
Agile Asymmetric Cryptography and the Case for Finite Fields
Anna M. Johnston
Juniper Networks

2024/09/11

Abstract
Cryptographic agility, the ability to easily and quickly modify cryptography in a sys-

tem, is one of the most important features of any cryptographic system. Any algorithm
may be attacked and, at some point in time, be broken. The most obvious solution is to
change the cryptographic algorithm, however this has high risk and cost. Another solu-
tion is to use agile algorithms. Agile algorithms have security parameters easily changed
to increase protection against attacks.

In this paper we will show that finite field based algorithms are the most agile of
currently used classical cryptography. A critical portion of this will be to show that the
bottleneck for the primary costing attack, the number field sieve, is the linear algebra
portion of the attack, and not the sieving portion.

This paper examines the agility of all three algorithm categories and dispels a few
myths about their strengths.

1 Background

Cryptographic agility should be a key feature of any cryptographic system. All algorithms

may be attacked and, at some point in time, be broken. Systems must adapt to keep pace

with improved attacks or compute power. This is true for both symmetric and asymmetric

(public key) algorithms. For example, the old Data Encryption Standard, DES, was never

analytically broken. The key length was short and compute power grew to threaten it.

More analytic progress has been made against AES (Advanced Encryption Standard), the

replacement for DES, but key sizes are much larger and the analytic progress has not led to

any practical attacks. Furthermore, AES has multiple key sizes which allow security to be

increased. There are two options to protect data in this ever changing landscape: create new

2024/09/11 1



algorithms to replace those which show weakness or use better security parameters. Both

options have issues.

New algorithms have, by their shorter time on the analysis table, a higher probability

of being broken. The more analysis an algorithm receives, the higher the confidence in its

strength. Furthermore, complications hide weaknesses. The more complicated an algorithm

is, the higher the probability of hidden weaknesses.

Adjusting security parameters on existing algorithms avoids the problems inherent in

new algorithms. Cryptographic algorithms with easily modifiable security parameters and

manageable cost growth (parameter size and computation) are defined here as Agile Cryptog-

raphy. Symmetric cryptography generally has fixed parameter size and is not agile, though

some have a few options for key sizes, such as AES, and are somewhat agile. Fortunately,

asymmetric algorithms tend to be more agile.

Public key algorithms are based off computationally infeasible problems. Breaking these

problems breaks the algorithm. These algorithms are inherently more agile as the size of the

hard problem can generally be increased to improve security. In classical public key, there

are three commonly used infeasible problems: factoring large integers[16] and computing

discrete logarithms over either a multiplicative subgroup of a finite field[4] or an elliptic

curve group[10][13].

This gives us the three most common classical foundations for classical public key al-

gorithms (figure 1): factoring, and finite field or elliptic curve based discrete logarithms.

Security in each of these algorithms depends on the size of the mathematically hard prob-

lem.

• For factoring based algorithms, this is the size and structure of the composite moduli.

• For discrete log based algorithms, it is the size and structure of the cyclic group and

the underlying field or elliptic curve.

These can all be easily increased to make existing attacks more difficult – i.e., back to being

2024/09/11 2



computationally infeasible.

Almost 50 years since the start of public key cryptography, a potential new threat has

arisen: Shor’s algorithm[19] running on a quantum computer. Given a large and stable

enough quantum computer, all of these commonly used cryptographically infeasible problems

are breakable using Shor’s algorithm. The size and stability needed depends on the size and

type of problem being attacked. Smaller integers (factoring), smaller base fields (both finite

fields and elliptic curves) will need smaller, less stable quantum computers to be attacked

than larger integers or fields.

Quantum computing is nowhere near the point of breaking any of these commonly used

public key algorithms. Only small, compiled versions of Shor’s algorithm for factoring have

ever been implemented. Compiled versions of Shor’s algorithm use knowledge of the factors

to simplify the algorithm, and only 15, 21 and 35 were factored this way. Shor’s algorithm

for discrete logs, even a very small example, has never been implemented. The life span and

security of classical public key algorithms can be easily and cheaply increased by switching

to the most agile category, i.e. finite field discrete logarithm based algorithms, thereby

increasing security to match evolving threats.

The remainder of this paper details why finite fields are the best classical choice for

asymmetric cryptography for both agility and overall security.

2 Classical Comparison

Comparing the agility of factoring, finite field and elliptic curve based cryptography is both

simple and nuanced. Parameter simplicity is the primary and simplest reason. To increase

security, larger primes for composite moduli (factoring), finite field or elliptic curve bases

will be needed. For each category of algorithms, the following will be needed:

• Finite field based algorithms need one large prime, shared by all users. Increasing the

size means generating a single new prime for the system.

2024/09/11 3

http://dx.doi.org/10.1137/S0097539795293172


• Factoring based algorithms require two large primes, p, q for each user of the system

and each of these primes must be unique. Increasing the size means securely generating

and distributing a new pair of prime integers for every user.

• Elliptic curve based algorithms need a carefully generated curve and new prime base.

Generation of a new curve and larger base is only slightly more complicated than its

finite field counterpart.

Generating two new primes for each user in a network using factoring based algorithms

is far more costly than generating a single prime for the entire network using discrete log

based algorithms. In the past, attacks occurred when companies tried to reduce the cost of

prime generation and reused primes. This allowed for a very simple attack (see section A.1).

The real issue with elliptic curve agility is its computational growth. For similarly sized

base fields, elliptic curve based cryptography is, computationally, many times more expensive

(section 4.4) than finite field cryptography. In fact, this has already become an issue when

thinking about the threat from quantum computers. Currently sized elliptic curve algorithms

are vulnerable[15][17] to a smaller sized quantum computer than their security comparable

factoring or discrete log algorithms.

3 Cryptanalytic Sieving Algorithms

Agility in public key algorithms is partially measured by its strength with respect to its

size: how much strength is added by increasing parameters? Algorithm strength, in turn,

is determined by analyzing known attacks, and the most impactful set of these attacks for

discrete logarithm and factoring based systems are the cryptographic sieving algorithms.

Cryptanalytic sieving algorithms are a class of algorithms used to factor integers and

compute discrete logs. This set includes quadratic/Gaussian sieve[3], general number field

sieve[6], special number field sieve[18], function field sieve[7] and many others. While there

are many different varieties, they all share the same three step process:

2024/09/11 4



1. Sieve (section 3.1): Using a chosen number field or function field (think alternative

mathematical universe), sieve to generate a huge number of linear equations.

2. Linear Algebra (section 3.3): Given the linear equations generated by the sieve, solve

the system.

3. Solve (section 3.2): With the output of the linear algebra step, factor or compute a

discrete logarithm.

These steps are superficially the same for factoring and the discrete log, but the devil is in

the details. In particular, the linear algebra is acknowledged as the bottleneck for the attacks

in record breaking implementations of the discrete log. To deal with this bottleneck, work

is pushed off of the linear algebra and onto the sieve and solution steps.

3.1 Sieve

An algorithmic sieve is similar to a physical sieve, separating large particles from small.

Primes are the particles and the size of a prime is measured by their norms. This simplified

explanation uses positive prime integers whose norm is simply the integer itself1.

Smooth elements are divisible only by small primes, where small is less than a fixed bound

B. For example, if B = 10, then 22 would not be smooth (divisible by 11), but 100 would

be (the only prime divisors are 2 and 5). Sieves are a very fast way to hunt for these smooth

values in their respective number fields.

Once these smooth elements are found, they are converted into a linear equation. Recall

that a discrete log base b of an element s is an integer e such that be = s. If s is a smooth

integer with its factorization into primes s =
∏n−1

i=0 peii , the linear equation resulting from s

1Another algebraic structure such as a number field, function field, Gaussian integers, etc., with distinct
irreducible/prime elements and a mapping between the problem space (ring of integers mod N or field) gives
these sieves their attack strength.

2024/09/11 5



would look like:

dlog(s) =
n−1∑
i=0

eidlog(pi) , (1)

where dlog is a discrete logarithm (and yes, I’ve ignored the base here).

The cryptanalytic sieves do use two distinct sets of primes S1 = {pi}n1−1
i=0 and S2 =

{qi}n2−1
i=0 . This time the sieve finds smooth s1, s2 with equivalent discrete logs:

dlog(s1) ≡
n1−1∑
i=0

e1,idlog(pi) ≡
n2−1∑
i=0

e2,idlog(qi) ≡ dlog(s2) (2)

0 ≡

(
n1−1∑
i=0

e1,idlog(pi)

)
−

(
n2−1∑
i=0

e2,idlog(qi)

)
(3)

Sieves search for these equations over a

The system of equations generated by the sieve is then solved using linear algebra and

the result used to factor (section 3.2.1) or compute a discrete logarithm (section 3.2.2). Note

that the sieving process is massively parallel: the range for the sieve can be divided between

many compute engines.

3.1.1 Sieve Costing

The current costing of cryptographic sieving algorithms, and thus the setting of security

parameters, is the sieve. Costing for the sieve portion of the attack (which is closely tied to

the size of the linear algebra problem to be solved) uses L-Notation. Let n be the integer

being factored or the prime modulus for a finite field discrete log problem. Then the cost of

the sieving portion for the general and special number field sieve is:

Ln [α, c] = e(c+o(1))(lnn)α(ln lnn)1−α

, (4)

with

1. n being the integer being attacked (modulus N or prime P )

2. α = 1
3 and

2024/09/11 6



3. c = x
1
3 where x depends on the type of sieve (figure 1).

Table 1: Sieving Costs

L-Notation Ln [a, c] = e(c+o(1))ln(n)aln(ln(n))1−a

General Number Field Sieve
GNFS

Ln

[
1/3,

(
64

9

)1/3
]

Special Number Field Sieve
SNFS

Ln

[
1/3,

(
32

9

)1/3
]

Note that larger bounds on the primes sieved over, i.e., larger sets S1, S2, produces a more

productive sieve with faster equation generation. Smaller bounds produce fewer equations.

3.2 Solving the Problems

Understanding the last – i.e., solution – step in cryptanalytic sieves is critical to understand-

ing how the factoring/discrete attacks differ. The solution step uses the results from the

linear algebra to factor or compute discrete logarithms.

3.2.1 Factoring

One of the common ways to factor a very large integer N is to hunt for two distinct integers

a, b modulo N such that:

a2 ≡ b2 mod N

or equivalently:

a2 − b2 ≡ 0 mod N

(a+ b)(a− b) ≡ 0 mod N.

If a ̸≡ ±b mod N , then N can’t divide either (a + b) or (a − b), and the factors of N must

be split between these two values. In other words: if N = pq, then p divides (a + b) and q

2024/09/11 7



divides (a− b) or vice versa. The result of taking the Greatest Common Divisor of N and

(a+ b) or (a− b) produces one of these factors: {gcd((a+ b), N) , gcd((a− b), N)} = {p, q}.

So for factoring, all we need is to find equivalent squares. The base is irrelevant. All

that matters is that the solution ends with all exponents even. In other words, the linear

algebra can be done over F2: one bit per coefficient, addition is an exclusive or (⊕) and

multiplication is a logical and (⊗).

3.2.2 Discrete Logarithms

The sieving and linear algebra portions of the attacks compute the factor base for an Index

Calculus[20][12] attack.

The factor base is a collection of computed discrete logarithms for a set of small primes.

If we are trying to find the discrete log of b base g – i.e., compute x given b where

gx ≡ b,

index calculus attempts to modify b such that the result is smooth. For example, assume

the modification of raising b to the 19-th power and multiplying that result by the base g

raised to the 101 is smooth:

b19g101 ≡
∏

ptii ,

where the discrete logs of all pi (dlog(pi)) are in the factor base. This produces:

b19g101 ≡ g19x+101

≡
∏

ptii

≡
∏

gtidlog(pi).

Taking the discrete log, base g of both sides and solving gives us x:

19x+ 101 ≡
∑

tidlog(pi)

x ≡
((∑

tidlog(pi)
)
− 101

)
19−1 mod Ord(g)

2024/09/11 8



Note that the larger the factor base of primes, the easier and faster it will be to modify b

into a smooth value and the faster this portion of the algorithm will be.

If Ord(g) = q, coefficients in the equations from the sieve will be the size of q, generally

a large multiple precision integer.

3.3 Linear Algebra

Once the massively parallel sieving process is complete, the equations must be solved. While

the sieving step is very similar for both factoring and the discrete log, this step is significantly

different.

For discrete logarithms, we need to know the discrete logs modulo the subgroup order –

i.e., modulo q where q is a large prime integer. For factoring, all that is needed is equivalent

squares (section 3.2.1), so the linear algebra is only concerned with even or odd exponents

– i.e., mod 2 or binary arithmetic. For both problems (and as we’ll see, particularly for

discrete logarithms), keeping the equations sparse is critical to reduce computation cost.

Here’s how the storage and computation of coefficients compare for factoring and the

discrete log problem with a 1024-bit subgroup using a computer with 64-bit registers:

Table 2: Linear algebra storage and computational differences between factoring and the
discrete logarithm problem

What Factoring Discrete Log

Storage for single
coefficient

(
1
64

)
-th of a register 32 registers (only half the bits can be used

for storage for computational purposes)
Addition

(
1
64

)
-th of an xor 32 adds, plus carries and possibly a reduc-

tion
Multiplication

(
1
64

)
-th of an AND 322 register multiplies, plus carries and re-

ductions; this can be reduced somewhat
with special purpose modular multiplica-
tion algorithms;

These skewed storage and computation costs, as well as the more difficult problem of

2024/09/11 9



keeping the mod q equations sparse as the reduction progresses, makes the linear algebra

portion of the sieving algorithms the real bottleneck for larger discrete logarithms. This

is borne out in the records on larger subgroup discrete log implementations: [9][1]. The

costing formulas roughly dictate the sieving bounds and the size of the matrix to balance the

workload. However, in these very optimized implementations work is shifted off the linear

algebra and onto both the sieve and final discrete log computation. Smaller sieving bounds

mean fewer variables in the linear algebra but a less productive and more costly sieve. The

sieve is also asked to produce more equations per variable to insure a sparser initial matrix.

Computational processes also differ between the sieve and linear algebra. Sieving for

equations is generally a massively parallel operation, which can be spread out among as

many standard computers as there is access to. The linear algebra, on the other hand is not

massively parallel and, particularly for larger problems, requires special purpose machines.

3.4 What the Records Show

Two fairly recent discrete logarithm records allow for comparison between factoring and

discrete logarithm sieving attacks. The first, a 2018 discrete logarithm record[9] on a 768-

bit prime/767-bit subgroup, compared it to a 2012 factoring record of the same size. The

second, a 2020 discrete logarithm record[1] on a 795-bit prime/794-bit subgroup, compared

it to their own computation of a 795-bit factoring record.

The write-ups for both records (and others) emphasize the difficulty of the linear algebra

and the need to adjust parameters to minimize this cost.

2024/09/11 10



Table 3: Quotes on Linear Algebra Costs

Source Quote

[8], page 960 For this reason, when using the number field sieve, it is more
important to decrease the size of the linear system than when
working with the gaussian integer method, even if the system
becomes less sparse.

[9], page 8 All that is clear at this point is that attempts to lower this
estimate must focus on lowering the linear algebra effort; thus
the smoothness parameters must be reduced, but by how much
and what the overall effect is going to be is unclear.

[1], page 10 On the other hand for DL, the linear algebra becomes the bot-
tleneck by a large margin if the parameters of the relation search
are chosen without considering the size of the matrix they pro-
duce.

[1], page 11 In the DL case, we want to limit as much as possible the size
of the matrix and the cost of the linear algebra.

[1], page 16 In the DLP-240 case, the choices of the sieving and large prime
bounds were dictated by constraints on the size of the resulting
matrix.

In both cases, the authors skillfully test and manipulate parameter sizes (sieving numbers

up, factor base size down) to minimize the size of the linear algebra to the point where the

total core year cost for the discrete logarithm problems is less than four times that of a

similarly sized factoring problem. As the authors ([9], page 3) point out, there is no simple

direct way of finding the optimal adjustment.

But more importantly, the very different nature and size of the moduli used in,

respectively, the polynomial selection and linear algebra steps imply a radical

shift in the trade-off between the steps of the number field sieve, which in turn

leads to very different parameter and algorithmic choices compared to what is

done for factoring. We are not aware of a satisfactory theoretical analysis of

this different trade-off and the resulting parameter selection, or of a reliable way

2024/09/11 11



to predict the practical implication for the relative hardness of integer factoring

and prime field discrete logarithm problems. It is clear, however, that the issue

is more subtle than recognized in the literature...

The following table displays some of the critical results from the two record discrete

logarithm record papers.

Table 4: 768 & 785 bit discrete log records and comparison to factoring

2012/2018, 768-bit Fact/DL[9] 2020, 795-bit Fact/DL[1]
Factoring Discrete

Logs DL/Fact
Factoring Discrete

Logs DL/Fact
in Millions in Millions

Raw Relations 64334 10802 8930 3820

Matrix Size 193 24 0.124 ≈ 1
8 282 36 0.128 ≈ 1

8

Raw Relations
333.34 450.08 1.35 31.69 106.23 3.35per merge

variable
Sieving Time

1500 4000 2.67 794 2400 3.02(core years)
Core Seconds

0.735 11.68 15.88 2.80 19.81 7.066per equation
Density (non-zero

144 134 200 253elements per row)
Density (Percent

7.461X10−7 1.05X10−5 14.13 2.24X10−8 6.62X10−8 2.96non-zero per row)
Lin. Algebra time

75 900 12 83 625 7.53(core years)
Core Seconds

12.25 1182.6 96.5 9.28 547.5 58.99per variable
Solution 20 200 + 43 12.15 a a · 1000 ∼ 1000

(core hours)

Continued on next page

2024/09/11 12



Table 4: 768 & 785 bit discrete log records and comparison to factoring (Continued)

Total Time 1575.003 4900.03 3.11 877 3026 3.45

(core years)

Note that while the total core years for the discrete log is less than four times the core

years for factoring, there are other comparisons which don’t bode well for extending these

ratios to larger primes:

• Matrix size for discrete log was reduced to about 1
8 the size of the factoring matrix;

• More raw relations for each matrix relation were needed for the discrete log problem;

• The sieving time for each raw equation was 15.88 times as long for the 768-bit discrete

log and 7.53 times as long for the 795-bit discrete log;

• Linear algebra cost per variable was 96.5 times as long for the 768-bit discrete log and

58.9 times as long for the 795-bit discrete log.

• The larger density differential between the 768 and 795 bit problems is probably par-

tially to blame for the longer run time for the 768 bit problems compared to the 795.

• The costs to reach these optimal parameter settings is not included in the overall cost

shown here

4 Myths and False Assumptions

Myths are stories created to simplify more complicated reality. Cryptology has its fair share

of myths, and some of them are harmful to security. They start, as most myths do, with some

truth, but get warped over time. For example, the true statement “DES key length is too

short to be secure against modern computing”, is warped to “DES is analytically broken.”

This myth may dissuade cryptographic designers from using Feistel ciphers – a well studied

2024/09/11 13



and robust foundation for symmetric ciphers. Being aware of these myths may help us make

better cryptographic decisions.

4.1 Security of Factoring vs Finite Field Discrete Logarithm

Factoring and finite field discrete logarithm based cryptographic algorithms are often said to

have similar strengths for similar modulus size. One of the primary reasons for this compar-

ison is that both algorithms are susceptible to various Cryptographic Sieving Algorithms

(see section 3). These algorithms have three steps:

1. Generate equations (Sieve);

2. Solve equations (Linear Algebra);

3. Solve problem (Solution).

Costing of these algorithms only takes the sieving step into consideration (section 3.1.1).

This makes sense for several reasons. First, the costing of the sieve is easy and the costing

of the linear algebra is difficult. Second, the sieve is the obvious bottleneck for factoring,

which was the focus of most early developments.

For discrete logs, however, this changes. The bottleneck becomes the linear algebra, and

it grows more extreme based on both the size of the prime modulus (more variables needed)

and the size of the prime subgroup (more memory and computation for each element).

Implementers have highlighted this bottleneck by shifting the algorithmic work off of the

linear algebra portion and throwing it into the sieve portion.

4.2 Trap Door Primes

Trap door primes are primes which have a special form, enabling the special number field

sieve. Recall that the sieve portion of a cryptanalytic sieving attack generates equations by

searching over a given area. The sieve portion of the special number field is more productive

2024/09/11 14



– i.e., more equations in a given search area than with the general sieve, lowering the cost

(figure 1) . Detecting primes with this form can be difficult, which is why they are called

trap door primes.

The largest prime for which a discrete log has been computed to date, a 1024-bit prime[5],

was one of these primes. However, this is not the full picture. While the prime for this discrete

logarithm was 1024-bits, the subgroup – i.e., the modulus used for the linear algebra – was

only 160-bits. For larger subgroups, as noted earlier, the bottleneck for all cryptographic

sieve algorithms is the linear algebra.

This is borne out in more recent computed discrete logs. Smaller primes with larger

subgroups took much more time[1], even after the work was shifted off of the linear algebra

and onto the sieve. Shrinking the factor base bound and increasing the required number of

equations from the sieve reduces the number of variables (columns in the resulting matrix)

which need to be solved for and improves the sparsity of the resulting matrix. It also makes

the sieving far less efficient. The sieve must produce more equations with fewer smooth

numbers in their search space.

4.3 One-Size-Fits-All Cryptographically Relevant Quantum Computer

The size and stability needed to make a quantum computer a cryptographically relevant

quantum computer depends on the problem the computer is attacking. For cryptography

vulnerable to Shor’s algorithm, size of the base element is the major factor in determining

the number of logical qubits needed. The stability of these logical qubits depends on the

number of gates in the implementation – a result of both size and complexity of the problem.

While we currently have no logical qubits and no guarantee of ever obtaining them, one

thing we can be fairly sure of is that differing classical public key algorithms (and their

related key sizes) require cryptographically relevant quantum computers of different sizes

and stability levels. The weakest classical algorithms are those with the smallest base size –

elliptic curve cryptography.

2024/09/11 15



4.4 Invulnerability of Elliptic Curve Discrete Logarithm to Cryptanalytic
Sieving Algorithm

Cryptographic algorithms based off the discrete logarithm problem work over any finite cyclic

group, as long as computing the discrete log is difficult. Discrete log based algorithms were

the first[4] to be publicly designed and originally used finite fields.

Elliptic curves were suggested as a base for discrete log algorithms in the late 1980s[10][13].

Point addition in an elliptic curve group replaces multiplication in a finite field, transforming

the exponentiation used in finite field cryptography into a scalar multiplication in elliptic

curve cryptography. Point addition requires many finite field multiplications. For this reason

elliptic curve point addition is much more complicated and costly than a finite field multiply

of the same size.

While they are more costly bit-for-bit, elliptic curve groups resist cryptanalytic sieve

attacks. This resistance gave designers courage to use very small finite fields, reducing

the computational cost to be just a bit more efficient than the larger finite fields. This,

combined with the smaller public key size, gave elliptic curves an advantage over finite

field based algorithms. Without that small size, elliptic curve cryptography would not be

computationally competitive with their finite field counterparts.

Note that resistance to an attack does not imply invulnerability. Elliptic curve groups

can be mapped to a finite field[11], generally an extension of the curve’s base field, and then

attacked with a cryptanalytic sieve. This observation helped stir interest in function field

sieves: cryptanalytic sieving functions which work best on medium sized prime extension

fields[14]. In other words, resistance does not imply invulnerability. To protect against these

attacks, curves must be chosen so that all known mappings are into huge extension fields

making the attacks less efficient than exhaustion. This puts restrictions on curves and adds

the potential of an attack if a new mapping were found.

2024/09/11 16



4.5 Store-now-decrypt-later

Store-now-decrypt-later is one of the primary arguments for moving to Shor resistant algo-

rithms. The reasoning goes like this: attackers can store data secured by classical algorithms

and when a cryptographically relevant quantum computer is created that can attack these

algorithms, they’ll have access to that data.

There are several issues with this argument. First, it assumes a cryptographically relevant

quantum computer able to attack these algorithms will exist someday. Second, if a usable

cryptographically relevant quantum computer is eventually created, it assumes the data

stored now will still have value. But the most critical issue is that it also assumes that the

new, less analyzed and tested algorithms will remain secure. I believe that, if anything,

store-now-decrypt-later is a stronger argument for shoring up classical algorithms against

both classical and quantum attacks until more research on new algorithms is done and more

is known about the possibility and timeline for various cryptographically relevant quantum

computers.

5 Conclusions

Cryptographic agility is an important feature in secure system designs. Using agile cryptog-

raphy, algorithms whose parameters can be changed to meet new threats, would be a secure

and simplified solution for portions of the cryptographic agility solution. For asymmetric

algorithms, discrete logarithms over finite field are the obvious choice. New parameters

(primes, generators) are easy to securely generate at larger sizes and to change without

disrupting algorithms, particularly compared to both factoring and elliptic curve based al-

gorithms. Discrete logarithm based algorithms are also more secure than factoring based

(though more research is needed to determine more accurate security estimates) and for this

reason may be a more computationally optimal solution than elliptic curve based algorithms.

2024/09/11 17



A Hard Problems and Background Math

Factoring
Algorithms RSA, Rabin – Both are mostly used for digital signatures

Base Uses modulus N = pq where p, q are large prime numbers, N is
public and p, q secret.

Discrete
Logarithm

Algorithms Diffie-Hellman Key Exchange, ElGamal Signature, Digital Sig-
nature Algorithm

Base

Finite field: These use a prime integer modulus p and integer g
(subgroup generator), where g has a large prime order q. In other
words, gx ̸≡ 1 mod p all integers 0 < x < q, but gq ≡ 1 mod p.
The discrete logarithm problem is as follows: given h, g where
gs ≡ h mod p, find s: dlogg(h) ≡ s mod q.
Elliptic curve: These generally use a prime integer modulus p
and an elliptic curve E defined by

y2 ≡ x3 + ax+ b mod p

for specially chosen integers a, b.
Curve points are pairs of integers modulo p on the curve: P1 =
(x1, y1) with y21 ≡ x31+ax1+b mod p. Points P1, P2 can be added
by

1. drawing a line through the curve at P1, P2;

2. finding the third point, P3 = (x3, y3), intersecting the curve
and line,

3. then taking its inverse: −P3 = (x3,−y3).

So P1 + P2 = (−P3). As with finite fields, a generator –
in this case a point P with a large prime order q – where

q︷ ︸︸ ︷
P + P + . . .+ P = qP = 1. The discrete logarithm problem is as
follows: given P,Q where sP = Q, find s: dlogP (Q) ≡ s mod q

Figure 1: Classical Computationally Infeasible Problems and Derived Algorithms

2024/09/11 18



A.1 Factoring with GCDs

If factoring is the hard problem used in a public key algorithm, then every user must have

their own set of distinct primes. Two users cannot share a modulus or they will not have

unique keys and will be able to break each others systems. Even sharing one prime divisor

of their modulus leads to a trivial attack.

Let N1 = p1q and N2 = p2q. These moduli share a common divisor: q. Computing

a Greatest Common Divisor of N1, N2 would give an attacker gcd(N1, N2) = q, and the

complete factorization of both N1 and N2.

References

[1] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann,

Comparing the difficulty of factorization and discrete logarithm: a 240-digit experiment,

2020, Cryptology ePrint Archive, Report 2020/697, https://eprint.iacr.org/2020/

697.

[2] Zhengjun Cao and Zhenfu Cao, The systemic errors of banded quantum fourier trans-

formation, Cryptology ePrint Archive, Paper 2024/454, 2024, https://eprint.iacr.

org/2024/454.

[3] R. Crandall and C. Pomerance, Prime numbers: A computational perspective, second

ed., ch. 6, pp. 227–244, Springer-Verlag, 175 Fifth Avenue, New York, New York 10010,

U.S.A., 2005.

[4] Whit Diffie and Martin Hellman, New directions in cryptography, Transactions on In-

formation Theory, no. 22, IEEE, November 1976, pp. 644–654.

[5] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé, A kilobit hidden

SNFS discrete logarithm computation, July 2016, https://eprint.iacr.org/

2016/961.pdf.

2024/09/11 19

https://eprint.iacr.org/2020/697
https://eprint.iacr.org/2020/697
https://eprint.iacr.org/2024/454
https://eprint.iacr.org/2024/454
https://eprint.iacr.org/2016/961.pdf
https://eprint.iacr.org/2016/961.pdf


[6] D.M. Gordon, Discrete logarithms in gf(p) using the number field sieve, SIAM Journal

on Discrete Mathematics (1993), no. 6, 124–138.

[7] Antoine Joux, Faster index calculus for the medium prime case application to 1175-bit

and 1425-bit finite fields, Advances in Cryptology – CRYPTO 7881 (2013), 177–193.

[8] Antoine Joux and Reynald Lercier, Improvements to the general number field sieve for

discrete logarithms in prime fields. a comparison with the gaussian integer method, Math-

ematics of Computation 72 (2002), no. 242, 953–967, https://www.ams.org/mcom/

2003-72-242/S0025-5718-02-01482-5/S0025-5718-02-01482-5.pdf.

[9] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin

Stahlke, Computation of a 768-bit prime field discrete logarithm, 2017, https://

eprint.iacr.org/2017/067.pdf.

[10] Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48

(1987), no. 177, 203–209, https://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf.

[11] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone, Reducing elliptic curve

logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory 39 (1993), no. 5,

1639–1646.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied

cryptography, ch. 3.6.5, CRC Press, 1996.

[13] Victor Miller, Use of elliptic curves in cryptography, Advances in Cryptology

– CRYPTO 85 (1986), 417–426, https://link.springer.com/chapter/10.1007/

3-540-39799-X_31.

[14] Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, and Emmanuel

Thomé, New discrete logarithm computation for the medium prime case us-

2024/09/11 20

https://www.ams.org/mcom/2003-72-242/S0025-5718-02-01482-5/S0025-5718-02-01482-5.pdf
https://www.ams.org/mcom/2003-72-242/S0025-5718-02-01482-5/S0025-5718-02-01482-5.pdf
https://eprint.iacr.org/2017/067.pdf
https://eprint.iacr.org/2017/067.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://link.springer.com/chapter/10.1007/3-540-39799-X_31
https://link.springer.com/chapter/10.1007/3-540-39799-X_31


ing the function field sieve, Advances in Mathematics of Communications 0

(2020), no. 1930-5346 2019 0 109, NA, http://aimsciences.org//article/id/

d7f51db9-e046-4282-82a7-8c1217b53808.

[15] John Proos and Christof Zalka, Shor’s discrete logarithm quantum algorithm for elliptic

curves, 2004, https://arxiv.org/pdf/quant-ph/0301141.

[16] R.L. Rivest, A. Shamir, and L.M. Adleman, A method for obtaining digital signatures

and public-key cryptosystems, Communications of the ACM (1978), no. 21, 120–126.

[17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter, Quantum

resource estimates for computing elliptic curve discrete logarithms, Lecture Notes in

Computer Science (2017), 241–270, https://arxiv.org/abs/1706.06752.

[18] I.A. Semaev, Special prime numbers and discrete logs in finite prime fields, Mathematics

of Computation 71 (2002), no. 237, 363–377, https://www.ams.org/journals/mcom/

2002-71-237/S0025-5718-00-01308-9/S0025-5718-00-01308-9.pdf.

[19] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer, SIAM Journal on Computing 26 (1997), no. 5, 1484 –

1509.

[20] A.E. Western and J.C.P. Miller, Tables of indices and primitive roots, Royal Society

mathematical tables, Published for the Royal Society at the University Press, 1968.

2024/09/11 21

http://aimsciences.org//article/id/d7f51db9-e046-4282-82a7-8c1217b53808
http://aimsciences.org//article/id/d7f51db9-e046-4282-82a7-8c1217b53808
https://arxiv.org/pdf/quant-ph/0301141
https://arxiv.org/abs/1706.06752
https://www.ams.org/journals/mcom/2002-71-237/S0025-5718-00-01308-9/S0025-5718-00-01308-9.pdf
https://www.ams.org/journals/mcom/2002-71-237/S0025-5718-00-01308-9/S0025-5718-00-01308-9.pdf

	Background
	Classical Comparison
	Cryptanalytic Sieving Algorithms
	Sieve
	Sieve Costing

	Solving the Problems
	Factoring
	Discrete Logarithms

	Linear Algebra
	What the Records Show

	Myths and False Assumptions
	Security of Factoring vs [2]
	Trap Door Primes
	One-Size-Fits-All [2]
	Invulnerability of [2] to [2]
	Store-now-decrypt-later

	Conclusions
	Hard Problems and Background Math
	Factoring with GCDs


