
1

Lego-DLC: batching module for commit-carrying
SNARK under Pedersen Engines

Byeongjun Jang†, Gweonho Jeong∗, Hyuktae Kwon∗, Hyunok Oh∗, and Jihye Kim†

Abstract—The synergy of commitments and zk-SNARKs is
widely used in various applications, particularly in fields like
blockchain, to ensure data privacy and integrity without revealing
secret information. However, proving multiple commitments in
a batch imposes a large overhead on a zk-SNARK system. One
solution to alleviate the burden is the use of commit-and-prove
SNARK (CP-SNARK) approach. LegoSNARK defines a new
notion called commit-carrying SNARK (cc-SNARK), a special-
ized form of CP-SNARK, and introduces a compiler to build
commit-carrying SNARKs into commit-and-prove SNARKs. Us-
ing this compiler, the paper shows a commit-and-prove version
of Groth16 that improves the proving time (about 5,000×).
However, proving l-multiple commitments simultaneously with
this compiler faces a performance issue, as the linking system in
LegoSNARK requires O(l) pairings on the verifier side.

To enhance efficiency, we propose a new batching module
called Lego-DLC, designed for handling multiple commit-
ments. This module is built by combining a Σ-protocol with
commitment-carrying SNARKs under Pedersen engines in which
our module can support all commit-carrying SNARKs under
Pedersen engines. In this paper, we provide the concrete instan-
tiations for Groth16 and Plonk. In the performance comparison,
for 216 commitments, with a verification time of just 0.064s—over
30x faster than LegoSNARK’s 1.972s—our approach shows
remarkable efficiency. The slightly longer prover time of 1.413s
(compared to LegoSNARK’s 0.177s), around 8x is a small trade-
off for this performance gain.

Index Terms—ZKP, zk-SNARK, CP-SNARK, Sigma protocol,
Pedersen commitment

I. INTRODUCTION

Zero-knowledge proofs, originating from the work in [1],
have profoundly influenced modern cryptography by enabling
a prover to prove that a statement is valid without revealing any
details beyond its correctness. These proofs have evolved, tran-
sitioning from theoretical constructs to essential components
in practical applications, such as succinct non-interactive argu-
ments of knowledge (zk-SNARKs). Such proof systems reduce
both the proof size and the computational effort required by the
verifier to sub-linear levels relative to the statement. Generic
zero-knowledge proof systems using a single homogeneous
representation tend to incur the large computational cost on
the prover side as the circuit grows. Simply, imagine proving

† Byeongjun Jang is with Kookmin University, Seoul, Korea (email:
byeongjunjang98@gmail.com).

∗ Gweonho Jeong is with Hanyang University, Seoul, Korea (email:
kwonhojeong@hanyang.ac.kr).

∗ Hyuktae Kwon is with Hanyang University, Seoul, Korea (email: kwon-
hyuktae00@gmail.com).

∗ Hyunok Oh is with Hanyang University, Seoul, Korea (email:
hoh@hanyang.ac.kr).

† Jihye Kim is with Kookmin University, Seoul, Korea (email: ji-
hyek@kookmin.ac.kr).

many commitments within a single circuit: it would increase
the circuit size, leading to impractically large proving time
and CRS size. This inefficiency can be mitigated through
the commit-and-prove SNARK (CP-SNARK) approach, which
effectively links different proof systems using commitments.
Thus CP proof systems enhance performance due to their
modularity and choice-free adaptability for the nuances of a
computation.

In the CP-SNARK literature, LegoSNARK [2] defines a
“lifting” compiler to convert commit-carrying SNARK (cc-
SNARK) into CP-SNARK. This tool requires a linking proof
system to prove that multiple commitments open to the same
value. For example, using QA-NIZK [3] requires O(l) pairing
operations and demands O(l) key space on the verifier’s
side, where l is the number of commitments. Similarly, the
compressed Σ-protocol in Eclipse [4] generates a proof of
size O(log l)1 and still requires the verifier to maintain linear
key space. Certain environments like smart contract restrict
the practicality of these proof systems, as these intensive
system resource demands directly translate to higher user
costs. Specifically, on the Ethereum Virtual Machine, a pairing
operation requires 45,000 gas, each group exponentiation
consumes 6,000 gas, and storing 32 bytes cost 20,000 gas.
Although proving multiple commitments in a batch is naturally
more advantageous than proving them individually, to the best
of our knowledge, no practical method currently exists that
efficiently proves multiple commitments while considering
both the prover and verifier.

In this paper, we provide a verifier-friendly batching module
for cc-SNARK under Pedersen engines, which can demon-
strate the equivalence between a committed message and its
committed chunks efficiently.

A. Applications

Commitment can be employed to validate confidential data
while preserving privacy. However, if numerous commitments
are involved, verifying each one can be inefficient. Motivated
by this, we propose a batching scheme that enables simulta-
neous verification of multiple commitments. To emphasize the
importance of our scheme, we present high-level use cases of
batching functionality in the following applications.

1) Proof of solvency: It is notable in financial applications
to ensure that institutions can meet their liabilities. In such
scenarios, each customer’s balance must remain confidential,
and the individual can check their own balance against the

1We omit the each committed vector size d for legibility.

2

institution’s reported totals. To protect individual privacy, com-
mitments related to accounts are published on the blockchain,
enabling verification that each commitment has been properly
formed. The batching technique enables proving of each com-
mitment through a single proof. This functionality is essential
for institutions that manage a large number of individual
customer balances, providing a robust and privacy-preserving
solution in the financial sector.

2) Digital credentials: In scenarios where individuals or
members of organizations need to maintain anonymity while
proving ownership of credentials—such as digital certificates
issued by authorities. Each user’s credentials are committed
and stored by a third-party service, enhancing privacy and
reducing data storage burdens on the individual. For instance,
in settings where a service provider frequently validates their
users’ credentials against public commitments, the batching
technique simplifies the process. Instead of generating a sep-
arate proof for each user, the service provider can accumulate
multiple requests and generate a single proof that collectively
validates all of them. This batching approach not only ensures
privacy but also significantly reduces the computational and
time costs associated with proof generation.

B. Technical Overview

In this section we briefly give a high level overview of our
technique. We leverage the additive homomorphic property of
Pedersen commitments to perform randomized aggregation of
multiple commitments, and prove them using a Σ-protocol
with cc-SNARK. In the Prove algorithm, the prover P takes
an instance x and a witness w as inputs in which w can
be split into a committed witness (u) and a non-committed
witness (ω). Then the prover computes a proof π and a
proof-dependent commitment c̃m, where the commitment is
uniquely generated and based on the commitment key ck.
If a cc-SNARK is constructed under Pedersen engines, the
commitment can be regarded as algebraic commitment (i.e.
Pedersen commitment). LegoSNARK [2] leverages this point
to efficiently prove Pedersen vector commitment. Proof sys-
tems such as Plonk [5], which operate under the algebraic
group model assumption and use polynomial commitment
(PC) scheme (e.g., KZG10 [6]), can output a commitment
for the committed witness u as Pedersen commitment by
adding committed witness-encoded polynomial when proving
the relation R(x; (u,ω)).

Aggregation of multiple Pedersen commitments. We start
from defining a relation R as proving knowledge of multiple
commitments under the committer key ck. The relation R
can be shortly expressed as, where Com is denoted by a
commitment scheme

R(x;w) =

{
(ck, {cmi}i∈[l]);

({mi}i∈[l] , {oi}i∈[l])
: ∀(cmi, oi) = Com(ck,mi)

}
However if attempting to efficiently prove the above relation
using only cc-SNARK, generating l independent proofs in a
naive manner would result in inefficient performance. This im-
plies that when multiple commitments {cmi}li=1 are present,
which will be referred as Listcm, it requires an additional

proof system for proving linkage between the proof-dependent
commitment c̃m of cc-SNARK and Listcm.

To improve this inefficiency, we propose generating each
commitment cmi based on a portion ck1 of the commit-
ment key ck from cc-SNARK. We then aggregate l-multiple
commitments into a single commitment cmagg, thus proving
the correlation between Listcm and cmagg without requiring
an additional proof system. For example, assuming the form
of each commitment cmi is Pedersen commitment under the
same commitment key ck1 of cc-SNARK, we can employ the
additively-homomorphic property to simply linear encode the
knowledge of cmi such as cmagg =

∏l
i=1 cmi. However, since

it does not ensure that the knowledge for each commitment
resides in an independent space, we cannot extract each
knowledge of cmi from cmagg. Therefore, we compute cmagg

by employing linear combination with a randomness, blending
it with arbitrary value τ . We can briefly ensure independence
to each commitment by adding a random coefficient using
powers of τ , such that

cmagg =

l∏
i=1

(cmi)
τ i

(1)

Combine the cc-SNARK with Σ-protocol. Since we aim
to prove Listcm with a single commit-carrying SNARK proof
πcc, we must assume that each commitment cmi already
exists, rather than being generated during the Prove algorithm.
However, if the prover arbitrarily selects the randomness τ ,
they could potentially generate the simulated commitment
cm′agg, which is different from the original cmagg. For example,
if the aggregator function is defined as Agg({mi}i∈[l]) :=∑l

i=1 τ
i ·mi, there are numerous possible solutions (m′i) that

can simulate a valid aggm, such that:

aggm = Agg({mi}i∈[l]) = Agg({m′i}i∈[l])

Thus we need a robust method to prevent this issue without
an additional proof system. To achieve that, we utilize a Σ-
protocol. The prover computes a commitment that encodes the
knowledge of Listcm ahead of time. Once a verifier V chooses
a random challenge, the prover P computes the aggregated
knowledge (aggm and aggo) of the batched commitment cmagg

by an aggregator function Agg. Its relation can be expressed
as defined below:

RBatch(x; (u,ω)) =

{
τ ;(

aggm, aggo,

{mi, oi}i∈[l]

)
:

aggm = Agg({mi}i∈[l])

∧ aggo = Agg({oi}i∈[l])

}
The prover does not provide the batched commitment cmagg.
Instead, the verifier reconstructs cmagg using Listcm and the
challenge.

C. Our Contributions

A new batching module for cc-SNARK: Lego-DLC. We
propose a new module by applying Σ-protocol to commit-
carrying SNARK that efficiently proves multiple Pedersen
commitments with a single proof, significantly reducing the
computational overhead compared to traditional approach (i.e.

3

(cm1, o1)← Com(ck1,m1)

(cm2, o2)← Com(ck1,m2)

...

(cml, ol)← Com(ck1,ml)

Com {mi, oi}i∈[l]ck1 aggm ← Agg({mi}i∈[l])

aggo ← Agg({oi}i∈[l])

u := (aggm, aggo, . . .)

Πcc.Prove

Fig. 1: Overview of our approach for aggregation of multiple commitments based on cc-SNARK. ck1 denotes the portion of
commitment key ck from cc-SNARK.

in-the-circuit). Additionally, akin to the transition method from
cc-SNARK to CP-SNARK as introduced by LegoSNARK,
this module can operate similarly through a linkable protocol.
By aggregating commitments prior to proving linkage, it
significantly improves efficiency over the method originally
proposed in LegoSNARK.

Implementation and Evaluations. We have implemented and
empirically tested our scheme, demonstrating its practical
efficiency and scalability in handling large batches of com-
mitments, providing a substantial improvement over existing
approaches. Using our module with commit-carrying Groth16,
we achieve meaningful performance improvements: for 216

Pedersen commitments, it takes only about 1.413s, which is
a substantial enhancement compared to the in-the-circuit ap-
proach. For 210 commitments, our system can generate proofs
in just 59 ms, whereas the in-the-circuit method takes approx-
imately 57.203 seconds, showing a performance difference
of about 970x. In comparison experiments conducted under
the same environment with the related research, LegoSNARK,
at 216, LegoSNARK exhibits a prover time of about 0.177s,
while our system shows 1.413s, making our system about 8
times slower. However, for the verifier time, our system takes
0.064s compared to 1.972s for LegoSNARK, indicating a no-
table performance advantage. From an application perspective,
performance metrics on the blockchain demonstrate that our
system can verify 210 commitments at about 5.2 transactions
per second (TPS), offering more practical utility compared to
LegoSNARK’s 0.5 TPS.

D. Related work

The approach on integrating different proof systems has pro-
gressed with the goal of getting the computational efficiency,
as evidenced by several studies [7, 2, 4, 8]. One important
work of these studies, Chase et al. [7], provides a method that
combines algebraic-based proofs, such as Σ-protocols, with
garbled circuit proofs. This technique efficiently computes al-
gebraic operations through algebraic-based proofs and handles
non-algebraic operations using garbled circuit proofs. How-
ever, since this approach leverages a private garbling scheme
from JKO13 [9], the necessity for private garbled circuits
imposes limitations on the applicability to proof systems that
do not employ such circuits. LegoSNARK [2] introduces a
generic framework for constructing composite system from
different proof systems by linking different systems using
a generic compiler to build the generic integration of proof
systems. In the paper, it shows a high-performance commit-
and-prove proof system for proving Pedersen commitment,

instantiated in a modular manner. This approach is more
efficient than traditional methods (i.e. the commitment is
encoded in the circuit). Eclipse [4] has crafted a compiler
that transforms proof system based on algebraic holographic
proof into commit-and-prove SNARK. Using compressed Σ-
protocols, the proof systems such as Plonk [5], Sonic [10],
and Marlin [11] can be instantiated into commit-and-prove
SNARK with logarithmic proof size. In the recent study
detailed in [8], the authors provide techniques for offloading
non-native arithmetic operations from zero-knowledge circuits.
By employing Σ-protocols for proving algebraic operations
and SNARK for non-algebraic parts, the paper reduces the
computational burden typically associated with embedding
complex arithmetic in zero-knowledge circuits.

II. PRELIMINARIES

A. Notations

We use a or {ai} for the list of elements, which is
equivalent to a vector. We denote by λ a security parameter
and by ϵ(·) as a negligible function. Let F denote a finite field
and G denote a group. A bilinear group generator BG takes
a security parameter as input in unary and returns a bilinear
group (p,G1,G2,GT , e) consisting of cyclic groups G1, G2,
GT of prime order p and a bilinear map e : G1 ×G2 → GT .
Given a security parameter 1λ, a relation generator RG returns
a polynomial time decidable relation R ← RG(1λ). For
(x,w) ∈ R we say w is a witness to the instance x being in
the relation. We use the bracket for any bilinear group such
as [a]s ≡ a · gs ∈ Gs.

B. Pedersen vector commitment

Pedersen vector commitment for vector w of size n can be
expressed succinctly with the following algorithms:

• Ped.Setup(1λ): chooses g $← G, h $← Gn from a domain
D. It outputs a commit key ck := (g,h).

• Ped.Commit(ck,m; o): returns cm := (o,m)⊤ · ck.
• Ped.VerCom(ck, cm,m, o) : returns true if cm =

(o,m)⊤ · ck. Otherwise, false.

Lemma 1. The Pedersen vector commitment is perfectly
hiding and computationally binding if the discrete logarithm
assumption holds.

C. Succinct Non-interactive arguments of knowledge

Definition 1. A succinct non-interactive arguments of knowl-
edge (SNARK) for R is a tuple of algorithms ΠSNARK =
(SetUp, Prove, Verify) working as follows:

4

• crs := (ek, vk) ← SetUp(R): takes a relation R ←
RG(1λ) as input and returns a common reference string
crs consisting of an evaluation key ek and a verification
key vk.

• π ← Prove(ek,x,w): takes an evaluation key ek, a
statement x, and a witness w as inputs, and returns a
proof π.

• true/false← Verify(vk,x, π): takes a verification key vk,
a statement x, and a proof π as inputs and returns false
(reject) or true (accept).

It satisfies completeness, knowledge soundness, and suc-
cinctness described as below:

Completeness. Given a true statement x, for all relation R
and for all (x;w) ∈ R,

Pr

[
crs← SetUp(R),

π ← Prove(ek,x,w)
: Verify(crs,x, π) = 1

]
= 1

Knowledge Soundness. Knowledge soundness states that a
prover must know a witness and such knowledge can be
efficiently extracted from π by a knowledge extractor E .
Formally, the following is negligible for any PPT adversary
A.

Pr

 crs← SetUp(R), Verify(crs,x∗, π∗) = true

(x∗, π∗)← A(crs), : ∧
w ← EA(transA), (x∗;w) /∈ R

Succinctness. Succinctness states that the argument generates
the proof of polynomial size in the security parameter, and
the verifier’s computation time is polynomial in the security
parameter and in statement size.

Remark. A SNARK may also satisfy zero-knowledge. It states
that the system does not leak any information besides the truth
of the statement. This is modelled by a simulator that does
not know the witness(but has some trapdoor information that
enables it to simulate proofs). We refer to it as a zk-SNARK
in this scenario.

Commit-carrying SNARK. There exists a variant of commit-
and-prove SNARK (SNARKcp), referred to as a commit-
carrying SNARK (SNARKcc), which is a SNARK whose proof
includes a commitment to the portion of witnesses. It also
satisfies completeness, succinctness, knowledge soundness,
and binding. A commit-carrying SNARK consists of a set of
algorithms, represented as tuple Πcc.
• crs := (ck, ek, vk) ← SetUp(R) : takes a relation R

as input, and outputs a common reference string which
includes a commitment key ck, an evaluation key ek, and
a verification key vk.

• (c̃m, π, õ) ← Prove(ek,x;w) : takes an evaluation key
ek, a statement x and a witness w := (u,ω) such that
the relation R holds as inputs, and outputs a proof π, a
proof-dependent commitment c̃m and an opening õ such
that VerCom(ck, c̃m,u, õ) = true.

• true/false ← Verify(vk,x, c̃m, π) : takes a verification
key vk, a statement x, a proof-dependent commitment
c̃m, a proof π as inputs, and outputs true if (x, c̃m, π) ∈
R, or false otherwise.

The commit-carrying SNARK satisfies the properties of
completeness, succinctness, knowledge soundness, zero-
knowledge, and binding.

D. Σ-protocols

With an arbitrary relation R(x,w), we briefly recapitulate
Σ-protocols. A Σ-protocol for the relation R is a three-round
interactive proof system between a prover (with x and w)
and a verifier (with x). ΠΣ consists of a tuple of efficient
algorithms (Com, Chl, Res) run as follows:
• P runs Com(x,w)→ a: sends a commitment a
• V runs Chl() → c: chooses a challenge c is distributed

uniformly at random and sends c to P .
• P runs Res(x,w, c) → z: returns some response value

z.
• V runs Verify(x, (a, c, z)) returns a bit b ∈ {0, 1}. If

b = 1, the verifier accepts the proof, otherwise rejects.
where (a, c, z) is called transcript. A Σ-protocol satisfies com-
pleteness, special soundness, (honest verifier) zero-knowledge.

Completeness. δ-completeness is satisfied if honestly-
generated transcripts always verify, unless the prover aborts,
which occurs with a probabilty of δ. Formally, (x,w) ∈ R
we have that, for all honestly generated transcripts (a, c, z)

Pr [Verify(x, a, c, z) = 1 | z ̸= ⊥] = 1, and Pr [z = ⊥] = δ

Special soundness. Special soundness is satisfied if there
exists an efficient extractor E that, for any PPT adversary A,
returns a statement x and two distinct accepting transcripts
(a, c0, z0), (a, c1, z1) where c0 ̸= c1 such that E(x, (a, c0, z0),
(a, c1, z1)) extracts a valid witness w with an exception
probability ϵ, known as the knowledge soundness error.

Honest verifier zero-knowledge. Honest verifier zero-
knowledge is satisfied if there exists a simulator S such
that for all (x, w) ∈ R the following distributions are
indistinguishable.

{(a, z)|c← Chl(); a, z ← S(x, c)}

{(a, z)|c← Chl(); a← Com(x,w); z ← Res(x,w, c)}

III. A NEW BATCHING MODULE FOR CC-SNARK:
Lego-DLC

A. Bifurcate commitment key

In the setup phase of cc-SNARK, a common reference string
crs := (ck, ek, vk) is generated. Similar to commit-and-prove
approach, where commitments are pre-computed and proved,
we posit that the commitment key ck can likewise be used to
compute each commitment cmi within cc-SNARK. Then we
split the commitment key ck into two parts, denoted as

ck := (ck1, ck2)

5

Specifically ck1 serves as the commitment key enabling the
prover to generate multiple commitments that the prover aims
to prove. The secondary commitment key, ck2, acts as a bridge
by encapsulating the knowledge of these commitments (e.g.,
mi, oi) as committed witnesses within the commit-carrying
SNARK. We define Listcm as a commitment list where each
cmi and oi is generated by commitment scheme Com with
commitment key ck1 and values of mi, for i ∈ [l]. Each
commitment cmi is constructed as:

(cmi, oi) = Com(ck1,mi)

At this point, the committed witness u consists of pairs
(mi, oi) indexed by i ∈ [l], which is used to compute a proof-
dependent commitment c̃m under a commitment key ck2:

u = {mi, oi}i∈[l], (c̃m, õ) = Com(ck2,u)

The prover’s claim is that each commitment cmi is committed
to mi, and the proof-dependent commitment c̃m is committed
to the committed witness u. It can be expressed as:

{VerCom(ck1, cmi,mi, oi)}i∈[l] ∧ VerCom(ck2, c̃m,u, õ)

B. Batched commitment with Σ-protocol

Recall that the proof-dependent commitment c̃m in cc-
SNARK, each of pairs (mi, oi) can be viewed as in a commit-
ted witness u. However, c̃m cannot be considered as the proof-
dependent commitment for the multiple commitment relation
R, since we must prove the knowledge of each of commitment
based on the identical commitment key ck1. Thus, since the
naive existing cc-SNARK cannot prove the multiple commit-
ments at once, the linking proof system must be required. To
handle this limitation and facilitate the aggregation of multiple
commitments into a single commitment, we use a randomness
τ to apply unique encoding to each message and opening such
as

aggm =

l∑
i=1

τ i ·mi aggo =

l∑
i=1

τ i · oi.

By attaching a unique identifier through the linear combination
with the randomness, each element is independently encoded.
Then we add aggregated values (aggm, aggo) into committed
witness u. At this point, we can prove that accumulated values
(aggm, aggo) are correctly derived from the pairs (mi, oi)
within the circuit, which requires the prover to engage in only
O(l) field operations to evaluate aggm and aggo. Specifically
the witness w can be expressed as follows.

w = (u,ω) =
({

aggm, aggo, {mi, oi}i∈[l]
}
,ω

)
The prover sends a proof-dependent commitment c̃m along

with the proof π to the verifier, who then checks the validity
of π using the commitments cmi. However, there remains
an issue to consider in our protocol: while it is possible to
combine the knowledge of each commitment into a single
value using randomness to ensure knowledge integrity, the
prover can compute a simulated proof-dependent commitment
c̃m. Our verifier knows the commitments cmi but does not
know the underlying knowledge for each commitment. This

means that if the prover does not fix the proof-dependent
commitment, it would be impossible to extract the knowledge
of each commitment. To prevent this, we employ a Σ-protocol.
Rather than concurrently transmitting the proof-dependent
commitment c̃m and the proof, we first bind the knowledge
within c̃m and send it ahead of the proof. Subsequently, the
verifier sends a challenge τ to the prover in the Chl phase.
This procedure ensures that the prover cannot generate the
knowledge of cmagg before knowing the challenge. Upon
receiving τ , the prover constructs cmagg, and then sends the
proof π for the cc-SNARK, excluding the proof-dependent
commitment in the Res phase. The verifier can verify the proof
with Listcm.

C. Putting Together

Our protocol is also a three-move protocol between a prover
P and a verifier V with a triple of algorithms: Com,Chl,Res.
In the literature on Σ-protocols, it is common to present the
interactive form of protocol, as it can straightforwardly be
converted to a non-interactive version by applying the Fiat-
Shamir transform, ensuring security in the random oracle
model (ROM). Additionally, our protocol leverages commit-
carrying SNARK (SNARKcc) under Pedersen engines, which
means that a proof is constructed as group linear encoding.
Note that the commitment key ck of SNARKcc consists of
(ck1, ck2).

Protocol. By Πcc.SetUp algorithm, the prover and verifier
have a common reference string crs := (ck, ek, vk) for the
following relation RBatch.

RBatch(x;u) =

τ ;

(aggm, aggo),

({mi}i∈[l] , {oi}i∈[l])

:

aggm =

l∑
i=1

τ
i ·mi

aggo =

l∑
i=1

τ
i · oi

In our protocol, the prover’s input is each of pairs (mi, oi)
and a commitment list Listcm := {cmi}i∈[l] committing
to values mi with the opening oi under the partial com-
mitment key ck1. The verifier’s input to the protocol is
a commitment list Listcm. In the committing phase, the
prover P computes a proof-dependent commitment c̃m as
Ped.Commit(ck2, {mi, oi}i∈[l] ; õ) where õ is a random chosen
in SNARKcc. Then P sends a message c̃m to the verifier
V . Given the proof-dependent commitment c̃m, the verifier
chooses a challenge τ

$← F and sends it to the prover P . The
prover runs Πcc.Prove(ek,x,w) to generate a proof πcc. The
prover returns the proof πcc as a response to the verifier V . The
verifier, given the commitment list Listcm and the challenge τ ,
verifies the proof. Formally we describe the protocol as an
interactive Σ-protocol in Figure 2.

D. Commit-and-prove SNARK for our protocol

In this section, we extend our protocol to commit-and-prove
SNARK for multiple Pedersen commitments. Initially, we
assume that there exists an external commitment scheme, de-
noted by Comext, which satisfies the properties of binding and
hiding. The algorithms of Comext consists of two algorithms

6

Initialization: A trusted party T , given a relation RBatch

and a security parameter 1λ, generates (ck, ek, vk) through
Πcc.SetUp. The commmitment key ck can be split
into (ck1, ck2). We denote l-Pedersen commitments by
Listcm := {cmi}i∈[l], each based on the batching key ck1.

Prover and Verifier: A prover P knows the message mi

and the opening oi corresponding to each commitment
cmi, as well as an auxiliary instance x and a witness
w. P then follows the subsequent procedure to generate
a zk-SNARK proof π. The prover and verifier run the
following Σ-protocol.

1) P chooses a random õ
$← F. Then P computes a

proof-dependent commitment c̃m as follows, where
mi and oi refer to the message and opening of each
commitment:

c̃m := Ped.Commit(ck2, {mi, oi}i∈[l] ; õ)

2) P sends a proof-dependent commitment c̃m to V .
3) V chooses a random τ

$← F, and returns it to P .
4) P computes the aggregated message aggm and

opening aggo through the powers of τ as follows:

aggm :=

l∑
i=1

τ i ·mi, aggo :=

l∑
i=1

τ i · oi

5) P runs Πcc.Prove(ek,x,w), and generates a proof
πcc where a witness w := (u,ω) and u constructed
as

u :=
{
aggm, aggo, {mi, oi}i∈[l]

}
6) Finally, P returns πcc to V .
7) V runs the following algorithm to verify the proof

πcc:
a) V computes cmagg using the powers of τ .
b) Lastly V runs

Πcc.Verify(vk,x, c̃m · cmagg, πcc)

where x := τ

Fig. 2: Our protocol applying Σ-protocol for proving multiple
Pedersen commitments

(SetUp, Com). Simply, SetUp is a function that produces a
commitment key ckext suitably. The committing algorithm
Com outputs a commitment ĉm upon receiving an input
message m and opening o. For practical implementations, we
utilize the Pedersen vector commitment scheme described as
our external commitment scheme Comext.

We aim to validate multiple pre-generated l-commitments
Listĉm by Comext using our protocol through a commit-
and-prove approach. Typically, a conventional commit-and-
prove framework requires that all l-commitments be included
in the relation. Since we can prove multiple commitments
within a single proof by applying our protocol, we leverage

this advantage when we require commit-and-prove approach.
More specifically, if our protocol verifies correctly, the verifier
becomes aware of the value for cmagg. If the messages
m̂i of l-commitments Listĉm generated by Comext and the
messages mi committed in our protocol are same, we prove
their coherence not by individually proving each commitment
corresponds to the same message, but by employing the same
challenge used in our protocol to generate cmagg. Thus, we
can effectively design a commit-and-prove SNARK system
using a condensed form, represented as ĉmagg and cmagg.
This approach allows us to employ a Non-Interactive Zero-
Knowledge Argument of Knowledge (NIZKAoK) to prove that
two aggregated commitments under different keys correctly
encode the same underlying data. The relation RBatch

Eq can be
expressed as follows

RBatch
Eq (x;w) =

{
(ĉk, ck),

(ĉmagg, cmagg);

(aggm, ˆaggo, aggo)

:
ĉmagg = Comext(ĉk, ˆaggm, ˆaggo)

cmagg = Com(ck, aggm, aggo)

}

We can prove the above relation RBatch
Eq using simple Σ-

protocol, but like LegoSNARK [2] we can also use several
schemes such as QA-NIZK [3], compressed-Σ protocol.

IV. SECURITY PROOF

Theorem 1. Our protocol for the relation RBatch satisfies
completeness, computational special soundness, and honestly
verifier zero-knowledge

Proof. We focus on special soundness and zero-knowledge in
priority since completeness is relatively straightforward.

Completeness. It reduces to the completeness of commit-
carrying SNARK. Therefore, the verification equation is al-
ways satisfied.

Special soundness. It reduces to the knowledge soundness
of commit-carrying SNARK and the binding property of
Pedersen commitments.

We define a knowledge extractor E that on input Listcm ∈
Gl

1, and two accepting transcripts Tr0 := (c̃m, τ∗, π∗cc) and
Tr1 := (c̃m, τ ′, π′cc) we must recover {mi, oi}i∈[l] such that

{cmi = Ped.Commit(ck1,mi; oi) | i ∈ [l]}

If given the proofs are valid, by leveraging knowledge
extractor for the commit-carrying SNARK proofs we can
extract the following with all but ϵcc which is the extractor
failed error{
agg∗m, agg∗o, {m∗i , o∗i }i∈[l] , õ

∗
}
,
{
agg′m, agg′o, {m′i, o′i}i∈[l] , õ

′
}

such that

c̃m = Ped.Commit(ck2, {m∗i , o∗i }i∈[l] ; õ
∗)

= Ped.Commit(ck2, {m′i, o′i}i∈[l] ; õ
′)

However, by the binding of Lemma 1, the probability of
having two pairs of a Pedersen commitment is negligible.

7

This means that {m∗i , o∗i } = {m′i, o′i} with all but negligible
probability ϵ̃binding. Therefore we have that

agg∗m =
∑
i∈[l]

τ∗
i

·m∗i , agg∗o =
∑
i∈[l]

τ∗
i

· o∗i , (2)

agg′m =
∑
i∈[l]

τ ′
i ·m∗i , agg′o =

∑
i∈[l]

τ ′
i · o∗i . (3)

From the verification equation, we can compute a batched
commitment cmagg using the randomized aggregation for
Listcm and the two challenges τ∗, τ ′ under the commitment
key ck1. For the legibility we denote these elements by
cm∗agg and cm′agg respectively. We can express these batched
commitments as

cm∗agg = Ped.Commit(ck1, agg
∗
m, agg∗o)

cm′agg = Ped.Commit(ck1, agg
′
m, agg′o).

where

agg∗m =
∑
i∈[l]

τ∗
i

·mi, agg∗o =
∑
i∈[l]

τ∗
i

· oi, (4)

agg′m =
∑
i∈[l]

τ ′
i ·mi, agg′o =

∑
i∈[l]

τ ′
i · oi. (5)

Since the proofs are verified, we can say that with all but
ϵbinding,

agg∗m = agg∗m, agg∗o = agg∗o, agg′m = agg′m, agg′o = agg′o

Combining equations (2) to (5), we obtain the following result:∑
i∈[l]

(
τ∗

i

− τ ′
i
)
(m∗i −mi) = 0,

∑
i∈[l]

(
τ∗

i

− τ ′
i
)
(o∗i − oi) = 0

Since the challenges (τ∗, τ ′) are distinct,
(
τ∗

i − τ ′
i
)

terms
cannot be 0, and for all i ∈ [l]

m∗i = m′i = mi, o∗i = o′i = oi.

Therefore E extracts a valid witness for the commitment list
(Listcm) with error ϵ = ϵcc + ϵ̃binding + ϵbinding.

Zero-knowledge. Informally we show that it is hard for an
adversary A to distinguish simulated transcripts from real tran-
scripts generated by an honest prover via a hybrid argument
on the distribution of prover transcripts. Note that we denote
a simulator as S, which can choose c̃m, τ and simulate πcc

for the statement Listcm.
• Game0: An honestly-generated prover transcript is tuple

(c̃m, τ, πcc).

• Game1: π∗cc is computed using S for (Listcm, c̃m, τ). The
two distributions are indistinguishable by zero-knowledge
of πcc.

Since the simulated transcript is indistinguishable from real
transcript via hybrid argument, our protocol satisfies honestly
verifier zero-knowledge.

NILP.SetUp(R)→ σ

α, β, γ, δ, η , x
$← F, and define yi(x) := βai(x) + αbi(x) + ci(x)

σ1 ←

 1, α, β, δ,
{
xi
}d−1

i=1
,{

yi(x)

γ

}l

i=1
,
{

yi(x)

δ

}n

i=l+1
,

{
xit(x)

δ

}d−2

i=0

,
η

γ
,
η

δ

σ2 ←

(
1, β, γ, δ,

{
x
i
}d−1

i=1

)
return σ := (σ1,σ2) ∈ F(m+2d+6) × Fd+4

NILP.PrfMtx(R,σ,w)→ (Π1,Π2)

parse w as (u,ω),σ as (σ1,σ2) , and r, s, v
$← F

Π1 ∈ F3×(m+2d+6)
,Π2 ∈ F1×(d+4)

s.t. (A,C,D)
⊤

= Π1 · σ1, B = Π2 · σ2

A← α +
n∑

i=0

wiai + rδ ; B ← β +
n∑

i=0

wibi(x) + sδ

C ←
n∑

i=l+1

wi
yi(x)

δ
+

d−2∑
i=0

hix
it(x)

δ
+ As + Br − rsδ −

vη

δ

D ←
l∑

i=0

wiyi(x)

γ
+

vη

γ

NILP.Test(R)→ true/false

check A · B = α · β + C · δ + D · γ

Fig. 3: A NILP tailored for an augmented QAP relation,
underpinning the ccGro16 [2]. The boxed elements indicate
terms introduced in the modification from Gro16 [12] to the
construction of ccGro16.

V. INSTATIATION BASED ON ccGro16 [12, 2]

A. Overview

LegoSNARK [2] introduces the commit-carrying SNARK
version (ccGro16) based on the SNARK of Gro16. The scheme
is constructed from the Non-Interactive Linear Proof (NILP),
a cryptograhpic primitive of Gro16.

Non-Interactive Linear Proof (NILP). A NILP comprises
a tuple of algorithms (SetUp,PrfMtx,Test) operating in the
following manner:
• SetUp: takes a relation R (e.g., QAP) as input, and

returns vectors σ := (σ1,σ2) ∈ Fκ1 × Fκ2 .
• PrfMtx: given a relation R and a pair (x,w), outputs two

matrices (Π1,Π2) ∈ Fm1×κ1 × Fm2×κ2 . This facilitates
the computation of a proof (π1,π2) as (Π1 ·σ1,Π2 ·σ2).

• Test: upon receiving a relation R and a statement x,
yields a set of matrices T1, . . . , Tµ ∈ F (m1+κ1)×(m2+κ2),
with the acceptance condition for a proof (π1,π2) being
(σ⊤1 ,π

⊤
1) · Ti · (σ⊤2 ,π⊤2) = 0 for all i = {1, . . . , µ}.

Also, NILP satisfies completeness, statistical knowledge
soundness, and zero-knowledge properties.

Generic SNARK compiler based on NILP. A compiler for
constructing a generic SNARK based on NILP is depicted in
Figure 4.

Here is a brief overview of how commit-carrying SNARK
based on Groth16 work, as described in figure 3. This

8

SetUp(R)→ σ

(σ1,σ2)
$← NILP.SetUp(R)

return σ := ([σ1]1, [σ2]2)

Prove(R,σ,x,w)→ π

(Π1,Π2)
$← NILP.PrfMtx(R,x,w)

[π1]1 ← Π1 · [σ1]1

[π2]2 ← Π2 · [σ1]2

return π := ([π1]1 , [π2]2)

Verify(σ,x,w)→ true/false

T1, .., Tµ
$← NILP.Test(R,x), L = ([σ1]1, [π1]1)

⊤
, R = ([σ2]2, [π2]2)

⊤

return ∀i :
[
0
]
Ti

?
= L · Ti · R

Fig. 4: A compiler a split NILP to SNARK in asymmetric
groups

construction aims to design a commit-carrying SNARK that
provide double binding when proving the satisfiability of QAP
relations s.t. R(x, (u,w)). This scheme includes a binding
commitment to a portion u of the witness, with the public
input being void (i.e. x = ⊥). LegoSNARK leverages the fact
that witness encoded polynomials are linearly independent,
and its structure can be seen as linear group encoding (e.g.,
Pedersen commitment). Therefore, LegoSNARK adds a blind-
ing factor, reconstructs the common reference string crs, and
generates a new term [D]1, which is a proof-dependent com-
mitment. The term [D]1 is structurally similar to a Pedersen
commitment and is verified through the following verification
equation as

Ped.VerCom(ck, [D]1,u, v)
?
= true/false

B. Our instantiation: Gro16Lego-DLC
cc

We introduce Gro16Lego-DLC
cc described in figure 5, which

is designed from ccGro16 by applying our Σ-protocol. The
commitment key ck generated during SetUp can be viewed
as

{
yi(x)
γ , η

γ

}
. Without loss of generality, assume the public

input consists solely of τ and the non-committed witness is
empty. We denote the starting indices for ck1 and ck2 as pfx1
and pfx2, respectively. Thus ck1 and ck2 are represented as
follows

ck1 :=

{
ypfx1+i(x)

γ

}
, ck2 :=

η

γ
,

{
ypfx2+i(x)

γ

}
Each commitment cmi in Listcm is computed under ck1.
The proof-dependent commitment c̃m is computed as c̃m =
Ped.Commit (ck2, {mi, oi} ; v) where v is an opening chosen
by ccGro16. In the verification, the final proof-dependent
commitment [D]1 can be computed by computing cmagg and
performing a group addition of three group elements: [cmagg]1,
[c̃m]1, and [PI]1, where [PI]1 represents the result of the
linear encoding of the public input.

VI. INSTATIATION BASED ON PLONK [5]

A. Overview

Plonk [5] is a universal SNARK, which use polynomial
commitment scheme to prove knowledge of any arbitrary
relation R. Polynomial commitment scheme (PC) enables a

Initialization: A trusted party T , given an arbitrary
relation RBatch and a security parameter 1λ, generates
(ck, ek, vk) through ΠccGro16.SetUp where ck consists of
(ck1, ck2).

Prover and Verifier: The prover and verifier execute the
Σ-protocol described in Figure 2, applying the specific
procedures outlined below, with all other remaining pro-
cesses the same.
• In committing phase, P computes a proof-dependent

commitment c̃m by mapping each commitment’s
message u and opening o as follows:

c̃m := v · η
γ
+

l−1∑
i=0

(
ui ·

ypfx+2i(x)

γ
+ oi ·

ypfx+2i+1(x)

γ

)
where pfx refers to the prefix index related to the
committed witness for each of cm.

• In proving phase, P runs ΠccGro16.Prove(ek,x;w),
and generates a proof πcc := ([A]1, [B]2, [C]1) in
which P uses the chosen opening v in committing
phase.

• In verification phase, the verifier V computes cmagg

using binary encoding technique, and then V gener-
ates a [D]1 such that

[D]1 := [cmagg]1 + [c̃m]1 + [PI]1

Lastly, V runs the following verification as

e([A]1, [B]2)
?
= e([a]1, [b]2) ·([D]1, [d]2) ·([C]1, [c]2)

where [a]1, [b]2, [c]1, [d]1 denote the group elements
within the verification key vk of Gro16.

Fig. 5: Gro16Lego-DLC
cc : Our construction from based on

ccGro16

prover to generate a commitment for a polynomial, valid at
any given point of evaluation. Subsequently, the prover sends
an opening proof for the verifier’s evaluation. If the used PC
is under group linear encoding for the public parameters such
as KZG commitment [6], our batch commit-carrying SNARK
scheme can also be applied in Plonk.

In the Plonk protocol, the prover proves knowledge of fan-
in 2 and fan-out 1 gate values for each of the N gates.
The constraint verification within Plonk is divided into gate
constraints and copy constraints. PC is used to prove the
validity of two constraints. We briefly describe Plonk [5]
protocol.

Constraint system. Plonk designs its own constraint system
that requires satisfying the following equation through the
use of selector vectors (ql, qr, qo, qm, qc) and wire vectors
(a, b, c)

ql,i · ai + qr,i · bi + qo,i · ci + qm,i · (aibi) + qc,i = 0

where we denote the left, right, and output wire as a, b, c.

9

Lagrange basis. Given a characteristic q of F and n satisfying
q ≡ 1 mod n, the multiplicative group of F∗ reduces a
subgroup H =

{
ζ, ζ2, . . . , ζn

}
generated by an n-th primitive

root of unity ζ ∈ F∗. By H, we can construct a zero-
polynomial zH(X) = Xn − 1, which can be expressed as
Xn−1 =

∏n
i=1(X−ζi). There exists a Lagrange basis Łi(X)

for each i ∈ [n] such that:

Li(X) =
ζi(Xn − 1)

n(X − ζi)

where
Li(ζ

i) = 1 ∧ Li(ζ
j) = 0 (i ̸= j)

Copy constraint. Let multiple polynomials be f =
(f1, f2, . . . , fℓ) ∈ F[X]ℓ and σ : ℓn → ℓn be a permutation.
For g = (g1, g2, . . . , gℓ) ∈ F[X]ℓ, we say that f = σ(g) if for
each i ∈ [n], j ∈ [ℓ] the following holds,

f((j−1)·n+i) := f(ζi)j g((j−1)·n+i) := gj(ζ
i), ∀l ∈ [ℓn] : gl = fσ(l)

Initialization: A trusted party T , given a security pa-
rameter 1λ, generates a commitment key ck through
ΠPC .SetUp where ck consists of (ck1, ck2).

Prover and Verifier: The prover and verifier execute the
Σ-protocol described in Figure 2, applying the specific
procedures outlined below, with all other remaining pro-
cesses the same.
• In committing phase, P computes a proof-dependent

commitment c̃m by mapping each commitment’s
message u and opening v1, v2 as follows:

c̃m := (v1X + v2)zH(X)

+

l−1∑
i=0

(
ui · Lpfx2,2i(X) + oi · Lpfx2,2i+1

(X)
)

where pfx refers to the position related to the com-
mitted witness for each of cm.

• During the proving phase, the prover P runs
ΠPlonk.Prove(ek,x,w) to generate a Plonk proof
π using a commitment and an evaluation to the
polynomial defined as

fu(X) := (v1X + v2)zH(X) +
∑
i∈[l]

−uiLi(X)

Here, P utitlizes the chosen opening v during the
committing phase.

• In verification phase, the verifier V computes a
batched commitment [uagg]1 using binary encoding
technique, and then V generates a [u]1 such that

[u]1 := [uagg]1 + [c̃m]1

Lastly, V verifies the proof with [u]1.

Fig. 6: PlonkLego-DLC
cc : Our construction based on Plonk

B. Our instantiation: PlonkLego-DLC
cc

Plonk leverage a polynomial commitment scheme (PC). If
the PC employs the [6] scheme, which uses a discrete log-
based group encoding of polynomial, a polynomial p(X) can
be represented as follows, with a commitment key ck :={
gx

i
}
i∈[n]

:

PC.Com(ck, p(X)) :=

n−1∏
i=0

gpi·xi

In the Plonk protocol, there exist the wire polynomials, which
can be shortly expressed as follows, with random blinding
scalars (v1, v2, . . . , v6) ∈ F

fL(X) = (v1X + v2)zH(X) +
∑
i∈[n]

wiLi(X),

fR(X) = (v3X + v4)zH(X) +
∑
i∈[n]

wn+iLi(X),

fO(X) = (v5X + v6)zH(X) +
∑
i∈[n]

w2i+iLi(X)

For the public input polynomial fpi(X), we can separate
the public input pi ∈ Fl into two parts (x,u), where we
regard u as committed witness. As in previous descriptions,
assume that the public input consists solely of τ , and the non-
committed witness is empty. We denote the starting indices
for ck1 and ck2 as pfx1 and pfx2, respectively. By integrating
blinding factors (v1, v2) into the committed witness encoded
polynomial fu(X) to ensure zero-knowledge, its form aligns
with that of wire polynomials such as

fu(X) = (v1X + v2)zH(X) +
∑
i∈[l]

−uiLi(X)

If we employ the KZG10 scheme, the polynomial commitment
of fu(X) can be recast as a Pedersen vector commitment using
a specific commitment key ck as{

[zH(X)], [zH(X)X], [(Li(X))i∈[n]]
}

We can split the commitment key into (ck1, ck2) as

ck1 := [Lpfx1,i(X)], ck2 := [zH(X)], [zH(X)X],
{
[Lpfx2,i(X)]

}
Hence we can construct a proof-dependent commitment for the
committed witness u, as c̃m := Ped.Commit(ck2, {mi, oi} ; õ)
where the opening õ consists of (s1, s2).

VII. EXPERIMENT

We implement SNARKBatch
cc based on top of Rust

Arkworks library2, which provides the useful cryptographic
primitives such as finite field and elliptic curve. We adopted
BN254 and BLS12-381, which are pairing-friendly elliptic
curve offering 128 bits of security. BN254 is used to compare
linking proof systems on a single computing platform, while
BLS12-381 is utilized for comparing proving and verifying
times using two distinct computing platforms. Specifications
for these devices are presented in table I. We implement and

2https://github.com/arkworks-rs

10

evaluate our scheme based on Groth16 [12] and Plonk [5],
which we denote as Gro16Lego-DLC

cc and PlonkLego-DLC
cc ,

respectively.

TABLE I: Device specification

Device Specification
OS: macOS 14.4.1

Device 1: Mac Pro (2021) CPU: M1 Pro
RAM: 32 GB

OS: macOS 14.4.1
Device 2: iMac (2019) CPU: i9-9900K

RAM: 64 GB

A. Microbenchmark

Execution time. Figure 7 illustrates the performance for
varying batch size, showing an increase in execution time as
the batch size expands. To more explicitly demonstrate our per-
formance, we also add results measured using a naive approach
(i.e., in-the-circuit) within Groth16 [12] and Plonk [5]. In the
scheme, although the number of constraints grows linearly
with each exponential increment in batch size, the operations
(e.g., group scalar exponentiation) in the naive approach are
more expensive than the constraints required in our system.
Specifically, for Groth16, we can prove commitments for 220

batches in approximately 33.024s, whereas the estimated time
for the naive approach, which can be not measured in our
device, would be around 98, 000s showing a high performance
improvement where the dashed line is estimated. In Plonk,
similar improvements are observed; for a batch size of 210,
the performance difference is about 120x, with time of 1.492s
compared to 182.078s respectively.

B. Comparison

To better demonstrate the practicality of our system, we
have conducted a comparative analysis with the widely rec-
ognized LegoSNARK in table III to VI. For implementing
LegoSNARK, denoted by Lego16, we utilize ccGro16 as
the commit-carrying SNARK. Lego16 is further divided into
Lego16QA and Lego16Comp, corresponding to QA-NIZK [3]
and Compressed-Σ protocol for the linking proof system,
respectively.

Asymptotic performance. We give an asymptotic perfor-
mance in table II. Both Lego16 and Gro16Lego-DLC

cc are
based on ccGro16. Considering P’s work, Lego16 requires
more 2l + 2 E1 for QA-NIZK and 8l + 4 log l − 9 E1 for
Compressed-Σ, while Gro16Lego-DLC

cc has additional 3l + 3
gates and 5l+4 wires (i.e., additional 11l+10 E1, 3l+3 E2

needed). The proof size in Lego16QA and Gro16Lego-DLC
cc

are constant, with only 1 G1 increased for QA-NIZK. In
contrast, Lego16Comp increases by 4 F and 4 log l + 2 G1

for Compressed-Σ protocol. However, There is significant
improvement in V’s work. To verify the proof, Lego16QA

performs l + 2 pairings for linking and 4l + 4 log l times G1

exponentiation for Lego16Comp, while our scheme requires
only l E1 for aggregation.

10 15 20
10−2

101

104

107

E
xe

cu
tio

n
tim

e
(s

)

Gro16
Lego-DLC
cc (1)

Gro16
Lego-DLC
cc (2)

Gro16 (1)

Gro16 (2)

(a) Prover time for Groth16 [13] and our scheme
(Gro16Lego-DLC

cc)

5 10
10−2

100

102

104

106

E
xe

cu
tio

n
tim

e
(s

)

Plonk
Lego-DLC
cc (1)

Plonk
Lego-DLC
cc (2)

Plonk (1)

Plonk (2)

(b) Prover time for Plonk [5] and our scheme
(PlonkLego-DLC

cc)

Fig. 7: Prover time for varying the number of batch size, where
the x-axis represents the batch size in log and the dashed
line means the estimated value. Note that (1) and (2) refer to
devices in the table I, respectively.

TABLE II: Comparison of Lego16 and Gro16Lego-DLC
cc .

P and V represent additional operations on ccGro16. |π|
represents the proof size of each scheme added to ccGro16.
We denote by l the number of commitments, where E refers
to group exponentiation and P refers to pairing.

P V |π|
Lego16QA O(l) E1 l + 2 P 1 G1

Lego16Comp O(l) E1 3l + 7 log l E1 4 log l+2 G1, 4 F
Gro16Lego-DLC

cc O(l)E1, O(l)E2 l + 1 E1 -

Prover and Verifier time. When comparing prover times in
the table III, Lego16QA outperforms our scheme due to the
absence of additional operations required to generate aggre-
gated elements for a batched commitment in our approach.
Interestingly, in P’s time, Lego16Comp has asymptotically
fewer computation than our scheme, but it is slower. This
is because the aggregation of commitments can be com-
puted more quickly using multi-scalar exponentiation. Specif-
ically, based on 216, our prover time is 1.413 seconds, but
Lego16QA shows performance of about 0.177 seconds while
Lego16Comp performs about 2.476 seconds. However, due to
the reliance on a linkable proof system, our scheme exhibits
superior performance in verifier time in the table IV.

Key size. Examining the key sizes from the table V and
VI, the proving key sizes generated by Gro16 are 4× to 6×
bigger in our scheme, which necessitates additional keys due

11

TABLE III: Comparison of prover times between Lego16 and
Gro16Lego-DLC

cc for varying batch sizes in log scale.

Batch size
Gro16Lego-DLC

cc (s) Lego16QA(s) Lego16Comp(s)(log)
7 0.01 0.002 0.02
8 0.014 0.002 0.028
9 0.023 0.005 0.041
10 0.038 0.005 0.063
11 0.063 0.007 0.113
12 0.117 0.013 0.209
13 0.223 0.022 0.344
14 0.395 0.044 0.652
15 0.746 0.084 1.28
16 1.413 0.177 2.476

TABLE IV: Comparison of verifier times between Lego16
and Gro16Lego-DLC

cc for varying batch sizes in log scale.

Batch size
Gro16Lego-DLC

cc (s) Lego16QA(s) Lego16Comp(s)(log)
7 0.002 0.006 0.012
8 0.003 0.009 0.017
9 0.003 0.017 0.026
10 0.004 0.032 0.043
11 0.005 0.062 0.077
12 0.007 0.122 0.145
13 0.011 0.246 0.27
14 0.021 0.49 0.513
15 0.036 0.98 1.028
16 0.064 1.972 2.017

to the nature of aggregating commitments in the circuit. The
verifying key size in our scheme could be reduced to constant
296KB if there is no need to maintain the committing key. In
contrast, the sizes of both Lego16QA and Lego16Comp scale
linearly with the batch size in the linking proof system

TABLE V: Comparison of proving key sizes for varying batch
sizes

Batch Size Gro16Lego-DLC
cc Lego16QA Lego16Comp

(log) pk (KB) pk (KB) pk (KB)
7 130 34 21
8 259 66 42
9 517 132 83

10 1,033 264 164
11 2,065 526 328
12 4,129 1,050 656
13 8,258 2,099 1,311
14 16,516 4,196 2,622
15 33,031 8,390 5,244
16 66,061 16,779 10,486

TABLE VI: Comparison of verifying key sizes for varying
batch sizes

Batch Size Gro16Lego-DLC
cc Lego16QA Lego16Comp

(log) vk (B) ck (KB) vk (KB) ck (KB) vk (KB)
7

296

8 9 4 5
8 17 17 8 9
9 33 33 16 17

10 66 66 33 33
11 131 131 66 66
12 262 263 131 131
13 524 525 262 263
14 1,049 1,049 524 525
15 2,097 2,098 1,049 1,049
16 4,194 4,195 2,097 2,098

Application. We provide detailed performance metrics in

applications such as verifying proofs on blockchain plat-
forms. We consider a scenario within smart contracts on the
blockchain where users’ commitments are stored, and a prover
(e.g., bank, authority, etc.) must demonstrate the validity
of these commitments by including proofs in transactions.
This scenario aligns with simplified versions of applications
such as proof of solvency or digital credentials. To compare
performance, we have measured the transactions per second
(TPS) and gas costs for each system. For our experimental
measurements, we utilize the Hardhat testnet. Specifically we
generate 1, 000 transactions and measure the time taken for
these transactions to be confirmed on the blockchain network.
Additionally, in this experiment, we utilize the BN254 curve,
which is particularly advantageous as it is supported by
precompiled functions in smart contract. TPS is computed by
dividing the total number of transactions by the total time
taken for their processing.

5 10

100

101

102

103

104

T
PS

Gro16
Lego-DLC
cc

Lego16QA

Lego16Comp

(a) Transaction per second for Lego16 and
Gro16Lego-DLC

cc

Batch size
Gro16Lego-DLC

cc Lego16QA Lego16Comp(log)
1 294K 488K 425K
2 309K 583K 538K
3 340K 773K 726K
4 403K 1,161K 1,067K
5 527K 1,918K 1,713K
6 777K 3,440K 2,966K
7 1,283K 6,485K 5,441K
8 2,282K 12,579K 10,350K
9 4,308K 24,779K 20,152K
10 8,323K 49,214K 39,752K

(b) Gas costs for Lego16 and Gro16Lego-DLC
cc

Fig. 8: Performance for varying the number of batch size.

Figure 8 shows the performance comparison between
Lego16 and our scheme (Gro16Lego-DLC

cc). As batch sizes
increase, the difference in TPS becomes more pronounced. For
instance, at a batch size of 210, Lego16QA and Lego16Comp

can handle approximately 0.51 and 1.334 transactions per
second respectively, whereas our scheme can process about
5.19 transactions per second, which indicates that we can
verify about 5,300 commitments per second. This notable
performance discrepancy is due to the computational overhead.
Lego16QA needs O(l) pairings and Lego16Comp needs O(l)
group exponentiations to rescale commitment keys, whereas
in our scheme, O(l) group exponentiations with a smaller
constant factor is performed to aggregate commitments.

Additionally, concerning verification key (vk), Lego16QA

12

and Lego16Comp require the number of G2 and G1 elements
that scales linearly with l.

VIII. CONCLUSION

Our paper proposes a batching module, Lego-DLC, which
can efficiently prove and verify multiple commitments. As
batch sizes increase, our performance surpasses that of other
works in terms of verifier efficiency (i.e., time, key size)
and proof size, although the proving time is slightly longer
than in other works. Our work holds significant potential for
applications that demand efficient proving and verification,
particularly when dealing with numerous commitments. It
offers a far more efficient approach compared to the tra-
ditional method of verifying each commitment individually.
Consequently, our module proves to be highly effective in
applications that heavily rely on the use of commitments, such
as distributed ledgers.

REFERENCES

[1] A. M. Odlyzko, Ed., Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, ser. Lecture Notes in
Computer Science, vol. 263. Springer, 1987.

[2] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design
and composition of succinct zero-knowledge proofs,” Cryptology ePrint
Archive, Report 2019/142, 2019, https://eprint.iacr.org/2019/142.

[3] E. Kiltz and H. Wee, “Quasi-adaptive nizk for linear subspaces revis-
ited,” in Advances in Cryptology - EUROCRYPT 2015, E. Oswald and
M. Fischlin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 101–128.

[4] D. F. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi,
and A. Takahashi, “Eclipse: Enhanced compiling method for pedersen-
committed zksnark engines.” Springer-Verlag, 2022.

[5] A. Gabizon, Z. J. Williamson, and O.-M. Ciobotaru, “Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” IACR Cryptol. ePrint Arch., vol. 2019, p. 953, 2019.

[6] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in Advances in Cryptology -
ASIACRYPT 2010, M. Abe, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 177–194.

[7] M. Chase, C. Ganesh, and P. Mohassel, “Efficient zero-knowledge proof
of algebraic and non-algebraic statements with applications to privacy
preserving credentials,” in Advances in Cryptology–CRYPTO 2016: 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III 36. Springer, 2016, pp.
499–530.

[8] M. Orrù, G. Kadianakis, M. Maller, and G. Zaverucha, “Beyond the
circuit: How to minimize foreign arithmetic in zkp circuits,” Cryptology
ePrint Archive, Paper 2024/265, 2024, https://eprint.iacr.org/2024/265.
[Online]. Available: https://eprint.iacr.org/2024/265

[9] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 955–966. [Online].
Available: https://doi.org/10.1145/2508859.2516662

[10] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updatable structured
reference strings,” ser. CCS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 2111–2128. [Online]. Available:
https://doi.org/10.1145/3319535.3339817

[11] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zksnarks with universal and updatable srs,” in Advances
in Cryptology – EUROCRYPT 2020, A. Canteaut and Y. Ishai, Eds.
Cham: Springer International Publishing, 2020, pp. 738–768.

[12] J. Groth, “On the size of Pairing-Based non-interactive arguments,” in
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, 2016,
pp. 305–326.

[13] ——, “Short pairing-based non-interactive zero-knowledge arguments.”
in Asiacrypt, vol. 6477. Springer, 2010, pp. 321–340.

[14] T. Attema and R. Cramer, “Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics,” in Advances in Cryp-
tology – CRYPTO 2020, D. Micciancio and T. Ristenpart, Eds. Cham:
Springer International Publishing, 2020, pp. 513–543.

[15] T. Attema, R. Cramer, and S. Fehr, “Compressing proofs of k-out-
of-n partial knowledge,” in Advances in Cryptology – CRYPTO 2021,
T. Malkin and C. Peikert, Eds. Cham: Springer International Publishing,
2021, pp. 65–91.

APPENDIX

A. Quasi-Adaptive NIZK arguments for linear spaces

Intuitively, a QA-NIZK argument, as defined by Jutla and
Roy, allow proving the membership of an instance x with a
witness w in a language L, defined by a relation R(x,w).
The QA-NIZK arguments consist of a set of PPT algorithms
Π.QA-NIZK = (KeyGen,Prove,Verify,Sim).

Kiltz and Wee [3] introduce constructions for QA-NIZK
arguments for linear spaces. The linear space language LLS

can be represented as,

LLS = {[x]1 ∈ Gn
1 : ∃w ∈ Zp s.t. x = M ·w}

, where the relation R is defined as

RM (x;w) =
{
(x;w) ∈ Gn

1 × Zm
p : x = M ·w

}
We provide the construction of the Kiltz-Wee’s QA-NIZK
arguments for linear subspaces in the CRS model, described
in figure 9.

KeyGen([M]1 ∈ Gn×m
1)→ crs, td

K
$← Zn×k̂

p , a
$← Zp,C ← K · a,P ← [M]

⊤
1 ·K ∈ Gn×k̂

1

ek := P , vk := ([C]2, [a]2), td := K

return crs := (ek, vk), td

Prove(ek,x,w)→ [π]1

π1 ← w
⊤ · P ∈ G1

return [π]1 ∈ Gk̂
1

Verify(vk,x, [π]1)→ (true/false)

Check that [x]⊤1 ⊙ [C]2
?
= [π]1 ⊙ [a]2

Sim([M]1, td,x)→ [π]1

π1 ← K
⊤ · [x]1 ∈ Gk̂

1

Fig. 9: KW15 [3] QA-NIZK ΠQA-NIZK

Similar to the approach in LegoSNARK, we set k̂ = 1. In
LegoSNARK, it is demonstrated that when k̂ = 1, knowledge
soundness is achieved under the discrete logarithm assumption
within the algebraic group model (AGM). A comparable proof
for the application of this scheme in a non-falsifiable setting
is also provided in KW15 [3]. We recall the proof form
LegoSNARK and describe it simply as follows:

Theorem 2. Assuming that D is a witness-sampleable matrix
distribution, under the discrete logarithm assumption in AGM,
the QA-NIZK ΠQA-NIZK from KW15 [3] (with k̂ = 1) is a
knowledge-sound SNARK for the relation RLS with matrices
from D.

Proof. Let A be an algebraic adversary against the knowledge
soundness of ΠQA-NIZK. The adversary takes the matrix M ,

13

the CRS (i.e., P , C), and the auxiliary input (aux) as inputs
(i.e. A([M,P]1, [a,C]). Consider [z]1, a vector comprising
M , elements from aux in the group G1, and the generator of
G1. Then the adversary A outputs a pair ([x]1, [π]1) and coef-
ficients w that express these elements as linear combinations
of its input in G1. We denote the coefficients for x and π by
(X0,X1) and (π0,π1) respectively,

[x]1 = X0[M
⊤K]1 +X1[z]1

[π]1 = π⊤0 [M
⊤K]1 + π⊤1 [z]1

Now, we define the extractor E that extracts the witness π0.
Then we prove that the following probability is negligible:

Pr [Verify(vk, [x]1, [π]1) = true ∧ [x]1 ̸= [M] ·w]

If A returns such a tuple with non-negligible probability, we
construct an algorithm B that, on input ([K]1, [K]2), outputs
the elements (a, b, c) such that:

K⊤ · a ·K +K⊤ · b+ c = 0

The algorithm B proceeds as follows,
1) it uses D to sample ([M]1, aux) along with its witness

over G1, which is a vector z where each element of z
is an entry from Zp.

2) it samples a
$← Zp and runs A([z,P]1, [a, a ·K]2).

3) Upon receiving the output from A, B sets:

a := X0 ·M⊤, b = X1z −M · π0, c = −π⊤1 · z

At least one of a, b, or c must be nonzero. If all are zero,
then X1z − Mπ0 = 0, which implies x = M · π0 since
X0 ·M⊤ = 0, contradicting our assumption about A’s output.

Using algorithm B, we construct an algorithm B′ that deals
with the discrete logarithm problem. On input ([y]1, [y]2), the
algorithm B′ chooses r, s ∈ Zn

p and sets K := y · r + s.
It can be shown that ([K]1, [K]2) can be simulated with
a distribution identical to the one expected by B. Given a
solution (a, b, c), one can find (a0, b0, c0) such that:

0 = (yr + s)⊤ · a · (y · r + s) + (y · r + s)⊤ · b+ c

= a0 · y2 + b0 · y + c0

With high probability, c0 ̸= 0. From this B′ can extract y.

B. Compressed-Σ protocol

Compressed-Σ protocols are interactive protocols that main-
tain the same functionality and remain honest-verifier zero-
knowledge proofs of knowledge for a given relation R. These
protocols achieve succinct communication complexity, reduc-
ing from linear to logarithmic size.

In this section, we introduce a protocol for proving the
equality of committed vectors. By the protocols proposed
in [14] and [15], the proposed protocol can serve the same role
as CPlink, providing a proof for N Pedersen commitments
with a size of O(logN). Referencing the relation described in
Eclipse [4], the relation RBatch

Eq that we aim to prove can be
described as follows:

RBatch
Eq (x;w) =

(g,h, g̃, h̃, n, d, d1, d2),

(C, {Di}i∈[n]);

(m,o, {oi}i∈n)

:

C = g
m · ho

, Di = g̃
mi · h̃õi ,

g ∈ Znd
q , g̃ ∈ Zd

q ,

h ∈ Zd1
q , h̃ ∈ Zd2

q ,

m = {mi}i∈[n] ,

o ∈ Zd1
q ,oi ∈ Zd2

q

The compressed version of Σ-protocol for the above relation

RBatch
Eq is described as follows.

1) The verifier V samples a random challenge δ ∈ Zq , and sends it to the
prover P . Then both parties scale out g̃ as follows:

g̃ :=

{
g̃
δi
}n−1

i=0

∈ Gnd

2) The prover P chooses random α,β,γ ∈ Znd×d1×d2
q , and sends the

following elements to the verifier V

X = g
α · hβ

, X̃ = g̃
α · h̃γ

3) The verifier samples a challenge e ∈ Zq and sends it to the prover P .
4) The prover P computes

z = α + e ·m, k = β + e · o, ω = γ + e ·
n∑

i=1

oi · δi−1

5) Let

g = gL∥gR, g̃ = g̃L∥g̃R, z = zL∥zR

and

Y = X · Ce · h−k
, Ỹ = X̃ · (

n∏
i=1

D
δi−1

i)
e · h̃−ω

6) The prover P sends

L = g
zL
R , R = g

zR
L

L̂ = g̃
zL
R , R̃ = g̃

zR
L

7) The verifier V sends a challenge c ∈ Zq

8) The prover P computes

z
′
= zL + c · zR

and both parties compute

Y
′
= L · Y c · Rc2

, Ỹ
′
= L̃ · Ỹ c · R̃c2

g
′
= g

c
L ⊙ gR, g̃

′
= g̃

c
L ⊙ g̃R

where ⊙ is element-wise product.
9) If n > 2, then both parties execute the above step (5)-(8) with

((g, g̃
′
, n/2), (Y

′
, Ỹ

′
), z

′
)

Otherwise, the verifier V checks

g
′z′ ?

= Y
′
, g̃

z′ ?
= Ỹ

′

Fig. 10: Compressed Σ version for the relation RBatch
Eq

Theorem 3. The protocol described in Fig.10 is a (2κ +
4) protocol for the relation RBatch

Eq where κ = ⌈log nd⌉ - 1.
It satisfies completeness, computationally (n, 2, {ti}i∈[κ])-
special sound if finding discrete-logarithm, and special honest
verifier zero-knowledge where ti = 3 for all i ∈ [κ].

Proof. Since completeness is straightforward, we omit the
description.

(n, 2, {ti}i∈[κ])-special soundness. To simplify, we assume
a single recursive step execution. Specifically, we analyze

14

the 4-move protocol, where the prover sends the response
z′ irrespective of it dimension, and proves that this protocol
is 4-special sound. Then ti-special soundness can then be
derived through an inductive argument, the details of which
are omitted here (i.e. omit j).

First of all, we denote the transcript as Tr, which consists
of (L,R, L̃, R̃, Y, Ỹ ′, ci, zi). Given three accepting transcripts
(Tr0,Tr1, Tr2) for the same challenge δ but the distinct
challenge ci ∈ {0, 1, 2}, we can show that there exists an
efficient algorithm χ that outputs a valid witness. Given
these transcripts, Since

∏
0≤i<k≤2(ck − ci) ̸= 0, we define

(v0, v1, v2) such that
2∑

i=0

vi = 0,

2∑
i=0

vi · ci = 1,

2∑
i=0

vi · c2i = 0

Define z̄i = (vicizi∥vizi). Then let w =
∑2

i=0 z̄i be the
extracted value. We show the correctness of extracted value
as follows

gw = g(
∑2

i=0 vicizi)∥(
∑2

i=0 vizi)

= gv0c0z0

L · gv1c1z1

L · gv2c2z2

L · gv0z0

R · gv1z1

R · gv2z2

R

=

2∏
i=0

(
(gci

L ⊙ gR)
z̄i,L+ciz̄i,R

)vi
=

2∏
i=0

(g
ciz̄i,L

L · gc2i z̄i,R

L · gz̄i,L

R · gciz̄i,R

R)vi

=

2∏
i=0

(
(gz̄i)ci · gz̄i,L

R · (gz̄i,R

L)c
2
i

)vi

=

2∏
i=0

(Y ci · L ·Rc2i)vi

= Y

where ⊙ denotes the element-wise product. In a similar vein,
extraction can also be performed for g̃.

Special honest verifier zero-knowledge. With the challenge x
and e provided, the simulator randomly samples z, k, and ω,
subsequently using these to perfectly simulate the remaining
messages as follows:

X := gz · hk · C−e, X̃ := g̃z · h̃k · (
l∏

i=1

Dxi−1

i)−e

