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Abstract. The only known method for designing lattice-based Fully
Homomorphic Encryption (FHE) involves first constructing a Somewhat
Homomorphic Encryption (SHE) scheme and then applying a bootstrap-
ping technique. In FV (Fan-Vercauteren) or CKKS (Cheon-Kim-Kim-
Song) schemes, the bootstrapping technique can be viewed as a homo-
morphic evaluation of the decryption circuit that recovers the compu-
tational capability of a ciphertext by reducing its error or increasing
its ciphertext level while preserving the encrypted plaintext. Meanwhile,
TFHE scheme features programmable bootstrapping, which enables the
evaluation of an arbitrary function while refreshing a ciphertext. How-
ever, it remains an open question how to achieve similar functionality
with FV or CKKS schemes.
In this work, we introduce a novel functional bootstrapping framework,
providing enhanced and versatile functionality for FV and CKKS. That
is, our bootstrapping method can evaluate an arbitrary function on a FV
or CKKS ciphertext during bootstrapping and output a FV ciphertext.
Specifically, the FV-to-FV functional bootstrapping extends the func-
tionality of FV by allowing the evaluation of functions between different
input and output plaintext spaces. In addition, our CKKS-to-FV func-
tional bootstrapping involves a natural conversion from CKKS to FV,
aligned with the evaluated function. We believe that these new function-
alities will enhance the usability of FHE in privacy-preserving applica-
tions.
At the heart of our functional bootstrapping framework is a homomor-
phic Look-Up Table (LUT) evaluation method where we represent any
function using the set of operations supported by the FV scheme. We
provide a proof-of-concept implementation and present benchmarks of
the functional bootstrapping process. Our experiments show that the
new functional bootstrapping takes about 46.5 or 171.4 seconds when
evaluating the delta or sign function over a plaintext of 9 or 13 bits
precision, respectively.

Keywords: Fully Homomorphic Encryption, Functional Bootstrapping, Boot-
strapping, FV



1 Introduction

Fully Homomorphic Encryption (FHE) enables the evaluation of arbitrary func-
tions on encrypted data without the need for decryption. It prevents private
information from being revealed while evaluating data within an untrusted en-
vironment. The pioneering work on FHE was introduced by Gentry [28], and
subsequent research has focused on leveraging the Learning With Errors (LWE)
problem [52] or its ring variant, the Ring LWE (RLWE) problem [46]. Notable
advancements in FHE construction such as FV [8, 25], CKKS [16], GSW [32],
BGV [9], and TFHE [20] have emerged based on these foundational problems.

In these encryption schemes, a ciphertext accumulates a certain amount of
noise and the noise increases while performing homomorphic operations. Since
excessive noise can lead to incorrect decryption results, managing the noise is a
critical issue. While there are several well-known techniques such as the special
modulus technique [31] to mitigate this issue, there exists no known solution to
perfectly remove the noise growth from homomorphic operations. Consequently,
to construct an FHE scheme, a procedure to lower the ciphertext noise is re-
quired after a substantial number of operations. Addressing this challenge, the
bootstrapping technique was introduced by Gentry [29] to effectively lower the
ciphertext noise and ensure the integrity of decryption results in the face of noise
accumulation in homomorphic evaluation.

Informally, the bootstrapping technique involves homomorphically evaluating
the decryption circuit to refresh the ciphertext, a process known for high com-
putational cost due to the lack of straightforward support for the decryption
circuit operations within FHE schemes. In the CKKS scheme, encrypting fixed-
point numbers, the computation of the modulus operation is conducted through
polynomial approximation to decrypt the message homomorphically [14]. In par-
ticular, various investigations into CKKS bootstrapping have concentrated on
refining the approximation of the modulus operation [10, 42] to realize efficient
bootstrapping procedures. Conversely, in the FV scheme, the evaluation of the
decryption circuit follows a distinct approach compared to CKKS. Specifically,
several studies, such as those by [11, 27, 35], have proposed circuit designs intend-
ing to eliminate specific least significant digits to mitigate noise and consequently
enhance the overall performance of the circuit. According to these works, sig-
nificant advancements in FV bootstrapping have been observed, with existing
works predominantly emphasizing the reduction of ciphertext noise while pre-
serving the integrity of the message value. In other words, previous works do not
support computation of an arbitrary function during the bootstrapping. Conse-
quently, bootstrapping is not directly involved in altering the calculation of the
circuit but serves as a means to enable additional operations by minimizing the
error.

In addition, both schemes lack the functionaliy to convert the plaintext space.
However, in the real world, there are several functions which the plaintext domain
is converted. For example, in practical applications like decision tree, it requires a
comparison where input data typically comprises fixed-point numbers while the
output is discrete (integer) numbers. Until recent studies [17], these functions

2



were often calculated with a single FHE scheme, especially CKKS, to encrypt
fixed-point number. However, since CKKS support operations for approximate
numbers, the output includes a noise and it may causes inaccurate result in
further operations. Even if the input and output are both discrete numbers,
functions such as equality check can be considered as cases where the plaintext
domain is changed since its output is binary. In these cases, depending on the
property of the data such as data type, range, or the number of data, each data
may have a suitable parameter for optimal performance. A proper parameter
set tailored to the specific properties of the data can contribute to performance
improvements and allow for more flexible packing within the ciphertext [9].

Unlike the FV or CKKS schemes, TFHE-like cryptosystems [2, 20, 23] allows
to evaluate of an arbitrary function from any domain to any range during the
bootstrapping. To the best of our knowledge, there has been no studies for the
RLWE-based FHE schemes supporting these functionalities.

1.1 Our Contribution

In this study, we present a novel bootstrapping method called the functional
bootstrapping. This new bootstrapping technique enables the computation of
arbitrary functions during bootstrapping of any RLWE-based encryption as il-
lustrated in Fig. 1.

As a concrete example of our method, we provide a FV-to-FV and CKKS-
to-FV functional bootstrapping since CKKS and FV are the most commonly
used RLWE-based FHE schemes. In FV-to-FV functional bootstrapping, the
plaintext modulus can be switched during the bootstrapping and consequently
it extends the domains of functions that can be evaluated during the functional
bootstrapping into a set of functions between different plaintext spaces. On the
other hand, in CKKS-to-FV case, our functional bootstrapping converts the
encryption scheme and outputs an FV ciphertext encrypting a function eval-
uations of the input message vector. With these features, the usability of the
FHE to construct privacy-preserving applications can be further optimized and
extended.

We realize the functional bootstrapping from an evaluation algorithm for a
general Look-Up Table (LUT) over the commutative ring Zpr for some prime
p. During the bootstrapping, the message and the noise term are combined as
an element in Zpr , where the message is stored in the high bits and the error
is stored in the low bits. In the existing bootstrapping method, the message is
homomorphically recovered by iteratively eliminating the erroneous least signif-
icant bits (LSB). On the other hand, our functional bootstrapping computes an
arbitrary function over the message, while removing the noise in the low bits.

To obtain such a functionality, we first construct a series of polynomials
designed to selectively eliminate the LSBs. Then with these polynomials, we
provide an optimized LUT evaluation method specified for a simple LUT from
Zpr to Zp, which has a form of Heaviside function. This simple LUT evalua-
tion requires ≈ 16
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r3p key-switching operations and consumes r log p+ log(r!)

depth asymptotically. Finally, an arbitrary LUT can be computed with a linear
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combination of Heaviside functions. We also generalize this result to an arbi-
trary LUTs from Zpr to Zps , by introducing homomorphic lifting operation to
the bootstrapping.

Our method takes advantage over the programmable bootstrapping of TFHE-
like cryptosystems with its support of Single-Instruction Multiple-Data (SIMD)
operations and capability of handling large plaintext modulus. We remark that
this difference mainly comes from exploiting the algebraic structure of the com-
mutative ring Zpr itself, rather than the ring structure.

Finally, we implement and provide a benchmark analysis for both functions
for our new method for handling the delta and sign functions utilizing an open-
source FHE library, Lattigo [48]. In addition, we outline various applications
where functional bootstrapping can be effectively employed. These applications
demonstrate the practical utility of our new bootstrapping method and highlight
its potential impact in real-world use cases involving the evaluation of arbitrary
univariate functions within the FHE framework.

Fig. 1: Concept of functional bootstrapping.

1.2 Related Works

Liu et al. [44] recently improved the amortized bootstrapping of the TFHE
scheme via the FV bootstrapping. Their method includes a limited form of func-
tional bootstrapping. In a nutshell, they utilized a temporal plaintext modulus
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of large size to encode a binary message in finite field Z3 to evaluate arbitrary
binary gates with an addition and a bootstrapping [23]. They also generalized
their result with plaintext modulus up to 12 bits. This approach was later gen-
eralized in [45] by introducing a loose definition of bootstrapping, which only
guarantees correctness for a subset of the plaintext space.

Concurrently, Okada et al. suggested a TFHE-style functional bootstrap-
ping in the FV scheme in [50] in a similar setting of leveraging a fake plaintext
modulus. Their main idea is to perform a blind rotation over the exponent of
the roots of unity, instead of the monomial. However, the functionality of these
works is limited, since they only support a small modulus, or suffer from a high
computational cost.

On the other hand, the asymptotic complexity of FV/BGV bootstrapping
is recently improved in [47] and [39] concurrently. Although those two methods
are conceptually different, they both leverage the message extraction technique
from [38] to make the input ciphertext independent from the message. Subse-
quently, the bootstrapping algorithm can be adapted to rely solely on the error
term. We note that while [39] employs the CKKS cryptosystem for extracting
the noise term, [47] utilizes the BFV scheme to remove the noise term. As a
result, the bootstrapping complexity is now only dependent on the bound of
the error, rather than the size of plaintext space. However, we stress that this
heuristic cannot be applied to this work, since their method does not directly
work on the message itself.

The homomorphic evaluation of the sign/delta function using the FV scheme
is well studied in various previous researches, to realize comparison operation or
SQL query homomorphically. Cheon et al. [18, 19] utilized a bivariate polynomial
interpolation to compare two (large) integers. This approach is further refined
by Tan et al. [55] by leveraging the finite field structure to compare the input
integers digit-wise. On the other hand, a univariate polynomial based on the in-
terpolation approach is also proposed in [49]. Later, Kim et al. [40] improved this
method by encoding a large integer into a finite field GF (pd) and leveraging the
Frobenius automorphism in order to evaluate a polynomial, thus not consuming
modulus from homomorphic multiplications. Iliashenko and Zucca [36] achieved
a significant speedup of both approaches, by observing that we can make the
coefficient vector of the interpolation polynomials sparse.

2 Background

2.1 Notation

We denote the ring of integers of the 2N -th cyclotomic field for some power-of-
two N by R = Z[X]/(XN + 1), and the residue ring of R modulo an integer
Q > 0 by RQ = ZQ[X]/(XN+1). We also denote [a]Q as the residue of a modulo
Q. Throughout the paper, we write x← D to represent that x is sampled from
the distribution D. We denote the uniform distribution over a finite set S by
U(S). For σ > 0, Dσ denotes a distribution over R sampling N coefficients
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independently from the discrete Gaussian distribution of variance σ2 and χ as
a key distribution over R. We also use ar−1ar−2 . . . a0 to denote the base-p
representation of a ∈ Zpr where ai ∈ Zp, i.e., a =

∑r−1
i=0 aip

i.

2.2 The Fan-Vercauteren (FV) Scheme

The FV scheme [25] supports arithmetic operations such as addition and multi-
plication over integers. In FV, the plaintext space is defined by Zpr [X]/Φm(X)
where p is a prime, r and m are positive integers, and Φm(X) denotes the m-th
cyclotomic polynomial. When p ∤ m, there is an isomorphism σ : Zpr [X]/Φm(X)→∏k

i=1 Zpr [X]/Fi for some irreducible polynomials Fi (1 ≤ i ≤ k) of degree d,
where d is multiplicative order of p in Z×

m, and k = ϕ(m)/d. From this isomor-
phism, a vector m ∈ Zk

pr can be encoded into a single plaintext σ−1◦φ(m) where
φ is a natural embedding Zk

pr ↪→
∏k

i=1 Zpr [X]/Fi. (We will omit the natural em-
bedding φ in the later sections for better readability.) Employing this encoding
strategy enables the performance of component-wise addition and multiplica-
tion operations on vectors in Zk

pr by adding and multiplying the ring elements
in Zpr [X]/Φm(X). In later sections, we will refer to each component of the vec-
tor as the slot. In this work, we choose m = 2N for some power-of-two N for
simplicity of the description.

As an independent interest, a technique known as the gadget decompositon is
applied to reduce noise growth during homomorphic operations. It is a commonly
used technique in lattice-based FHE cryptosystems [5, 15, 34]. We call h : RQ →
Rα and g = (g0, g1, . . . , gα−1) ∈ Rα

Q a decomposition function and the gadget
vector if they satisfy the equation:∑

0≤i<α

bi · gi = a (mod Q) and ∥b∥∞ ≤ B

where B > 0 is a real constant, Q and α are positive integers, a is an arbitrary
ring element over RQ, and b = (b0, b1, . . . , bα−1) is generated from h(a).

A detailed description of the FV scheme is given below.

• FV.Setup(1λ): Set the ring degree N , the plaintext modulus pr, the ciphertext
modulus Q, the key distribution χ over R, and the error parameter σ. Here, p is a
prime and r > 0 is an integer. Choose a gadget decomposition h : RQ → Rα with
a gadget vector g ∈ Rα

Q. Output the parameter set pp = (N, pr, Q, χ, σ, h,g).

• FV.KeyGen(pp): Sample s ← χ, a ← U(RQ) and e ← Dσ. Set the secret and
public keys as sk = s and pk = (b, a) ∈ R2

Q where b = −sk · a + e (mod Q).
Sample k1 ← U(Rα

Q) and e ← Dα
σ , and set the relinearization key as rlk =

(k0,k1) ∈ Rα×2
Q where k0 = −sk · k1 + e + sk2 · g (mod Q). Output sk, pk and

rlk.

• FV.Encode(m): Let k be the biggest power-of-two two such that 2k | p − 1.
Then, given a message vector m ∈ Zk

pr , return a plaintext µ = σ−1(m) ∈ Rpr

where σ is the isomorphism defined at the beginning of the section.
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• FV.Decode(µ): Given µ ∈ Rpr , return m = σ(µ).

• FV.Enc(pk;µ): Sample w ← χ and e0, e1 ← Dσ. Given an encoding µ ∈ Rpr ,
output the ciphertext ct = w · pk+ (∆ · µ+ e0, e1) (mod Q), for ∆ = ⌊Q/pr⌉.

• FV.Dec(sk; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q and associated secret key

sk, return µ = ⌊(pr/Q) · (c0 + c1 · sk)⌉ (mod pr)

• FV.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
Q, output ctadd = ct + ct′

(mod Q).

• FV.Mult(rlk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

Q and
the relinearization key rlk ∈ Rα

Q, let (d0, d1, d2) such that d0 = ⌊(pr/Q) · c0c′0⌉
(mod Q), d1 = ⌊(pr/Q) · (c0c′1 + c′0c1)⌉ (mod Q), and d2 = ⌊(pr/Q) · c1c′1⌉ (mod Q).
Output the ciphertext

ctmul = (d0, d1) + (⌊⟨h(d2),k0⟩⌉ , ⌊⟨h(d2),k1⟩⌉) (mod Q).

2.3 The Cheon-Kim-Kim-Song (CKKS) Scheme

The CKKS scheme [16] provides a framework for FHE tailored to fixed-point
arithmetic in an approximate manner. In the CKKS scheme, the message space is
defined as CN/2 and the plaintext space is R = Z[X]/(XN+1) for a power-of-two
N . Given a complex vector m ∈ CN/2, the encoding process proceeds as follows:
first, find an N -degree polynomial p(X) such that p(ζi) = mi and p(ζi) = mi =
p(ζi) (1 ≤ i ≤ N/2) where ζi’s are 2N -th roots of unity, i.e., roots of XN + 1.
This polynomial p(X) is real since it is invariant under the conjugate operation,
enabling point-wise computations on the vector m. Now, for some sufficiently
large real parameter ∆ > 0, we use µ(X) := ⌊∆ · p⌉ ∈ Z[X]/(XN +1) as the en-
coding of m. Naturally, the decoding can be computed as

(
∆−1 · µ(ζi)

)
1≤i≤N/2

.
Observe that this encoding strategy does not preserve the exact values of the
elements in m, but introduces an error bounded by O(∆−1).

Note that a common choice of {ζi}1≤i≤N/2 is setting ζi = exp(−5iπ/N) to
give a cyclic slot structure, which can be rotated with a simple Frobenius map
X 7→ X5 in practice.

• CKKS.KeyGen(pp): Sample s← χ, a← U(RQ) and e← Dσ. Set the secret and
public keys as sk = s and pk = (b, a) ∈ R2

Q where b = −s · a+ e (mod Q).

• CKKS.Encode(∆;m): Given a scaling factor ∆ and a message vector m =

(m1, . . . ,mN/2) ∈ CN/2, return a plaintext µ = ⌊∆ · p⌉ ∈ R where p ∈ R[X]/(XN+

1) is a real polynomial such that p(ζi) = mi and p(ζi) = mi for 1 ≤ i ≤ N/2.

• CKKS.Decode(∆;µ): Given µ ∈ R, return m =
(
∆−1 · µ(ζ1), . . . ,∆−1 · µ(ζN/2)

)
.

• CKKS.Enc(pk;µ): Sample w ← χ and e0, e1 ← Dσ. Given an encoding µ ∈ R,
output the ciphertext ct = w · pk+ (µ+ e0, e1) (mod Q).

• CKKS.Dec(sk; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q and associated secret

key sk = s, return µ = c0 + c1 · s (mod Q).
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Functional bootstrapping in our context is based on the existing FV boot-
strapping method. Therefore, we omit CKKS arithmetic operations (and relin-
earization key generation) as they are not used in our paper. We also stress that
the key structures of FV and CKKS are identical, allowing us to share the key
while performing functional bootstrapping from CKKS to FV.

2.4 Bootstrapping of FV

Bootstrapping is a technique employed to reduce the noise of a ciphertext, allow-
ing a user to perform an unlimited number of computations without compromis-
ing the privacy of the underlying message. Essentially, bootstrapping involves
homomorphically evaluating the decryption circuit. In the context of the FV
scheme, the decryption circuit is given by ⌊pr/q · (b+ a · sk)⌉ where (b, a) ∈ R2

q

is the input ciphertext and pr is the plaintext modulus for a prime p. The basic
pipeline of the bootstrapping for the FV scheme consists of four steps, namely,
ModSwitch, Coeffs2Slots, DigitExtract and Slots2Coeffs [11, 35].

Let us briefly explain the functionality of each step. In ModSwitch, the input
ciphertext modulus is changed into a smaller modulus pe, where e > r is the
smallest integer possible as long as the decryption does not fail. This allows us
to reduce the bootstrapping depth and perform bootstrapping more efficiently in
the further steps. Let the output of the ModSwitch be (b, a) ∈ R2

pe . In the rest of
the steps, our goal is to homomorphically decrypt this ciphertext itself, i.e., com-
puting

⌊
[b+ a · sk]pe /pe−r

⌉
. To achieve this, we first generate a ciphertext that

encrypts b+ a · sk with plaintext modulus pe. Now, note that the rounding func-
tion ⌊·⌉ is applied to the coefficients in the decryption circuit, the coefficients
are required to be moved to the slots for the sake of a SIMD computation. This
can be achieved with a simple linear transformation, in Coeffs2Slots step. Then,
in the following DigitExtract step, the division and rounding are evaluated on
the coefficients homomorphically. Finally, the rounded coefficients in slots are
brought back to the coefficients with the inverse linear transformation in the
Slots2Coeffs step.

In the FV/BGV bootstrapping process, DigitExtract is the main bottleneck.
The functionality of DigitExtract is essentially removing the lower e− r digits in
base p. The significant challenge when achieving this functionality is that there
is no direct polynomial representation of this operation unless only the LSB is
removed. To address this challenge, an iterative approach to remove the LSB and
change to a smaller plaintext modulus is employed. In [11], the authors showed
that there always exists a polynomial Gi such that Gi(x) = [x]p (mod pi), called
the i-th digit extraction polynomial. Assume that a single input of DigitExtract
is given as follows:

w = we−1we−2 . . . w0 =

e−1∑
i=0

wip
i ∈ Zpe , where wi ∈ Zp.

Then, we obtain w− [w]p = we−1we−2 . . . w10 using the digit extraction polyno-
mial. This can be understood as encryption of we−1 . . . w1 with plaintext modulus
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pe−1, and the LSB is removed successfully. We remark that this plaintext mod-
ulus changing operation is called the homomorphic division by p, and written
as x/p for input x. Then, it directly follows that the decryption circuit can be
computed by repeating this iteratively.

In practice, the computation of [w0]pe , [w1]pe−1 , . . . , [we−r−1]pr+1 are con-
ducted differently for the minimization of the depth consumption. The funda-
mental idea is that the computation of [wi]pe−i does not necessarily require
we−1 . . . wi as an input, but any number with the form × · · · × wi is sufficient.
Let us elaborate on how one can obtain [w1]pe−1 with the minimum depth cost
as an example. Firstly, observe that he second bit of G2(w) is zero, i.e., G2(w) =
× · · · × 0w0. Then, for w(1) := (w −G2(w)) /p ∈ Zpe−1 , the LSB of w(1) is w1.
Therefore, for the computation of [w1]pe−1 , it is sufficient to evaluate Ge−1

(
w(1)

)
instead of the direct computation. Likewise, [w2]pe−2 can be computed from
G3(w) = × · · · × 00w0 and G2(w

(1)) = × · · · × 0w1, since Ge−2(w
(2)) = [w2]pe−2

for w(2) :=
(
(w −G3(w)) /p− w(1)

)
/p. The rest of the computations of [wi]pe−i

can be conducted in a similar way, by computing a number with the form
× · · · × wi ∈ Zpe−i . We note that this approach requires ≈ (e − r)2/2 poly-
nomial evaluations and O((e−r) log p+log e) multiplicative depth, compared to
e− r polynomial evaluations and O((e− r) log p+ log(e!/r!)) depth of the naïve
approach.

As an independent interest, Chen and Han [11] showed that one can enhance
the bootstrapping speed by rearranging the order of each step. In their construc-
tion, Slots2Coeffs comes the first, and is followed by ModSwitch, Coeffs2Slots and
DigitExtract. The underlying idea of their construction is to make the error term
augmented to the message vector, instead of the coefficients. As a result, it only
needs to perform digit extraction on a single ciphertext compared to the pre-
vious method, which requires digit extraction for d ciphertexts where d is the
multiplicative order of p in Z×

m.
We remark that a homomorphic trace evaluation is required after ModSwitch

to remove the obsolete noise terms when the number of the slots is smaller than
the ring degree. After ModSwitch, the augmented error polynomial does not
have a valid encoding structure, and therefore a (partial) trace function should
be evaluated for further computation. We will not discuss this operation deeply
in this paper since this is an orthogonal issue to this work.

3 Our Functional Bootstrapping Framework

Bootstrapping is typically utilized as a black-box technique to reduce the noise
bound, not directly influencing the performance of the circuit evaluation. In this
section, we discuss how one can give extra functionality to the bootstrapping by
integrating the bootstrapping with circuit evaluation. In the literature, such func-
tionality was supported only in TFHE-like cryptosystems [2, 20, 23]. While the
TFHE scheme allows us to compute any univariate function with programmable
bootstrapping, it comes with some drawbacks. Firstly, it cannot bootstrap mul-
tiple messages at once since it is designed to operate binary data without SIMD
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operations. Secondly, the precision afforded by TFHE bootstrapping is limited
as the bootstrapping precision (i.e., plaintext space) linearly grows with respect
to the ring degree. Consequently, it is not suitable for functions which demand
high precision. Finally, the noise level after the TFHE bootstrapping tends to be
quite high. As the parameters are set to be as tight as possible for the sake of op-
timization in TFHE, there is technically no remaining level (for multiplication)
after the bootstrapping.

In this section, we provide a new general functional bootstrapping that can
address all the aforementioned issues. To be precise, our new innovative boot-
strapping framework supports the SIMD arithmetic, covers a large plaintext
space, and the noise introduced during the bootstrapping is small. In Sec. 3.1,
we first describe the overall pipeline of the functional bootstrapping. Our new
functional bootstrapping takes any RLWE-based ciphertext as input and out-
puts as the FV ciphertext. In Sec. 3.2 and Sec. 3.3, we describe a detailed process
for our method when inputs are FV and CKKS ciphertext, respectively.

3.1 Pipeline

In the following, we describe the overall pipeline of the functional bootstrapping.
Note that the polynomial evaluation in the ordinary bootstrapping acts on the
coefficients, not the message itself. Therefore, our procedure should follow a
similar pipeline to the slim bootstrapping, which consists of four steps as shown
in Alg. 1: Slots2Coeffs, ModSwitch, Coeffs2Slots and EvalLUT.

Algorithm 1 Pipeline of Functional Bootstrapping

Input: Ciphertext ct ∈ R2
Qin

, Look-Up Table F : Zpr → Zps

Output: Ciphertext ct∗ ∈ R2
Q

1: ct′ = (c′0, c
′
1)← Slots2Coeffs(ct) ∈ R2

Qin

2: ct′′ ← ( Q
pr ·

⌊
pr

Qin
· c′0

⌉
, Q
pr ·

⌊
pr

Qin
· c′1

⌉
) ∈ R2

Q //ModSwitch

3: ct′′′ ← Coeffs2Slots(ct′′) ∈ R2
Q

4: ct∗ ← EvalLUT(ct′′′, F )

Compared to the ordinary bootstrapping, some distinctions arise in two steps,
ModSwitch and EvalLUT. Our new method extends the functionality compared to
the previous bootstrapping approach from these phases. During the ModSwitch
phase, the input ciphertext is scaled so that the ciphetext modulus becomes pr.
Then, we generate a ciphertext with a large ciphertext modulus Q encrypting
the ‘phase’ of the input ciphertext. After this step, we obtain an encryption
of ‘noisy’ messages of which lower bits are rounding error. Therefore, multiple
adjacent values in the new message space are associated with a single message.
Hence, these multiple values should be converted into the same value for the cor-
rect bootstrapping functionality. For example, the existing bootstrapping sends
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the multiple values into the original message by removing the noise homomorphi-
cally. In our functional bootstrapping pipeline, we aim to evaluate an arbitrary
function during the bootstrapping and therefore we need to evaluate some LUT
which sends the noisy messages into the evaluation point of the noiseless message.

This LUT evaluation is performed in the EvalLUT step, which generalizes the
functionality of DigitExtract. Given an LUT F : Zpr → Zps is evaluated on the
input message residing in the commutative ring Zpr via homomorphic opera-
tions. It is usually a challenging task since only a few functions have polynomial
representations in the commutative ring. To overcome this structural difficulty,
we adopt a similar approach to the digit extraction algorithm. Roughly speak-
ing, we iteratively evaluate polynomials while performing homomorphic division
by p in between.

In this work, we realize the LUT evaluation with a certain family of poly-
nomials. Unlike digit extraction polynomials, these polynomials can ‘selectively’
remove the LSB. Combining the evaluation of these polynomials with the ho-
momorphic division by p, we can construct a homomorphic selector which it-
eratively operates on the LSB. A comprehensive analysis of these polynomials
and a detailed description of our algorithm for LUT evaluation are provided in
Sec. 4.

Let Qin and Q be the ciphertext modulus of input and output, respectively,
and ps be the plaintext modulus of the output ciphertext for some prime p.
We also denote F : Zpr → Zps as a LUT corresponding to the function that
is evaluated during the functional bootstrapping. Here, r > s is a constant
which will be determined in the later subsections. For simplicity, we deliberately
choose the parameters so that pr divides Q. Then each step of our functional
bootstrapping can be described as follows.

• Slots2Coeffs(ct): Given an RLWE-based ciphertext ct ∈ R2
Qin

, homomorphi-
cally move the messages in slots to the coefficients. i.e., Return ct′ ∈ R2

Qin
,

whose coefficients are the messages in slots of the ciphertext ct.

• ModSwitch(ct; pr): For the input RLWE ciphertext ct = (c0, c1) ∈ R2
Qin

, return
ct′ = (Q/pr · ⌊pr/Qin · c0⌉ , Q/pr · ⌊pr/Qin · c1⌉) ∈ R2

Q. We remark that ct′ is
essentially an FV encryption whose plaintext is M(X) = m0 + m1X

d + · · · +
mk−1X

N−d for some m0, . . . ,mk−1 ∈ Zpr .

• Coeffs2Slots(ct): Given an FV encryption ct ∈ R2
Q of the plaintext M(X) =

m0 +m1X
d + · · · +mk−1X

N−d, homomorphically move the coefficients to the
slots. i.e., Return ct′ ∈ R2

Q, an FV encryption of a vector (m0, . . . ,mk−1) ∈ Zk
pr .

• EvalLUT(ct;F ): For the input encryption ct ∈ R2
Q of a vector (m0, . . . ,mk−1) ∈

Zk
pr and an LUT F : Zpr → Zps , homomorphically compute F on the ciphertext

ct. i.e., Return an FV encryption ct′ ∈ R2
Q of a vector (F (m0), . . . , F (mk−1)).

As the inputs of Slots2Coeffs and Coeffs2Slots have different ciphertext mod-
ulus Qin and Q, both proceed in a similar way as previous bootstrapping. In
particular, they can be performed via a linear transformation and we will not
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discuss the details of the linear transformation since it is an orthogonal issue to
our contribution.

Depending on the chosen parameters, the input ciphertext may contain more
or fewer slots than the desired output ciphertext. If the input ciphertext has
fewer slots, it is straightforward to pack fewer messages into the output cipher-
text. However, if the input ciphertext has more slots than the output, multiple
ciphertexts need to be generated from the Coeffs2Slots step, similar to ordinary
bootstrapping. We simply assume that the input and output ciphertexts have
the same number of slots.

3.2 FV-to-FV Functional Bootstrapping

In this subsection, we discuss functional bootstrapping where the input cipher-
text is an FV ciphertext. Recall that our framework takes any RLWE ciphertext
as an input, the plaintext modulus of the input ciphertext does not necessarily
need to be the same as the plaintext modulus of the output ciphertext. For gen-
erality, we designate the input plaintext modulus as t, distinct from the output
plaintext modulus ps.

As mentioned in Sec. 3.1, two key steps of our functional bootstrapping
are ModSwitch and EvalLUT, while Slots2Coeffs, Coeffs2Slots can be computed
with simple linear transformations. In ModSwitch, the ciphertext modulus of the
input is adjusted to a smaller modulus to make the decryption circuit compact.
Let ct = (c0, c1) ∈ R2

Qin
represent an encryption of a plaintext µ(X) ∈ Rt

with a ciphertext modulus Qin. Then, (c′0, c′1) = (⌊pr/Qin · c0⌉ , ⌊pr/Qin · c1⌉) is
a valid encryption of µ(X) as long as pr is sufficiently large to accommodate
the rounding error. More precisely, it satisfies that c′0 + c′1 · sk = ⌊pr/t⌉ · µ + e
(mod pr) where e ∈ R is an error polynomial such that ∥e∥∞ < pr/2t. Therefore,
generating an LUT involves mapping input values from Zt to Zps based on a
specified function f : Zt → Zps . For any m ∈ Zt, the LUT should output f(m)
for the input values ⌊pr/t⌉ ·m+e where −pr/2t < e < pr/2t. In other words, the
LUT has the same values for intervals with length pr/t. Consequently, we obtain
an output LUT with a form of step function regardless of the target function,
as shown in Figure 2.

In practice, it is important to choose the parameter r as small as possible to
optimize the performance of the bootstrapping. Hence, a thorough investigation
of the probabilistic bound of e is required. The noise e comprises two compo-
nents: einit, the initial noise, and ernd, the rounding error introduced during the
dividing-and-rounding. Analogous to the prior work [11], we assume that the
initial noise has at least two bits of noise margin, i.e., ∥einit∥∞ < pr/4t. Conse-
quently, it is sufficient to bound the rounding error by pr/4t. The exact form of
rounding error is given as ernd = e0rnd + e1rnd · sk where

eirnd =
pr

Q
· ci −

⌊
pr

Q
· ci

⌉
(i = 0, 1).

Under the RLWE assumption, the coefficients of c0 and c1 are indistinguish-
able from uniformly sampled random numbers over ZQ. In practical scenarios,
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Fig. 2: The shape of LUT in functional bootstrapping. The dots denote the func-
tion values at each integer point.

it is common to assume that the secret key sk is uniformly sampled from the
ternary set {−1, 0, 1} with a hamming weight h := ∥sk∥1. Hence, each coefficient
of the error polynomial e can be regarded as a sum of h+1 uniformly distributed
variables over [−0.5, 0.5]. In prior works, the worst case bound h+1 is leveraged
to estimate the rounding error bound [11].

We tighten this bound using a probabilistic bound as proposed in the works
on CKKS bootstrapping [6, 42], which establishes that the sum of h + 1 uni-
formly distributed variables follows the Irwin-Hall distribution [42], and it can
be bounded by 1.81

√
h with failure probability less than 2−15 [6]. Therefore, in

a heuristic approach, we can refine the bound of the size of the coefficients of
ernd as follows:

∥ernd∥∞ ≤ 1.81
√
h.

Therefore, substituting this back to the error bound ∥ernd∥∞ ≤ pr/4t, we can
obtain the following bound for the plaintext modulus pr for LUT evaluation.

pr > 7.24t
√
h (1)

Observe that once p and t are settled, r depends solely on the norm of the
secret, we want to keep the secret key as sparse as possible. Therefore, we propose
to use the sparse key encapsulation technique introduced in [7]. Their method
consists of two key-switching keys, where one of them is used to key-switch from
the dense key to an ephemeral sparse key at the lowest level, and the other is
used to key-switch from the sparse key to the original dense key after ModSwitch.
By doing so, we can benefit from the sparsity of the ephemeral sparse key during
ModSwitch without compromising security.

Furthermore, we stress that selecting an appropriate value for pr can fa-
cilitate bootstrapping within the FV scheme with a large plaintext modulus.
Previous works indicate that the complexity of FV bootstrapping is mainly in-
fluenced by the size of the prime factor of the plaintext modulus employed during
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bootstrapping. Therefore, bootstrapping ciphertexts with a large prime modu-
lus have been considered nearly impractical. However, our novel bootstrapping
technique allows for the modification of the plaintext modulus to the power of a
smaller plaintext modulus p. This adjustment suggests a potential reduction in
the complexity associated with the bootstrapping process.

3.3 CKKS-to-FV Functional Bootstrapping

In the functional bootstrapping from CKKS to FV, Slots2Coeffs and ModSwitch
are the only distinguished algorithms compared to the case of FV-to-FV. The
reason is that the computation of Slots2Coeffs is carried out approximately unlike
FV, and ModSwitch affects the bootstrapping precision instead of the decryption
failure.

Assuming that Slots2Coeffs is computed with sufficiently large precision,
the overall bootstrapping precision will be dominated by the noise introduced
from the scaling and rounding in ModSwitch step. Therefore, we will only focus
ModSwitch as in Sec. 3.2 to optimize the parameter r. For simplicity, the input
messages are confined in the interval [−1, 1] in the following.

Let (b, a) ∈ R2
Q be the CKKS ciphertext after the Slots2Coeffs in our pipeline,

with scaling factor ∆. Then, after the modulus switching to pr, the scaling factor
becomes pr ·∆/Q. On the other hand, the statistical bound of the rounding noise
introduced by the modulus switching is 1.81

√
h where h denotes the hamming

weight of the secret key, as discussed in Sec. 3.2. Thus, we obtain the bit precision
after the modulus switching as follows:

log(pr ·∆/Q)− log(1.81
√
h).

From the analysis of the bit precision, we propose to leverage the sparse
key encapsulation technique [7] to minimize log(1.81

√
h) term as in Sec. 3.2,

and set ∆/Q < 1 as large as possible in order to maximize the bootstrapping
precision while keeping r small. By doing so, we obtain a better upper bound of
r log(p)−log(1.81

√
h) for the bit precision. Note that this is the opposite situation

to the CKKS bootstrapping. In a common setting for bootstrappable CKKS
parameters, the ratio between the scaling factor ∆ and the modulus Q is set to
be small (smaller than 2−5) to achieve a better efficiency in bootstrapping [6, 10].
Instead, our construction requires ∆/Q to be as large as possible, for the sake
of the bootstrapping performance.

In CKKS-to-FV functional bootstrapping, the form of the LUT does not
necessarily need to be a step function, unlike in the FV-to-FV case. However, it
is important to note that in practical scenarios, most of the functions evaluated
during bootstrapping tend to have the form of a step function. While it is known
that CKKS is generally more efficient when computing continuous functions,
it is challenging to evaluate discontinuous functions such as sign function [17,
41] or modular reduction function [43]. Naturally, our functional bootstrapping
approach is expected to be particularly beneficial for computing discontinuous
functions, as these functions typically yield an LUT with a step-function-like
form.
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We stress that the CKKS-to-FV functional bootstrapping can be understood
as a scheme conversion. Considering that the scheme conversion between SIMD
FHE schemes is a task that is almost as hard as the bootstrapping [24], we
believe that our construction is asymptotically optimal.

4 Evaluation of Look-Up Table

In this section, we describe how to homomorphically evaluate an arbitrary LUT
from Zpr to Zps . Before we delve into the construction of our algorithm, we first
discuss the homomorphic division by p. Generally, a division by p is not a well-
defined operation over Zpr since it is not a unit. However, it can be carried out
when the message is a multiple of p by simply changing the plaintext modulus
to pr−1. The reason is that the message is stored in the most significant bits in
the FV cryptosystem. In the later sections, we will abuse the notation of regular
division for this operation. i.e., for x ∈ Zpr such that p | x, x/p denotes the ring
element x/p ∈ Zpr−1 .

Now, suppose that an arbitrary LUT F : Zpr → Zps is given for a prime p and
some positive integers r and s. If there is a polynomial which directly computes
F , i.e., a polynomial representation of pr−s · F (x) ∈ Zpr , it can be evaluated
directly through a single polynomial evaluation. However, only a small number
of LUTs can be evaluated in such a way, since most of the functions defined over
the commutative ring Zpr are not functions with polynomial representations,
so-called the polyfunctions. For example, even LUT for digit extraction does
not have an explicit polynomial representation. Therefore, we utilize the homo-
morphic division by p between the polynomial evaluations to obtain the desired
functionality, similar to the conventional bootstrapping method. By adopting
such an approach, we can finally evaluate an arbitrary LUT.

We first provide useful lemmas on the polyfunctions and investigate the struc-
ture of the polynomials in Zpℓ for some positive integer ℓ in Sec. 4.1. These
results are exploited to construct an evaluation method for an arbitrary LUT
F : Zpr → Zps in the following sections. We first cover the basic case of s = 1
and generalize the result to the case s > 1 in Sec. 4.2, and Sec. 4.3, respectively.
Finally, concrete examples of our functional bootstrapping method are given in
Sec. 4.4. We select widely-used functions, the delta and sign functions, as ex-
amples. For better readability, we will use the unsigned representation for the
integers over the commutative ring in the following subsections.

4.1 Polyfunctions over Zpℓ

We introduce a necessary and sufficient condition for polyfunctions over Zpℓ ,
established by Guha and Dukkipati [33].

Proposition 1 ([33]). A function f over Zpℓ is a polyfunction if and only if
the function f can be represented with a linear combination of the following
functions.
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1. uℓ
0(x) =

{
0 for p ∤ x
x for p | x

2. uℓ
i(x), i-th shift of uℓ

0(x), i.e., uℓ
i(x) = uℓ

0(x− i) (0 ≤ i < p)

3. j-th powers of uℓ
i(x), i.e.,

(
uℓ
i(x)

)j
=

{
0 for p ∤ x
xj for p | x

(0 ≤ i < p, 0 ≤ j < ℓ)

Note that in our notation uℓ
i(x), i is an index for shifting while it was the

exponent related to the output in [33]. We substitute it as an exponent j de-
scribed in the third item. We also unify the expression of ui(x) (in [33]) which
is divided into two cases where i = 0 and 1 ≤ i ≤ ℓ− 1 by changing the bound
of the exponent j.

The implication of proposition 1 is that if a function f is a polyfunction, then
restricting its domain to the congruence class of i modulo p is a polynomial with
degree at most ℓ for any 0 ≤ i < p. A simple example is the digit extraction
polynomials {Gi} which are commonly used in the state-of-the-art bootstrapping
methods for the FV/BGV scheme. In a nutshell, i-th digit extraction polynomial
Gi is a polynomial which satisfies Gi(x) = [x]p (mod pi) for any x ∈ Z. Observe
that Gi over Zpi is essentially a constant function at any congruence class of j
modulo p, since Gi(j + p · x) = j regardless the value of x.

Now let us discuss the properties of the polynomial representation of poly-
functions and how they can be obtained. We first introduce the definition of the
Smarandache function.

Definition 1 (Smarandache function). The Smarandache function µ(·) is
defined as µ(x) = min{i ∈ N : x | i!}.

It is easy to show that µ(pℓ) ≤ pℓ since the number of multiples of p is
equal to or more than ℓ in successive pℓ integers. Therefore, we use pℓ as the
upper bound of µ(pℓ) in the later sections. i.e., µ(pℓ) = O(pℓ). Interestingly, it
is known that any polyfunctions over Zpℓ can be represented with a polynomial
with degree less than µ(pℓ). We state it more formally below in Lem. 1.

Lemma 1 ([37]). If f : Zpℓ → Zpℓ is a polyfunction, there exists a polynomial
representation of f with degree smaller than µ(pℓ).

In [27], the authors mentioned an efficient method to find such a ‘compact’
polynomial representation using the Newton interpolation. It is essentially a di-
rect adoption of the divided difference method, which is a common interpolation
technique in numerical analysis.

4.2 LUT Evaluation for Arbitrary Functions

In this subsection, we investigate the details of our new evaluation technique for
LUTs of the form F : Zpr → Zp. In our LUT evaluation algorithm, the basis
polynomials ui

j are utilized. Observe that ui
j is always a multiple of p, and we can
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homomorphically divide the output by p. For the input x, ui
j(x)/p is (x − j)/p

only if x = j (mod p) and zero if x ̸= j (mod p). We can observe that (x− j)/p
is essentially ‘upper i− 1 digits of x’, and it can be regarded as a homomorphic
extractor of the upper digit based on the last digit, in base-p representation. From
this observation, we deduce that (u1

jr−1
)0

(
u2
jr−2

(
. . . ur−1

j1

(
ur
j0
(x)/p

)
/p . . .

)
/p

)
is a function which is zero except for x = jr−1 . . . j0 where jr−1 ̸= 0. (Note that
jr−1 should not be zero, otherwise it will always return one regardless of the
input. To cover the case jr−1 = 0, we can simply add a constant to the input
to make the most significant bit nonzero.) Therefore, an arbitrary LUT can
be homomorphically computed by evaluating this polynomial for every possible
combination of jr−1, . . . , j0, multiply the LUT value, and add them altogether.

However, this idea suffers from a fatiguing evaluation of exponentially many
polynomials which makes functional bootstrapping almost infeasible. In this
work, we focus on the construction of an optimized algorithm for a specific type
of LUT. More specifically, a step-function like LUT will be considered in the
following, since LUT evaluated in most of the scenarios will be a step function
as discussed in Sec. 3.2.

Evaluation of Heaviside function We commence by covering the simplest
non-trivial step-function, called the Heaviside function. Let the Heaviside LUT
F : Zpr → Zp is defined as follows,

F (x) =

{
0 if x < B

1 otherwise

for some bound B ∈ Zpr . Without loss of generality, we suppose that B ≥ pr−1

since F ′(x) := 1−F (x−B) is essentially another Heaviside function with bound
pr −B ≥ pr−1.

Now, let br−1br−2 . . . b0 be the base p representation of B. Observe that if
the LSB of the input x is smaller than b0, the LUT F returns 0 if and only
if its upper r − 1 bits are less than br−1 . . . b2(b1 + 1) and returns 1 otherwise.
On the other hand, if the LSB of the input x is equal or bigger than b0, the
LUT F returns 0 if and only if its upper r − 1 bits are less than br−1 . . . b2b1,
and 1 otherwise. Therefore, we can evaluate the LUT F by dividing it into two
sub-LUT’s F r−1

1 , F r−1
2 : Zpr−1 → Zp, defined as follows:

F r−1
1 =

{
0 if x < br−1 . . . (b1 + 1)

1 otherwise
,

F r−1
2 =

{
0 if x < br−1 . . . b1

1 otherwise
.

From this relation, we stress that the LUT F can be computed utilizing
the polynomials ur

i and evaluation of sub-LUTs F r−1
1 and F r−1

2 . Observe that
ur
i (x)/p outputs the upper r− 1 bits if the LSB of x is i, and zero otherwise for

any input x. Subsequently, for any value x with LSB i, we can obtain F (x) by
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evaluating F r−1
1 (ur

i /p) if i < b0 and F r−1
2 (ur

i /p) if b0 ≤ i. Recall that we assumed
that B ≥ pr−1, new bounds br−1 . . . (b1 + 1) and br−1 . . . b1 are strictly bigger
than zero, and thus F r−1

1 (0) = F r−1
2 (0) = 0. Hence, the LUT F can be evaluated

by computing the sum of F r−1
1 (ur

i (x)/p) (0 ≤ i < b0) and F r−1
2 (ur

i (x)/p) (b0 ≤
i < p). Since we essentially evaluate the two identical LUTs for the cases 0 ≤ i <
b0 and b0 ≤ i < p respectively, the sum of LUTs can be integrated as follows.

F (x) = F r−1
1

 ∑
0≤i<b0

ur
i (x)/p

+ F r−1
2

 ∑
b0≤i<p

ur
i (x)/p


Thus, it remains to evaluate two sub-LUTs F r−1

1 and F r−1
2 . We remark that

F r−1
1 and F r−1

2 are again Heaviside function over Zpr−1 with bounds B1 :=
br−1 . . . b2(b1 + 1) and B2 := br−1 . . . b2b1. Hence, they can also be divided into
sub-LUTs analogously. In a similar way that F r−1

1 and F r−1
2 do not contain any

information on the LSB b0 in them, the sub-LUTs of F r−1
1 and F r−1

2 are also
independent from the LSB b1+1 and b1, of the bounds B1 and B2, respectively.
As B1 and B2 only differ by the LSB, the sub-LUTs of F r−1

1 and F r−1
2 should

be identical. Let us denote them by F r−2
1 and F r−2

2 . Then, they are defined as
follows:

F r−2
1 =

{
0 if x < br−1 . . . (b2 + 1)

1 otherwise

F r−2
2 =

{
0 if x < br−1 . . . b2

1 otherwise
.

Analogous to the evaluation of F , F r−1
1 and F r−1

2 can be evaluated in a re-
cursive manner. For a better readability, let us denote by x1 :=

∑
0≤i<b0

ur
i (x)/p

and x2 :=
∑

b0≤i<p u
r
i (x)/p. Then, it follows that

F (x) = F r−2
1

 ∑
0≤i≤b1

ur−1
i (x1)/p+

∑
0≤i<b1

ur−1
i (x2)/p


+ F r−2

2

 ∑
b1<i<p

ur−1
i (x1)/p+

∑
b1≤i<p

ur−1
i (x2)/p


since F r−2

1 (0) = F r−2
2 (0) = 0 due to the condition B ≥ pr−1.

Note that the inputs for the same LUTs are integrated and hence it only re-
quires the evaluation of four polynomials

∑
0≤i≤b1

ur−1
i (x1)/p,

∑
0≤i<b1

ur−1
i (x2)/p,∑

b1<i<p u
r−1
i (x1)/p and

∑
b1≤i<p u

r−1
i (x2)/p, and LUTs F r−2

1 and F r−2
2 over

Zpr−2 . These LUTs F r−2
1 and F r−2

2 can be iteratively computed via four polyno-
mial evaluations and two LUT evaluations in the smaller dimension, in a similar
manner. (Note that the condition B ≥ pr−1 plays an important role here, mak-
ing the value of the LUT zero for the zero input.) Subsequently, at the end of
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the iteration, it remains to evaluate two LUTs F 1
1 and F 1

2 over Zp, defined as
follows.

F 1
1 =

{
0 if x < br−1 + 1

1 otherwise

F 1
2 =

{
0 if x < br−1

1 otherwise
.

We stress that any function over Zp is a polyfunction, they have polynomial
representations with integer coefficients and each LUT can be evaluated with
one polynomial evaluation. From these recurrence relations, we can devise an
algorithm for Heaviside function evaluation. The exact algorithm based on this
approach is presented in Alg. 2.

Algorithm 2 Polynomial evaluation for Heaviside function
Input: An input x ∈ Zpr , LUT F of a Heaviside function with bound B.
Output: F (x) ∈ Zp

1: parse B = br−1br−2 . . . b0 in digit p representation.
2: x1, x2 ← 0 ∈ Zpr , x ∈ Zpr

3: for i = 0; i < r − 1; i+ = 1 do
4: x1 ←

∑
0≤j≤bi

ur−i
j (x1) +

∑
0≤j<bi

ur−i
j (x2) (mod pr−i)

5: x2 ←
∑

bi<j<p u
r−i
j (x1) +

∑
bi≤j<p u

r−i
j (x2) (mod pr−i)

6: x1, x2 ← x1/p ∈ Zpr−i−1 , x2/p ∈ Zpr−i−1

7: end for
8: Return F 1

1 (x1) + F 1
2 (x2) ∈ Zp

Depth and Time complexity Analysis We analyze the depth consumption
and the time complexity of our method. For the time complexity, we consider
the number of multiplication (key-switching) which takes a large portion of the
computations time in the functional bootstrapping. We remark that they are
solely dependent on the degree of the polynomials utilized during the evalua-
tion. It is known that any polynomial with degree d can be evaluated with 2

√
d

non-scalar multiplications while consuming ⌈log d⌉ levels, applying the Paterson-
Stockmeyer algorithm [30, 51]. Based on this analysis, we conduct the time com-
plexity and the depth consumption analysis for our method.

In the i-th iteration, four polynomials over Zpr−i are evaluated. As every
polynomial over Zpr−i has degree at most µ(pr−i) ≈ p(r − i) by Lemma 1,
their evaluation requires ≈ 4 ·2

√
p(r − i) = 8

√
p(r − i) key-switching operations

and ≈ log(pr) levels of depth consumption. Hence, during r iterations of the
algorithm, we perform

∑r−1
i=0 8

√
p(r − i) ≈ 16

3

√
r3p key-switching operations

and consume
∑r−1

i=0 log(p(r − i)) = r log p+ log(r!) multiplicative depths.
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Optimization Our method can be optimized under certain cases. If bi = 0 for
some 0 ≤ i < r, the polynomial

∑
0≤j<bi

ur−i
j (x1) is essentially zero and thus

its evaluation can be skipped. Moreover, if the bound of the Heaviside function
B has consecutive ℓ zeros in the LSB, i.e., b0 = b1 = · · · = bℓ−1 = 0, x1 is
essentially zero for ℓ iterations. In this case, only one polynomial evaluation
and two polynomial evaluations are necessitated at the beginning and in each
iteration of the algorithm, respectively.

We also remark that there exists a trade-off between time and depth com-
plexity for our LUT evaluation. Our method essentially compares each digit
of the bound and the input, it can be realized as a multivariate function over
Zp with digits of the input message as variables. Note that each digit can be
obtained while consuming i · log p during the digit extraction algorithm of the
conventional FV bootstrapping, the multivariate polynomial can be evaluated
with output depth (r + 1) log p. This depth asymptotically improves the depth
consumption of the aforementioned method, while its asymptotic time complex-
ity is increased.

Evaluation of arbitrary LUT The evaluation of the Heaviside function can be
naturally extended to the case of an arbitrary LUT. Naïvely, we can decompose
a LUT with k intervals into a linear combination of k Heaviside functions. In
particular, let the LUT with k intervals is defined as follows:

F (x) =



α1 if x < B1

α2 if B1 ≤ x < B2

...

αk−1 if Bk−2 ≤ x < Bk−1

αk otherwise

Then, we can represent it as F (x) = α1 +
∑k−1

i=1 (αi+1 − αi)Fi(x) such that
Heaviside function Fi(x) is defined as follows:

Fi(x) =

{
0 if x < Bi

1 otherwise
for 1 ≤ i < k

Hence, we have the capability to evaluate an arbitrary step function during
functional bootstrapping. However, employing naïve approach entails perform-
ing k time-consuming evaluation of k Heaviside functions. We remark that the
time complexity can be mitigated by constructing a recurrence relation akin to
the Heaviside function case. Specifically, we categorize the cases based on the
LSB of the given bounds B1, . . . , Bk−1. Nonetheless, this approach involves an
exhaustive classification of edge cases, given the existence of k · (k − 1)! = k!
possible orderings of the LSB of the input value and k − 1 bounds. While it
reduces the number of polynomials evaluated throughout the LUT evaluation,
this classification should be considered carefully. Therefore, for better scalability,
it is advisable to use the naïve method except for certain use-cases demanding
optimization.
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4.3 Generalization

In this section, we establish an evaluation method for an arbitrary LUT F :
Zpr → Zps . This can be more challenging than the basic case of s = 1, which is
covered in Sec. 4.2. In the basic case, the existence of a polynomial representa-
tion of arbitrary function over the finite field Zp played a crucial role. On the
contrary, only a small number of functions over the commutative ring Zps have
a polynomial representation. Due to this reason, our method does not naturally
extend to the prime power case. We resolve this problem by introducing the
homomorphic lifting to the LUT evaluation, i.e., homomorphically computing
x ∈ Zpi for some i > 1 from x ∈ Zp. Roughly speaking, we evaluate all s digits
of the given LUT F : Zpr → Zps utilizing our basic LUT evaluation algorithm
and use the homomorphic lifting to merge the results to obtain the evaluation
of F with a simple linear combination.

In detail, for an arbitrary LUT F : Zpr → Zps , we decompose F into s sub-
LUTs Fi : Zpr → Zp by taking the i-th digit of the result of the result of F ,
i.e., Fi(x) :=

[⌊
F (x)/pi

⌋]
p
∈ Zp. Such sub-LUTs {Fi}0≤i<s can be evaluated

simultaneously leveraging our LUT evaluation algorithm, and consequently s
FV encryptions of Fi(m) := (Fi(m1), . . . , Fi(mk)) (0 ≤ i < s) can be obtained
where m = (m1, . . . ,mk) ∈ Zk

pr is the input message. Then, the encryption of
F (m) can be computed from these encryptions of Fi(m) (0 ≤ i < s) using the
following relation:

F (x) = [F0(x)]ps+p[F1(x)]ps+· · ·+ps−1[Fs−1(x)]ps =

s−1∑
i=0

pi[Fi(x)]ps (mod ps).

To evaluate F (x) using this relation, a homomorphic evaluation of lifting
function [·]ps : Zp → Zps is necessitated. This operation is nontrivial in the con-
text of FV, however, we stress that the lifting function can be homomorphically
computed via the modulus switching operation and polynomial evaluation. Sup-
pose that we are given an FV encryption (b, a) ∈ R2

Q of µ(X) := µ0 + µ1X
d +

µ2X
2d+ · · ·+µk−1X

N−d ∈ Rp, which is an encoding of m = (m1, . . . ,mk) ∈ Zk
p.

Firstly, we compute (b′, a′) =
(⌊
b/ps−1

⌉
,
⌊
a/ps−1

⌉)
∈ R2

Q, and change the plain-
text modulus to ps. Then, it is easy to show that (b′, a′) is an encryption of
µ + pI ∈ Zps for some random polynomial I(X) ∈ Rps−1 . Since all the coeffi-
cients of I can be nonzero, the (partial) trace map can be evaluated to remove
the redundant coefficients of I analogous to the bootstrapping. As a result, an
encryption of µ+ pĨ ∈ Zps is obtained, where i-th slot’s value is mi + pIi ∈ Zps

for some Ii. Now, by homomorphically evaluating the s-th digit extraction poly-
nomial Gs, we can obtain an encryption of µ̃ ∈ Rps , an encoding of the lifting
m̃ = (m1, . . . ,mk) ∈ Zk

ps .
With this homomorphic lifting technique, we can finally evaluate the LUT

F . Let us recall the relation between the sub-LUTs Fi and the original LUT F .
As explained above, F (x) =

∑s−1
i=0 pi [Fi(x)]ps and thus s times of homomorphic

lifting is required. Naïvely, we can lift each Fi(m) into Zps and compute the
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linear combination. However, observe that pi [x]ps = [x]ps−i for any x ∈ Zps−i in
the context of FV cryptosystem, the relation can be re-written as follows:

F (x) =

s−1∑
i=0

pi [Fi(x)]ps =

s−1∑
i=0

[Fi(x)]ps−i .

Hence, it is sufficient to perform the homomorphic lifting of [·]ps−i for each
Fi (0 ≤ i < s) in total. By doing this, we can save a few relinearizations while
the depth consumption remains the same.

Time and Space Complexity Now, let us analyze the time complexity and
the depth consumption of this general LUT evaluation. Analogous to the basic
case of s = 1, we will only consider the step function case. The computation
of Fi (0 ≤ i < s) requires 16

3

√
r3p key-switching operations, and consumes

r log p + log(s!) depths as discussed in Sec.4.2. In the following homomorphic
lifting, a series of digit extraction polynomials G1, . . . , Gs are evaluated. Since the
degree of i-th digit extraction polynomial is (p−1)(i−1), its computation requires
≈ 2

√
(p− 1)(i− 1) ≈ 2

√
pi key-switching and log(pi) depths. To sum up it all,

2
√
p+2

√
2p+ · · ·+2

√
ps ≈ 2

3

√
s3p key-switching operations are performed, and

log((p − 1)(s − 1)) ≈ log p + log s multiplicative depths are needed. Therefore,
this general LUT evaluation method requires 2

√
p

3 (8
√
r3 +

√
s3) relinearizations

and consumes (r + 1) log p+ log(s!) depths in total.

4.4 Concrete Examples: Delta & Sign Functions

In this section, we apply our functional bootstrapping technique to some selected
functions, namely delta and sign function. The delta function is a special function
that returns 1 when the input is zero and 0 for other cases. To put it in a
functional form with discrete input x,

Delta(x) =

{
1 if x = 0

0 otherwise

After modulus switching from pr to Q in the modulus switching phase, the
ciphertext can be regarded as an encryption of ⌊pr/t⌉ ·m + e where −pr/2t ≤
e < pr/2t, as discussed in the beginning of this section. Therefore, the evaluated
LUT during the functional bootstrapping of the delta function should be

F (x) =


0 if x < −pr/2t
1 if − pr/2t ≤ x < pr/2t

0 otherwise.

Even though the function F seems like a LUT with multiple steps, we can
convert it into a step function case by shifting a domain. Since the message space
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of FV is (−t/2, t/2] for the plaintext modulus t, the delta function is converted
to the following function when we substitute the input x to x− ⌊t/2⌉:

Delta(x) =

{
0 if x < t− 1

1 otherwise

Then, the LUT F is also changed as follows:

F (x) =

{
0 if x < pr − pr/2t

1 otherwise

As evaluating a functional bootstrapping with a LUT with three intervals takes
more complexity than a step function, we can reduce the complexity by trans-
forming the delta function as we mentioned above. We can exploit the delta
function to extract items with the same attribute as the target value. We will
describe more detailed scenarios in the next section.

Note that the LUT may have different intervals depending on the precision
when the input is the CKKS ciphertext. As mentioned in the Sec. 3.3, the scaling
factor after ModSwitch becomes pr ·∆/Q. Therefore, the delta function can be
represented as follows for continuous input x:

Delta(x) =

0 if − Q

pr ·∆
< x <

Q

pr ·∆
1 otherwise

While evaluating an LUT about this delta function also requires high com-
putational cost because it has three intervals, we can decrease the number of
intervals for performance improvement by shifting the input data, similar to the
aforementioned example.

Another useful function is a sign function which returns -1 when the input is
negative and 1 for other cases. It also has various ways to utilize this function.
For example, The sign function is the main building block of comparison which
is a sign value of subtraction of two inputs and the comparison is a valuable
function used in several applications such as decision trees, sorting algorithms,
or SQL queries in the privacy-preserving database.

The sign function is a typical step function that can be written as follows:

Sign(x) =

{
−1 if x < 0

1 otherwise

Similar to the delta function, the LUT F from Zpr to Zps is as following:

F (x) =

{
−1 if x < −pr/2t
1 otherwise

As both LUTs have the same form as the Heaviside function, we can easily
compute them during the functional bootstrapping according to the Algorithm 2.
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Note that the depth and time complexity are asymptotically the same with anal-
ysis in Section 4.2 because the evaluation process is identical to the Algorithm 2.
As a result, it requires

∑r−1
i=0 8

√
p(r − i) ≈ 16

3

√
r3p key-switching operations and

consumes
∑r−1

i=0 log(p(r− i)) = r log p+ log(r!) depths. In the following section,
concrete performances of these two functions are provided in the next section
with an appropriate parameter set.

5 Experiments & Applications

Employing the functional bootstrapping algorithm, specifically tailored for the
delta and sign functions, we present a proof-of-concept level implementation
within the context of the FV scheme. We apply functional bootstrapping to
address specific functions within practical applications, notably in the domains
of circuit Private Set Intersection (circuit PSI), and tree based classification
model. Remark that the delta and sign functions described in Section 4 have
extensive utility in real-world scenarios.

The following subsections present a comprehensive benchmark analysis of
the performance of functional bootstrapping and introduce its efficiency in ad-
dressing the specified functions within the FV scheme. Additionally, we present
practical use cases and demonstrate the utilization of functional bootstrapping.

5.1 Implementation

We have conducted a proof-of-concept implementation of our functional boot-
strapping approach for the delta and sign functions, transitioning from FV with
a plaintext modulus of t to FV with a plaintext modulus of pr. The implemen-
tation was carried out using Lattigo v5 [48]. All experiments were performed on
a machine with Intel(R) Xeon(R) Platinum 8268 @ 2.90GHz CPU and 192GB
RAM running Ubuntu 20.04.2 LTS.

We only present the experimental results for FV-to-FV functional bootstrap-
ping, since the only difference between FV-to-FV case and CKKS-to-FV case is
Slots2Coeffs, which is essentially identical in both cases except for the encod-
ing process. We utilized two ring dimensions N = 215 and N = 216, which are
commonly used for circuit evaluation with a sufficiently large depth such as boot-
strapping. Each parameter set (t, p, r, h) satisfies the condition of equation 1 to
guarantee the low bootstrapping failure probability and achieves an estimated
security level of ≥128-bits, where h denotes the Hamming weight of the secret.
The parameters that are used in the implementation are summarized in Table. 1.

Additionally, in the implementation, we apply a special modulus method [31],
a well-known optimization technique in FHE, to mitigate the noise growth from
homomorphic operations. In this variant, public keys are generated in RQP for an
integer P known as the special modulus. During multiplication, the computation
result is scaled down by P to recover the ciphertext modulus Q while decreasing
the noise growth.

24



ID t p r h n N logPQ

I ≤ 700 17 4 256 24 215 840
II ≤ 12000 17 5 256 24 216 1700

Table 1: Parameter set for the implementation. t, p and n denote the input and
output plaintext modulus and the number of slots, respectively.

We remark that the number of slots may not be optimal in our implemen-
tation. In the context of FV/BGV style cryptosystems, non-power-of-two cy-
clotomic rings are commonly used as the base ring in order to use more slots.
However, since the Lattigo library only supports the power-of-two cyclotomic
ring, it was unable to provide a benchmark result with a large number of slots.
It is worth emphasizing that the number of slots only affects the linear transform
part, not the polynomial evaluation part. We expect that our implementation
can be further optimized, utilizing well-known optimization techniques for the
maximum slots. In [4], the authors showed that one can encode more messages
than the number of the factoring polynomials, by interpolating the messages
over the field. Note that this approach requires ‘re-encoding’ after several mul-
tiplications. On the other hand, Arita and Handa [3] proposed the usage of the
subring of a prime degree cyclotomic polynomial in order to encode the same
number of the data to the ring dimension.

The limitations imposed by the choice of plaintext modulus in Lattigo, which
must be a power-of-two NTT-friendly prime number of moderate size, can in-
deed affect the behavior of existing baseline algorithms. To address this, we
implemented several (unoptimized) algorithms such as the Paterson-Stockmeyer
polynomial evaluation algorithm, matrix multiplication, encoding and decoding.
Due to such a reason, we believe that there is still room for further optimization
in our code. An illustrative example is the application of the lazy polynomial
Baby-Step Giant-Step (BSGS) algorithm [43], which holds the promise of mini-
mizing the relinearization operations during polynomial evaluation. In addition,
we recognize the opportunity to enhance the time complexity of polynomial
evaluation from a sublinear to a logarithmic scale through the utilization of the
polynomial evaluation technique proposed by Okada et al. [50]. We expect that
these potential optimizations will refine the efficiency and overall performance
of our code.

5.2 Benchmarks

We present experimental results derived from our implementation of the func-
tional bootstrapping method for the FV scheme. The execution time associ-
ated with functional bootstrapping is presented in Table 2. As described in
Section 4.4, the LUTs employed for the computation of delta and sign func-
tions exhibit identical characteristics, sharing the same number of intervals and
ranges within those intervals. The only difference is the output values of each
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interval. Consequently, the evaluation time for the functional bootstrapping with
both functions remains consistent. During the measurement of elapsed time, we
constrained the dataset size to ensure that the data could be efficiently packed
within a single ciphertext. Note that the initial plaintext modulus t, correlated
with the number of messages packable in the ciphertext, does not affect the
execution time within the scope of our experimental setup.

ID Slots2Coeffs ModSwitch Coeffs2Slots EvalLUT Total

I 0.03s 2.5s 0.6s 44.2s 47.3s
II 0.2s 4.0s 1.5s 166.5s 172.1s

Table 2: Evaluation time of each step of the functional bootstrapping for
delta/sign function

ID Noise Consumption Remaining Levels

I ≈ 595 bits ≈ 11 levels
II ≈ 840 bits ≈ 20 levels

Table 3: Noise consumption of functional bootstrapping and remaining level after
functional bootstrapping for delta/sign function

Table 3 provides insights into the noise consumption and the resulting re-
maining noise level after the functional bootstrapping process. The ring dimen-
sion Nplays a crucial role in determining the magnitude of noise generated dur-
ing homomorphic evaluation. In our experiments, we observe that parameter sets
with a larger ring dimension, such as N = 216, tend to result in higher noise con-
sumption during the bootstrapping process. This is attributed to the increased
computational complexity associated with larger ring dimensions. Furthermore,
we calculate the remaining level in scenarios where the plaintext modulus q is
smaller than t. In such cases, the remaining noise level is higher in comparison to
situations where the modulus remains t. This difference arises since homomor-
phic operations require less noise consumption with a smaller plaintext modulus.

Note that the elapsed times of homomorphic DFT and iDFT, and modulus
switching are almost negligible in our experiment. This results from the small
number of plaintext slots due to the property of the power-of-two cyclotomic
ring structure. Still, the bootstrapping time is heavily dependent on the LUT
evaluation time which accounts for about 93− 96% of the end-to-end functional
bootstrapping process.
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5.3 Applications

The application of functional bootstrapping with delta or sign functions holds
significant potential in various real-world scenarios. One prominent example is
circuit PSI which is a generalization of the plain PSI that evaluates a function
over the intersection X ∩ Y of private sets X and Y and outputs the evalua-
tion result in a secret shared form. In [54], the authors realizes the circuit PSI
using the FV scheme. During the protocol, it applies two-party computation
after FHE-based plain PSI protocol [12, 13, 22] for the sake of function eval-
uation, sacrificing additional communication cost. It is to avoid a cumbersome
large depth polynomial evaluation with FHE, which is almost infeasible due to
a large plaintext modulus. However, we stress that our functional bootstrap-
ping can be applied to address such a problem and consequently optimizes the
communication cost.

A tree-based machine learning model can also benefit from our functional
bootstrapping, e.g., decision tree, random forest. Many studies [21, 26] uti-
lizes TFHE scheme since the decision tree model requires computation of non-
polynomial operations such as comparison. However, since TFHE scheme does
not support SIMD operations for multiple input data, it provides low throughput
compared to the decision tree model constructed by FV or CKKS scheme [1, 53],
which causes high computational costs. We also stress that our functional boot-
strapping can reduce this cost since it can evaluate any functions with a single
bootstrapping in a SIMD manner.

Moreover, the inputs of the decision tree or other classification models are
usually fixed-point numbers. Therefore, encrypting these features using the CKKS
encryption scheme appears to be a more intuitive choice. However, the outputs
of these models are often classification or regression results, which are discrete
data. Therefore, the result my contain noise since CKKS additional noise is intro-
duced during the computation. We emphasize that our functional bootstrapping
can prevent it with scheme conversion from CKKS to FV for noiseless result.

6 Conclusion & Future Works

In this paper, we introduce a new bootstrapping method called functional boot-
strapping which generalizes the existing bootstrapping techniques for the FV
scheme. It extends the functionality of bootstrapping by allowing us to boot-
strap any RLWE-based ciphertexts while evaluating an arbitrary function. As a
result, we can instantiate the scheme conversion and plaintext change with no
additional cost. As a result, the consumed depth and the computational com-
plexity of a large-depth circuit can be mitigated asymptotically. It also gives
more flexibility in the parameter selection by allowing us the plaintext modulus
conversion.

To realize this, a new algorithm to evaluate the arbitrary LUTs from the
commutative ring Zpr to Zps is developed. We first propose an optimized LUT
evaluation algorithm for a Heaviside function from Zpr to Zp and generalize it to
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an arbitrary LUT over Zpr to Zps by introducing the homomorphic lifting oper-
ation. In addition, we demonstrate its application in handling special functions
like delta and sign functions. We implement this approach using the open-source
FHE library, Lattigo [48], and provide benchmark analyses.

We note that our method can also be applied to the bootstrapping for the
BGV cryptosystem. We expect that the functional bootstrapping for BGV ci-
phertext will be asymptotically worse than the functional bootstrapping for FV
ciphertext due to the rounding error bound and limited choice of t and p similar
to the discussion given in [11]. We believe that optimizing our functional boot-
strapping framework for these cases can be an interesting research topic in the
future.
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