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Abstract

We propose a new private Approximate Nearest Neighbor (ANN) search scheme named
Pacmann that allows a client to perform ANN search in a vector database without revealing the
query vector to the server. Unlike prior constructions that run encrypted search on the server side,
Pacmann carefully offloads limited computation and storage to the client, no longer requiring
computationally-intensive cryptographic techniques. Specifically, clients run a graph-based ANN
search, where in each hop on the graph, the client privately retrieves local graph information from
the server. To make this efficient, we combine two ideas: (1) we adapt a leading graph-based ANN
search algorithm to be compatible with private information retrieval (PIR) for subgraph retrieval;
(2) we use a recent class of PIR schemes that trade offline preprocessing for online computational
efficiency. Pacmann achieves significantly better search quality than the state-of-the-art private
ANN search schemes, showing up to 2.5× better search accuracy on real-world datasets than
prior work and reaching 90% quality of a state-of-the-art non-private ANN algorithm. Moreover
on large datasets with up to 100 million vectors, Pacmann shows better scalability than prior
private ANN schemes with up to 2.6× reduction in computation time and 1.3× reduction in
overall latency.

1 Introduction

Today, most search systems require clients to send a plaintext query to the server, which performs
a search over the database and returns the most relevant document(s). This architecture poses a
serious privacy risk to users, whose search queries can leak privacy-sensitive information [aol06]. To
this end, an important problem is that of private search: algorithms that allow a user to search
a database without revealing their query to the server in plaintext. To date, there have been
several proposed private search algorithms, which provide cryptographic privacy guarantees over
the user’s query [HDCG+23, ABG+24, SSLD22].1 However, existing algorithms suffer from
poor tradeoffs between: (1) search quality and/or (2) efficiency. For example, consider
Tiptoe [HDCG+23], the state-of-the-art private search algorithm with cryptographically strong
privacy guarantees. Tiptoe incurs a linear computation cost for the server per query; that is,
the server needs to at least scan through the entire database for each query. Although Tiptoe is
parallelizable, the linear computation cost may be a bottleneck for large-scale applications. At the
same time, Tiptoe’s search accuracy is limited. For example, it only achieves around 40% of the
non-private search accuracy in the MS-MARCO dataset.

Typical private search algorithms can be categorized by two main design choices: the search
algorithm and the privacy primitive. These two are closely intertwined: the search algorithm must
be chosen to be compatible with the privacy primitive, while also ensuring that information is not
leaked to the server and the search quality is not overly degraded. For example, Tiptoe makes

1Cryptographic privacy means that the server learns cryptographically negligible information about the query.
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two design choices that limit its performance: (1) It uses a clustering-based approximate nearest
neighbor (ANN) algorithm that significantly limits the search quality. (2) Its privacy guarantees
are based on a preprocessed somewhat homomorphic encryption (SHE) scheme, which requires
significant computation linear in the dataset size.

Given the status quo, we ask the following question:

Can we design a private search algorithm that achieves high search quality with low latency?

1.1 Our Contribution

In this work, we present Pacmann (Privately ACcess More Approximate Nearest Neighbors), a
fully private nearest neighbor search algorithm that addresses the search quality-efficiency tradeoff.
We made the observation that the existing private search solutions fail to leverage the graph-
based ANN search algorithms [MY18, JSDS+19, IM18] that have shown better quality-efficiency
tradeoffs compared to other families of ANN search algorithms (including Local-Sensitive Hashing
(LSH) [IM98, SSLD22] and clustering-based algorithms [ABG+24, HDCG+23]). The core challenge
lies in the fact that graph-based ANN search algorithms are inherently iterative algorithms that
require multiple adaptive steps to find the results (See Figure 3). Implementing such algorithms
with generic privacy-preserving techniques like fully homomorphic encryption (FHE) [Gen09a] or
secure multi-party computation (SMPC) [CD+15a] could incur high overheads.

Our key insight is that we can implement a graph-based ANN search algorithm by running the
iterative search locally on the client side, so that the computation can be done in plaintext and with
no privacy concern. To achieve this without the client storing the whole graph structure, we let the
server store the graph structure and let the client dynamically fetch necessary information from the
server. We need to further use a cryptographic primitive named Private Information Retrieval (PIR)
to allow the client to retrieve the graph information from the server without revealing the access
pattern to the server. However, if we apply standard PIR schemes [CGKS95] here, the computation
per graph access will be at least linear to the size of the whole graph2, making the whole system
inefficient. We utilize a new sublinear PIR construction named Piano [ZPSZ24] from the recently
popularized client-preprocessing PIR model [CK20] to address the efficiency issue. The Piano PIR
scheme allows the client to privately query the graph information with sublinear computation and
communication per-query cost after a one-time preprocessing phase with linear cost. Moreover,
the preprocessing phase can be shared for multiple ANN queries (each ANN query makes mulitple
accesses to the graph), so the preprocessing cost can be amortized. Finally, we have to make further
customizations and optimizations to both the graph-based ANN search algorithm and the Piano
PIR to make the whole scheme efficient.

Contributions. We summarize our contributions as follows:

1. Algorithm Design. We present the design of Pacmann, which builds on a customized
graph-based ANN search algorithms and Piano PIR [ZPSZ24]. In graph-based ANN search
algorithms [MY18, JSDS+19, IM18], each vertex in the graph represents a database vector and
is connected to multiple other vertices based on proximity in a vector (embedding ) space. Given
a query vector, the algorithms usually start from a given vertex and traverse the graph to find
ANNs. In each step of the traversal, the algorithms examine all connected vertices to the current
vertex and move to the next vertex that is closer to the query, until a stopping criterion is
met. To implement graph traversal algorithm privately, Pacmann requires the client to locally
run graph traversal over carefully-selected subgraphs. To efficiently retrieve the appropriate

2The lower bound is proved in [BIM00].
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subgraph, we modify an existing, practically-efficient PIR scheme [ZPSZ24] to handle batched
queries. Figure 1 gives a high-level system overview of Pacmann.

2. Empirical results. We empirically evaluate the performance of Pacmann in terms of search qual-
ity, query latency, communication, and storage costs. Our results show that Pacmann achieves
significantly better search quality than the clustering-based private ANN search algorithm used
by state-of-the-art Tiptoe [HDCG+23] and Wally [ABG+24]. For example, our implementation
finds the most relevant result in around 63% of the queries on the MSMARCO dataset, compared
to 29% for clustering-based algorithms—a 2.1x improvement in search success rate. In the
100M SIFT dataset, our evaluation shows a 2.5x better recall@10 compared to Tiptoe. Figure
2 shows that Pacmann achieves 90% of the search quality of the leading non-private ANN
algorithm (NGT [IM18]), measured in mean reciprocal ranking (MRR) and recall. Pacmann
also has lower latency than linear computation cost algorithms, including Tiptoe [HDCG+23]
and Preco [SSLD22] when the database is larger than 5M records in the LAN setting (i.e., when
the search engine and the database are co-located, so network round-trip latency is 5 ms), and
50M records in the WAN setting, respectively. For example, for a database with 100M records,
Tiptoe requires at least 4s of search latency, whereas Pacmann achieves 1.6s in the LAN setting
(a 60% reduction) and 3.1s in the WAN setting (a 22% reduction). Experimental details
can be found in Section 4 and Appendix D.

1.2 Related Work

Private Information Retrieval (PIR) [CGKS95, CG97, CMS99, Cha04, GR05] is a cryptographic
primitive that allows a user to retrieve information from a public database without revealing the
query to the service provider. On the practical side, most recent works that rely on Homomorphic
Encryption [MBFK16, AYA+21, MW22, HHCG+22] construct communication-efficient PIR schemes
with linear computation cost per query, resulting in large query latency for large databases. To
achieve sublinear computation cost per query, the “client-preprocessing PIR” model [CK20, SACM21,
CHK22, ZLTS23, LP22] introduces a preprocessing phase that allows the client to store sketched
information about the database. Early theoretical works already showed that this model can indeed
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Figure 1: The high-level overview of Pacmann. 1) The server builds a graph structure on the
database vectors. 2) The client and the server run the preprocessing protocol for the PIR scheme,
storing the local hint in client’s storage. 3) The client makes ANN queries. 4) The client runs the
graph traversal algorithm locally, but uses the PIR scheme to access the graph information remotely.
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(a) Results on MS-MARCO dataset.
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(b) Results on SIFT-100M dataset.

Figure 2: Tradeoff between search quality and latency. “Linear Alg.” is an SIMD-optimized linear
algorithm that lower bounds the latency of Tiptoe [HDCG+23], the state-of-the-art private search
algorithm. As a safe lower bound, we do not include network latency for “Linear Alg.”. “Cluster” is
a clustering-based algorithm that upper bounds the quality of Tiptoe. The intersection of the two
can be viewed as our (simulated) result for Tiptoe. We upper bound search quality with NGT, a
state-of-the-art non-private ANN search algorithm [IM18]. We plot Pacmann result in both the
LAN (5ms RTT) and WAN (50ms RTT) settings.

achieve sublinear (amortized) computation and communication cost per query. Towards concrete
efficiency, Zhou et al. [ZPSZ24] and subsequent works [GZS24, MIR23, NGH24] introduce practically
efficient preprocessing PIR schemes by making the following tradeoff: as long as the client can make
a streaming pass over the database in the preprocessing phase (with linear downloading cost but
sublinear storage cost), the PIR scheme can be constructed with minimal cryptographic assumptions
(from one-way functions) and can achieve the best known online query efficiency among all known
PIR schemes – taking only 10-100 milliseconds and a few kilobytes of communication cost per query
to a database with billions of records.

Most Private Information Retrieval (PIR) schemes are designed for the basic array-type access
where the client knows exactly the location of the record to query. There are some other works
that consider more advanced access pattern like key-value type of queries [CGN97, PSY23, CD24].
However, ANN search usually requires a more sophisticated search algorithm and thus requires a
more complex access pattern.

Several existing works directly consider the private search problem. In addition to Tiptoe
[HDCG+23], Wally [ABG+24] improves the efficiency of Tiptoe by relaxing the privacy guarantee
to differential privacy, and relying on a large batch of anonymous queries to hide the privacy of an
individual query. Nonetheless, Tiptoe and Wally are based on a simple clustering-based algorithm
that partitions the vectors into roughly

√
n clusters, and only performs exhaustive search in one

particular cluster during the search phase. This simple algorithm is not competitive with the
state-of-the-art non-private ANN search algorithms. For example, when we evaluate this algorithm
on the MSMARCO dataset, its success rate to find the most relevant result is less than 30%, while a
non-private ANN search algorithm can have 75% of success rate or even higher. Preco [SSLD22] is
another cryptographically private ANN search algorithm that utilizes a Locality Sensitive Hashing
(LSH) based search algorithm. Unfortuantely, Preco makes a strong assumption that there must be
two non-colluding servers to store the database, which is not applicable in many practical scenarios.

4



Preco also requires a linear computation cost on both servers per query.
In an independent and concurrent work, Zhu et al.[ZPZP24] also proposes a privacy-preserving

ANN search algorithm under a different setting such that the database is provided by the client
and outsourced to the server while being encrypted. In that case, the server not only stores the
per-client encrypted database, but can also store per-client state to facilitate the search. Their
solution is based on the HNSW graph-based ANN indexing algorithm [MY18] and Path Oblivious
RAM (ORAM) [SvDS+18]. Our setting is different that we assume the database is public and
shared among all clients, while the server does not have any per-client storage.

2 Our Graph-based ANN Construction

As a starting point, we describe our ANN search algorithm construction without privacy con-
siderations. Our construction relies on a customized version of the graph-based ANN search
algorithm.

Figure 3: An illustration of the graph-based ANN search algorithm on a 2D space. The starting
vertex is located around the upper left part of the graph, and the query vector is shown as a blue
star. We highlight the path that the algorithm takes to reach the approximate nearest neighbor.

2.1 Preliminary: Generic Graph-based ANN Search Blueprint

Many popular graph-based ANN search algorithms such as NSW [MPLK12], HNSW [MY18],
DiskANN [JSDS+19], NGT [IM18], and FINGER [CCJ+23] follow the same technical blueprint:
the algorithm builds a graph based on the input vectors during the preprocessing phase, and then
performs a graph traversal algorithm to find the approximate nearest neighbors for a given query
vector. We provide a graphical illustration of this process in Figure 3 and a pseudocode description
in Figure 4.

Preprocessing. The preprocessing phase takes in n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n from a
metric space and builds an indexing graph G where the n vertices represent the vectors. Different
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algorithms may have different ways of selecting graph edges. One common approach (e.g., seen in
[JSDS+19]) is to connect each vertex vi to several nearest neighbors, i.e. vectors that are close to vi
in the metric space, as well as multiple distant neighbors to ensure the diversity of the neighbor list
[WXYW21]. Most recent ANN algorithms use more advanced structures on top of the indexing
graph (e.g. hierarchical structure in HNSW [MY18] or auxiliary tree-structure in NGT [IM18]) to
improve the search efficiency.

Query. Given a query vector q, the query algorithm performs a graph traversal algorithm on
the index graph G and outputs a vertex u∗ as the approximate nearest neighbor of q. The search
algorithm starts from an entry point ustart, often picked as the closest vertex to the centroid of DB.
We denote the set of neighbors of a node v as N(v). In each hop, the search algorithm greedily
moves from the current vertex v to its neighbor in N(v) that is the closest to the query vector q. The
algorithm terminates when the number of hops reaches a certain threshold or a local minimum is
met, i.e. none of the neighbors is closer to q than the current iterate. This can be easily extended to
outputing K approximate nearest neighbors by keeping track of the visited vertices and outputting
the top K nearest vertices in the visited set.

2.2 Our Customized Graph Building Algorithm

To make graph-based ANN search private, Pacmann imposes two constraints: (1) We retain the
single graph structure, as opposed to adding auxiliary structures, as is done in the non-private
setting. This is done to facilitate the upgrade to the privacy-preserving version. (2) We enforce
regularity on the graph’s out-degree distribution. This prevents information leakage from the number
of neighbors accessed. These properties are not met by existing ANN algorithms, and we customize
the graph-building algorithm to meet them. We describe the high-level idea to build a regular C-out
directed indexing graph here and defer the formal description to Appendix B.

Start from an unbalanced graph. Our first observation is that we can take advantage of
existing ANN libraries to find nearby neighbors for all vectors in the database and treat them as
the candidate neighbors in the graph. Specifically, we find 2C approximate nearest neighbors as
neighbor candidates for each vertex using an existing ANN library (e.g., NGT [IM18]), then trim
the candidate list to C candidates with the sparse-neighborhood-graph (SNG) heuristic [AM93].
Roughly, SNG sorts the candidates by their distance to the vertex and adds candidates to the
neighbor list one by one. It only adds a candidate if it is not too close to a neighbor already in
the list; this is done to ensure diversity (see Figure 7 for the details). We temporarily add directed
edges between each vertex and its C neighbor candidates in both directions to ensure the graph is
well-connected, i.e. so that each vertex has at least C inbound and C outbound directed edges.

Balancing the graph. We now have a graph that could be highly unbalanced in terms of the
degrees. We use a sampling technique to balance the graph. That is, for each directed edge (x→ y),
we keep it with a probability of C/InboundDegree(y). This ensures that a vertex will have C inbound
endges in expectation after the sampling process. Then, we ensure that each vertex has exactly
C outbound edges. For those vertices with more than C outbound edges, we again use the SNG
heuristic to trim the outbounds to C. For those vertices with fewer than C outbound edges, we
connect them to vertices selected uniformly at random.

3 Pacmann: Private Graph-based ANN

We next describe how Pacmann protects query privacy over our customized graph-based ANN
search algorithm in Section 2. We start with a basic, inefficient construction, then show how
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Figure 4: Description of the graph based ANN search algorithm including the optional optimizations.
The pseudocode can be read in the following two ways: 1) the non-highlighted part describes the
generic graph-based ANN search algorithm; 2) the full description, including the optimizations we
introduced in Section 3.3, describes our customized version of the algorithm. In the non-private
setting, the algorithm is run in the server. In the private setting, the client will run the query
algorithm locally, and use Batched Piano PIR to perform the information retrieval dynamically and
privately.

Graph-based ANN Search Algorithm

Preprocessing.

• Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n.

• Output: a directed graph G with n vertices corresponding to the n vectors in DB, and an

entry point(s) ustart, u
1
start, . . . , u

√
n

start.

1. G← ANN.BuildGraph(DB); // Description in Section 2.2

2. Let the closest vector to the centroid be the starting vertex ustart =
argminu∈[n]∆(vu,

1
n

∑
j∈[n] vj).

3. Let the extra starting vertices be
√
n random vertices u1start, . . . , u

√
n

start sampled from [n].

Query.

• Parameters: max hop number H, beam search width m denoting the number of parallel paths
to explore.

• Input: a query vector q ∈ Rd.

• Output: an index u∗ such that vu∗ is recognized as an approximate nearest neighbor of q.

1. Let u = ustart.

2. Let u1, . . . , um be the top m vertices in u1start, . . . , u
√
n

start that are closest to q.

3. For t = 1, 2, . . . ,H:

• Update u as following:

– Read the neighbor list N(u) from G and all vectors vj for j ∈ N(u) from DB.

– Let u′ = argminj∈N(u)∆(vj , q).

– If ∆(u′, q) ≤ ∆(u, q), update u← u′.

• Similarly, update u1, . . . , um.

4. Let u = argminu′∈{u,u1,...,u√
n}∆(u′, q).

5. Output u∗ = u.

Pacmann optimizes it. Due to space constraints, we present the full construction of Pacmann
in Appendix C.
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3.1 Inefficient Private Graph-based ANN Search with Classical PIR

As a strawman scheme, one could try to protect query privacy by implementing the search algorithm
with generic cryptographic primitives, such as fully homomorphic encryption [Gen09b]. and/or
multi-party computation [CD+15b]. However, the search algorithm of graph-based ANN is inherently
iterative and adaptive that during the graph traversal process, each hop’s vertex is dynamically
determined by both the previous hop’s vertex and also the query vector. Handling such (adaptive)
iteration is a common challenge in designing cryptographic protocols 3 as observed by previous
works [BFK+09, DdSGOTV22, CGG+24, GHAHJ22, HKP21]

Localized Searching. Our main idea is to perform the iterative graph traversal algorithm on the
client side, completely removing the privacy concern of performing iterative computation on the
server. Naively, this would require the client to store the whole indexing graph, which is impractical
in terms of storage cost. Instead, we let the client dynamically and privately retrieve subgraph
information from the server. Specifically, during search, the client can retrieve the neighbor list
N(vi) of the current vertex vi and also all vectors in the neighbor list from the server for each hop.
The client then computes the distances between the query vector q and all the neighbor vectors in
N(vi) locally, and chooses the closest neighbor within that set. This process is repeated until the
search terminates.

Protecting Retrieval Privacy with PIR. Even without directly observing the query vector, the
server can infer non-trivial information from the vertex indices retrieved by the client. For example,
if the server learns that the client retrieves many vertices whose underlying records represent
documents about food topics, the server can infer that the client is searching for information about
foods. Thus, the final challenge is how the client can retrieve the graph information (including the
neighbor lists and the vectors) without revealing which vertex it is retrieving.

We use a Private Information Retrieval (PIR) scheme for this purpose. Standard PIR [CGKS95]
allows a client to retrieve one or multiple entries from a server-stored database of n entries without
revealing the indices of the entries to the server. To integrate a PIR scheme into our private
graph-based ANN search algorithm, we can run a standard PIR protocol for a database storing all
the vertex information in the graph, where each entry i stores the vector vi and also the neighbor list
N(i). Whenever the clients need to access the graph, it issues a PIR query to retrieve the information
privately. Notice that by merging the vector information and also the neighbor information into a
single database, we can finish each hop in one round of communication.

Efficiency Issue. This construction runs into a major efficiency issue. It was formally proved by
Beimel, Ishai, and Malkin [BIM00] that any PIR scheme requires Ω(n) computation cost if there
is no preprocessing, and if the server stores the database naively without encoding. Hence, if we
have a non-private graph-based ANN algorithm that proceeds for H hops, and each hop requires
the client to retrieve the information of C neighbors, the online computation cost of the scheme
will be Ω(HCn), which is super-linear in n. This is worse than the prior linear-cost private ANN
schemes [HDCG+23, SSLD22].

3The standard FHE or MPC techniques are designed for the so-called circuit model, where the computation flow is
fixed and known in advance. Although the circuit model is indeed Turing-complete, it does not naturally support a
random-access memory and control flow operations like if-else conditions. In the context of graph-based ANN search,
we do need to (adaptively) read the graph from a random access memory, so the standard techniques are not directly
applicable.
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3.2 Improving Efficiency with Preprocessing PIR

To address this efficiency limitation, we utilize a new paradigm of PIR schemes: client-side pre-
processing PIR [CK20]. Unlike standard PIR, client-side preprocessing PIR achieves sublinear
(amortized) query cost by allowing an one-time preprocessing phase before the query phase in which
the client will eventually store some useful information about the database. Specifically, we use
a recent PIR scheme called Piano [ZPSZ24] that achieves practical efficiency for the single-server
setting, matching our requirements. Given a database with n entries, Piano achieves Õ(

√
n) compu-

tation and communication per query4 with Õ(
√
n) client storage after an one-time preprocessing

phase that incurs linear computation and communication costs. We provide a review on Piano PIR
in Appendix C.1. Other alternatives of single-server PIRs [GZS24, MIR23, WLZ+23] could also be
used in our construction for similar efficiency guarantees.

By applying Piano PIR scheme to our private ANN construction, after a linear cost prepro-
cessing phase, each PIR query in the graph traversal algorithm will incur Õ(

√
n) computation and

communication cost. Again, if we assume the search algorithm takes H hops and each hop requires
the client to retrieve the information of C neighbors, the overall running time of the scheme will be
Õ(HC

√
n). As long as H · C is o(

√
n), the resulting scheme will have sublinear computation cost,

being more effcient than the prior private ANN schemes [HDCG+23, SSLD22].

Tradeoff and Practicality of Preprocessing Despite significant online efficiency improvements,
the Piano PIR client must download the whole database (i.e., the indexing graph) in a streaming
fashion during the preprocessing phase. Here, streaming means that the client only stores a small
portion of the database to preprocess at a time, but the total amount of data the client has to
download is still the whole database. Therefore, our scheme is more suitable for a client with good
network connection. In our evaluation where we assume a good network connection (1 Gbps),
the preprocessing phase takes around 5 minutes and 3 GB of client storage space for a database
with 100 million vectors, and the total download communication is around 60GB. An alternative
approach to reduce the preprocessing cost is to have a second server to preprocess the database
and directly provide the client with the preprocessed results, as suggested in many existing PIR
schemes [ZPSZ24, LP23, GZS24, KCG21].

3.3 Necessary Optimizations

In practice, we observe that the total number of visited vertices in the graph-based search algorithm
(that is, the product between max hop number H and the graph out-degree C) tends to be around a
few hundreds or thousands. We describe the necessary optimizations here and conduct an ablation
study in the evaluation section to show the effectiveness these optimizations in Section 4. Empirically,
we observe that our optimizations reduces the concrete computation cost by 76%, and the overall
latency by nearly 70% (including the communication time).

Beam search. The basic description of the graph-based ANN search algorithm Figure 4 traverses
the graph in a single path. In practice, we can explore m multiple paths in parallel. This approach
is used in other graph-based ANN algorithms [JSDS+19]. Although doing so increases the query
cost per hop, we observe that beam search significantly reduces the total hops to reach a given
search quality, and is thus essential to reducing the overall latency.

Fast Starting. Intuitively, if the starting vertex is already very close to the query vector q, we
can reach the approximate nearest neighbors with fewer hops. With fast starting, we let the client
store around O(

√
n) vertices’ information locally, and scan all these vertices to find those that are

4We use Õ() to hide polylogarithmic factors.
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already close to q to start the searching algorithm. We get this benefit for free, because Piano PIR
already requires the client to store Õ(

√
n) vectors locally, which are selected uniformly at random.

Batched PIR Query. We observe that the PIR queries in each hop are parallel and can be handled
in a single batch. We can use a batching technique called partial batch retrieval (PBR) [SSLD22]
to further improve the efficiency. In PBR, we can use a pseudorandom permutation to permute
the database upfront, and then partition the permuted database into B sub-databases where each
sub-databases has n/B entries. On average, each sub-databases will have Q/B queries given a batch
of Q queries (if we are using beam search, Q = mC). By doing this, each PIR query will be issued to
a sub-database of size n/B instead of the full database, saving the computation and communication
cost. To ensure privacy, the client has to issue a fixed number of queries for each sub-database,
say choosing the number T = 1.5Q/B. If fewer than T queries are in the same sub-database, the
client submits dummy queries. If more than T queries are in the same sub-database, the client only
submits the first T queries and discards the rest. For example, if we have a batch size Q = 32 and
set partition number B = 16 and T = 3, around 90% of the queries in the batch will be successfully
submitted in expectation. 5. Intuitively, if each vertex has 32 neighbors, our retrieval process can
retrieve nearly 30 neighbors’ information with a single batched query. Since the graph tends to be
highly-connected, we observe that even with a mild query failure probability, the algorithm still
finds good results with more hops.

Assume we are using the Piano PIR scheme that has O(
√
n) computation/communication cost

per query. If we split the database into B sub-databases, the total cost for a Q-size batch will be

O
((

Q
B +B

)
·
√

n
B

)
. The optimal selection will be B = Θ(Q) and the cost will be O(

√
Qn). This

gives us a O(
√
Q) improvement in the efficiency compared to naively issueing Q independent queries

that has O(
√
nQ) cost.

4 Evaluation

We evaluate Pacmann’s performance in terms of search quality and latency and compare it against
two baselines: a state-of-the-art private ANN search algorithm, Tiptoe [HDCG+23], and a non-
private ANN search algorithm, NGT [IM18]. Our evaluation results show that Pacmann achieves
better search quality with lower online query latency than Tiptoe in two real datasets, SIFT
and MS-MARCO. We provide more details in Appendix D, including a detailed breakdown of
the preprocessing, storage and communication cost, and a discussion about quantization and the
alternative implementations.

4.1 Evaluation Setup

Our open-source implementation6 uses Python for data preprocessing and Golang for the core
algorithm, including the graph ANN algorithm and the PIR scheme. Details of the implementation
are provided in Appendix D. The experiments are run on a single server with a 2.4GHz Intel Xeon
E5-2680 CPU and a 256 GB RAM. We evaluate the latency numbers on two simulated network

5We can approximate this process with randomly throwing Q balls into B bins, each with a maximum load of T ,
and calculate how many balls are discarded due to overflow in expectation. Given some fixed order of throwing the
balls, the probability that the i-th thrown ball is thrown into a fully-loaded bin is always Pr[Bin(i − 1, 1/B) ≥ T ].
Here, Bin(t, p) denotes the Binomial distribution – that is, the number of successful trials in t repeated, independent
trials where each trial has success probability of p. Then, the expected number of discarded balls (i.e., failed queries)
in total is

∑Q
i=1 Pr[Bin(i− 1, 1/B) ≥ T ].

6https://github.com/privsearch/private-search-temp
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setting, the local area network (LAN) setting with 5ms round-trip-time (RTT) and the wide area
network (WAN) setting with 50ms RTT. Although our implementation supports multi-threading
optimization, we only use a single thread for all the experiments for a fair comparison.

Quality Metrics
Recall: Recall is the standard metric used in evaluating the quality of ANN algorithms [ABF20].
For each query q, if the algorithm outputs a K-index set I, and the top K ground truth is I∗, the
recall@K is defined as: Recall@K = |I∗∩I|

K .
Mean Reciprocal Rank (MRR): MRR is a standard quality metric for information retrieval sys-
tems [NRS+16]. Given a query q, assume there is a ground truth index i∗ such that DB[i∗] is the
most relevant entry. If the client outputs a list of indices that actually contains i∗ at the j-th rank
where j ≤ K, the reciprocal rank (denoted as RR@K) score is 1/j. Otherwise, RR@K is 0. MRR
is defined as the average of RR@K over multiple queries.

Datasets
SIFT Dataset [JTDA11] We use the first 100 million 128-dimensional vectors from the SIFT dataset
for our evaluation. We vary the database size by picking the first 2 to 100 million vectors. We
test 1,000 top-10 queries in the SIFT query set for each configuration, and measure the average
recall@10 (the top-10 ground truth nearest neighbors for each query are provided by the dataset).
MS-MARCO Dataset. [NRS+16] The dataset contains 3.2 million text documents with more than
5000 test queries such that the top 1 relevant document is provided. We follow the same procedure
as in the Tiptoe paper [HDCG+23] to process the dataset: 1) embed the documents and the queries
into a 768-dimensional vector space with sentence-BERT [RG19]; 2) reduce the dimensions to 192
with PCA. We follow the same quality evaluation metric as in the Tiptoe paper that we compute
the average MRR@100 for the first 1000 queries,

Baselines

• Tiptoe (Simulated). We aim to compare our scheme against the state-of-the-art private ANN
search algorithm, Tiptoe [HDCG+23]. Due to resource constraints, we were unable to run the full
Tiptoe system, where the dominating cost comes from the clustering step that requires dozens
of servers running hundreds of core-hours as reported in the original paper. Hence, we have
simulated Tiptoe by using two baselines as follows.

– Latency lower bound: Linear Algorithm. The Tiptoe algorithm computes n inner products
per query with preprocessed homomorphic encryption. As a latency lower bound 7 we
implement a linear time algorithm algorithm that just computes the inner product between
the query and each database vector in plaintext. We optimized the implementation using
AVX-512 instructions. The throughput of this algorithm is around 11.9 GB/s, matching
the memory bandwidth of the machine. Finally, we do not include network latency for this
baseline.

– Quality upper bound: Cluster. We replicate the clustering-based ranking algorithm used
in Tiptoe with full precision (32-bit)8. We cluster the vectors to

√
n clusters offline. For

each query, we find the closest cluster centroid, and search the nearest neighbor within the
cluster.

7We compared the simulated online latency with the actual numbers reported in the original paper [HDCG+23],
and the simulated latency is 8% less than the reported latency. See the detailed results in Appendix D.

8Our reimplementation of the clustering-based algorithm reached 0.15 MRR@100 on the MS-MARCO dataset,
which is better than the 0.13 MRR@100 reported in the Tiptoe paper [HDCG+23].
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Figure 5: Latency results on different database
sizes, sampled from the SIFT dataset. We tune
the parameters of our scheme to achieve 0.90
recall@10 for each data point. For each data
point, the total latency is the sum of the actual
computation time and the round-trip time of
the communication, mulitplied by the number
of rounds. We plot both the LAN setting (5ms
rtt) and the WAN setting results (50ms rtt) in
this figure.

Figure 6: Ablation study on the 10M subset of
SIFT (WAN setting). Given a fixed configura-
tion, we increase the max number of rounds un-
til the quality reaches 0.90 recall@10. “No Opt”
means no optimizations are enabled. “Beam”
means the beam search optimization. “FS”
means the fast starting strategy. “Batch” means
we enable the batch-mode Piano PIR. Our full
implementation enables all the optimizations.

• NGT. NGT is one of the state-of-the-art non-private ANN search algorithms and we use the
implementation from the GoNGT library [IM18]. We compare our scheme against NGT in terms
of search quality.

4.2 Evaluation Results

Pacmann provides a favorable tradeoff between privacy, search quality, and latency.
We first measure the tradeoff between search quality and query latency. Specifically, by increasing
the number of rounds and number of parallel queries in each round, our algorithm can achieve higher
search qualities at the cost of higher latency. The results are shown in Figure 2. We consider a wide
range of search quality requirements, where the lower bound is set by the cluster search algorithm
(replicating the Tiptoe search algorithm), and the upper bound is set by the non-private ANN
algorithm, NGT. We observe that our scheme provides a wide range of tradeoff between quality and
latency, and can indeed achieve within ∼ 90% of NGT’s search quality. In the SIFT-100M dataset,
the advantage of our scheme is more significant, and even with 91% recall@10, our scheme still has
a lower latency than the linear algorithm baseline.

Scalability: Pacmann outperforms Tiptoe in latency and accuracy on datasets of at
least 2-50M records. We next evaluate the scalability of our scheme by scaling the database
size up to 100 million vectors. We tune the parameters of our scheme to achieve 0.90 recall@10
for each data point; that is, 9 out of 10 of the search results are indeed the ground truth top-10
nearest neighbors on average. The results are shown in Figure 5. We observe that in the LAN
setting where the computation time is dominant, our scheme beats the linear algorithm baseline
when the database size is larger than 5M. In the WAN setting where the communication time is
more dominant, our scheme beats the linear baseline when the database size is larger than 50M. We
observe that the number of rounds to achieve a certain recall@10 grows roughly logarithmically

12



with the database size, and we know from the theoretical analysis that PIR cost scales with
√
n.

This suggests that the total latency of our scheme grows sublinearly with the database size.

Ablation study: Our optimizations give a 70% latency reduction. Finally, we conduct an
ablation study on the 10M subset of the SIFT dataset to evaluate the optimizations in Section 3.3:
1) Beam Search: The number of parallel paths in the beam search algorithm is increased from 1
to 3. 2) Fast Starting: The client starts the search by choosing the starting vertices from Õ(

√
n)

preprocessed vertices. 3) Batched PIR: We enable the batch-mode PIR for each round of the search.
We compare four configurations in Figure 6 where we increase the number of rounds until the

quality reaches 0.90 recall@10. The beam search optimization significantly reduces the maximum
number of rounds needed to achieve the same quality by 3x. Adding the fast-start strategy furtuher
reduces the required rounds by 20%. When we enable the batch-mode PIR, we observe that the
computation time in each round is reduced by 4x, but as we mentioned in Section 3.3, we do
introduce some query failures, which we need to balance with the slight increase of the number of
rounds.

5 Conclusion

We present Pacmann, a new private ANN search scheme that allows clients to perform nearest
neighbor search query over hundreds of millions of vectors while preserving the query’s privacy.
Pacmann achieves significantly better search quality compared to the state-of-the-art private
ANN search schemes and has lower latency in large-scale datasets. Pacmann could potentially
be applied to a wide range of information retrieval applications including conventional search and
retrieval-augmented generation.

Limitations. Pacmann has several limitations, which may present opportunities for future work.
First, it inherits the drawback of the single-server preprocessing PIR schemes and requires the client
to download the whole indexing structure offline in a streaming manner. Therefore, Pacmann will
not be suitable for the network-constrained scenarios. Pacmann also does not naturally support
dynamic updates to the database. Handling dynamic updates in PIR has been a challenging open
problem. Finally, Pacmann is designed under the assumption that the database is public, so we do
not consider server-side privacy. We leave these questions as interesting future directions.
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A Formal Definitions

K-Approximate Nearest Neighbor Search (K-ANN). Assume a d-dimensional metric space
with a distance function ∆(·, ·). Given a database containing n vectors, denoted as DB =
{v1, v2, . . . , vn} ∈ Rd×n, and a query vector q ∈ Rd such that an K-approximate nearest neigh-
bor search algorithm takes the database DB and the query vector q as input, and outputs an
index set I = {i1, . . . , iK} such that the distances between q and vi1 , . . . , viK are minimized, i.e.,
I = {i1, . . . , iK} is an approximation to the true K-nearest neighbors of q in DB. Specifically, we
use the recall or the mean reciprocal rank (MRR) to evaluate the quality of the approximation,
depending on the context.

Single Server (Preprocessing) Private K-ANN. A single-server preprocessing private ANN
protocol is run between a stateful client and a server. The protocol consists of two phases: pre-
processing and queries.

1. Preprocessing: The preprocessing phase is run before the query phase and could involve the
communication between the client and the server. The server will receive the vector database
DB ∈ Rd×n as input.

2. Queries: The query phase can include multiple (adaptive) queries from the client. Each query
is a vector q ∈ Rd. The client and the server can have multiple rounds of communication for
each query. And at the end, the client will output K indices where the corresponding vectors
are the K-approximate nearest neighbors of q in DB.

Intuitively, the privacy of a private ANN protocol requires that the server learns negligible
information about the query vector q. We will define the privacy of a private ANN protocol with a
simulation-based definition. A single-server private ANN protocol satisfies privacy if there exists a
simulator Sim such that for any probabilistic polynomial-time adversary A acting as the server, the
views of A in the following two experiments are computationally indistinguishable:

• Real: the client interacts with A(1λ,DB) who acts as the server. In each query step, A may
adaptively choose the next query q for the client. The client is invoked with q as input.

• Ideal: the simulated client Sim(1λ, n) interacts with A(1λ,DB) who acts as the server and A
still may adaptively choose the next query q for the client. However, the simulator is invoked
with only the knowledge of the size of the database, and without the information of the chosen
query q.

Throughout this paper, we assume the adversary is semi-honest 9.

B Details of Our Graph-based ANN Construction

We now provide a detailed description of our customized graph building algorithm in Figure 7.

C Detailed Construction Description

We include the full description of our algorithm in Figure 8. The algorithm further involves the
local caching optimization that the client will keep track of all queried vertices and avoid repetitive
queries.

9We could potentially the verifiable PIR techniques [BDKP22] to upgrade the security to malicious adversaries.
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Our Graph Building Algorithm: ANN.BuildGraph.

Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n and a target degree C.

Output: a directed regular C-out graph G with n vertices corresponding to the n vectors in
DB.

Subroutine: ANN.TrimNeighbors(u, L,C). // Given a vertex u and a list of neighbors L,
return the picked C neighbors of u in L with the SNG heuristic.

1. Let w be the number of vertices in L and let (i1, . . . , iw) be the sorted indices in L according
to the distance to the vector vu (ascendingly).

2. Let Kept← ∅, Dscd← ∅.

3. For j = i1, . . . , iw:

(a) If ∃j′ ∈ Kept such that ∆(vj , vj′) < ∆(vj , vu), label j as discarded. // SNG heuristic

(b) If j is not discarded, insert j to Kept. Otherwise, insert j to Dscd.

(c) Terminate if |Kept| = C.

4. If |Kept| < C, insert the first C − |Kept| vertices in Dscd to Kept.

5. Return Kept.

Graph Building.

1. For each u ∈ [n]:

(a) Let Nu be the set of 2C approximate neighbor indices to vu obtained by an underlying
ANN algorithm.

(b) Trim Nu to C neighbors: let Nu ← ANN.TrimNeighbor(u,Nu, C).

(c) For all u′ ∈ N(u), add directed edges (u→ u′) and edge (u′ → u) to the graph G.

2. Fix InDegree(u) to be the in-degree of vertex u in the current graph G.

3. For each edge (i, j) ∈ G: keep the edge in G with probability C
InDegree(j) .

4. For each u ∈ [n]:

(a) Denote NG(u) be the set of outbounds of u in G.

(b) If |NG(u)| < C: add edges from u to random vertices in [n] until |NG(u)| = C.

(c) If |NG(u)| > C: let NG(u)← ANN.TrimNeighbor(u,NG(u), C).

5. Output the graph G.

Figure 7: Description of our graph building algorithm ANN.BuildGraph.
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C.1 Review on Piano PIR

We review the main idea of Pian PIR [ZPSZ24] below. During the preprocessing phase, the client
will sample around

√
n log n random sets, each containing

√
n random indices in [n]. For each

sampled set S, the client will store the random seed to generate S, and also the sum of the entires
indexed by S, denoted as sum(S) =

∑
i∈S DB[i]. The number of sets ensure the every entry in

DB is included in at least one set. Then, for each query x, the client will first find a local set S
that contains x. Since the client knows sum(S), if it can learn learn sum(S/{x}), it can recover
DB[x] by a simple subtraction. However, the client cannot query sum(S/{x}) by directly sending
those

√
n − 1 indices to the server, because the server will notice that all the indices it received

from the client are not x, which is a privacy issue. Piano fixes this issue by having the client
remember roughly Õ(

√
n) random entries during the preprocessing phase, which are called the

“replcaments”. Then, instead of deleting x from S, the client will replace x with a replacement
entry y and query the server of sum(S/{x} ∪ {y}) by sending all

√
n indices in this “edited” set to

the server. The server takes
√
n computation to compute the sum and returns the result to the

client. Since the client already knows the value of DB[y] in preprocessing, it can recover DB[x] by
calculating DB[x] = sum(S) − sum (S/{x} ∪ {y}) + DB[y]. It is not hard to see this single-query
version of Piano is indeed private – the server only sees

√
n random indices that are independent of

the actual query index x. We omit the details of the multiple, adaptive-query version of Piano here
and refer the interested readers to the original paper [ZPSZ24].

In the algorithm description, we use the following syntax of to capture the Piano PIR functionality
with the batch-mode interface:

• hint← PIR.Prep(1λ,DB): given the security parameter 1λ and the database DB, generate the
preprocessed PIR hint hint.

• msg← PIR.BatchQuery(hint, batch): given the PIR hint and a batch of query indices batch ⊆
[n], the client generates the PIR query message msg.

• ans← PIR.BatchAnswer(DB,msg): upon receiving the batched PIR query message msg, the
server generates the batched answer ans.

• (β, hint′) ← PIR.BatchRecover(hint, ans, batch): given the batched answer ans and the PIR
hint hint, recover the answers β and update the hint to hint′. Here, β is a set that includes all
the successful query indices and their corresponding answers. That is, β includes the tuples
(i,DB[i]) for all i ∈ batch that are successfully queried.

C.2 Full Algorithm Description

The full algorithm description is in Figure 8.

Preprocessing. We use the same graph building algorithm as in Figure 7 to build a graph G from
the vectors DB. We then combine the neighbor list of each vertex with its vector to build a new

database DB′ = {(vi, N(i))}i∈[n]. Then, we randomly sample
√
n starting vertices u1start, . . . , u

√
n

start

from [n]. We then run the client-side preprocessing algorithm of Piano and let the client store the
hint hint. Further, we let the client download those starting vertices and their vectors and neighbor
lists from the server.

Query for K-approximate nearest neighbors of vector q ∈ Rd. We generalize the search
algorithm to the following exploration process. The client can maintain two sets of vertices locally:
1) visited including all vertices that the client has already visited and stored their vectors and
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neighbor lists, and 2) developed including all vertices that the client has already visited and retrieved
all their neighbors’ information. The client can maintain visited as a priority queue where the closer
vertices to q are at the front. Each time the client can pick multiple vertices from visited and fetch
their neighbors’ information in parallel. The client will move those picked vertices from visited to
developed, and add their neighbors to visited. We collect all those neighbors’ indices as batch and
issue a batched PIR query to the server. After receiving the batched answer, the client will recover
all the successful queries and push them to visited. The client also needs to update the local hint
hint after each query. We can repeat this process until the max hop number is reached. Finally, the
client can output the top K nearest vertices in visited and developed to the query vector q.

We summarize the main result in the following theorem.

Theorem C.1. Assume there exists one-way functions. Consider a database with n vectors in Rd.
Assuming a non-private graph-based ANN algorithm that preprocesses the database into a C-degree
graph, and searches for the approximate nearest neighbors with H hops in the graph. Then, by
applying the Piano PIR scheme, we can build a private ANN scheme with the following efficiency,
while achieving the same search quality as the non-private graph ANN:

• Preprocessing: Õ(n(d+ C)) client and server time and O(n(d+ C)) communication;

• Query: Õ(H ·
√
Cn · (d+C)) client and server time and O(H ·

√
Cn · (d+C)) communication.

• Storage: Õ(
√
n · (d+ C)) client storage and no additional server storage except the database.

Proof. The proof follows directly from the efficiency of the Piano PIR scheme when we consider a
database with n entries and each entry stores a vector in Rd and a neighbor list of size C. Moreover,
by applying the batched optimization we described in Section 3.3, we further reduce the computation
and communication cost of each PIR query by

√
C. The privacy proof follows directly from the

privacy guarantee of the Piano PIR scheme.

D Evaluation Details

D.1 Implementation Details

We detail our implementation of the two parts below.

Graph-based ANN. The graph-based ANN algorithm can be divided into two parts, the graph
building part and the query part. The graph building part follows our description in Figure 7 and
set the outbound number C = 32. The query part strictly follows our description in Figure 8.

Batched PIR. We implement a batch-mode version of the Piano PIR scheme [ZPSZ24] by first
implementing the single-query version of the Piano PIR scheme with 128-bit security parameter,
then wrapping it with a batch-mode interface. The interfact simply splits the whole database into
B partitions, and then runs a single-query Piano PIR scheme on each partition parallelly. Given
a batch of Q queries, we simply identitfy which partition each query belongs to, and then make
Q/B queries at each partition to ensure privacy. We choose B = 16 and Q = 32 in our evaluation.
Moreover, we implement the automatic maintainence for the client state. We keep track of the
consumed hints in the client’s space and automatically run another preprocessing when the hints
are exhausted.
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Pacmann: Privte Graph ANN with Preprocessing

Preprocessing.

• Server Side Preprocessing: Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n.

– Runs G← BuildGraph(DB).

– Randomly sample
√
n starting vertices u1start, . . . , u

√
n

start from [n].

– Let DB′ = {(vi, N(i))}i∈[n] where N(i) is the neighbor list of i in G.

• Client Side Preprocessing:

– Stores hint← PIR.Prep(1λ,DB′). // Involving communication with the server.

– Downloads the representative indices u1start, . . . , u
√
n

start from the server.

– For all u ∈ {uistart}i∈[√n], downloads DB
′[u] = (vu, N(u)) from the server.

Query for K-approximate nearest neghbors of vector q ∈ Rd.

• Parameters: max hop number H and beam search width m.

• Client Side Algorithm.

– Let visited = {uistart}i∈[√n] be a priority queue where the closest vertices to q are at the
front.

– Let developed = ∅.
– For t = 1, 2, . . . ,H:

∗ Let u1, . . . , um be the top m indices in visited and move them from visited to developed.

∗ Let batch = ∪i∈[m]N(ui) be the union of the neighbor lists of u1, . . . , um.

∗ Remove those indices in batch that are already in visited ∪ developed.

∗ Send msg← PIR.BatchQuery(hint, batch) to the server.

∗ Upon receiving ans from the server, run (β, hint′)← PIR.Recover(ans, hint). where β is a
set that includes all the successful query indices and their corresponding answers.

∗ For each successful query tuple (u, (vu, N(u))) ∈ β, add u to visited and store the vector
vu and neighbor list N(u) locally.

∗ Update the local PIR hint hint← hint′.

– Finally, for all u ∈ visited ∪ developed, compute the distance ∆(vu, q). Output the k indices
with the smallest distances.

• Server Side Algorithm.

– Upon receiving a PIR batch query message msg from the client, run ans ←
PIR.BatchAnswer(DB′,msg) and return ans.

Figure 8: Our private ANN scheme with preprocessing.
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MS-MARCO (3M) SIFT (100M)

Preprocessing
Graph Buliding Time 8.5 min 343.5 min
PIR Preprocessing 9.1 s 271.6 s
Communication 2.7 GB 59.6 GB

Online per query
Latency 1.1 s 3.0 s

Computation Time 0.10 s 1.48 s
Online Communication 1.5 MB 14.4 MB

Rounds 20 32

Maintainence per query
Time 0.19 s 1.99 s

Communication 60.1 MB 399.4 MB

Client Storage 0.6 GB 2.9 GB

Table 1: Detailed breakdown of our results on different datasets in the WAN setting. We list the
preprocessing, online query and maintenance costs. The graph-build cost happens only once. The
PIR preprocessing cost happens when each client joins the system. The online query cost is the
cost on the critical path of the search queries. Followed by each online query, there is a necessary
one-round maintenance to update the client state. We use 16 threads for the graph buiding and one
thread for other parts. The corresponding qualities for the experiments are 0.266 MRR@100 for
MS-MARCO and 0.90 recall@10 for SIFT.

D.2 Detailed Breakdown

Finally, we provide a detailed breakdown of the costs of our scheme in Table 1. We pick two
representative parameter settings for the MS-MARCO dataset and the SIFT dataset, all achieving
90% quality of the state-of-the-art non-private ANN search algorithm. The graph building time is
signifcant for both datasets, taking 8.5 minutes for the MS-MARCO dataset and 343.5 minutes
for the SIFT dataset. However, the graph building only happens once at the server side. The PIR
preprocessing is per-client, but it is relatively cheap, taking 9.1 seconds for the MS-MARCO dataset
and 271.6 seconds for the SIFT dataset. The most expensive part is that during the preprocessing,
the client has to streamingly scan over the whole index structure, taking large communication cost.
For each online query, the latency and computation time match our analysis in Section 4.2. Notably,
the communication cost on the critical path is relatively low, taking 1.5MB for the MS-MARCO
dataset and 14.4MB for the SIFT dataset. Notice that the clien has to update its local state after
each query. We see that the maintenance time per query is relatively cheap, but the communication
cost is high, taking 60.1MB for the MS-MARCO dataset and 399.4MB for the SIFT dataset.
Theoretically, the client stores around Õ(n) amount of local state. Empirically, we see that the
client stores 0.6GB of data for the MS-MARCO dataset and 2.9GB of data for the SIFT dataset,
and the scaling factor matches our theoretical analysis.

Discussion on quantization and comparing against Tiptoe. We noticed that the original
Tiptoe implementation uses 4-bit quantization for the vectors to further trades off the search quality
for the latency. In our evaluation, we use the full 32-bit precision for all the algorithms. Thus, the
quality of the clustering-based algorithm should be considered an upper bound for the actual Tiptoe
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algorithm. For the latency, the “Linear Algorithm” baseline should be a good approximation of
the actual Tiptoe algorithm. As an example, if we extrapolate the number of Tiptoe’s algorithm
based on the Table 6 and Table 7 in the Tiptoe paper [HDCG+23] to the MS-MARCO dataset, the
latency will be around 0.27 seconds 10.

Alternative Implementations. As alternatives, one can indeed use other PIR schemes to
implement our graph-based ANN algorithm. For example, using another recent single-server PIR
scheme, SimplePIR [HHCG+22] (used also in Tiptoe [HDCG+23]), comes with a tradeoff. For
example, in the 10M SIFT dataset experiment, We can save the offline communication cost from
roughly 6GB to around 300MB, but increase the online latency from 1.5s to roughly 90s based
on our estimation as follows. We tested the throughput of the SimplePIR scheme on our server,
which is around 10 GB/s. Then, we are making in total 25 rounds of graph explorations where each
round has 96 parallel queries. The batching technique allows each individual query to be within
a sub-database of 16 times smaller than the whole database (around 6GB). Therefore, the total
estimated time would be 25× 96× 6GB

16×10GB/s ≈ 90s.

E Discussion on Theoretical Perspectives

We focused on the practical aspects of our scheme in the main body. Although graph-based ANN
search has been empirically shown to be successful in practice, but the theoretical understanding of
the graph-based ANN search is still very limited. Here, we try to provide some theoretical insights
into the graph-based private ANN search given the existing theoretical results.

Definition E.1 ((c, r)-Approximate Nearest Neighbor). Given n vectors DB = {v1, v2, . . . , vn} ∈
Rd×n and a distance function ∆(·, ·), we say that an algorithm is a (c, r)-approximate nearest
neighbor search algorithm if for any vector q ∈ Rd such that the true minimal distance between q
and any vector in DB is at most r, the algorithm outputs an index i such that ∆(vi, q) ≤ c · r with
at least constant probability.

For the low-dimension case where d = Θ(log n), we refer the reader to Prokhorenkova and
Shekhovtsov [PS20] for the detailed discussion. Here, we will focus on the high-dimensional regime
(also known as the sparse data case) such that the dimension d = ω(log n), which is the most
common setting for ANN search (recall that most embedding space is at least 100-dimensional).

There are two notable theoretical results that we can leverage to analyze the graph-based ANN
search. Laarhoven [Laa18] proves the following theorem:

Theorem E.2 (Laarhoven [Laa18]). Consider the database contains n independently random vectors
in the unit sphere in Sd−1 and the distance is measured by Euclidean distance. For c > 1, there exists
a (c, r)-graph-based ANN search algorithm with the O(n1+ρ+o(1)) space complexity and O(nρ+o(1))
query time complexity while taking only O(1) hops in the graph, where

ρ ≥ c4

2c4 − 2c2 + 1
.

10The authors of Tiptoe reported the total core-second is 145 seconds for their experiment on a dataset with 360
millions 192-dimension vectors. The full Tiptoe system contains three parts: “preprocessing”, “ranking” and “URL”
where the “ranking” part corrsponds to our ANN search experiment. According to Table 7 in the paper, it should
take about (1.9/(6.5 + 1.9 + 0.6)) = 21% of the cost. Thus, an estimation of the time on a single-core for the 3.2M

size MS-MARCO dataset will be 145× 21%× 3.2×106

360×106
≈ 0.27s, which is close to our simualted “Linear Algorithm”

latency (0.25 seconds).
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We call this setting the average case setting. Intuitively, we can think about nρ in the above
theorem roughly denotes the average degree of the graph. For example, if we aim to have a
2-approximation ANN, ρ ≈ 0.64. And we see that with the approximation factor c getting worse,
limc→∞ ρ(c) = 1

2 .
On the other hand, Diwan et al. [DGM+24] studied the problem of building a navigatable graph.

On a high-level, a navigatable graph provides the guarantee for “in-distribution” query for ANN
search, that is, the query vector will be exactly some vector in the database. They showed the
following theorem:

Theorem E.3 ([DGM+24]). For any n vectors in Rd, it is possible to build a navigatable graph
with average degree of at most 2

√
n lnn. Moreover, the “greedy-routing” strategy always succeeds in

finding the correct vector in the database with at most 2 hops.

The above two theorems provide the theoretical insights that for the high-dimensional regime,
to achieve a strong guarantee on the ANN search, the average degree of the graph will be roughly
n

1
2
+o(1), and the query hop number will only be a constant. Therefore, if we use the same PIR

technique to make the graph-based ANN search private, the underlying graph-information database
is of size n

3
2
+o(1), where the total number of entries is n and each entry is of size n1/2+o(1). It is

interesting to see that this is not a typical setting of the PIR literature, because the entry size
is much larger than a constant. If we plug in the best parameters of the client-preprocessing
PIR [ZPSZ24, NGH24] into the Laarhoven’s algorithm, we will get the following result:

Theorem E.4. Assume the existence of one-way function. For c > 1, there exists a (c, r)-graph-
based private ANN search algorithm for Euclidean distance in the average case setting (random
vectors on the unit sphere Sd−1) with the following properties:

• Preprocessing cost: Õ(n1+ρ+o(1)) communication and computation cost;

• Query cost:

– Õ(n1/2+ρ+o(1)) computation cost;

– Õ(nρ+o(1)) communication cost;

• Storage cost:

– Client: Õ(n1/2);

– Server: Õ(n1+ρ+o(1)).

Here,

ρ ≥ c4

2c4 − 2c2 + 1
.

Specifically, we need to use the new result in Nguyen et al. [NGH24] for optimizing the client
storage. Notice that based on the existing client-specific preprocessing PIR lower bounds [CK20,
PY22, LMWY20], to privately access a data structure of size N , the product between the client
storage S and the online time T satisfies that S × T = Ω(N). In this sense, the above theoretical
result is nearly tight in terms of the client storage and online query time if we follow the graph-based
ANN paradigm: the client storage is Õ(n1/2) and the online query time is Õ(n1/2+ρ+o(1)), while the
product matches the data structure size of n1+ρ+o(1).
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Gap between Theory and Practice. Notably, the above theoretical results on graph-based
ANN algorithms are based on the analysis on the “high-degree” graphs, where the average degree is
Ω(
√
n), and the query hop number is a small constant. In practice, we see a different combination:

popular graph-based ANN algorithm implementations usually pick a much smaller average degree,
e.g., 32 or 64, while making the query hop number to be larger (e.g. scaling with the logarithm of
the database size). It remains an interesting open question whether there exists a strong theoretical
result for small-degree graphs with a search process invoking large number of hops.
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