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Abstract. Computationally hard problems based on coding theory, such
as the syndrome decoding problem, have been used for constructing secure
cryptographic schemes for a long time. Schemes based on these problems
are also assumed to be secure against quantum computers. However, these
schemes are often considered impractical for real-world deployment due to
large key sizes and inefficient computation time. In the recent call for stan-
dardization of additional post-quantum digital signatures by the National
Institute of Standards and Technology, several code-based candidates have
been proposed, including LESS, CROSS, and MEDS. These schemes are
designed on the relatively new zero-knowledge framework. Although several
works analyze the hardness of these schemes, there is hardly any work that
examines the security of these schemes in the presence of physical attacks.
In this work, we analyze these signature schemes from the perspective of fault
attacks. All these schemes use a similar tree-based construction to compress
the signature size. We attack this component of these schemes. Therefore, our
attack is applicable to all of these schemes. In this work, we first analyze the
LESS signature scheme and devise our attack. Furthermore, we showed how
this attack can be extended to the CROSS signature scheme. Our attacks
are built on very simple fault assumptions. Our results show that we can
recover the entire secret key of LESS and CROSS using as little as a single
fault. Finally, we propose various countermeasures to prevent these kinds of
attacks and discuss their efficiency and shortcomings.

Keywords: Post-quantum cryptography · Post-quantum signature· Code-
based cryptography· Fault attacks· LESS· CROSS

1 Introduction

Digital signature schemes are one of the most used and fundamental cryptographic
primitives. The security of our current prevalent digital signature schemes based on
integer factorization [33] or elliptic curve discrete logarithms [23] can be compromised
using a large quantum computer [37,30]. Therefore, we need quantum computer-
resistant digital signature algorithms. In 2022, the National Institute of Standards
and Technology (NIST) selects three post-quantum digital signature schemes [2]
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CRYSTALS-DILITHIUM [15], FALCON, and SPHINCS+ [5] for standardization.
Among them, FALCON and DILITHIUM are based on lattices, and SPHINCS+ is
a hash-based signature scheme.

A majority of these signature schemes are lattice-based. Therefore, a breakthrough
result in the field of cryptanalysis of lattice-based cryptography could create a
major dilemma in the transition from classical to post-quantum cryptography. Such
incidents are not very rare. Some recent examples are Castryck et al.’s [10] attack
on the post-quantum key-exchange mechanism based on supersingular isogeny Diffe-
Hellman [19] problem or Beullens’s attack [6] on post-quantum digital signature
scheme Rainbow [14]. Both of these schemes were finalists of the NIST’s post-
quantum standardization procedure. Therefore, diversification in the underlying hard
problems ensures that if one of the cryptographic schemes is compromised, others
may remain secure. Another problem of the currently standardized signature schemes
is their very large signature sizes compared to classical signatures. This renders
them almost impractical for real-world use cases like SSL/TLS certificate chains.
Recognizing the critical importance of diversification and the practical use of digital
signatures, NIST has recently issued an additional call [25] for post-quantum secure
digital signatures. In this call, NIST emphasizes the importance of small signature
and fast verification to enhance practicality.

Linear Equivalence Signature Scheme (LESS) [7,35] is a submitted digital signa-
ture scheme aimed at increasing diversification and smaller signature and public key
sizes. There are other code-based submissions like WAVE [36], enhanced pqsigRM [11],
and CROSS [34]. These schemes are based on the Syndrome Decoding Problem (SDP)
for linear codes. The hardness of SDP relies on different variants of Information Set
Decoding (ISD) algorithms. On the other hand, LESS has avoided the SDP, and it
is the first cryptographic scheme based on the Code Equivalence Problem (CEP).
The CEP asks to determine if two linear codes are equivalent to each other. In the
Hamming metric, the notion of equivalence is linked to the existence of a monomial
transformation, often termed the Linear Equivalence Problem (LEP).

Due to the choice of this hard problem, the designers could choose parameters
that lead to smaller key sizes without compromising security. The designers have
also proposed different compression techniques to reduce the key sizes. LESS offers
a balanced trade-off between the combined public key and signature size and the
efficiency of signing and verification routines. Table 4 in Appendix A compares the
key sizes and efficiency of LESS and other code-based digital signature schemes.

We want to note that LESS first introduced the novel problem CEP or LEP for
cryptographic constructions. It uses a 3-round interactive sigma protocol between a
prover and a verifier. Other signature schemes like MEDS and CROSS are also based
on similar zero-knowledge identification schemes. Multiple rounds of the identification
scheme are used here, which is converted into a signature scheme using the Fiat-
Shamir transformation. However, using multiple rounds increases the signature
size. Here, we have noticed that all three signature schemes, LESS, CROSS and
MEDS [12], use the same compression technique that helped the designers ease the
long-enduring bottleneck of large signature sizes in code-based cryptography. However,
the implementation of this common compression technique has potential vulnerabilities
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against fault attacks that we identified in this work. Our primary motivation in this
work is to uncover potential vulnerabilities against a wide spectrum of fault attacks
and propose suitable countermeasures for the schemes LESS and CROSS that use
the protocols having the same compression technique. We are confident that this
work will help to improve the LESS and CROSS signature schemes and be useful in
the evaluation of NIST’s standardization procedure. Further, we strongly believe that
this will also be beneficial to other cryptographic signature schemes, such as MEDS,
as it uses a similar technique. Below, we briefly summarize our contributions.
Fault analysis of LESS digital signature: We have explored several fault attack
surfaces of the LESS signature scheme that could be exploited by an adversary. We
found different attack surfaces in the signing algorithm of LESS, and attack strategies
that can be utilized on those attack surfaces. We observed that the designers of LESS
proposed a technique to compress the signature size. They used a binary tree called
Reference Tree to fulfil this purpose. We show that the modification of the values in
the tree during the signing algorithm leaks information about the secret key as part
of the output signature. We further use this information to recover the full secret key.
Versatility of our fault attack: Our attack assumes a single fault injection model.
We want to note that our focus was to develop the theoretical framework to recover
the secret after the fault injection. In this regard, our attack can be realized using
many different faults. Therefore, it is very versatile i.e. not skewed in favour of the
attacker. In particular, we discuss the applicability of our attack using different types
of faults, such as instruction skip, stuck-at-zero, and bit-flip. These types of faults can
be realized using different mechanisms such as voltage glitch [13], Rowhammer [24,31],
clock glitch [9,28], laser fault injection [8], electromagnetic fault injection [17,20] etc.
Strong mathematical analysis: We give detailed mathematical analysis to recover
the secret key after the fault injections. We consider an arbitrary location for the fault
injection, which is known to the attacker. Then, discuss the methods to recover the
secret key in different scenarios. To further improve the effectiveness and practicality
of our attack, we also provide a very effective method to remove noise from the
experiments i.e. differentiating between effective and ineffective faults. This is a non-
trivial problem in any fault injection attack. We mathematically derived the expected
amount of secret information that can be recovered from a single effective fault.
Application to other zero-knowledge based signature schemes: Other code-
based signature schemes in the NIST additional call for signatures such as CROSS [34]
and MEDS [12], use a similar zero-knowledge framework as LESS. In these frameworks,
the challenger and prover must communicate a series of challenges and responses for
the soundness of schemes. This increases the signature size of the digital signature
schemes designed using this framework. All these three signature schemes use a binary
tree-based compression technique to reduce the signature size. As our attack targets
this method, our attack strategy can also be extended to these schemes. We have
explained this strategy for the CROSS signature scheme in this work.
Attack simulation: We have an end-to-end fault attack simulation on the reference
implementation of LESS and CROSS signature schemes. For LESS, we have simulated
the attack in a way so that it can count the number of secret matrix recovered with
one faulted signature, the number of faulted signatures required to recover the whole
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secret. Also, our simulation induces fault with varying successful fault probability.
In both schemes, we modify a particular node of the binary tree structure and then
recover the secret from the faulted signatures. We have shown that if we inject fault
in a specific location, then the entire secret can be recovered from a single effective
fault signature for all the parameter sets of LESS except the parameter LESS-1s.
For the CROSS signature scheme, only one effective faulted signature is enough to
recover the complete secret for all parameters.
Countermeasures: Finally, we discuss different countermeasures that can prevent
such attacks. We show that these countermeasures are effective against the single-fault
attack models. Our first countermeasure removes the primary source of vulnerability
i.e. the generation of the Reference Tree. This rather simple method increases the
signature size. The second countermeasure modifies the Reference Tree generation
procedure such that the attack surfaces are eliminated. This method ensures that
the signature sizes stay the same as the original LESS proposal [35]. Lastly, we imple-
mented the second countermeasure for LESS and compared its performance with the
original LESS implementation. The performance cost of our second countermeasure
is the same as the cost of the original LESS implementation.

2 Preliminaries

Zq denotes the ring of integers modulo q. Additionally, Fq and F∗
q have been used

to signify the field with q elements and the multiplicative group of this field Fq,
respectively. The sets Fk

q and Fk×n
q represent the collection of all vectors of size k

and all matrices of dimension k×n over the field Fq, respectively. We use calligraphic
uppercase (C) to denote a linear code.

The lowercase letters (a) and uppercase letters (A) denote the scalars and the
ordered set of scalars, respectively. Ac represents the complement of the set A. We
use bold lowercase (a) to denote vectors in any domain, and the i-th entry of the
vector a is denoted by a[i]. We denote the i-th standard basis as ei. The transpose
of a vector a is denoted by aT .

The bold uppercase letters (A) represent matrices. Let A be a matrix, then A[i, j]
represents the i, j-th entry of the matrix A. Also, A[∗, j] and A[i, ∗] represent the
j-th column and i-th row of the matrix A respectively. Let J⊂Zn be an ordered set
of column indices of the matrix A, then the notation A[∗, J] represents the submatrix
of A formed by selecting columns with indices specified in the set J. Similarly, if J
is an ordered set of row indices of matrix A, then the notation A[J, ∗] represents
the submatrix of A formed by selecting rows with indices specified in the set J. The
transpose of a matrix A is denoted by AT . The inner product of two vectors a and b
of same size is denoted by ⟨a, b⟩ and is defined by

∑
ia[i]b[i]. The set of all invertible

matrices of order k over Fq is denoted by GLk(q).

2.1 Definitions

Definition 1 (Monomial matrix). An n×n matrix A is called a monomial matrix
if we can write A := (u[0]eπ(0) | u[1]eπ(1) | ··· | u[n− 1]eπ(n−1)). Here, u ∈ Fn

q ,
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π :Zn→Zn is a permutation and u[j]eπ(j) is j-th column of A. We represent the
monomial matrix A with the pair (π, u).

Definition 2 (Partial monomial matrix). An n×k matrix B is called a partial
monomial matrix if we can write the matrix B :=(v[0]eπ∗(0) | v[1]eπ∗(1) | ··· | v[k−
1]eπ∗(k−1)). Here, n > k, v ∈ Fk

q and π∗ : Zk → Zn is an injective mapping. We
represent the partial monomial matrix B with the pair (π∗, v).

We denote the set of all invertible monomial matrices of order n and the set of all
partial monomial matrices of order n×k over Fq by Mn(q) and M ′

n,k(q) respec-
tively.

Definition 3 (Reduced Row-Echelon form). A matrix A of order m×n is said
to be in Reduced Row-Echelon form (RREF) if the following conditions hold

i. For each 0≤ i≤m−1, 0≤j≤n−1, if the i-th row contains the first non-zero
element at j-th position, then the first non-zero element of (i+1)-th row should
be after the j-th position.

ii. The first non-zero element of any non-zero row is 1.
iii. The leading element is the only non-zero element of that column.

We can transfer any matrix A to its RREF form by applying some elementary row
operations [22] on the matrix A, and we denote this transformation by RREF(A).
Also, note that a matrix has a unique RREF. The first non-zero elements of RREF(A)
in each row are called pivots and the columns that contain pivot are called pivot
column of the matrix RREF(A). The remaining columns are called non-pivot columns.

Definition 4 (Lexicographically sorted order). Let a and b be two vectors of
the same size over the field Fq. We call the vectors a and b are in lexicographical
order if a[i]< b[i] holds, where i is the first position where two vectors differ. We
denote it as a<b. Let there be r vectors v0, v1, ···, vr−1 over the field Fq. We call
these vectors in lexicographically sorted order if, for any 0≤ i, j <r, vi<vj holds
whenever i<j.

A matrix G is lexicographically sorted if its columns are in ascending lexicographical
order. In this paper, the function LexMinCol makes each column of input matrix
G to lexicography sorted order by multiplying the inverse of the first non-zero
element of that column and LexSort function is used to sort the columns of G in
lexicographically sorted order.

Definition 5 (Linear code). An [n, k]-linear code C of length n and dimension k is
a linear subspace of the vector space Fn

q . It can be represented by a matrix G∈Fk×n
q ,

which is called a generator matrix. For any u∈Fk
q , the generator matrix G maps it

to a code-word uG∈Fn
q .

Definition 6 (Linear code equivalence). Let C and C′ be two linear codes of
length n and dimension k with generator matrices G and G′ respectively. We call
the codes C and C′ linearly equivalent, if there exist matrices Q∈Mn(q), S∈GLk(q)
such that G′=SGQ.
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Definition 7 (Information Set (IS) of a Linear Code [27]). Let C be a linear
code with length n, and J⊂Zn be a set with cardinality k. Consider G as the generator
matrix of code C. Define J as an information set corresponding to G if inverse of
G[∗, J] exists i.e., G[∗, J] is non-singular.

2.2 LESS signature scheme

The signature scheme LESS is based on the hardness of the Linear-code Equivalence
Problem (LEP). LESS signature [35] uses a 3-round interactive sigma protocol [16]
between a prover and a verifier to establish the message’s authenticity and the Fiat
Shamir transformation [1] to transform this interactive protocol into a signature
scheme. In this section, we describe the key generation and the signature algorithm
of the digital signature LESS as it is most relevant to our work. Meanwhile, the
verification algorithm is described in Appendix B. The description of the LESS
signature involves some additional functions that we describe below.

– CSPRNG(seed, · ): This is a pseudo-random number generator, which takes a seed as
input and outputs a pseudo-random string. The resulting output can be formatted
according to preference, either as a string of seed values or a matrix. The uses of
the function as CSPRNG(seed, SRREF), CSPRNG(seed, St,w) and CSPRNG(seed, Mn(q))
represents sampling a generator matrix in RREF, sampling the fixed weight digest
vector and sampling a monomial matrix, respectively using the provided seed.

– SeedTree(seed, salt): This function generates a tree of height ⌈log t⌉. It begins
with λ bit input seed and uses the CSPRNG function to generate 2λ bits. This long
string is divided into two parts: the first λ bits are used for the left child and the
last λ bits for the right child. The bits corresponding to each child are again fed
into the CSPRNG with salt to generate the next layer of the nodes in the tree. This
process is repeated until the tree with height ⌈log t⌉ is constructed.

– PrepareDigestInput(G,Q′): This function takes the matricesGwhich is in RREF
and a monomial matrix Q′ as inputs. Then computes G′ as (G′, pivot_column)=
RREF(GQ′T ). Let J = {α0, α1, ···, αk−1} be the set of pivot column indices,
which is essentially the information set (IS) of G′. Then, compute the par-
tial monomial matrix Q

′
and the matrix V

′
as Q

′
= Q′T [∗, J] and V

′
=

LexSort(LexMinCol(G′[∗, Jc])). After this computation, this function returns
the partial monomial matrix Q

′
and the matrix V

′
as outputs.

– SeedTreePaths(seed, f): Given a seed tree seed and a binary string f represent-
ing the leaves to be disclosed, this procedure derives which nodes of the seed tree
should be disclosed so that the verifier can rebuild all the leaves which have been
marked by the binary string. A detailed description of this function is given in Alg. 4.

– CompressRREF and CompressMono: CompressRREF function is used to compress a
matrix G in RREF, and similarly CompressMono is used to compress a monomial
matrix. Each compression procedure have corresponding expansion procedure that
converts the compressed information to its proper matrix form. Therefore, we can
assume using or not using these function does not affect the functionality of key
generation, signing or verification of LESS.
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Algorithm 1 LESS_KeyGen(λ) [7,4]
Input: None
Output: SK=(MSEED, gseed), PK=(gseed, G1, ..., Gs−1)

1: MSEED $←−{0, 1}λ
2: mseed←−CSPRNG(MSEED)∈{0, 1}(s−1)λ

3: gseed $←−{0,1}λ
4: G0←CSPRNG(gseed, SRREF)
5: for i=1; i<s; i=i+1 do
6: Qi←−CSPRNG(mseed[i], Mn(q))
7: (Gi, pivot_column)←RREF(G0(Q

−1
i )T )

8: PK[i]←CompressRREF(Gi, pivot_column)

9: Return (SK, PK)

Key Generation of LESS: It is presented in Alg. 1. Given a security parameter
λ, the two outputs of this algorithm are the secret key SK and the public key PK.
The first component of the secret key is the master key MSEED∈{0, 1}λ. Using the
CSPRNG function, the vector mseed∈{0, 1}(s−1)λ is generated from the MSEED,
which contains s−1 many λ-bit binary strings. Now, the i-th secret monomial matrix
Qi is generated from mseed[i] ∈ {0, 1}λ. Note that these generated Qi’s are all
secret monomial matrices. Also, the seed gseed is employed in the generation of the
public matrix G0. The remaining part of the public key consists of the matrices Gi

for 1≤i≤s−1, which are generated using the process described in Alg. 13.

Signature algorithm of LESS: The signature algorithm shown in Alg. 2 takes
a message string m of length len and the secret key SK=(MSEED, gseed) as inputs
and returns a corresponding signature τ . The main secret key component of SK is the
master seed MSEED. All the s−1 monomial matrices Qj are generated from the
MSEED and used to produce signatures. That is, instead of having information of
MSEED, if we have the information of all of s−1 monomial matrices Qj, then we
can construct the same valid signature. Therefore, these monomial matrices Qj are
considered equivalent to the secret key component MSEED. To reduce the signature
size, the authors of LESS have incorporated a method involving tree construction.
We explain this process briefly here.

First, we outline the procedure for generating a set of t ephemeral monomial ma-
trices represented by Q̃0, Q̃1, ···, Q̃t−1 through the generation of t random ephemeral
seeds denoted as ESEED[i] for 0≤i<t. The process involves the following steps:

– Start by sampling a random master seed EMSEED $←−{0, 1}λ.
– Build a tree of seed nodes using SeedTree procedure, with output tree named

seed. The height and the number of leaf nodes of the output tree are ⌈log(t)⌉ and
2l=2⌈log(t)⌉ respectively where the input seed is the master seed EMSEED.

3 For simplicity and compactness, we follow the implementation of LESS instead of the
specification document
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Algorithm 2 LESS_Sign(m, SK)

Input: Message m∈Zlen
2 and secret key SK=(MSEED, gseed).

Output: The signature τ=(salt, cmt, TreeNode, rsp).
1: mseed←−CSPRNG(MSEED)∈{0, 1}(s−1)λ

2: EMSEED $←−{0, 1}λ, salt $←−{0, 1}λ
3: seed←−SeedTree(EMSEED, salt)
4: ESEED=Leaf nodes of the seed
5: G0←CSPRNG(gseed, SRREF)
6: for i=0; i<t; i=i+1 do
7: Q̃i←−CSPRNG(ESEED[i], Mn(q))

8: (Qi, V i)←−PrepareDigestInput(G0, Q̃i)

9: cmt←H(V 0, ..., V t−1, m, len, salt)
10: d←CSPRNG(cmt, St,w)
11: for i=0; i<t; i=i+1 do
12: if d[i]=0 then
13: f[i]=0
14: else
15: f[i]=1

16: TreeNode←SeedTreePaths(seed, f) ▷ (Alg. 4)
17: k=0
18: for i=0; i<t; i=i+1 do
19: if d[i]≠0 then
20: j=d[i]
21: Qj←−CSPRNG(mseed[j], Mn(q))
22: Q∗

k←QT
j Qi

23: rsp[k]←CompressMono(Q∗
k)

24: k=k+1

25: Return τ=(salt, cmt, TreeNode, rsp)

Fig. 1: Example of seed tree

– Select the first t leaf nodes of the seed as the ephemeral seeds ESEED[i], where
ESEED[i]=seed[2l−1+i] for 0≤i<t.

– Using CSPRNG function Q̃i is prepared for each ESEED[i].

Lines 6-8 of Alg. 2, correspond to generating the partial monomial matrices Qi, the
matrices V i having the information of the non-pivot part corresponding to the matrix
G0Q̃

T
i . Using the information of all V i matrices, message m, message length len and
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salt, the digest d∈Zt
s is prepared. This digest vector d has fixed weight w, where

weight of the vector d is defined as wt(d):= |{i : d[i]≠0}|. We will briefly discuss the
SeedTreePaths procedure in Alg. 4, as our attack is based on exploting this procedure.
This SeedTreePaths (Alg. 4) helps to reduce the size of the signature. Finally, the
signature will return QT

d[i]Qi whenever d[i]≠0, and it also reveals the seed nodes so

that Q̃i can be generated from the revealed seed nodes for all i such that d[i]=0. Note
that whenever we try to return Q̃i, it is enough to return ESEED[i]’s instead. Also,
having the information of any ancestor node of the seedESEED[i](=seed[2l−1+i]),
we can get the information of ESEED[i]. This is the idea behind the minimization
of the number of seeds that are to be sent. This minimized set is returned as
TreeNode. Consider the example in Fig. 1, where the leaf nodes are ESEED[i]’s
and the shaded leaf nodes represent all those positions where d takes the value 0
i.e., these are the ESEED[i]’s that are to be revealed. Observe that revealing only
TreeNode=(seed[1], seed[13]) is enough, as the required ESEED[i]’s can be
regenerated at the time of verification. Consequently, this minimizes the signature size.

Now, in lines 18-24 of Alg. 2, the rsp is prepared by appending the partial
monomial matrices QT

d[i]Qi for all i such that d[i] is non-zero. Since the length and
the weight of the fixed weight digest d are t and w respectively, the vector d has exactly
w many non-zero elements and t−w many zero elements. Therefore, the signature will
contain the component rsp having exactly w many matrices of the formQT

d[i]Qi. After
all of these computations, (salt, cmt, TreeNode, rsp) is generated as the signature.

2.3 Parameter set

There are three security levels of LESS [35] and their corresponding parameter sets,
which are shown in Table 1. Here, the code parameters are given by n: the length of
the code, k: the dimension of the code, q: prime modulus corresponding to the finite
field Fq, 2l: the number of leaf nodes of the seed tree, where 2l=2⌈logt⌉, t: the length
of the digest d, w: the fixed weight of the digest d and s: s−1 is the number of secret
monomial matrices. According to the LESS documentation [35], multiple parameter
sets are defined for each security level of LESS, and the optimization criteria for each
of these parameter sets are different. The "b" version (e.g., LESS-1b) refers to the
parameter set with balanced public key and signature size, the "s" (e.g., LESS-1s)
version refers to the parameter set with smaller signature size, and the "i" (only LESS-
1i) version refers to the parameter set with intermediate public key and signature size.

3 Our Work: Fault analysis of LESS

One of the strongest physical attacks on the digital signature schemes is to recover the
secret or signing key, as the adversary can compute any valid message and signature
pair using the recovered signing key. In general, only the key generation and the
signing algorithm involve the secret key. However, only the signing algorithm uses
the long-term secret key (the same secret key is used multiple times), making it most
suitable for performing a physical attack [9,29,38,18]. In this work, our objective is
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Security
level

Parameter
set

Parameters Public key (PK)
(KiB)

Signature (τ)
(KiB)n k q l t w s

1
LESS-1b

252 126 127 128
247 30 2 13.7 8.1

LESS-1i 244 20 4 41.1 6.1
LESS-1s 198 17 8 95.9 5.2

3 LESS-3b 400 200 127 512 759 33 2 34.5 18.4
LESS-3s 895 26 3 68.9 14.1

5 LESS-5b 548 274 127 1024 1352 40 2 64.6 32.5
LESS-5s 512 907 37 3 129.0 26.1

Table 1: Parameter set of LESS [35] for different security levels

to mount a fault attack on the zero-knowledge based digital signature schemes. In
this attack model, the adversary would query the faulted signature oracle (which
outputs a signature with some injected faults) multiple times. In this section, we
will progressively describe our fault attack strategy to recover the secret monomial
matrices for the LESS signature scheme. Later in Section 4, we show that the same
attack strategy can be employed in other zero-knowledge based signature schemes,
such as CROSS, to recover the signing key.

3.1 An observation on LESS

LESS signature algorithm presented in Alg. 2 returns either the information of
the monomial matrix Q̃j or the multiplication QT

d[j]Qj for any j ∈ Zt. Here, Qj

is a partial monomial matrix that is generated from the matrix Q̃j by using the
PrepareDigestInput function. If we manage to get a pair (Q̃j, Q

T
d[j]Qj) for some

d[j]≠0, then we can construct the pair (Qj, Q
T
d[j]Qj). This pair (Qj, Q

T
d[j]Qj) leaks

some information of matrix QT
d[j] that is directly follows from the following lemma.

Lemma 1. Let A=(π, u)∈Mn(q) be a monomial matrix and B=(π′, u′)∈M ′
n,k(q)

be a partial monomial matrix. Let C=(π′′, u′′)∈M ′
n,k(q) be the partial monomial

matrix defined by C=ATB. Given the matrices B and C, we can compute exactly
k many columns of the monomial matrix AT . More specifically, for all 0≤j<k, we
can compute π−1(π′(j)) and u[π−1(π′(j))].

Proof. For the monomial matrix A represented by (π, u), the transpose of A is the
following matrix

AT =[u[π−1(0)]eπ−1(0) | u[π−1(1)]eπ−1(1) | ··· | u[π−1(n−1)]eπ−1(n−1)]

The multiplication of the monomial matrix AT with the partial monomial matrix
B is given by

ATB=[u[π−1(π′(0))]u′[0]eπ−1(π′(0)) | ··· | u[π−1(π′(k−1))]u′[k−1]eπ−1(π′(k−1))]
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Since C=ATB, so for all 0≤j<k we have C[∗, j]=(ATB)[∗, j], which implies
u′′[j]eπ′′(j)=u[π−1(π′

∗(j)]u
′[j]eπ−1(π′

∗(j))
. This gives us the following

u′′[j]=u[π−1(π′(j))]u′[j]

π′′(j)=π−1(π′(j))

Since B and C are known, we have the information of each π′(j), π′′(j), u′[j] and
u′′[j] where 0≤j<k. Therefore for all 0≤j<k we have,

u[π−1(π′(j))]=u′′[j](u′[j])−1

π−1(π′(j))=π′′(j)
(1)

Note that we have computed π′(j)-th column of the matrix AT for all 0≤j<k. ⊓⊔

For simplicity, in this part, we will use consider the matrices Q̃j, Qj and Qd[j]

as the matrices Q̃, Q and Q respectively. Recall the prepareDigestInput function,
it was taking G0 and a monomial matrix Q̃=(π̃, υ̃) as input and Q is one of the
outputs of the function. The Q is computed in a way that G0Q=G0(Q̃)T [∗,J†],
where J† is an IS of G0(Q̃)T . From the definition of IS, we can say that G0Q is a
non-singular matrix. Observe that,

G0Q=[υ0·gπ(0) | υ1·gπ(1) | ··· | υk−1·gπ(k−1)] (2)

Where Q is a partial monomial matrix represented by (π, υ). Since the matrix
representation in Eq. 2 is non-singular, the set J={π(i) : i∈Zk} is the IS of G0.

Now consider we are given the pair (Q̃, QTQ), where Q represented by (π, υ)

and Q is generated from Q̃ using the function prepareDigestInput. Now, QTQ is
a partial monomial matrix and let it be represented by (π∗, υ∗) then from Lemma 1,
we can write that for any j∈Zk

π−1(π(i))=π∗(i)

υ[π−1(π(i))]=υ∗[i](υ[i])
−1·

(3)

This Eq. 3 gives us the partially recovered secret i.e. only k many columns of
QT . According to the definition of π, the set {π(i) : i ∈ Zk} is the set J which
is the information set of G0. Now, if Q is a secret monomial then from the key
generation of LESS, we can say that Ĝ=RREF(G0(Q

T )−1) is a part of the public
key. We can further write Ĝ=SG0(Q

T )−1 for some non-singular matrix S. Consider
Ĝ=[ĝ0 | ĝ1 | ··· | ĝn−1] then for all i∈Zn we have ĝi=S ·

(
(υ[i])−1·gπ(i)

)
which

implies that for all i∈Zn,

ĝπ−1(i)=S·
(
(υ[π−1(i)])−1·gi

)
(4)

Consider that the set J have the elements j0, j1, ···, jk−1, and we take the matrix
G∗=[ĝπ−1(j0) | ĝπ−1(j1) | ··· | ĝπ−1(jk−1)] and also take the matrix

G′=[(υ[π−1(j0)])
−1·gj0 | (υ[π−1(j1)])

−1·gj1 | ··· | (υ[π−1(jk−1)])
−1·gjk−1

]
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From Eq. 4, we have G∗=SG′ and since J is an IS of G0, so G′ is a non-singular
matrix. Also G′ and G∗ are both computable as for each j∈J, π−1(j) and v[π−1(j)]
are already recovered. Therefore, we can compute S=G∗·(G′)−1. Finally, we have
S−1Ĝ=G0(Q

T )−1, where S, G0 and Ĝ are known. Using Alg. 3, we can recover
the full secret.

Algorithm 3 getColumnPermutation(Ĝ,G0,S)

Input: The partially recovered secret π :J∗→J and v[j] ∀j∈J∗, where J∗={π−1(i) : i∈J},
public information G0 and Ĝ, recovered matrix S

Output: Outputs rest of the secret π :Jc
∗→Jc and v[j] ∀j∈Jc

∗
1: [g0 | g1 | ··· | gn−1]←G0

2: [ĝ0 | ĝ1 | ··· | ĝn−1]←Ĝ
3: for j∈Jc do
4: for i∈Jc

∗ do
5: for a∈Fq do
6: if gj=a·(S−1ĝi) then
7: assign π(i)←j
8: assign v[i]←a

We can conclude that from one pair (Q̃j, Q
T
d[j]Qj), we can recover the secret

monomial matrix QT
d[j], where d[j] ≠ 0. However, we will not receive the pair

(Q̃j, Q
T
d[j]Qj) if the signatures are generated by executing the signing algorithm

properly. Therefore, we must find strategies to disrupt the normal flow of execution to
help us get such pairs. Also, note that, if the number of secret monomial matrices(s−1)
is greater than one, then receiving only one such pair is not enough to retrieve all the
secret monomials. So, we may require multiple faulted signatures to receive several
such pairs and finally recover all the secret monomial matrices. All of these analysis
are briefly described in the later sections.

3.2 Identification of attack surfaces

As we observed that having one pair of the form (Q̃j, Q
T
d[j]Qj) is enough to recover

the secret matrix QT
d[j], where d[j]≠0. Also, observe that, in LESS, there are s−1

secret monomial matrices Qi for 1≤ i≤s−1, and t ephemeral monomial matrices
Q̃j for 0≤j <t as described in Section 2.2. Hence, our goal is to find at least one
pair of the form (Q̃j, Q

T
d[j]Qj), where 1≤d[j]≤s−1 and 0≤j<t by manipulating

the signing algorithm.
Note that, LESS is a code-based signature scheme based on the sigma-protocol

with Fiat-Shamir transformation. In Alg. 2, the signer generates the random challenge
d (fixed weight digest), from commitment (cmt) using the pseudo-random function
CSPRNG. Any fault injection before the challenge generation may modify the challenge
value, but that is an output of a pseudo-random function. This would not help, as
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we need to recover the secret key. Therefore, we have targeted to inject a fault after
the generation of d.

Modification of the vector d: As we can see from Alg. 2, the digest d (d[i] for
0≤i<t) value decides whether Q̃i is revealed or QT

d[i]Qi is revealed. Therefore, the

most obvious target for fault injection is the digest d to reveal both Q̃i and QT
d[i]Qi

for some i. If we modify some value d[i] of d (line 11 in Alg. 2) from 0 to some
non-zero value r by injecting fault, then we will get the information of QT

r Qi instead
of getting information of Q̃i. Similarly, if we change the value of d[i] from non-zero
value r to 0, then we will get the information of Q̃i instead of getting information
about QT

r Qi. In both cases, we do not receive Q̃i and QT
r Qi together. Therefore,

modifying the d value does not satisfy our purpose.

Algorithm 4 SeedTreePaths
Input: The Seed Tree seed and the vector f.
Output: Outputs TreeNode a subset of Seed Tree which consists only the seedi’s that

does not correspond to f[i]=1.
1: for i=0; i<4l−1; i=i+1 do
2: x[i]=0

3: x←compute_seeds_to_publish(f, x) ▷ (Alg. 5)
4: j=0
5: for i=0; i<4l−1; i=i+1 do
6: if (x[i]=0 and x[Parent(i)]=1) then
7: TreeNode[j]=seed[i]
8: j=j+1

9: return TreeNode

One might think of using the cases d[i]=0 bypassing the check d[i]≠0 (line 19)
using a fault. However, mseed[0] does not exist and might cause an error during
execution. Therefore, modifying anything from lines 18-24 would not benefit us. Now,
we analyse the remaining steps (lines 11-16) of Alg. 2. In these steps, we can modify
the value of the vector f. Also, the SeedTreePaths algorithm is another potential
candidate for fault injection, which is presented in Alg. 4. It uses an auxiliary function
compute_seeds_to_publish described in Alg. 5. In the SeedTreePaths procedure,
a tree x of size 4l−1 is initialized with all zero. We call this tree as Reference Tree. In
Alg. 5, the values of the leaf nodes of the Reference Tree are updated according to the
f i.e., x[2l−1+i] are assigned the value f [i] for all 0≤i<t. The remaining nodes of
the Reference Tree are assigned the value using the formula x[i]=x[2i+1]∨x[2i+2],
signifying that if either child has a value of 1, the corresponding parent will be assigned
1. In this way, the value of the Reference Tree x has been updated in a bottom-up
approach. Now, some locations in Seed Tree are to be published as TreeNode with
the help of the Reference Tree. Alg. 4 checks if the i-th node of Reference Tree x[i] is
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Algorithm 5 compute_seeds_to_publish
Input: A vector f of size t and the Reference Tree x.
Output: Modified Reference Tree x.
1: for i=0; i<t; i=i+1 do
2: x[2l−1+i]=f[i]

3: for i=2l−2; i≥0; i=i−1 do
4: x[i]=x[2i+1]∨x[2i+2]

5: return x

zero and its parent x[Parent(i)] is 1, where the function Parent(·) is defined as follows:

Parent(i)=

{
0 if i=0

⌊ i−1
2 ⌋ otherwise

If the validity check is satisfied, then seed[i], the i-th node of the Seed Tree is
appended to TreeNode.

Example 1. In Fig. 2, we have given an example for leaf nodes 2l=8 and the vector
d is chosen as (0, 3, 1, 1, 0, 0, 0, 0). Then, the vector f will be (0, 1, 1, 1, 0, 0, 0, 0).
From Fig. 2, we can see that for i=2, 7 the condition "x[i]=0 and x[Parent(i)]=1"
is satisfied. Therefore, the vector TreeNode = (seed[2], seed[7]) and rsp =
(QT

d[1]Q1, Q
T
d[2]Q2, Q

T
d[3]Q3)=(QT

3Q1, Q
T
1Q2, Q

T
1Q3) will be extracted from Seed

Tree is revealed at the end. From the seeds seed[2] seed[7], we can compute the
leaf seeds seed[7], seed[11], seed[12], seed[13], seed[14] which are equals to the
leaf seeds ESEED[0], ESEED[4], ESEED[5], ESEED[6], ESEED[7] respec-
tively. From these seeds, we can compute the matrices Q̃0, Q̃4, Q̃5, Q̃6, Q̃7. From
the output of LESS_Sign algorithm, we will get either Q̃j or QT

d[j]Qj.

Fig. 2: Example for extraction of TreeNode from Seed Tree using Reference Tree,
following Alg. 4
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As we can observe from Alg. 4, the seeds from Seed Tree that are revealed as
TreeNode are directly associated with the values in f and the Reference Tree x.
Therefore, we can try injecting faults in various locations of f or x.

Modification of any node of the Reference Tree x: Here, we investigate the
effect of modification of some fixed i-th value of the tree x in Alg. 5. Without loss of
generality, assume x[i0], x[i1], ···, x[ir−1] be the leaf nodes of the subtree with root
node x[i], where r≥1. Now, suppose we inject a fault in the signature algorithm to
modify the value of i-th node of the Reference Tree x. In that case, the signature
algorithm will give us the faulted signature. However, even if we try to inject a fault in
a physical machine, the fault can only occur with a certain probability. If we assume
that the fault injection is successful, even then, there are several cases:

– Case 1: The node x[i] is 0 in the non-faulted case. In this case, since the actual
value x[i] is 0, all the leaf nodes in the subtree rooted at x[i] must be zero. Hence,
the vectors f and d do not have any non-zero value at the positions corresponding
to the leaf nodes x[i0], x[i1], ···, x[ir−1]. Therefore, the rsp does not contain
multiplication of any secret monomial matrix with the partial monomial matrix
Qij−2l+1, where 0≤j<r i.e., we can not get any information about the secret
matrices.

– Case 2: The node x[i] is 1 in the non-faulted case, and after the fault injection,
it has changed to 0. Since the Reference Tree is updated in a bottom-up approach,
the modification of the i-th node x[i] may affect the ancestors of x[i]. Conse-
quently, it may change the root node x[0]. In this case, assume that it changes
the value of the root node x[0] to 0. This case can occur only if all non-zero
leaves fall under the subtree rooted at x[i]. Since the value of the root node is
zero, all the ancestors of x[i] including x[0] are zero. Therefore, neither seed[i]
nor any of its ancestors in Seed Tree is released because the Alg. 4 requires the
parent of x[j] to be 1 if we want to release the seed[j], i.e. such fault does not
provide any advantage to us. Therefore, the nodes in the subtree rooted at x[i]
do not affect the fault injection, so no extra information can be achieved from
the released seeds corresponding to this subtree.

Example 2. We consider the fixed digest vector d, f , and the Reference Tree x of
Example 1 in a non-faulted scenario. We modify the value of x[1] from 1→0 that
changes the value of x[0] from 1→0. Fig. 3 represents the Reference Tree and the
related node of Seed Tree in faulted case. In this case, only x[7] satisfies the con-
dition "x[7]=0 and x[Parent(7)]=1". Therefore, TreeNode will be (seed[7])
and rsp=(QT

d[1]Q1, Q
T
d[2]Q2, Q

T
d[3]Q3)=(QT

3Q1, Q
T
1Q2, Q

T
1Q3). None of the

monomial matrices Q̃1, Q̃2, Q̃3 can be generated from seed[7]. Therefore, we are
unable to recover any secret key-related information from this faulted signature.

– Case 3: The node x[i] is 1 in the non-faulted case. After the fault injection, it has
changed to 0, but x[0] remains 1. Since the actual value of x[i] is 1, there exists
some leaf node x[ij] such that x[ij]=1. Therefore, it follows that f [ij−2l+1] is
non-zero and consequently d[ij−2l+1] is also non-zero. Without loss of generality,
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Fig. 3: Example of Case 2

assume that ij−2l+1=k′ then rsp contains QT
d[k′]Qk′. Also, since the faulted

value of x[i] is 0 and x[0]=1, so TreeNode will contain either seed[i] or any
of its ancestors in Seed Tree from which we can generate the leaf node seed[ij]
of the subtree rooted at seed[i]. Hence, the ephemeral key ESEED[k′] and
consequently the monomial matrix Q̃k′ can be generated. Therefore, we retrieve
the pair (Q̃k′, QT

d[k′]Qk′).

Example 3. We consider the fixed digest vector d, f , and the Reference Tree x
of Example 1 in a non-faulted scenario. We modify the value of x[3] from 1→0
that does not change the value of x[0]. Fig. 4 represents the Reference Tree and
the related node of Seed Tree in the faulted case. From this Fig. 4 we can see that
for i=2, 3 the condition "x[i]=0 and x[Parent(i)]=1" is satisfied. Therefore,
TreeNode will be (seed[2], seed[3]) and rsp=(QT

3Q1, Q
T
1Q2, Q

T
1Q3). Now

seed[3] is contained in the signature component Reference Tree that we can
generate the seed seed[8] to the 8−2l+1=8−8+1=1-st monomial matrix Q̃1.
So, from this faulted signature, we found the pair (Q̃1, Q

T
3Q1) that help us find

the information of the matrix QT
3 .

Modification of the vector f: The vector f is computed by using the fixed digest
vector d. If the i-th element of d holds a non-zero value, f[i] is assigned the value
of 1; otherwise, it is set to zero. If we modify the i-th value f[i] by injecting fault,
then the (2l−1+i)-th leaf node x[2l−1+i] of the Reference Tree will be changed.
The effect of this fault will be the same as the above modification of any leaf node
of the Reference Tree x.

From the above, we can observe that the attack surfaces are different as in the
second attack component, we change the value of any f[i], and in the first attack
component, we change the value of any x[i]. However, we can say that modifying the
value of any value f [i] is imposing the same effect as modifying the corresponding leaf
node of x[2l−1+i]. Therefore, from now onwards, we only discuss the modification
of any node of the Reference Tree x.
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Fig. 4: Example of Case 3

3.3 Fault models

In this section, we describe the fault models that will help us to recover the secret key.
Our attack just requires changing a bit (1→0 for LESS). Here we discussed in detailed
how each fault model can be utilize to realize our attack. Mainly, our fault assumptions
can be realized by "skipping one condition check" or "forcing one data corruption in
f or x". We assume that the faulted location is arbitrary but known to the attacker.

Skip the validity check condition in Alg. 4: If we skip the check "x[i] =
0 and x[Parent(i)]=1" in Alg. 4 for a fixed i, then seed[i] will always contained
in TreeNode. Without loss of generality, let seed[i0], ···, seed[ir−1] be the leaf
nodes of the subtree rooted the node seed[i] of Seed Tree and x[i0], ···, x[ir−1] be
the corresponding leaf nodes of the subtree rooted the node x[i] of the Reference Tree.
If x[i]=1, then there exists the leaf node say x[ij′], where 0≤j′<r and x[ij′]=1.
This implies f [ij′−2l+1]=1 and so, d[ij′−2l+1] must be non-zero. Therefore, rsp
must contain the matrix multiplication QT

d[ij′−2l+1]Qij′−2l+1. Since d[ij′−2l+1] is
non-zero, we are not supposed to have the information about the ephemeral matrix
Q̃ij′−2l+1 in non-faulted case. However, from the seed[i], we can generate all leaf
nodes of the subtree rooted in this node. Now, seed[ij′] is the ij′−2l+1-th leaf
node ESEED[ij′−2l+1] of the Seed Tree, and that helps us find the ephemeral
monomial matrix Q̃ij′−2l+1. So, in this case, we can find some information of secret
monomial matrix QT

d[i′j−2l+1] from the pair (Q̃ij′−2l+1, Q
T
d[i′j−2l+1]Qij′−2l+1). This

is a model that we can use to mount the attack.
Previously, many works [28,9] have shown that instruction skips can be easily

done with clock glitches, and the fault happens with very high probability. Mainly, in
these works they have skipped the condition check instructions and store instructions.
Recently, Keita et al. in [39] bypassed the validity check in the decapsulation procedure
in post-quantum the key-encapsulation mechanism Kyber [3]. However, one may
argue that skipping the validity check is the most important part as if we can skip this
validity check for i=0 in line-6 in Alg. 4, then seed[0] will be revealed. Henceforth
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all Q̃i’s would have been revealed. Therefore, one may want to protect this checking
at any cost. In fact, the need to protect this validity check was previously noted by
Oder et al. [26] for different post-quantum schemes (e.g. Kyber). Nevertheless, the
data in d and Reference Tree x can be corrupted by skipping the storing instruction
and forcing the data not to change.
Skip the store instruction in Alg. 5 to corrupt x: All the nodes of the
Reference Tree x are initialized by zero. If we can skip the store instruction x[i]=
x[2i+1]∨x[2i+2] for any i, then vaule of x[i] will remain zero. However, if the
value of x[i] is supposed to be 1 in the non-faulted case, then x[i] will be modified
after injecting this store instruction fault. As we discussed earlier, we can find the
information of the secret matrix if the fault changes the value of x[i] from 1 to 0 and
x[0] remains 1. A similar instruction skipping attack has been shown in [28].
Stuck-at-zero fault model to corrupt x: A possible attack avenue is exploiting
effective faults in the stuck-at model, where an attacker can try to alter the i-th
intermediate value x[i] to a particular known value, e.g., to zero using stuck-at-zero
fault [13,17,20] using voltage glitches or electromagnetic attacks. The effect of this
fault is equivalent to the above "store instruction skipping" fault. So, this fault will
allow us to find the secret matrix.
Rowhammer attack model to corrupt x: Rowhammer [31] is a hardware bug
identified in DRAMS (dynamic random access memory), where repeated row acti-
vations can cause bitflips in adjacent rows. This can also be a possible attack where
bitflips (1→0) can be employed to corrupt the data x[i]. Recently, such an attack
on Kyber using rowhammer has been shown in [24].

As we discussed, any one of the above fault models can generate effective faulted
signatures. However, the definition of successful fault always depends on the fault
model. For example, if we work on the first fault model, i.e., "Skip the validity
check condition in Alg. 4", then the successful-fault will be: successfully skipped the
checking condition "x[i]=0 and x[Parent(i)]=1" for a known i. But, if we work
on the second fault model, then the successful fault will be: successfully skipped the
store instruction "x[i]=x[2i+1]∨x[2i+2]" for a known i.

From now on, we will discuss the second fault model to inject a fault, i.e., we
inject a fault to skip the i-th store instruction Ins(i): "x[i]=x[2i+1]∨x[2i+2]" for
a fixed known i. Since all the values of the Reference Tree x are initialized by zero,
therefore for each successful fault, the value of x[i] will always be zero, where the
position of fault location x[i] is known to the attacker. In the practical setup of this
store instruction skip fault model, the following cases may arise:

– Successfully skipped the instruction Ins(i), for the known i and outputs the
signature we call it a successful faulted signature. This fault could be an effective
or ineffective fault.

– Could not skip the instruction Ins(i), for the known fixed i. In this case, we call
the output signature an unsuccessful faulted signature.

In a physical device, faults can be induced with varying success rates. Even if there is
a successful fault, the resulting faulty signature may or may not provide information
about the secret key, as we observed earlier. A successful fault is called "effective"
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if it reveals secret key information and "ineffective" if it does not. More explicitly, we
will say that a successful fault is effective if the fault changes the value of x[i] from
1 to 0, but the value of the root node x[0] remains unchanged, (i.e., 1). Otherwise,
the fault will be ineffective. We must identify the effective faulted signature from the
received signature to find the errorless secret matrix. In the next Section 3.4, we will
discuss the effective faulted signature detection method.

3.4 Effective fault detection

Let τ ′=(salt, cmt, TreeNode′, rsp) be the received signature corresponding to
the message m. We need to detect if the signature is generated from an "effective" or
"ineffective" fault. The injected fault only affects the Reference Tree x, so the signature
components salt, cmt and rsp remain the same with the corresponding non-faulted
signature components. We can compute the fixed digest vector d corresponding to the
signature τ ′ from cmt. From the fixed digest vector d, we can compute the vector f and
the Reference Tree x for the non-faulted case. However, we can compute the successful
faulted Reference Tree x′ from the Reference Tree x by assigning the value of x′[i]=0
and updating the ancestors of x′[i] accordingly, i.e., x′ should be the Reference Tree
if the instruction Ins(i) is skipped. Then, we will distinguish the "effective" faulted
signature and "ineffective" faulted signature with the following process:

– Step-1: First, we will check whether x[i] = 0 or not. If x[i] = 0, then this is
already a case of "ineffective fault", and we reject the signature. Otherwise, we
will go to the next step.

– Step-2: Next, we will check whether x′[0]=0 or not. If x′[0]=0, then this is a case
of "ineffective fault", and we reject the signature. Otherwise, from the Reference
Tree x′, we compute the size of successfully faulted TreeNode′, say ∆exp and
the size of received TreeNode′ say ∆rec. We compare the values ∆exp with ∆rec.

– Step-3: If ∆rec≠∆exp, then the fault is unsuccessful, and we reject the signature.
Otherwise, using salt, TreeNode′ and x′ we compute all the Q̃j where d[j]=0.
We apply the verification using these Q̃j’s and rsp. If the verification is successful,
then we take the received signature as an effective faulted signature. Otherwise,
we reject the signature.

Note that, in Step-3 of the above process, x[i] is changed from 1→0 and x[0]=1,
but we still consider it as "unsuccessful" fault. This is because we want our fault
detection method to detect whether our fault has been successfully injected exactly
at the i-th location or not. If x[i] changed from 1→0, then there are two cases.

– Case-1: fault was successfully injected at i-th location.
– Case-2: fault was injected at a j-th location for j ≠i and it has changed x[i].

We only consider Case-1 as “successful-fault”, but not Case-2 as the fault is not in-
jected at the i-th location in that case. In this procedure, we can detect that the faulted
signature that is generated by successfully skipping the instruction Ins(i) and that
leaks the information about the secret matrix. Note that the targeted faulted location i
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is arbitrary but known to the attacker. For simplicity, we will fix the targeted fault po-
sition i. We will check whether this fixed i-th store instruction Ins(i) skipped and that
leaks the information about the secret matrix or not. If this detection method passes,
then we will use this signature. Otherwise, we will again query for another signature.

3.5 Attack template

In this section, first, we will describe how to obtain the secret monomial matrices from
an effective faulted signature τ=(salt, cmt, TreeNode, rsp) in Alg. 6. Let x[i] be
the node in Reference Tree with height h, and Lx[i] be the set of all leaf nodes of the
subtree rooted at x[i]. We only need the leaf nodes from Lx[i] that coincide with the
first t (the length of the digest d) many leaf nodes of the full Reference Tree. Without
loss of generality, assume that there are v many such leaves, and let the set of indices of
these leaves be I(i)leaf={j1, j2, ···, jv}. From this effective faulted signature, all the secret
matrices QT

d[j−2l+1] will be recovered with Alg. 6, where j∈I(i)leaf and d[j−2l+1]≠0.

Algorithm 6 Recover_Secret_Matrices(τ, PK)
Input: Signature τ=(salt, cmt, TreeNode, rsp), public key PK=(gseed, G1, ···, Gs−1).
Output: The columns of secret matrices QT

d[j−2l+1], where j∈I(i)leaf and d[j−2l+1]≠0.
1: d←CSPRNG(cmt, St,w)
2: seed←SeedTreeUpdate(TreeNode, salt, d)
3: ESEED← Leaf nodes of seed corresponding to seed[i]
4: G0←CSPRNG(gseed, SRREF)
5: for r=1; r≤v; r=r+1 do
6: if d[jr−2l+1]≠0 and Qd[jr−2l+1] is not recovered then
7: Q̃jr−2l+1←CSPRNG(ESEED[jr−2l+1], Mn(q))

8: (Qjr−2l+1, V jr−2l+1)←PrepareDigestInput(G0, Q̃jr−2l+1)

9: Q∗=QT
d[jr−2l+1]Qjr−2l+1←ExpandToMonomAction(rsp)

10: Compute QT
d[jr−2l+1] from (Q∗, Qjr−2l+1) ▷ following Section 3.1

Here, SeedTreeUpdate function takes the TreeNode, salt and digest d and
generates all the ephemeral seeds assuming the modified Reference Tree after effective
fault. Since seed[i] is revealed in TreeNode after effective fault, we can say that
ESEED[j−2l+1] for all j∈I(i)leaf are revealed.

In this attack model, we are able to get into the victim’s device and introduce
the fault that causes it to bypass the Ins(i) instruction. The LESS_KeyGen (Alg. 1)
is a one-time operation from where the secret key SK=(MSSED, gseed) and public
key PK=(gseed, G1, ···, Gs−1) are generated. But with this private key SK, the
LESS_Sign (Alg. 2) can execute more than once. We follow the following subsequent
actions to find the secret monomial matrices:

– Step-1: We generate a message, signature pair (m, τ) from the victim device.
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– Step-2: After receiving the pair (m, τ), we will determine whether or not τ is
an effective faulted signature. Go back to Step-1 if the signature is not effective.
If yes, then go to Step-3.

– Step-3: Using this signature τ , we will run the Recover_Secret_Matrices
algorithm (Alg. 6) to determine the hidden monomial matrices.

– Step-4: Next, we will calculate whether or not the whole secret monomial matri-
ces were obtained. We terminate the process if the secret matrices are recovered.
Otherwise, we repeat the same procedure to obtain the remaining non-recovered
columns.

3.6 Secret recovery from single fault

In this section, we calculate the expected number of secret monomials recovered from
one effective faulted signature where the fault is injected at a node x[i] (0≤i≤4l−2).
Now, if there are m many non-zero leaves with distinct values in the subtree rooted at
x[i], then we will get exactly m many pairs of the form (Q̃j, Q

T
d[j]Qj) i.e. we recover

m many secret monomials. In this section, first, we will estimate the value of m.
Suppose Lx[i] the set of leaf nodes in the subtree rooted at x[i] and let |Lx[i]|=ℓ.

Let W be the random variable representing the number of leaf nodes in Lx[i] with
non-zero value. X be a random variable that represents the number of distinct
non-zero values of the leaf nodes in Lx[i]. Then for any 0≤m≤s−1, we have

Pr[X=m]=

w∑
r=m

Pr[X=m | W=r]·Pr[W=r]

Where w is the weight of d and therefore Lx[i] can only have at most w many
non-zero valued leaf nodes. First, we will calculate Pr[X=m | W=r], which is the
probability that r many non-zero leaves take exactly m many distinct values. These
m distinct values can be chosen from (s−1) possible values in

(
s−1
m

)
ways. Now, we

have to assign all these m values to the r many leaf nodes. We first partition the
r locations into m many non-empty subsets, which can be done in S(r, m) many
ways. This S(r, m) is a Stirling number of the second kind [32]. Now, each of the
m many subsets can be assigned a unique non-zero value, which can be done in m!
ways. So, the r many leaf nodes can be assigned m distinct value in m!

(
s−1
m

)
S(r, m)

ways. Therefore

Pr[X=m | W=r]=
m!
(
s−1
m

)
S(r, m)

(s−1)r

Now, d has weight w and Pr[W=r] is the probability that the ℓ many locations of d
corresponding to the leaf nodes in Lx[i] has exactly r many non-zero values and the
last t−ℓ many locations has w−r many non-zero values. Therefore,

Pr[W=r]=

(
ℓ
r

)(
t−ℓ
w−r

)(
t
w

)
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Now we can calculate Pr[X=m] for all 0≤m≤s−1. However, we are interested in
finding the expected number of secret monomials with one single fault, which is the
expectation of the random variable X.

E[X]=

s−1∑
m=1

m·Pr[X=m]

=

s−1∑
m=1

m

(
w∑

r=m

m!
(
s−1
m

)
S(r, m)

(s−1)r
·
(
ℓ
r

)(
t−ℓ
w−r

)(
t
w

) )

With only one single faulted signature the expected number of secret monomials that
we recover is E[X] but the total number of secret monomials is (s−1). Therefore, we
need multiple faulted signatures to recover all the secret monomials.

4 Extending our attack to CROSS

CROSS uses En a commutative group isomorphic to (Fn
z , +), where n, z are param-

eters of the signature and G is a subgroup of En. Here e is a long-term secret vector
which is used to generate signatures. Therefore, the attacker can generate multiple
valid signatures using the secret e information. Similar to the attack on LESS, the
target here is to find the information of the secret vector e. In the Alg. 7, we can
observe that if we have information of one single pair (e′(i), f(i)=(y(i), σ(i), c

(i)
1 )),

then we can compute the secret e by e=σ(i)(e′(i)). Therefore, we aim to find one
such pair corresponding to any i for full key recovery.

In Alg. 7, the function publish_seeds (line 22) works equivalent to the function
SeedTreePaths (Alg. 4) used in LESS signature. Using the digest vector b, the func-
tion publish_seeds first creates a Reference Tree say y in a bottom-up approach
like LESS signature. The only difference in this Reference Tree y is that the flag
of the published seed is defined as 1 and unpublished seed notation as 0, whereas
in LESS, the authors define the opposite. However, Both use equivalent concepts.
Like LESS, we require the modification of any node of the Reference Tree from
1( flag of the unpublished seed )→0( flag of the published seed ) to get an effective
faulted signature. Therefore, we need the modification from 0→1 to get an effective
faulted signature. We can detect the effective faulted signature here using a similar
technique that we used in Section 3.4 to detect effective fault for LESS signature.

Let us assume that we apply fault injection to the CROSS signature of a victim’s
device such that the value of y[i] has been changed from 0→1. Consider an effective
faulted signature as τ=

{
Salt, c0, c1, h, SeedPath, MerkleProofs,

{
f(i)
}
i/∈J

}
.

Since τ is an effective-faulted signature, therefore we will get the seed seed[i]. All
the leaf nodes of the subtree say Lx[i]={x[j1], ···, x[jv]} rooted as seed[i] can be
computed from seed[i]. i.e., ESEED[j1−2l], ···, ESEED[jv−2l] will be the cor-
responding leaf ephemeral seeds. Now, we will find the secret key e using the Alg. 8.
The function SeedTreeUpdate works the same way we defined it in Section 3.5.
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Algorithm 7 CROSS_Sign (Msg, e)

Input: Secret key e∈G and message Msg where G⊂En, H∈F(n−k)×n
p are public key

satisfying s=eHT

Output: Signature τ=

{
Salt, c0, c1, h, SeedPath, MerkleProofs,

{
f(i)

}
i/∈J

}
1: Sample MSeed

$←−{0, 1}λ, Salt $←−{0, 1}2λ
2: Generate Seed=SeedTree(MSeed, Salt)
3: ESEED[1], ···, ESEED[t]= Leaf nodes of Seed
4: for i=1, i≤t, i=i+1 do
5: Sample (Seed(u

′), Seed(v
′))

ESEED[i]←−−−−−−−{0, 1}2λ

6: Sample u′(i) Seed(u
′)

←−−−−−−Fn
p , e′(i) Seed(e

′)
←−−−−−G

7: Compute σ(i)∈G such that σ(i)(e′(i))=e
8: Set u(i)=σ(i)(u′(i))
9: Compute s̃(i)=u(i)HT

10: Set c(i)0 =Hash(s̃(i), σ(i), Salt, i)

11: Set c(i)1 =Hash(u′(i), e′(i), Salt, i)

12: Set T =Merkle Tree(c(1)0 , ···, c(t)0 )
13: Compute c0=T .Root()
14: Compute c1=Hash(c(1)1 , ···, c(t)1 )
15: Generate (β(1), ···, β(t))=GenCh1(c0, c1, Msg, Salt)
16: for i=1, i≤t, i=i+1 do
17: Compute y(i)=u′(i)+β(i)e′(i)

18: Compute h(i)=Hash(y(i))

19: Compute h=Hash(h(1), ···, h(t))
20: Generate (b[1], ···, b[t])=GenCh2(c0, c1, β(1), ···, β(t), h, Msg, Salt)
21: Set J={i : b[i]=1}
22: Set SeedPath=publish_seeds(MSeed, Salt, J)
23: for i /∈J do
24: f(i) :=(y(i), σ(i), c

(i)
1 )

25: Compute MerkleProofs=T .Proofs({1, ···, t}\J)

26: Return τ=

{
Salt, c0, c1, h, SeedPath, MerkleProofs,

{
f(i)

}
i/∈J

}

5 Simulation result

In this section, we discuss the simulation procedure of our fault attack on LESS
and CROSS signatures; i.e., we apply our fault assumption inside the LESS and
CROSS signature algorithms to imitate the corresponding practical attack scenario.
The simulation code is available at GitHub 4.

In the previous Sections 3.6 and 4, we have analyzed the effect of modification of
the values x[i] (for LESS) and y[i] (for CROSS) to 0 and 1 respectively. For LESS
and CROSS, this can be achieved by stuck at zero/stuck at one or instruction skip
fault. So, in the simulation code, we have assumed the values 0 and 1 of the nodes
4 https://github.com/s-adhikary/zkfault_simulation

https://github.com/s-adhikary/zkfault_simulation
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Algorithm 8 Recover_Secret_CROSS (τ, PK)

Input: τ=

{
Salt, c0, c1, h, SeedPath, MerkleProofs,

{
(y(i), σ(i), c

(i)
1 )

}
i/∈J

}
Output: The secret vector e.
1: Generate (β(1), ···, β(t))=GenCh1(c0, c1, Msg, Salt)
2: Generate (b[1], ···, b[t])=GenCh2(c0, c1, β(1), ···, β(t), h, Msg, Salt)
3: Set J={i : b[i]=1}
4: ESEED[j1−2l], ···, ESEED[jv−2l]←SeedTreeUpdate(seed[i], Salt, b)
5: for i=j1−2l, ···, jv−2l : do
6: if i /∈J then
7: Sample (Seed(u

′), Seed(v
′))

ESEED[i]←−−−−−−−{0, 1}2λ

8: Sample e′(i) Seed(e
′)

←−−−−−G
9: Compute e=σ(i)(e′(i))

10: return e

x[i] and y[i] respectively. After receiving this faulted signature τ , we compute the
corresponding secrets of CROSS (secret e) and LESS (secret monomial matrices)
with the help of the respective algorithms Alg. 6 and Alg. 8.

Note that the attack is valid if we target any x[i] (y[i]) for fault injection in
LESS (CROSS) signature, where i is an arbitrary but fixed location. But in our
simulation code we have fixed the location as i=1. One may change this location and
the simulation code accordingly. However, in that case the results in Table. 2 would
change according to our result in Section 3.6. We provide the simulation results for
all the versions of LESS and CROSS in Table 2. We have run the simulation code
multiple times to recover all secrets with (multiple) faulted signatures. We take the
average of the number of faulted signatures required to recover all secrets, which we
denote with Navg. We have also included the average number of secrets recovered
from one single fault (E[X]) in the table.

Scheme Security
Level

Parameter
Set

Optim.
Corner

Number
of Secrets E[X] Navg

LESS [7]

1
LESS-1b - 1 1 1
LESS-1i - 3 2.91 1.05
LESS-1s - 7 5.55 2.09

3 LESS-3b - 1 1 1
LESS-3s - 2 2 1

5 LESS-5b - 1 1 1
LESS-5s - 2 2 1

CROSS [34] 1, 3, & 5 CROSS-R-SDP fast/small 1 1 1
CROSS-R-SDP(G) fast/small 1 1 1

Table 2: Simulation result of full secret monomial matrices recovery of LESS and
CROSS signature [7,34]

.
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Our analysis is based on the fact that each time we query the faulted signature
oracle, we get an effectively faulted signature. However, in a practical fault attack,
this is not the case. In the real world, there is a probability that an injected fault is
successful, say p1, and also there is a probability that a successfully injected fault is
effective, say p0. Then

Pr[ effective fault ∧ successful fault ]
=Pr[ effective fault | successful fault ]·Pr[ successful fault ]
=p0p1

(5)

Let us consider p=p0p1. Therefore, in a practical scenario to get one faulted signature,
the approximate number of queries to the faulted signature oracle needed would be
Ntrial =

1
p . Moreover, to get Navg many faulted signatures, we need Ntotal =

Navg
p

many queries. For example if we consider p=0.01, then Ntrial=100 and consequently,
Ntotal=100·Navg.

6 Countermeasures

In the previous section, we have seen that the primary attack surface Reference Tree
x is initialized by 0. If we inject fault to skip store instruction line-5 of Alg. 5 i.e.
x[i]=x[2i+1]∧x[2i+2], then x[i] does not change the value and stays 0. Hence,
one may suggest initializing the Reference Tree with all 1. The instruction skip fault
does not work in this case, but we can apply bit-flip fault or stuck-at-zero faults and
apply the same attack analysis. Since many practical fault attacks are applicable,
countermeasures against one type of fault may not serve our purpose. Therefore, first,
we must identify the main reason for the existence of the attack vector.

After the digest computation in Alg. 2, the values of vector d are checked twice.
First, by checking whether the value of each d[i] is zero or not, they published the
component TreeNode. Completing this procedure, again, each d[i] is checked to
publish the component rsp. Therefore, if an attacker injects a fault at the time of
computing TreeNode and somehow succeeds in disclosing the seed ESEED[i]
without altering the vector d, then the information about the secret matrix QT

d[i]

is susceptible to leakage. To mitigate potential attacks, we must publish either the
response Q̃i or QT

d[i]Qi after a single verification of the value d[i].
In the following sections, we will offer concise explanations for two countermeasures

incorporated within the LESS scheme that protect the scheme up to one fault.

6.1 Countermeasure with larger signature size

The most straightforward countermeasure would be not using the tree construction
at all. In this version, the preparation of digest d is the same as Alg. 2. After the
digest preparation, for each 0≤i<t we only check the value of d[i], and set

rsp[i]=

{
Q̃i if d[i]=0

QT
d[i]Qi otherwise

.
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Then, we cannot get both Q̃i and QT
d[i]Qi for any i and the attack can be prevented.

However, in this case, the size of the signature will be |cmt|+wk(⌈logn⌉+⌈log(q−1)⌉)+
(t−w)λ. This signature size will be larger than the submitted version of LESS [35].

6.2 Countermeasure with same small signature size

Here, we introduce another countermeasure that will keep the signature size the same
as the submitted version of LESS [35]. In this countermeasure, our main target is that
after computation of the Reference Tree x, we check the Reference Tree only once to
compute the response for the signature. Note that, according to the construction of
the Reference Tree x, the path from a leaf node to the root node should be of form
0y1z because if the value of any node on this path is 1, then all the ancestors of that
node will be 1.

After the preparation of the Reference Tree x, we modify the signature generation
method. First, observe that for any leaf node x[2l−1+i] of the Reference Tree, let
the path to the root be x[i0]x[i1]···x[ip], where p=⌈log2(l)⌉+1 is the height of the
Reference Tree. Here, i0=2l−1+i and x[ij] is the ancestor of x[2l−1+i] at the height
j, this means that x[ip] is the root. The following is the signature generation process:

– Step-1:We start from the leftmost leaf node.
– Step-2: check the path x[i0]x[i1]···x[ip]
– Step-3: If x[ij]=1 for 0≤j≤p, then we store QT

d[i]Qi in rsp and select the
next leaf node as x[2l+i] and goto Step-2, else go to Step-4.

– Step-4: We find x[ih], which is the highest ancestor of x[i0] with the value zero.
– Step-5: Since x[ih]=0, all the 2h leaf nodes of the subtree rooted x[ih] must be

zero. We store the seed seed[ih] in TreeNode and we select the next leaf node
as x[2l−1+i+2h] and go to Step-2. If no more leaf nodes are left, then we stop.

– Step-6: return the pair rsp and TreeNode.

The digest d and the Reference Tree are prepared in the same process here as
it is prepared in Alg. 2. Only the vectors rsp, TreeNode are prepared using Alg. 9.
At the end, (cmt, salt, rsp, ,TreeNode) is generated as the signature.

Fig. 5: Example for extraction of response rsp, TreeNode according to Alg. 9
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Algorithm 9 LESS_Gen_rsp_update
Input: The fixed weight digest vector d, The secret monomial matrices Qi, ∀i∈Zs, where

Q0=In, The Seed Tree seed, and the partial monomial matrices Qj, ∀j∈Zt.
Output: The response rsp and TreeNode
1: for i=0; i<t; i=i+1 do
2: if d[i]=0 then
3: f[i]=0
4: else
5: f[i]=1

6: for i=0; i<4l; i=i+1 do
7: x[i]=0

8: x←−compute_seeds_to_publish(f, x)
9: i=0, j=0, j′=0

10: while i<t do
11: c=2l−1+i, h=0, h′=0
12: while Parent(c)≠0 do
13: if x[c]=0 then
14: c′=c, h′=h+1

c=Parent(c), h=h+1

15: if h′=0 then
16: rsp[j′]=CompressMono(QT

d[i]Qi)
17: i=i+1, j′=j′+1
18: else
19: TreeNode[j]=seed[c′]

20: i=i+2h
′−1, j=j+1

21: Return rsp, TreeNode

Example 4. Given a fixed signature digest vector represented as d=(0, 0, 0, 0, 0, 2, 0, 0).
First, we construct the Reference Tree x, which is illustrated in Fig. 5. Begin by
checking leaf nodes from the left side. First, we take the leftmost leaf node x[7]. The
path from x[7] to root is x[i0]x[i1]x[i2]x[i3]=x[7]x[3]x[1]x[0], and it is valued 0001.
In Fig. 5, we can see that the height of the last ancestor valued 0 is h′ = 3, and
the node is x[1]. We store seed[1] in response TreeNode and select the next leaf
node as x[7+2h

′−1]= x[11]. Final response will be calculated as rsp=(QT
2Q12) and

TreeNode=(seed[1], seed[11], seed[6]).

Suppose we inject a fault at the node x[i] and alter its value from 1 to 0. Then some
of its ancestors may change. Let x[i1], x[i2], ···, x[ih] be the list of all ancestors of x[i],
where x[ij] is ancestor of x[ij−1] for all j∈ [2, h] and x[ih] is the root. Suppose x[iy]
is the highest ancestor in the list to have the value zero. Now, consider the leftmost
leaf node x[r] of the subtree rooted at x[iy], then x[iy] is the highest node with value
zero in the path from x[r] to root. Hence, according to Alg. 9, seed[iy] is appended
to TreeNode and all the leaf nodes in the subtree rooted at x[iy] are skipped.

Observe that the fault at x[i] only affects the subtree rooted at x[iy], the rest
of the Reference Tree is unchanged. The subtree rooted at x[iy] is skipped after
revealing seed[iy], and seed[iy] can only be used to generate the ephemeral seeds
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that do not have any information about the secret monomial matrices. Therefore,
the attack will not be possible with just one fault.

We only change the attack surface part to protect the LESS scheme against our
attack. The attack surface of the CROSS signature scheme is similar to LESS. We
can use the proposed countermeasure for CROSS also. We only need to modify the
update method of rsp and TreeNode according to the CROSS signing algorithm.

Cost of the countermeasure Here we will compare the cost analysis of our
proposed countermeasure with the original LESS implementation (Alg. 2). The
Reference Tree generation process in our proposed method is the same as the original
LESS proposal. We have only changed the TreeNode and rsp generation process
but result is same in both cases i.e, for a particular Seed Tree, Reference Tree pair,
our method and original LESS implementation, both generate the same TreeNode
and rsp. First of all, we consider the following computation costs:

– Ccheck: cost of any condition checking
– Cmono: cost of computation of a monomial multiplication followed by a Com-

pressMono function and storing the result
– Cseed: cost of storing seeds from Seed Tree condition checking

Also, we fix a Seed Tree and a Reference Tree and we assume that r many seeds
from Seed Tree are to be stored in TreeNode. Assume that the total number of
nodes in the Reference Tree is N .

Cost of LESS original implementation (Alg. 2): As we can see in Alg. 2, the
TreeNode is generated using Alg. 4. We are going to ignore the cost of com-
pute_seeds_to_publish function (Alg. 5), as it has also been used in our counter-
measure. For each node in the Reference Tree, Alg. 4 checks the node and its parent
node which takes 2N ·Ccheck computations. As we have assumed earlier there are r
many seeds which are to be stored in TreeNode, which takes r·Cseed computations.
After that, Alg. 2 checks each value of the vector d which takes t·Ccheck computations
and computes the monomial multiplication and calls the CompressMono function
for each d[i] ≠ 0, which takes w ·Cmono computations. Therefore the total cost is
(2N+t)·Ccheck+r·Cseed+w·Cmono.

Cost of our proposed method (Alg. 9): In each iteration of the while loop, we
first check the full path from the leaf node to the root, this takes log2N ·Ccheck
computations. In each iteration, the algorithm can either update TreeNode or
update rsp i.e., the total number of iterations in the while loop is (r+w). The
condition checking takes total (r+w) · log2N ·Ccheck computations. Now the rsp
is updated for w many iterations, which takes total w ·Cmono computations. Simi-
larly, updating TreeNode takes r·Cseed computations. Therefore, the total cost is
(r+w)·log2N ·Ccheck+r·Cseed+w·Cmono.

Observe that the cost of the countermeasure may vary with the value of r, which is
the number of seeds published from Seed Tree. We have benchmarked the performance
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of the LESS-sign algorithm with and without our countermeasure for all parameter
sets of LESS in Table 3. As we can see, including our countermeasure does not
degrade the performance of the LESS-sign algorithm.

Security
Level

Parameter
Set

Average cpucycles
(×106 cycles)
Our

Countermeasure
Original
LESS

1
LESS-1b 1162.31 1162.19
LESS-1i 1148.03 1147.94
LESS-1s 931.57 931.72

3 LESS-3b 9563.01 9564.23
LESS-3s 11285.14 11283.65

5 LESS-5b 44031.11 44036.56
LESS-5s 29544.22 29542.31

Table 3: LESS-sign performance comparison with our countermeasure against original
LESS implementation

.

For benchmarking, we have used an HP Elite Tower 600 G9 Desktop with an
Intel Core i7-12700 CPU running at 2.1 GHz and 32 GB physical memory, which
was running Ubuntu 22.04.4 LTS. The test codes were executed on a single core with
Turbo Boost and hyperthreading disabled.

7 Discussion and future direction

In this study, we have assumed a single-fault model where an attacker can only inject
a fault in one single location. The countermeasure we have provided is based on that
assumption. We emphasize the necessity of future investigations into higher-order
fault models, side-channel attacks using power, electromagnetic radiation [20,28], and
combined (side-channel assisted fault attack) attack. This study is the first research
study enhancing the security of the digital signature scheme LESS and CROSS against
a broader spectrum of fault attacks. LESS has (s−1) secret monomial matrices, and
we’ve shown that one pair can recover some information about one secret matrix.
So, we need multiple targeted pairs to retrieve all secret matrices. This number of
required pairs depends on various parameters. Therefore, we require more than one
effective faulted signature for some parameter sets of LESS. For CROSS, there’s only
one secret e for all the parameter sets. It can be recovered with just one targeted pair.

In this work, we have done a fault analysis of the LESS [35] signature scheme that
has been submitted to NIST. However, the authors of LESS have updated the scheme
in the LESS project’s site [21]. We observe that our mentioned attack surface, i.e., the
computation of TreeNode by using the function SeedTreePaths, are present there
too. So, our attack is still applicable to their updated version. Another code-based



30 Mondal et al.

signature scheme MEDS (Matrix Equivalence Digital Signature) [12] based on the
zero-knowledge protocol. Like LESS and CROSS, the Sign algorithm of MEDS uses
a similar tree construction to reduce the signature size. In this case, the response (Ãi

or Q·Ãi) is constructed depending on some fixed weight digest vector d, where Q is
a secret component. It involves the same seed tree and Reference Tree to store some
seeds corresponding to the response Ãi in a similar manner. So, the same attack
model can also be applied to the MEDS signature scheme. However, we have not
completely analyzed how many faulted signatures are needed to find the entire secret.
We left this part for future work.

We have shown a fault detection method where we have fixed a position x[i]
of the Reference Tree and injected fault at that location. The detection method
in Section 3.4 can detect a successful and effective fault at the location x[i] for any
chosen i, where 1≤i<4l−1. Moreover, this method can determine the occurrence of
an effective fault at any arbitrary location within the reference tree by applying the
detection procedure for each 1≤i<4l−1. Given that l∈{128, 512, 1024} (according
to Table 1), this approach is computationally feasible. However, a mathematical
analysis for this scenario has not been included and is left for future work.
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Supplementary material

A Comparison of LESS with other code-based signature
schemes

Table 4 compares the key sizes and performance of LESS with other code-based digital
signature schemes submitted to NIST’s additional call for digital signatures [25].

Category Scheme
Performance
(M Cycle)

Size
(Bytes)

Sign. Verify Signature Public
Key

Level I

WAVE [36] 1161 205.9 822 3677390
MEDS [12] 518.1 515.6 9896 9923
CROSS [34] 22 10.3 10304 61
LESS [35] 263.6 271.4 5325 98202

Level III

WAVE [36] 3507 464.1 1249 7867598
MEDS [12] 1467 1462 41080 41711
CROSS [34] 46.5 18.3 23407 91
LESS [35] 2446.9 2521.4 14438 70554

Level V

WAVE [36] 7397 813.3 1644 13632308
MEDS [12] 1629.8 1612.6 132528 134180
CROSS [34] 74.8 26.1 43373 121
LESS [35] 10212.6 10458.8 26726 132096

Table 4: Comparison of code-based signature schemes in terms of performance and size.

B Verification algorithm of LESS

The verification algorithm in Alg. 10 takes a message m and signature τ and the
public key PK as inputs and returns 1, if the τ is a valid signature of the message
m otherwise, it will return 0.
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Algorithm 10 LESS_Vrfy(m, τ, PK)
Input: A message m, the public key PK and the signature τ=(salt, cmt, TreeNode, rsp).
Output: It will return 1, if (m, τ) is a valid message signature pair. Otherwise, it will

return 0.
1: d′←CSPRNG(cmt, St,w)
2: for i=0; i<t; i=i+1 do
3: if d′[i]=0 then
4: f′[i]=0
5: else
6: f′[i]=1

7: ESEED′←regenerate_leaves(salt, TreeNode, f′)
8: G0←CSPRNG(gseed, SRREF)
9: k=0

10: for i=1; i<t; i=i+1 do
11: if d′[i]=0 then
12: Q̃′

i←−CSPRNG(ESEED′[i], Mn)

13: (Q
′
i, V

′
i)←−PreparedDigestInput(G0, Q̃

′
i)

14: else
15: j=d′[i]
16: Gj←ExpandRREF(PK[j])
17: Q∗←ExpandToMonomAction(rsp[k])
18: Compute J←{αi :Q

∗[αi,∗]=0}
19: Ĝ←(GjQ

∗ | Gj[∗, J])
20: (Ĝ, pivot_column)←RREF(Ĝ)

21: NP=0, V
′
i=O

22: for c=0; c<n; c=c+1 do
23: if pivot_column[c]=0 then
24: V

′
i←LexMin(Ĝ, V

′
i, NP, c)

25: NP=NP+1

26: V
′
i←LexSortCol(V

′
i)

27: k=k+1

28: cmt′←H(V
′
0, ···, V

′
t−1, m, len, salt)

29: if cmt=cmt′ then
30: Return 1
31: else
32: Return 0
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