
A notion on S-boxes for a partial resistance to

some integral attacks

Claude Carlet∗,
University of Bergen, Department of Informatics, 5005 Bergen, Norway

University of Paris 8, Department of Mathematics, 93526 Saint-Denis, France.

E-mail: claude.carlet@gmail.com, Orcid: 0002-6118-7927

Abstract

In two recent papers, we introduced and studied the notion of kth-
order sum-freedom of a vectorial function F : Fn

2 → Fm
2 . This notion gen-

eralizes that of almost perfect nonlinearity (which corresponds to k = 2)
and has some relation with the resistance to integral attacks of those block
ciphers using F as a substitution box (S-box), by preventing the propaga-
tion of the division property of k-dimensional affine spaces. In the present
paper, we show that this notion, which is rarely satisfied by vectorial func-
tions, can be weakened while retaining the property that the S-boxes do
not propagate the division property of k-dimensional affine spaces. This
leads us to the property that we name kth-order t-degree-sum-freedom,
whose strength decreases when t increases, and which coincides with kth-
order sum-freedom when t = 1. The condition for kth-order t-degree-
sum-freedom is that, for every k-dimensional affine space A, there exists a
non-negative integer j of 2-weight at most t such that

∑
x∈A(F (x))j 6= 0.

We show, for a general kth-order t-degree-sum-free function F , that t can
always be taken smaller than or equal to min(k,m) under some reasonable
condition on F , and that it is larger than or equal to k

deg(F )
, where deg(F )

is the algebraic degree of F . We also show two other lower bounds: one,
that is often tighter, by means of the algebraic degree of the compositional
inverse of F when F is a permutation, and another (valid for every vec-
torial function) by means of the algebraic degree of the indicator of the
graph of the function. We study examples for k = 2 (case in which t = 1
corresponds to APNness) showing that finding j of 2-weight 2 can be chal-
lenging, and we begin the study of power functions, for which we prove
upper bounds. We study in particular the multiplicative inverse function
(used as an S-box in the AES), for which we characterize the kth-order
t-degree-sum-freedom by the coefficients of the subspace polynomials of
k-dimensional vector subspaces (deducing the exact value of t when k di-
vides n) and we extend to kth-order t-degree-sum-freedom the result that
it is kth-order sum-free if and only if it is (n− k)th-order sum-free.

∗The research of the author is partly supported by the Norwegian Research Council
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1 Introduction

A (vectorial) (n,m)-function F : Fn2 → Fm2 is called kth-order sum-free [8] if,
for every k-dimensional affine space A in Fn2 , we have

∑
x∈A F (x) 6= 0. This is

equivalent to saying that the kth-order derivatives Da1
. . . DakF (x) (where the

first order derivative is defined as DaF (x) = F (x) +F (x+a) and the kth-order
derivative is its iteration) never vanish when a1, . . . , ak are linearly independent
over F2.

There is a relation between this notion and integral attacks [13]. Todo [18]
has introduced, in the framework of these cryptanalyses, the notion of division
property of a set, and Boura-Canteaut [4] have translated it into the language
of Reed-Muller codes (see a survey in [12]). A set X ⊆ Fn2 is said to have
the division property at an order l if its indicator has an algebraic degree of at
most n− l. Integral attacks practically lead to studying the propagation of the
division property through rounds, which needs to study it through substitution
boxes (S-boxes, which are the nonlinear components in rounds). It is shown
in [8] that kth-order sum-freedom makes it impossible the propagation of the
division property of k-dimensional affine spaces through the S-box. Since the
division property is often (but not always) investigated by cryptanalysts by
focussing on affine spaces, the study of kth-order sum-freedom is useful for
designers, helping them to protect ciphers against such kind of integral attacks,
and for cryptanalysts, letting them know which affine spaces can be considered
in integral attacks. However, the functions satisfying kth-order sum-freedom for
a given k are rare, and even if a function satisfies it for some value of k, it may
not satisfy it for other values. Fortunately, we show in the present paper that
this criterion can be generalized into a version depending on some parameter
t ≥ 1, that is satisfied for every k by any vectorial function for a large enough
value of t (kth-order sum-freedom corresponding to t = 1). This latter notion
is practically more useful and easier to satisfy (but it is still more difficult to
study).
In the present paper, we begin the study of this new notion, called kth-order
t-degree-sum-freedom. The condition for such a property to be satisfied by
F is that, for every k-dimensional affine space A, there exists a non-negative
integer j of 2-weight at most t such that

∑
x∈A(F (x))j 6= 0, where the 2-weight

of a non-negative integer equals the Hamming weight of its binary expansion.
For general k, we show that we can take t ≤ min(k,m) under a reasonable
assumption on F , and that we necessarily have t ≥ k

deg(F ) , where deg(F ) is

the algebraic degree of F . This generalizes the fact that a function of algebraic
degree d cannot be kth-order sum-free for k > d. We improve this bound with
two other lower bounds: one that is valid when F is a permutation, by means of
the algebraic degree of the compositional inverse of F , and another, that is valid
for every vectorial function and can be still tighter, by means of the algebraic

2



degree of the indicator of the graph of the function. We study a little more in
detail the case of k = 2 (where t = 1 corresponds to APNness) and see that the
determination of the values of j can be challenging even when determining t is
easy. We focus then on power functions, for which we prove upper bounds on
the minimum value of t, given k. We study specifically the multiplicative inverse
function (used as an S-box in the AES), and characterize the minimum value
of t by means of the coefficients of the subspace polynomials of k-dimensional
vector spaces in F2n (which allows us to completely clarify the situation when
k divides n). We show that this function is kth-order t-degree-sum-free if and
only if it is (n − k)th-order t-degree-sum-free, which allows to strengthen the
upper bounds found.

2 Preliminaries

Given two positive integers n,m, we call (n,m)-function (vectorial function if
we do not wish to specify n,m) any function F : Fn2 → Fm2 . If m = 1, we speak
of an n-variable Boolean function and we denote it by a lowercase symbol f .
We can endow the domain or the co-domain of such function (or both) with
the structure of a finite field, since any finite field F2n of characteristic 2 is an
n-dimensional vector space over F2, and given a basis (α1, . . . , αn), we have the
correspondence (x1, . . . , xn) 7→

∑n
i=1 xiαi.

Two (n,m)-functions F,G are called affine equivalent if G = A ◦ F ◦ A′ where
A (resp. A′) is an affine automorphism of Fm2 (resp. Fn2 ), and they are more
generally called CCZ equivalent if the graph of F , that is, {(x, F (x));x ∈ Fn3}
can be mapped to the graph of G by an affine automorphism A of Fn2 × Fm2 .
Denoting A = (A1,A2), the mapping F1 : x ∈ Fn2 7→ A1(x, F (x)) is then a
permutation of Fn2 , and denoting F2(x) = A2(x, F (x)), we have G = F2 ◦ F−11

(see e.g. [7]).
We call F a kth-order sum-free function if, for every k-dimensional affine sub-
space A of Fn2 (or of F2n), we have

∑
x∈A F (x) 6= 0 [8]. The (n, n)-functions

that are second-order sum-free are also called almost perfect nonlinear (APN).
When viewing a vectorial function as defined over Fn2 , we can represent it by
its (unique) algebraic normal form F (x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi with aI ∈ Fm2

(or aI ∈ F2m). This allows to define its algebraic degree max{|I|; aI 6= 0} where
| . . . | denotes the size.
When viewing a vectorial function as defined over F2n and valued in this same
field (which includes the possibility it is valued in a sub-field of F2n and allows
then to consider not only (n, n)-functions but also (n,m)-functions, where m
divides n), we can represent it by its (unique) univariate representation F (x) =∑2n−1
i=0 δix

i, δi ∈ F2n . The algebraic degree of F equals then max{w2(i); δi 6= 0},
where w2(i) is the 2-weight of i (i.e., the Hamming weight of its binary expan-
sion). Function F is called a power function if F (x) = xd, for some exponent
d ∈ Z/(2n − 1)Z.
A subset X of Fn2 or F2n satisfies the division property at the order l if the
n-variable Boolean function equal to its indicator (taking value 1 on X and 0
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elsewhere) has algebraic degree at most n− l (see [4]).

3 A weakening of the sum-freedom notion

To show why sum-freedom can be weakened, let us briefly recall why the kth-
order sum-freedom of an S-box avoids the propagation of the division property
of k-dimensional affine spaces through it. We first need to say what is the
image of a set that must be considered as the result of the processing of a set
X (supposed to have the division property) through the S-box: if the S-box F
is a permutation, or is more generally injective, then the image of X by F to be
considered is the classic one F (X) = {F (x);x ∈ X} = {y ∈ Fm2 ;X ∩ F−1(y) 6=
∅}. If not, then the image to be considered is (see [12]):

F ((X)) := {y ∈ Fm2 ;X ∩ F−1(y) has an odd size}

(we use a specific notation to avoid any confusion between F (X) and F ((X))
when F is not injective). What is shown in [8] is that if

∑
x∈X F (x) 6= 0, then

F ((X)) does not have the division property at the order 2.
Let us recall why this is true and show that this nicely simple notion of sum-
freedom is in fact too demanding in most cases, as a property implying the
non-propagation of the division property. Let X have an even size (so that it
has at least the division property at the order 1). Then F ((X)) has an even
size as well, and we have

∑
x∈X F (x) =

∑
y∈F ((X)) y. The fact that the sum∑

y∈F ((X)) y is nonzero is equivalent to the property that the indicator of F ((X))

has at least algebraic degree n− 1 (this is a particular case of [7, Corollary 2];
see more details in [8, Subsection 3.2]). Then no propagation of the division
property is possible for k-dimensional affine spaces when F is kth-order sum-
free, since F ((X)) only satisfies the division property at the order 1. But we
do not need the division property to drop to order 1 for the integral attack to
be made impossible, we only need that the division property falls to a small
enough level.

The propagation of the division property has been studied in [4, 12] through
a representation of the S-box by its algebraic normal form, that is, viewing
it as defined over the vector space Fn2 . This leads to the notion of parity set
introduced in [4]. The division property fails to be propagated at the order
t + 1 if there exists a vector v ∈ Fm2 of Hamming weight at most t such that∑
x∈X F

v(x) = 1, where F v(x) equals the composition of F on its left by the
(multivariate) monomial Boolean function

∏
i∈supp(v) xi. We will not develop

here this approach. We shall identify the vector space Fm2 with the field F2m

(see Section 2)). We do so because:

• it is often simpler to address the propagation of the division property in
fields than in vector spaces, because it translates into the nullity of some
power sums, that are simpler to handle than sums taken by the functions
F v,
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• in many block ciphers such as the AES, S-boxes are naturally defined over
fields and valued in them,

• most of the important (infinite classes of) vectorial functions for cryptog-
raphy are defined over fields and valued in them,

• in particular, many important functions for cryptography are power func-
tions over finite fields, and no infinite class of (for instance) APN functions
is known by its algebraic normal form.

3.1 Preliminaries on Reed-Muller codes

We know (see [15, 7]) that, for every 1 ≤ d ≤ m, the dual of the Reed-Muller
code RM(d − 1,m), of order d − 1 and length 2m, equals the Reed-Muller
code RM(m − d,m), of order m − d and of the same length, that is, any m-
variable Boolean function f has algebraic degree strictly less than d if and
only if, for every Boolean function g of algebraic degree at most m − d, we
have

∑
y∈F2m

f(y)g(y) = 0, or more generally, for every (m, r)-function G (with
r ≥ 1), of algebraic degree at most m − d, we have

∑
y∈F2m

f(y)G(y) = 0.
Hence:

Lemma 1 Let m be any positive integer, and let 0 ≤ d ≤ m. Any nonzero
m-variable Boolean function f has algebraic degree at least d if and only if
there exists a Boolean function g of algebraic degree at most m − d, such that∑
y∈F2m

f(y)g(y) 6= 0, or equivalently there exists, for some r ≥ 1, an (m, r)-
function G of algebraic degree at most m− d, such that

∑
y∈F2m

f(y)G(y) 6= 0.

In particular, for every nonzero m-variable Boolean function f , there exists an
m-variable Boolean function g (which has of course an algebraic degree of at
most m), such that

∑
y∈F2m

f(y)g(y) 6= 0 (taking d = 0 in Lemma 1, or di-
rectly choosing for Boolean function g the indicator of a singleton {a}, where
f(a) = 1).
Moreover, when the domain of the Boolean function is endowed with the struc-
ture of the field F2m , we can specify Lemma 1 in a way that will be convenient
in our framework. We recall that the 2-weight of j is the Hamming weight of
the binary expansion of j.

Lemma 2 [7, Corollary 2] Let m be any positive integer, and let 0 ≤ d ≤
m. Any nonzero m-variable Boolean function f has algebraic degree at least
d if and only if there exists a non-negative integer j whose 2-weight satisfies
w2(j) ≤ m− d, and such that

∑
y∈F2m

yjf(y) 6= 0.

For making the paper self-contained, let us give a proof of this fact (a different
proof from that of [7]):

• the functions in the Reed-Muller code of order m−d are the Boolean func-
tions whose univariate representation has the form (see e.g. [7, Relation
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(2.16)]): ∑
j∈Γ(m)

w2(j)≤m−d

trmj
(βjy

j), with ∀j ∈ Γ(m), βj ∈ F2mj ,

where Γ(m) is a set of representatives of the cyclotomic classes of 2 modulo
2m−1, the integer mj is the size of the cyclotomic class containing j, and

trmj (y) =
∑mj−1
i=0 y2

i

is the absolute trace function from F2mj to F2,

• for every y ∈ F2m , we have yj ∈ F2mj , and we deduce
∑
y∈F2m

yjf(y) 6= 0
for some j of 2-weight at most m − d if and only if there exists βj in
F2mj such that

∑
y∈F2m

trmj
(βjy

j)f(y) = 1, that is, f is not orthogonal
to the Reed-Muller code of order m − d, that is, does not belong to the
Reed-Muller code of order d− 1.

3.2 Weakening the notion of sum-freedom

From the results recalled above, we deduce the following proposition, by taking
d = m− t (that is, m−d = t), and observing that if f is the indicator of F ((X))
in F2m , where F is an (n,m)-function, then for every (m, r)-function G, we
have

∑
y∈F2m

G(y)f(y) =
∑
x∈X(G◦F )(x), and in particular,

∑
y∈F2m

yjf(y) =∑
x∈X

(
F (x)

)j
.

Proposition 1 For any positive integers n, m, t, let F : Fn2 → F2m be any
(n,m)-function (where Fn2 can be identified with F2n or not) and X any set in
Fn2 . The set F ((X)) fails to have the division property of order t + 1 (i.e. the
m-variable Boolean function equal to the indicator of F ((X)) has an algebraic
degree at least m− t) if and only if some non-negative integer j exists such that

w2(j) ≤ t and
∑
x∈X

(
F (x)

)j 6= 0, which is equivalent to: some (m, r)-function
G (with r ≥ 1) of algebraic degree at most t exists such that

∑
x∈X(G◦F )(x) 6= 0.

Note that a k-dimensional affine space A, with k ≥ 1, having an even size, the

set F ((A)) has also an even size, and
∑
x∈A

(
F (x)

)0
then equals 0. This leads

to the definition:

Definition 1 Let F : Fn2 → F2m be an (n,m)-function. Let 1 ≤ k ≤ n and
1 ≤ t ≤ m. Then F is called kth-order t-degree-sum-free if, for every k-
dimensional affine space A, there exists a positive integer j whose 2-weight is at

most t and such that
∑
x∈A

(
F (x)

)j 6= 0.

According to what we observed above, this is equivalent to the fact that, for
some r ≥ 1, there exists a vectorial (m, r)-function G of algebraic degree at
most t such that

∑
x∈X(G ◦ F )(x) 6= 0.

Remark. For any new property of (n,m)-functions F , we need to deter-
mine whether the composition of F by any affine permutation L of Fn2 on
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the right and/or by any affine permutation L′ of Fm2 on the left, and/or the
addition of any affine (n,m)-function preserve(s) the property, and more gen-
erally whether, when an affine permutation Σ of Fn2 × Fm2 maps the graph
GF = {(x, F (x));x ∈ Fn2} of F to the graph of an (n,m)-function G, and F
satisfies the property, then G satisfies the property. Two functions F and G are
called affine equivalent if G = L′ ◦ F ◦ L where L,L′ are affine permutations,
they are called EA equivalent if G is affine equivalent to the sum of F and an
affine function, and they are called CCZ equivalent if GG = Σ(GF ) for some
affine permutation Σ (see e.g. [7]). We need to see whether the property is
preserved by affine (resp. EA, CCZ) equivalence; if it is the case, then we say
that the property is affine (resp. EA, CCZ) invariant.
For every k ≥ 2 and t ≥ 1, the property of being kth-order t-degree-sum-free
for an (n,m)-function is preserved by the composition on the right by any affine
automorphism L of Fn2 (since

∑
x∈A(F ◦ L(x))j =

∑
x∈L(A)(F (x))j and L(A)

is a k-dimensional affine space if and only if A is a k-dimensional affine space),
and by the composition on the left by any affine automorphism L′ of F2m , since
the sum of the images by L′ of an even number of elements equals 0 if and only
if the sum of these elements equals 0, so the property is affine invariant. It is
EA invariant, since any affine (n,m)-function sums to 0 over every affine space
of dimension at least 2. But it is not CCZ invariant, since if F is a (non-affine)
permutation, it can be kth-order t-degree-sum-free while its compositional in-
verse is not. �

Remark. In the conclusion of [8] is evoked the possibility of studying the
following property: given 2 ≤ l ≤ k ≤ n and any k-dimensional affine space A,
the restriction of F to A has algebraic degree at least l (kth-order sum-freedom
corresponds then to l = k). Let us compare this property with kth-order t-
degree-sum-freedom. For this, let us endow A with the structure of the finite
field F2k . According to [7, Corollary 2], we know that the (k,m)-function F|A
(the restriction of F to A) has algebraic degree at least l if and only if there exists
a non-negative integer r of 2-weight at most n− l, such that

∑
x∈A x

rF (x) 6= 0.
This is different from kth-order t-degree-sum-freedom, whatever is t, even when
m = n. For instance, taking for F the multiplicative inverse function, the sums
involved in this property are

∑
x∈A x

r−1 while those involved in kth-order t-

degree-sum-freedom are
∑
x∈A x

2n−1−j , and the minimum 2-weight of r such
that

∑
x∈A x

r−1 6= 0 is very different from the minimum 2-weight of j such that∑
x∈A x

2n−1−j 6= 0. The property mentioned in the conclusion of [8], even if
it may be interesting to study for its own sake, has probably a weaker relation
with integral attacks than kth-order t-degree-sum-freedom. �

Proposition 2 If an (n,m)-function F is kth-order t-degree-sum-free, then the
propagation through the S-box of the division property of order t + 1 of any k-
dimensional affine space fails.

Indeed, for every k-dimensional affine space A, the algebraic degree of the indi-
cator of F ((A)) is at least m− t.
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Remark. The notion could be extended to non-affine sets X, but then it would
become quite complex to study, and it seems then reasonable to start studying
this notion by restricting vectorial functions to affine spaces. �

The larger t, the weaker the notion of kth-order t-degree-sum-freedom (if a
function is kth-order t-degree-sum-free, then it is kth-order t′-degree-sum-free
for every t′ ≥ t). The classic kth-order sum-freedom corresponds to t = 1.
Indeed, the only possibility for F to be kth-order 1-degree sum-free is that∑
x∈A(F (x))2

i

= (
∑
x∈A F (x))2

i 6= 0 for some i, that is,
∑
x∈A F (x) 6= 0.

Remark. For k = 1, the property in Definition 1 is equivalent to saying that
the function (F (x))j is injective. If F is injective, then we can take t = 1, and
if it is not, then t does not exist.
For k = n, the question in Definition 1 is the (minimum) 2-weight of those j
such that the function (F (x))j has algebraic degree n. Unlike the case k = 1,
this question is not trivial for general functions, even if it is simpler than for
general k. Note that there are functions for which it is still simpler, such as
power functions x ∈ F2n 7→ xd, for which the condition on j is w2(dj) = n, that
is, j ∈ 2n−1

gcd(d,2n−1)Z/(2
n − 1)Z.

For k = n − 1, we have the same question to address, with the functions
F (x)(trn(ax) + ε) where a ∈ F∗2n and ε ∈ F2. �

Let us see now that any (n,m)-function satisfying some reasonable condition
is kth-order t-degree-sum-free for some t smaller than or equal to m.

Lemma 3 Every (n,m)-function such that, for any k-dimensional affine space
A, the set F ((A)) is non-empty (in particular, every injective (n,m)-function)
is kth-order m-degree-sum-free.

Indeed, we recalled after Lemma 1 the existence, for every nonzero m-variable
function f , of an m-variable Boolean function g of algebraic degree at most
m such that

∑
y∈F2m

f(y)g(y) 6= 0. Taking for f the indicator of F ((A)), this
proves the existence of a non-negative integer j of 2-weight at most m such

that
∑
y∈F2m

yjf(y) =
∑
x∈A

(
F (x)

)j 6= 0. The value t = m satisfies then the
condition of Definition 1. This allows to give the following:

Definition 2 Let n,m be two positive integers and let 2 ≤ k ≤ n. Let F be
any (n,m)-function such that, for any k-dimensional affine space A, the set
F ((A)) is non-empty (for instance, let F be injective). We call kth-order sum-
free min-degree of F the smallest value of t ≤ m such that F is kth-order
t-degree-sum-free.

According to the EA invariance of kth-order t-degree-sum-freedom, the kth-
order sum-free min-degree of the functions having the property requested in
Definition 2 (i.e. for any k-dimensional affine space A, the set F ((A)) is non-
empty) is an affine invariant parameter, that is, if L and L′ are two affine per-
mutations, then the kth-order sum-free min-degree of F equals the kth-order
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sum-free min-degree of L ◦ F ◦ L′. This can also be seen by the fact that the
composition by affine automorphisms preserves the algebraic degree (see e.g. [7])

Remark. The condition on F in Definition 2 is necessary, since if it is not
satisfied for some A, the kth-order sum-free min-degree cannot exist. Take for
instance F (x) = G(x + x2), then for every j, the sum of the values of (F (x))j

over an affine space stable under translation by 1 equals 0.
It would be nice to characterize precisely, for every n,m and k such that 2 ≤
k ≤ n, what is the set of all the (n,m)-functions satisfying this condition. For
k = 1, it is clearly the set of injective functions. For k = 2, it is the set of
those functions F such that, for every nonzero a ∈ Fn2 , DaF takes zero value
for at most two inputs (among which we have all APN functions). For k = n,
it is the set of those functions whose image multiset has some points having an
odd multiplicity. For k ∈ {3, . . . , n − 1}, we leave this question open, but we
give an example of an infinite class of non-bijective (m,m)-functions satisfying
it for every even k. We take for F any power (m,m)-function F (x) = xd such
that gcd(d, 2m − 1) = 3 (as are all APN power functions over F2m for m even,
see [7, Proposition 165]). Let A be a k-dimensional vector subspace of F2m and
suppose that F ((A)) = ∅. Let us denote by w a primitive element of F4. The
pre-images by F are the singleton {0} and the 3-sets uF∗4, where u 6= 0. Since
F ((A)) = ∅, then A must not contain 0, and for every a ∈ A, we must have
either aw ∈ A (and aw2 6∈ A which is in fact automatically implied by 0 6∈ A
since a + aw + aw2 = 0) or aw2 ∈ A (and aw 6∈ A). Since if b = aw2 then
a = bw, we have then that A is the disjoint union of a set S of size 2k−1 and of
the set wS = {wx;x ∈ S}. The elements of S are the elements x of A such that
wx ∈ A. Hence, S = A ∩ w2A is an affine space. Since A = S ∪ wS is an affine
space and S is an affine hyperplane of A, the F2-vector space E underlying S
is then stable under the multiplication by w. Then E is a vector space over F4

and its dimension k − 1, as an F2-vector space, is then even. This proves that
if we take k even, then F satisfies the condition of Definition 2.
Note that, since for m odd, all APN power (m,m)-functions are bijective, all
APN power functions satisfy the condition in Definition 2 for any k if m is odd
and for any even k if m is even. �

3.3 An upper bound on the kth-order sum-free min-degree

We shall prove that every (n,m)-function satisfying the condition of Definition
2 is kth-order k-degree-sum-free, that is, has kth-order sum-free min-degree at
most k. This is clearly true if F ((A)) is an affine space, but it is not immediately
clear in general.

Remark. Note that F ((A)) having an even size, it cannot be reduced to {0}.
There exists then b in F ((A)) \ {0}. Denoting by 1b the indicator of the sin-
gleton {b} in F2m , we have

∑
x∈A(1b ◦ F )(x) = 1, but 1b has algebraic degree

m and the question is: can we replace it (or another function having the same
property) by a function of algebraic degree at most k? Without loss of gener-
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ality, up to affine equivalence, we can assume that b is the all-1 vector. Then
1b(y) =

∏m
i=1 yi and denoting the coordinate functions of F by f1, . . . , fm, we

have (1b◦F )(x) =
∏m
i=1 fi(x). By Jordan’s reduction, there exist, up to a permu-

tation of the input variables (which we can apply without loss of generality), n−k
affine Boolean functions lk+1, . . . , ln, such that, for every x = (x1, . . . , xn) in A,
we have xk+1 = lk+1(x1, . . . , xk), . . . , xn = ln(x1, . . . , xk). For every x ∈ A, we
can substitute in

∏m
i=1 fi(x) every xk+l, l = 1, . . . , n− k, with lk+l(x1, . . . , xk).

Then f1, . . . , fm become functions in k variables, but it is not clear whether we
can express 1b ◦F or any other function g such that

∑
x∈A(g ◦F )(x) = 1 in the

form g′ ◦ F where g′ has algebraic degree at most k.
The question whether the indicator f of F ((A)) has its algebraic degree larger
than m− k (equivalent to the question whether there exists a Boolean function
g of algebraic degree at most k over Fm2 such that fg has algebraic degree m)
needs then to be approached in a different way. This is what we do below. �

Proposition 3 Let n,m be two positive integers and let 2 ≤ k ≤ n. Let F be
any (n,m)-function such that F ((A)) 6= ∅ for every k-dimensional affine space
A. Then F has kth-order sum-free min-degree at most min(k,m), with equality
if and only if there exists a k-dimensional affine space A on which F is injective
(with k ≤ m) and whose image is an affine space, or F ((A)) equals F2m (with
k ≥ m).

Proof. Since we know that we can take t ≤ m, we just have to show, for proving
the upper bound, that we can take t ≤ k. For every k-dimensional affine space
A, the set F ((A)) has size at most 2k and its indicator f has then an algebraic
degree at least m−k (indeed, we know, see [15, 7], that any nonzero m-variable
Boolean function of algebraic degree at most d has Hamming weight at least
2m−d). There exists then, according to Lemma 2, an integer j of 2-weight at
most k such that

∑
y∈F2m

yjf(y) =
∑
x∈A(F (x))j 6= 0. This proves the bound.

Let us now determine when this bound is an equality.
If m ≥ k, then the kth-order sum-free min-degree of F equals k if and only
if there exists a k-dimensional affine space A such that, for every non-negative
integer j such that w2(j) < k, we have

∑
y∈F2m

yjf(y) =
∑
x∈A(F (x))j = 0,

that is, the algebraic degree of the indicator function of F ((A)) is at most m−k,
that is, given the size of F ((A)), equals m − k, which is equivalent to the fact
that F ((A)) is a k-dimensional affine space (see [15, 7]).
If m ≤ k, then the kth-order sum-free min-degree of F equals m if and only
if F ((A)) equals F2m , since otherwise, the algebraic degree of the indicator of
F ((A)) is at least 1 and the kth-order sum-free min-degree of F is then at most
m− 1. 2

We shall see that the bound of Proposition 3 is tight, at least for m = n.
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3.4 Lower bounds on the kth-order sum-free min-degree

After the upper bound on the value of t in the previous subsection, we show
in the present subsection a lower bound. Denoting by deg

(
F (x)

)
the algebraic

degree of function F (x), we have, for every non-negative integer j:

deg
(
(F (x))j

)
≤ w2(j) deg(F ),

since the algebraic degree of the function G : x ∈ F2m 7→ xj equals w2(j) and
we have, for every (n,m)-function F , and any (m,m)-function G: deg(G◦F ) ≤
deg(G) deg(F ). Let A be any k-dimensional affine space. If deg

(
(F (x))j

)
< k,

then we have
∑
x∈A(F (x))j = 0. We deduce:

Proposition 4 Let F be any (n,m)-function that is kth-order t-degree sum-
free. We have:

t ≥
⌈

k

deg(F )

⌉
. (1)

Indeed, if t < k
deg(F ) then, for every j such that w2(j) ≤ t, we have deg

(
(F (x))j

)
≤

deg(F )w2(j) < k.
Note that Proposition 4 generalizes the property that F cannot be kth-order
sum-free when deg(F ) < k, and it provides an information only when deg(F ) <
k, since we know that t ≥ 1.

3.4.1 Alternate lower bounds

Other upper bounds exist on the algebraic degree of the composition of func-
tions, which are often better than the so-called naive bound deg(G ◦ F ) ≤
deg(G) deg(F ), and we shall directly deduce lower bounds on t which will be
often better.
The first bound, proved in [5], on the algebraic degree of composed functions,
is valid under a very strong hypothesis1: the Walsh transform WF (u, v) =∑
x∈Fn

2
(−1)v·F (x)+u·x (where · denotes by abuse of notation an inner product

in Fn2 and an inner product in F2m) has all its values divisible by 2l, for a large
enough value of l. Then we have deg(G ◦ F ) ≤ n− l + deg(G), and therefore:

t ≥ k − n+ l.

Indeed, if t < k − n + l then, for every j such that w2(j) ≤ t, we have
deg

(
(F (x))j

)
≤ n− l + t < k.

The second upper bound, proved in [3], on the algebraic degree of composed
functions, does not apply to all functions either, but its assumption, which is
that F is a permutation (with m = n, then), is always satisfied when dealing

1This bound is then essentially useful for identifying a feature that should be avoided when
choosing an S-box; we give it for being complete on the state of the art.
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with the model of block ciphers called Substitution-Permutation networks. This
bound is:

deg(G ◦ F ) ≤ n− 1−
⌊
n− 1− deg(G)

deg(F−1)

⌋
. (2)

It is always less that n (when G itself has an algebraic degree less than n), which
is an important advantage over the naive bound, and it outperforms the latter
in many cases where this one is less than n.
Note that if we apply this bound twice, we obtain deg(G) = deg(G◦F−1 ◦F ) ≤

n − 1 −
⌊
n−1−deg(G◦F−1)

deg(F−1)

⌋
≤ n − 1 −

⌊
bn−1−deg(G)

deg(F ) c
deg(F−1)

⌋
, and it would be nice to

find a bound which performs better under the same hypothesis when we apply
it twice this way. �

Remark. Taking for F and G power functions over F2n , say, F (x) = xr and
G(x) = xs, we have G ◦ F (x) = xrs and we have then:

w2(rs) ≤ n− 1−
⌊
n− 1− w2(s)

w2(r′)

⌋
, (3)

where w2(rs) is the 2-weight of the representative of rs modulo 2n − 1 that lies
in {0, . . . , 2n − 2}, and r′ is the inverse of r in Z/(2n − 1)Z.
Note that w2(r′) needs to be small for allowing a significant bound. For in-
stance, when r is a Gold APN exponent, r = 2i + 1, gcd(i, n) = 1, and n
is odd (so that r is invertible mod 2n − 1), this gives, according to [17, 16]:

w2(rs) ≤ n− 1−
⌊
2(n−1−w2(s))

n+1

⌋
, which gives w2(rs) ≤ n− 2 or w2(rs) ≤ n− 1.

But there are values of r for which the bound is interesting, for instance when
r is the inverse of a Gold exponent. And the naive bound, which says that
w2(rs) ≤ w2(r)w2(s), often gives no information at all.

Bound (2) implies:

Proposition 5 Let F be any (n, n)-permutation and let deg(F−1) be the alge-
braic degree of the compositional inverse of F . Then, if F is kth-order t-degree
sum-free, we have:

t ≥ n− 1− (n− 1− k) deg(F−1), (4)

i.e., the kth-order sum-free min-degree of F is at least this number.

Indeed, according to (2), if t < n − 1 − (n − 1 − k) deg(F−1) then, for every j

such that w2(j) ≤ t, we have deg
(
(F (x))j

)
< n− 1−

⌊
(n−1−k) deg(F−1)

deg(F−1)

⌋
= k.

Note that Proposition 5 provides an information only if n − 1 − (n − 1 −
k) deg(F−1) > 1, that is, deg(F−1) < n−2

n−1−k , since we know that t ≥ 1.

The condition deg(F−1) < n−2
n−1−k is always satisfied when n < n−2

n−1−k (since

deg(F−1) ≤ n), that is, when k > n+ 2
n−2, but this corresponds to k ∈ {n−1, n}

and then for most values of k it needs to be satisfied.
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Remark. We have n − 1 − (n − 1 − k) deg(F−1) ≤ k since k ≤ n − 1 and
deg(F−1) ≥ 1, and this is coherent with Proposition 3, since F is a permuta-
tion. �

Proposition 5 can be applied to show that some permutations cannot be
kth-order sum-free (that is, kth-order t-degree sum-free with t = 1). We have
n− 1− (n− 1− k) deg(F−1) ≥ 2 if and only if deg(F−1) ≤ n−3

n−1−k . We deduce:

Corollary 1 Let n and k be positive integers such that 2 ≤ k ≤ n−2 and F an
(n, n)-permutation. If deg(F−1) ≤ n−3

n−1−k , then F is not kth-order sum-free.

Indeed, (4) implies t ≥ 2, a contradiction with t = 1.

Of course this corollary does not allow to prove that the multiplicative in-
verse function is not kth-order sum-free for some k ∈ {3, . . . , n − 3}, since this
function is involutive and has an algebraic degree that is maximum for a per-
mutation (this generalizes to any permutation of algebraic degree n − 1, since
we know from [4] that its inverse has then the same algebraic degree).

A third bound, proved in [6], is (with the naive bound) the only known upper
bound valid for all (n,m)-functions:

deg(G ◦ F ) ≤ deg(1GF ) + deg(G)−m, (5)

where deg(1GF ) is the algebraic degree of the (n+m)-variable Boolean function
equal to the indicator of the graph GF = {(x, F (x));x ∈ Fn2}. This bound is in
general tighter than the naive bound, and it can be tighter than (2), as seen in
[6]. Of course, the algebraic degree of the indicator of the graph may be more
difficult to evaluate than the algebraic degree of the inverse.

Remark. When F and G are power functions, say F (x) = xr, G(x) = xs, using
that 1GF (x, y) = 1 if and only if y = xr, we have 1GF (x, y) = (y + xr)2

n−1 +

1 = 1 +
∑2n−1
i=0 xriy2

n−1−i (the latter equality being obtained by a binomial

expansion, using for instance Lucas’s theorem to show that
(
2n−1
i

)
(mod 2)

equals 1 for every i ∈ {0, . . . , 2n− 1}). We have then deg(1GF ) = max{w2(ri) +
w2(2n − 1 − i) = w2(ri) + n − w2(i); i ∈ Z/(2n − 1)Z} (where the elements of
Z/(2n−1)Z are identified with their representatives in {0, . . . , 2n−2}; note that
by writing i ∈ Z/(2n − 1)Z, we lose the case i = 2n − 1, but this case provides
the value w2(ri) + n − w2(i) = n, which cannot be larger than the maximum,
since for i = 0 we get also w2(ri) + n− w2(i) = n). Bound (5) becomes

w2(rs) ≤ max{w2(ri) + w2(s)− w2(i); i ∈ Z/(2n − 1)Z} (6)

where the 2-weights of rs and ri are those of the representatives of these num-
bers in {0, . . . , 2n − 2} (i.e. the coset-leaders). Hence, in the case of power
functions, Bound (5) doesn’t give any interesting information since w2(rs) is
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one of the elements w2(ri) + w2(s)− w2(i) (for i = s). �

Bound (5) implies:

Proposition 6 Let F be any (n,m)-function and let deg(1GF ) be the algebraic
degree of the indicator of the graph GF = {(x, F (x));x ∈ Fn2} of F . Then, if F
is kth-order t-degree sum-free, we have:

t ≥ m+ k − deg(1GF ), (7)

i.e., the kth-order sum-free min-degree of F is at least this number.

Indeed, according to Relation (5), if t < m+k−deg(1GF ) then, for every j such
that w2(j) ≤ t, we have deg

(
(F (x))j

)
< k.

Note that there is in [6] an exact expression of deg(G◦F ), but this expression
of the degree is complex.

Remark. We have m + k − deg(1GF ) ≤ k since deg(1GF ) ≥ m, and this is
coherent with Proposition 3, when F satisfies the condition in Definition 2. �

Here also, Proposition 6 can be applied to show that some functions cannot
be kth-order sum-free (that is, kth-order t-degree sum-free with t = 1). We
have m+ k − deg(1GF ) ≥ 2 if and only if deg(1GF ) ≤ m+ k − 2. Proposition 6
implies then:

Corollary 2 Let n,m and k be positive integers such that 2 ≤ k ≤ n−1 and F
an (n,m)-function. If deg(1GF ) ≤ m+ k− 2, then F is not kth-order sum-free.

Indeed, Relation (7) implies t ≥ 2, a contradiction with t = 1.

This corollary does not allow to prove that the multiplicative inverse function
is not kth-order sum-free for some k ∈ {3, . . . , n − 3} either, since we have
for this function that deg(1GFinv

) = 2n is strictly larger than n + k − 2 for
every 2 ≤ k ≤ n. The fact that deg(1GFinv

) = 2n comes from the relation

1GFinv
(x, y) = (y + x2

n−2 + 1)2
n−1 =

∑2n−1
i=0 (x(y + 1))i = (x(y + 1) + 1)2

n−1.

4 A few examples in the particular case of k = 2

In this section we visit some examples of (infinite classes of) non-APN functions
satisfying the condition of Definition 2, and we look whether it is difficult to
determine the values of those j of minimum 2-weight such that (F (x))j sums to
nonzero values over affine planes. Since F satisfies the condition in Definition
2, Proposition 3 tells us that there is always a value of j that has 2-weight
at most 2. We shall see that, even for this particular value of k, which is the
simplest to consider when k ≤ n − 2, and even when F is a power function,
which also simplifies the study, determining for each k-dimensional affine space
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A the actual values of j of 2-weight at most k such that
∑
x∈A(F (x))j 6= 0, can

be challenging.
A non-APN (n, n)-function has what [14] calls vanishing flats (which are in
fact vanishing planes, since they are the affine planes {x, y, z, x + y + z}, with
x, y, z distinct, over which F sums to 0, but we shall respect the published
terminology)2. For a non-vanishing flat, the smallest value of the 2-weight of j
for which (F (x))j sums to a nonzero value equals 1, and we need then to only
consider the planes that are vanishing flats, when investigating such values of j.
Note that the vanishing flats of a vectorial (n,m)-function F are by definition
the projections over Fn2 , parallel to Fm2 , of the affine planes included in the graph
of F . The next lemma is straightforward.

Lemma 4 Let F be an (n,m)-function satisfying the condition in Definition 2
and P = {x, y, z, x + y + z} a vanishing flat of F . Then we have that F (P ) =
{F (x), F (y), F (z), F (x+ y + z)} is an affine plane and, given an integer j, we
have

∑
x∈P (F (x))j 6= 0 if and only if F (P ) is not a vanishing flat of the power

function G(x) = xj over F2m .

In the first example below, determining the vanishing flats P is easy, and de-
termining the values of j such that

∑
x∈P (F (x))j 6= 0 for each of them seems

difficult (it is easy for some of them, but not for all). In the second example,
determining the vanishing flats P is easy, and determining the values of j such
that

∑
x∈P (F (x))j 6= 0 for each of them is easy as well. In the last example,

even determining the vanishing flats is non-trivial, except for those including the
zero element. We keep the study of the inverse function for the next Section.

4.1 Quadratic power functions

It is easy to determine the vanishing flats of quadratic power functions (as done
in [14] among other results). Without loss of generality, we take F (x) = xd

where d = 2i + 1. Before recalling what these vanishing flats are, we first need
to determine when F satisfies the condition of Definition 2 for k = 2, so that it
can be second-order t-degree-sum-free for some value of t.

Lemma 5 Let F (x) = xd where d = 2i + 1. Then F satisfies the condition of
Definition 2 if and only if n is odd or gcd(i, n) = 1.

Proof. If gcd(i, n) = 1, then F is APN and we have seen in the remark after
Definition 2 that any power APN function satisfies the condition of Definition
2 for k = 2. We assume now that gcd(i, n) > 1. Let P be an affine plane.
We have F ((P )) = ∅ if and only if we can write P = {x, y, z, x + y + z} with
F (x) = F (z) and F (y) = F (x + y + z). Denoting a = x + z, we have P =

{x, x + a, y, y + a} with a 6= 0 and x, y distinct modulo a, such that ax2
i

+

2More generally, when the dimension of the affine space equals k instead of 2, we speak of
vanishing k-flats.
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a2
i

x+a2
i+1 = ay2

i

+a2
i

y+a2
i+1 = 0, that is,

{
ax2

i

+ a2
i

x = a2
i+1

a(x+ y)2
i

+ a2
i

(x+ y) = 0
,

that is,

{
(xa )2

i

+ x
a = 1

x+ y ∈ aF2gcd(i,n)

. If n is odd, the first equation has no solution x

since trn

((
x
a

)2i
+ x

a

)
= 0 and trn(1) = 1, and F satisfies then the condition of

Definition 2. If n is even, then choosing any solution x of the first equation and
any y ∈ x+ a (F2gcd(i,n) \ F2) provides an affine plane P such that F ((P )) = ∅,
and the condition of Definition 2 is not satisfied by F . 2

4.1.1 Vanishing flats

Lemma 6 [14] Let n, i be positive integers. Let F (x) = x2
i+1. The vanishing

flats of F are the planes {x, y, z, x+y+z} with x, y, z distinct, such that y+z =
w(x+ z) where w ∈ F2l \F2 with l = gcd(i, n). Equivalently, they are the planes
{x, y, z, x+ y+ z} with x, y distinct and z = wx+ (w+ 1)y, where w ∈ F2l \ F2

(and such vanishing flats exist then if and only if this latter set is not empty,
that is, gcd(i, n) > 1, which is indeed equivalent to the fact that F is non-APN).

Let us give an original proof of this known result, for self-completeness. A plane
{x, y, z, x + y + z} with x, y, z distinct, is a vanishing flat of F if and only if

x2
i+1+y2

i+1+z2
i+1+(x+y+z)2

i+1 = 0, that is, (x+z)(y+z)2
i

+(x+z)2
i

(y+z) =

0, or equivalently, (y + z)2
i−1 = (x + z)2

i−1, that is, y + z = w(x + z) where
w is any (2i − 1)th root of unity different from 1 in F2n , which is equivalent
to w ∈ F2l \ F2 with l = gcd(i, n). And y + z = w(x + z) being equivalent to
z = wx+y

1+w , we obtain the stated expression by changing w into (w + 1)−1 + 1
(which belongs to F2l \ F2 if and only if w belongs to F2l \ F2). The fact
that x, y are distinct is sufficient for having x, y, z distinct. Note that this
characterization of vanishing flats is coherent with the fact that F is APN if
and only if l = gcd(i, n) equals 1 (since l = 1 if and only if F2l \ F2 is empty).

4.1.2 On the values of j such that
∑
x∈P (F (x))j 6= 0

For gcd(i, n) = 1, that is, for F APN, we know that F is second-order 1-degree-
sum-free. For gcd(i, n) > 1, assuming that the condition of Definition 2 is
satisfied (that is, n is odd, according to Lemma 5) for each vanishing flat P , the
determination of those integers j of 2-weight 2 such that

∑
x∈P (F (x))j 6= 0 can

be reduced without loss of generality to the case where j = 2r + 1 (and we can

impose r ≤ n−1
2 ). We have by hypothesis that x2

i+1 + y2
i+1 + z2

i+1 + (x+ y+

z)2
i+1 = 0. We have then that (F (x))j + (F (y))j + (F (z))j + (F (x + y + z))j

equals x(2
i+1)(2r+1)+y(2

i+1)(2r+1)+z(2
i+1)(2r+1)+(x2

i+1+y2
i+1+z2

i+1)2
r+1 =

(xy2
r

)2
i+1 + (yx2

r

)2
i+1 + (xz2

r

)2
i+1 + (zx2

r

)2
i+1 + (yz2

r

)2
i+1 + (zy2

r

)2
i+1. We

can assume that y = 1, since y is nonzero and dividing x, y, z by a same nonzero
constant preserves the property of being a vanishing flat (note that it does
not change the relation z = wx + (w + 1)y either). The condition becomes

16



x2
i+1 +(x2

r

)2
i+1 +(xz2

r

)2
i+1 +(zx2

r

)2
i+1 +(z2

r

)2
i+1 +z2

i+1 6= 0 and replacing
z by its value z = wx+ w + 1, where w ∈ F2gcd(i,n) \ F2, this gives:

x2
i+1 + (x2

r

)2
i+1 + (x(wx+ w + 1)2

r

)2
i+1 + ((wx+ w + 1)x2

r

)2
i+1+

((wx+ w + 1)2
r

)2
i+1 + (wx+ w + 1)2

i+1 6= 0,∀x ∈ F2n .

The fact that w2i = w does not simplify much the value of (wx+w + 1)2
i+1 =

(wx2
i

+w+1)(wx+w+1) = w2x2
i+1 +(w2 +w)(x2

i

+x)+w2 +1. Determining
all values of r satisfying this condition needs to solve the equation

(w2r + w)2(x(2
r+1)(2i+1) + x2

i+1 + x2
r(2i+1) + 1)+

(w2 + w)2
r

(x2
i+r+2i+1 + x2

r+2i+1 + x2
i+r

+ x2
r

)+

(w2 + w)(x2
r+i+2r+2i + x2

r+i+2r+1 + x2
i

+ x) = 0,

which does not seem easy to solve.

Lemma 4 slightly simplifies the work. Let P = {x, y, z, x + y + z} be a

vanishing flat of F , then F (P ) = {x2i+1, y2
i+1, z2

i+1, (x + y + z)2
i+1} is an

affine plane and we have
∑
x∈P (F (x))2

r+1 6= 0 if and only if F (P ) is not a

vanishing flat of the Gold function G(x) = x2
r+1. According to Lemma 6, this

is equivalent to y2i+1+z2i+1

x2i+1+z2i+1
6∈ F2gcd(r,n) .

- If gcd(r, n) = 1, then clearly F (P ) is a non-vanishing flat; hence, all the values
of j of the form (2r + 1)2l where gcd(r, n) = 1 are such that

∑
x∈P (F (x))j 6= 0.

- If gcd(r, n) > 1, then after taking, without loss of generality, y = 1 and
z = wx+w+ 1, where w ∈ F2gcd(i,n) \F2, we are led to considering the equation

(1 + (wx+ w + 1)2
i+1)2

r−1 = (x2
i+1 + (wx+ w + 1)2

i+1)2
r−1,

that is (after multiplying both members by (1+(wx+w+1)2
i+1)(x2

i+1+(wx+

w+1)2
i+1)) the same equation as above. The work is simplified if, while keeping

y = 1 and z = wx+ w + 1, we rather express that z2i+1+y2i+1

x2i+1+y2i+1
6∈ F2gcd(r,n) , that

is, (wx+w+1)2
i+1+1

x2i+1+1
6∈ F2gcd(r,n) . For each w′ ∈ F2gcd(r,n) \F2, we need to consider

the equation (wx+ w + 1)2
i+1 + 1 = w′(x2

i+1 + 1), that is:

(w2 + w′)(x2
i+1 + 1) + (w2 + w)(x2

i

+ x) = 0. (8)

The equations of the form ax2
i+1 + bx + c = 0 are addressed in [11] and the

references therein (the resolution is not that simple); but as far as the author

knows, the equations of the form ax2
i+1 + b(x2

i

+ x) + c = 0 have been less
studied.
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4.2 Inverses of quadratic power permutations

Determining the vanishing flats of non-quadratic functions is in most cases dif-
ficult. A case where it is simplified is when the function is a permutation
whose compositional inverse is quadratic (and if it is also a power function,
it is simpler), or more generally when the function is CCZ equivalent to a
quadratic (power) function. It is indeed shown in [14] that if two functions
are CCZ-equivalent, then their vanishing flats correspond to each others in a
simple way. We rephrase below this result and we give a short argument, for
self-completeness.

Lemma 7 [14] Let F be any (n,m)-function and let G be CCZ equivalent to
F . Let A = (A1,A2) be an affine automorphism which maps the graph of F to
the graph of G and let F1(x) be the permutation equal to A1(x, F (x)). Then the
vanishing flats of G are the images by F1 of the vanishing flats of F .
In particular, if F is an (n, n)-permutation, then the vanishing flats of F−1 are
the images by F of the vanishing flats of F . They are the affine planes of the
form {F (x), F (y), F (z), F (x+ y + z) = F (x) + F (y) + F (z)}.
A plane P = {x, y, z, x + y + z} is then a vanishing flat of F−1 if and only if
{F−1(x), F−1(y), F−1(z), F−1(x) + F−1(y) + F−1(z)} is a vanishing flat of F .

Proof. We know that the vanishing flats of G are the projections over Fn2 parallel
to Fm2 of the affine planes included in the graph of G. For every subset S of
Fn2 × Fm2 , A(S) is an affine plane if and only if S is an affine plane. The affine
planes P ′ included in the graph of G are then the images by A of the affine
planes P included in the graph of F . The projection over Fn2 parallel to Fm2 of
P ′ equals the image by F1 of P . This completes the proof in the general case.
In the case where G = F−1, we have A(x, y) = (y, x) and then F1(x) = F (x).
2

Let us study the case where F (x) = xd is a quadratic power permuta-
tion. Without loss of generality, we take d = 2i + 1, where gcd(d, 2n − 1) =
gcd(22i−1,2n−1)
gcd(2i−1,2n−1) = 2gcd(2i,n)−1

2gcd(i,n)−1 = 1 (that is, where gcd(2i, n) equals gcd(i, n), that

we assume different from 1 so that F is not APN).
For instance, with F (x) = x5 and n ≡ 2 (mod 4), we have i = 2, gcd(2i, n) =

gcd(i, n) = 2 and F−1(x) = x
3·2n−2

5 (with 3 · 2n − 2 divisible by 5), since
5 3·2n−2

5 ≡ 1 (mod 2n − 1). We have that G(x) = F−1(x) is not second-
order sum-free, that is, not APN, since its inverse x5 is not APN, because
gcd(2, n) = 2 6= 1.

Coming back to the general case of F (x) = xd, the vanishing flats of F−1

are, according to Lemma 7, the planes {xd, yd, zd, xd + yd + zd = (x+ y+ z)d}.
According to Lemma 6, the vanishing flats of F (x) when d = 2i + 1 are the
planes {x, y, z, x + y + z} with x, y, z distinct, such that z = wx + (w + 1)y,
where w ranges over F2gcd(i,n) \ F2 (and the condition x 6= y is sufficient for
having x, y, z distinct). We deduce:
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Lemma 8 The vanishing flats of the function x
1
d , where d = 2i+1, gcd(2i, n) =

gcd(i, n), are the planes of the form:

P = {xd, yd, (wx+ (w + 1)y)d, ((w + 1)x+ wy)d},

where x 6= y ∈ F2n and w ∈ F2gcd(i,n) \ F2.

In particular, for n ≡ 2 (mod 4), the vanishing flats of the permutation x
3·2n−2

5

are the affine planes of the form:

{x5, y5, (wx+ w2y)5, (w2x+ wy)5},

where x 6= y ∈ F2n and w is a primitive element of F4.
Let us now see what gives

∑
x∈P (x

1
d )j when P is a vanishing flat of x

1
d (that

we assume non-APN; hence we take gcd(i, n) > 1) and j is a positive integer
of 2-weight 2. Without loss of generality, we take j = 1 + 2r, and we have

to calculate (xd)
j
d + (yd)

j
d + ((wx + (w + 1)y)d)

j
d + ((w + 1)x + wy)d)

j
d =

x1+2r + y1+2r + (wx + (w + 1)y)1+2r + ((w + 1)x + wy)1+2r = (1 + w1+2r +
(w+ 1)1+2r )(x1+2r + y1+2r ) + (w(w+ 1)2

r

+w2r (w+ 1))(xy2
r

+x2
r

y) = (w2r +
w)(x1+2r + y1+2r + xy2

r

+ x2
r

y) = (w2r +w)(x+ y)1+2r , which equals 0 if and
only if w2r + w = 0, that is, w ∈ F2r ∩ (F2gcd(i,n) \ F2) = F2gcd(r,i,n) \ F2. We
deduce:

Proposition 7 Let F (x) = xd, where d = 2i + 1, with gcd(2i, n) = gcd(i, n) >
1. Given any vanishing flat P of F−1 and a corresponding value w given by
Lemma 8, the set of those integers j of 2-weight 2 such that

∑
x∈P (x

1
d )j 6= 0

equals the set of those integers (2r + 1)2j, where l is any integer and r is such
that w ∈ F2gcd(i,n) \ F2gcd(r,i,n) .

We knew that, for any vanishing set P , there exists an integer j of 2-weight 2
such that

∑
x∈P (x

1
d )j 6= 0. We can check it here, since for any w ∈ F2gcd(i,n) \F2,

the set of those integers r such that w ∈ F2gcd(i,n) \ F2gcd(r,i,n) is non-empty.

We see that the case of x
1
d when d is a quadratic exponent is simpler than the

case of xd itself.

4.3 Some other power functions

As we wrote, we shall study apart in Subsection 6 the case of the multiplicative
inverse function x2

n−2 (equivalently, of the function x2
n−1−1). Let us study, for

2 < k < n − 1, the second-order sum-free min-degree of the power functions

Pk(x) = x2
k−1 (which are shown in [8] to be kth-order sum-free). Note that if

gcd(k, n) ≥ 3, then the restriction of Pk(x) to F2gcd(k,n) equals 1 + δ0(x), where
δ0 is the Dirac (or Kronecker) function, taking value 1 at 0 and 0 elsewhere,
and Pk does not satisfy the condition of Definition 2, since for every affine
plane P in F2gcd(k,n) not containing 0, we have Pk((P )) = ∅. We shall then

assume that gcd(k, n) ≤ 2. Note that x2
k−1 equals identity for k = 1 and is

APN for k = 2. We assume then k ≥ 3. The vanishing flats of Pk are not
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investigated in [14] nor in the references therein (only their number is studied,

for a few values of k). However, the differential spectrum of the functions x2
k−1

has been studied in [2] and the following has some (very partial) intersection

with this paper. The condition that the function x2
k−1 sums to a nonzero

value over an affine plane {x, y, z, x + y + z} (with x, y, z ∈ F2n distinct) is

x2
k−1 + y2

k−1 + z2
k−1 + (x + y + z)2

k−1 6= 0 and we can reduce ourselves to

z = 1. We obtain x2
k−1 +y2

k−1 +1+(x+y+1)2
k−1 6= 0. Hence, if the equation

x2
k−1 +y2

k−1 +1+(x+y+1)2
k−1 = 0 admits solutions (x, y) such that x and y

are distinct and different from 1, we shall have to consider integers j of 2-weight
2 for the corresponding affine planes {x, y, z, x+ y + z}.

• If the affine plane P includes 0 (i.e. is a linear plane), then without loss
of generality, we can take x+ y + 1 = 0 (x and y being then nonzero and

distinct), then the equation above becomes x2
k−1 + (x + 1)2

k−1 + 1 = 0.

Multiplying by x(x+1) (which is nonzero), we obtain x2
k

(x+1)+x(x2
k

+

1) + x(x + 1) = 0, that is, x2
k

+ x2 = 0, or equivalently x2
k−1−1 = 1,

since x cannot be zero because y would then equal 1. We have gcd(2k−1−
1, 2n − 1) = 2l − 1, where

l = gcd(k − 1, n).

If l = 1, then any plane of the form {x, x + 1, 1, 0}, or more generally of
the form P = z · {x, x+ 1, 1, 0}, where x ∈ F2n \ F2, is non-vanishing, and
if l > 1, then P is a vanishing flat (that we need to consider when we take
j of 2-weight 2) if and only if x ∈ F2l \F2 (that is, if P is a linear plane in

F2l). For j = 2i + 1, we have (zx)(2
k−1)j + (z(x+ 1))(2

k−1)j + z(2
k−1)j =

z(2
k−1)j((x2

k−1)2
i+1 + ((x+ 1)2

k−1)2
i+1 + 1). Since x ∈ F2l \ F2, we have

x2
k−1 = x, and (x+ 1)2

k−1 = x+ 1, and (x2
k−1)2

i+1 + ((x+ 1)2
k−1)2

i+1 +

1 = x2
i+1 + (x+ 1)2

i+1 + 1 = x2
i

+x. Hence,
∑
x∈Pk((P )) x

2i+1 is nonzero

if and only if x ∈ F2l \ F2gcd(i,l) . Hence, given a linear vanishing flat
P = {0, 1, x, x + 1} of Pk (included in F2l), the integers j of 2-weight 2
such that

∑
x∈Pk((P )) x

j 6= 0 are the integers of the form 2r(2i + 1) such

that x ∈ F2l \ F2gcd(i,l) (and we have, as we knew in advance, that there
exist such j, since we can take for instance i co-prime with l).

• If P does not include 0, then we have x, y, x + y + 1 6= 0. Multiplying

the equation x2
k−1 + y2

k−1 + 1 + (x + y + 1)2
k−1 = 0 by x + y + 1 gives

x2
k−1y+ x2

k−1 + xy2
k−1 + y2

k−1 + x+ y = 0, that is, x
2k−1+1
x+1 = y2k−1+1

y+1 .

Hence, an affine plane z ·{x, y, 1, x+y+1} with x, y nonzero, x, y, 1 distinct

and x+y+1 6= 0, is a vanishing flat of x2
k−1 if and only if x, y belong to the

same pre-image by the function x ∈ F2n \ {1} 7→ x2k−1+1
x+1 , and we need to

determine what are the pre-images (which are vector spaces containing 1,
deprived of 0 and 1) that contain at least two elements x, y that are distinct

and such that x + y + 1 6= 0 (note that x2k−1+1
x+1 = x2k+x

x2+x has its value
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unchanged when we replace x by x + 1, so we need pre-images of size at

least 4, which are then vector spaces (since the equation x2
k

+x = λ(x2+x)
is linear homogeneous) of dimension at least 3, deprived of 0 and 1). For
instance, the pre-image of 0 equals F2r \F2 where r = gcd(k, n) = 1, which
leads to a vanishing flat if r ≥ 3. The pre-image of 1 equals F2r \{1} where
r = gcd(k − 1, n) = 1, which leads to a vanishing flat if r ≥ 3. Note that,
since 0 belongs to this pre-image, then up to a permutation among the
elements of the plane, this case and the case x + y + 1 = 0 have an
intersection.
We leave open the determination of all the vanishing flats P of x2

k−1 and,
for each of them, of the values of j whose 2-weight is minimum such that

xj(2
k−1) sums to a nonzero value over P . Some particular values of k, such

as those studied in [2], may be simpler to study than others.

5 Some general results on power functions

An (n, n)-function F (x) = xd, where x ∈ F2n and d ∈ Z/(2n−1)Z, is kth-order t-
degree-sum-free if and only if, for every k-dimensional affine space A, there exists
a non-negative integer j of 2-weight at most t, such that

∑
x∈A x

dj 6= 0. We
shall see that the study of the kth-order sum-free min-degree of power functions
xl, where l is a multiple of d, gives an information on that of xd. This is quite
positive, but a determination of the kth-order sum-free min-degree of all power
functions seems elusive, even for k = 2 (for which this determination includes
as a very partial sub-problem the determination of all APN power functions,
which is currently only in the state of a conjecture). Note also that Lemma 4
does not generalize to vanishing k-flats for k > 2.

5.1 The influence of the kth-order sum-free min-degree of
“multiples”

Proposition 8 Let d ∈ Z/(2n − 1)Z and let l be a nonzero multiple of d in
Z/(2n − 1)Z:

0 6≡ l ≡ dr (mod 2n − 1).

If the power function xl is kth-order t-degree-sum-free for some k and t (i.e.
if the kth-order sum-free min-degree of xl is at most t), then F (x) = xd is
kth-order (w2(r) t)-degree-sum-free (i.e. its kth-order sum-free min-degree is at
most w2(r) t).
Moreover, if r is invertible in Z/(2n − 1)Z and r′ is its inverse, then F (x) is

kth-order
(
n− 1−

⌊
n−1−t
w2(r′)

⌋)
-degree-sum-free.

Proof. Let A be any k-dimensional vector subspace of F2n and j a non-negative
integer of 2-weight at most t such that

∑
x∈A x

lj 6= 0. Then we have
∑
x∈A x

drj 6=
0 and since we have w2(rj) ≤ w2(r)w2(j), this proves the first assertion. When

r is invertible, Bound (3) says that w2(rj) ≤ n− 1−
⌊
n−1−w2(j)
w2(r′)

⌋
. This proves
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the second assertion. 2

Remark. Proposition 8 allows to reach a min-degree of 1 (i.e. to have a tth-
order sum-free function) only when xr is linear and xl is tth-order sum-free
(i.e. t = 1): if we take t > 1, then both bounds in the proposition have values
larger than 1, and if t = 1, we have as only possible choice of w2(r) (for the
first bound) the value 1 and this is also the case for the value of w2(r′) (for the
second bound). �

Remark. This result extends of course to any (n,m)-function F such that, for
some positive integer r, the function (F (x))r is kth-order t-degree-sum-free for
some k and t. �

5.2 An upper bound on the kth-order sum-free min-degree
of any power permutation

We deduce now from Proposition 8 an improvement for power permutations (in
some cases) of the upper bound min(k,m) on the kth-order sum-free min-degree.

Proposition 9 Let n, k be positive integers such that k ≤ n−1. Let F (x) = xd

be any power permutation over F2n . Let d′ be the inverse of d modulo 2n − 1,
r = d′(2k − 1) (mod 2n − 1). Let r′ equal the inverse of r in Z/(2n − 1)Z if
gcd(k, n) = 1, and equal to 2n − 1 otherwise. Then F is kth-order w-degree-
sum-free (i.e. its kth-order sum-free min-degree is at most w) where:

w = min
(
w2(r), n− 1−

⌊
n− 2

w2(r′)

⌋)
.

Proof. We know from [8] that the power function x2
k−1 is kth-order sum-

free, that is, kth-order 1-degree sum-free and we have: d(d′(2k − 1)) ≡ 2k − 1
(mod 2n − 1). Proposition 8 with l = 2k − 1 and t = 1 completes the proof. 2

There are many cases where w < k. For instance, when gcd(k, n) = 1 and

d′ = l
2k−1 (i.e. d = 2k−1

l ), where l is co-prime with n and has 2-weight strictly

smaller than k, we have w2(d′(2k − 1)) < k.

5.3 A generalization

The existence of any class of kth-order sum-free power functions, other than

x2
k−1, would give another upper bound similar to that of Proposition 9. The

only change (up to a multiplication by a power of 2) on the exponent 2k − 1 =∑k−1
i=0 2i which seems to preserve the kth-order sum-freedom of the power func-

tion x2
k−1 is replacing its exponent by

∑k−1
i=0 2ij = 2kj−1

2j−1 for some j co-prime

with n. This corresponds to changing the Frobenius x 7→ x2 into another gener-
ator of the Galois group, its power x 7→ x2

j

. The kth-order sum-freedom of the
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resulting power function comes from the fact recalled in [8] that, if L0, . . . , Lk−1

are linear, then for every a1, . . . , ak in F2n , we have Da1 . . . Dak

(∏k−1
i=0 Li

)
(x) =∑

σ∈Gk

∏k
i=1 Lσ(i)(ai), where Gk is the set of bijections from {1, . . . , k} to

{0, . . . , k − 1}, and we obtain another so-called Moore exponent set (see [1,

Bottom of page 2]). Applying Proposition 8 with l = 2kj−1
2j−1 , we have r =

d′(
∑k−1
i=0 2ij), which may have another 2-weight than d′(2k − 1). The next

proposition generalizes Proposition 9.

Proposition 10 Let n, k be positive integers such that k ≤ n−1. Let F (x) = xd

be any power permutation over F2n . Let j be any positive integer co-prime with
n. Let d′ be the inverse of d modulo 2n − 1, r = d′(

∑k−1
i=0 2ij) (mod 2n − 1)

and if gcd(
∑k−1
i=0 2ij , 2n − 1) = 1, let r′ the inverse of r in Z/(2n − 1)Z, and

otherwise r′ = 2n − 1. Then F is kth-order w-degree-sum-free where:

w = min
(
w2(r), n− 1−

⌊
n− 2

w2(r′)

⌋)
.

Remark. Note that for n odd, we can also apply Proposition 8 with l = −1
when k = 2 (because the multiplicative inverse function is second-order 1-degree-
sum-free, since it is APN) or k = n − 2 (because the multiplicative inverse
function is (n − 2)th-order 1-degree-sum-free, being (n − 2)th-order sum-free,
see [9]). This gives that any power permutation F (x) = xd in odd dimension n
is second-order t-degree-sum-free and (n − 2)th-order t-degree-sum-free, where
t equals the 2-weight of r = −d′ ∈ Z/(2n − 1)Z.
For 3 ≤ k ≤ n−3, there does not seem to exist other infinite classes of kth-order
sum-free power functions (to be used in conjunction with Proposition 8) than
those used in Proposition 10, see [1, Theorem 1.1]. �

6 The case of multiplicative inverse function

The multiplicative inverse function

Finv(x) = x2
n−2, x ∈ F2n ,

is, as we recalled above, second-order 1-degree-sum-free (i.e. APN) if and only
if n ≥ 3 is odd. Let us address the case of n even.

Proposition 11 Let n be an even integer such that n ≥ 4. The multiplicative
inverse function Finv(x) = x2

n−2, x ∈ F2n , is 2nd-order 2-sum-free.

Proof. We know from [8] that for every affine space A that is not a vector space
(i.e. which does not include the zero vector), we have

∑
x∈A F (x) 6= 0. In the

case of a 2-dimensional vector space, that is, A = {0, a, b, a + b} with a and b

linearly independent over F2, we have 1
a + 1

b + 1
a+b = a2+b2+ab

ab(a+b) =
a
(
( b
a )2+ b

a+1
)

b(a+b) .

As already observed in [14], the only affine planes over which the inverse func-
tion sums to 0 are then the vector spaces of the form aF4, since the equation
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1 + x2 + x = 0 has for solutions the two primitive elements of F4. Over such
plane, the cube function x3 sums to a nonzero value, and since the cube function
is quadratic, Finv is 2nd-order 2-sum-free. 2

On the basis of computer investigations, we conjecture in [9] that, for ev-
ery k ∈ {3, . . . , n − 3} and every n ≥ 6, the inverse function is not kth-order
2-degree-sum-free (see also [10]). It is then useful to study the values of t for
which it is kth-order t-degree-sum-free.

We saw that Corollaries 1 and 2 do not allow to prove this conjecture, even
partially.

6.1 A general upper bound on the kth-order sum-free min-
degree for k ≥ 2

Since Finv has an algebraic degree of n − 1, Relation (1) does not give any
information, but we have:

Proposition 12 For every 2 ≤ k ≤ n, the multiplicative inverse (n, n)-function

is kth-order t-degree-sum-free with t = min
(
n − k, n − 1 −

⌊
n−2
n−k′

⌋)
, where k′

equals the inverse of k modulo n if gcd(k, n) = 1 and equals 0 otherwise.

Proof. We apply Proposition 9 with d′ = 2n − 2 and r = (2n − 2)(2k − 1)
(mod 2n − 1) = 2n − 2k (mod 2n − 1). We have:

• w2(r) = n− k,

• if gcd(k, n) = 1, then let k′ be the inverse of k modulo n, the inverse
of 2k − 1 modulo 2n − 1 equals 2k(k

′−1) + 2k(k
′−2) + · · · + 2k + 1, since

(2k − 1)(2k(k
′−1) + 2k(k

′−2) + · · · + 2k + 1) = 2kk
′ − 1 ≡ 1 (mod 2n − 1).

The inverse r′ of the opposite 2n− 2k of 2k− 1 modulo 2n− 1 equals then
(2n − 1) −

(
2k(k

′−1) + 2k(k
′−2) + · · · + 2k + 1

)
and has 2-weight n − k′.

Then, n− 1−
⌊
n−2
w2(r′)

⌋
equals n− 1−

⌊
n−2
n−k′

⌋
.

This completes the proof. 2

The bound t ≤ n−k in Proposition 12 gives an information when n−k < k,
that is, k > n

2 . For k < n
2 , we will have a result thanks to Corollary 2 below.

We have n − 1 −
⌊
n−2
n−k′

⌋
< n − k when

⌊
n−2
n−k′

⌋
≥ k, that is, n − 2 ≥ k(n − k′)

(which can happen, when k is not too large and k′ is not too small).
Note that for k = n− 2, we obtain t = 2 (since n− 2 ≥ k(n− k′) is impossible),
which is the correct value if we do not distinguish the parity of n, since we have,
thanks to Corollary 4 below and Proposition 11 above, that Finv is (n − 2)th-
order 2-degree sum-free for n even and (n− 2)th-order 1-degree sum-free for n
odd.
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6.2 Relation with subspace polynomials and consequences

Subspace polynomials (see below) play an important role with respect to the
kth-order (regular) sum-freedom of the inverse function (see [8, 9]). In the
present subsection, we use a different approach for revisiting this role, and we
deduce that the property that the kth-order sum-freedom of the multiplicative
inverse function is equivalent to its (n− k)th-order sum-freedom extends to the
kth-order sum-free min-degree.
We also deduce another similarity between the sum-freedom of the inverse func-
tion and its sum-free min-degree: when we studied its sum-freedom, we observed
a difference between the sums

∑
x∈A Finv(x) when A is a vector subspace of Fn2 ,

and when it is another affine subspace. We will see this is also the case for the
sums

∑
x∈A(Finv(x))j when considering the kth-order sum-free min-degree.

Subspace polynomials Let Ek be a k-dimensional vector space and let
LEk

(x) =
∏
u∈Ek

(x+u). Such a polynomial is called a subspace polynomial. It

is a linearized polynomial and we write then LEk
(x) =

∑k
i=0 bk,ix

2i (bk,0 6= 0,
bk,k = 1); see more in [9].

Consequence on the sums
∑
x∈Ek\{0} x

−j: Since for every x ∈ Ek, we have

x = 1
bk,0

∑k
i=1 bk,ix

2i , we have for every nonzero x ∈ Ek and every non-negative

integer j, by dividing this equality by xj+1, that x−j = 1
bk,0

∑k
i=1 bk,ix

2i−1−j .

We deduce that:

∑
x∈Ek\{0}

x−j =
1

bk,0

k∑
i=1

bk,i

( ∑
x∈Ek\{0}

x2
i−1−j

)
.

Hence, since for every (n, n)-function F of algebraic degree less than k, we have∑
x∈Ek

F (x) = 0 and we also have
∑
x∈Ek\{0} x

0 = 1, we deduce:

Lemma 9 Let n and k be any positive integers such that k ≤ n and let Ek be
any k-dimensional vector space and LEk

(x) =
∏
u∈Ek

(x + u) =
∑k
i=0 bk,ix

2i .
Let

r = min{i; 1 ≤ i ≤ k and bk,i 6= 0}.

Then
∑
x∈Ek\{0} x

−j equals 0 for every 1 ≤ j < 2r − 1 and is nonzero for
j = 2r − 1.

This result extends results from [8, 9] (which say, taking j = 1, that
∑
x∈Ek\{0} x

−1

equals 0 if r > 1 and is nonzero if r = 1.).

Consequence on the sums
∑
x∈Ek\{0}(x+ a)−j; a 6∈ Ek: Let Ak = a+Ek

be a k-dimensional affine space not containing 0. Since we know from [8] that∑
x∈Ak

x−1 6= 0, we have that j = 1 is such that
∑
x∈Ak

x−j 6= 0 and we do not
need to consider larger values of j. By curiosity, let us however show how the
method used above for vector spaces can be adapted to find again this result.
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We have Ak = L−1Ek
(b) for some nonzero b = LEk

(a). Then, for every x ∈ Ak,

we have b =
∑k
i=0 bk,ix

2i and then
∑
x∈Ak

x−j = 1
b

∑k
i=0

(
bk,i

∑
x∈Ak

x2
i−j
)

.

We find for j = 1 that since
∑
x∈Ak

x2
i−1 equals 0 for i < k (since x2

i−1 has

an algebraic degree of i) and is nonzero for i = k (since
∑
x∈Ak

x2
k−1 equals

the value at x of a kth-order derivative of the function x2
k−1 and we know from

[8] that this constant derivative is nonzero). This provides a different way of
proving the known result from [8].

We deduce from the observations above (and from the fact that j = 2r − 1
has a 2-weight of r):

Proposition 13 Let n and k be positive integers such that k ≤ n. The kth-
order sum-free min-degree of the multiplicative inverse function Finv over F2n

equals the minimum positive integer such that, for every k-dimensional vector
subspace Ek of F2n , denoting LEk

(x) =
∏
u∈Ek

(x+ u) =
∑k
i=0 bk,ix

2i , we have
t ≥ min{i; 1 ≤ i ≤ k and bk,i 6= 0}.

A case where we know that Finv is not kth-order sum-free is when k divides
n, since

∑
x∈F

2k
x−1 equals 0, and the next step is determining the kth-order

sum-free min-degree of Finv in such a case.

Corollary 3 If k divides n, then the kth-order sum-free min-degree of the mul-
tiplicative inverse function Finv over F2n equals k.

Indeed, for Ek = F2k , we have LEk
(x) = x2

k

+ x. Hence, according to Propo-
sition 13, the kth-order sum-free min-degree is at least k, and according to
Proposition 3, it equals then k.
We can see that the bound of Proposition 3 is tight, at least for m = n.

A more general case where we know that Finv is not kth-order sum-free is

when gcd(k, n) > 1, see [9]. In such a case, we have LF
2gcd(k,n)

(x) = x2
gcd(k,n)

+x,

and according to Lemma 9, we have then that
∑
x∈F

2gcd(k,n)
x−j equals 0 when

j < 2gcd(k,n) − 1 and is nonzero when j = 2gcd(k,n) − 1. If Ek is a k
gcd(k,n) -

dimensional vector subspace of F2n over F2gcd(k,n) , then Ek equals the disjoint
union of multiplicative cosets wF∗

2gcd(k,n) where w ranges over a basis S of Ek over
F2gcd(k,n) , and we have then that

∑
x∈Ek

x−j = (
∑
w∈S w

−j)(
∑
x∈F∗

2gcd(k,n)
x−j)

equals 0 if and only if
∑
w∈S w

−j = 0 or
∑
x∈F∗

2gcd(k,n)
x−j = 0. Hence the kth-

order sum-free min-degree of Finv is larger than or equal to gcd(k, n). It seems
difficult to determine in which cases it equals gcd(k, n) and in which cases it is
larger.

The next corollary generalizes to the sum-free min-degree the equality, proved
in [9], between the kth-order sum-freedom of the inverse function and its (n −
k)th-order sum-freedom.
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Corollary 4 For any n ≥ 2 and any k ∈ {2, . . . , n− 2}, the kth-order sum-free
min-degree of the multiplicative inverse (n, n)-function equals its (n−k)th-order
sum-free min-degree.

Proof. It is recalled in [9] that if Ek is any k-dimensional vector subspace of
F2n and En−k = LEk

(F2n) then En−k has dimension n − k and we have the
following relation in F2n [x]:

LEn−k
◦ LEk

(x) = LEk
◦ LEn−k

(x) = x2
n

+ x.

Writing LEk
(x) =

∑k
i=0 bk,ix

2i and LEn−k
(x) =

∑n−k
i=0 bn−k,ix

2i , we have LEn−k
◦

LEk
(x) =

∑n−k
i=0

∑k
j=0 bn−k,i(bk,j)

2ix2
i+j

. We have then, by considering the co-

efficient of x2
r

:

∀r ∈ {1, . . . , n− 1},
r∑
i=0

bn−k,i(bk,r−i)
2i = 0. (9)

We know from Proposition 13 that, if t is the kth-order sum-free min-degree of
the inverse function, then bk,0 and bk,t are nonzero and bk,1 = · · · = bk,t−1 = 0.
The relations corresponding to Relation (9) for r = 1, . . . , t− 1 imply bn−k,1 =
· · · = bn−k,t−1 = 0 and the tth relation implies bn−k,t 6= 0. Proposition 13
completes the proof. 2

Corollary 4 and Proposition 12 give:

Corollary 5 For every 2 ≤ k ≤ n, the multiplicative inverse (n, n)-function is

kth-order t-degree-sum-free with t = min
(
k, n−k, n−1−

⌊
n−2
n−k′

⌋
, n−1−

⌊
n−2
k′

⌋ )
,

where k′ equals the inverse of k modulo n (and n − k′ is the inverse of n − k
modulo n) if gcd(k, n) = 1 and equals 0 (resp. n) otherwise.

Remark. The kth-order sum-free min-degree of Finv is then at most t =

min
(
k, n− k, n− 1−

⌊
n−2
n−k′

⌋
, n− 1−

⌊
n−2
k′

⌋ )
. For k ≤ n

2 , we have often t = k

and we do not get then more information than with Proposition 3. But for
k > n

2 , the bound of Corollary 5 is strictly better than that of Proposition 3.
We do not know whether the kth-order sum-free min-degree of Finv is always
strictly larger than 1 for k ∈ [3, n − 3], but we conjecture it. Determining the
exact kth-order sum-free min-degree of Finv seems challenging. �

Conclusion
We have introduced a notion on vectorial functions extending that of sum-
freedom (which itself extended the notion of almost perfect nonlinearity).
This has led to the parameter that we called kth-order sum-free min-degree,
which quantifies to which extent an S-box F prevents from the propagation of
the division property of k-dimensional affine spaces, in the framework of an in-
tegral attack.
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We proved that all the vectorial (n,m)-functions such that, for every k-dimen-
sional affine space A, the set F ((A)) = {y ∈ Fm2 ;A ∩ F−1(y) has an odd size}
is non-empty (in particular, all injective vectorial functions), have a kth-order
sum-free min-degree smaller than or equal to min(k,m). We could also prove
several lower bounds on the kth-order sum-free min-degree of vectorial func-
tions.
We leave open the determination, for every k ∈ {3, . . . , n − 1}, of the vectorial
functions having the property that F ((A)) is non-empty for every k-dimensional
affine space A. We identified an infinite class of (non-necessarily-bijective)
(m,m)-functions satisfying this property for every even k, which includes all
APN power functions.
A vectorial function is kth-order sum-free if and only if its kth-order sum-free
min-degree equals 1. Functions being kth-order sum-free seem rare, and the
weakening of this notion, by considering the functions whose kth-order sum-
free min-degree can equal a larger value (not too large, in order to preserve the
non-propagation of the division property of k-dimensional vector spaces), nicely
extends the corpus to be studied. But determining the kth-order sum-free min-
degree of vectorial functions seems quite difficult.
We could prove several upper bounds specific to the case of power functions.
We leave open the determination of the kth-order sum-free min-degree t of the
multiplicative inverse function for k ∈ {3, . . . , n− 3}, and more generally of all
the functions x2

r−1 for k ∈ {2, . . . , n − 2} \ {r}, and of all other cryptographi-
cally interesting functions.
The precise determination, for a given non-APN function F , of those positive in-
tegers j of 2-weight 2, such that (F (x))j sums to a non-zero value over a generic
non-vanishing flat is also left open, even for the (seemingly simpler) cases of

quadratic power functions and of functions of the form x2
k−1. We could deter-

mine them for the compositional inverses of quadratic power permutations.
Finally, we could show, thanks to a simple and general characterization by sub-
space polynomials of the kth-order sum-free min-degree of the multiplicative
inverse function, that it equals k when k divides n and that, in general, it
equals its (n − k)th-order sum-free min-degree, thus extending a result on its
kth-order sum-freedom.
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