size of all (encrypted) tables. Thus,

we focus mainly on the storage overhead for each individual table.

Note that the server-side storage overhead of JXT is dominated by

TSet and XSet, while CSet is additionally required for both JXT+

and JXT++.

To provide an overall evaluation of storage cost, we choose

1/2/3/4/5 attributes from 10 attributes as join attributes, respec-

tively. To facilitate comparison, all join attributes are high-entropy

attribute columns, where the frequency of each join-attribute value

is set to 2. As shown in Figure 1, our two protocols require less

storage than that of JXT, even with additional data structure CSet.
The main reason is the sizes of XSet in JXT and our schemes are𝑚𝑇 ,

𝑛𝑇 (best case), respectively, where𝑚 (resp. 𝑛) denotes the row (resp.
column) number. Our two schemes require less storage cost in most

cases. In particular, we perform the storage cost comparison of all

the above schemes with different entropies of the join attribute. As

indicated in Table 3, as the decrease of join-attribute entropy, the

total storage cost is reduced. when the entropy of join attribute is

set to 12, the storage cost of JXT is 53.2MB, while those of JXT+
and JXT++ are 27.1MB and 17.2MB, which brings a storage saving

of 49% and 68%, respectively.

https://github.com/CDSecLab/MJXT
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Setup Evaluation. Next, we discuss the setup efficiency for tables

with 1/2/3/4/5 join attributes, chosen from a total of 10 attributes.

The setup cost includes generating TSet and XSet for three schemes

and additionally generating CSet for JXT+ and JXT++. Figure 4

illustrates that the setup cost for all three schemes increases with

the number of join attributes. Specifically, JXT+ is less efficient than

JXT due to the additional generation of CSet. JXT++ is the least

efficient, as it further generates the XOR filter of CSet.

Query Evaluation. In the following, we investigate the query ef-

ficiency, which consists of the total time of generating the search

token and decrypting search results on the client side, and perform-

ing search on the server side.

Firstly, we discuss the time cost of join query over two tables

when the retrieved TSet entries (i.e., matched records in TSet) all
satisfy the search condition. The number of retrieved TSet entries
is set as 1, 000/2, 000/. . ./10, 000 for each query, respectively. As de-

picted in Figure 2, the query time cost of all the mentioned schemes

increases with the matched records in TSet growth. It can be ob-

served that JXT+ and JXT++ are superior to JXT in search latency.

Specifically, for the number of matched records is 1, 000, JXT takes

61𝑚𝑠 to fetch 1, 000 ∗ 2 identifiers (from two joined- tables) and

decrypt all of them, while JXT+ takes 11.2𝑚𝑠 , a speedup of 5.5×, and
JXT++ takes 9.7𝑚𝑠 , a speedup of 6.3×. For the number of matched

records is 10, 000, JXT takes 4, 651.5𝑚𝑠 to fetch 10, 000∗ 2 identifiers

and decrypt all of them, while JXT+ takes 89.9𝑚𝑠 , a speedup of

51.7×, and JXT++ takes 85.7𝑚𝑠 , a speedup of 54.3×.
Next, we evaluate the query efficiency when the retrieved TSet

entries partially satisfy the query. In detail, the number of retrieved

entries from TSet is fixed as 1, 000, and the number of final result is

10%/20%/. . . /100% of retrieved TSet entries. As shown in Figure

3, JXT is minimally affected by the size of the final results. This is

because the server-side cost depends only on the number of entries

retrieved from TSet, while the client decrypts the reduced size of

the final search results. Therefore, a smaller result size reduces the

client’s decryption time. In contrast, JXT+ and JXT++ become more

efficient as the size of the final results decreases. The reason is that

the server only retrieves the items in CSet satisfying the query (i.e.,

the final search results). Figure 3 shows that when the size of final

results is 100, JXT takes 46.2𝑚𝑠 to obtain the final results, while

JXT+ takes only 1.4𝑚𝑠 , achieving a speedup of 33×. JXT++ is more

efficient, taking just 0.9𝑚𝑠 , resulting in a speedup of 51.3×.
We now consider performing queries over 2/3/4/5/6 tables. In

Figure 5, we evaluate the query time of MJXT, MJXT, and JXT++

under the condition that each table contains 1,000 matching iden-

tifiers. The results show that the query time for all three schemes

increases as the number of joined tables grows, due to the addi-

tional computation and retrieval of more identifiers. Notably, JXT++

performs the best, despite offering the highest level of security. In

addition, Figure 6 illustrates the impact of the volume length 𝐿𝑚𝑎𝑥

on the query time of JXT++, where 𝐿𝑚𝑎𝑥 captures the maximum

occurrence number of all pairs (𝑤,𝑤∗). As the maximum volume

length 𝐿𝑚𝑎𝑥 increases, the query time of JXT++ grows linearly. This

is because the server must handle and decrypt additional matching

results, which arise from the increased dummy padding associated

with the growth in 𝐿𝑚𝑎𝑥 . In particular, when 𝐿𝑚𝑎𝑥 = 1000, the

query time for JXT++ on the two tables approaches 90𝑚𝑠 . There-

fore, by setting 𝐿𝑚𝑎𝑥 in join queries, we can achieve higher security

while maintaining reasonable efficiency.

7 Conclusion
In this paper, we investigate secure join queries without join pre-

computation in encrypted relational databases. We first present

JXT+, a new equi-join query protocol over two tables without join

pre-computation, which can support joins of attributes with differ-

ent names and achieve better query efficiency. We then design the

first equi-join query protocol across three or more tables, dubbed

JXT++, which enjoys joins of arbitrary attributes even low-entropy

attributes, while providing a tunable query complexity. Further-

more, we implement our two protocols and perform a complete

comparison with the state-of-the-art JXT. Experimental results

demonstrate that both of our proposed schemes are superior to

JXT in terms of query and storage efficiency while achieving more

powerful functionality.
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A Proof of Non-adaptive Security for JXT+
We prove this theorem by a sequence of games G0, . . . ,G7. Each

game begins with an Initialize routine that takes (DB, q) as input
from the adversary𝒜, who finally outputs a bit as the game’s output

based on the routine’s result. The first game G0 has the identical

distribution to “real-world” game RealJXT+𝒜 (𝜆) and the final one G7

can be simulated with leakage profile instead of the actual (DB, q).
For simplicity, a sequence of 𝑄 non-adaptive join queries across

two tables is denoted as q = (t1, t2,w1,w2, attr∗t1 , attr
∗
t2 ), where

each query q[𝑖] = (t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖], attr
∗
t2 [𝑖]) is a

two-table join query “Select inds From Tabt1 [𝑖 ] and Tabt2 [𝑖 ] Join on
attr∗t1 [𝑖] = attr∗t2 [𝑖] Where w1 [𝑖] ∧ w2 [𝑖]”, for 1 ≤ 𝑖 ≤ 𝑄 . In the

following, we will provide the details of each game and formally

prove the computational indistinguishability between them.

Game G0: This game is instantiated based on RealJXT+𝒜 (𝜆) with
minor differences. Specifically, this game simulates the encrypted

database EDB and the transcript Tr by running Initialize based on

(DB, q) selected by the adversary 𝒜. (1) EDB = (TSet, XSet,CSet)
is simulated exactly as EDBSetup(DB) described in the real game.

(2) Tr[𝑖] =
(
(STags[𝑖], xjointoken

1
[𝑖], xjointoken

2
[𝑖]),ResCT[𝑖],

ResInd[𝑖]
)
for each query 𝑖 (1 ≤ 𝑖 ≤ 𝑄) is generated as in the real

game, except that the plaintext result ResInd is derived from DB
rather than from decrypting the encrypted search result ResCT.
Thus, assuming no false positives, the distribution of G0 matches

RealJXT+𝒜 (𝜆), so we have

Pr[G0 = 1] ≤ Pr[RealJXT+𝒜 (𝜆) = 1] + negl(𝜆).
Game G1: In this game, the PRFs 𝐹 (𝐾𝑧 , ·), 𝐹 (𝐾𝑤 , ·), 𝐹 (𝐾𝑟 , ·), and
𝐹 (𝐾enc, ·) are replaced with the independent random functions or

selections with the appropriate domain and range. Therefore, there

exists an efficient adversary ℬ1 such that��
Pr[G1 = 1] − Pr[G0 = 1]

�� ≤ 4 · 𝐴𝑑𝑣PRF𝐹,ℬ1

(𝜆) .
Game G2: This game is identical to game G1, except that the ci-

phertext 𝑐𝑡 is generated with encryption of a string 0
𝜆
instead of

the actual record identifier used in the real game. Given that the

number of encryption operations is polynomial, i.e., 𝑝𝑜𝑙𝑦 (𝜆), an
efficient adversary ℬ2 can be constructed such that��

Pr[G2 = 1] − Pr[G1 = 1]
�� ≤ 𝑝𝑜𝑙𝑦 (𝜆) · 𝐴𝑑𝑣 IND−CPASE,ℬ2

(𝜆).
GameG3: This game differs in the computation process but is distri-

butionally identical to G2. Specifically, it precomputes all possible

values for generating XSet, CSet, xjointoken
1
, and xjointoken

2
and

collects them in arrays 𝐻 and 𝑌 . These include values present in

XSet and CSet, all possible values for membership testing in XSet,
and values for xjointoken

1
and xjointoken

2
that do not correspond

to any potential matches. Then the corresponding values in XSet
and CSet are selected from 𝐻 , while xjointoken

1
and xjointoken

2

are computed by choosing values from either 𝐻 or 𝑌 . Thus, we

have

Pr[G3 = 1] = Pr[G2 = 1] .
Game G4: This game is exactly like G3 except that each 𝑦 in T and

the values in 𝐻 and 𝑌 arrays are choosen at randomly from {0, 1}𝜆 .
We claim that

Pr[G4 = 1] = Pr[G3 = 1] .
Game G5: In this game, instead invoking the real TSetSetup and

TSetGetTag to compute TSet and STags, they are generated by con-
structing a non-adaptive simulator𝒮T on inputℒT (DB, t1,w1, attr∗t1 )
and Tt1 [w1 | |attr∗t1 ]. Therefore, a non-adaptive secure TSet instanti-
ation ensures the existence of 𝒮T such that the following holds:��

Pr[G5 = 1] − Pr[G4 = 1]
�� ≤ 𝐴𝑑𝑣TSetℬ5,𝒮T

(𝜆) .
Game G6: This game modifies the access to the 𝐻 and 𝑌 arrays

to ensure compatibility with the final simulator using the leakage
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profile. When accessing 𝐻 at (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗) or 𝑌 at (𝑤,𝑢, 𝑐), the
game first checks if that index will be accessed again. If so, it uses

the existing value; if not, it substitutes a random value. Since those

indices won’t be reused, this change doesn’t affect the distribution

of the game. Notably, the 𝑌 array is only accessed once during

transcript generation and can be replaced with random values, so

leading to the removal of the 𝑌 array from this game.

Next, we describe the way of accessing the 𝐻 array. The 𝐻 array

is accessed only during two processes: (1) XSet&CSetSetup: the
generation of XSet and CSet, and (2) GenTrans: the generation of

the transcript, specifically for xjointoken
1
and xjointoken

2
.

The XSet&CSetSetup routine does not repeatedly access 𝐻 , but

some of them might be accessed by GenTrans. We observe that

GenTrans reads indices such that (w1 [𝑖] = 𝑤 ∨w2 [𝑖] = 𝑤) ∧𝑤∗ ∈{
val
∗

: (ind1, attr∗t1 [𝑖], val
∗) ∈ Tabt1 [𝑖 ] ∧ (ind2, attr∗t2 [𝑖], val

∗) ∈
Tabt2 [𝑖 ] ∧ (ind1,w1 [𝑖]) ∈ Tabt1 [𝑖 ] ∧ (ind2,w2 [𝑖]) ∈ Tabt2 [𝑖 ]

}
for a

given query 𝑖 . Therefore, we use the corresponding values from 𝐻

at these indices in the generation of XSet and CSet and replace the

others with random values.

In the GenTrans routine, we need to check for repeated index

accesses, including positions read by XSet&CSetSetup or revisited

by GenTrans itself. First, we determine which indices correspond

to the final matches and access values from 𝐻 at these positions.

These values are clearly among those accessed by XSet&CSetSetup,
so GenTrans tests for the same condition. Then, we observe that

some positions are accessed twice in two different GenTrans calls.
For some 𝑖 ≠ 𝑗 , 𝑤∗ is an element of both

{
val
∗

: (ind,w1 [ 𝑗]) ∈
Tabt1 [ 𝑗 ]∧(ind, attr∗t1 [ 𝑗], val

∗) ∈ Tabt1 [ 𝑗 ]
}
and

{
val
∗

: (ind,w1 [𝑖]) ∈
Tabt1 [𝑖 ] ∧ (ind, attr∗t1 [𝑖], val

∗) ∈ Tabt1 [𝑖 ]
}
. For these repeated ac-

cesses determined by 𝑤∗, we use the values from 𝐻 . In all other

cases, GenTrans replaces the 𝐻 accesses with random values.

Based on the above observations and discussion, we have

Pr[G6 = 1] = Pr[G5 = 1] .
Simulator: This game constructs a simulator 𝒮 and takes the leak-

age profile ℒ(DB, q) as an input, which consists of ℒJXT+ (DB, q),
ℒT (DB, t1,w1, attr∗t1 ), and Tt1 [w1 | |attr∗t1 ]. It finally outputs the sim-

ulated EDB = (TSet, XSet,CSet) and transcripts Tr =
(
(STags,

xjointoken
1
, xjointoken

2
),ResCT,ResInd

)
, which has same distri-

bution as G6.

TSet Simulation: The non-adaptive simulator 𝒮T is invoked to gen-

erate TSet and STags based onℒT (DB,t1,w1,attr∗t1 ), and Tt1[w1 | |attr∗t1 ],
which has the same distribution as in G6. Note that Tt1 [w1 | |attr∗t1 ]
can be computed by randomly selecting 𝑦 from {0, 1}𝜆 .

Next, we utilize the leakage ℒJXT+ (DB, q) = (n,RP, EP1, EP2,

SP1, JD) to simulate XSet and CSet, and then produce the tran-

script Tr. Before this, the simulator 𝒮 preprocesses some leakage to

facilitate their use. Specifically, the simulator 𝒮 first generates two

leakage variants RP and EP2 based on the result pattern leakage

RP and the equality pattern leakage EP2, respectively.

• For each join query q[𝑖] (𝑖 ∈ [𝑄]), RP[𝑖] = {encode(val∗) :

ind ∈ RP[𝑖] ∧ (ind, attr∗t1 [𝑖], val
∗) ∈ Tabt1 [𝑖 ] } is a multi-set

of join-attribute values (in the randomized encoding version)

for the record identifiers appearing in the final result RP[𝑖]
in table Tabt1 [𝑖 ] .• EP2 is the restricted equality pattern of w2 and is also repre-

sented by an integer vector, which can be derived from EP2

and JD. Specifically, we define EP2 [𝑖] = EP2 [ 𝑗] iff EP2 [𝑖] =
EP2 [ 𝑗] and JD[𝑖] ∩ JD[ 𝑗] ≠ ∅ for 𝑖, 𝑗 ∈ [𝑄].

XSet and CSet Simulation: The simulator 𝒮 precomputes the 𝐻 ar-

ray by combining EP1 with JD and EP2 with JD, encompassing all

values 𝐻 [𝑤,𝑤∗] that may or may not be accessed, where𝑤 is from

EP and 𝑤∗ is from JD. Then the simulator uses the variant RP of

result pattern leakage to select the corresponding values 𝐻 [𝑤,𝑤∗]
that may appear in the result set and store them into XSet. Simulta-

neously, the simulator inserts (𝐻 [𝑤,𝑤∗], 𝑐𝑡) into CSet, where 𝑐𝑡 is
the ciphertext of 0

𝜆
.

Transcript Simulation: The simulator 𝒮 computes the transcript

Tr[𝑖]=
(
(STags[𝑖],xjointoken

1
[𝑖],xjointoken

2
[𝑖]),ResCT[𝑖],ResInd[𝑖]

)
,

for 1 ≤ 𝑖 ≤ 𝑄 . Specifically, STags is simulated within TSet sim-

ulation, ResInd[𝑖] can be derived from RP[𝑖], and ResCT[𝑖] is
simulated by the server search subroutine as described in real

game. Furthermore, we describe how to compute xjointoken
1
and

xjointoken
2
. 𝒮 collects the encoding of the join-attribute values

for a given 𝑖 as 𝑅 ← RP[𝑖] ∪ ⋃𝑄

𝑗=1
JD[ 𝑗] ∩ JD[𝑖] and puts them

in canonical order as (�̄�∗
1
, �̄�∗

2
, . . . , �̄�∗|𝑅 | ) ← 𝑅. Since each index

in 𝑅 belongs to DBJoinTab𝑡
1

(𝑤1), it follows |𝑅 | ≤ SP1 [𝑖]. 𝒮 pads |𝑅 |
up to SP1 [𝑖] by setting �̄�∗

𝑘
←⊥ for 𝑘 = |𝑅 | + 1, . . . , SP1 [𝑖]. The

simulator then determines whether xjointoken is obtained from

𝐻 array or random values. Specifically, for 𝑐 = 1, . . . , SP1 [𝑖], if
�̄�∗𝑐 ≠⊥, then xjointoken

1
[𝑐] and xjointoken

2
[𝑐] are computed by

using 𝐻 [𝑤,𝑤∗] ⊕ 𝑦; otherwise, they are assigned random values

from {0, 1}𝜆 . In addition, for 𝑐 = SP1 [𝑖] + 1, . . . ,𝑇max, we also se-

lect random values for xjointoken
1
[𝑐] and xjointoken

2
[𝑐]. Note

that 𝑇max is an upper bound to fix the number of xjointoken for

simplicity. Thus, the distributions of xjointoken
1
and xjointoken

2

generated by the simulator are the same as those produced in G6.

In summary, the simulator 𝒮 with the leakage ℒ(DB, q) gen-
erates a distribution identical to that of G6, so we complete the

proof.
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Algorithm 4 Game G0

Initialize(DB, t1, t2,w1,w2, attr∗t1 , attr
∗
t2 )

1: 𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc
$←− {0, 1}𝜆 , {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array

4: for𝑤 ∈ W𝑖 do
5: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

6: for 𝑐 = 1, . . . ,𝑇𝑤 do
7: 𝑍cnt ← 𝐹 (𝐾𝑧 ,𝑤 | |𝑐)
8: for 𝑡 ∈ [𝑇 ] do
9: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍cnt , T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

10: end for
11: end for
12: end for
13: end for
14: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
15: for 𝑖 = 1 to𝑄 do STags[𝑖]←TSetGetTag

(
𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗t1 [𝑖])

)
16: end for
17: (XSet,CSet) ← XSet&CSetSetup(𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc,DB)
18: EDB← (TSet, XSet,CSet)
19: for 𝑖 = 1 to 𝑄 do
20: Tr[𝑖] ← GenTrans(EDB, 𝐾𝑧 , 𝐾𝑟 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖])
21: end for

22: return (EDB,Tr)
XSet&CSetSetup(𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc,DB)
1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈W𝑖 and (ind,{𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈DB
Join
Tab𝑖
(𝑤) do

5: 𝑍0 ← 𝐹 (𝐾𝑧 ,𝑤 | |0)
6: xtag← 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍0

7: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
8: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
11: end for
12: end for
13: return (XSet,CSet)
GenTrans(EDB, 𝐾𝑧 , 𝐾𝑟 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

, stag)

1: for 𝑐 = 1, . . . ,𝑇max do
2: xjointoken

1
[𝑐]←𝐹 (𝐾𝑧 ,𝑤1 | |0)⊕𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡1

)⊕𝐹 (𝐾𝑧 ,𝑤1 | |𝑐)
3: xjointoken

2
[𝑐]←𝐹 (𝐾𝑧 ,𝑤2 | |0)⊕𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡2

)⊕𝐹 (𝐾𝑧 ,𝑤1 | |𝑐)
4: end for
5: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

6: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

)
7: ResInd← DB(𝑞)
8: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)

Algorithm 5 Game G1 and Game G2

Initialize(DB, t1, t2,w1,w2, attr∗t1 , attr
∗
t2 )

1: 𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟
$←− Fun({0, 1}𝜆), {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array

4: for𝑤 ∈ W𝑖 do
5: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

6: for 𝑐 = 1, . . . ,𝑇𝑤 do
7: 𝑍cnt ← 𝑓𝑧 (𝑤 | |𝑐)
8: for 𝑡 ∈ [𝑇 ] do
9: 𝑦 ← 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍cnt , T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

10: end for
11: end for
12: end for
13: end for
14: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
15: for 𝑖 = 1 to𝑄 do STags[𝑖]←TSetGetTag(𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗t1 [𝑖]))
16: end for
17: (XSet,CSet) ← XSet&CSetSetup(𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟 ,DB)
18: EDB← (TSet, XSet,CSet)
19: for 𝑖 = 1 to 𝑄 do
20: Tr[𝑖] ← GenTrans(EDB, 𝑓𝑧 , 𝑓𝑟 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖])
21: end for
22: return (EDB,Tr)

XSet&CSetSetup(𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟 ,DB)

1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: 𝑍0 ← 𝑓𝑧 (𝑤 | |0)
6: xtag← 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍0

7: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
8: 𝐾enc,𝑤

$←− {0, 1}𝜆
9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
11: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
12: end for
13: end for
14: return (XSet,CSet)

GenTrans(EDB, 𝑓𝑧 , 𝑓𝑟 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

, stag)

1: for 𝑐 = 1, . . . ,𝑇max do
2: xjointoken

1
[𝑐]← 𝑓𝑧 (𝑤1 | |0)⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡1

)⊕ 𝑓𝑧 (𝑤1 | |𝑐)
3: xjointoken

2
[𝑐]← 𝑓𝑧 (𝑤2 | |0)⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡2

)⊕ 𝑓𝑧 (𝑤1 | |𝑐)
4: end for
5: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

6: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

)
7: ResInd← DB(𝑞)
8: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 6 Game G3 and Game G4

Initialize(DB, t1, t2,w1,w2, attr∗t1 , attr
∗
t2 )

1: 𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟
$←− Fun({0, 1}𝜆), {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: for𝑤 ∈ W𝑖 and 𝑎𝑡𝑡𝑟

∗ ∈ Tab𝑖 and𝑤∗ ∈ DB do
4: 𝑍0 ← 𝑓𝑧 (𝑤 | |0)
5: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] ← 𝑓𝑟 (𝑎𝑡𝑡𝑟∗) ⊕ 𝑓𝑤 (𝑤∗) ⊕ 𝑍0

6: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] $←− {0, 1}𝜆
7: end for
8: end for
9: for 𝑖 = 1 to 𝑁 do
10: T𝑖 ← empty array

11: for𝑤 ∈ W𝑖 do
12: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

13: for 𝑐 = 1, . . . ,𝑇𝑤 do
14: 𝑍cnt ← 𝑓𝑧 (𝑤 | |𝑐)
15: for 𝑡 ∈ [𝑇 ] do
16: 𝑦 ← 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍cnt
17: 𝑦

$←− {0, 1}𝜆
18: T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

19: end for
20: end for
21: for 𝑢 ∈ 𝑤 ∪⋃𝑗∈[𝑁 ]\{𝑖 }W𝑗 do
22: for 𝑐 = 𝑇𝑤 + 1, . . . ,𝑇max do
23: for 𝑡 ∈ [𝑇 ] do
24: 𝑌 [𝑤,𝑢, 𝑐]← 𝑓𝑧 (𝑤 | |𝑐) ⊕ 𝑓𝑧 (𝑢 | |0)
25: 𝑌 [𝑤,𝑢, 𝑐] $←− {0, 1}𝜆
26: end for
27: end for
28: end for
29: end for
30: end for
31: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
32: for 𝑖 = 1 to 𝑄 do
33: STags[𝑖] ← TSetGetTag(𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗t1 [𝑖]))
34: end for
35: (XSet,CSet) ← XSet&CSetSetup(DB, 𝐻 )

36: EDB← (TSet, XSet,CSet)
37: for 𝑖 = 1 to 𝑄 do
38: Tr[𝑖] ← GenTrans(DB, EDB, 𝑓𝑟 , 𝐻,𝑌 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖],

attr∗t1 [𝑖], attr
∗
t2 [𝑖], STags[𝑖])

39: end for
40: return (EDB,Tr)
XSet&CSetSetup(DB, 𝐻 )
1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: XSet[𝑖] ← XSet[𝑖] ∪ {𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ]}
6: 𝐾enc,𝑤

$←− {0, 1}𝜆
7: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
8: CSet[𝑖] ← CSet[𝑖] .Put(𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ], 𝑐𝑡)
9: end for
10: end for
11: return (XSet,CSet)
GenTrans(DB, EDB, 𝑓𝑟 , 𝐻,𝑌 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

, stag)

1: t← TSetRetrieve(TSet, stag)
2: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤

1

, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←
DBJoinTab𝑡

1

(𝑤1)
3: for 𝑐 = 1, . . . ,𝑇𝑤1

do
4: 𝑦 ← t[𝑐]
5: xjointoken

1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

,𝑤∗𝑡 ] ⊕ 𝑦
6: xjointoken

2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
𝑡2

,𝑤∗𝑡 ] ⊕ 𝑦
7: end for
8: Note that𝑤∗𝑡 is determined by 𝑐 and 𝑎𝑡𝑡𝑟∗𝑡1

using DBJoinTab𝑡
1

(𝑤1).
9: for 𝑐 = 𝑇𝑤1

+ 1, . . . ,𝑇max do
10: xjointoken

1
[𝑐] ← 𝑌 [𝑤1,𝑤1, 𝑐] ⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡1

)
11: xjointoken

2
[𝑐] ← 𝑌 [𝑤1,𝑤2, 𝑐] ⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡2

)
12: end for
13: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

14: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

)
15: ResInd← DB(𝑞)
16: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 7 Game G5 and Game G6

Initialize(DB, t1, t2,w1,w2, attr∗t1 , attr
∗
t2 )

1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: for𝑤 ∈ W𝑖 and 𝑎𝑡𝑡𝑟

∗ ∈ Tab𝑖 and𝑤∗ ∈ DB do

4: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] $←− {0, 1}𝜆
5: end for
6: end for
7: for 𝑖 = 1 to 𝑁 do
8: T𝑖 ← empty array

9: for𝑤 ∈ W𝑖 do
10: for 𝑐 = 1, . . . ,𝑇𝑤 do
11: for 𝑡 ∈ [𝑇 ] do
12: 𝑦

$←− {0, 1}𝜆
13: T𝑖 [𝑤 | |𝑡] [𝑐] ← 𝑦

14: end for
15: end for
16: end for
17: end for
18: (TSet, STags) ← 𝒮T

(
ℒT (DB, t1,w1, attr∗t1 ), Tt1 [w1 | |attr∗t1 ]

)
19: (XSet,CSet) ← XSet&CSetSetup(DB, 𝐻 )
20: EDB← (TSet, XSet,CSet)
21: for 𝑖 = 1 to 𝑄 do
22: Tr[𝑖] ← GenTrans(DB, EDB, 𝐻, t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖])
23: end for
24: return (EDB,Tr)
XSet&CSetSetup(DB, 𝐻 )
1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: if ∃ 𝑗 : (w1 [ 𝑗] = 𝑤 ∨ w2 [ 𝑗] = 𝑤) ∧ 𝑤∗𝑡 ∈
{
val
∗

:

(ind1, attr∗t1 [ 𝑗], val
∗) ∈ Tabt1 [ 𝑗 ] ∧ (ind2, attr∗t2 [ 𝑗], val

∗) ∈
Tabt2 [ 𝑗 ] ∧ (ind1,w1 [ 𝑗]) ∈ Tabt1 [ 𝑗 ] ∧ (ind2,w2 [ 𝑗]) ∈ Tabt2 [ 𝑗 ]

}
then

6: XSet[𝑖] ← XSet[𝑖] ∪ {𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ]}
7: 𝐾enc,𝑤

$←− {0, 1}𝜆
8: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
9: CSet[𝑖] ← CSet[𝑖] .Put(𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ], 𝑐𝑡)

10: else
11: ℎ

$←− {0, 1}𝜆
12: XSet[𝑖] ← XSet[𝑖] ∪ {ℎ}
13: 𝐾enc,𝑤

$←− {0, 1}𝜆
14: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
15: CSet[𝑖] ← CSet[𝑖] .Put(ℎ, 𝑐𝑡)
16: end if
17: end for
18: end for
19: return (XSet,CSet)

GenTrans(DB, EDB, 𝐻, 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

, stag, 𝑖)

1: t← TSetRetrieve(TSet, stag)
2: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤

1

, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←
DBJoinTab𝑡

1

(𝑤1)

3: Get (�̄�∗
1
, �̄�∗

2
, . . . , �̄�∗

𝑇𝑤
1

) according to DBJoinTab𝑡
1

(𝑤1) and 𝑎𝑡𝑡𝑟∗𝑡1

4: for 𝑐 = 1, . . . ,𝑇𝑤1
do

5: 𝑦 ← t[𝑐]
6: if �̄�∗𝑐 ∈

{
val
∗

: (ind1, 𝑎𝑡𝑡𝑟
∗
𝑡1

, val∗) ∈ Tab𝑡1
∧

(ind2,𝑎𝑡𝑡𝑟
∗
𝑡2

,val∗) ∈ Tab2 ∧ (ind1,𝑤1) ∈ Tab𝑡1
∧ (ind2,𝑤2) ∈

Tab𝑡2

}
then

7: xjointoken
1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

, �̄�∗𝑐 ] ⊕ 𝑦
8: xjointoken

2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
𝑡2

, �̄�∗𝑐 ] ⊕ 𝑦
9: else if ∃ 𝑗 ≠ 𝑖 : �̄�∗𝑐 ∈

{
val
∗

: (ind,w1 [ 𝑗]) ∈ Tabt1 [ 𝑗 ] ∧
(ind, attr∗t1 [ 𝑗], val

∗) ∈ Tabt1 [ 𝑗 ]
}
∩
{
val
∗

: (ind,𝑤1) ∈ Tab𝑡1
∧

(ind, 𝑎𝑡𝑡𝑟∗𝑡1

, val∗) ∈ Tab𝑡1

}
then

10: xjointoken
1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

, �̄�∗𝑐 ] ⊕ 𝑦
11: xjointoken

2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
𝑡2

, �̄�∗𝑐 ] ⊕ 𝑦
12: end if
13: end for
14: for 𝑐 = 𝑇𝑤1

+ 1, . . . ,𝑇max do

15: xjointoken
1
[𝑐] $←− {0, 1}𝜆

16: xjointoken
2
[𝑐] $←− {0, 1}𝜆

17: end for
18: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

19: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

)
20: ResInd← DB(𝑞)
21: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 8 Simulator

Initialize(ℒJXT+ (DB, q),ℒT (DB, t1,w1, attr∗t1 ))

1: (n,RP, EP1, EP2, SP1, JD) ← ℒJXT+ (DB, q)
2: for𝑤∗ ∈ ⋃𝑖∈[𝑄 ] JD[𝑖] do
3: 𝐻 [EP1 [𝑖],𝑤∗] ← {0, 1}𝜆
4: end for
5: for𝑤 ∈ EP2 and𝑤∗ ∈ ⋃𝑖∈[𝑄 ] JD[𝑖] do

6: 𝐻 [𝑤,𝑤∗] $←− {0, 1}𝜆
7: end for
8: for 𝑖 = 1 to 𝑁 do
9: T𝑖 ← empty array

10: for𝑤 ∈ W𝑖 do
11: for 𝑐 = 1, . . . ,𝑇𝑤 do
12: for 𝑡 ∈ [𝑇 ] do
13: 𝑦 ← {0, 1}𝜆
14: T𝑖 [𝑤 | |𝑡] [𝑐] ← 𝑦

15: end for
16: end for
17: end for
18: end for
19: (TSet, STags) ← 𝒮T

(
ℒT (DB, t1,w1, attr∗t1 ), Tt1 [w1 | |attr∗t1 ]

)
20: for 𝑖 = 1 to 𝑁 do
21: XSet[𝑖] ← ∅, X[𝑖] ← 0,CSet[𝑖] ← empty multi-map

22: end for
23: for𝑤 ∈ EP2 and𝑤∗ ∈ ⋃

𝑖∈[𝑄 ]:EP2 [𝑖 ]=𝑤 RP[𝑖] do
24: XSet[t2 [𝑖]] ← XSet[t2 [𝑖]] ∪ {𝐻 [𝑤,𝑤∗]}
25: X[t2 [𝑖]] ← X[t2 [𝑖]] + 1

26: 𝐾enc,𝑤
$←− {0, 1}𝜆

27: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
28: CSet[t2 [𝑖]] ← CSet[t2 [𝑖]] .Put(𝐻 [𝑤,𝑤∗], 𝑐𝑡)
29: end for
30: for𝑤 ∈ EP1 and𝑤∗ ∈ ⋃𝑖∈[𝑄 ]:EP1 [𝑖 ]=𝑤 RP[𝑖] do
31: XSet[t1 [𝑖]] ← XSet[t1 [𝑖]] ∪ {𝐻 [𝑤,𝑤∗]}
32: X[t1 [𝑖]] ← X[t1 [𝑖]] + 1

33: 𝐾enc,𝑤
$←− {0, 1}𝜆

34: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
35: CSet[t1 [𝑖]] ← CSet[t1 [𝑖]] .Put(𝐻 [𝑤,𝑤∗], 𝑐𝑡)
36: end for
37: for 𝑖 = 1 to 𝑁 do

38: for 𝑗 = X[𝑖] + 1, . . . , n[𝑖] ·𝑇 do

39: ℎ
$←− {0, 1}𝜆

40: XSet[𝑖] ← XSet[𝑖] ∪ {ℎ}
41: 𝐾enc,𝑤

$←− {0, 1}𝜆
42: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
43: CSet[𝑖] ← CSet[𝑖] .Put(ℎ, 𝑐𝑡)
44: end for
45: end for
46: EDB← (TSet, XSet,CSet)
47: for 𝑖 = 1 to 𝑄 do
48: Tr[𝑖] ← GenTrans(EDB, 𝐻, t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖], 𝑖,RP, SP1, JD)
49: end for
50: return (EDB,Tr)

GenTrans(EDB, 𝐻, 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

, stag, 𝑖,RP, SP1, JD)

1: t← TSetRetrieve(TSet, stag)
2: 𝑅 ← RP[𝑖] ∪⋃𝑄

𝑗=1
JD[ 𝑗] ∩ JD[𝑖]

3: (�̄�∗
1
, �̄�∗

2
, . . . , �̄�∗|𝑅 | ) ← 𝑅, where |𝑅 | ≤ SP[𝑖]

4: �̄�∗
𝑘
←⊥ for 𝑘 = |𝑅 | + 1, . . . , SP[𝑖]

5: for 𝑐 = 1, . . . , SP[𝑖] do
6: 𝑦 ← t[𝑐]
7: if �̄�∗𝑐 ≠⊥ then
8: xjointoken

1
[𝑐] ← 𝐻 [𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

, �̄�∗𝑐 ] ⊕ 𝑦
9: xjointoken

2
[𝑐] ← 𝐻 [𝑤2 | |𝑎𝑡𝑡𝑟∗𝑡2

, �̄�∗𝑐 ] ⊕ 𝑦
10: else
11: xjointoken

1
[𝑐] $←− {0, 1}𝜆

12: xjointoken
2
[𝑐] $←− {0, 1}𝜆

13: end if
14: end for
15: for 𝑐 = SP[𝑖] + 1, . . . ,𝑇max do

16: xjointoken
1
[𝑐] $←− {0, 1}𝜆

17: xjointoken
2
[𝑐] $←− {0, 1}𝜆

18: end for
19: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

20: ResInd← RP[𝑖]
21: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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