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Abstract

In the Zero-Knowledge Proof (ZKP) of a disjunctive statement, P and V agree on B fan-
in 2 circuits C0, . . . , CB−1 over a field F; each circuit has nin inputs, n× multiplications, and
one output. P’s goal is to demonstrate the knowledge of a witness (id ∈ [B], w ∈ Fnin ), s.t.
Cid(w) = 0 where neither w nor id is revealed. Disjunctive statements are effective, for example,
in implementing ZKP based on sequential execution of CPU steps.

This paper studies ZKP (of knowledge) protocols over disjunctive statements based on Vector
OLE. Denoting by λ the statistical security parameter and let ρ ≜ max{log |F|, λ}, the previous
state-of-the-art protocol Robin (Yang et al. CCS’23) required (nin + 3n×) log |F| +O(ρB) bits
of communication with O(1) rounds, and Mac′n′Cheese (Baum et al. CRYPTO’21) required
(nin +n×) log |F|+2n×ρ+O(ρ logB) bits of communication with O(logB) rounds, both in the
VOLE-hybrid model.

Our novel protocol LogRobin++ achieves the same functionality at the cost of (nin+n×) log |F|+
O(ρ logB) bits of communication with O(1) rounds in the VOLE-hybrid model. Crucially,
LogRobin++ takes advantage of two new techniques – (1) an O(logB)-overhead approach to
prove in ZK that an IT-MAC commitment vector contains a zero; and (2) the realization of
VOLE-based ZK over a disjunctive statement, where P commits only to w and multiplication
outputs of Cid(w) (as opposed to prior work where P commits to w and all three wires that are
associated with each multiplication gate).

We implemented LogRobin++ over Boolean (i.e., F2) and arithmetic (i.e., F261−1) fields. In
our experiments, including the cost of generating VOLE correlations, LogRobin++ achieved up
to 170× optimization over Robin in communication, resulting in up to 7× (resp. 3×) wall-clock
time improvements in a WAN-like (resp. LAN-like) setting.
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1 Introduction

Zero-Knowledge (ZK) Proofs (ZKPs) [GMR85] allow a prover P to convince a verifier V that
some statement is true without disclosing further information. ZKPs are essential in applications
such as private blockchain [BCG+14], private program analysis [FDNZ21, LAH+22], private bug-
bounty [HYDK21, YHKD22], privacy-preserving machine learning [LXZ21, WYX+21], and many
more. In the past decade, ZKPs have received much attention, with schemes varying in performance,
assumptions, and interactivity.

VOLE-based ZK. One recent popular line of work builds ZKP protocols from Vector Lin-
ear Oblivious Evaluation (VOLE). This paradigm is known as VOLE-based ZK ; see e.g. [DIO21,
BMRS21, YSWW21, DILO22, DEGL+23, WYKW21, LXY24, BBMH+21, BBMHS22]. This thrust
is facilitated by cheaply generated VOLE correlations (i.e., the random VOLE instances); see,
e.g., [BCGI18, BCG+19b, SGRR19, BCG+19a, YWL+20, HY24]. In VOLE-based ZK, once the
cryptographic task of generating VOLE correlations is complete, the remaining protocol can be
(and typically is) simple, information-theoretic1, and extremely efficient.

For a ZK statement expressed as a fan-in 2 circuit C over some field. Let |C| denote the number
of gates in C. VOLE-based ZK only requires cost (i.e., communication and computation of each
party) of a small constant factor over |C| in terms of (extension) field elements and operations.
Concretely, state-of-the-art VOLE-based ZK (e.g., QuickSilver [YSWW21]) can handle millions
of (multiplication) gates per second on modest hardware and network. For this reason, VOLE-
based ZK has proved useful in applications where the statement is large, e.g., privacy-preserving
ML [WYX+21, LWQ+24], privacy-preserving static analysis [LAH+22, LJA+22, LKA+24], privacy-
preserving string matching [LWS+23], privacy-preserving databases [LWX+23], etc.

We focus on VOLE-based ZK because it offers by far the shortest end-to-end proof time among
all ZKP approaches (e.g., zkSNARKs, MPC-in-the-Head, etc.), allowing for unprecedented scale
and complexity of proven statements, such as applications mentioned above. See more discussion
in Section 1.2.

ZK disjunctions. Traditionally, ZKP schemes (including those based on VOLE) express state-
ments as circuits (e.g., [DIO21, YSWW21, AHIV17]) or constraint systems (e.g., [PHGR13, BCG+13]).
In theory, these formats support arbitrary statements (including those written in a high-level lan-
guage, e.g., C/C++) with polynomial overhead. On the other hand, these models discard useful
program structures – particularly conditional control flow – which can be leveraged to improve
efficiency. Namely, ZKP protocols that can non-trivially handle disjunctive statements – where one
of B possible statements is proved – are highly desirable. For example, a real-world physical CPU
performs a disjunction over the instruction set in each step.

In a disjunctive statement, P and V agree on B circuits C0, . . . , CB−1. Each of these circuits
is referred to as a branch. P wishes to prove her ability to evaluate one such branch to 0 without
disclosing which branch is taken or active. The näıve strategy for handling such a disjunctive proof
is to evaluate each branch separately, then use a subsequent multiplexer circuit to select the output
of the active branch. This strategy results in a large circuit with more than

∑
i∈[B] |Ci| gates. This

is obviously wasteful, as only the gates in the single active branch affect the overall output.

1Exceptions are the works [WYY+22, BCC+23] where an additively homomorphic encryption is used.
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Protocol Field Communication (Bits) Rounds Computation

Mac′n′Cheese [BMRS21]
Boolean nin + n× + 2λn× +O(λ logB) O(logB) O(B|C|)

Arithmetic (nin + 3n×) log |F|+O(logB log |F|)

Robin [YHH+23]
Boolean nin + 3n× +O(λB) O(1) O(B|C|)

Arithmetic (nin + 3n×) log |F|+O(B log |F|)

LogRobin++
Boolean nin + n× +O(λ logB) O(1) O(B|C| +B logB )

Arithmetic (nin + n×) log |F|+O(logB log |F|)

Table 1: The performance of our protocol LogRobin++, compared with the prior work, in the
VOLE-hybrid model (i.e., we do not account here for the cost of preprocessing random VOLEs,
see Sections 2.4 and 2.5). We consider the disjunctive statement as C0∨· · ·∨CB−1 where each Ci∈[B]

has nin inputs, n× multiplications and one output. We remark that all protocols (including prior
work) support any field. For better comparison, we list the performance over two classical fields –
the Boolean field and a sufficiently large arithmetic field F where |F| = λω(1). The computation is
estimated by the number of (extension) field operations. |C| denotes the number of gates in each
branch. The gray box indicates the term that only appears in P’s computation, not V’s.

The study of ZKP over disjunctive statements can be traced back to the work of Cramer et
al. [CDS94]. This research problem has become very popular in recent years due to the development
of the Stacked Garbling technique [HK20] and its natural application to efficient ZKP of statements
expressed as high-level programs; see e.g. [HK20, YHH+23, GGHAK22, BMRS21, GHAKS23,
GHAK23, YHH+24]. In this line of work, the researchers investigated custom protocols for handling
general-purpose disjunctive statements, where the cost scales only with the size of a single branch.
Recent work [YHH+23, BMRS21] has brought such techniques to the VOLE-based ZK setting.
Combining VOLE-based ZK and disjunctive statements is natural, as disjunctions are common
and useful in large and complex statements. This is the focus of our work.

1.1 Our Results

In this work, we improve the handling of disjunctive statements in the VOLE-based ZK paradigm.
W.l.o.g., let the B branches (circuits over some field F) be of equal size, with nin input wires
and n× multiplication gates. Let λ be the statistical security parameter and ρ ≜ max{log |F|, λ}.
Then, the state-of-the-art protocol Robin [YHH+23] requires (nin + 3n×) log |F| + O(ρB) bits of
communication and O(1) rounds in the VOLE-hybrid model.

We propose a novel protocol LogRobin++2 that requires only (nin + n×) log |F| + O(ρ logB)
bits of communication and O(1) rounds in the VOLE-hybrid model. See Table 1 for a detailed
comparison with prior state-of-the-art protocols. LogRobin++ outperforms Robin in communication
in two aspects: (1) its communication cost incurs an additive O(ρ logB) term rather than O(ρB);
and (2) it saves transmission of 2n× field elements, resulting in ≈ 3× improvement. To achieve
these two improvements, we introduce two novel techniques:

• Inspired by [GK15], we propose a new technique for proving in ZK that a length-B committed
vector (of IT-MAC commitments used by VOLE-based ZK) contains at least one zero element.
Our technique requires transmission of only O(logB) (extension) field elements. It can be

2We note that our main protocol LogRobin++ does not follow the Robin’s underlying paradigm or technique. We
follow the Robin naming line as Robin stands for refined oblivious branching for interactive ZK [YHH+23].
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directly plugged into the Robin protocol [YHH+23] to improve its communication to (nin +
3n×) log |F|+O(ρ logB) while keeping O(1) rounds, in the VOLE-hybrid model. We call this
intermediate stepping-stone protocol LogRobin.

• We develop a new way of realizing VOLE-based ZKP of disjunctive statements. Namely, we
show that with P committing to only the inputs and multiplication outputs on the active
branch (using VOLE correlations), the problem of proving a disjunction reduces to the fol-
lowing problem of proving the existence of an affine correlation among a set of quadratic
ones: P holds B quadratic polynomials pi∈[B](X), (at least) one of which has leading coef-
ficient 0 (i.e., it is an affine polynomial). V holds a private evaluation point ∆ and obtains
a commitment to each polynomial as pi∈[B](∆). P must prove in ZK to V that one of pi’s is
affine. The affine-polynomial-correlation problem can be solved using VOLE correlations.

Put together, this reduction leads to our second stepping-stone protocol Robin++, which re-
quires (nin+n×) log |F|+O(ρB) bits of communication and O(1) rounds in the VOLE-hybrid
model.

Our final protocol LogRobin++, as indicated by its name, combines the underlying techniques of
LogRobin and Robin++. At a high level, we show that the technical insight underlying LogRobin’s
optimized 0-membership proof can be adapted to solve the affine-polynomial-correlation problem
exploited by Robin++. Combining our two technical ideas requires care; directly combining the two
techniques would either require O(B) communication or break the ZK property. See Section 3 for
a concise technical overview of our protocols.

We remark that our paradigm of constructing LogRobin can be trivially generalized beyond
VOLE-based ZK. In particular, it can be instantiated based on a commit-and-prove ZK [CLOS02]
where the commitment scheme is linear homomorphic (e.g., the Pedersen commitment [Ped92]).

We implemented LogRobin++ over Boolean (i.e., F2) and arithmetic (i.e., F261−1) fields. The
experimental results closely reflect the analytic costs in Table 1, as LogRobin++’s (and Robin’s) costs
contain small hidden constants in O. Our costs include VOLE generation. Compared to prior state-
of-the-art Robin [YHH+23], LogRobin++ improves communication by up to 170× for disjunctions
with many small branches. In terms of end-to-end execution time, LogRobin++ outperforms Robin
by up to 7× (resp. 3×) in a 10Mbps WAN-like network (resp. 1Gbps LAN-like network) for a wide
range of parameters. See Section 5 for details.

We remark that LogRobin++ is secure against a static unbounded adversary (i.e., it is information-
theoretically secure) in the VOLE-hybrid model. Somewhat surprisingly, when considering information-
theoretic ZKP protocols in the VOLE-hybrid model, the price of evaluating one of many branches
is now minimal in the following sense: LogRobin++ incurs only additive (poly)logarithmic com-
munication as compared to the state-of-the-art (information-theoretically secure) VOLE-based
ZK [DIO21, YSWW21] over a single active branch. Thus, the additional cost of private branching
is now similar to the logB bits that would be required for P to non-privately identify the active
branch index to V.

1.2 Related Work

VOLE-based ZK. With the seminal work of [BCGI18] enabling cheap generation of VOLE cor-
relations, a productive line of work on VOLE-based ZKP protocols soon emerged [DIO21, BMRS21,
YSWW21, DILO22, DEGL+23, WYKW21, LXY24, BBMH+21, BBMHS22, HY24, BCC+23]. See
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also [BDSW23] for a survey. VOLE-based ZK is simple, information-theoretic in the VOLE-hybrid
model, and efficient. Because of its efficient scaling, VOLE-based ZK is particularly useful for
applications where the statement is large.

Consider a standard fan-in 2 circuit C defined over some field F with nin inputs, n× multi-
plications, and |C| gates in total. State-of-the-art (information-theoretically secure) VOLE-based
ZK [DIO21, YSWW21] incurs only linear costs with small constant factors – (1) P transmits
nin + n× field elements and O(1) extension field elements, (2) V transmits O(1) extension field
elements, and (3) P and V perform O(|C|) extension field operations.

VOLE-based ZK communication cost can be further cut in half by leveraging a Random Or-
acle [DILO22], or it can be reduced to sublinear by leveraging additively homomorphic encryp-
tion [WYY+22]. However, these optimizations do not substantially improve concrete performance
as compared to [DIO21, YSWW21].

VOLE-based ZK proofs are not succinct, with the exception of [WYY+22] and [BCC+23];
[WYY+22] achieves O(|C|3/4) and [BCC+23] achieves O(|C|1/2) communication. Constructing a
VOLE-based ZK proof system incurring o(|C|1/2) communication remains an open problem.

ZK disjunctions. The study of ZKP protocols for disjunctive statements can be traced back to
90s, starting with the work of Cramer et al. [CDS94]. This problem was later revisited and re-
fined by [HK20], which targeted improvements to ZKPs based on Garbled Circuits [Yao86, JKO13].
[HK20] described the possibility of reusing transmitted cryptographic material of the active branch
to evaluate (to garbage and privately discard) inactive branches (they call this technique “stack-
ing”). This limits communication cost to that of the single largest branch, but it still requires
computation over all branches.

Following [HK20], a rich line of work [DIO21, BMRS21, YSWW21, DILO22, DEGL+23, WYKW21,
LXY24, BBMH+21, BBMHS22] studies “stacking” ZKP protocols in the context of various ZK tech-
niques. Among these, [BMRS21, YHH+23] are the most relevant here, as they similarly focus on
VOLE-based ZK. Our protocol LogRobin++ outperforms these prior works theoretically (see Ta-
ble 1) and concretely (see Section 5). Note, [YHH+23] also studied the batched disjunctions – a
same disjunction is repeated. We only focus on the non-batched setting.

Proving a committed vector contains 0. Our work is partially inspired by the elegant work of
Groth and Kohlweiss [GK15]. [GK15] proposed a public coin special honest verifier zero-knowledge
proof (i.e., a Σ-protocol) that can be used to show that a vector of cryptographic commitments
(with special properties) contains a zero. [GK15] applies this type of proof to ring signatures and
zerocoin [MGGR13]. The technique underlying our stepping-stone protocol LogRobin can be viewed
as adapting their technique to the setting of IT-MAC commitments (see Section 2.4). We remark
that we consider a malicious V and apply this 0-membership proof over disjunctive statements.
Our final protocol LogRobin++ does not use a proof of 0 membership; instead, it leverages a sub-
component of our LogRobin technique.

Other related work. ZKP is an enormous and fast-growing field of research. We make a few
remarks about other works in the area.

Recent work [BBD+23] showed that by applying a so-called VOLE-in-the-Head cryptographic
compiler, all ZK protocols relying only on VOLE – including ours – can be made non-interactive
and publicly verifiable.
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Outside VOLE-based ZK, succinct ZK proofs enjoy significant attention. Although this re-
markable line of work enables incredibly small proofs and fast verification, it suffers from expensive
computation on behalf of P. This highlights a strength of VOLE-based ZK: in VOLE-based ZK,
P’s computation is lightweight and efficient.

2 Preliminaries

2.1 Notation

• λ is the statistical security parameter (e.g., 40 or 60).

• κ is the computation security parameter (e.g., 128 or 256).

• The prover is P. We refer to P by she, her, hers...

• The verifier is V. We refer to V by he, him, his...

• x ≜ y denotes that x is defined as y. x := y denotes that y is assigned to x.

• We denote that x is uniformly drawn from a set S by x ∈$ S.

• We denote the set {0, . . . , n− 1} by [n].

• We denote a finite field of size p by Fp where p ≥ 2 is a prime or a power of a prime. We use
F to represent a sufficiently large field, i.e., |F| = λω(1).

• We denote row vectors by bold lower-case letters (e.g., a), where ai (or a[i]) denotes the i-th
component of a (0-based).

• Let M be a matrix. Mi,j is the element of i-th column and j-th row (0-based).

• We use i to index branches (e.g., i ∈ [B]), id to index the active branch. I.e., the id -th branch
is the one that P holds a valid witness.

2.2 Schwartz-Zippel-DeMillo-Lipton Lemma

The soundness of our protocols heavily relies on the well-known Schwartz-Zippel-DeMillo-Lipton
(SZDL) lemma [DL78, Zip79, Sch80], stated in Lemma 1.

Lemma 1 (Schwartz-Zippel-DeMillo-Lipton). Let F be a field and p ∈ F[x1, . . . , xn] be a (multi-
variate) polynomial of degree d. Suppose |F| > d, then

Pr [p(v) = 0 | v ∈$ Fn] ≤ d

|F|

2.3 Security Model

We formalize our protocol using the universally composable (UC) framework [Can01]. We use UC
to prove security in the presence of a malicious, static adversary. For simplicity, we omit standard
UC session (and sub-session) IDs.
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Functionality Fp,q
VOLE

FVOLE, parameterized by a base field Fp and an extension field Fpq , proceeds as follows, running with a prover P,

a verifier V and an adversary S:

Initialize. Upon receiving (init) from P and V, if V is honest, sample ∆ ∈$ Fpq , else receive ∆ from S. Store

∆ and send it to V. Ignore subsequent (init).

Extend. Upon receiving (extend, n) from P and V:

• If V is honest, sample ku ∈$ Fn
pq , else receive ku ∈ Fn

pq from S.

• If P is honest, sample u ∈$ Fn
p and compute mu := ku − u ·∆ ∈ Fn

pq , else receive u ∈ Fn
p and mu ∈ Fn

pq from

S and compute ku := mu + u ·∆ ∈ Fn
pq .

• Send (u,mu) to P and ku to V.

Figure 1: The (subfield) VOLE correlation functionality.

2.4 IT-MACs

Information Theoretic Message Authentication Codes (IT-MACs) [BDOZ11, NNOB12] are two-
party (here, between P and V) distributed correlated randomness that can be used as commitments.
In IT-MACs over F, V holds a uniformly sampled global key ∆ ∈$ F. For P to commit a value
x ∈ F, V samples a uniform local key kx ∈$ F and P will learn a MAC for x as mx ≜ kx − x∆. We
use [x]∆ ≜ ⟨(x,mx), kx⟩ to denote the IT-MAC correlation of x. ∆ will be eliminated when it is
clear from the context. We recall the following useful properties of IT-MACs:

1. Hiding: kx and ∆, held by V, are independent of the committed value x.

2. Binding: P can open [x] by sending x and mx, where V would check if kx
?
= x∆+mx. To

maliciously open [x] to x′ ̸= x (i.e., to forge x), P must guess ∆ – an attack would succeed
with only 1

|F| probability.

3. Linear Homomorphism: IT-MACs support linear operations – addition/scalar multi-
plication/constant addition – without communication. That is, for any public constants
c0, c1, . . . , cn each in F, P and V can locally generate [c0+c1x1+· · ·+cnxn] from [x1], . . . , [xn].

3

In particular, we denote [c0 + c1x1 + · · · + cnxn] = c0 + c1 · [x1] + · · · + cn · [xn]. Note, this
implies that an IT-MAC of a public constant can be generated for free.

2.5 VOLE Correlation

Random IT-MAC instances (over Fp) can be generated by Vector Oblivious Linear Evaluation

(VOLE) correlation functionality, formalized as Fp,1
VOLE in Figure 1. This functionality has been

widely studied, e.g., in [BCG+19a, BCG+19b, SGRR19, YWL+20, WYKW21]. In the VOLE-
based ZK, P and V generate n instances of IT-MACs, where each IT-MAC commits an independent
(pseudo-)random element uj∈[n]. Later, it is standard [Bea95] to consume one random instance [uj ]
to generate [x] where x is chosen by P. I.e., P can send x− uj to allow parties to locally compute
[uj ] + (x− uj) = [x]. Note, each uj can only be used once.

3I.e., if kx = x∆+mx and ky = y∆+my, we have (kx + ky) = (x+ y)∆+(mx +my). Moreover, for any constant
c ∈ F, P can set mc = 0 and V can set kc = c∆.
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Subfield VOLE. Figure 1 also defines subfield VOLE correlations. This is useful when working
over a small field Fp. In particular, consider the Boolean field F2. Obviously, IT-MACs over F2 do
not provide a strong enough binding property since P can successfully guess ∆ with probability 1

2 .
Naturally, we can embed values in F2 into a large enough extension field (i.e., F2λ) to overcome this.
However, since committed values are restricted to F2, it is an overkill to use VOLE correlations

over F2λ (i.e., F2λ,1
VOLE) to generate IT-MACs. Instead, we can exploit the subfield VOLE correlation

F2,λ
VOLE (also known as the random correlated OT ) where each uj∈[n] ∈ F2 – P sends a single bit

uj ⊕ x to get [x].

Fp,q
VOLE from LPN. Recent works (e.g., [BCGI18, BCG+19b, SGRR19, BCG+19a, YWL+20])

show that Fp,q
VOLE can be instantiated efficiently via the Learning Parity with Noise (LPN) assump-

tion to achieve sublinear costs – the extend instruction to generate (subfield) VOLE correlations
of length n requires only o(n) communications.

2.6 VOLE-Based ZK for a Single Circuit and LPZK Technique [DIO21]

Prior work [BBMH+21, BBMHS22, BMRS21, DIO21, DILO22, WYKW21, WYX+21, WYY+22,
YSWW21] has shown that (subfield) VOLE correlations can be used as a hybrid functionality
(see Figure 1) to enable efficient ZK proofs.

Consider a circuit C defined over some field Fp. P wishes to prove in ZK that she knows the
inputs that evaluate C to zero. Let q be a large enough positive integer such that pq = λω(1).
VOLE-based ZK works in the commit-and-prove paradigm [CLOS02]. In particular, by exploiting
functionality Fp,q

VOLE, P can commit to its inputs (i.e., the witness) and each multiplication output
(i.e., the extended witness) using IT-MACs over Fpq . Recall that IT-MACs are linear homomorphic.
Therefore, P and V can locally evaluate C over these IT-MACs. That is, the parties can put these
IT-MAC commitments on C’s input and each multiplication output, then evaluates C gate by gate
over IT-MACs. After the local evaluation, P and V would obtain an IT-MAC on each wire of C,
including the output of C as [res]. Now, it suffices to show that each multiplication gate is formed
correctly. That is, each multiplication gate connects to three wires (left input, right input and
output) where each holds an IT-MAC; and P needs to show that they form a multiplication triple
(inside the commitments). Note, an extra multiplication needed to be added to capture the proof
to show that the output of C is 0, i.e., res · res = 0 (where [0] can be generated locally).

LPZK technique. The advanced approach to proving that the multiplication relationship holds
inside one IT-MAC triple is the Line-Point Zero-Knowledge (LPZK) technique [DIO21, YSWW21].
Consider [x], [y], [z] where P wants to prove in ZK that z = xy. The crucial observation is:

known by V︷ ︸︸ ︷
kxky − kz∆ = (x∆+mx)(y∆+my)− (z∆+mz)∆ (1)

= (xy − z)︸ ︷︷ ︸
known by P

∆2 + (xmy + ymx −mz)︸ ︷︷ ︸
known by P

∆+ mxmy︸ ︷︷ ︸
known by P

(2)

Hence, if xy − z = 0, P can send two coefficients M1 and M0 and V can check if M1∆ + M0
?
=

kxky − kz∆. If xy − z ̸= 0, the equality would only hold with 2
p probability since P does not know

∆. Indeed, sending xmy + ymx − mz breaks ZK. To recover ZK, it suffices to consume another
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Functionality Fp,B
ZK

Fp,B
ZK is parameterized by positive integers p and B, where Fp exists. Upon receiving (prove, C0, . . . , CB−1,w, id)

from prover P, where each Ci∈[B] is defined over Fp:

• If Cid(w) = 0, then output (true, C0, . . . , CB−1) to V and S;

• otherwise, output (false, C0, . . . , CB−1) to V and S.

Figure 2: The disjunctive ZK functionality.

random IT-MAC [r]. I.e., V can compute kxky − kz∆+ kr and P can send xmy + ymx −mz + r
and mxmy +mr. The ZK holds since the coefficient is (uniformly) one-time padded.

Batched LPZK. Note that to prove a batch of multiplication IT-MAC triples, V can issue
challenges to random linearly combine coefficients induced by each triple as Equation (1). Namely,
V can linearly aggregate over the values known by him induced by each multiplication triple, with
a V-sampled public weight vector. Crucially, if each multiplication is formed correctly, V should
obtain a value (after the aggregation) that can be interpreted as a P-known affine polynomial
evaluated at ∆. On the other hand, if some multiplication does not hold, V should w.h.p. obtain
a value that can only be interpreted as a P-known quadratic polynomial evaluated at ∆. Starting
from here, the proof can be completed as the non-batched setting. We denote this procedure as
the batched LPZK (check).

To further save communication, it is standard to generate the challenges (operating as the weight
vector) by expanding a PRG over a κ-bit seed assuming the Random Oracle (RO) or powering an
uniform field element.

By deploying the batched LPZK, the ZKP of C is achieved. To summarize4:

Lemma 2 (Single-Circuit VOLE-based ZK, Informal). For a circuit C defined over Fp with nin

inputs, n× multiplications and one output. Let q ∈ N such that pq = λω(1). There exists a constant-
round ZKP protocol over C with (nin +n×) log p+3q log p+O(1) bits of communication in Fp,q

VOLE-
hybrid model.

Remark 1. The computation complexity of VOLE-based ZK protocol of the circuit C for both
parties is O(|C|) where |C| denotes the number of gates, in terms of field operations over Fpq and
in the VOLE-hybrid model.

2.7 Disjunctive Statements in VOLE-Based ZK: Robin [YHH+23]

Our work focuses on studying VOLE-based ZK over disjunctive statements. Formally, consider B
circuits C0, . . . , CB−1 defined over some field Fp. P’s objective is to prove to V that she knows an
input that evaluates (at least) 1 out of these B circuits to zero, without revealing the identity of
that branch. We use “active branch” to denote the branch for which the prover knows a witness
and let it be the id -th one. Figure 2 formalizes the disjunctive ZK functionality.

4We note that VOLE-based ZK works over any field.
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A straightforward approach to handle a disjunctive statement is to combine B circuits into
one large circuit, where each circuit is included, evaluated, and finally multiplexed to determine
the output. This näıve approach is undesirable as the cost would be proportional to O(B|C|),
where |C| denotes the maximum circuit size among all branches. Robin [YHH+23] shows that the
communication can be optimized to be proportional to O(B + |C|). Roughly speaking, this is
achieved by reusing the “multiplication triples” of the active branch on the inactive branches.

We review Robin in slightly more detail. W.l.o.g., assume B circuits are of the same size –
each has the same numbers of inputs (denoted as nin) and multiplications (denoted as n×). In
Robin, P uses IT-MACs to commit to the nin inputs (denoted as [w]) and 3n× wires (denoted as
[ℓ] , [r] , [o]) associated with multiplications (left/right/output) on the active branch. To ensure that
each multiplication is formed correctly, P and V perform the batched LPZK check (see Section 2.6).
I.e., the check ensures that ℓ element-wise times r is o.

Then, for each branch Ci∈[B], P and V can evaluate Ci over the committed inputs [w] and
multiplication outputs [o], just like the regular VOLE-based ZK over Ci (see Section 2.6). Note
that here P and V reuse [w] and [o] on each branch. After evaluation, each wire on Ci has an
IT-MAC.

For each such branch Ci∈[B], denote (1) the IT-MAC vector consisting of the left wires on each

multiplication as [ℓ(i)]; (2) the IT-MAC vector consisting of the right wires on each multiplication
as [r(i)]; and (3) the IT-MAC on the output of Ci as [res(i)]. The crucial observation exploited by
Robin is as follows: the committed w, ℓ, r,o are the correct extended witness for Ci if and only if
the IT-MAC vector [ℓ− ℓ(i)]∥[r − r(i)]∥[res(i)] commits 02n×+1.

Therefore, to prove that P indeed commits to an extended witness that satisfies one branch
(conditioned on correct multiplications), it suffices to show that 02n×+1 is committed by 1-out-of-B
induced IT-MAC vectors. This can be proved efficiently: by V issuing a length-(2n× + 1) random
challenge vector5, parties can locally generate B IT-MACs by computing the inner product between
the random challenge and each vector. Finally, it suffices to show that one of B inner products
is 0 – Robin achieves this by showing that the product of these B IT-MACs is 0, which requires
transmission of O(B) elements in Fpq .

Note that Robin uses the LPZK technique to prove the multiplication triples of IT-MACs in a
black-box manner. Also note that when the circuits are defined over a small field (e.g., the Boolean
field F2), the random challenge vector issued by V must be defined over an extension field (e.g.
F2λ) to ensure soundness. We conclude this section with the following lemma and remark:

Lemma 3 (Robin, Informal). Let Ci∈[B] denote B circuits (defined over Fp) of the same size, where

each has nin inputs, n× multiplications and one output. Let q ∈ N such that pq = λω(1). Then,
there exists a constant-round ZKP protocol for the disjunctive statement C0 ∨ · · · ∨ CB−1 using
(nin + 3n×) log p+O(Bq log p) bits of communication in Fp,q

VOLE-hybrid model.

Remark 2. Compared to the näıve approach, the computation complexity for Robin is still O(B|C|)
in terms of number of field operations over Fpq .

3 Technical Overview

In this section, we provide a technical overview of our constructions. We note that understand-
ing how Robin [YHH+23] works (see Section 2.7 for a concise review) would be very helpful to

5Again, this can be generated from a PRG or an uniform element to its powers.
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contextualize the components in this section.
While our protocols work over any field, for simplicity, throughout this section, consider a

sufficiently large field F (i.e., |F| = λω(1)). In particular, P and V agree on B circuits Ci∈[B] defined
over F, each with nin inputs and n× multiplications. Suppose P wishes to prove to V in ZK that she
knows w ∈ Fnin that can evaluate the id -th circuit to zero. Note that id , unknown to V, must be
kept private. Moreover, let ℓ, r,o (|ℓ| = |r| = |o| = n×) denote P’s extended witness – P evaluates
Cid (w) to obtain ℓ (resp. r, o), which are the values on the left (resp. right, output) wire of each
multiplication, in the topology order.

Roadmap. Recall that the state-of-the-art protocol Robin requires P to commit to w, ℓ, r,o with
additive O(B) communication of field elements. Our final protocol LogRobin++ achieves communi-
cation costs where P only needs to commit to w and o with additive O(logB) communication of
field elements. Our overview is presented with stepping stones and structured as follows:

1. In Section 3.1, we overview our first stepping stone – a technique to allow P to prove to V in
ZK that 1-out-of-B IT-MAC commitments is 0 with O(logB) communication costs. Directly
plugging in this technique into Robin results in a protocol – LogRobin – that requires P to
commit to w, ℓ, r,o with additive O(logB) communication of field elements.

2. In Section 3.2, we overview our second stepping stone – a different way to construct VOLE-
based ZK for a disjunctive statement. Essentially, we show that, by P committing to only
w and o, the proof can be reduced to show the existence of an affine correlation, where P
holds B all-but-one-affine quadratic polynomials and V holds B values that are generated by
evaluating these B polynomials at ∆. We construct a sub-optimal (i.e., with O(B) commu-
nication costs) ZK protocol to prove the existence of such an affine correlation, ultimately
resulting in a protocol – Robin++ – that requires P to commit to w,o with additive O(B)
communication of field elements.

3. In Section 3.3, we overview our final protocol LogRobin++, non-trivially combining techniques
underlying LogRobin and Robin++. At a very high level, we show that the technique behind
proving 0 among 1-out-of-B IT-MACs (used in LogRobin) can be adapted to solve the affine-
polynomial-correlation problem inside Robin++ with O(logB) communication costs.

3.1 LogRobin: Optimizing the Proof of IT-MACs Containing 0

In this section, we overview the first stepping-stone protocol LogRobin. Recall that the O(B)
communication overhead in Robin comes from P proving V that there is a 0 among B IT-MACs
[t0] , . . . , [tB−1] (see Section 2.7). In Robin, this is done by simply multiplying the B values and
opening the result to V, which costs O(B). (If at least one multiplicand is 0, the product is 0.)
The crucial technique behind LogRobin is to improve the cost of this sub-procedure to O(logB).

Intuitively, this is possible as P knows where the 0 is, while Robin only exploits the fact that the
0 exists. Informally, O(logB) can be interpreted as the minimal amount of information required
for P to “point out” which element is 0 (i.e., which branch is active) correctly and obliviously.

A straightforward way to allow P to obliviously encode which branch is active (i.e., the id -th)
with O(logB) overhead is to require P to commit to id bit by bit (via IT-MACs). That is, w.l.o.g.,
let B = 2b for some b ∈ N. Then, P can decompose id ∈ [B] into b bits id0, . . . , id b−1 such that
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id =
∑b−1

i=0 2
i · id i. Next, P commits to each id i as [id i] and proves in ZK that each [id i∈[b]] commits

a bit (namely, P proves that ∀i ∈ [B], id i · (id i − 1) = 0 via the batched LPZK).

Path matrix. Committing these bits alone is insufficient. However, it turns out that they can
be exploited to further generate a powerful so-called path matrix, inspired by [GK15] (a useful
technique that allows P to obliviously point the active branch). To construct the path matrix,
besides [id ], P prepares b random IT-MACs [δ0] , . . . , [δb−1] where each δi∈[b] ∈$ F. Next, V issues
a uniform challenge Λ ∈$ F. Consider the following 2× b matrix [M] of IT-MACs:

[M] =

(
[Λ · (1− id0) + δ0] [Λ · (1− id1) + δ1] · · · [Λ · (1− id b−1) + δb−1]

[Λ · id0 − δ0] [Λ · id1 − δ1] · · · [Λ · id b−1 − δb−1]

)
The committed matrix M is called the path matrix with the following properties:

• The two elements in each column differ by Λ. E.g., the two elements in the first column
(within the IT-MACs) sum to Λ · (1− id0) + δ0 + Λ · id0 − δ0 = Λ.

• Each element inside M can be revealed to V as δi∈[b] is uniform.

• For each column i ∈ [b], if id i = 0, the column vector Mi would be (Λ + δi,−δi); if id i = 1,
the column vector Mi would be (δi,Λ − δi). Essentially, Λ term must exist and only exists
on the id i-th row.

Thus, P can open M to V without disclosing id . Note that since Λ is public, each element of [M]
can be locally generated from [id ] and [δ]. With the path matrix M, the parties can bit decompose
each a ∈ [B] into a0, . . . , ab−1, then compute Ca ≜

∏b−1
i=0 Mi,ai .

A crucial observation about each Ca∈[B] is that Ca is a product of b elements involving Λ only
when a = id . I.e., Cid can be interpreted as a degree-b polynomial evaluated at point Λ. On the
other hand, for each a ̸= id , Ca is a polynomial of degree at most b − 1 evaluating at Λ. The
procedure to generate C can be viewed as P’s ability to obliviously put the degree-b polynomial at
Cid .

Proving 0 exists among IT-MACs [t0] , . . . , [tB−1]. We now present how the path matrix M
(in particular, the associated Ca∈[B]) can be used to design a ZKP showing that tid = 0 among[
ti∈[B]

]
without disclosing id . Note that P and Vcan locally compute the following IT-MAC:

[S] ≜ C0 · [t0] + C1 · [t1] + · · ·+ CB−1 · [tB−1]

Crucially, Cid · [tid ] = [0] since tid = 0. Thus, S can be interpreted as a polynomial s(X) of degree
at most b − 1, evaluated at Λ. I.e., s(X) ≜

∑b−1
i=0 si · Xi such that S = s(Λ). More importantly,

the coefficients s0, . . . , sb−1 of s(X) are known to P and independent of Λ. Thus, P can commit to
s0, . . . , sb−1 as [s0] , . . . , [sb−1] before Λ is sampled. Once Λ is public, P proves that

[S]− [s0]− Λ · [s1]− · · · − Λb−1 · [sb−1] = [S − s(Λ)]

commits a 0 to finish the proof. Note that the entire procedure is taken within the IT-MACs, so
the ZK holds. Moreover, it only requires O(b = logB) commitments, meeting our communication
budget.
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We briefly argue why the soundness holds. Indeed, generating the path matrix M forces P to
select an id to claim tid = 0. If t0, . . . , tB−1 are all non-zero, Cid · [tid ] must commit a degree-b
polynomial evaluated at Λ. This infers that [S] commits a degree-b polynomial evaluating at Λ as
well. Note that Λ is uniformly chosen by V and s(X) is a degree-(< b) polynomial chosen by P
before knowing Λ. Therefore, s(Λ) ̸= S w.h.p. by the SZDL lemma (see Lemma 1).

Remark 3. To prepare si∈[b], P needs to perform O(B logB) field operations. To prepare Ci∈[B],
P and V each only needs to perform O(B) field operations.

Remark 4. LogRobin is constant-round in the VOLE-hybrid model. While this is not our focus,
this asymptotically improves over Mac′n′Cheese protocol [BMRS21].

3.2 Robin++: Committing to Lesser Values within the Active Branch

In this section, we overview the second stepping-stone protocol Robin++. Robin++ improves over
Robin by roughly 3× where P only needs to commit to w and o, whereas in Robin, P commits to
w, ℓ, r,o.

It may seem that committing to ℓ and r in the disjunctive setting is inherent since it allows
multiplication triples on the active branch to be reused on the inactive branch (which is the secret
sauce of Robin). However, this is not the case since Robin++ only allows P to commit to w and o.
To see how Robin++ works, it is instructive to see what happens if P commits to w and o, then
P and V try to execute the single-circuit VOLE-based ZK [DIO21, YSWW21] (see Section 2.6) on
each branch reusing the committed extended witness and V’s challenges. Ensured by the soundness
of the single-circuit VOLE-based ZK, the proof on the inactive branch would fail. In particular,
the proofs introduce two cases for each Ci∈[B]:

• Valid (Affine): If w and o are the valid extended witness of Ci, based on the correctness of

the single-circuit VOLE-based ZK for Ci, P will learn M
(i)
1 ,M

(i)
0 ∈ F and V will learn K(i) ∈ F

where
K(i) = M

(i)
1 ∆+M

(i)
0

Recall that to finish the proof, P sends two (randomized) coefficients.

• Invalid (Quadratic): If w and o are not the valid extended witness of Ci, based on the

soundness of the single-circuit VOLE-based ZK for Ci, P will learn M
(i)
2 ,M

(i)
1 ,M

(i)
0 ∈ F and

V will learn K(i) ∈ F where

K(i) = M
(i)
2 ∆2 +M

(i)
1 ∆+M

(i)
0

and crucially, M
(i)
2 ̸= 0 w.h.p. The proof fails by sending two coefficients.

Now, consider the disjunctive statement. Clearly, to show that there is an active branch, it is
sufficient for P to show that there is an “affine equality/correlation”. That is, instead of finishing
all B proofs, P and V stop at the point where V holds B values K(i∈[B]) ∈ F where each value
can be interpreted as a P-known quadratic polynomial evaluating at ∆ (i.e., P holds p(i∈[B])(X) ≜

M
(i)
2 X2+M

(i)
1 X+M

(i)
0 whereas V holds K(i∈[B]) ≜ p(i)(∆) and a private ∆). Starting from here, it

suffices for P to show in ZK that one of B evaluation points learned by V is introduced by an affine
polynomial. I.e., the disjunctive VOLE-based ZK proof is reduced to the above affine-polynomial-
correlation problem.
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A sub-optimal approach to solve the affine-polynomial-correlation problem. We show
a sub-optimal way to solve this problem with O(B) costs, resulting in Robin++. In Robin++, P
commits to all M

(i∈[B])
2 via IT-MACs as

[
M

(i∈[B])
2

]
and proves in ZK to V that there is a 0 among

them. This step can be done using the technique used by LogRobin or just simply showing that
their product is 0 as Robin. We remark that the technique used by LogRobin will not improve

overall communication costs here since the step to commit to all M
(i∈[B])
2 costs O(B).

Clearly, this is insufficient – we need to further ensure that P indeed commits to the correct

M
(i∈[B])
2 w.r.t. each K(i) held by V. In the non-private case without ZK, this can be done trivially

by P opening M
(i)
2 for each i ∈ [B] and sending M

(i)
1 and M

(i)
0 where V checks that K(i) ?

=

M
(i)
2 ∆2 + M

(i)
1 ∆ + M

(i)
0 . (Recall that ∆, sampled by V, is private.) The ZK does not hold

because (1) if M
(i)
2 = 0, V would know this is the active branch, and more importantly (2) M

(i)
1/2

are correlated with P’s witness. It is classic to use fresh random IT-MACs to achieve privacy by

deploying them as masks. In detail, consider two random IT-MAC instances
[
r
(i)
1

]
,
[
r
(i)
2

]
and the

following equality:

known by V︷ ︸︸ ︷
k
r
(i)
2

∆+ k
r
(i)
1

=
(
r
(i)
2 ∆+m

r
(i)
2

)
∆+ r

(i)
1 ∆+m

r
(i)
1

= r
(i)
2︸︷︷︸

known by P

∆2 +
(
r
(i)
1 +m

r
(i)
2

)
︸ ︷︷ ︸

known by P

∆+ m
r
(i)
1︸ ︷︷ ︸

known by P

Hence, V can compute K(i)+k
r
(i)
2

∆+k
r
(i)
1

where P would open
[
M

(i)
2 + r

(i)
2

]
and sends M

(i)
1 +r

(i)
1 +

m
r
(i)
2

and M
(i)
0 +m

r
(i)
1

. ZK holds now as coefficients M
(i)
2 and M

(i)
1 each is one-time-pad encrypted.

In particular, V would not know which branch is active since all correlations look quadratic from V’s
perspective. Note, QuickSilver [YSWW21] also showed a similar approach to generate and exploit
this “padding” correlation, but they consume 3 random IT-MACs instead of 2.

Finally, note that the above check for each i ∈ [B] is identical. Hence, all B checks can be
performed in a batched manner. That is, V issues random challenges χ0, . . . , χB−1 and computes∑B−1

i=0 χiK
(i) whereas P computes

∑B−1
i=0 χiM

(i)
0 and

∑B−1
i=0 χiM

(i)
1 . Furthermore, P and V can

locally compute
[∑B−1

i=0 χiM
(i)
2

]
. Random masks over the coefficients are still required to ensure

the ZK property, but now only two random IT-MACs are needed in total.
To conclude, our stepping-stone protocol Robin++ exploits the reduction and the sub-optimal

protocol to solve the affine-polynomial-correlation problem.

Remark 5. It is worth noting that when B = 1, Robin++ is (almost) identical to QuickSilver [YSWW21]
– the state-of-the-art VOLE-based ZK for a single circuit. In particular, the asymptotic and concrete
costs are identical.

3.3 LogRobin++: Non-trivially Combining LogRobin and Robin++

In this section, we overview our final protocol LogRobin++. As its name indicates, LogRobin++ com-
bines the techniques exploited by Robin++ and LogRobin. With both techniques, (1) P only needs
to commit to w and o as Robin++; and (2) LogRobin++ incurs additive O(logB) communication
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overhead as LogRobin. We remark that the combination is non-trivial as, looking ahead, a näıve
attempt would either require O(B) costs or break the ZK property.

Recall that, by P committing to onlyw and o (cf. Robin++), the disjunctive proof can be reduced
to the affine-polynomial-correlation problem. I.e., P and V jointly hold the following correlated
values:

known by V︷︸︸︷
K(i) =

known by P︷︸︸︷
M

(i)
2 ∆2 +

known by P︷︸︸︷
M

(i)
1 ∆+

known by P︷︸︸︷
M

(i)
0 (3)

for each i ∈ [B] (where ∆ is privately sampled by V), such that P wishes to prove to V in

ZK that ∃id ∈ [B],M
(id)
2 = 0. Robin++ achieves this by requiring P to commit M

(i∈[B])
2 as[

M
(0)
2

]
, . . . ,

[
M

(B−1)
2

]
, prove the committed B containing 0, and open a random linear combi-

nation of them (with extra uniform pads to ensure ZK). Note that committing M
(i∈[B])
2 requires

O(B) costs!
In LogRobin++, we propose a O(logB)-communication protocol to solve the affine-polynomial-

correlation problem, ultimately achieving our objective.

Intuition. To get a sense of why this is possible, note that the correlation in Equation (3) can

be viewed as a “conceptual commitment” over M
(i)
2 (from P to V). In particular, P can open the

commitment via sending M
(i)
0 ,M

(i)
1 and M

(i)
2 whereas V can check if Equation (3) holds. Indeed,

as the IT-MAC, if P wants to forge M
(i)
2 to a different value M̃

(i)
2 , she needs to guess ∆. Viewed

this way, the affine-polynomial-correlation problem can be interpreted as P proving to V in ZK
that one of these B “conceptual commitments” is 0. Our technical insight behind LogRobin++ is to
adapt our technique in LogRobin, which is used to prove 1 out of B IT-MAC commitments is 0, to
these “conceptual commitments”. However, we remark that it is not ZK to open each “conceptual

commitment” – the main challenge. This is because, as discussed in Section 3.2, M
(i)
0 ,M

(i)
1 and

M
(i)
2 correlate with P’s extended witness.

Adapting LogRobin’s technique over “conceptual commitments”. Recall that P in LogRobin
would commit to id bit by bit, and then the parties generate a so-called path matrix M. This path
matrix M induces B field elements Ci∈[B]. By viewing each K(i∈[B]) conceptually as a commitment,
V can compute

S ≜ C0K
(0) + C1K

(1) + . . .+ CB−1K
(B−1) (4)

which can be viewed as a multivariate polynomial s(·, ·) evaluated at (Λ,∆) as

S = s(Λ,∆) =

b∑
j=0

2∑
k=0

sj,kΛ
j∆k (5)

where w.l.o.g., let B = 2b for some b ∈ N. Note that the 3(b + 1) coefficients {sj,k}j∈[b+1],k∈[3] are

known to P as they are determined by
{
M

(i)
2 ,M

(i)
1 ,M

(i)
0

}
i∈[B]

and the P-chosen id , δ (see Sec-

tion 3.1). Recall that there is only one value within C – the Cid where id is the index of the active
branch – that can be interpreted as a degree-b polynomial evaluated at Λ. Therefore, the coefficient
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sb,2 of Λb∆2 can only be induced by CidK
(id) and, if P is honest, must be 0 as M

(id)
2 = 0. In other

words, for i ̸= id , since Ci can only be interpreted as a degree-< b polynomial evaluated at Λ, it is
impossible to induce the term Λb∆2.

Just as LogRobin, based on the SZDL lemma, it suffices for P to show her ability to compute S
from a degree-(b+1) multivariate polynomial evaluated at (Λ,∆) by specifying 3b+2 coefficients –
all sj∈[b+1],k∈[3] except sb,2, before Λ is issued. I.e., P provides an oracle to V to compute a degree-
(b + 1) multivariate polynomial s(X,Y ) at (Λ,∆) whereas V needs to ensure that S (computed
by Equation (4)) is equal to s(Λ,∆). Note that revealing these coefficients to V directly would
break privacy since they are correlated with the P’s witness.

As a failed attempt, we can try to mimic LogRobin to ask P to commit to all coefficients as
IT-MACs and later linearly evaluate the polynomial within the IT-MACs. This fails because ∆
must be kept private to P to preserve the binding property of the IT-MAC. That is, even after Λ
is chosen, P is still not able to operate on these committed coefficients to obtain [s(Λ,∆)] without
knowing ∆. In fact, S itself should not be learned by P, since it is correlated with ∆.

Randomization over S. Instead, similar to Robin++, LogRobin++ exploits random IT-MACs
correlations (generated from VOLE) to mask the coefficients. I.e., with masking, most of them can
be directly revealed.

To see how it works, first consider the coefficients of j = b. I.e., the coefficients sb,0 and sb,1
(where sb,2 = 0 if P is honest). These two coefficients are related to the following additive term
in Equation (5):

sb,1Λ
b∆+ sb,0Λ

b

Consider one fresh VOLE correlation [rb], where V holds krb and P holds rb,mrb such that krb =
rb∆+mrb . If V adds krbΛ

b = rbΛ
b∆+mrbΛ

b into S (i.e., Equation (4)), the (above) additive term
induced by Λb∆ and Λb would become:

(sb,1 + rb)Λ
b∆+ (sb,0 +mrb)Λ

b (6)

Crucially, rb looks (pseudo-)random to V. Thus, P can directly send sb,1+ rb to V. However, as we
will discuss at the end of this section, sb,0 +mrb cannot be disclosed to V since this would break
privacy – a malicious V∗ can learn the active index id by manipulating it. Instead, P will commit
to sb,0 +mrb as [sb,0 +mrb ]. It will become clear soon how this IT-MAC is used.

Let us proceed to consider coefficients of j = 0, . . . , b − 1. I.e., the coefficients sj,0, sj,1, sj,2 for
each j ∈ [b]. These three coefficients are related to the following additive term in Equation (5):

sj,2Λ
j∆2 + sj,1Λ

j∆+ sj,0Λ
j

Consider two fresh VOLE correlations [rj,2] and [rj,1] for each j ∈ [b], where V holds krj,2 , krj,1 and
P holds rj,2, rj,1,mrj,2 ,mrj,1 such that krj,2 = rj,2∆+mrj,2 and krj,1 = rj,1∆+mrj,1 . Similarly, V can
add the term krj,2Λ

j∆+krj,1Λ
j = rj,2Λ

j∆2+(mrj,2 +rj,1)Λ
j∆+mrj,1Λ

j into S (i.e., Equation (4)),
the (above) additive term induced by Λj∆2, Λj∆ and Λj would become:

(sj,2 + rj,2)Λ
j∆2 + (sj,1 +mrj,2 + rj,1)Λ

j∆+ (sj,0 +mrj,1)Λ
j

Again, P can directly send sj,2+ rj,2 and sj,1+mrj,2 + rj,1 as they are one-time padded by uniform
rj,2 and rj,1. Similarly, V should not learn sj,0+mrj,1 so P commits to sj,0+mrj,1 as

[
sj,0 +mrj,1

]
.

(We will explain at the end of this section why this cannot be directly disclosed to V.)

15



Informally, via sending these values (i.e., 2b + 1 randomized coefficients and b + 1 IT-MACs),
P commits to a multivariate polynomial of degree less than b+ 2, before knowing Λ. In particular,
they will be used as the polynomial oracle.

We are now ready to show how these coefficients inside IT-MACs are used. Naturally, they are
used to let V evaluate the committed polynomial at (Λ,∆). Note that V is missing b+1 coefficients
s0,0 + mr0,1 , . . . , sb−1,0 + mrb−1,1

, sb,0 + mrb to evaluate the committed polynomial. However, the
additive term in the committed polynomial related to these coefficients is independent of ∆ (i.e.,
∆0 = 1). Therefore, once Λ is public, parties can locally compute then open:

Λ0 ·
[
s0,0 +mr0,1

]
+ · · ·+ Λb−1 ·

[
sb−1,0 +mrb−1,1

]
+ Λb · [sb,0 +mrb ] (7)

which, together with 2b + 1 randomized coefficients, helps V evaluate the committed polynomial
at (Λ,∆). Finally, if the evaluation output equals the randomized S (cf. Equation (4)), V accepts
the proof. Indeed, the above protocol overcomes the difficulty in the failed attempt as it does not
require P to know ∆.

We remark that the polynomial must be committed before P knowing Λ, which is crucial for

the soundness analysis. In particular, if P is cheating with all M
(2)
i∈[B] being non-zeros, S should be

interpreted as a degree-(b+2) polynomial evaluated at point (Λ,∆), even after the randomization.
Hence, it is with a negligible probability that the committed polynomial (with a degree less than
b+ 2) can evaluate to the same value at (Λ,∆), based on the SZDL lemma.

To conclude, the above technique solves the polynomial-affine-correlation problem withO(logB)
communication, ultimately resulting in LogRobin++.

Why can’t the coefficients inside the IT-MACs be disclosed? Perhaps surprisingly, unlike
other 2b+1 (randomized) coefficients, the b+1 coefficients inside IT-MACs should not be directly
disclosed to V. Here, we justify this design choice by showing how a malicious V (corrupted by
A) could learn the active branch index if they were disclosed. Note that A is allowed to choose
global key ∆ and local keys k in the VOLE correlation functionality (see Figure 1). Therefore, by
A setting ∆ = 0, each local key k equals the corresponding MAC m held by P. This implies that

A knows each M
(i∈[B])
0 in Equation (3). Similarly, A knows mrb where [rb] is used to randomize

S (see Equation (6)). Furthermore, according to Equation (4), sb,0 (i.e., the coefficient of Λb) is

equal to M
(id)
0 . Thus, if the coefficient sb,0 +mrb is disclosed (see Equation (6)), A learns sb,0. By

comparing sb,0 with each M
i∈[B]
0 , A can infer which id ∈ [B] gives M

(id)
0 = sb,0.

4 Formalization

In this section, we UC formalize our final protocol LogRobin++. For completeness, we also formalize
our stepping-stone protocols Robin++/LogRobin in Sections 4.3 and 4.4.

4.1 Sub-Procedures

In this section, we define two sub-procedures that will be used by LogRobin++ (also used by our
stepping-stone protocols Robin++/LogRobin) as subroutines. These sub-procedures are local.
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Sub-procedure Eval-IT-MAC(C, [in ] , [o])

Eval-IT-MAC is a local sub-procedure executed by P and V. It takes (1) a circuit C with nin inputs, n× multipli-

cations and 1 output; (2) an IT-MAC vector [in ] such that |in | = nin ; and (3) an IT-MAC vector [o] such that

|o| = n×;, then produces a vector of IT-MAC triples t where |t| = n× + 1. Eval-IT-MAC proceeds as follows:

P (or V) sets t = ⊥, then evaluates C gate-by-gate in the topology order:

1. If it is an input gate, for the j-th input, put [inj ] on the wire.

2. If it is an addition gate, for the j-th addition, take the IT-MAC [xj ] on the left wire and the IT-MAC [yj ]

on the right wire, put [xj ] + [yj ] on the output wire.

3. If it is a multiplication gate, for the j-th multiplication, put [oj ] on the output wire. Take the IT-MAC [xj ]

on the left wire and the IT-MAC [yj ] on the right wire, append the IT-MAC triple ([xj ] , [yj ] , [oj ]) to t.

After the evaluation, take the IT-MAC [res] on the output of C, append the IT-MAC triple ([res] , [res] , [0]) to t.

P (or V) returns t.

Figure 3: Eval-IT-MAC: The sub-procedure for parties to evaluate C over IT-MACs. This sub-
procedure is local since parties only perform additions over IT-MACs.

Eval-IT-MAC: Evaluating IT-MACs over a circuit C. The first sub-procedure allows P and
V to evaluate a circuit C on IT-MAC commitments. The sub-procedure (called Eval-IT-MAC) is
formalized in Figure 3. Clearly, the computation complexity of this sub-procedure is O(|C|).

AccP/AccV : Linearly accumulating IT-MAC triples. The second sub-procedure allows P
and V to accumulate linearly a sequence of IT-MAC triples into a single affine or quadratic dis-
tributed correlation in ∆. This (asymmetric) sub-procedure (called AccP/AccV) is formalized in Fig-
ure 4. This sub-procedure takes a vector of IT-MAC triples t = (([xj ] , [yj ] , [zj ]))j∈[n] where n = |t|
and n coefficients γ0, . . . , γn−1 as inputs. Then, P accumulates M (2) :=

∑n−1
j=0 γj(xjyj−zj),M

(1) :=∑n−1
j=0 γj(xjmyj+yjmxj−mzj ),M

(0) :=
∑n−1

j=0 γjmxjmyj and V accumulatesK :=
∑n−1

j=0 γj(kxjkyj−
kzj∆). Recall that the IT-MAC correlations ensure that M (2)∆2 + M (1)∆ + M (0) = K and, in

particular, if all triples are multiplications, M (2) must be 0 regardless of γ. Since P and V perform
different algorithms, we split Acc into AccP and AccV , but either AccP or AccV is local with O(n)
computation complexity. Our protocols will only set γ as public coins.

4.2 LogRobin++

We formalize our protocol LogRobin++ as Πp,q
LogRobin++ in Figures 5 and 6. We defer the reader

to Section 3.3 for a concise technical overview of this protocol. The main security theorem associated
with Πp,q

LogRobin++ is as follows:

Theorem 1 (LogRobin++). Πp,q
LogRobin++ (Figures 5 and 6) UC-realizes Fp,B

ZK (Figure 2) in the Fp,q
VOLE-

hybrid model (Figure 1) with soundness error B+b+7
pq (where, w.l.o.g., let B = 2b for some b ∈ N)

and perfect zero-knowledge, in the presence of a static unbounded adversary.
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Sub-procedure AccP(t,γ)

AccP is a local sub-procedure executed by P. It takes (1) a vector of IT-MAC triples t where |t| = n and each

triple is of form ([·] , [·] , [·]); and (2) a vector of field elements γ where |γ| = n, then produces three field elements

M (2),M (1),M (0). Here, the field is the one associated with the IT-MACs. AccP proceeds as follows:

P sets M (2),M (1),M (0) be 0s. Then, for each j ∈ [n], let tj = ([xj ] , [yj ] , [zj ]), P updates the M (2),M (1),M (0) as

follows:

M (2) := M (2) + γj(xjyj − zj)

M (1) := M (1) + γj(xjmyj + yjmxj −mzj )

M (0) := M (0) + γjmxjmyj

After the iteration, P returns M (2),M (1),M (0).

Sub-procedure AccV(t,γ)

AccV is a local sub-procedure executed by V. It takes the same input format as AccP , but produces a single field

element K. AccV proceeds as follows: V sets K be 0s. Then, for each j ∈ [n], let tj = ([xj ] , [yj ] , [zj ]), V updates

the K as follows:

K := K + γj(kxjkyj − kzj∆)

After the iteration, V returns K.

Figure 4: AccP/AccV : The sub-procedures for P and V to accumulate correlations generated by
IT-MAC triples. Note, if each triple in t forms a multiplication, M (2) is always equal to 0 regardless
of γ.

Proof. The proof is performed by constructing the simulator S. We need to show completeness
(trivial, omitted); soundness (constructing S for P∗); and Zero-Knowledge (constructing S for
V∗).

Zero-Knowledge, S for V∗: The S for V∗ is straightforward. This is because V∗ receives either
some elements that each is one-time padded by a uniform element (i.e., the VOLE correlation) or
some elements that are determined by his transcripts (including his shares of IT-MACs and the
global key ∆). That is, S will interact with V∗ and emulate the hybrid VOLE functionality Fp,q

VOLE
for him. Essentially, S proceeds as follows:

1. For Step 1, S samples the ∆ for V∗. Note that V∗ can specify his own ∆ by revealing its ∆
to S (i.e., to the hybrid functionality Fp,q

VOLE).
2. For Steps 2 and 3, S samples the local keys (i.e., the V∗’s IT-MAC shares of VOLE correla-

tions) for him. Note that V∗ can specify his own local keys by revealing its local keys to S
(i.e., to the hybrid functionality Fp,q

VOLE).
3. For Steps 4 and 5, S samples and sends uniform elements in Fp.
4. For Step 6, S receives the challenges γ from V∗.
5. For Step 7, S can also execute sub-procedures Eval-IT-MAC and AccV (as V) since it has all

associated values held by V∗ – S has K(i) for each i ∈ [B].
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Protocol Πp,q
LogRobin++

Inputs. The prover P and the verifier V hold B circuits C0, . . . , CB−1 over field Fp, where each circuit has nin

inputs, n× multiplications and 1 output. P also holds a witness w ∈ Fnin
p and an integer id ∈ [B] such that

Cid(w) = 0.

Generate extended witness on Cid .

0. P evaluates Cid(w) and generates o ∈ Fn×
p where o denotes the values on the output wires of each multi-

plication gate, in topological order.

Initialize/Preprocess.

1. P and V send (init) to Fp,q
VOLE, which returns a uniform ∆ ∈$ Fpq to V.

2. P and V generate IT-MACs (over Fpq ) of random values over Fp as {[µj ]}j∈[nin ]
, {[ρj ]}j∈[n×] and {[ζi]}i∈[b]

by sending (extend, nin + n× + b) to Fp,q
VOLE.

3. P and V generate IT-MACs (over Fpq ) of random values over Fpq as {[δi]}i∈[b], [rb], {[rj,2] , [rj,1]}j∈[b] and

{[τj ]}j∈[b+1] by sending (extend, (2 + 4b)q) to Fp,q
VOLE then locally combining (see [YSWW21]) them.

Commit to extended witness on Cid .

4. For j ∈ [nin ], P sends dj := wj − µj ∈ Fp, then both compute [wj ] := [µj ] + dj .

5. For j ∈ [n×], P sends dj := oj − ρj ∈ Fp, then both compute [oj ] := [ρj ] + dj .

Evaluate committed IT-MACs on each branch and accumulate the correlations generated by each

induced IT-MAC triples for this branch.

6. V samples a random vector γ ∈$ Fn×+1
pq and sends it to P.

7. For each branch i ∈ [B], P and V call sub-procedure Eval-IT-MAC(Ci, [w] , [o]) (see Figure 3), which returns

a vector of IT-MAC triples t(i) such that |t(i)| = n× +1; then, P calls sub-procedure AccP(t(i),γ) (see Fig-

ure 4), which returns M
(i)
2 ,M

(i)
1 ,M

(i)
0 ∈ Fpq , and V calls sub-procedure AccV(t(i),γ)(see Figure 4), which

returns K(i) ∈ Fpq . Recall that the following equality holds:

∀i ∈ [B],M
(i)
2 ∆2 +M

(i)
1 ∆+M

(i)
0 = K(i); M

(id)
2 = 0

Figure 5: LogRobin++: ZKP protocol for disjunctive circuits over any field Fp in the Fp,q
VOLE-hybrid

(see Figure 1) model. Proceed with Figure 6.

6. For Step 8, S samples and sends uniform elements in Fp.
7. For Step 9, S can trivially forge the ZKP by knowing ∆ and all local keys. I.e., since S

knows all local keys and ∆, it knows what V∗ expects as a valid proof. Suppose this value
is Π ∈ Fpq . To forge the proof, S sends C1 ∈$ Fpq and C0 := Π − C1∆. (See also ZK S in
LPZK [DIO21, YSWW21].)

8. For Step 13, S samples and sends uniform elements in Fpq . Note that, in the real-world
execution, each element sent by P in this step is still one-time padded by a uniform element
in the corresponding VOLE correlation.

9. For Step 14, S samples and sends uniform elements in Fpq .
10. For Step 15, S receives the challenges Λ from V∗.
11. For Step 16, S opens each IT-MAC (in the second row of [M(Λ)]) to a uniform sample in Fpq .

This is possible since S knows ∆ and can open an IT-MAC to any value successfully. Now,
S obtains a “path matrix” M̃.

12. For Steps 16 and 17, S performs the identical computation taken by V. This is possible since
it has all associated values held by V∗. Then, S obtains S.

13. For Step 18, S computes S̃′ := S − sb,1Λ
b∆−

∑b−1
j=0

(
sj,2Λ

j∆2 + sj,1Λ
j∆

)
. Here, all s values
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Protocol Πp,q
LogRobin++ (Cont.)

Commit to id bit-by-bit, P constructs the randomized final multivariate polynomial and declares

(or commits to) its 3b+ 2 coefficients.

8. P bit decomposes id as
∑b−1

i=0 id i · 2i. P sends id − ζ to construct [id ] from [ζ].

9. P and V execute (batched) LPZK to prove id i · (id i − 1) = 0 for each i ∈ [b].

10. P constructs the following 2× b matrix, consisting of affine polynomials in X

M(X) =

(
X · (1− id0) + δ0 · · · X · (1− idb−1) + δb−1

X · id0 − δ0 · · · X · idb−1 − δb−1

)
11. P constructs the multivariate polynomial in X,Y

s(X,Y ) =

B−1∑
a=0

((
M

(a)
2 Y 2 +M

(a)
1 Y +M

(a)
0

)
·
b−1∏
i=0

Mi,ai(X)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b−1

i=0 ai · 2i. Since M
(id)
2 = 0, s(X) is a degree-(< b + 2)

multivariate polynomial.

12. P randomizes s(X,Y ): for [rb], P holds rb,mrb and computes s(X,Y ) := s(X,Y ) + (rbY +mrb)X
b. Then,

for each j ∈ [b], for [rj,2] and [rj,1], P holds rj,2, rj,1,mrj,2 ,mrj,1 and computes

s(X,Y ) := s(X,Y ) +
(
rj,2Y

2 + (rj,1 +mrj,2)Y +mrj,1

)
Xj

After the randomization, let s(X,Y ) =
∑b

j=0

∑2
k=0 sj,kX

jY k where each sj,k ∈ Fpq . In particular, if P is

honset, sb,2 = 0.

13. P sends sb,1 and for each j ∈ [b], P sends sj,2 and sj,1.

14. For each j ∈ [b+ 1], P sends dj := sj,0 − τj ∈ Fpq then parties construct [sj,0].

Evaluate the randomized multivariate polynomial at random point (Λ,∆).

15. V samples a random element Λ ∈$ Fpq and sends it to P.

16. P and V can locally generate IT-MAC matrix [M(Λ)] from [id ] and [δ]. Then, P opens each IT-MAC in

the second row of [M(Λ)], resulting P and V hold

M(Λ) =

(
Λ · (1− id0) + δ0 · · · Λ · (1− idb−1) + δb−1

Λ · id0 − δ0 · · · Λ · idb−1 − δb−1

)
∈ F2×b

pq

17. V computes

S :=

B−1∑
a=0

(
K(a) ·

b−1∏
i=0

Mi,ai(Λ)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b

i=0 ai · 2i.
18. V adds the randomization to S: for [rb], V holds krb and computes S := S + krbΛ

b. Then, for each j ∈ [b],

for [rj,2] and [rj,1], V holds krj,2 , krj,1 and computes S := S + (rj,2∆+ rj,1)Λ
j .

19. P and V locally construct then open the IT-MAC [S′] =
∑b

j=0 Λ
j · [sj,0].

20. V computes S′ := S′ + sb,1Λ
b∆. Then, for each j ∈ [b], V computes S′ := S′ + sj,2Λ

j∆2 + sj,1Λ
j∆.

21. If S = S′, V outputs (true, C0, . . . , CB−1). If not (or some prior proof/open fails), V outputs

(false, C0, . . . , CB−1).

Figure 6: LogRobin++ (Continued): ZKP protocol for disjunctive circuits over any field Fp in the
Fp,q
VOLE-hybrid (see Figure 1) model.
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are those sampled and sent by S for Step 13. Now, S opens [S′] to S̃′. This possible because
S knows ∆. Note that what computed by S is essentially the correct proof that V needs to
see in this step. I.e., V∗ would accept the proof since the equality in Step 21 must hold.

Indeed, the distributions seen by V∗ in the ideal world and the real world are identical. This is
because S replaces all one-time padded values with uniform samples (including each element in the
second row of the path matrix and those coefficients sent by P in Step 13) and simply determines
other correlated values. The simulation is perfect.

Soundness, S for P∗: Note that V in Πp,q
LogRobin++ only sends uniform elements. Thus, S,

emulating Fp,q
VOLE for P∗, can interact with P∗ as an honest V. Since S emulates Fp,q

VOLE, it can
trivially extract the (extended) witness w,o used by P∗ in Steps 2 and 3. In particular, this can
be done by removing the one-time pads, which are generated by Fp,q

VOLE and known by S. Now,

if the emulated honest V (inside S) outputs false, S simply sends abort to Fp,B
ZK , so the ideal

V would also output false. Instead, if the emulated honest V (inside S) outputs true, S tries
and finds id ∈ [B] such that Cid (w) = 0 (if there is no such id , just set id as 0); then, S sends
(prove, C0, . . . , CB−1,w, id) to Fp,B

ZK . Finally, S sends the UC environment E whatever outputted
by P∗.

We now argue why this is a valid simulator. Note that the distributions seen by P∗ in the
ideal world and the real world are identical (i.e., just some uniform challenges), so the distribution
outputted by P∗ in the real-world execution is the same as the distribution outputted by S in the
ideal world. As a result, we only need to quantify the probability of the event where the ideal
V’s output is different from the real-world V’s output. Furthermore, when the emulated honest V
(inside S) outputs false, the ideal world V must output false. Thus, we only need to quantify the
probability of the event where the emulated honest V outputs true but the ideal-world V outputs
false. Note that this happens when P uses a wrong (extended) witness (in the sense that w does
not make any Ci∈[B] output 0) but still passes all checks. I.e., this is the soundness error.

This bad event would (only) happen in the following (chained) events:
• In Step 7, even though there exists (at least) one non-multiplication triple in each t(i), some

accumulated M
(i∈[B])
2 becomes 0. Namely, among B length-(n× + 1) vectors where none of

them is all 0’s, there exists (at least) 1 of them, after inner producting with the (uniformly
sampled) γ in Step 6, results in 0. This would only happen with up to B

pq probability [YHH+23,
Lemma 5.1].

• In Step 9, even though P∗ commits to some id i that is not a bit, the batched LPZK does
not catch it. This would only happen with up to 3

pq probability, i.e., the soundness error of
the batched LPZK technique (where the batched check is achieved via a fresh random linear
combination, cf. [YSWW21]).

• In Step 16, P∗ forges the opening of some element(s) in M(Λ). This would only happen with
up to 1

pq based on the binding property of the IT-MAC.

• In Step 19, P∗ forges the opening of the IT-MAC [S′]. This would only happen with up to
1
pq based on the binding property of the IT-MAC.

• In Step 21, S = S′ (accidentally) for some sampled Λ and ∆, conditioned over all previous bad
events not happening. Note that if so, (Λ,∆) must be the root of a P∗-specified (multivariate)
degree-(b+2) polynomial. This is because the coefficient before Λb∆2 must be non-zero. Thus,
this would only happen with up to b+2

pq based on the SZDL lemma (see Lemma 1).

Hence, the union soundness error bound (i.e., the summed errors) is B+b+7
pq .
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Remark 6. Step 9 is not needed if p = 2 (i.e., consider Boolean circuits). This is because P can
only commit to bits in Step 8.

Cost analysis. We tally the computation and communication cost of LogRobin++, in the Fp,q
VOLE-

hybrid model (Figure 1). The (unidirectional) communication from P to V consists of the following
components:

1. In Steps 3 and 4, P sends nin + n× elements in Fp to commit to her extended witness.

2. In Step 8, P sends b elements in Fp to commit to bit-decomposed id .

3. In Step 9, P sends 2 elements in Fpq for the batched LPZK check.

4. In Step 13, P sends 2b+ 1 elements in Fpq as coefficients.

5. In Step 14, P sends b+ 1 elements in Fpq to commit to coefficients.

6. In Step 16, P sends 2b elements in Fpq to open the IT-MAC commitments in the second row
of the path matrix.

7. In Step 19, P sends 2 elements in Fpq to open the IT-MAC commitment.

To conclude, the overall communication from P to V consists of nin + n× + b elements in Fp and
5b + 6 elements in Fpq . In the other direction, the communication from V to P only consists of
random challenges in Fpq . Indeed, if V samples each challenge independently, this will result in
sending Ω(n× + b) elements in Fpq . To further save the communication from V to P, there are the
following alternative approaches to generate these challenges:

• RO variant: It is standard to generate each sequence of uniform challenges via expanding
the PRG from a uniformly chosen κ-bit seed. This optimizes the communication from V to
P down to O(κ). However, this variant of Robin++ requires the Random Oracle assumption.
Furthermore, the soundness error would now be bounded by B+b+7

pq + Q
2κ , where Q denotes

the number of random oracle queries made by the adversary.

• IT variant: We can also generate each sequence of uniform challenges via powering a single
uniform element. I.e., V can sample and send α ∈$ Fpq , then parties set the challenge vector
as (1, α, α2, . . .). Clearly, This optimizes the communication from V to P down to O(q log p),
which can be set asO(λ). While this modification preserves the information-theoretic security,
the soundness error would increase because of a larger probability of creating undesirable
“zeros”. E.g., in Step 7, even though a malicious P∗ uses an invalid extended witness that

does not evaluate any branch circuit to 0, the probability that one M
(i∈[B])
2 becomes 0 would

now be Bn×
pq . (This is because a malicious P∗ wins the game if γ happens to be a root of one

out of B degree-n× polynomials.) After adjusting these bounds, the overall soundness error
would now be bounded by Bn×+2b+4

pq .

For computation, clearly, P’s cost is dominated by O(B|C|) field operations over Fpq in Step 7 and
O(B logB) field operations over Fpq in Step 11 to compute the coefficients of s(X,Y ); and V’s cost
is dominated by O(B|C|) field operations over Fpq in Step 7 only. Note that Step 17 only requires
O(B) field operations.

Remark 7. The cost listed in Table 1 is based on the IT variant of LogRobin++.
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4.3 LogRobin

We formalize our protocol LogRobin as Πp,q
LogRobin in Figures 7 and 8. We defer the reader to Sec-

tion 3.1 for a concise technical overview of this protocol. The main security theorem associated
with Πp,q

LogRobin is as follows:

Theorem 2 (LogRobin). Πp,q
LogRobin (Figures 7 and 8) UC-realizes Fp,B

ZK (Figure 2) in the Fp,q
VOLE-

hybrid model (Figure 1) with soundness error B+b+8
pq (where, w.l.o.g., let B = 2b for some b ∈ N)

and perfect zero-knowledge, in the presence of a static unbounded adversary.

Proof. The proof is performed by constructing the simulator S. We need to show completeness
(trivial, omitted); soundness (constructing S for P∗); and Zero-Knowledge (constructing S for
V∗).

Zero-Knowledge, S for V∗: The S for V∗ is similar to the one used for ZK of LogRobin++. I.e.,
V∗ still receives either some elements that each is one-time padded by a uniform element (i.e., the
VOLE correlation) or some elements that are determined by his transcripts (including his shares of
IT-MACs and the global key ∆). Essentially, S, emulating the hybrid VOLE functionality Fp,q

VOLE,
proceeds as follows:

1. For Steps 1 and 2, S acts as Fp,q
VOLE – S knows ∆ and all local keys.

2. For Step 3, S samples and sends uniform elements in Fp.

3. For Step 4, S can trivially forge the ZKP by knowing ∆ and all local keys.

4. For Step 5, S receives the challenges γ from V∗.

5. For Step 6, S performs the identical computation taken by V. This is possible since it has all
associated values held by V∗. Then, S obtains the local key of each

[
h(i∈[B])

]
.

6. For Step 7, S samples and sends uniform elements in Fp.

7. For Step 8, S can trivially forge the ZKP by knowing ∆ and all local keys.

8. For Step 11, S samples and sends uniform elements in Fpq .

9. For Step 12, S receives the challenges Λ from V∗.

10. For Step 13, S opens each IT-MAC (in the second row of [M(Λ)]) to a uniform sample in Fpq .
This is possible since S knows ∆ and can open an IT-MAC to any value successfully. Now,
S obtains a “path matrix” M̃.

11. For Steps 14 and 15, S performs the identical computation taken by V. This is possible since
it has all associated values held by V∗. Then, S obtains the local keys of [S] and [s].

12. For Step 16, S opens [S − s] to 0. Note, this possible because S knows ∆.

Indeed, the distributions seen by V∗ in the ideal world and the real world are identical. This is
because S replaces all one-time padded values with uniform samples (including each element in the
second row of the path matrix) and simply determines other correlated values. The simulation is
perfect.
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Protocol Πp,q
LogRobin

Inputs. Same as Πp,q
Robin++ (see Figure 9). W.l.o.g., let B = 2b for some b ∈ N.

Generate extended witness on Cid .

0. P evaluates Cid(w) and generates ℓ, r,o ∈ Fn×
p where ℓ (resp. r,o) denotes the values on left (resp. right,

output) wires of each multiplication, in topo. order.

Initialize/Preprocess.

1. P and V send (init) to Fp,q
VOLE, which returns a uniform ∆ ∈$ Fpq to V.

2. P and V generate IT-MACs (over Fpq ) of random values over Fp as {[µj ]}j∈[nin ], {[ηj ] , [ξj ] , [ρj ]}j∈[n×] and

{[ζi]}i∈[b], and IT-MACs of random values over Fpq as {[δi]}i∈[b] and {[τi]}i∈[b] by sending (extend, nin +

3n× + b+ 2bq) to Fp,q
VOLE then locally combining (see [YSWW21]) part of them.

Commit to extended witness on Cid and prove batched multiplications.

3. Consuming [µ] (resp. [η] , [ξ] , [ρ]), P commits w (resp. ℓ, r,o) as [w] (resp. [ℓ] , [r] , [o]) by sending the

vector w − µ (resp. ℓ− η, r − ξ,o− ρ).

4. P and V execute (batched) LPZK to prove ℓj · rj = oj for each j ∈ [n×].

Evaluate committed IT-MACs on each branch, generate the corresponding induced difference vec-

tor, and compute the random inner product.

5. V samples a random vector γ ∈$ F2n×+1
pq and sends it to P.

6. For each branch i ∈ [B], P and V call sub-procedure Eval-IT-MAC(Ci, [w] , [o]) (see Figure 3), which returns

a vector of IT-MAC triples t(i) such that |t(i)| = n× + 1; then P and V set an IT-MAC
[
h(i)
]
:= [0], for

each j ∈ [n×], compute [
h(i)
]
:=
[
h(i)
]
+ γ2j

(
[ℓj ]−

[
x
(i)
j

])
+ γ2j+1

(
[rj ]−

[
y
(i)
j

])
where t

(i)
j =

([
x
(i)
j

]
,
[
y
(i)
j

]
, ·
)
; compute

[
h(i)
]

:=
[
h(i)
]

+ γ2n×

([
res(i)

])
where t

(i)
n× =([

res(i)
]
,
[
res(i)

]
, ·
)
. Note, h(id) must be 0 regardless of γ.

Commit to id bit-by-bit and b coefficients of the final polynomial.

7. P bit decomposes id as
∑b−1

i=0 id i · 2i. P sends id − ζ to construct [id ] from [ζ].

8. P and V execute (batched) LPZK to prove id i · (id i − 1) = 0 for each i ∈ [b].

9. P constructs the following 2× b matrix, consisting of affine polynomials in X

M(X) =

(
X · (1− id0) + δ0 · · · X · (1− idb−1) + δb−1

X · id0 − δ0 · · · X · idb−1 − δb−1

)
10. P constructs the polynomial in X

s(X) =

B−1∑
a=0

(
h(a) ·

b−1∏
i=0

Mi,ai(X)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b−1

i=0 ai·2i. Since h(id) = 0, s(X) is a degree-(< b) polynomial.

Let s(X) =
∑b−1

i=0 si ·Xi, where each si ∈ Fpq .

11. For each i ∈ [b], P sends di := si − τi ∈ Fpq , then both compute [si] := [τi] + di.

Figure 7: LogRobin: ZKP protocol for disjunctive circuits over any field Fp in the Fp,q
VOLE-hybrid

(see Figure 1) model. Proceed with Figure 8.
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Protocol Πp,q
LogRobin (Cont.)

Evaluate the committed polynomial at random point Λ by two ways.

12. V samples a random element Λ ∈$ Fpq and sends it to P.

13. P and V can locally generate IT-MAC matrix [M(Λ)] from [id ] and [δ]. Then, P opens each IT-MAC in

the second row of [M(Λ)], resulting P and V hold

M(Λ) =

(
Λ · (1− id0) + δ0 · · · Λ · (1− idb−1) + δb−1

Λ · id0 − δ0 · · · Λ · idb−1 − δb−1

)
∈ F2×b

pq

14. P and V locally construct the IT-MAC

[S] :=

B−1∑
a=0

([
h(a)

]
·
b−1∏
i=0

Mi,ai(Λ)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b

i=0 ai · 2i.
15. P and V locally construct the IT-MAC

[s] :=

b−1∑
i=0

(
[si] · Λi

)
16. P and V compute and open the IT-MAC [S] − [s] = [S − s]. If it is 0, V outputs (true, C0, . . . , CB−1). If

not (or some prior proof/open fails), V outputs (false, C0, . . . , CB−1).

Figure 8: LogRobin (Continued): ZKP protocol for disjunctive circuits over any field Fp in the
Fp,q
VOLE-hybrid (see Figure 1) model.

Soundness, S for P∗: Similar to LogRobin++, V in Πp,q
LogRobin only sends uniform elements.

Thus, the soundness simulator S for LogRobin is similar to the one for LogRobin++. I.e., S, emulating
Fp,q
VOLE for S, acts as an honest V (in particular, it emulates an honest V with P∗ by sampling

uniform challenges). Recall that S can trivially extract the witness w used by P∗ in Step 3. Then,
if the emulated honest V (inside S) outputs false, S simply sends abort to Fp,B

ZK , so the ideal
V would also output false. Instead, if the emulated honest V (inside S) outputs true, S tries
and finds id ∈ [B] such that Cid (w) = 0 (if there is no such id , just set id as 0); then, S sends
(prove, C0, . . . , CB−1,w, id) to Fp,B

ZK . Finally, S sends the UC environment E whatever outputted
by P∗.

Again, S’s outputs in the ideal world is identical as P∗’s outputs in the real world. Furthermore,
if the emulated V (inside S) outputs false, the ideal-world V also outputs false. As in LogRobin++,
we only need to quantify the probability of the event where the ideal-world V outputs false but
the emulated (or real-world) V outputs true. Note, this only happens when the extracted witness
cannot make any Ci∈[B] output 0. I.e., this is the soundness error.

This bad event would (only) happen in the following (chained) events:

• In Step 4, even though P∗ uses some ℓj , rj , oj such that ℓj · rj ̸= oj , the batched LPZK does
not catch it. This would only happen with up to 3

pq probability, i.e., the soundness error of
the batched LPZK technique (where the batched check is achieved via a fresh random linear
combination, cf. [YSWW21]).
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• In Step 6, even though P∗ uses some invalid extended witness and, in particular, some ℓj−x
(i)
j ,

rj − y
(i)
j or res(i) is non-zero for each i ∈ [B], some h(i∈[B]) becomes 0 after random linearly

combined over γ. This would only happen with up to B
pq probability [YHH+23, Lemma 5.1].

• In Step 8, even though P∗ commits to some id i that is not a bit, the batched LPZK does
not catch it. This would only happen with up to 3

pq probability, i.e., the soundness error of
the batched LPZK technique (where the batched check is achieved via a fresh random linear
combination, cf. [YSWW21]).

• In Step 13, P∗ forges the opening of some element(s) in M(Λ). This would only happen with
up to 1

pq based on the binding property of the IT-MAC.

• In Steps 14 and 15, S = s (accidentally) for some random challenge Λ. Note, conditioned
over all previous bad events not happening, all hi∈[B] must be non-zero, resulting in S (con-
ceptually) a degree-b polynomial in Λ. Furthermore, s is a degree-< b polynomial in Λ and
the coefficients are committed before Λ is issued. Hence, this bad even would only happen
when Λ is the root of a P∗-specified degree-b polynomial – this would only happen with up
to b

pq based on the SZDL lemma (see Lemma 1).

• In Step 16, even though S − s ̸= 0, P∗ forges the opening to 0. This would only happen with
up to 1

pq based on the binding property of the IT-MAC.

Hence, the union soundness error bound (i.e., the summed errors) is B+b+8
pq .

Remark 8. Step 8 is not needed if p = 2 (i.e., consider Boolean circuits). This is because P can
only commit to bits in Step 7.

Cost analysis. We tally the computation and communication cost of LogRobin, in the Fp,q
VOLE-

hybrid model (Figure 1). The (unidirectional) communication from P to V consists of the following
components:

1. In Step 3, P sends nin + 3n× elements in Fp to commit to her extended witness.

2. In Step 4, P sends 2 elements in Fpq for the batched LPZK check.

3. In Step 7, P sends b elements in Fp to commit to bit-decomposed id .

4. In Step 8, P sends 2 elements in Fpq for the batched LPZK check.

5. In Step 11, P sends b elements in Fpq to commit to the coefficients.

6. In Step 13, P sends 2b elements in Fpq to open the IT-MAC commitments in the second row
of the path matrix.

7. In Step 16, P sends 1 element in Fpq to show that the IT-MAC commits 0.

To conclude, the overall communication from P to V consists of nin + 3n× + b elements in Fp and
3b + 5 elements in Fpq . Similar to LogRobin++, if V samples each challenge independently, this
will result in sending Ω(n× + b) elements in Fpq . Again, they can be generated using the following
alternative approaches:
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• RO variant: These challenges can be generated from PRGs as LogRobin++. This optimizes
the communication from V to P down to O(κ) assuming RO. Again, it also increases the
soundness error bound to B+b+8

pq + Q
2κ , where Q denotes the number of random oracle queries

made by the adversary.

• IT variant: These challenges can be generated from powering O(1) uniform elements as
LogRobin++. This optimizes the communication from V to P down to O(λ). While this pre-
serves information theoretical security, it increases the soundness error bound to Bn×+n×+2b+3

pq .

For computation, clearly, P’s cost is dominated by O(B|C|) field operations over Fpq in Step 6 and
O(B logB) field operations over Fpq in Step 10 to compute the coefficients of s(X); and V’s cost
is dominated by O(B|C|) field operations over Fpq in Step 6 only. Note that Step 14 only requires
O(B) field operations.

4.4 Robin++

We formalize our protocol Robin++ as Πp,q
Robin++ in Figure 9. We defer the reader to Section 3.2 for

a concise technical overview of this protocol. The main security theorem associated with Πp,q
Robin++

is as follows:

Theorem 3 (Robin++). Πp,q
Robin++ (Figure 9) UC-realizes Fp,B

ZK (Figure 2) in the Fp,q
VOLE-hybrid model

(Figure 1) with soundness error B+6
pq and perfect zero-knowledge, in the presence of a static un-

bounded adversary.

Proof. The proof is performed by constructing the simulator S. We need to show completeness
(trivial, omitted); soundness (constructing S for P∗); and Zero-Knowledge (constructing S for
V∗).

Zero-Knowledge, S for V∗: The S for V∗ is similar to the one used for ZK of LogRobin++. I.e.,
V∗ still receives either some elements that each is one-time padded by a uniform element (i.e., the
VOLE correlation) or some elements that are determined by his transcripts (including his shares of
IT-MACs and the global key ∆). Essentially, S, emulating the hybrid VOLE functionality Fp,q

VOLE,
proceeds as follows:

1. For Step 1, S samples the ∆ for V∗. Note that V∗ can specify his own ∆ by revealing its ∆
to S (i.e., to the hybrid functionality Fp,q

VOLE).

2. For Steps 2 and 3, S samples the local keys (i.e., the V∗’s IT-MAC shares of VOLE correla-
tions) for him. Note tat V∗ can specify his own local keys by revealing its local keys to S (i.e.,
to the hybrid functionality Fp,q

VOLE).

3. For Steps 4 and 5, S samples and sends uniform elements in Fp.

4. For Step 6, S receives the challenges γ from V∗.

5. For Step 7, S can also execute sub-procedures Eval-IT-MAC and AccV (as V) since it has all
associated values held by V∗ – S has K(i) for each i ∈ [B].

6. For Step 8, S samples and sends uniform elements in Fpq .
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Protocol Πp,q
Robin++

Inputs. The prover P and the verifier V hold B circuits C0, . . . , CB−1 over field Fp, where each circuit has nin

inputs, n× multiplications and 1 output. P also holds a witness w ∈ Fnin
p and an integer id ∈ [B] such that

Cid(w) = 0.

Generate extended witness on Cid .

0. P evaluates Cid(w) and generates o ∈ Fn×
p where o denotes the values on the output wires of each multi-

plication gate, in topological order.

Initialize/Preprocess.

1. P and V send (init) to Fp,q
VOLE, which returns a uniform ∆ ∈$ Fpq to V.

2. P and V send (extend, nin+n×) to Fp,q
VOLE, which returns IT-MACs (over Fpq ) as {[µj ]}j∈[nin ]

and {[ρj ]}j∈[n×]

to the parties.

3. P and V send (extend, q(B + 2)) to Fp,q
VOLE, which returns q(B + 2) IT-MACs (over Fpq ) of random values

over Fp. Parties then combine (see [YSWW21]) these IT-MACs into B+2 IT-MACs of random values over

Fpq as {[τi]}i∈[B] , [r2], [r1].

Commit to extended witness on Cid .

4. For j ∈ [nin ], P sends dj := wj − µj ∈ Fp, then both compute [wj ] := [µj ] + dj .

5. For j ∈ [n×], P sends dj := oj − ρj ∈ Fp, then both compute [oj ] := [ρj ] + dj .

Evaluate committed IT-MACs on each branch and accumulate the correlations generated by each

induced IT-MAC triples for this branch.

6. V samples a random vector γ ∈$ Fn×+1
pq and sends it to P.

7. For each branch i ∈ [B], P and V call sub-procedure Eval-IT-MAC(Ci, [w] , [o]) (see Figure 3), which returns

a vector of IT-MAC triples t(i) such that |t(i)| = n× +1; then, P calls sub-procedure AccP(t(i),γ) (see Fig-

ure 4), which returns M
(i)
2 ,M

(i)
1 ,M

(i)
0 ∈ Fpq , and V calls sub-procedure AccV(t(i),γ)(see Figure 4), which

returns K(i) ∈ Fpq . Recall that the following equality holds:

∀i ∈ [B],M
(i)
2 ∆2 +M

(i)
1 ∆+M

(i)
0 = K(i); M

(id)
2 = 0

Commit to all M
(i∈[B])
2 , prove in ZK that 0 exists.

8. For i ∈ [B], P sends di := M
(i)
2 − τi ∈ Fpq , then both compute

[
M

(i)
2

]
:= [τi] + di.

9. P and V execute a VOLE-based ZK protocol (e.g., QuickSilver [YSWW21]) to show
∏B−1

i=0 M
(i)
2 = 0. I.e.,

P commits to the intermediate values and show a batch of multiplications (committed by IT-MAC triples)

holds. Here, the batched check is compressed via a fresh random linear combination chosen by V.

Check all accumulated correlations are well-formed in a batch manner.

10. V samples a random vector χ ∈$ FB
pq and sends it to P.

11. P and V compute [M2] := [r2] +
∑B−1

i=0 χi ·
[
M

(i)
2

]
, then open [M2].

12. P sends M1 ≜ r1 +mr2 +
∑B−1

i=0 χiM
(i)
1 and M0 ≜ mr1 +

∑B−1
i=0 χiM

(i)
0 .

13. If kr2∆+ kr1 +
∑B−1

i=0 χiK
(i) = M2∆

2 +M1∆+M0, V outputs (true, C0, . . . , CB−1). If not (or some prior

proof/open fails), V outputs (false, C0, . . . , CB−1).

Figure 9: Robin++: ZKP protocol for disjunctive circuits over any field Fp in the Fp,q
VOLE-hybrid

(see Figure 1) model.
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7. For Step 9, S needs to forge the ZKP to show that the product of previous B IT-MACs is 0.
To do this, S sends (or commits) the intermediate values using uniform elements in Fpq . Of
course, the multiplications would (w.h.p.) not hold. However, since S knows all local keys
and ∆, it knows what V∗ expects as a valid proof. Suppose this value is Π ∈ Fpq . To forge the
proof, S sends C1 ∈$ Fpq and C0 := Π−C1∆. (See also ZK S in LPZK [DIO21, YSWW21].)

8. For Step 10, S receives the challenges χ from V∗.

9. For Step 11, S opens a uniform element in Fpq . Note, by knowing ∆, S can successfully open
an IT-MAC to any value. Also, this value (i.e., M2) in the real-world execution is one-time
padded by r2 where r2 is uniformly sampled.

10. For Step 12, S sends M1 ∈$ Fpq . Note that M1 in the real-world execution is one-time padded
by r1 where r1 is uniformly sampled. Now, since S knows K(i∈[B]), χ, kr2 , kr1 and ∆, S sends

M0 := kr2∆+kr1 +
(∑B−1

i=0 χiK
(i)
)
−M2∆

2−M1∆. Note that this ensures that the equality

check in Step 12 would trivially hold.

Indeed, the distributions seen by V∗ in the ideal world and the real world are identical. This is
because S replaces all one-time padded values with uniform samples and simply determines other
correlated values. The simulation is perfect.

Soundness, S for P∗: Similar to LogRobin++, V in Πp,q
Robin++ only sends uniform elements. Thus,

the soundness simulator S for Robin++ is similar to the one for LogRobin++. I.e., S, emulating Fp,q
VOLE

for S, acts as an honest V (in particular, it emulates an honest V with P∗ by sampling uniform
challenges). Recall that S can trivially extract the witness w used by P∗ in Step 3. Then, if
the emulated honest V (inside S) outputs false, S simply sends abort to Fp,B

ZK , so the ideal V
would also output false. Instead, if the emulated honest V (inside S) outputs true, S tries
and finds id ∈ [B] such that Cid (w) = 0 (if there is no such id , just set id as 0); then, S sends
(prove, C0, . . . , CB−1,w, id) to Fp,B

ZK . Finally, S sends the UC environment E whatever outputted
by P∗.

Again, S’s outputs in the ideal world is identical as P∗’s outputs in the real world. Furthermore,
if the emulated V (inside S) outputs false, the ideal-world V also outputs false. As in LogRobin++,
we only need to quantify the probability of the event where the ideal-world V outputs false but
the emulated (or real-world) V outputs true. Note, this only happens when the extracted witness
cannot make any Ci∈[B] output 0. I.e., this is the soundness error.

This bad event would (only) happen in the following (chained) events:

• In Step 7, even though there exists (at least) one non-multiplication triple in each t(i), some

accumulated M
(i)
2 becomes 0. Namely, among B length-(n× +1) vectors where none of them

is all 0’s, there exists (at least) 1 of them, after inner producting with the (uniformly sampled)
γ in Step 6, results in 0. This would only happen with up to B

pq probability [YHH+23, Lemma
5.1].

• In Step 9, even though P∗ commits to B non-zero elements in Step 8, she shows that the
product of them is 0. This would only happen with up to 3

pq probability, i.e., the soundness
error of the batched LPZK technique (where the batched check is achieved via a fresh random
linear combination, cf. [YSWW21]).
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• In Step 11, P∗ forges the opening of the IT-MAC. This would only happen with up to 1
pq

based on the binding property of the IT-MAC.

• In Step 13, P∗ passes the equality check. Conditioned over all previous bad events not

happening, now, P∗ must open
[
M̃2

]
correctly. Essentially, some

[
M̃

(i∈[B])
2

]
must be 0,

implying it is not equal to M
(i)
2 . Thus, this bad event would only happen in the following

two sub-cases: (a) M2 = M̃2 conditioned over random sampled χ, happening with only
1
pq probability; and (b) P∗-specified quadratic equation has a root (accidentally) being ∆,

happening with only 2
pq probability based on the SZDL lemma (see Lemma 1).

Hence, the union soundness error bound (i.e., the summed errors) is B+6
pq .

Cost analysis. We tally the computation and communication cost of Robin++, in the Fp,q
VOLE-

hybrid model (Figure 1). The (unidirectional) communication from P to V consists of the following
components:

• In Steps 3 and 4, P sends nin + n× elements in Fp to commit to her extended witness.

• In Step 8, P sends B elements in Fpq to commit to the coefficients.

• In Step 9, P sends B − 2 elements in Fpq to commit to the prefix products. P also sends 2
elements in Fpq for the batched LPZK check.

• In Step 11, P sends 2 elements in Fpq to open an IT-MAC commitment.

• In Step 12, P sends 2 elements in Fpq as coefficients.

To conclude, the overall communication from P to V consists of nin +n× elements in Fp and 2B+4
elements in Fpq . Similar to LogRobin++, if V samples each challenge independently, this will result
in sending Ω(n×+B) elements in Fpq . Again, they can be generated using the following alternative
approaches:

• RO variant: These challenges can be generated from PRGs as LogRobin++. This optimizes
the communication from V to P down to O(κ) assuming RO. Again, it also increases the
soundness error bound to B+6

pq + Q
2κ , where Q denotes the number of random oracle queries

made by the adversary.

• IT variant: These challenges can be generated from powering O(1) uniform elements as
LogRobin++. This optimizes the communication from V to P down to O(λ). While this pre-
serves information theoretical security, it increases the soundness error bound to Bn×+2B+2

pq .

Finally, it is not hard to see that the computation for both parties is dominated by Step 7 where
each party needs to perform O(B|C|) field operations over Fpq to evaluate each branch over IT-
MACs, where |C| denotes the maximum number of gate (including the addition gates) among all
branches.
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5 Implementation and Benchmark

5.1 Setup

Implementation. We implemented LogRobin++ based on the open-source Robin repository6,
whose VOLE correlation functionality is implemented via the EMP Toolkit [WMK16]. We in-
stantiated our protocols over (1) the Boolean field F2 with λ ≥ 100 and (2) the arithmetic field
F261−1 with λ ≥ 40, using the corresponding (subfield) VOLE functionality. For completeness, we
also implemented our stepping-stone protocols LogRobin/Robin++. These simpler protocols can be
useful for certain parameters.

Baseline. We use Robin [YHH+23] as our baseline. We did not compare our implementations
with Mac′n′Cheese [BMRS21], as their implementation is not publicly available. However, Robin
concretely outperforms Mac′n′Cheese [BMRS21]; see [YHH+23, Figure 7].

Code availability. Our implementation is open-sourced and available at https://github.com/
gconeice/logrobinplus.

Hardware and network settings. Our experiments were executed over two AWS EC2 m5.xlarge
machines7 that respectively instantiated P and V. Each party ran single-threaded. (Our protocols
can support multi-threading naturally by handling each branch in parallel; we leave research and
implementation of parallelism as valuable future work.) We configured different network bandwidth
settings, varying from a WAN-like 10Mbps connection to a LAN-like 1Gbps connection, via the
Linux tc command.

Benchmark. We tested our implementations on statements where each branch (represented as
a circuit) is chosen randomly. To reduce the physical memory needed to load all branches when B
is large, we consider B identical randomly generated circuits. We performed experiments to show
that the performance difference between executing B different circuits and B identical circuits is
negligible; see Section 5.4. This choice of benchmark is just a proof of concept. One can always
save different circuits in files and load them as needed, or programmatically generate large circuits
from constant-sized descriptions as e.g. EMP Toolkit. All considered protocols only need to process
each circuit once, so there is no need to load each circuit into main memory twice.

RO v.s. IT. Recall that our V must flip public coins. We implemented two variants of each
protocol, depending on how coin flips are handled (see discussion in Section 4). Coins are flipped
either by (1) expanding PRGs over several κ-bit seeds chosen by V, requiring a Random Oracle
(RO), or (2) having V uniformly sample O(1) elements, which is information-theoretic (IT). Our
results show that the performance difference between these two variants is negligible; see Section 5.5.
In the remainder of this section, we flip coins via RO.

6Available at https://github.com/gconeice/stacking-vole-zk.
7Intel Xeon Platinum 8175 CPU @ 3.10GHz, 4 vCPUs, 16GiB Memory.
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Field Protocol
Comm. LAN (1Gbps) WAN (10Mbps)

P → V V → P Total Impr. Time(s) Impr. Time(s) Impr.

F2

Robin 64MB 28MB 92MB 51.2 114.1
LogRobin 9KB 540KB 549KB 172× 15.1 3.4× 14.8 7.7×
Robin++ 128MB 56MB 184MB 0.5× 94.6 0.5× 212.2 0.5×

LogRobin++ 10KB 540KB 550KB 172× 16.4 3.1× 16.1 7.1×

F261−1

Robin 32MB 2MB 34MB 25.8 54.3
LogRobin 0.8MB 1.7MB 2.5MB 13.6× 27.0 1.0× 28.6 1.9×
Robin++ 64MB 2MB 66MB 0.5× 13.8 1.9× 68.7 0.8×

LogRobin++ 0.8MB 1.7MB 2.5MB 13.6× 15.3 1.7× 17.3 3.1×

Table 2: Experiment Results with B = 222, nin = 10, n× = 100. The time reflects the wall-clock
(or end-to-end) execution time from P starting the proof until V accepting it. The improvements
are computed as the ratio of the corresponding data between our protocols and the baseline Robin
– the larger, the better.

5.2 Overall Performance

We evaluated our approach with respect to the following parameters:
• Benchmark “Many”: B = 222, nin = 10, n× = 100: Namely, there are a large number of
branches, and each branch is relatively small. In this case, LogRobin++ and LogRobin should
outperform Robin++ and Robin.

• Benchmark “Large”: B = 2, nin = 10, n× = 107: Namely, there are a small number of
branches, and each branch is large. In this case, LogRobin++ and Robin++ should outperform
LogRobin and Robin.

Experimental results with many branches. Table 2 tabulates experimental results for Bench-
mark “Many”. We note the following:

1. LogRobin++ (and LogRobin) achieves a significant improvement in communication cost. This
improvement leads to reduced wall-clock execution time.

2. Almost all communication from V to P is used to generate VOLE correlations. Recall, we
use the VOLE implementation from the EMP-Toolkit [WMK16]. In their implementation,
each extension generates a fixed-size (≈ 107 instances) pool of VOLE correlations [YWL+20],
and in some cases, we did not exhaust the entire pool (e.g., LogRobin++ and LogRobin++ in
F2 test cases). Communication from V to P could be fine-tuned by configuring parameters
in the VOLE implementation to generate a precise number of correlations.

3. Robin++ incurs 2× overhead as compared to Robin, when operating over both F2 and F261−1.
This is because n× is small. In Robin++, P must commit to an additional ≈ B elements, and,
in this benchmark, this cost supercedes Robin++’s multiplication gate improvement.

4. In our LAN setting and when considering circuits over F261−1, LogRobin did not outperform
Robin in E2E time. This LAN network is fast, so communication is not the bottleneck.

Experimental results with large branches. Table 3 tabulates the experimental results for
Benchmark “Large”. We note the following:

1. LogRobin++ (resp. Robin++) improved communication by 3×, reflecting our analysis.
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Field Protocol
Comm. LAN (1Gbps) WAN (10Mbps)

P → V V → P Total Impr. Time(s) Impr. Time(s) Impr.

F2

Robin 3.6MB 1.0MB 4.6MB 8.1 10.1
LogRobin 3.6MB 1.0MB 4.6MB 1.0× 8.1 1.0× 10.0 1.0×
Robin++ 1.2MB 0.5MB 1.7MB 2.7× 5.3 1.5× 5.9 1.7×

LogRobin++ 1.2MB 0.5MB 1.7MB 2.7× 5.4 1.5× 6.1 1.7×

F261−1

Robin 230MB 3MB 233MB 11.7 205.8
LogRobin 230MB 3MB 233MB 1.0× 11.7 1.0× 206.1 1.0×
Robin++ 77MB 1MB 78MB 3.0× 6.5 1.8× 71.7 2.9×

LogRobin++ 77MB 1MB 78MB 3.0× 6.4 1.8× 71.7 2.9×

Table 3: Experimental results with B = 2, nin = 10, n× = 107. The time reflects the wall-clock
execution time from the moment P starts the proof until the moment V accepts it. Improvements
are computed as the ratio of the corresponding data between our protocols and the baseline Robin
– larger is better.
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Figure 10: Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed nin =
10, n× = 100 and increased b = logB from 4 to 16.

2. In our F2 test cases, communication was relatively small. Hence, the WAN setting was not
significantly slower than the LAN setting.

Conclusion. LogRobin++ indeed combines the improvements made by LogRobin and Robin++.
Clearly, it outperforms the baseline Robin and is the best choice.

5.3 Growth Trend of Communication in the VOLE-hybrid Model

We performed experiments to show how communication grows w.r.t. (1) increasing B, and (2)
increasing |C|. To better reflect our analysis in Section 4, we tested and reported the communication
of LogRobin++ and Robin without counting communication used to generate VOLE correlations.
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Figure 11: Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed B =
2, nin = 10 and increased n× from 1× 106 to 10× 106.

Protocol
Time (s)

LAN (1Gbps) WAN (10Mbps)
Different Identical Different Identical

Robin 14.1 14.6 17.0 18.3
LogRobin 13.8 13.1 17.6 17.5
Robin++ 6.7 6.6 8.8 8.3

LogRobin++ 6.7 7.0 8.7 8.7

Table 4: B Different Circuits v.s. B Identical Circuits in Wall-Clock Time. We set B = 210, nin =
10, n× = 105 and considered both LAN and WAN settings.

Communication as a function of B. We fixed nin = 10 and n× = 100 and then tested
LogRobin++ and Robin with b = logB ranging 5-16, in both the Boolean and arithmetic settings.
Figure 10 plots the results. Our plots confirm that Robin’s communication grows exponentially in
b while LogRobin++’s grows linearly in b.

Communication as a function of |C|. We fixed B = 2 and nin = 10 and then tested LogRobin++
and Robin with n× ranging 1-10 ×106, in both the Boolean and arithmetic settings. Figure 11 plots
the results. Our plots confirm that (1) both Robin’s and LogRobin++’s communication grows linearly
in |C| and (2) Robin’s communication is ≈ 3× that of LogRobin++’s.

5.4 B Identical Branches v.s. B Different Branches

We tested Robin/LogRobin/Robin++/LogRobin++ where B (randomly generated) circuits are iden-
tical or different on the arithmetic setting. The results are tabulated in Table 4. Obviously, the
difference is negligible. Note that it is trivially true that the communication of these two branch
configurations is the same.
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Parameters Field Protocol
Time (s)

LAN (1Gbps) WAN (10Mbps)
RO IT RO IT

B = 222, nin = 10, n× = 100

F2

Robin 51.2 49.5 114.1 115.6
LogRobin 15.1 15.8 14.8 14.7
Robin++ 94.6 93.7 212.2 211.4

LogRobin++ 16.4 15.7 16.1 15.5

F261−1

Robin 25.8 25.2 54.3 53.3
LogRobin 27.0 26.9 28.6 29.1
Robin++ 13.8 13.1 68.7 69.5

LogRobin++ 15.3 15.4 17.3 17.6

B = 2, nin = 10, n× = 107

F2

Robin 8.1 8.2 10.1 10.2
LogRobin 8.1 8.2 10.0 10.1
Robin++ 5.3 5.3 5.9 6.0

LogRobin++ 5.4 5.4 6.1 6.2

F261−1

Robin 11.7 11.7 205.8 205.7
LogRobin 11.7 11.6 206.1 205.8
Robin++ 6.5 6.4 71.7 71.7

LogRobin++ 6.4 6.4 71.7 71.8

Table 5: RO Variant v.s. IT Variant in Wall-Clock Time.

5.5 RO Variant v.s. IT Variant

We tested Robin/LogRobin/Robin++/LogRobin++ each on both the RO and the IT variants. The
results are tabulated in Table 5. Clearly, the difference between these two variants on each protocol
is negligible. Note, it is trivially true that the communication of these two variants is the same.
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