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Abstract. SNOVA is a post-quantum digital signature scheme based
on multivariate polynomials. It is a first-round candidate in an ongo-
ing NIST standardization process for post-quantum signatures, where it
stands out for its efficiency and compactness. Since its initial submis-
sion, there have been several improvements to its security analysis, both
on key recovery and forgery attacks. All these works reduce to solving a
structured system of quadratic polynomials, which we refer to as SNOVA
system.
In this work, we propose a polynomial solving algorithm tailored for
SNOVA systems, which exploits the stability of the system under the
action of a commutative group of matrices. This new algorithm reduces
the complexity to solve SNOVA systems, over generic ones. We show how
to adapt the reconciliation and direct attacks in order to profit from the
new algorithm. Consequently, we improve the reconciliation attack for
all SNOVA parameter sets with speedup factors ranging between 23 and
222. Our algorithm also reduces the complexity of the direct attack for
several parameter sets. It is particularly effective for the parameters that
give the best performance to SNOVA (l = 4), and which were not taken
below NIST’s security threshold by previous attacks. Our attack brings
these parameter sets (l = 4) below that threshold with speedup factors
between 233 and 252, over the state-of-the-art.

Keywords: Cryptanalysis, SNOVA, stable ideals, post-quantum, multivariate.

1 Introduction

Digital signatures are essential to ensure the authenticity and integrity of dig-
ital communications. The security of widely used digital signature schemes is
threatened by quantum computers [14]. Post-quantum cryptography (PQC) is
an active area of research aiming at developing cryptographic algorithms that
are resilient against quantum attacks. In light of this, NIST has been leading
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an effort to evaluate and standardize cryptographic algorithms capable of with-
standing quantum adversaries.

Following the success of its first PQC standardization process, in 2023 NIST
initiated a second call for submissions, focused on digital signatures. One promis-
ing candidate in this process is the SNOVA signature scheme [17], which builds
upon the Unbalanced Oil and Vinegar (UOV) signature scheme. SNOVA modi-
fies UOV’s structure to reduce the size of the public key and the speed of signing,
while keeping UOV’s short signatures and fast verification. For example, at se-
curity level I, SNOVA can have 1000-byte public keys and 232-byte signatures,
while the speed of signing and verification are comparable to those of Dilithium,
one of the post-quantum signature schemes standardized by NIST. Due to its
efficiency and compactness, SNOVA offers an attractive option for real-world
applications.

The main concern about SNOVA is its security, and this is the main focus of
this work. There have been several papers since the beginning of 2024 analyzing
SNOVA’s security from different perspectives. Since our work builds upon those
works, it is important to summarize their main findings.

Key-Recovery and reconciliation. In two independent but concurrent works
Ikematsu-Akiyama [7] and Li-Ding [8] analysed the security of SNOVA against
key-recovery attacks. Both works reached the same conclusion: All known key-
recovery attacks for SNOVA with parameters (v, o, l, q) can be seen as attacks
to a UOV signature scheme with lo2 equations and l(v + o) variables over Fq.
In particular, for the reconciliation attack, the attacker has to find one specific
solution out of many of a quadratic polynomial system of the form

xtΛ
(n)
Si PkΛ

(n)
Sj x = 0, ∀k = 1, . . . , o, and 0 ≤ i, j < l, (1)

where n = v+o, x is a vector of variables, Pk ∈ Fln×ln
q is matrix, Λ

(n)
Si is a block-

diagonal matrix with Si ∈ Fl×l
q along the diagonal, and S ∈ Fl×l

q a symmetric
matrix with an irreducible characteristic polynomial. Throughout this work, we
refer to any system whose quadratic part has the form (1) as a SNOVA system.
More recently, Nakamura, Tani, and Furie discuss a similar attack in [10].

Forgery Attacks. On a recent preprint, Beullens proposed a new forgery attack
on SNOVA [4]. The main observation is that the SNOVA public key has a similar
structure to MAYO’s [2]. Specifically, denoting by B(ui,uj) the bilinear map
associated with the SNOVA system defined by the public key, then the SNOVA
public key can be written as:

P(U) =

l∑
i=1

l∑
j=1

Ei,jB(ui,uj),

where U = [u1, . . . ,ul], ui ∈ Fnl
q , the Ei,j ∈ Fol2×ol2

q are block-diagonal matrices

with o copies of a matrix Ẽi,j ∈ Fl2×l2

q along the diagonal. Unlike MAYO, there
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is a nontrivial linear combination E of the matrices Ei,j with a rank defect.
Beullens uses this fact to speed up a forgery attack.

1.1 Our Contributions

We propose the first polynomial solving algorithm tailored for SNOVA systems.
Our algorithm builds over the observation that the ideal I generated by the

quadratic part of Eq. (1) is Λ
(n)
Fq [S]-stable, meaning, that f(Ax) ∈ I for any f ∈ I

and A ∈ Λ
(n)
Fq [S]. In [6], Faugère and Svartz propose a variant of the F5 algorithm

to compute a Gröbner basis of a D-stable ideal, where D is any commutative
group of matrices, and provide an asymptotical analysis of the complexity when
the degree of the Macaulay matrix tends to infinity.

We adapt the ideas in [6] for SNOVA systems. Applying an appropriate
change of variable to the ideal I, we obtain a stable ideal under the action of a
cyclic diagonal group of matrices. The resulting polynomial system has a multi-
degree homogeneous structure. Unlike [6], we propose an XL-like algorithm to
solve the system and leverage the multi-degree homogeneous structure. Also, we
provide a concrete and tight analysis of our algorithm’s complexity, which is
supported experimentally Our complexity estimates show that solving SNOVA
systems is easier than solving a corresponding random quadratic system by a
factor of about ql.

By using our new algorithm to solve SNOVA systems, we improve the rec-
onciliation attack in [7,8], with speedup factors ranging between 27 and 222.

We also show that it is possible to make use of our specialized polynomial
solving algorithm to improve the forgery attack in [4]. In order to reduce the
forgery of a message msg to the problem of solving a SNOVA system, while
maintaining the multi-degree homogeneity of the lifted system, we have to lever-
age the low-rank of the matrix E in a different way. Instead of finding elements
in the left kernel of E to obtain linear equations, we first brute force a value
salt ∈ {0, 1}∗ such that the target vector z = Hash(msg∥salt) falls in the columns
space of E. Then, we find a vector w such that z = Ew. Finally, we solve for a
vector u over Fq and y1, . . . , yp ∈ Fq such that

w = B(u,u) +
p∑

i=1

yiwi,

where the w1, . . . ,wp are elements in the right-kernel of E.
Our forgery attack is faster than Beullens’ [4] for several parameter sets,

but it is particularly effective when l = 4. We highlight that these are the
only parameter sets for which the attack in [4] does not bring the security of
the scheme below the threshold defined by NIST for each category. For l = 4
parameter sets, the speedup of our attack over Beullens’ ranges between 233 and
252.

In [4], Beullens suggests a modified version of SNOVA called “SNOVA minus
whipping”. This new version avoids the forgery attacks introduced in the same
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paper. The public map of the new scheme is defined as P(u) = B(u,u), i.e.,
the public key defines a SNOVA map. The security analysis was left as an open
problem. Our new algorithm for SNOVA systems serves as the first security
analysis of the SNOVA minus whipping signature scheme.

Our attacks also affect the security of the two new alternative versions of
SNOVA proposed in [16] with the goal of counteracting Beullen’s attack. As
for the first alternative, our forgery attack improves the state-of-the-art for this
particular version, and the security of all proposed parameters fall below the
threshold for the corresponding security levels. With regards to the second al-
ternative, our forgery attack does not bring the security below the threshold
but it improves the original direct attack for all proposed parameters for this
particular version, with speedup factors ranging between 2 and 216.

This paper is organized as follows. Section 2 describes the SNOVA signature
scheme, some of the attacks, and a special XL algorithm for multi-homogeneous
systems. In Section 3, we describe some of the algebraic properties of SNOVA
systems. Section 4 introduces the proposed polynomial solving algorithm tailored
for SNOVA systems and gives a detailed analysis of its complexity. Section 5
presents our adaptation of the reconciliation and direct attacks to profit from
the proposed algorithm and shows results for the original version of SNOVA.
Finally, Section 6 presents the results of our attacks for the recently proposed
alternative versions of SNOVA.

2 Preliminaries

2.1 The SNOVA Signature Scheme

SNOVA is a digital signature scheme based on the ideas of UOV [17], and it is
a current candidate to the so-called onramp NIST call for post-quantum digital
signature schemes. Here, we describe the necessary objects from the scheme to
be able to discuss the attacks, and we refer the reader to [17] for further details.

Let n, v, o, l ∈ N, with v > o, and n = v + o. Denote by [l] the set {1, . . . , l},
by Fq the finite field with q elements, and by R := Fl×l

q the ring of l × l ma-

trices over Fq. Furthermore, given a matrix Q ∈ Fl×l
q , we denote by Λ

(n)
Q , or

by diag(Q, . . . , Q), the nl × nl block diagonal matrix with Q-blocks along the
diagonal.

Given an l×l symmetric matrix S, with irreducible characteristic polynomial,
Fq[S] is defined as

Fq[S] := {a0S0 + a1S + · · ·+ al−1S
l−1 : a0, a1, . . . , al−1 ∈ Fq}.

Note that the elements in Fq[S] are symmetric and all commute with each other.
Additionally, the non-zero elements in Fq[S] are invertible. In fact, Fq[S] is a
finite field and Fq[S] ∼= Fql .
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The central map of SNOVA is given by F = (F1,F2, . . . ,Fo) : Rn → Ro,
where Fk is defined as

Fk(X1, X2, . . . , Xn) =

l2∑
α=1

Aα ·
( ∑

(i,j)∈Ω

Xt
i · (Qα1Fk,i,jQα2) ·Xj

)
·Bα,

and Fk,i,j , Aα, Bα ∈ R and Qα1, Qα2 ∈ Fq[S] are invertible matrices, and

Ω = {(i, j) : 1 ≤ i, j ≤ n}\{(i, j) : v + 1 ≤ i, j ≤ n}.

The private key is (F , T ). The public map is defined as P := F ◦T := (P1 :=
F1 ◦ T , . . . ,Po := Fo ◦ T ), where T : Rn → Rn is the invertible linear map,
corresponding to a matrix T , made up of blocks from Fq[S]. Then

Pk(U) = Fk(T (U)) =

l2∑
α=1

n∑
i=1

n∑
j=1

Aα · U t
i (Qα1Pk,i,jQα2)Uj ·Bα, (2)

where U = (U1, . . . , Un)
t ∈ Rn, and Pk,i,j =

∑
(s,t)∈Ω Ti,sFk,s,tTt,j .

SNOVA signing algorithm is similar to UOV’s. To sign a message msg with
the private key (F , T ), it first samples a salt from {0, 1}2λ, and sets Y :=
Hash(msg||salt) ∈ Rm, where Hash is a hash function. Then it chooses ran-
dom values V1, . . . , Vv ∈ R, solves a linear system to find (Vv+1, . . . , Vn) such
that F(V1, . . . , Vv, Vv+1, . . . , Vn) = Y , and repeats if it has no solution. Finally,
the algorithm computes U = T −1(V1, . . . , Vn) and outputs σ = (U, salt).

Security
level

parameters
(v, o, q, l, λ)

Public key (B) Signature (B) Private key (B)

I
(37, 17, 16, 2, 128) 9826(+16) 108(+16) 60008(+48)
(25, 8, 16, 3, 128) 2304(+16) 148.5(+16) 37962(+48)
(24, 5, 16, 4, 128) 1000(+16) 232(+16) 34112(+48)

III
(56, 25, 16, 2, 192) 31250(+16) 162(+16) 202132(+48)
(49, 11, 16, 3, 192) 5989.5(+16) 270(+16) 174798(+48)
(37, 8, 16, 4, 192) 4096(+16) 360(+16) 128384(+48)

V
(75, 33, 16, 2, 256) 71874(+16) 216(+16) 515360(+48)
(66, 15, 16, 3, 256) 15187.5(+16) 364.5(+16) 432297(+48)
(60, 10, 16, 4, 256) 8000(+16) 560(+16) 389312(+48)

Table 1. Proposed parameters for SNOVA [17].

Table 1 shows the latest parameters proposed by the SNOVA designers. Note
that the parameters for l = 2 shown in Table 1 do not match the original
parameters in the NIST submission, since the original ones were updated in
response to the attacks in [7,8]. The SNOVA scheme is still competitive and it
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provides three parameter options for each security level, which yield different
public key and signature lengths. This feature gives this scheme flexibility and
adaptability to be used in diverse scenarios.

We remark that the SNOVA parameters with l = 4 appear to be a good
alternative to the standardized scheme FALCON, since they offer similar key
sizes and smaller signature sizes than FALCON. Furthermore,for the security
levels I, III, and V as specified by the NIST standardization call [12, Section
4B], SNOVA allegedly offers 143, 207, and 272 bits of security respectively.

2.2 Direct attack

Given Z ∈ Ro, where Z = (Z1, . . . , Zo)
t ← H1(msg||salt), a direct attack consists

in finding U ∈ Rn such that P(U) = Z, i.e., Pi(U) = Zi for all i ∈ [o]. In
total, there are l2 · o quadratic equations Pi,kr(U) = Zi,kr on l2 · n variables,
namely, Uj,kr for j ∈ [n], k, r ∈ [l] over Fq. From this observation, the SNOVA
authors in [17] claimed that to produce a fake signature, an attacker needs to
regard a (v, o, q, l)-SNOVA public map as an (l2v, l2o, q)-UOV public map over
Fq and then forge a signature for this UOV instance. However, [4] introduces
an improved forgery attack against SNOVA, the best one so far to the best
of our knowledge. In particular, the author observes that SNOVA has a similar
whipping structure as that of MAYO [3], where the public matrices (E-matrices)
defined for SNOVA case may have linear combinations with smaller ranks. The
author exploits this observation by applying the ideas described in [3, Section 5].

Let B : Fnl
q × Fnl

q → Fol2

q defined by B(x,y) := (xtΛ
(n)
Si−1PkΛ

(n)
Sj−1y)

t
i,j∈[l],k∈[o]

be the bilinear map associated to the SNOVA public polynomials. In [4], it is
shown that the SNOVA public key can be written as:

P(U) =

l−1∑
i=0

l−1∑
j=0

Ei,jB(ui,uj),

where U = [u0, . . . ,ul−1] with ui ∈ Fnl
q and Ei,j = Λ

(o)

Ẽi,j
∈ Fol2×ol2

q for some

matrix Ẽi,j ∈ Fl2×l2

q .

The idea of the attack from [4] is choose random vectors v1, . . . ,vl−1 ∈ Fnl
q

and then solve for a solution U = [u0, . . . ,ul−1] satisfying ui = αiu0 + vi for
i ∈ {1, . . . , l − 1} and some scalars α1, . . . , αl−1 ∈ Fq. The motivation for doing
this change of variables is that the quadratic part of P(U) becomes EB(u0,u0)

with E =
∑l−1

z=0

∑l−1
r=0 αiαjEi,j . Therefore, the attack proceeds as follows

1. Find α1, . . . , αl−1 such that E has small rank or, i.e. E = Λ
(o)

Ẽ
with Ẽ ∈

Fl2×l2

q of rank r ≤ l2.
2. Pick v1, . . . ,vl−1 uniformly at random. Use a generic system solving al-

gorithm to solve for u0 such that P(U) = Z, where ui = αiu0 + vi for
i ∈ {1, . . . , l − 1}.
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In the case of SNOVA, the author of [4] sets ui = Λ
(n)
Ri

u0 + vi, where Ri =

ri,0S
0 + . . .+ ri,l−1S

l−1 ∈ Fq[S]. The advantage of taking this approach is that
it offers extra freedom, i.e. solving with l(l−1) variables instead of l−1, and thus
allowing the attacker to find matrices with lower rank at step 1, which means
that solving the system at step 2 becomes more efficient.

2.3 Key Recovery Attacks

A key-recovery attack for SNOVA reduces to find a basis to the vector space

O := {T−1 · (x1, . . . , xln)
t ∈ Fln

q : x1 = x2 = · · · = xlv = 0},

which has dimension lo [17]. In [7,8], it is shown that for any u,v ∈ O, we have

vt(Λ
(n)
Si−1PkΛ

(n)
Sj−1)u = 0, for each (i, k, j) ∈ [l]× [o]× [l]. (3)

The main goal of a key-recovery attack for SNOVA is to find at least one
nontrivial element in O. Once such an element is found, recovering a basis of O
is significantly easier than finding that first element in O.

In the reconciliation attack, one attempts to find a vector of the form u0 =
(u1, . . . , ulv, 0, . . . , 1)

t ∈ Fln
q such that

ut
0(Λ

(n)
Si−1PkΛ

(n)
Sj−1)u0 = 0, for each (i, k, j) ∈ [l]× [o]× [l]. (4)

Since O is a random vector space of dimension ol, we expect that such a u0 ∈ O
uniquely exists.

The quadratic system in (4) has l2o equation on lv variables. For all SNOVA
parameters it holds that ol2 < lv [17]. Therefore, the system in (4) has an

expected number of O(qlv−ol2) solutions. In [7,8], the authors compute the com-
plexity of this attack by using the hybrid approach [1], assuming that solving
an underdetermined system as in (4) is as hard as solving a random one. How-
ever, in Section 4, we will introduce an algorithm that solves such systems more
efficiently than a generic algorithm.

2.4 An XL-Like Algorithm for Multi-Homogeneous Systems

An important ingredient for our algorithm to solve SNOVA systems is an algo-
rithm that adapts XL for Multi-Homogeneous Systems. Such algorithm has been
used for other attacks such as [13,2,9,11]. We describe here its main features for
completeness.

Definition 1 (Multi-homogeneous polynomials). Let P = (X1, . . . , Xl) be
a partition of the set X = {x1, . . . , xn}. We say a monomial m in X has multi-
degree (d1, . . . , dl) ∈ Zl

≥0 if the degree of m with respect to Xi equals di for
i ∈ [l]. We say that a polynomial f in X is multi-homogeneous of multi-degree
d ∈ Zl

≥0 if each monomial in the support of f has degree d. In the particular
case, l = 2, we use bi-degree and bi-homogeneous instead of multi-degree and
multi-homogeneous.
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Let f1, . . . , fm ∈ Fq[x1, . . . , xn] be multi-homogeneous quadratic polynomi-
als. Like the XL algorithm, the special XL algorithm aims at finding a common
root of the fi. Unlike the XL, the special XL takes as input a multi-degree
(d1, . . . , dl) and is restricted to work with polynomials in ⟨f1, . . . , fm⟩ of multi-
degree (e1, . . . , el) ≤ (d1, . . . , dl), where ≤ means that ei ≤ di for each i ∈ [l].

In the bi-homogeneous case, i.e., l = 2, the special XL has been used to
estimate the complexity of some attacks in cryptography. See, for instance, the
RBS and intersection attacks on Rainbow (see [13, Sec. 5] [2, Sec. 6]).

In the case of bi-homogeneous (l = 2) quadratic polynomials, the complexity
analysis introduced in [13] suggests that for systems in n = n1 + n2 variables
with m1 equations of bi-degree (2, 0), m12 of bi-degree (1, 1) and m2 of bi-degree
(0, 2), the special XL algorithm is expected to effectively work on input bi-degree
(asol, bsol) if the coefficient of ta1t

b
2 in the series

(1− t21)
m1(1− t1t2)

m12(1− t22)
m2

(1− t1)n1+1(1− t2)n2+1
,

is nonegative for some a ≤ asol and b ≤ bsol. Note that the series above is also
considered in [9] for analysing the complexity of the RSB attack on Rainbow.
In this case, the complexity of the special XL algorithm, in number of field
multiplications, is upper bounded by

3 ·max(n1, n2)
2 · M(asol, bsol),

whereM(asol, bsol) is the number of monomials with bi-degree (a, b) ≤ (asol, bsol).
For general multi-homogeneous (l ≥ 2) quadratic systems, the complexity is up-
per bounded by

3 ·max(n1, . . . , nl)
2 ·
[
M(dsol)

]2
,

where dsol ∈ Zl
≥0, M(dsol) is the number of monomials with multi-degree

smaller than dsol, and there exists (d1, . . . , dl) ≤ dsol such that the coefficient
of td1

1 td2
2 · · · t

dl

l in the series

∏m
k=1

(
1− t

d
(k)
1

1 t
d
(k)
2

2 · · · td
(k)
l

l

)
∏l

i=1(1− ti)ni+1
, (5)

is nonnegative, where
(
d
(k)
1 , d

(k)
2 , . . . , d

(k)
l

)
is the multi-degree of fk and ni is

the size of Xi. Note that the series in Eq. (5) was used in [11] to estimate the
complexity of the Kipnis-Shamir attack on the MinRank problem.

3 Λ
(n)
Fq[S]-Stable Ideals

This section focuses on the system (4) of the key recovery attacks from [7,8]. The
ideal generated by its quadratic part is stable under an action by a subgroup of

matrices. We will refer to such a system as a Λ
(n)
Fq [S]-stable system. Faugère and
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Svartz [6] have studied the problem of computing a Gröbner basis for such an
ideal. In this section, we describe the particular structure of (4) in the framework
introduced in [6]. This will allow us to propose an algorithm to solve it and
analyze its complexity in the next section.

As in the description of SNOVA, here S ∈ Fl×l
q is a symmetric matrix with

irreducible characteristic polynomial, I is the homogeneous ideal generated by
the quadratic part of (4), and we define

Λ
(n)
Fq [S] :=

{
Λ
(n)
Q ∈ Fln×ln

q : Q ∈ Fq[S] \ {0}
}
.

We use the following definition from [6].

Definition 2 (G-stable ideals). An ideal I ⊆ Fq[x1, . . . , xn] is said to be
globally stable under a finite matrix group G ⊆ GLn(Fq) if for all f ∈ I and
G ∈ G, we have fG ∈ I, where fG(x) := f(Gx).

It is easy to see that I is Λ
(n)
Fq [S]-stable.

Proposition 1. Let F = {fi,j,k : 0 ≤ i, j < l, 1 ≤ k ≤ o} be the quadratic part
of the m = l2o equations in (4) and I = ⟨F ⟩ the ideal generated by them. Then,

for f ∈ F and Q ∈ Fq[S], it holds that, fΛ
(n)
Q ∈ SpanFq

(F ). In particular, I is

Λ
(n)
Fq [S]-stable.

Proof. For any 0 ≤ i, j < l, 1 ≤ k ≤ o, and Q =
∑l−1

h=0 αhΛ
(n)

Sh ∈ Fq[S], we have

f
Λ

(n)
Q

i,j,k (x) = xtΛ
(n)
Q Λ

(n)
Si PkΛ

(n)
Sj Λ

(n)
Q x = xt

(
l−1∑
h=0

αhΛ
(n)

Sh

)
Λ
(n)
Si PkΛ

(n)
Sj

(
l−1∑
h=0

αhΛ
(n)

Sh

)
x

=

l−1∑
a=0

l−1∑
b=0

αa,bx
tΛ

(n)
Sa PkΛ

(n)

Sb x =

l−1∑
a=0

l−1∑
b=0

αa,bfa,b,k(x) ∈ SpanFq
(F )

for some αa,b ∈ Fq. It immediately follows that I is Λ
(n)
Fq [S]-stable. ⊓⊔

We next expose the structure of Λ
(n)
Fq [S] that allow us to transform I into an

ideal that is stable under the action of a cyclic group. Let τ : Fql → Fql denote
the Frobenious map. Abusing notation, we will also denote by τ the function
that applies the Frobenious map component-wise to a vector or matrix.

Lemma 1. The matrix S is diagonalizable on an l-extension of Fq. Specifically,
if λ ∈ Fql is an eigenvalue of S and ξ ∈ Fl

ql its corresponding eigenvector,

P :=
[
ξ τ(ξ) · · · τ l−1(ξ)

]
∈ Fl×l

ql
(6)

is non-singular and P−1SP is diagonal.
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Proof. It suffices to prove that the columns of P are eigenvectors corresponding
to distinct eigenvalues. Since the entries of S are in Fq, for a ∈ {0, . . . , l − 1},

Sτa(ξ) = τa(Sξ) = τa(λξ) = λqaτa(ξ),

thus λqa ∈ Fql \Fq is an eigenvalue of S, corresponding to the eigenvector τa(ξ).

Let us show that λqi = λqj implies i ≡ j (mod l). By [15, Theorem 19.1.], the

polynomial xql−x is square-free since xql−x and its derivative qlxql−1−1 = −1
are relatively prime. For a contradiction, suppose λqi = λqj with i < j and let f
be the characteristic polynomial of S. Then λqj is a root of f with multiplicity
at least 2 and (x− λqj )2 divides f . Since f is a monic irreducible polynomial of

degree l, f divides xql − x [15, Theorem 19.10.] which would imply xql − x is

not square-free, contradicting the fact that xql − x is square-free. It follows that

λq0 , . . . , λql−1

are l distinct eigenvalues of S. ⊓⊔

We can then diagonalize every matrix in Λ
(n)
Fq [S] to construct a cyclic matrix

group.

Proposition 2. The matrix group

D := {Λ(n)
P−1MΛ

(n)
P : M ∈ Λ

(n)
Fq [S]}. (7)

is a cyclic diagonal group generated by Λ
(n)
Q ∈ Fln×ln

ql
, where Q = diag

(
β, βq, . . . , βql−1) ∈

Fl×l
ql

for some β ∈ Fql .

Proof. Let ξ ∈ Fl
ql be an eigenvector of S with corresponding eigenvalue λ ∈ Fql .

For any nonzero A = a0S
0 + a1S + · · ·+ al−1S

l−1 ∈ Fq[S],

AP = P · diag
(
λA, τ(λA), . . . , τ

l−1(λA)
)

(8)

where λA = a0 + a1λ+ · · ·+ al−1λ
l−1. Therefore, P−1AP is a diagonal matrix.

LetB be a generator of the multiplicative group Fq[S]
×. Clearly, Λ

(n)
P−1Λ

(n)
B Λ

(n)
P

is a generator of D and ξ is an eigenvector of B. Let β ∈ Fql be the eigenvalue
of B associated with ξ. Then, P−1BP = diag

(
β, τ(β), . . . , τ l−1(β)). Therefore,

Λ
(n)
P−1Λ

(n)
B Λ

(n)
P = Λ

(n)
Q , where Q = diag

(
τ0(β), . . . , τ l−1(β)

)
. ⊓⊔

Applying an appropriate change of variable to the ideal I, yields a stable
ideal under the action of a cyclic diagonal group.

Proposition 3. Let S ∈ Fl×l
q be a symmetric matrix with irreducible character-

istic polynomial. If I ⊂ Fq[x1, . . . , xln] is Λ
(n)
Fq [S]-stable, then there exist a matrix

P ∈ Fl×l
ql

such that the ideal

IΛ
(n)
P :=

{
fΛ

(n)
P : f ∈ I

}
⊆ Fql [x1, . . . , xln] (9)

is stable under the action of a cyclic diagonal group.

10



Proof. Let P be a matrix defined as in Lemma 1 and D a diagonal group of

matrices defined as in Proposition 2. Let f ∈ I, g = fΛ
(n)
P ∈ IΛ

(n)
P , M ∈ Λ

(n)
Fq [S],

and D = Λ
(n)
P−1MΛ

(n)
P ∈ D. Then,

gD(x) = g(D · x) = f(Λ
(n)
P ·D · x) = f(M · Λ(n)

P · x) = fM (Λ
(n)
P · x).

Since I is Λ
(n)
Fq [S]-stable, then fM ∈ I, and gD = (fM )Λ

(n)
P ∈ IΛ

(n)
P . Therefore

IΛ
(n)
P is D-stable. ⊓⊔

The group action of the cyclic diagonal group induces a grading on Fql [x1, . . . , xnl]
that is compatible with the usual degree.

Definition 3 (D-degree). Let β, Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D =

⟨Λ(n)
Q ⟩ be as in Proposition 2. For a monomial µ = xα1

1 · · ·x
αnl

nl in Fql [x1, . . . , xnl],
we have

µΛ
(n)
Q = (βx1)

α1 · · · (βql−1

xl)
αl(βxl+1)

αl+1 · · · (βql−1

xln)
αln

= β
∑l

j=1 qj−1·
∑n

i=1 ·α(i−1)·l+jµ.

Then, we define the D-degree of µ as

degD(µ) =

l∑
j=1

qj−1 ·
n∑

i=1

α(i−1)·l+j mod ql − 1.

Example 1. Consider the monomial µ = x1x2 . . . xln ∈ Fql [x1, . . . , xnl]. Then

µΛ
(n)
Q = µ(Λ

(n)
Q x)

= (βx1) . . . (β
ql−1

xl)(βxl+1) . . . (β
ql−1

x2l) . . . (βx(n−1)l+1) . . . (β
ql−1

xnl),

thus, degD(µ) = n
∑l

j=1 q
j−1 mod ql − 1. In particular, for any monomial of

the form xixj , we have degD(µ) = q(i−1) mod l+ q(j−1) mod l mod ql−1, where
(i− 1) mod l refers to the remainder of division by l.

With l = 2 and q > 2, there are exactly three non-zero D-degrees for
quadratic polynomials in x1, . . . , xln. If q = 16 for example, these are, 2, 17
and 32. For any i, j = 1, . . . , ln, we have

degD(xixj) =

 2 if i ≡ j ≡ 1 mod l
17 if i ̸≡ j mod l
32 if i ≡ j ≡ 0 mod l

With n = 2, the variables are x1, x2, x3, x4 and the quadratic monomials of each
D-degree are

– 2: x2
1, x1x3, x

2
3,

11



– 17: x1x2, x1x4, x2x3, x3x4,
– 32: x2

2, x2x4, x
2
4.

It readily follows that the D-degree induces a grading on Fql [x1, . . . , xnl]. It
is also easy to see that the D-degree refines the usual degree. We can then refer
to the D-homogeneous components of a polynomial.

Definition 4. A polynomial f in Fql [x1, . . . , xnl] is said to be D-homogeneous
if all its monomials have the same D-degree.

Example 2. Let r be a positive integer with 1 ≤ r < l. Consider the polynomial

f = xrxr+1 + xl+rxl+r+1 + x2l+rx2l+r+1 + . . .+ x(n−1)l+rx(n−1)l+r+1.

Note that degD(xrxr+1) = qr−1 mod l + qr mod l ≡ qr−1 + qr mod ql − 1. Since
r− 1 ≡ (i · l+ r− 1) mod l and r ≡ (i · l+ r) mod l for i ∈ {1, . . . , n− 1}, then

degD(xrxr+1) = . . . = degD(x(n−1)l+rx(n−1)l+r+1),

hence, f is D-homogeneous.
Now, with l = 4, consider the polynomial

f = x1x2+x3x4+xl+1xl+2+xl+3xl+4+· · ·+x(n−1)l+1x(n−2)l+2+x(n−1)l+3x(n−1)l+4.

Its D-homogeneous components are

h(1) = x1x2 + xl+1xl+2 + . . .+ x(n−1)l+1x(n−2)l+2

and
h(2) = x3x4 + xl+3xl+4 + . . .+ x(n−1)l+3x(n−1)l+4.

Definition 5. An ideal I ⊂ Fql [x1, . . . , xln] is said to be D-homogeneous if for
any polynomial f ∈ I, all its D-homogeneous components are in I.

Theorem 1. Let β, Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ be as in
Proposition 2. An ideal I is D-stable, if and only if, it is D-homogeneous.

Proof. It is clear that a D-homogeneous ideal is D-stable. For the converse, set
e = ql − 1 and fix g ∈ I. For each i = 0, . . . , e− 1, let hi be the D-homogeneous
component of g of D-degree i. Note that

g

gΛ
(n)
Q

...

g(Λ
(n)
Q )e−1

 =


1 1 . . . 1
1 β . . . βe−1

...
...

...
...

1 βe−1 . . . β(e−1)(e−1)




h0

h1

...
he−1

 , (10)

and since I is stable under D, then g(Λ
(n)
Q )d ∈ I, for d = 0, . . . , e−1. Note that the

matrix of (10) is a Vandermonde matrix V = [β(i−1)(d−1)]1≤i,d≤e. It is known
that det(V ) =

∏
1≤i<d≤e(β

d−1 − βi−1) ̸= 0, since β is of order e. Therefore, V
is nonsigular and each homogeneous component is in I. ⊓⊔
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3.1 Distribution of the Basis of Homogeneous Components

One remarkable feature about a SNOVA system, like (4), is that after a suitable
change of variables, we can precisely predict the number of homogeneous gen-
erators of each D-degree. Proposition 1 tells us that a SNOVA system is more

than Λ
(n)
Fq [S]-stable. If F is the set of the quadratic parts of a SNOVA system, for

f ∈ F and A ∈ Fq[S], it holds that, f
Λ

(n)
A ∈ SpanFq

(F ). This additional property
allows us to easily apply a suitable change of variables to land on a quadratic
system that is D-homogeneous and for which we can precisely predict the num-
ber of polynomials of each D-degree. We first prove that the Fql -vector space
generated by F equals the Fql -vector space generated by their D-homogeneous
components.

Corollary 1. Let P be a matrix of eigenvectors of S, as described in Lemma 1,

and β, Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ as in Proposition 2.

Let f1, . . . , fm be homogeneous polynomials in Fql [x1, . . . , xln]. Suppose that for

i = 1, . . . ,m and A ∈ Fq[S], it holds that f
Λ

(n)
A

i ∈ SpanFq
(f1, . . . , fm). Then,

denoting by hi,d the D-degree d homogeneous component of f
Λ

(n)
P

i , we have that

SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

m ) = SpanF
ql
(h1,1, . . . , hm,ql−2).

Proof. Set V := SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

m ), W := SpanF
ql
(h1,1, . . . , hm,ql−2), and

e := ql − 1. It is clear that V ⊂ W, so let us prove that W ⊂ V. For i =

1, . . . ,m, set gi := f
Λ

(n)
P

i . By hypothesis and Proposition 3, I = ⟨g1, . . . , gm⟩ is
D-stable. Then, by Theorem 1, I is D-homogeneous. Moreover, from the proof of

Theorem 1, each hi,d is in SpanF
ql
(g, g

Λ
(n)
Q

i , . . . , g
(Λ

(n)
Q )e−1

i ). Now, note that for any

d,Qd = P−1AP , for some A ∈ Λ
(n)
Fq [S]. By hypothesis, there exist a1, . . . , am ∈ Fq,

such that, f
Λ

(n)
A

i = a1f1 + · · ·+ amfm. Hence

g
Λ

(n)

Qd

i = f
Λ

(n)
A Λ

(n)
P

i = (a1f1 + · · ·+ amfm)
Λ

(n)
P = a1f

Λ
(n)
P

1 + · · ·+ amf
Λ

(n)
P

m ∈ V,

therefore, W ⊂ V. ⊓⊔

Now, with the notation as in the above corollary, we bound the dimen-
sion of the Fql -vector space generated by any D-homogeneous components. For

0 ≤ i, j < l, 1 ≤ k ≤ o, let fi,j,k := xtΛ
(n)
Si PkΛ

(n)
Sj x ∈ Fq[x1, . . . , xln], where x =

(x1, . . . , xln)
t, Pk ∈ Fln×ln

q , and Λ
(n)
A and S ∈ Fl×l

q are as in the description of

SNOVA. Let D = {qr1−1 + qr2−1 mod ql − 1 : r1, r2 ∈ {1, . . . , l}} be the set of

all D-degrees of quadratic mononomials. We can write f
Λ

(n)
P

i,j,k =
∑

d∈D hi,j,k,d ∈
Fql [x1, . . . , xln], where hi,j,k,d is the D-degree d homogeneous component of

f
Λ

(n)
P

i,j,k . For d ∈ D, let Hd := {hi,j,k,d for i, j ∈ {0, . . . , l − 1}, k ∈ {1, . . . , o}},
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Wd := SpanF
ql
(Hd), andW := SpanF

ql
(
⋃

d∈DHd), so that,W =
⊕

d∈DWd, and

dim(W) =
∑

d∈D dim(Wd). By Corollary 1, W = SpanF
ql
({fΛ

(n)
P

i,j,k : i, j, k}), and
hence dim(W) ≤ l2o.

Using the notation of Proposition 2, we can express f
Λ

(n)
P

i,j,k in terms of a fixed
eigenvalue λ of S. Note that

f
Λ

(n)
P

i,j,k (x) = xtΛ
(n)
P tSiPkΛ

(n)
SjPx,

P tSi = diag((λi)q
0

, . . . , (λi)q
l−1

)P t and SjP = diag((λj)q
0

, . . . , (λj)q
l−1

)P , so

that with Γ (k) = Λ
(n)
P t PkΛ

(n)
P ∈ Fln×ln

ql
, we can write

f
Λ

(n)
P

i,j,k =
∑

a,b∈{0,...,n−1}

∑
r1,r2∈{1,...,l}

(λi)q
r1−1

(λj)q
r2−1

Γ
(k)
al+r1,bl+r2

xal+r1xbl+r2 .

As we saw in Example 1, from the perspective of the D-degree, there are two
distinctive types of quadratic monomials. Let B := {d = qr1−1 + qr2−1 ∈ D :
r1 = r2 ∈ [l]} and C := {d = qr1−1 + qr2−1 ∈ D : r1 ̸= r2, r1, r2 ∈ [l]}. Note that
{B,C} is a partition of D. Moreover, |B| = l and |C| =

(
l
2

)
.

For d ∈ B,

hi,j,k,d = (λi+j)q
r1−1

(

n−1∑
a=0

n−1∑
b=0

Γ
(k)
al+r1,bl+r1

xal+r1xbl+r1) = (λi+j)q
r1−1

h0,0,k,d.

hence, for a fixed k and d, all hi,j,k,d are generated by a particular hi1,j1,k,d, and
it follows that dim(Wd) ≤ o.

For d ∈ C,

hi,j,k,d = h
(1)
i,j,k,d + h

(2)
i,j,k,d,

where

h
(1)
i,j,k,d = ((λi)q

r1−1

(λj)q
r2−1

)(

n−1∑
a=0

n−1∑
b=0

Γ
(k)
al+r1,bl+r2

xal+r1xbl+r2)

and

h
(2)
i,j,k,d = ((λi)q

r2−1

(λj)q
r1−1

)(

n−1∑
a=0

n−1∑
b=0

Γ
(k)
al+r2,bl+r1

xal+r1xbl+r2).

Then, for a fixed k and d, all hi,j,k,d are generated by any linearly independent

h
(1)
i1,j1,k,d

, h
(2)
i2,j2,k,d

if such a pair exist. Otherwise, all hi,j,k,d are generated by a
particular hi1,j1,k,d. It follows that dim(Wd) ≤ 2o.

Furthermore, we remark that if dim(W) = l2o, then dim(Wd) = o for all
d ∈ B and dim(Wd) = 2o for all d ∈ C. Moreover, we observe that after a SNOVA
key pair is generated, the event of having dim(W) = l2o is highly probable.
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4 Solving SNOVA Systems

Now we focus on the complexity of solving SNOVA systems, i.e., systems over
Fq[x1, . . . , xln] of the form

xt
(
Λ
(n)
Si−1PkΛ

(n)
Sj−1

)
x = z

(i,j)
k , for (i, k, j) ∈ [l]× [o]× [l], (11)

where x = (x1, . . . , xln)
t, Pk ∈ Fln×ln

q is a random matrix, and Λ
(n)
A and S ∈ Fl×l

q

are as in the description of SNOVA.

In the homogeneous case, i.e., z
(i,j)
k = 0, if ln ≤ l2o, there is a naive way to

improve generic solving algorithms. As observed in [8], in this case, if there is a

solution s to the SNOVA system, then Λ
(n)
Si s is also a solution for each i ∈ [l−1].

Hence, there is either no solution or an l-dimensional vector space of solutions.
In this scenario, one can remove l variables and search for a solution of the form
(x1, . . . , xln−l, 1, 0, . . . , 0). Thus, the complexity of solving the SNOVA system
would be at least O(ql) times faster than a random quadratic system with the
same dimensions. This approach is less effective when ln > l2o, because we can
only specialize ln− l2o variables for free in the random case.

The algorithm we propose in this section applies to both the underdefined
(ln > l2o) and the overdefined cases (ln ≤ l2o). However, we focus on estimating
the speed up in the underdefined case, where all the proposed parameters for
SNOVA fall into (see Table 1).

4.1 Solving the System of Homogeneous Components

As we will explain in Section 4.2, our strategy to solve underdefined SNOVA
systems reduces to solving a multi-homogeneous system. We start by explaining
how to solve such a system. More precisely, it is a system of m = l2o equations

h
(1,1)
1 (x̃) = w

(1,1)
1 , h

(1,2)
1 (x̃) = w

(1,2)
1 , . . . , h(l,l)

o (x̃) = w(l,l)
o , (12)

over Fql [x̃1,1, x̃2,1, . . . , x̃l,n] with the following properties:

1. The polynomial set h
(i,j)
k (x̃) is multi-homogeneous with respect to the par-

tition of the variables x̃1, x̃2, . . . , x̃l, where x̃i := (x̃i,1, . . . , x̃i,n).

2. For each i ∈ [l], the o polynomials h
(i,i)
1 , . . . , h

(i,i)
o have multi-degree 2ei,

where ei ∈ Fl
q is the i-th canonical vector, that is, they only involve variables

from xi := (xi,1, . . . , xi,n).

3. For each i ̸= j ∈ [l], the 2o polynomials h
(i,j)
1 , . . . , h

(i,j)
o , h

(j,i)
1 , . . . , h

(j,i)
o have

multi-degree ei + ej , that is, they are bilinear in the sets xi and xj .

In what follows, we abuse of the notation and we write h
(i,j)
k (x̃) = h

(i,j)
k (x̃i, x̃j),

and h
(i,i)
k (x̃) = h

(i,i)
k (x̃i).

The following algorithm aims at finding a solution to the system in Eq. (12)

of the form Λ
(n)
P−1s ∈ Fln

ql for some s ∈ Fln
q . It is parameterized by a nonnegative

integer k multiple of l.
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1. Sample (sol2+1, . . . , sln)
t ∈ F(n−ol)l

q .

2. Sample (sol2−k+1, . . . , sol2)
t ∈ Fk

q and compute

s̃2 := Λ
(n−ol+ k

l )

P−1 · (sol2−k+1, . . . , sln)
t.

3. Use the XL algorithm as described in Section 2.4 to find s̃1 ∈ Fol2−k
ql

such
that

h1(s̃1, s̃2) = w1, . . . , hm(s̃1, s̃2) = wm.

If no solution is found, go back to Step 2.

4. Set s = Λ
(n)
P (s̃t1, s̃

t
2)

t. If s ∈ Fln
q , output s. Otherwise, go to Step 2.

We are trying to find a solution (s̃1, s̃2) to Eq. (12) such that Λ
(n)
P (s̃1, s̃2)

is a vector in the small field. If s̃2 is part of such a solution, since the system
h1(y, s̃2) = w1, . . . , hm(y, s̃2) = wm is overdefined, one expects it to have only a
few solutions, hence we expect to find s̃1 by solving such a partially evaluated
system few times.

The number of Fql -multiplications of the algorithm described above is upper
bounded by

min
k∈[ol2], l|k

qk · 3
(
ol − k

l

)2
·
[
M(dsol)

]2
, (13)

where dsol ∈ Zl
≥0 minimizes M(dsol), which is the number of monomials of

multi-degree smaller than dsol, and there exists (d1, . . . , dl) ≤ dsol such that the
coefficient of td1

1 td2
2 · · · t

dl

l in the series∏
1≤i<j≤l

(
1− titj

)2o ·∏l
i=1

(
1− t2i

)o∏l
i=1(1− ti)ol−k/l+1

(14)

is non-negative.

4.2 Solving Underdefined SNOVA Systems

To simplify the notation, let us write the SNOVA system given in Eq. (11) as

f1(x1, . . . , xln) = z1, . . . , fol2(x1, . . . , xln) = zol2 .

We now present an algorithm to solve underdefined SNOVA systems. This al-
gorithm is parameterized by a non-negative k multiple of l, and it performs the
following steps:

1. For each i ∈ [ol2], compute f
Λ

(n)
P

i , where P is the matrix of eigenvectors of
S, as described in Lemma 1.

2. Compute a basis (h
(1,1)
1 , h

(1,2)
1 , . . . , h

(l,l)
o ) ⊂ H of the vector space spanned

by the f
Λ

(n)
P

i , where H is the set of D-homogeneous components of the f
Λ

(n)
P

i .
By Corollary 1, such a basis exists.
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3. Compute the invertible matrix B ∈ Fm×m
ql

such that

(f
Λ

(n)
P

1 , . . . , f
Λ

(n)
P

m )t = B · (h(1,1)
1 , h

(1,2)
1 , . . . , h(l,l)

o )t,

and define (w1,1,1, . . . , wl,l,o)
t = B−1(z1, . . . , zol2)

t.

4. Use the algorithm described in Section 4.1 to find s ∈ Fln
q such that

h
(1,1)
1 (Λ

(n)
P−1s) = w1,1,1, . . . , h

(l,l)
o (Λ

(n)
P−1s) = wl,l,o. (15)

5. Output s.

In Section 3.1, we showed that the system Eq. (15) satisfies the first three
properties of the system described in Section 4.1 with high probability. Hence, it
is correct to apply the algorithm described in Section 4.1 to solve the system at
Step 4. Moreover, we expect such an algorithm to successfully output a solution
s ∈ Fln

q because after each specialization of the last ln − ol2 variables to any
vector (sol2+1, . . . , sln), the specialized SNOVA system

fi(x1, . . . , xol2 , sol2+1, . . . , sln) = zi, for each i ∈ [ol2].

has one solution s1, . . . , sol2 ∈ Fol2

q with high probability, since it is a well-defined

system. In such a case, the vector s̃ = Λ
(n)
P−1 · (s1, . . . , sln)t is a solution to the

system in Eq. (15).

The complexity of the algorithm described above is clearly dominated by the
complexity of step 4. Hence, we use the complexity formula given in Eq. (13) to
estimate the complexity of solving underdefined SNOVA systems.

Fig. 1 shows bit complexity estimates of the algorithm presented in this
section to solve underdefined SNOVA systems with l(o + v) variables and ol2

equations over F16, where v is chosen in the same regime of the parameters
proposed for SNOVA, see Table 1. For comparison, we include the bit complexity
estimates of solving random quadratic systems of the same dimensions.

The estimates for SNOVA systems are computed using Eq. (13). In this
case, for every F16l -multiplication we assign a cost of 2(log2(16

l))2 + log2(16
l)

bit operations. For a random system, we found that the best strategy for the
specific regime of parameters is to fix the ln − ol2 extra variables and then use
the hybrid-XL algorithm. These complexity estimates are computed using the
MQEstimator [5], which assigns a cost of 2(log2 16)

2+log2(16) bit operations per
F16-multiplication. From our estimates, we observe that solving an underdefined
SNOVA system is easier than its corresponding random version by a factor of
O
(
ql
)
. For example, for (l, o) = (5, 4), the SNOVA systems are 22 bits easier,

while for (l, o) = (4, 6), (3, 10), and (2, 18) the differences are 15, 10, and 5,
respectively.
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Fig. 1. Comparison of the bit complexity of solving underdefined random systems and
SNOVA systems.

5 Attacking the Original Version of SNOVA

5.1 Improved Forgery Attack

As seen in Section 2.2, the SNOVA public key can be written as

P(U) =

l−1∑
i=0

l−1∑
j=0

Ei,jB(ui,uj),

where B is the bilinear map associated to the SNOVA sequence shown in Eq. (11),
and u0, . . .ul−1 are ln-tuples of variables. Following a similar approach as Beul-

lens in [4], but using the simpler change of variable u0 = u and ui = Λ
(n)
Ri

u for

i = 1, · · · , l − 1, with Ri = ri,0S
0 + . . .+ ri,l−1S

l−1 ∈ Fq[S], it follows that

P(u) = E · F(u),

where F(u) = B(u,u), and E = Λ
(o)

Ẽ
∈ Fol2×ol2

q is a block-diagonal matrix.

Depending on the choice of Ri, Ẽ can have rank defect r ≤ l2. Besides the
advantage of the rank defect of E, this change of variable allows us to exploit

theD-homogeneous structure of the system after we compose with Λ
(n)
P ∈ Fln×ln

ql
,

where P is the matrix of eigenvector described in Lemma 1.
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For a target message msg ∈ {0, 1}∗, the attacker samples a salt string salt ∈
{0, 1}∗ until z = Hash(msg∥salt) ∈ Fol2

q falls in the column space of E and finds

w ∈ Fol2

q such that
z = Ew.

The cost of finding such salt and z is O
(
q(l

2−r)·o · l6
)
.

Since E has rank ro, the attacker can efficiently find a set of p = ol2 − or
linearly independent vectors w1, . . . ,wp ∈ Fol2

q in the right-kernel of E. Thus,

the attacker obtains a forgery for msg by finding u ∈ Fln
q and y1, . . . , yp ∈ Fq

such that

w = F(u) +
p∑

i=1

yi ·wi. (16)

If he succeeds, the attacker outputs U = [u|Λ(n)
R1

u| · · · |Λ(n)
Rl−1

u] along with the
salt as a forged signature.

In Section 3.1, we show that, there is a D-homogeneous sequence H such that

F(Λ(n)
P v) = B · H(v), where B ∈ Fol2×ol2

ql
is invertible. Then, with the change

of variables u = Λ
(n)
P v, the system Eq. (16) becomes

w = B · H(v) +
p∑

i=1

yi ·wi,

B−1w︸ ︷︷ ︸
:=w̃

= H(v) +
p∑

i=1

yi ·B−1wi︸ ︷︷ ︸
:=w̃i

,

a quadratic system whose quadratic part is D-homogeneous.
Note that the system above has ol2 equations and ln + p variables, so the

attacker can specialize up to ln + p − ol2 variables and still expect a solution
to the system. If the attacker specializes ln − ol2 + k ≥ ln − ol2 + p variables,
we expect a solution with probability qp−k, hence he must try qk−p values in
order to expect a solution. In order to preserve the D-homogeneous structure,
we choose k to be a multiple of l greater or equal to p and specialize ln− ol2+ k
variables. More precisely, the attacker runs the following algorithm

1. Sample (sol2−k+1, . . . , sln)
t ∈ F(n−ol)l+k

q and compute

ṽ2 := Λ
((n−ol)+ k

l )

P−1 · (sol2−k+1, . . . , sln)
t;

2. Find (ṽ1, (t1, . . . , tp)
t) ∈ Fol2−k

ql
× Fp

q such that

w̃ = H(ṽ1, ṽ2) +

p∑
i=1

ti · w̃i;

If no solution is found, go back to Step 1.

3. Set s = Λ
(n)
P (ṽt

1, ṽ
t
2)

t. If s ∈ Fln
q , output s. Otherwise, go to Step 1.
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To solve the quadratic system at step 2, the attacker uses a slight modification
of the algorithm described in Section 4.1, in which we restrict the monomials
used in the XL part to be monomials in the variables v1 = (v1, . . . , vol2−k)

t.
In this case the working multi-degree would be a d∗ ∈ Zl

≥0 such that

0 ≥ [td
∗
]H(t1, . . . , tl)− p ·

∑
d≤d∗

[td]H(t1, . . . , tl),

where

H(t1, . . . , tl) =

∏
1≤i<j≤l

(
1− titj

)2o ·∏l
i=1

(
1− t2i

)o∏l
i=1(1− ti)ol−k/l

.

The number of Fql -multiplications of the algorithm described above is upper
bounded by

min
p≤k≤ol2, l|k

qk−p · 3
(
ol − k

l

)2
·
[
M̃(d∗)

]2
, (17)

with M̃(d∗) = M(d∗) + p ·
∑

d≤d∗M(d), where M(d) gives the number of
monomials of multi-degree exactly d.

Table 2 shows the estimated complexity of this approach in comparison to [4].
For the largest values of r, our approach is faster. The cost of finding salt, such
that z = Hash(msg∥salt) falls in the column space of E, penalizes our approach
for smaller values of r. Our approach tends to be more effective for larger values
of l, because we are exploiting the D-homogeneous structure of the system. This
vulnerability puts the parameters sets with l = 4 below the security threshold
defined by NIST (see Section 2.1). These are precisely the parameters that allow
the smallest public keys, public key and signatures sizes, and the ones that are
not significantly affected by the attack in [4].

5.2 Improved Reconciliation Attack

The reconciliation attack is a key-recovery attack for SNOVA that involves find-
ing a unique vector in the secret space O tha is solution of an underdefined
homogeneous SNOVA system with lv variables and ol2 equations, see Section 2.3.

Our improved reconciliation attack consists of repitedidly apply the algorithm
in Section 4.2 by systematically sampling all possible vector at Steps 1 and 2 in
the subroutine described in Section 4.1.

We expect to iterate at most qlv−ol2 over Step 1 in the subroutine. Therefore,
the complexity of our forgery attack is given by qlv−ol2 multiplied by the com-
plexity of one iteration of the algorithm to solve SNOVA systems. Table 3 shows
the bit complexity estimates of our improved reconciliation attack compared
with the ones [7,8,10].

6 Attacking the Alternative Versions of SNOVA

While this manuscript was being written the SNOVA team released a preprint
[16] with two alternatives to modify their scheme with the goal of counteracting
Buellen’s attack [4].
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Attack cost

Security
level

parameters
(v, o, q, l)

r previous
best

our
attack

fraction of
weak keys

cost of finding
a weak key

I (37, 17, 16, 2)
3 137 114 100% 14
2 97 142 2−8.9 26
1 45 210 2−17.1 35

I (25, 8, 16, 3)
7 150 122 100% 29
6 130 106 2−12.0 49
5 112 138 2−40.0 77

I (24, 5, 16, 4)
13 167 135 100% 52
12 156 124 2−16 80
11 145 112 2−52 116

III (56, 25, 16, 2)
3 189 153 100% 14
2 132 206 2−8.9 26
1 68 306 2−17.1 35

III (49, 11, 16, 3)
7 194 155 100% 29
6 169 142 2−12.0 49
5 143 186 2−40.0 77

III (37, 8, 16, 4)
13 253 202 100% 52
12 235 179 2−16 80
11 218 172 2−52 116

V (75, 33, 16, 2)
3 240 189 100% 14
2 167 270 2−8.9 26
1 88 402 2−17.1 35

V (66, 15, 16, 3)
7 253 201 100% 29
6 221 190 2−12.0 49
5 187 250 2−40.0 77

V (60, 10, 16, 4)
13 307 246 100% 52
12 285 214 2−16 80
11 264 212 2−52 116

Table 2. Estimated cost of our attack for SNOVA parameters, compared with [4],
which indicated as previous best. The estimates in rightmost columns are taken from
[4]. The fraction of weak keys indicates the fraction of the keys for which there exist
R1, . . . , Rl−1 ∈ Fq[S] such that the matrix associated matrix Ẽ has a minimal rank r.
The cost of finding a weak key indicates the cost to find a public key and the Ri such
that the associated matrix Ẽ has rank r.

Alternative 1. A first alternative proposed by the SNOVA team is choose
random matrices Ak,α, Bk,α ∈ R and Qk,α1, Qk,α2 ∈ Fq[S], for k ∈ [o] and
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Security
level

parameters
(v, o, q, l)

previous best
reconciliation attack

our
attack

I
(37, 17, 16, 2) 197 194
(25, 8, 16, 3) 196 185
(24, 5, 16, 4) 269 249

III
(56, 25, 16, 2) 289 287
(49, 11, 16, 3) 438 423
(37, 8, 16, 4) 387 365

V
(75, 33, 16, 2) 377 378
(66, 15, 16, 3) 574 558
(60, 10, 16, 4) 695 673

Table 3. Bit complexities of our reconciliation attack compared with the previous best
reconciliation attack for SNOVA.

α ∈ [l2], and define the k-th coordinate of the public map P(U) as

Pk(U1, . . . , Un) =

l2∑
α=1

n∑
i=1

n∑
j=1

Ak,α · U t
i (Qk,α1Pk,i,jQk,α2)Uj ·Bk,α.

As pointed out in [17], these changes do not affect the size of the public key,
since these extra matrices can be generated from the public seed as previously
done. Additionally, they claimed these changes will effectively reduce the impact
of Buellen’s attack, since the matrix E becomes a block diagonal matrix with
different diagonal blocks in general.

Security
Level

(v, o, q, l)
lower bound
of the rank

r
our

attack
previous
best

I
(37, 17, 16, 2) 52 52 118 144
(25, 8, 16, 3) 49 49 102 143
(24, 5, 16, 4) 52 55 112 146

III
(56, 25, 16, 2) 79 79 166 208
(49, 11, 16, 3) 83 83 176 210
(37, 8, 16, 4) 78 91 164 210

V
(75, 33, 16, 2) 106 106 214 272
(66, 15, 16, 3) 110 110 218 272
(60, 10, 16, 4) 113 114 196 273

Table 4. Bit complexity of our forgery attack compared with the best attack for
SNOVA modified with the alternative 1.
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Table 4 shows the complexity estimates of our forgery attack for the alterna-
tive 1 version of SNOVA. The lower bound of the rank indicates the minimum
rank of the matrix E for the corresponding set of parameters, and these numbers
were empirically estimated in [17]. The previous best indicates the complexity
of the attack in [4]. Our attacks improves the state-of-the-art for the particular
modified version of SNOVA, and the security of all proposed parameters fall
below the threshold for the corresponding security level.

Alternative 2. A second alternative proposed in [16] is force the matrix E to
always have full rank. The k-th coordinate of the public map P(U) is defined as

Pk(U) =

l4∑
α=1

n∑
i=1

n∑
j=1

Aα · U t
i (Qα1Pk,i,jQα2)Uj ·Bα,

where the matrices Aα, Bα ∈ R, and Qα1, Qα2 ∈ Fq[S], for α ∈ [l4], are deter-

mined by fixed matrices Ẽi,j , for i, j ∈ [l], so that E has full rank.

Security
Level

(v, o, q, l)
previous best
direct attack

our
attack

I
(37, 17, 16, 2) 165 164
(25, 8, 16, 3) 171 164
(24, 5, 16, 4) 184 172

III
(56, 25, 16, 2) 234 232
(49, 11, 16, 3) 226 221
(37, 8, 16, 4) 287 271

V
(75, 33, 16, 2) 302 300
(66, 15, 16, 3) 302 296
(60, 10, 16, 4) 350 340

Table 5. Bit complexity of our attack compared with the previous best direct attack
for SNOVA modified with the alternative 2.

Table 5 shows the complexity estimates of our forgery attack for the alterna-
tive 2 version of SNOVA. Our attack improves the previous best direct attack for
the particular modified version of SNOVA, with speedup factors ranging between
2 and 216.

Remark 1. We remark that the proposed alternatives do not affect the com-
plexity of our reconciliation attack. Hence the complexity for both alternative
versions are shown in Table 3.
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