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Abstract

We design a generic compiler to boost any non-trivial succinct non-interactive argument of
knowledge (SNARK) to full succinctness. Our results come in two flavors:

1. For any constant ϵ > 0, any SNARK with proof size |π| < |ω|
λϵ +poly(λ, |x|) can be upgraded

to a fully succinct SNARK, where all system parameters (such as proof/CRS sizes and
setup/verifier run-times) grow as fixed polynomials in λ, independent of witness size.

2. Under an additional assumption that the underlying SNARK has as an efficient knowledge
extractor, we further improve our result to upgrade any non-trivial SNARK. For example,
we show how to design fully succinct SNARKs from SNARKs with proofs of length |ω| −
Ω(λ), or |ω|

1+ϵ + poly(λ, |x|), any constant ϵ > 0.

Our result reduces the long-standing challenge of designing fully succinct SNARKs to design-
ing arguments of knowledge that beat the trivial construction. It also establishes optimal-
ity of rate-1 arguments of knowledge (such as NIZKs [Gentry-Groth-Ishai-Peikert-Sahai-Smith;
JoC’15] and BARGs [Devadas-Goyal-Kalai-Vaikuntanathan, Paneth-Pass; FOCS’22]), and sug-
gests any further improvement is tantamount to designing fully succinct SNARKs, thus requires
bypassing established black-box barriers [Gentry-Wichs; STOC’11].

1 Introduction

Succinct non-interactive arguments, commonly called SNARGs, are a central object in both theory
and practice of numerous cryptographic systems today. Informally speaking, a SNARG for an NP

language L is an argument1 system that creates a short membership proof π for any instance
x ∈ L, given a corresponding NP witness ω. In the study of SNARGs, a highly desirable goal is to
achieve full succinctness for non-trivial NP languages. That is, design membership proofs that
are of fixed polynomial size and can be verified in fixed polynomial time, independent of witness
size, |ω|, and the time taken to verify x ∈ L given ω. Applications of SNARGs are well spread
across the literature [WB15] and even extend to popular systems such as blockchains [BCG+14].

Since early 90s, starting with seminal works of Kilian [Kil92] and Micali [Mic00], we have known
that SNARGs are indeed realizable for NP although in the idealized random oracle model [BR93].
Over the last decade, many more succinct SNARG schemes have been designed [BCCT12, BCCT13,
∗Email: jiaqicheng@cs.wisc.edu.
†Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW-Madison with funding
from the Wisconsin Alumni Research Foundation.

1In an argument system [BCC88], soundness is only guaranteed against polynomial-time cheating provers.
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Gro10, SW14, Gro16, BCI+13, BCC+17], however these rely on non-falsifiable assumptions [Nao03]2.
A longstanding open problem in this area has been to design SNARGs for NP in the standard
model while reducing security to standard and falsifiable cryptographic assumptions. As it cur-
rently stands, only a handful constructions [BHK17, KPY19, BKK+18, JKKZ21, CJJ22, KLVW23,
BBK+23, NWW23, JKLV24] for SNARGs have been designed from falsifiable assumptions in the
standard model, despite over thirty years of research. All these constructions support proving
membership only for a subclass of NP.

The reason for such a huge disparity between provable SNARG constructions from non-falsifiable
and standard cryptographic assumptions was studied in the seminal work of Gentry-Wichs [GW11].
The Gentry-Wichs result states that we cannot design SNARGs for all of NP, while reducing their
security to any falsifiable assumption via a polynomial-time “black-box reduction”.

In a black-box reduction, the reduction algorithm is only allowed to make “oracle” queries to a
successful attacker, and it must break the underlying assumption without any additional description
about the attacker. That is, a black-box reduction can not access the description of an attacker’s
code, but only gets to see input/output behavior. In a non-black-box reduction, however, the
reduction gets full access to the attacker, and can use the attacker’s code arbitrarily. Given most
security proofs in modern cryptography typically only make black-box use of an attacker, thus this
explains why SNARGs for NP have been such an elusive target.

Gentry-Wichs also proved that designing slightly-succinct3 SNARGs also suffers from the same
black-box reduction barriers. In this work, we study the following question:

Is bypassing this barrier for slightly-succinct SNARGs enough to bypass the barrier for
fully-succinct SNARGs, the ‘gold-standard’ succinctness?

In other words, we do not know whether designing fully-succinct SNARGs is much harder than
designing slightly-succinct SNARGs. It is conceivable that there is a hierarchy of black-box barriers
between SNARGs with differing levels of succinctness.

This work. We answer the above question affirmatively. We design a new bootstrapping compiler
to upgrade any slightly-succinct SNARG into a fully-succinct SNARG, as long as the SNARG
satisfies knowledge soundness (i.e., it is a SNARK).

Throughout the sequel, when we write the SNARK proof system is δ-mild (for any δ > 1), then
we mean that the proof size is δ factor smaller than the witness length (i.e., |π| < |ω|

δ +poly(λ, |x|)).
Moreover, we do not put any other succinctness/efficiency requirements on any other component
of the proof system. For example, the CRS size could grow polynomially with the witness length
or the circuit size of membership circuit. Concretely, we show:

Theorem 1.1 (Informal, see Corollary 6.5). For any constant ϵ > 0. Assuming RAM delegation,
any λϵ-mild SNARK for NP can be turned into a fully-succinct SNARK for NP.

Moreover, if we additionally assume that the underlying SNARK has a fast extractor, then we
can perform bootstrap even ‘milder’ SNARKs. We say a δ-mild SNARK has a fast extractor, if
2The SNARG construction by Sahai-Waters [SW14] relies on indistinguishability obfuscation [BGI+01], which is
also a non-falsifiable assumption [GK16]. Although, obfuscation is known to be instantiable from 2|x|-hardness of
standard cryptographic hardness assumptions [JLS21]

3Briefly, slight succinctness states the proof size is sublinear in the statement and witness length (i.e., o(|x|+ |ω|)).
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the extractor’s running time is at most a poly(δ) multiplicative factor larger than the adversary’s
running time. E.g., if δ is a constant, then the fast extractor’s running time is at most a constant
times more than adversary’s running time. Concretely, we show.

Theorem 1.2 (Informal, see Corollary 6.6). For any δ > 1. Assuming RAM delegation, any δ-mild
SNARK for NP with fast extractors can be turned into a fully-succinct SNARK for NP.

Combining above theorems with great recent progress on designing RAM delegation [CJJ21,
CJJ22, HJKS22, WW22, KLVW23], we obtain:

Corollary 1.3 (Informal). Assuming either LWE, or DLIN, or sub-exponential DDH (and QR), any
δ-mild SNARK for NP can be boosted to a fully-succinct SNARK for NP, as long as δ = λϵ, or it
has a fast extractor.

Discussion and interpreting our results. The above suggests that designing any non-trivial
SNARG for NP with knowledge soundness is sufficient to design a fully-succinct SNARG for NP

with knowledge soundness. Thus, a natural interpretation is that overcoming the Gentry-Wichs
barrier for just non-trivial succinctness is enough to settle the fully-succinct SNARK problem, and
there are no further technical barriers beyond designing non-trivial SNARKs.

Our result can also be viewed as a mild strengthening of Gentry-Wichs. As, by combining our
results with [GW11], we can rule out existence of non-trivial SNARKs with poly-time black-box
reduction to falsifiable assumptions. Currently, [GW11] only rules out slightly-succinct arguments,
i.e. |π| = o(|x|+ |ω|), but we can rule out any |π| = |ω| − Ω(λ) with fast extractors.

Another interpretation is that known constructions for various rate-1 arguments of knowledge
(such as zero-knowledge, or batch arguments) are essentially optimal, and any further improve-
ment is tantamount to designing fully-succinct SNARKs, thus bypassing [GW11]. That is, rate-1
NIZK [GGI+15] and rate-1 (se)BARGs [DGKV22, PP22] are best possible arguments of knowledge,
with a polynomial-time black-box reduction to falsifiable assumptions.

Finally, we remark that while our approach relies on a careful recursive extraction technique,
our security reduction is oblivious to black-box or non-black-box nature of mild SNARK extrac-
tor. Although Campanelli et al. [CGKS23] proved impossibility of black-box extraction for adaptive
knowledge soundness in the standard model, black-box extraction is possible in non-standard mod-
els. Thus, if a mild SNARK extractor needs black-box/non-black-box access to the cheating prover
in the standard/non-standard model, then so does our fully-succinct SNARK extractor.

2 Technical Overview

A SNARK is a non-interactive proof system that allows a prover to convince the validity of a
statement x to a verifier, by providing a proof π whose length is shorter than the witness length,
|ω|. They are typically defined in the common reference string model. Given the crs, a prover
processes a pair of instance-witness pair (x, ω) to produce a short proof π. The verifier, on input
crs, x, and π, outputs a bit to signal validity of proof. The standard notion of soundness states that
a (polynomial-time) cheating prover, given crs, cannot find a instance-proof pair (x, π) such that
the verifier accepts, yet x is invalid. In this work, we rely on the stronger knowledge soundness

3



property. It states that there exists an efficient extractor E that can extract a valid witness ω from
a cheating prover, given the instance x, proof π, and the cheating prover’s algorithm P.

Defining succintness in SNARKs. If we allow proof size to be as large as the witness, then a
SNARK can be trivially designed. Simply, set the proof π = ω. Thus, succinctness is an essential
property for SNARKs. To capture a meaningful notion of succinctness, we define the notion of
δ-mildness to capture any non-trivial SNARK. We consider δ = δ(λ, n,m) to be a function of
security parameter λ, instance length |x| = n, and witness length |ω| = m. In words, the proofs
generated by a δ-mild SNARK are (aymptotically) δ-multiplicative-factor shorter than the witness
length, m. Formally, we say a SNARK is δ-mild, iff it satisfies the following:

|π| = m

δ
+ poly(λ, n).

Note that any non-trivial SNARK is a δ-mild SNARK, for some δ > 1. Similarly, a fully-succinct
SNARK corresponds to a m-mild SNARK (i.e., δ = m)4 with an additional property that |crs| is
also a fixed polynomial in λ, and does not scale with n or m.

In words, we define δ-mild SNARKs to capture the most general notion of non-trivial SNARKs,
as we only require their proof size to be non-trivially smaller than witness length, but do not put
any constraints on the CRS size or verification runtime, etc. The rest of the technical overview is
divided into three parts, covering all our main results:

1. Assuming RAM delegation, any δ-mild SNARK can be upgraded to have short CRS.

2. Any λϵ-mild SNARK with short CRS can be boosted to a fully-succinct SNARK for RAM,
for any constant ϵ > 0.

3. Any δ-mild SNARK with γ-fast extractors can be boosted to λϵ-mild SNARK, as long as
δ > 1 and γ = δc for some constant c > 0.

2.1 Shortening CRS in SNARKs via RAM Delegation

The first step of our generic compiler is to design a mild SNARK with a short CRS, where its size
does not grow with the classical NP verification but only instance and witness lengths. As we will
see in the next stages of our compiler, starting with mild SNARKs with short CRS is extremely
useful for iterative compositions. Towards the goal of shortening CRS, our main observation is that
it suffices to compose a mild SNARK (with an extremely long CRS) with a fully-succinct SNARG
for P.

A SNARG for P, more commonly regarded as RAM delegation [KP16, BHK17, CJJ22], is a
proof system that lets a prover generate short proofs of correctness for deterministic computation.
Thus, syntactically, they are defined same as general SNARK(G)s, except the witness is always
empty. That is, a prover only takes crs and x as inputs, and to verify π, a verifier needs both x

and crs. The special property of (fully-succinct) RAM delegation is that |crs|, |π| and verification
time grows only poly-logarithmically with T . Here T is the time taken to run the RAM machine
4Technically, a SNARK is fully-succinct if |π| = poly(λ), and does not grow with n. However, by the folklore
hash-and-prove paradigm, a SNARK with |π| = poly(λ, n) can be easily turned into SNARK with |π| = poly(λ).
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(i.e., the membership circuit) on x. Clearly, knowledge soundness and standard soundness notions
are the same for RAM delegation, since the witness is empty.

The idea for composing mild SNARKs with RAM delegation is very simple. Given any δ-mild
SNARK that lacks a short CRS, rather than asking the prover to prove validity of x by using ω as a
witness, ask the prover to prove validity of x by using ω and del.π as a witness. That is, a prover first
computes a RAM proof del.π as del.π ← del.Prove(del.crs, (x, ω)). Next, it creates a mild SNARK
proof π for instance x to prove that it knows (ω, del.π) such that del.Verify(del.crs, (x, ω), del.π) = 1.
By relying on succinctness of RAM delegation, we can improve the CRS size for δ-mild SNARK from
poly(λ, |C|, n,m) to poly(λ, log |C|, n,m), where C is the membership circuit for language associated
with x. This is because the CRS size and verification time for RAM delegation only grows poly-
logarithmically with |C|. Moreover, this transformation preserves knowledge soundness as well as
δ-mildness of underlying SNARKs. For completeness, we provide this formally in Section 6.

An exciting line of recent works [CJJ21, CJJ22, KVZ21, HJKS22, WW22, DGKV22, PP22,
KLVW23] have designed RAM delegation from a variety of standard falsifiable assumptions such
as LWE, k-LIN, or sub-exponential DDH (and QR). Morover, Kalai et al. [KLVW23] established
a fantastic result about boosting any non-trivial RAM delegation (with fast verification) to fully-
succinct RAM delegation, under the existence of rate-1 string OT (known under many standard
assumptions). Thus, we view short CRS as a very mild assumption for non-trivial SNARKs.

2.2 Fully-succinct SNARKs from λϵ-mild SNARKs

The next step of our work is to design a generic compiler for boosting any λϵ-mild SNARK to
a fully-succinct SNARK, for any constant ϵ > 0. Given that a mild-SNARK can be viewed as a
mechanism to compress a witness ω into a verifiable encoding π, a natural idea is to iteratively
compose δ-mild SNARKs many times until we reach desired compression.

Specifically, let C be the circuit that verifies the NP language L for which we want to design
a SNARK, and n,m ≤ 2λ be the corresponding instance-witness lengths. The process begins by
initializing C0 as the circuit C for the language L, and sampling crs0 as the CRS for the mild SNARK
corresponding to the circuit C0. Next, we (iteratively) sample ℓ = λ

ϵ log λ many CRS crs1, . . . , crsℓ
for the (iteratively) defined languages L1, . . . ,Lℓ, where the circuit Ci+1 (corresponding to Li+1)
is set as the verification circuit for the mild SNARK corresponding to Li. That is, Ci+1 has crsi
hardwired, and it accepts an instance x if there exists a mild SNARK proof πi such that (x, πi) is
a valid proof-witness pair w.r.t. crsi. Given crs1, . . . , crsℓ, a prover can create a fully-succinct proof
by iteratively running the mild SNARK prover as follows – first, generate π0 as a SNARK proof
for x under crs0 using ω as witness; next, generate π1 as a SNARK proof for x under crs1 using π0
as witness; and so on, until the proof size is below a fixed poly(λ) threshold.

Whenever δ = λϵ, then after about logm
ϵ log λ iterative applications of a mild SNARK prover, we

obtain a proof π logm
ϵ log λ

of size at most poly(λ, n). This achieves the desired goal of full-succinctness.

Unfortunately, the above template doesn’t work!

CRS generation takes too long! Recall that a δ-mild SNARK only guarantees that the proof
size, |π|, is smaller than m, but it does not say anything about other parameters or algorithms.
Thus, it is possible that CRS size and/or the verifier’s running time is greater than |ω|, or the time
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taken to check C(x, ω) = 1. In such scenarios, we cannot efficiently generate the full CRS. This is
because, under crsi+1, the prover proves that it has a mild SNARK proof πi for x w.r.t. crsi. Thus,
the (i+ 1)th language membership circuit (for crsi+1) is the ith verification circuit (w.r.t. to crsi),
and hence |crsi| would grow with |C|,m, n and super-polynomially with i.

A shorter CRS helps? Recall that we already discussed how one can generically reduce the CRS
size (as well as time needed to compute it) to only grow poly-logarithmically with |C|. Isn’t that
enough to ensure the above template works? Unfortunately, the answer is no! This is because
RAM delegation only brings down CRS size from poly(λ, |C|, n,m) to poly(λ, log |C|, n,m). But,
for full-succinctness, our goal is to have the CRS size (as well as verification time) to grow only
poly-logarithmically with m. Thus, the question is how can we compose mild SNARKs such that
verification time and CRS size does not grow with m or n?

Tree-based composition. Our idea is to switch an iterative straightline composition of SNARKs
with an iterative, but tree-based, composition of SNARKs. Broadly speaking, the intuition is
similar to how composing hash functions in a tree-based fashion [Mer88] is more efficient than
a straightline iterated hashing approach [Mer79, Dam89].A similar issue was faced by Bitansky
et al. [BCCT13] in the context of designing Proof Carrying Data (PCD) [CT10] and complexity-
preserving SNARKs. Although Bitansky et al. assumed existence of a fully-succinct SNARK
(which is what we want to design here), the underlying technical approach is more general. Our
intuition is that a similar approach is quite meaningful for boosting non-trivial SNARKs.

In order to correctly implement such an idea, we need to break down the entire computation
needed to verify x ∈ L, given ω, into smaller pieces. Otherwise, tree-based composition will not
give desired amount of succinctness/compression. Basically, by interpreting the entire computation
of C(x, ω) = 1 as a step-by-step computation in the RAM model, we can ensure that the size of
computation for which we will use mild SNARKs is of fixed size. That is, let cnfg1, . . . , cnfgT be
the configuration of the RAM machine, corresponding to C(x, ω) = 1, where T = poly(λ) is the
total running time. (A RAM machine configuration corresponds to the RAM memory, program
state, and machine head at given time step.)

A prover runs a mild SNARK prover, at the base level of the tree, to prove that each step of
the computation is correctly performed, i.e. cnfgi → cnfgi+1 (here by ‘→’ we denote one RAM
computation step). Further, it accumulates these proofs iteratively (as we go up the tree) by
running a mild SNARK prover to prove that two configurations cnfgi, cnfgj are consistent. By
consistent, we mean that we can go from cnfgi → cnfgj after (j − i) RAM computation steps. The
intuition is that base level (i.e., level 0) we prove the configurations to be adjacent (i.e., 1 step
apart), while for next level (i.e., level 1) we prove cnfgi, cnfgj are 2 steps apart, and so on. Thus,
at level i, we prove the configurations to be 2i steps apart. By continuously composing SNARKs
for such step-by-step computations in a tree-based fashion, we can get around the succinctness
problem. This is because the instance and witness size, for each mild SNARK proof computation,
are always of fixed polynomial size, independent of n,m, T as well as the level i. Thus, the CRS
size doesn’t grow anymore, and the resulting SNARK will be fully-succinct.

How to extract the witness in polynomial time? Unfortunately, the above process brings
up a major bottleneck. The problem is how to prove (knowledge) soundness of the above design?
Soundness only states that π0 (proof at the base level) is hard to compute if x /∈ L. But, it does not
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say any of the iteratively computed proofs are hard to compute! Thus, we cannot rely on standard
soundness, but need to use knowledge soundness. But this would mean we have to recursively
run the extractor log T many times. Unfortunately, such a recursive extractor would not run in
polynomial time, since the depth of the tree is log T = O(log λ).

While the above feels a pretty big problem, this can be easily resolved by simply increasing
the arity of the tree (from 2 to λ). That is, rather than proving the configurations to be 2i steps
apart (at level i), we will prove configurations to be λi steps apart. With this change, the depth
of the SNARK tree will be constant, logλ T = O(1) (for any polynomial time computation). Thus,
we can perform recursive extraction from any accepting proof, given a poly-time cheating prover.
With this modification, we provide a more detailed sketch.

Boosting via SNARK tree. From here on, we assume we have a description of a RAM program R
that verifies validity of instance-witness pair (x, ω), rather than a fixed circuit C. R checks that
validity of witness for an instance w.r.t. L.

The prover starts by computing all configurations for every computation step, and hash-
ing down just the RAM memory portion for each step using a Merkle hash tree [Mer88]. At
the bottom level, the instance at each node consists of two consecutive pseudo-configurations
(ρ, state, iread), (ρ

′, state′, i′read), where ρ is the memory digest, state is the program state, and iread
is the index of the bit read during that step (i.e., machine head location). We call this pseudo-
configuration, because it only contains the digest of the memory instead of full memory. The
witness includes the local read/write bit and the write index bread, bwrite, iwrite, which can be used
to verify the transition between the two configurations. It also includes the Merkle tree openings
uread, uwrite for the read/write bits w.r.t. memory digest. Given the above, the language for the
nodes at bottom level is as follows:

Instance: (ρ, state, iread), (ρ′, state′, i′read).
Witness: bread, bwrite, iwrite, uread, uwrite.

Check if the transition is valid, and the hash openings uread and uwrite, along with the memory hash values ρ, ρ′,
the bits bread, bwrite, and memory indexes iread, iwrite are all consistent.

At all other levels, each node aggregates λ nodes from the lower level (see Fig. 1). The instance
contains just two pseudo-configurations: the initial and final pseudo-configuration out of the λ

nodes. And, the witness includes all pseudo-configurations and their corresponding SNARK proofs
of transitions. Basically, the prover proves that it knows a valid sequence of transitions between
the two pseudo-configurations. Below, we describe the language for intermediate levels informally:

Instance: (ρ1, state1, i1,read), (ρλ+1, stateλ+1, iλ+1,read).
Witness: {πj}j∈[λ], {(ρj , statej , ij,read)}j∈[λ+1].

Check if the mild SNARK verifier accepts every pair of instance ((ρj , statej , ij,read), (ρj+1, statej+1, ij+1,read)) and
proof πj for j ∈ [λ].

We highlight that all above languages have succinct description since the instance/witness sizes
as well as size of the associated membership circuit for each language has a fixed polynomial size.
Thus, this process can be iteratively carried out till the root of the tree. And, it ensures each
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individual CRS as well as the final proof size to be fully-succinct, i.e. independent of n,m, T .

(ρ̂1, ρ̂2) (ρ̂λ, ρ̂λ+1) (ρ̂λ+1, ρ̂λ+2) (ρ̂N−1, ρ̂N)

π1 πλ

. . .

(ρ̂1, ρ̂λ+1) (ρ̂λ+1, ρ̂2λ+1)

(ρ̂2λ, ρ̂2λ+1)

. . . . . . . . .

(ρ̂N−λ, ρ̂N)

. . . . . .

πλ+1 π2λ πN−1

Figure 1: Level i and level i+1 of the SNARK tree, and ρ̂ corresponds to a pseudo-
configuration, ρ̂ = (ρ, state, iread), and N = T/λi.

Lastly, we can design a recursive extractor efficiently to prove knowledge soundness. The
extractor first extracts a valid witness for the root node, and then it considers the extraction
procedure that computes a valid witness for the root node as an attacker, and continues the
recursive extraction procedure. Overall, by combining all the witnesses at the bottom level (leaves
of the tree), the extractor can reconstruct a valid witness that satisfies the RAM computation.
(Technically, the security argument also relies on the fact that the Merkle tree is secure, but
we ignore that detail for the sake of simplicity.) Clearly, the running time of extractor faces a
polynomial blow-up across each level of the tree (as the ith level extractor is treated as an attacker
for (i − 1)th level). However, as we discussed earlier, by designing trees with arity-λ, the height
of the SNARK tree remains constant, and as a result, the extractor’s runtime is polynomially
bounded. Our compiler is formally presented in Section 4.

2.3 Boosting milder SNARKs

As a final step, we also show a generic compiler to boost any non-trivial SNARK, i.e., with any
mildness parameter δ > 1. However, unlike our previous compiler, we require an additional property
from the underlying SNARK. To better understand this, let us first inspect what goes wrong if we
simply use the previous compiler for such ‘milder’ SNARKs.

Consider δ = 1 + ϵ for some constant ϵ > 0. To boost such a SNARK, we need a SNARK
tree of depth around log1+ϵ T = O(log λ), where T is the running time of the (non-deterministic)
computation. Recall this is exactly the scenario where the recursive extraction strategy fails! This is
precisely whe we considered trees of larger arity, to ensure the tree depth is constant. Unfortunately,
if the underlying SNARKs mildness is lower than λϵ, then we can no longer guarantee that a
constant number of iterative SNARK compositions will be enough for achieving full-succinctness.

Our intuition is that if the extractor runs ‘sufficiently fast’, then this issue goes away. Thus,
to resolve this issue, we introduce a notion of δ-mild SNARKs with fast extractors. Roughly, it
says that the ratio between the extractor’s running time and the cheating prover’s running time
is asymptotically equal to poly(δ). More formally, a δ-mild SNARK has a fast extractor if the
extractor’s runtime is poly(δ) · |A| + poly(λ, n,m, |π|). For such mild SNARKs, we can use our
boosting compiler to design a fully-succinct SNARK by relying on O(log λ)-depth SNARK tree.
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Although one could simply the above approach, we provide an alternate approach. Basically,
we show that any δ-mild SNARK, with a fast extractor E , can be generically boosted to a λ-
mild SNARK, with an extractor E ′ that runs in polynomial time. Very briefly, our approach is to
compose such mild-SNARKs in a straightline iterated fashion. Note that this will be sufficient since
our final goal is not to achieve a short CRS, but only a λ-mild SNARK. This can be further boosted
to full-succinctness by using our previous compilers. We describe this formally in Section 5.

2.4 Related Work, Open Questions, and Roadmap

Related Work. Recently, Kalai et al. [KLVW23] designed a generic compiler to boost any non-
trivial (flexible) RAM SNARGs to fully-succinct (flexible) RAM SNARGs, under a very mild as-
sumption of rate-1 string OT. Moreover, they showed a near equivalence between such flexible
RAM SNARGs and batch arguments (BARGs) for NP. One can view their result as a generic
compiler for boosting any non-trivial SNARK for P to a fully-succinct SNARK for P5. Our work
gives a matching boosting result for the non-deterministic class NP.

Proof Carrying Data (PCD) [CT10] generalizes SNARGs to distributed computation. Their
goal is for a group of participants in a distributed computation to create proofs of integrity and
legitimacy for their respective (local) computations that can be combined to create a global proof of
integrity and legitimacy of the entire distributed computation. PCDs are a significant generalization
of Incrementally Verifiable Computations (IVC) [Val08]. IVCs can be simply viewed as PCD for
straightline incremental computations (i.e., path graphs).

In a beautiful work, Bitansky et al. [BCCT13] developed new approaches for recursively com-
posing SNARKs, and provided new techniques for constructing and using PCD. One of their central
results was development of a bootstrapping mechanism for fully-succinct SNARKs with “expensive”
preprocessing to design fully-succinct complexity-preserving SNARKs. By complexity-preserving,
they meant that the prover’s time/space complexity is essentially the same as that required for
classical NP verification.

On a technical level, [BCCT13] relied on an elegant technique to recursively compose SNARKs
over a tree-like structure. As discussed in the overview, our approach builds on their composition
techniques. Apart from studying different problems, the key differences between our works are that
we show that recursive composition works even for non-trivial SNARKs, while they relied on fully-
succinct SNARKs. Moreover, a non-trivial SNARK verifier can be as large as some polynomial in
the description of the classical NP verification circuit, thus we had to rely on additional techniques
such as RAM delegation, while this was needed by Bitansky et al. since they assumed full-succinct
SNARKs.

Interestingly, by combining our results with [BCCT13], we obtain that any δ-mild SNARK,
with either a fast extractor or δ = λϵ, is sufficient to design complexity-preserving SNARKs and
PCDs.

Open questions. Our work leaves a lot of interesting questions for further research. We list out
some of them below.
5Recall SNARKs and SNARGs are the same object for P, since there is no witness.
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1. Our appraoch crucially relies on knowledge soundness. A great problem is can we boost
non-trivial SNARGs, without or with very weak extractability?

2. We also need SNARKs to be adaptively sound. Another great question is to similar compilers
assuming non-adapative soundness.

3. To shorten the CRS size, we need to rely on efficient RAM delegation. Can this be avoided,
or could we instead reduce to simpler assumptions such as CRHFs?

4. Do there exist such boosting SNARK results for other classes, other than P [KLVW23] and
NP (this work)?

5. Our fully-succinct SNARKs have “fixed” multiplicative overhead in the time/space needed
for computing the proof, compared to classical NP verification. Can we make this optimal
and only incur a “fixed” additive overhead?

Answering above questions will give us more insight in the study of SNARKs and related proof
systems.

Roadmap. The rest of the paper is organized as follows. First, we provide the necessary prelim-
inaries in Section 3, and next, we describe our main boosting compiler for mild SNARKs (with
short CRS) in Section 4. Later in Section 5, we show to boost even milder SNARKs, and finally,
we describe how to use RAM delegation to shorten CRS in Section 6.

3 Preliminaries

3.1 RAM Machine

A RAM machine is modeled as a deterministic machine R which takes input x ∈ {0, 1}n, has
random access to a large memory of size k upon which it can perform arbitrary reads and writes.
It performs a sequence of T computation steps where in each step, it reads from a single memory
cell, writes into a memory cell, and updates its local state. More concretely, the RAM machine
R is represented as a local state, a large memory of length k: M = (M1, . . . ,Mk), and a state-
transformation circuit which we denote by CRAM: CRAM(state, bread)→ (state′, iread, iwrite, bwrite).

In the above definition, input consists of state and bread, with state representing the state of
machine R, bread denoting the bit read from memory. Output includes the state′, iread, iwrite, and
bwrite. state′ is the updated state after transformation, iread is the index of the memory cell to be
read for state′, iwrite is the next index of the memory cell to write into, and bwrite is the bit to write
into that memory cell. Memory cell Miwrite is overwritten by bit bwrite.

RAM machine R takes as input x ∈ {0, 1}n: The first n memory cells are initialized as string
x, such that Mi = xi for all i ∈ [n], and the remaining memory cells {Mi}i∈{n+1,...,k} are determin-
istically initialized as 0 bits. The local state and transition circuit CRAM have fixed sizes.

3.2 Fully Succinct SNARK for RAM

Syntax. We define fully succinct SNARK for any RAM Machine.

Setup(1λ,R, n,m, T, k)→ crs. It takes as input security parameter λ, machine R, running time
bound T , instance length n, witness length m, and memory size k. It outputs crs.

10



Prove(crs, x, ω)→ π. The prover takes as input crs, instance x, witness ω, and outputs a proof π.

Verify(crs, x, π)→ {0, 1}. The verifier takes as input CRS crs, instance x, and proof π. It outputs
a bit to signal whether the proof is valid.

Completeness For every λ ∈ N, polynomial n = n(λ), m = m(λ), T = T (λ), k = k(λ), RAM
Machine R of running time at most T , memory size k, instance x ∈ {0, 1}n and witness ω ∈ {0, 1}m
where R(x, ω) = 1, there exists a negligible function negl(λ) for which the following holds:

Pr

[
Verify(crs, x, π) = 1 :

crs← Setup(1λ,R, 1n, 1m, T, k)

π ← Prove(crs, x, ω)

]
≥ 1− negl(λ).

Succinctness The SNARK is fully-succinct, if there exists polynomials p1, p2, p3, p4 such that for
all λ ∈ N, polynomials n = n(λ),m = m(λ), T = T (λ), k = k(λ), x ∈ {0, 1}n, ω ∈ {0, 1}m,
RAM machine R of running time at most T and memory size k, crs ← Setup(1λ,R, 1n, 1m, T, k),
and π ← Prove(crs, x, ω), it holds that |crs| ≤ p1(λ, log T ), |π| ≤ p2(λ, log T ), setup runtime is
poly(λ, log T ), and verifier runtime is poly(λ, n, log T ).

Definition 3.1 (Adaptive proof of knowledge). A SNARK scheme satisfies adaptive knowledge
soundness if there exists a extractor E such that for all polynomials n = n(λ), m = m(λ), k = k(λ),
T = T (λ), RAM Machines R of memory size k and running time T , every PPT attacker A, there
exists a negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr

 Verify(crs, x, π) = 1 ∧R(x, ω) = 0 :

crs← Setup(1λ,R, n,m, T, k)

(x, π)← A(crs)
ω ← E(A, crs, x, π)

 ≤ negl(λ).

3.3 Hash Tree

Syntax. It contains following polytime algorithms.

Setup(1λ, N)→ hk. The setup algorithm takes as input a security parameters λ, the size of input
N . It outputs a hash key hk.

Hash(hk, x)→ h. The hash function takes as input a hash key hk, a input string of size N , and
outputs a hash value h where |h| = poly(λ, logN).

Open(hk, x, i)→ u. The opening algorithm takes as input a hash key hk, a input of size N , an
index i ∈ [N ], and outputs an opening u, where |u| = poly(λ, logN).

Verify(hk, h, i, b, u)→ {0, 1}. The verifer algorithm takes as input a hash key hk, a hash value h,
an index i ∈ [N ], bit b, opening u, and outputs 0 or 1.

Write(hk, h, i, b, u)→ h′. The writing algorithm takes as input a hash key hk, a hash value h, an
index i ∈ [N ], a bit b to write into index i, opening u. It outputs an updated hash value h′.
It aborts and outputs ⊥ if u is not a valid opening with respect to h.
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Update(hk, i, b, ui, j, uj)→ u′j . The update function takes as input hash key hk, index i, bit value b

(to be updated at index i), its opening u, and another index j, and its opening uj . It outputs
an updated opening u′j , which is the opening for index j.

In words, the update algorithm takes two openings ui, uj for some locations i, j as well as a
bit b. Its goal is to generate an updated opening for index j, under the condition that the
input bit at location i is being changed to b.

Completeness. Opening: For every λ,N ∈ N, x ∈ {0, 1}N , i ∈ [N ], hk ← Setup(1λ, N), h =

Hash(hk, x), and u = Open(hk, x, i), it holds that Verify(hk, h, i, xi, u) = 1.
Writing: For every λ,N ∈ N, h ∈ {0, 1}λ, i ∈ [N ], b ∈ {0, 1}, u ∈ {0, 1}U , and h′ = Write(hk, h, i, b, u),
it holds that Verify(hk, h′, i, b, u) = 1.

Definition 3.2. (Collision resistance). A hash tree satisfies collision resistance if for every PPT
adversary A, there exists a negligible function negl(·) such that for all λ,N ∈ N, the following
holds:

Pr

 Verify(hk, h, i, b, u) = 1

∧ Verify(hk, h, i, b′, u′) = 1

∧ b ̸= b′
:

hk← Setup(1λ, N)

(h, i, b, b′, u, u′)← A(hk)

 ≤ negl(λ).

Definition 3.3. (Soudness of Updating). A hash tree satisfies soundness of updating if for every
PPT adversary A, there exists a negligible function negl(·) such that for all λ,N ∈ N, the following
holds:

Pr


Verify(hk, h, iupd, bupd, uupd) = 1

∧Write(hk, h, i, b, u) = h′ ̸=⊥
∧ i ̸= iupd
∧ Verify(hk, h′, iupd, bupd, u

′
upd) ̸= 1

:

hk← Setup(1λ, N)

(h, i, b, u, iupd, bupd, uupd)← A(hk)
u′upd = Update(hk, i, b, u, iupd, uupd)

 ≤ negl(λ).

Remark 3.4. ([Mer88]) From any collision resistant hash family, one can build a Hash Tree as
above.

Remark 3.5. We require an additional property from the collision resistant hash family as building
block: For h = Hash(hk, 0n), the output h must be an all zeros string. We argue that such property
can be achieved using any collision resistant hash family H. We define a new collision resistant
hash family as the following:

Hash(hk, x)→ h. For x = 0n, it outputs h as an all zeros string. For x ̸= 0n, it outputs h =

1||H.Hash(hk, x).

The rest of the functions are identical to H. Completeness and collision resistance properties
immediately follow from those properties of H. Consequently, a Hash Tree designed using such a
collision-resistant hash family as its building block will also inherit the property of generating an
all zeros hash value when taking an all zeros input.
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3.4 RAM Delegation

Syntax. A RAM delegation scheme consists of the following algorithms.

Setup(1λ,R, T, n)→ crs : The setup algorithm takes as input security parameter λ, machine R,
running time bound T , and input length n. It outputs CRS crs.

Prove(crs, x)→ π : The prover algorithm takes as input CRS crs, input x ∈ {0, 1}n, and outputs
proof π.

Verify(crs, x, π)→ {0, 1} : The verifier algorithm takes as input crs, input x, and proof π, and
outputs either 0 or 1.

Completeness For all RAM machine R, and λ, T, n ∈ N such that n ≤ T ≤ 2λ, and x ∈ {0, 1}n
such that R(x) accepts in T steps, the following holds:

Pr

[
Verify(crs, x, π) = 1 :

crs← Setup(1λ,R, T, n)
π ← Prove(crs, x)

]
≥ 1− negl(λ).

Succinctness In the above completeness experiment, |crs| ≤ poly(λ, log T ). Prover algorithm
runs in time poly(λ, T ) and outputs a proof of length |π| ≤ poly(λ, log T ). Verifier runs in time
poly(λ, log T, n).

Definition 3.6 (Soundness). For every polynomial n = n(λ), T = T (λ), RAM machine R that
takes a input of length n and runs in time T , and every PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds:

Pr

[
Verify(crs, x, π) = 1 ∧R(x) does not accept in T steps :

crs← Setup(1λ,R, T, n)
(x, π)← A(crs)

]
≤ negl(λ).

Corollary 3.7. [CJJ21, CJJ22, KVZ21, HJKS22, WW22, DGKV22, PP22, KLVW23] Assuming
either LWE, k-LIN over pairing groups for any constant k ∈ N, or sub-exponential DDH over
pairing-free groups (and QR), then for every λ ∈ N, T, n ∈ poly(λ), RAM delegation exists for
machine R with running time T and input size n.

4 Full Succinctness from Mild SNARKs with Short CRS

We start by establishing the concept of δ-mild SNARKs.

δ−Mild SNARK with succinct CRS. Consider the circuit satisfiability language. Let C be any
boolean circuit {0, 1}n×{0, 1}m → {0, 1} that takes as input x ∈ {0, 1}n, ω ∈ {0, 1}m and outputs a
bit {0, 1}. We define the notion of δ-mild SNARKs for the circuit satisfiability language, where such
SNARKs are defined identically to that as SNARKs for RAM, except the Setup algorithm takes
description of circuit C, n (in unary), and m (in binary) as inputs. Next, we define δ-mildness and
succinct CRS properties formally.
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δ-mildness. Let δ be a function such that δ = δ(λ, n,m). A SNARK satisfies δ-mildness, if there
exists a poly p(·) such that for every λ ∈ N, polynomial n = n(λ),m = m(λ), boolean circuit
C = {0, 1}n × {0, 1}m, x ∈ {0, 1}n, ω ∈ {0, 1}m where C(x, ω) = 1, π ← Prove(crs, x, ω), it holds
that

|π| ≤ m

δ(λ, n,m)
+ p(λ, n).

Succinct CRS A SNARK has succinct CRS, if there exists a poly p(·) such that for every λ ∈ N,
polynomial n = n(λ),m = m(λ), boolean circuit C = {0, 1}n × {0, 1}m, crs← Setup(1λ, n,m, C), it
holds that |crs| ≤ p(λ, log |C|, n,m).

4.1 Fully-Succinct SNARKs from λϵ-Mild SNARKs

We discuss how to build fully-succinct SNARK for any RAM Machine R with bounded running
time from a λϵ-mild SNARK and hash tree systems. Later, we show how to generically improve
these to RAM Machines with unbounded running time.

Special Notation: Composite Hash Tree. We rely on a specialized notation that we call
Composite Hash Trees. One may consider Composite Hash Tree as a set of k Hash Trees, each
assigned a section of input. For example, the hash value h ← Hash(hk, x) consists a number of k
hash values h = (h1, . . . , hk) where each value corresponds to one section of x. As long as k is a
constant number, the efficiency and soundness properties all maintain from the original Hash Tree.
The desired property from Composite Hash Tree is that the reading, opening, and writing at the
i-th section of string x only depends on and affects hi. Composite Hash Tree overloads the syntax
of Hash Tree, except for the following:

Setup(1λ, N1, . . . , Nk)→ hk. The setup algorithm is modified to accept multiple inputs N1, . . . , Nk.
The size of hash input is Σk

i=1Ni. Input is considered as a number of k continuous segments,
where the i-th segment is of size Ni. It also sets hash key hk as a sequence of of k independent
hash keys: hk = (hk1, . . . , hkk).

We define the additional property of completeness: For every λ, k,N1, . . . , Nk ∈ N, x(i) ∈ {0, 1}Ni

for all i ∈ [k], x = (x(1), . . . , x(k)), and hk = (hk1, . . . , hkk)← Setup(1λ, N1, . . . , Nk),

Pr
[
Hash(hk, x) = (Hash(hki, x

(1)), . . . ,Hash(hki, x
(k)))

]
= 1.

For the rest of this section, we only rely on such Composite Hash Trees.

Our Fully-Succinct SNARK Construction. We rely on δ-mild SNARK Γ = (Γ.Setup,Γ.Prove,

Γ.Verify) for δ ≥ 2λ, and composite hash tree H = (H.Setup,H.Hash,H.Open,H.Verify,H.Write,H.Update).
Below is our design.

Setup(1λ,R, n,m, T, k)→ crs. The setup algorithm follows these steps:

1. RAM machine R is as the following: R takes as input (x, ω), running time of R is T ,
and memory usage is capped at k. Size of input (x, ω) is n+m.
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2. We then specify ℓ as ℓ = ⌈ log Tlog λ ⌉. We also specify the state transformation circuit of R as
CRAM and the memory as M = (M1, . . . ,Mk). It sets

hk← H.Setup(1λ, n,m, k − n−m).

The intuition is that the memory is splitted into three sections where the first two
sections are used to record the input x, ω and the last section is used as a working tape.
Then under the hash key hk = (hk1, hk2, hk3), hash value h consists of three independent
values (h1, h2, h3).

3. It generates a number of ℓ+ 1 common reference strings: For all i ∈ {0, . . . , ℓ},

crsi ← Γ.Setup(1λ, 1ni , 1mi , Ci),

where Ci is defined as the following, and ni is the instance size, mi is the witness size
for Ci.

4. It outputs crs = (hk, crs0, . . . , crsℓ).

Circuit C0

Instance: (ρ, state, iread), (ρ′, state′, i′read).
Witness: bread, bwrite, iwrite, uread, uwrite.
Hardwired: CRAM.
Output: C0 outputs 1 if and only if the followings are satisfied:

– CRAM(state, bread) = (state′, i′read, iwrite, bwrite).

– H.Verify(hk, ρ, iread, bread, uread) = 1.

– H.Write(hk, ρ, iwrite, bwrite, uwrite) = ρ′.

For i ∈ {1, . . . , ℓ}:

Circuit Ci

Instance: (ρ, state, iread), (ρ′, state′, i′read).
Witness: {πj}j∈λ, {(ρ, state, iread)j}j∈[λ+1].
Hardwired: crsi−1.
Output: Ci outputs 1 if and only if:

– Γ.Verify(crsi−1, ((ρ, state, iread)j , (ρ, state, iread)j+1), πj) = 1, for all j ∈ [λ].

– (ρ, state, iread) = (ρ1, state1, i1)

– (ρ′, state′, i′read) = (ρλ+1, stateλ+1, iλ+1)

Prove(crs, x, ω)→ π . The prover algorithm follows these steps:

1. It simulates R step by step. Previously we specified the state transformation circuit of
R as CRAM and the memory as M . Since R has a maximum number of T steps, the
simulation process involves a total number of T + 1 states. Recall definition of RAM
machine where for each step of computation, the original local state state transforms
into a new state state′. Such transition involves an index to read iread, the bit bread at
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index iread. It sets ρ = H.Hash(hk,M) where M = (M1, . . . ,Mk) represents the whole
memory at such state. When reading the bit bread at index iread, it simultaneously
computes the opening uread = H.Open(hk,M, iread). Then state transformation circuit
CRAM takes state and bread as input and outputs state′, i′read, iwrite, bwrite. It updates the
bit at index iwrite, setting M ′

iwrite
as bwrite, and M ′

i as Mi for all i ∈ [k] \ {iwrite}. It
sets updated memory M ′ = (M ′

1, . . . ,M
′
k). Next, it obtains updated hash value as

ρ′ = H.Write(hk, h, bwrite, iwrite).
It records (state, iread, bread, ρ, uread)i, for i ∈ [T + 1] corresponding to the i-th state. It
records (bwrite, iwrite, uwrite)i for i ∈ [T ] as the parameters of writing while going from
statei to statei+1.

2. For all i ∈ [T ], it sets instance xi and witness ωi as the following:

xi = ((ρ, state, iread)i, (ρ, state, iread)i+1), ωi = (bread, bwrite, iwrite, uread, uwrite)i.

Then for all i ∈ [T ], it generates πi ← Γ.Prove(crs0, xi, ωi).

3. It generates a tree G = (V,E) of ℓ + 1 levels, as the following: The top level is set as
level ℓ and the bottom level is set as level 0. Level 0 contains a number of T nodes, and
level i contains approximately λℓ−i nodes. Every node at levels 1, . . . , ℓ is connected to
a number of λ nodes at the lower level. Specifically, the j-th node on level i(1 ≤ i ≤ ℓ)

has λ child nodes: the ((j− 1) ·λ+1)-th node, the ((j− 1) ·λ+2)-th node, . . ., and the
(j · λ)-th node on level i − 1. Since T ≤ λℓ, we assume without loss of generality that
there is at most one node on level ℓ. Note that the graph G has a tree structure, where
each internal node has λ child nodes.

4. For each node v ∈ V , it assigns of a pair of instance and proof to v: (instv, proofv).
For the i-th node at level 0 (denoted as v0,i), it assigns instance instv0,i = xi and proof
proofv0,i = πi to such node. Next, it assigns a pair of instance and proof to each node
at level 1 to ℓ.

5. It starts from level 1. Each node v at level 1 has a sequence of λ child nodes: v1, . . . , vλ.
It then takes instances instvi and proofs proofvi for all i ∈ [λ]. It parses instance instvi as

instvi = ((ρ, state, iread)i, (ρ, state, iread)i+1).

Then for all i ∈ [λ+ 1], it sets zi as (ρ, state, iread)i. It generates proof

σ = Γ.Prove(crsi, (z1, zλ+1), ({σi}i∈[λ], {zi}i∈[λ+1])).

It assigns (z1, zλ+1) as the instance and σ as the proof to such internal node:

instv = (z1, zλ+1), proofv = σ.

6. It repeats step 5 for level 2, 3, . . . , ℓ.

7. The root node is now assigned with the instances (ρ, state, iread) and (ρ′, state′, i′read),
along with the proof σ. Recall that one may consider hash value as three independent
values, such that ρ = (ρ1, ρ2, ρ3) and ρ′ = (ρ′1, ρ

′
2, ρ

′
3). The output is π = (ρ2, ρ

′, σ).
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Verify(crs, x, π)→ {0, 1} . It first parses crs as (hk, crs0, . . . , crsℓ) and π as (ρ2, ρ
′, σ). It sets ρ3 as

an all zeros string. By Remark 3.5, ρ3 is equivalent to H.Hash(hk3, 0
k−n−m), which allows

the verifier to directly generate ρ3 without evaluating the hash function. Next, it sets ρ1 as
H.Hash(hk1, x), and ρ as (ρ1, ρ2, ρ3). It then sets state as the starting state and state′ as the
accepting state, and iread as the reading bit’s index for the starting state, i′read as such index
for the accepting state. Without loss of generality, we take iread and i′read as fixed according
to the definition of machine R. The verifier outputs

Γ.Verify(crsℓ, ((ρ, state, iread), (ρ
′, state′, i′read)), σ).

Completeness The completeness of the above design directly follows from the completeness of
composite hash tree H and δ-mild SNARK Γ.

Efficiency For all i ∈ {0, . . . , ℓ}, we denote ni as instance size, mi as witness size, and |πi| as
proof size for each individual node at level i.

Lemma 4.1. For all i ∈ {0, . . . , ℓ}, |πi| ≤ n0 +m0 + 2 · p(λ, n0), mi ≤ λ · (n0 +m0 + 2 · p(λ, n0)).

Proof. We prove the lemma using induction.

Base Case (i = 0). By δ-mildness (δ ≥ 2λ), we have |π0| ≤ m0/(2λ) + p(λ, n0). Thus the base
case satisfies the lemma.

Inductive Step (1 ≤ i ≤ ℓ). Suppose that the Lemma holds for i − 1 and we proceed to i. By
inductive hypothesis, |πi−1| is at most n0 + m0 + i · p(λ, n0). We note that due to the design of
our tree-style SNARK, instance at each level consists of (ρ, state, iread) and (ρ′, state′, i′read), with
uniform sizes across all levels. Therefore, n0, . . . , nℓ are all equivalent. Given that the each witness
at level i consists of {πj}j∈λ and {(ρ, state, iread)j}j∈[λ+1] which combines a number of λ proofs and
instances from level i− 1, witness size mi is bounded by the following:

mi ≤ λ · (ni−1 + |πi−1|) ≤ λ · (n0 +m0 + 2 · p(λ, n0)).

By succinctness of Γ, |πi| is at most:

|πi| ≤
mi

2λ
+ p(λ, ni) ≤ n0 +m0 + 2 · p(λ, n0).

Putting the above together completes the proof for the lemma.

Lemma 4.2. The prover’s running time is T · poly(λ) where T is the running time of R(x, ω).

Proof. Since instance and witness at level 0 only contain local parameters, by Lemma 4.1, we have
mi ≤ poly(λ) for some universal polynomial poly(·) and for all i ∈ {0, . . . , ℓ}. Instance size ni = n0

and is also upper bounded by poly(λ) for all i ∈ {0, . . . , ℓ}. Thus, prover’s running time at each
node is bounded by poly(λ) for some universal poly(·). The overall running time of the prover is
at most T · poly(λ) since the total number of nodes in the data structure is linear in T .

Lemma 4.3. The Setup algorithm’s running time is poly(λ).
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Proof. The Setup algorithm of our design includes setting up hash key hk and Γ CRS crs0, . . . , crsℓ.
The hk setup is fast. To analyze the setup time of crsi ← Γ.Setup(1λ, 1ni , 1mi , Ci), we must un-
derstand circuit size |Ci|. Observe that |C0| = poly(λ, n0,m0), and |Ci| = poly(λ, |crsi−1|, ni,mi)

for all i ∈ [ℓ]. By Lemma 4.1, it holds that for all i ∈ {0, . . . , ℓ}, mi, ni ≤ poly(λ) for some uni-
versal polynomial poly(·). Thus, |C0| = poly(λ). By succinct CRS property of Γ, it holds that
|crsi| ≤ poly(λ, log |Ci|, ni,mi) for all i ∈ [ℓ], which implies that |Ci| ≤ poly(λ, log |Ci−1|). Thus
∀i ∈ [ℓ], |Ci| ≤ poly(λ) for some universal polynomial poly(·). The overall Setup time is poly(λ) for
ℓ = log T

log λ .

Lemma 4.4. Assume that Γ is a δ-mild SNARK (δ ≥ 2λ) with short CRS, and H is a Hash Tree,
then the above design is a fully succinct SNARK.

Proof. Following from our design, crs = (hk, crs0, . . . , crsℓ), where hk represents the hash key. Thus,
|hk| ≤ poly(λ) by design of hash tree. Following from the analysis of Lemma 4.3, it holds that
|crsi| ≤ poly(λ, log |Ci|, ni,mi) = poly(λ) for some universal polynomial poly(·), and the overall CRS
size satisfies |crs| ≤ poly(λ) for ℓ = log T

log λ . By Lemma 4.1, proof size also satisfies full succinctness,
such that |π| ≤ poly(λ).

Soundness The soundness analysis is as below.

Theorem 4.5. Assuming that the mildly succinct SNARK scheme Γ satisfies the adaptive proof
of knowledge property, and the Hash Tree H satisfies soundness and collision-resistance, then the
above SNARK scheme also satisfies the proof of knowledge property.

Proof. We will show how to construct an extractor E for our scheme. Here, we assume E as
an extractor with non-black-box access to A. We first build recursive extractor E ′. E ′ also has
non-black-box access to the attacker.

E ′(A, crs, x, π)→ (G = (V,E), {(instv, proofv,witv)}v∈V ). Below is a step-by-step explanation:

1. It parses crs as (hk, crs0, . . . , crsℓ), proof π as (ρ2, ρ′, σ). Using hash key hk = (hk1, hk2, hk3),
it sets ρ1 = H.Hash(hk1, x), ρ = (ρ1, ρ2, h3), and state, iread, state

′, i′read as the starting and
ending state with their reading index.

2. It sets tree G = (V,E) as defined in the prover’s algorithm. Next, it assigns an in-
stance and proof pair, an extractor algorithm to each internal node of G. Denote the
only node on level ℓ as vℓ. It first assigns instance and proof to such node: instvℓ =

((ρ, state, iread), (ρ
′, state′, i′read)), proofvℓ = σ. Then, it sets extractor algorithm extrvℓ as:

extrvℓ(A, crsℓ, instvℓ , proofvℓ)→ witvℓ . The extractor takes as input crsℓ, instvℓ , proofvℓ ,
and outputs a witness

witvℓ ← Γ.E(A, crsℓ, instvℓ , proofvℓ).

3. It assigns instance, proof, extractor for each node at level i = ℓ−1. For any node v at level
i, ideally the extractor at v’s parental node u, extru outputs the extracted witness as
{σj}j∈[λ], {(ρ, state, iread)j}j∈[λ+1]. Consider that v is the j-th child node of the parental
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node, it assigns instance and proof: instv = ((ρ, state, iread)j , (ρ, state, iread)j+1), proofv =

σj . Upon instance and proof, it sets the extractor for node v:

extrv(extru, crsi, instv, proofv)→ witv. It takes as input crsi, instv, proofv, and outputs a
witness

witv ← Γ.E(extru, crsi, instv, proofv).

4. It repeats step 3 from level i = ℓ− 1 to i = 0.

5. It outputs G = (V,E), {(instv, proofv,witv)}v∈V .

Claim 4.6. For every efficient and valid attacker A, E ′(A, crs, x, π) is a polynomially bounded
algorithm.

Proof. Efficient attacker A gives polynomials n = n(λ),m = m(λ), T = T (λ), k = k(λ). Thus,
ℓ = ⌈ log Tlog λ ⌉ = O(1). For all i ∈ {0, . . . , ℓ}, denote Vi as the the set of all nodes at the i-th level of
G. Given that the sizes of instances and witnesses are equivalent across the same level, for nodes
at level i, let ni and mi represent the sizes of the instance and witness respectively. Following
from Lemma 4.1, for all i ∈ {0, . . . , ℓ}, mi = poly(λ), and instance only contains local parameters
where ni = poly(λ). For each i ∈ {0, . . . , ℓ}, extractor at any node v at level i runs in time
poly(|crsi|, ni,mi, |extru|), where u is the parental node of v and |extru| is the running time of extru.
Since number of levels ℓ is a constant value, and the size of extractor only has a polynomial blow
up across each level, we conclude that the running time of E ′(A, crs, x, π) is polynomially bounded.

Lemma 4.7. Assuming that Γ satisfies adaptive proof of knowledge, then for all polynomials
n = n(λ), m = m(λ), k = k(λ), T = T (λ), RAM Machines R of memory size k and running time
T , every PPT attacker A, when E has non-black-box access to A, there exists a negligible function
negl(·) such that for all λ ∈ N, the following holds for all i ∈ {0, . . . , ℓ}:

Pr

 Verify(crs, x, π) = 1

∧ ∃v ∈ Vi s.t.
Ci(instv,witv) = 0

:

crs← Setup(1λ,R, 1n, 1m, T, k)

(x, π)← A(crs)
(G, {(instv, proofv,witv)}v∈V )← E ′(A, crs, x, π)

 ≤ negl(λ),

where in the above equation, graph G = (V,E) consists of ℓ+ 1 levels, and the set Vi contains the
nodes on level i of G.

Proof. We construct a proof by induction on i.

Base Case (i = ℓ): We first show that the lemma holds for i = ℓ. Assume that there exists some
v ∈ Vℓ such that Verify(crs, x, π) = 1, Cℓ(crsℓ, instv,witv) = 0, where witv ← extrv(crsi, instv, proofv).
We build a reduction algorithm B that breaks the proof of knowledge property of Γ.
A starts by outputting RAM Machine R and λ, n,m, T, k. Reduction algorithm B sets up

hash key hk ← H.Setup(1λ, n,m, k − n − m) and sets hash value h3 = H.Hash(hk3, 0
k−n−m).

Next, for all i ∈ {0, . . . , ℓ − 1}, B generates circuits Ci and sets the corresponding CRS crsi ←
Γ.Setup(1λ, 1ni , 1mi , Ci) where definition of Ci follows from the Setup algorithm and ni,mi are the
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instance and witness size of Ci. B then sets circuit Cℓ and queries the Γ challenger with λ, nℓ,mℓ, Cℓ.
The challenger outputs crsℓ. B outputs crs = (hk, h3, crs0, . . . , crsℓ). Upon crs, A outputs (x, π).

Consider that E ′(A, crs, x, π) outputs graph G = (V,E) and {(instv, proofv,witv)}v∈V . From the
assumption, with non-negligible probability, there exists some v ∈ Vℓ such that Verify(crs, x, π) = 1

and Cℓ(crsℓ, instv,witv) = 0. Verify(crs, x, π) = 1 implies that Γ.Verify(crsℓ, instv, proofv) = 1.
Meanwhile, recall that witv was extracted as the following: witv = extrv(crsℓ, instv, proofv) =

Γ.E(A, crsℓ, instv, proofv). Thus B breaks the proof of knowledge property by outputting instv, proofv.

Inductive Step (0 ≤ i < ℓ): Suppose that the lemma holds for all j < i ≤ ℓ. We show
that the above lemma also holds for i = j. Assume that there exists some v ∈ Vj such that
Cj(crsj , instv,witv) = 0, where witv ← extrv(extru, crsj , instv, proofv) for u as the parental node. We
build the following reduction algorithm B which breaks the proof of knowledge property of Γ.
A starts by outputting λ, n,m,R, T, k. B sets hk ← H.Setup(1λ, n,m, k − n − m), h3 =

H.Hash(hk3, 0
k−n−m). Next, B generates circuits C0, . . . , Cj and crs0, . . . , crsj−1 using the setup

algorithm of Γ. then, B queries the Γ challenger with λ, nj ,mj , Cj and the challenger outputs
crsi. B then generates circuit Cj+1, . . . , Cℓ and crsj+1, . . . , crsℓ accordingly. Next B outputs crs =

(hk, h3, crs0, . . . , crsℓ). A then outputs (x, π).
Consider E ′(A, crs, x, π) outputs G = (V,E) and {(instv, proofv,witv)}v∈V . Again we denote

u as a parental node of v. Then extru outputs witu which contains the node v’s instance instv
and proof proofv. Following from the inductive hypothesis, with all but negligible probabil-
ity, Cj+1(crsj+1, instu,witu) = 1, which implies that Γ.Verify(crsj , instv, proofv) = 1. According
to the above assumption, with non-negligible probability, there exists some v ∈ Vj such that
Cj(crsj , instv,witv) = 0, where witv = extrv(extru, crsj , instv, proofv) = Γ.E(extru, crsj , instv, proofv).
Thus, B breaks the proof of knowledge property by outputting instv, proofv.

The recursive extractor E ′ falls short as a sufficient extractor, as it only produces the instance
and witness for individual nodes. To build a comprehensive extractor, we introduce algorithm E ,
which given (x, π), outputs a valid witness ω satisfying R(x, ω) = 1.

E(A, crs, x, π)→ ω. We bring a detailed breakdown:

1. It runs E ′(A, crs, x, π) and obtains G = (V,E), {(instv, proofv,witv)}v∈V .

2. For the i-th bottom node vi, it parses the instance instvi as (ρ, state, iread)i, (ρ′, state′, i′read)i,
and witness witvi as bread, bwrite, iwrite, uread, uwrite.

3. It initializes ω as a zero string of length m, ω = 0m. It then iterates from i = 1 to i = T .
At each node vi, if the reading index iread is fresh and falls within the memory range
designated for the witness, it captures the bit bread as the (iread−n)-th bit of ω. Namely,
if the memory block iread is unused in the previous steps and n + 1 ≤ iread ≤ n +m, it
sets ωiread−n as bread.

4. It outputs ω.

Lemma 4.8. Assuming that Γ satisfies adaptive proof of knowledge, for all polynomials n = n(λ),
m = m(λ), k = k(λ), T = T (λ), RAM Machines R of memory size k and running time T , every
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PPT attacker A, when E has non-black-box access to A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds:

Pr

 Verify(crs, x, π) = 1

∧R(x, ω) = 0
:

crs← Setup(1λ,R, 1n, 1m, T, k)

(x, π)← A(crs)
ω ← E(A, crs, x, π)

 ≤ negl(λ),

Proof. Next, we assume that there exists some PPT adversary A breaking the proof of knowledge
property of the above scheme. Common reference string crs is set from Setup(1λ, R, 1n, 1m, T, k).
Given crs, A outputs (x, π), such that Verify(crs, x, π) = 1 and R(x, E(A, crs, x, π)) rejects.

Our proof follows from a case by case reduction:

Type 1: Consider that in the above experiment, one runs E ′(A, crs, x, π) and obtains G = (V,E),
{(instv, proofv,witv)}v∈V ). For type 1 attacker A, there exists at least one node v in G at a
certain level i, where instance instv and extracted witness witv at such node do not satisfy Γ

relation: Ci(instv,witv) = 0.

Type 2, 3: Recall that each node v ∈ V is associated with an instance defined by ((ρ, state, iread),
(ρ′, state′, i′read)) and a witness as (bread, bwrite, iwrite, uread, uwrite). Arrange the nodes at the
bottom level from left to right as a sequence, labeled as v1, . . . , vT . For every i ∈ [T ],
denote vi.ρ, vi.iread, vi.bread, vi.uread, vi.iwrite, vi.bwrite, vi.uwrite as the respective terms in the
given instance and witness. For type 2 and 3 attacker A, there exists at least one pair of
indexes i∗, j∗ ∈ [T ] and i∗ < j∗, such that all of the following conditions hold:

– vi∗ .iread = vj∗ .iread and vi∗ .bread ̸= vj∗ .bread,

– For all i ∈ {i∗, . . . , j∗ − 1}, vi.iwrite ̸= vi∗ .iread.

Intuition of type 2 and 3 is that the attacker reads the same memory index as inconsistent
bits, even though this index has not been modified between the two readings.

Consider that one applies the updating algorithm H.Update to update the opening vi∗ .uread for
bit vi∗ .bread at index vi∗ .iread starting from the i∗-th step, along with every writing operation,
until the (j∗ − 1)-th step. Namely, define ui as the updated opening at the i-th step. And
ui∗ is obtained as

ui∗ = H.Update(hk, vi∗ .iwrite, vi∗ .bwrite, vi∗ .uwrite, vi∗ .iread, vi∗ .uread).

Next, for all i ∈ {i∗ + 1, . . . , j∗ − 1}:

ui = H.Update(hk, vi.iwrite, vi.bwrite, vi.uwrite, vi∗ .iread, ui−1).

For type 2 attacker A, the update algorithm fails to provide a valid opening uj∗−1, such that
H.Verify(hk, vj∗ .ρ, vi∗ .iread, vi∗ .bread, uj∗−1) = 0. For type 3 attacker A, the update algorithm
successfully outputs a valid opening where H.Verify(hk, vj∗ .ρ, vi∗ .iread, vi∗ .bread, uj∗−1) = 1.

Type 4: For type 4 attacker A, there exists at least one pair of indexes i∗, j∗ ∈ [T ] and i∗ < j∗,
such that the following conditions hold:
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– vi∗ .iwrite = vj∗ .iread and vi∗ .bwrite ̸= vj∗ .bread,

– For all i ∈ {i∗ + 1, . . . , j∗ − 1}, vi.iwrite ̸= vi∗ .iwrite.

The intuition is that type 4 attacker writes a specific bit to a memory location, but then
reads a different bit from that same location.

Type 5: For type 5 attacker A, there exists some index i∗ ∈ [T ], such that the following conditions
hold:

– vi∗ .iread ∈ [n] and vi∗ .bread ̸= xvi∗ .iread ,

– For all i ∈ {1, . . . , i∗ − 1}, vi.iwrite ̸= vi∗ .iread.

Type 5 attacker reads a bit on the input tape that does not match the actual input x.

Type 6: For type 6 attacker A, there exists some index i∗ ∈ [T ], such that the following conditions
hold:

– vi∗ .iread ∈ {n+m+ 1, . . . , k} and vi∗ .bread ̸= 0,

– For all i ∈ {1, . . . , i∗ − 1}, vi.iwrite ̸= vi∗ .iread.

Type 6 attacker reads non-zero bits on a working tape that should have been initialized to
all zeros.

Claim 4.9. Assuming that Γ satisfies adaptive proof of knowledge, then type 1 attacker A has at
most negligible advantage.

Proof. Assuming that Γ satisfies adaptive proof of knowledge, then algorithm E ′ satisfies the prop-
erty defined in Lemma 4.7. Assume that type 1 attacker has non-negligible advantage, we design
a reduction algorithm B that breaks such property.
A starts by outputting λ, n,m, T, k and RAM MachineR. B outputs crs← Setup(1λ,R, 1n, 1m, T, k).

A then outputs x and π. B outputs A, x, and π.
By definition of type 1 attacker A, let (G, {(instv, proofv,witv)}v∈V ) ← E ′A(crs, x, π) for G =

(V,E). By definition of a type 1 attacker, there exists some v ∈ V at some level i, such that
Ci(instv,witv) = 0. Thus B breaks the property in Lemma 4.7 with non-negligible advantage.

Claim 4.10. Assume that the Hash Tree H satisfies soundness of updating, then type 2 attacker
A has at most negligible advantage.

Proof. Assume that type 2 attacker A has non-negligible advantage, we design a reduction algo-
rithm B that breaks the soundness of updating property of Hash Tree H.
A starts by outputting RAM Machine R. Next, B queries the hash challenger and obtains hash

key hk. B then generates h3, crs0, . . . , crsℓ and outputs crs as (hk, h3, crs0, . . . , crsℓ). Upon crs, A
outputs x, π. Following from the definition of type 2 attacker, there exists some index i where
i∗ ≤ i ≤ j∗ − 1, such that the updating of opening fails at the i-th node on the bottom level.
Namely, the following conditions hold for some i ∈ {i∗, . . . , j∗ − 1}:

22



– H.Verify(hk, vi.ρ, vi∗ .iread, vi∗ .bread, ui−1) = 1,

– H.Verify(hk, vi+1.ρ, vi∗ .iread, vi∗ .bread, ui) = 0.

For simplicity, we define ui∗−1 as ui∗−1 = vi∗ .uread in the above equations. Recall that ui =

H.Update(hk, vi.iwrite, vi.bwrite, vi.uwrite, vi∗ .iread, ui−1). Also, it follows from the failure of type 1

attacker that vi+1.ρ = H.Write(hk, vi.ρ, vi.iwrite, vi.bwrite, vi.uwrite). Thus B breaks the soundness of
updating by outputting the above.

Claim 4.11. Assume that Hash Tree H satisfies collision resistance, then type 3 attaccker A has
at most negligible advantage.

Proof. Assume that type 3 attacker A has non-negligible advantage, we design the following re-
duction algorithm B.
A outputs R. B queries the hash challenger and obtains hk. B generates h3 and crs0, . . . , crsℓ by

itself and outputs crs = (hk, h3, crs0, . . . , crsℓ). A outputs x and π. By definition of type 3 attacker,
the following conditions hold:

– H.Verify(hk, vj∗ .ρ, vi∗ .iread, vi∗ .bread, uj∗−1) = 1,

– H.Verify(hk, vj∗ .ρ, vi∗ .iread, vj∗ .bread, vj∗ .uread) = 1.

Since vi∗ .bread ̸= vj∗ .bread, B breaks the collision resistance property by outputting the above.

Claim 4.12. Assume that Hash Tree H satisfies soundness of updating and collision resistance,
then type 4, 5, 6 attacker A has at most negligible advantage.

Proof. We omit the proof here as it relies on the Merkle Hash Tree and is nearly identical to proof
of Claim 4.10 and Claim 4.11.

Claim 4.13. With all but negligible probability, retrieved witness ω satisfies that R(x, ω) accepts.

Proof. Since type 1, 2, 3, 4, 5, 6 attacker only have negligible advantage, we conclude that with
all but negligible probability, the RAM Machine properly transfers from the starting state to an
accepting state, with consistent memory reading and writing. Witness ω is retrieved as the bits
which are accessed and within the range for witness on memory tape. Thus we conclude that
R(x, ω) accepts with all but negligible probability.

This completes the proof of our main theorem.

Remark 4.14. We remark that the above the bootstrapping process can be extended to a λϵ-
mild SNARK of proof size m

λϵ + p(λ, n) for any constant ϵ > 0. This immediately follows by
composing a λϵ-mild SNARK a number of ⌈2/ϵ⌉ times: It gives us a 2λ-mild SNARK with proof
size m

λ2 + p′(λ, n) ≤ m
2λ + p′(λ, n) where p′(λ, n) ≤ 2 · p(λ, n).
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Remark 4.15. We remark that our design of fully succinct SNARK for RAM with bounded run-
ning time can be readily extended to unbounded RAM: For RAM machine R of a maximum
running time 2λ, we apply RAM delegation scheme del to prove that R(x, ω) = 1: del.π ←
del.Prove(del.crs, (x, ω)). Next, define RAM machine R′ such that R′(x, (ω, del.π)) = 1 if and
only if del.Verify(del.crs, (x, ω), del.π) = 1. By succinctness of RAM delegation, del.Verify runs in
time poly(λ, n,m) for a universal poly(·, ·, ·). By applying our SNARK for bounded RAM over R′,
we obtain a fully succinct SNARK for RAM with unbounded running time.

5 Full Succinctness from Milder SNARKs with Fast Extractors

In this section, we show to build fully-succinct SNARKs from milder SNARKs. Towards that goal,
we introduce the notion of fast extractors.

γ-Efficient Extractor. We say a SNARK has a γ-efficient extractor, if the extractor E ’s running
time grows as γ · |A| + q(λ, n,m, |π|), for γ = γ(λ, n,m, |π|) and some poly q(·). That is, γ for an
extractor E(A, crs, x, π) is defined as the (asymptotic) ratio of the extractor’s running time to the
running time of attacker A.

5.1 Fullly Succinct SNARK from (1+ϵ)-Mild SNARK with γ-Efficient Extractor

Assuming the existence of (1 + ϵ)-mild SNARK Γ = (Γ.Setup,Γ.Prove,Γ.Verify) with a γ-efficient
extractor (and succinct CRS) for any ϵ, γ > 0, we design a δ-mild SNARK for δ ≥ 2λ:

Setup(1λ, 1n, 1m, C)→ crs. It sets ℓ = 2 · ⌈ log λ
log(1+ϵ)⌉. For i ∈ [ℓ], we set Ci as the following boolean

circuit and mi as the witness size for such circuit. It generates crsi = Γ.Setup(1λ, 1n, 1mi , Ci).
It outputs crs = {crs1, . . . , crsℓ}.

Circuit Ci

Instance: x.
Witness: ω.
Hardwired: crsi−1.

– For i = 1, Ci outputs C(x, ω).

– For i ≥ 2, Ci outputs Γ.Verify(crsi−1, x, ω) = 1.

Prove(crs, x, ω)→ π. It parses crs as above. It sets ω1 as ω1 ← Γ.Prove(crs1, x, ω). Next for all
i ∈ {2, . . . , ℓ}, it computes ωi as Γ.Prove(crsi, x, ωi−1). It outputs π = ωℓ.

Verify(crs, x, π)→ {0, 1}. It outputs Γ.Verify(crsℓ, x, π).

Completeness The recursive composition inherits the completeness of Γ.

Lemma 5.1. Assuming that Γ satisfies (1 + ϵ)-mildness, then the above SNARK satisfies 2λ-
mildness.
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Proof. The proof size of (1 + ϵ)-mild SNARK is given as m/(1 + ϵ) + p(λ, n). By composing this
mild SNARK ℓ = 2 · ⌈ log λ

log(1+ϵ)⌉ times in the above construction, the resulting proof size becomes
|π| ≤ m/λ2 + 2 · p(λ, n).

Theorem 5.2. Assuming that Γ satisfies (1+ ϵ)-mildness with a γ-efficient extractor (γ > 0), then
the above SNARK also satisfies adaptive proof of knowledge property, as long as γ and (1 + ϵ) are
polynomially related such that γ = (1 + ϵ)c where c is a constant.

Proof. We define extractor E of as the following:

E(A, crs, x, π)→ ω. The extractor algorithm follows these steps:

1. For i = ℓ, it sets Eℓ as Γ.E with non-black-box access to A, and witness ωℓ as the output:
ωℓ = Γ.E(A, crsi, x, ωi).

2. For i = ℓ − 1, . . . , 1, set Ei as Γ.E with non-black-box access to Ei+1, and ωi as
Γ.E(Ei+1, crsi, x, ωi+1).

3. E(A, crs, x, π) outputs ω1.

We analyze the running time of the extractor E using induction (assume that γ > 1):

Base Case (i = ℓ). Eℓ runs in time γ · |A|+ q(λ, n,m, |π|) ≤ γ · |A|+ (2γ − 1) · q(λ, n,m, |π|).

Inductive Step (1 ≤ i ≤ ℓ− 1). The running time of Ei is

γ·|Ei+1|+q(λ, n,m, |π|) ≤ γ·(γℓ−i·|A|+(2γℓ−i−1)·q(λ, n,m, |π|)) ≤ γℓ+1−i·|A|+(2γℓ+1−i−1)·q(λ, n,m, |π|).

Thus for γ > 1, the running time of E is at most γℓ · |A| + (2γℓ − 1) · q(λ, n,m, |π|). Recall that

ℓ = 2 · ⌈ log λ
log(1+ϵ)⌉, we conclude that |E| = poly(λ

2 log γ
log(1+ϵ) , |A|, n,m). Thus for γ = (1 + ϵ)c where c is

a constant, the extractor runs in polynomial time. We omit the analysis for γ ≤ 1 as the extractor
is even more efficient in this case. We omit the soundness proof for the argument of knowledge
property. Readers are encouraged to refer to the inductive proof of Lemma 4.7, which also employs
a leveled structure, although it is more complex.

Corollary 5.3. Following from Lemma 4.4, Lemma 5.1, and Theorem 5.4, there exists a fully
succinct SNARK assuming the existence of (1 + ϵ)-mild SNARK with γ−efficient extractor such
that γ = poly(1 + ϵ).

Theorem 5.4. Assuming that Γ satisfies (1+ ϵ)-mildness with a γ-efficient extractor (γ > 0), then
the above SNARK also satisfies adaptive proof of knowledge property, as long as γ and (1 + ϵ) are
polynomially related such that γ = (1 + ϵ)c where c is a constant.

Corollary 5.5. Following from Lemma 4.4, Lemma 5.1, and Theorem 5.4, there exists a fully
succinct SNARK assuming the existence of (1 + ϵ)-mild SNARK with γ−efficient extractor such
that γ = poly(1 + ϵ).
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6 Mild SNARKs without Succinct CRS

Finally, we show how to use δ−mild SNARK and RAM delegation to design a δ−mild SNARK
with succinct CRS.

Our construction. Let del = (del.Setup, del.Prove, del.Verify) be a RAM delegation scheme, and
Γ = (Γ.Setup,Γ.Prove,Γ.Verify) be a δ-mild SNARK. Below we provide our construction:

Setup(1λ, 1n, 1m, C)→ crs. Let R be the following RAM machine – R takes as input (x, ω) ∈
{0, 1}n+m and accepts if and only if C(x, ω) = 1. Running time of R is T = poly(|C|)
for some fixed polynomial poly(·), and input size is n + m. The setup algorithms samples
del.crs← del.Setup(1λ,R, T, n+m).

Let |del.π| denote the proof size generated by del using del.crs and a valid instance-witness
pair. Consider the following boolean circuit C′ = {0, 1}n × {0, 1}m+|del.π| → {0, 1}:

Circuit C′

Instance: It takes as input instance x ∈ {0, 1}n.
Witness: It takes as input witness (ω, del.π) ∈ {0, 1}m+|del.π|.
Hardwired: It has del.crs hardwired.

– It outputs del.Verify(del.crs, (x, ω), del.π).

The setup algorithm samples Γ.crs as Γ.crs ← Γ.Setup(1λ, 1n, 1m+|del.π|, C′). And, it outputs
crs as (del.crs,Γ.crs).

Prove(crs, x, ω)→ π. It parses crs as above. First, it computes a RAM proof as del.π ← del.Prove(del.crs, (x, ω)),
and then it creates a mild SNARK proof as Γ.π ← Γ.Prove(Γ.crs, x, (ω, del.π)). It outputs
π = Γ.π.

Verify(crs, x, π)→ {0, 1}. It outputs Γ.Verify(Γ.crs, x, π).

Completeness The completeness of the above design follows from the completeness of RAM
machine delegation scheme del and mild SNARK scheme Γ.

Efficiency We analyze the efficiency of the above design:

Lemma 6.1. Assume that Γ = (Γ.Setup,Γ.Prove,Γ.Verify) is a δ−mild SNARK for function
δ(λ, n,m) with extractor Γ.E . Then for every λ ∈ N, polynomial n = n(λ), m = m(λ), boolean
circuit C = {0, 1}n×{0, 1}m, any x ∈ {0, 1}n, and ω ∈ {0, 1}m such that C(x, ω) = 1, the following
holds:

– For crs ← Setup(1λ, 1n, 1m, C), there exists a universal polynomial poly(·, ·, ·, ·) such that
|crs| ≤ poly(λ, log |C|, n,m).

– For π ← Prove(crs, x, ω), there exists a universal polynomial poly(·) such that p′(·) = poly(p(·)),
where |π| ≤ m

δ(λ,n,m) + p′(λ, n).
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Proof. Common reference string crs = (del.crs,Γ.crs). del.crs was set as del.Setup(1λ,R, T, n +

m) where R is the above RAM Machine and T = poly(|C|) is the running time of R. By
efficiency of RAM delegation, size of del.crs is at most poly(λ, log T ). Next, Γ.crs was set as
Γ.Setup(1λ, 1n, 1m+|del.π|, C′). Here, C′ is the circuit of RAM Delegation’s Verifier del.Verify, which
runs in time poly(λ, log T, n,m). Thus |C′| ≤ poly(λ, log T, n,m). Then, size of Γ.crs is at most
poly(λ, log T, n,m). Thus overall crs is of size poly(λ, log T, n,m) = poly(λ, log |C|, n,m) for some
universal polynomial poly(·, ·, ·, ·).

Recall that proof π is generated from Γ.Prove(Γ.crs, x, (ω, del.π)). By succinctness of Γ, proof
size |π| is at most m+|del.π|

δ(λ,n,m) +p(λ, n). By succinctness of RAM delegation del, |del.π| ≤ poly(λ, log T ).

Thus proof size |π| ≤ m+|del.π|
δ(λ,n,m) + p(λ, n)c for some constant c, which implies that there exists a

universal polynomial poly(·) such that |π| ≤ m
δ(λ,n,m) + p′(λ, n) for p′(·) = poly(p(·)).

By Lemma 6.1, our design satisfies both δ-mildness and succinct CRS properties.

Theorem 6.2. Assume that the mild SNARK scheme Γ satisfies adaptive proof of knowledge, and
the RAM delegation scheme del is sound, then the above design of SNARK satisfies adaptive proof
of knowledge.

Proof. We first define the extractor of the above design:

E(A, crs, x, π)→ ω. The algorithm takes as input common reference string crs, statement x, and
proof π. It parses crs as (del.crs,Γ.crs), and runs extractor to compute (ω, del.π)← Γ.E(A,Γ.crs, x, π).
Finally, it outputs ω.

The security proof follows from a case by case reduction to the soundness of RAM delegation scheme
del and adaptive proof of knowledge property of wsnark. Suppose there exists a PPT attacker A
that wins the argument of knowledge game with non-negligible advantage. We divide the potential
adversary into the following cases:

Type 1 : Upon common reference string crs, type 1 attackerA outputs (x, π) such that Verify(crs, x, π) =
1, but C(x, ω) ̸= 1 and del.Verify(del.crs, (x, ω), del.π) ̸= 1 where (ω, del.π) is extracted by
Γ.E(A,Γ.crs, x, π).

Type 2 : Type 2 attacker is considered as the complimentary of type 1. It outputs (x, π), such that
Verify(crs, x, π) = 1, C(x, ω) ̸= 1 and del.Verify(del.crs, (x, ω), del.π) = 1 where (ω, del.π) ←
Γ.E(A,Γ.crs, x, π).

Claim 6.3. Assuming that Γ satisfies proof of knowledge, then type 1 attacker A has at most
negligible advantage.

Proof. Assume that type 1 attacker A has non-negligible advantage, we design a reduction algo-
rithm B that breaks proof of knowledge property of Γ.
A starts by outputting the circuit C. Reduction algorithm B sets up del.crs using del.Setup(1λ, 1n, 1m, C).

Next B sets circuit C′ following from the definition in the setup algorithm above, and queries wsnark
challenger with circuit C′. Challenger outputs Γ.crs accordingly. B then sends (del.crs,Γ.crs) to
A. A then outputs (x, π) such that Γ.Verify(Γ.crs, x, π) = 1 and C(x, ω) ̸= 1. Next consider
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that B extracts (ω, del.π) ← Γ.E(A,Γ.crs, x, π). Then, by definition of type 1 attacker, it follows
that del.Verify(del.crs, (x, ω), del.π) ̸= 1, which implies that C′(x, (ω, del.π)) ̸= 1. Thus, B outputs
statement x and proof π and breaks the proof of knowledge property of Γ.

Claim 6.4. Assuming that RAM delegation scheme del satisfies soundness property, then type 2

attacker A has at most negligible advantage.

Proof. Assume that type 2 attacker A has non-negligible advantage, we design a reduction algo-
rithm B that breaks the soundness property of del.
A starts by outputting the circuit C. Reduction algorithm B sets RAM machine R as defined in

Setup algorithm according to circuit C. Consider that the running time bound on R is T . B then
queries the challenger with 1λ,R, T, n+m. Challenger outputs del.crs. Next B sets up circuit C′ and
generates Γ.crs = Γ.Setup(1λ, 1n, 1m, C′). B sends (del.crs,wsnark.crs) to A. A outputs tuple (x, π).
B then extracts (ω, del.π) from extractor Γ.E(A,Γ.crs, x, π), such that Γ.Verify(Γ.crs, x, π) = 1 and
C(x, ω) ̸= 1. Note that C(x, ω) ̸= 1 implies that R(x, ω) ̸= 1. Then, B outputs (x, ω), del.π and
breaks the soundness property of del.

This completes the proof of our theorem.

Corollary 6.5. Based on recent results about RAM delegation (Corollary 3.7) and our SNARKs
design (Lemma 4.4, Theorem 4.5, Remark 4.14, Lemma 6.1, and Theorem 6.2), the following holds:
Assuming the existence of λϵ-mild SNARKs without CRS succinctness requirement, and assuming
either LWE, k-LIN over pairing groups for any constant k ∈ N, or sub-exponential DDH over
pairing-free groups (and QR), there exists fully succinct SNARKs.

Corollary 6.6. By extending Corollary 6.5 using Corollary 5.5, we have: Assuming the existence of
(1+ ϵ)-mild SNARKs with γ−efficient extractor for γ = poly(1+ ϵ), and without CRS succinctness
requirement, and assuming either LWE, k-LIN over pairing groups for any constant k ∈ N, or
sub-exponential DDH over pairing-free groups (and QR), there exists fully succinct SNARKs.
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