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Abstract

Succinct randomized encodings allow encoding the input 𝑥 of a time-𝑡 uniform computation𝑀 (𝑥) in
sub-linear time 𝑜 (𝑡). The resulting encoding 𝑥 allows recovering the result of the computation𝑀 (𝑥), but
hides any other information about 𝑥 . These encodings have powerful applications, including time-lock
puzzles, reducing communication in MPC, and bootstrapping advanced encryption schemes.

Until not long ago, the only known constructions were based on indistinguishability obfuscation,
and in particular were not based on standard post-quantum assumptions. In terms of efficiency, these
constructions’ encoding time is polylog(t), essentially the best one can hope for. Recently, a new
construction was presented based on Circular Learning with Errors, an assumption similar to the one
used in fully-homomorphic encryption schemes, and which is widely considered to be post-quantum
resistant. However, the encoding efficiency significantly falls behind obfuscation-based scheme and is
≈
√
𝑡 · 𝑠 , where 𝑠 is the space of the computation.
We construct, under the same assumption, succinct randomized encodings with encoding time

≈ 𝑡𝜀 · 𝑠 for arbitrarily small constant 𝜀 < 1. Our construction is relatively simple, generic and relies on
any laconic function evaluation scheme that satisfies a natural efficiency preservation property. Under
sub-exponential assumptions, the encoding time can be further reduced to ≈

√
𝑠 , but at the account of a

huge security loss.
As a corollary, assuming also bounded-space languages that are worst-case hard-to-parallelize, we

obtain time-lock puzzles with an arbitrary polynomial gap between encoding and decoding times.
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1 Introduction

Succinct randomized encodings (SREs) [BGL+15, CHJV15, KLW15] are a specific form of randomized
encodings of functions [IK00]. SREs allow to encode an input 𝑥 for a uniform function (e.g. Turing machine)
computation 𝑓 (𝑥) so that, computing the encoding 𝑥 can be done much faster than computing 𝑓 (𝑥). The
encoding 𝑥 still allows computing 𝑓 (𝑥) (in roughly the same time as the original computation), but hides
any other information about the input 𝑥 . Here hiding is captured by requiring that 𝑥 can be simulated from
the output 𝑓 (𝑥) (as well as the public description of 𝑓 ).

The combination of fast encodings and input privacy makes SREs extremely powerful. They can be used
to privately offload heavy computations to powerful parties, yielding for instance non-interactive delegation,
multi-party computation with minimal communication; They can be used to bootstrap cryptographic
schemes for circuits into ones for uniform machines, for example KDM encryption, functional encryption,
and indistinguishability obfuscation; and they can be used to delay computation, yielding time-lock puzzles
(c.f. [App11, CHJV15, KLW15, BGJ+16, AMZ24]).

Existing Constructions. The works of [BGL+15, CHJV15, KLW15] introduced the notion of SRE and
gave constructions based on indistinguishably obfuscation and one-way functions. Unlike the work of
[KLW15], the works of [BGL+15, CHJV15] only construct so called semi-succinct randomized encodings
where the encoding time does not grow with the time 𝑡 of the computation, but does grow with the space 𝑠
of the computation (as such, they are meaningful for space-bounded computations where 𝑠 ≪ 𝑡 ). On the
other hand, these latter two works can be based on indistinguishability obfuscation with logarithmic-size
input, which by now can be based on standard polynomial assumptions [JLS21]. The works of [AL18, GS18]
then augmented the approach in [BGL+15, CHJV15] and achieved a (fully) succinct construction from the
same assumptions.

While indistinguishability obfuscation is now known under standard assumptions [JLS21, JLS22, RVV24],
constructions are still based on very few assumptions, and in particular rely on bilinear group assumptions,
which are quantumly broken. Accordingly, constructing SREs from new assumptions, and in particular
post-quantum ones is a valuable goal. The recent work of [AMZ24] made significant progress on this front.
Based on a Circular Learning with Errors Assumption [HLL23], similar to that used in fully-homomorphic
encryption constructions [BGV12, GSW13], they construct semi 1

2 -succinct randomized encodings. Here
the time to encode is roughly 𝑡1/2 · 𝑠 , where 𝑡 and 𝑠 are the time and space of the encoded computation.

1.1 This Work

We give a new construction of semi-succinct randomized encodings where the time to encode is roughly
𝑡𝜀 · 𝑠 for arbitrarily small constants 𝜀 < 1. Our construction is based on any laconic function evaluation
scheme [QWW18] that satisfies a natural efficiency preservation property. In laconic function evaluation,
ciphertexts are allowed to grow with the function’s output, but not with circuit size nor with depth [HLL23].
The efficiency preservation property roughly says that key derivation for a function that can be uniformly
computed in time 𝑡 and space 𝑠 takes roughly the same time and space ≈ 𝑡 and ≈ 𝑠 (we elaborate in the
technical overview). Such efficiency preservation holds in particular for the laconic function evaluation
scheme constructed in [HLL23] based on the Circular LWE Assumption. Hence, under the same assumption
as in [AMZ24], we obtain SREs with improved succinctness.

Theorem 1.1 (Informal). Assume the existence of efficiency-preserving laconic function evaluation scheme.
Then for any constant 𝜀 < 1, there exists a semi 𝜀-succinct randomized encoding. Specifically, for a Turing
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machine computation𝑀 (𝑥) of time 𝑡 and space 𝑠 , and security parameter 𝜆, the encoding time is 𝑡𝜀 · ( |𝑥 | + 𝑠) ·
poly( |𝑀 |, 𝜆). In particular, such randomized encodings exist assuming Circular LWE.

This yields analogous results for the above mentioned applications of SREs. In particular, following the
methodology of [BGJ+16] this gives the first time-lock puzzles [RSW96] with an arbitrary polynomial (as
opposed to quadratic) delay under a standard post-quantum assumption (Circular LWE) and the existence
of worst-case hard non-paralleling languages that can be decided in bounded-space, which is arguably a
mild complexity assumption (follows for instance from the hardness of parallelizing iterated hashing).

We also show that we can achieve full succinctness, i.e. encoding time independent of the time to run
the input - if we allow sub-exponentially secure Circular LWE. However, this comes at the account of a
huge security loss — the resulting construction can be broken in quasi-polynomial time.

Corollary 1.2 (Informal). Assume the existence of sub-exponentially secure efficiency-preserving laconic
function evaluation scheme. There exists a fully succinct randomized encoding with a quasi-polynomial security
guarantee. Specifically, for a Turing machine computation𝑀 (𝑥) of time 𝑡 and space 𝑠 , and security parameter
𝜆, the encoding time is ( |𝑥 | + 𝑠) · poly( |𝑀 |, 𝜆). However, there exists 𝑐 ∈ N, such that the scheme can be broken
in time 2(log𝜆)𝑐 . In particular, such randomized encodings exist assuming sub-exponentially secure circular
LWE.

Simple and Generic. Our construction follows a generic and relatively simply succinctness boosting
step, which we then apply an arbitrary constant number of times to increase succinctness.

Considering a single iteration of this step yields an alternative to the semi 1/2-succinct construction
of [AMZ24], which generically relies on any laconic function evaluation scheme, even without efficiency
preservation.This is in contrast to the construction in [AMZ24], which relies on specific FHE-related
algebraic techniques.

1.2 Technical Overview

We now explain the main ideas behind our result.

Recalling Laconic Function Evaluation. We start by recalling in more detail the notion of laconic
function evaluation (LFE) [QWW18]. We focus on a depth-independent version (c.f. [HLL23]). Here given
a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 , represented by a circuit, we can sample a succinct public encryption key
pk, such that an encryption Encpk(𝑥) can be (publicly) decrypted using pk and the circuit 𝑓 to yield the
function output 𝑓 (𝑥). Furthermore, the encryption Encpk(𝑥) does not leak any other information about 𝑥 ,
in the sense that, even in the presence of pk, the encryption can be efficiently simulated from the output
𝑓 (𝑥). We require that the time to encrypt 𝑥 ∈ {0, 1}𝑛 is 𝑛 · poly(𝜆), independently of the circuit complexity
of 𝑓 . The size of the keys pk is accordingly 𝑛 · poly(𝜆), and we require that the time to compute them
is |𝑓 | · poly(𝜆). Here and throughout 𝜆 denotes the security parameter and |𝑓 | denotes the size of the
corresponding circuit.1

The work of [QWW18] introduced the concept of a laconic function evaluation scheme and constructed,
under LWE, a scheme where both ciphertexts and keys only scale with the depth (but not the circuit size).
Recently, the work of [HLL23], under Circular LWE, removes the depth-dependence, leading to a scheme
with the desired efficiency. We note that LFE schemes as above stand in sharp contrast to compact LFE
1We note that in the literature a somewhat stronger version is typically considered, where givne a common random string, the
function can be compressed deterministically into a corresponding public key (or digest).
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schemes where the function 𝑓 may have output size𝑚 ≫ 𝑛, and yet encryption complexity is sublinear in
𝑚. Indeed, compact LFE implies compact functional encryption [QWW18], which already yield the full
power of indistinguishability obfuscation [AJ15, BV15].

Having recalled the notion of LFE, we now move to describe our construction.

1
2 -Succinctness. We start by describing a construction that achieves 1

2 -succinctness. The construction is
inspired by that of [𝐴𝑀𝑍24], and starts from the same basic idea. For a Turing machine𝑀 representing
a function 𝑀 : {0, 1}𝑛 → {0, 1}𝑛 , with space complexity 𝑠 (𝑛) ≥ 𝑛, we consider the corresponding step
circuit 𝑆𝑀 : {0, 1}𝑠 → {0, 1}𝑠 , which performs a single step of𝑀 and has size ≈ 𝑠 (ignoring for simplicity
poly( |𝑀 |) factors). Then, to encode a 𝑡-step computation 𝑀 (𝑥), the basic idea is to derive a public key
pk for 𝑓 = 𝐸 ◦ 𝑆

√
𝑡

𝑀
. The function 𝑓 given an intermediate state st𝑖 ∈ {0, 1}𝑠 , performs

√
𝑡 steps of 𝑀 , and

outputs an encryption 𝐸 (st𝑖+√𝑡 ) of the resulting state, under some auxiliary encryption 𝐸 (to be determined
later). In addition, the encoding will include

√
𝑡 gadgets 𝐺1, . . . ,𝐺√𝑡 , where the role of each 𝐺𝑖 is to convert

an encryption 𝐸 (st𝑖√𝑡 ) to an LFE encryption Encpk(st𝑖√𝑡 ), with the exception of the last gadget 𝐺√𝑡 , which
decrypts 𝐸 (st𝑡 ) to obtain the final state st𝑡 , encoding the result of the computation. Finally, we will also
include a ciphertext Encpk(st0) of the initial state st0, which encodes the input 𝑥 .

Given the above components pk,𝐺1, . . . ,𝐺√𝑡 , Encpk(st0), an evaluator can execute the machine compu-
tation by each time starting from Encpk(st𝑖√𝑡 ), performing LFE decryption to obtain 𝐸 (st(𝑖+1)√𝑡 ), and then
using gadget𝐺𝑖+1 to convert it to Encpk(st𝑖√𝑡 ), and so on, until the last gadget application returns the result
of the computation. In terms of succinctness, as long as the circuit size of 𝐸 (st ∈ {0, 1}𝑠) is ≈ 𝑠 , and the
complexity generating each gadget 𝐺𝑖 is ≈ 𝑠 , and since deriving the LFE keys takes time ≈ |𝐸 ◦ 𝑆

√
𝑡

𝑀
| ≈
√
𝑡𝑠 ,

the overall complexity of encoding would be ≈
√
𝑡𝑠 .

The question is how to instantiate the auxiliary encryption 𝐸 and gadgets 𝐺𝑖 to yield the above
efficiency properties and to be able to prove security. Here one challenge is to make sure that the size of
encryptions 𝐸 (st𝑖 ∈ {0, 1}𝑠) remains of fixed size ≈ 𝑠 , and does not grow with the size of the ciphertext
Encpk(st𝑖 ∈ {0, 1}𝑠). Indeed, this constraint is an artifact of (non-compact) LFE, where any increase in the
size of the function output translates to an increase in the size of ciphertexts, which would iteratively blow
up the size of the construction. To circumvent this difficulty, the work of [AMZ24] devised a lattice-based
solution, which combines techniques fromworks on split FHE [BDGM20], with a notion of range-puncturable
pseudo-random functions. We take a different and arguably simpler route.

Our first observation is that there is, in fact, a simple and generic way to instantiate the above approach
using Yao’s garbled circuits [Yao86]. Specifically, the encryption 𝐸 (st𝑖√𝑡 ) would generate garbled input labels
s̃t𝑖√𝑡 = GC.Encgsk𝑖 (st𝑖√𝑡 ) under a corresponding garbling key gsk𝑖 . The gadget 𝐺𝑖 will be a corresponding
garbled circuit 𝐶𝑖 = GC.Garblegsk𝑖 (𝐶𝑖), where the circuit 𝐶𝑖 takes as input a state st𝑖√𝑡 and outputs a
ciphertext Encpk(st𝑖√𝑡 , gsk𝑖+1; 𝑟 ), using hardwired randomness 𝑟 , where gsk𝑖+1 is the next garbling key (also
hardwired in𝐶𝑖 ). The function 𝑓 for which we derive the LFE key is augmented accordingly, given (st, gsk),
it executes 𝑆

√
𝑡

𝑀
(st), and garbles using gsk the resulting state.

Indeed, garbled circuits have the feature that when garbling circuits𝐶 : {0, 1}𝑠 → {0, 1}𝑠′ where 𝑠′ ≫ 𝑠 ,
computing garbled input labels takes time ≈ 𝑠 regardless of how big the output size 𝑠′ is. Accordingly, also
the function 𝑓 for which we derive a function key has fixed output size throughout. In addition, each circuit
𝐶𝑖 performs encryption of an input of size ≈ 𝑠 , which takes time ≈ 𝑠 , and accordingly the garbled circuit
is also of size ≈ 𝑠 (we ignore fixed factors in the security parameter). Overall, we get the required

√
𝑡 · 𝑠

encoding complexity. (Note that so far we have not used any special efficiency properties of functional key
generation, except that it takes time ≈ |𝑓 | where 𝑓 is the function for which we derive keys.)
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Security follows quite directly by interchangeably applying the LFE simulation guarantee and the
garbled circuit simulation guarantee. Specifically, since our garbled circuits contain secret information (LFE
encryption randomness 𝑟 and next garbling key gsk𝑖+1), we’ll rely on circuit-private simulation for garbled
circuits where the garbled circuit 𝐶𝑖 and input encoding s̃t𝑖√𝑡 can be efficiently simulated from the output
𝐶𝑖 (st𝑖√𝑡 ) alone. This allows to simulate the garbled circuits backwards, starting from 𝐶√𝑡 , s̃t𝑡−√𝑡 which can
be simulated from the output 𝑀 (𝑥) of the entire computation. Then we can use the simulated s̃t𝑡−√𝑡 to
simulate the previous LFE encryption. The simulated LFE encryption, is then thought of as the output of
the previous garbled circuit and is used to simulate it, and so on. The validity of this simulation is shown
based on a standard hybrid argument.

Beyond 1/2-Succinctness. Aiming to improve the succinctness of our randomized encoding, a natural
idea is to simply compose it with itself. That is, Encode(𝑀,𝑥, 𝑡) which randomly encodes (𝑀,𝑥, 𝑡) is a
uniform computation on its own of time≈

√
𝑡𝑠 . So let us randomly encode this computation, namely compute

Encode(Encode(𝑀, ·, 𝑡), 𝑥,
√
𝑡𝑠) (hardwiring the required randomness). If the space of this computation is 𝑠′,

we would get encoding time 𝑡 1
4
√
𝑠𝑠′, and if 𝑠′ is not prohibitively large, then we would gain in succinctness.

This, however is too good to be true; in particular, something that we have implicitly assumed in the
previous solution is that the space of the underlying computation, in this case 𝑠′, is at least as large as the
output, which in this case is the underlying randomized encoding Encode(𝑀,𝑥, 𝑡) of size

√
𝑡𝑠 . Thus we

have so far gained nothing.2
However, it turns out that this naïve composition idea is not completely useless. As previously noted,

the 1/2-succinct solution does not take full advantage of the efficiency properties of the LFE key generation
procedure. In particular, looking back at the previous encoding

pk,𝐶1, . . . ,𝐶√𝑡 , Encpk(st0, gsk1) ,

we note that generating the public keys pk may take time
√
𝑡𝑠 , but results in a relatively short output (of

size ≈ 𝑠). This suggests that we may be able to gain by randomly encoding only the key derivation part,
which we indeed do.

Specifically, we consider an a-symmetric version of the previous solution where instead of deriving
keys for the

√
𝑡-step 𝑆

√
𝑡

𝑀
(plus input garbling), we derive a key for the 𝑡2/3-step circuit 𝑆𝑡2/3

𝑀
, which now

means we only need 𝑡1/3 garbled circuits 𝐶1, . . . ,𝐶𝑡1/3 for converting garbled states to LFE-encrypted states.
What we gain is that now while deriving function keys pk for 𝑆𝑡2/3

𝑀
takes longer time ≈ 𝑡2/3𝑠 , it is a uniform

computation with small output size (≈ 𝑠). If the space needed to generate these keys is 𝑠′, then randomly
encoding the key generation using the 1/2-succinct solution, we obtain encoding time ≈

√
𝑡2/3𝑠 · 𝑠′ + 𝑡1/3 · 𝑠 .

In particular, if the LFE scheme is also efficiency preserving, in the sense that the space 𝑠′ required for
generating keys for a space-𝑠 function is ≈ 𝑠 , we obtain encoding time ≈ 𝑡1/3𝑠3/2.

By applying this step repeatedly, each time reducing 𝑡1/𝑘 to 𝑡1/(𝑘+1) , we can reduce the dependence on
𝑡 to 𝑡𝜀 for an arbitrarily small 𝜀. In the body, we also show that we can maintain a linear dependence on
the space 𝑠 (instead of ≈ 𝑠𝑂 (log(1/𝜀 ) )) by considering throughout all the iterations repeated circuits, instead
of moving back and forth between Turing machines and their repeated step circuits. Another technical
detail we glossed over is that previously the LFE key pk was hardwired into the garbled circuits𝐶𝑖 whereas
now it is not available in encoding time (it is only computed online by decoding the randomly encoded
2Indeed, the dependence of SREs on output size is inherent. Simulation-based SREs that are output compressing are impossible
[LPST16], and indistinguishability-based output-compressing SREs already pave the way to indistinguishability obfuscation
[AJ15].
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key derivation). This can be easily dealt with by letting the garbled circuits propagate pk between them in
online time. See details in the body.

Existing Efficiency Preserving LFE. Examining the LFE scheme of [HLL23], we observe that it is
indeed efficiency preserving. In this scheme, which builds on the (depth-dependent) scheme of [BGG+14]
and its variant in [QWW18], deriving keys for a circuit 𝑓 : {0, 1}𝑠 → {0, 1}𝑠 , essentially mimics GSW-style
homomorphic evaluation over 𝑠 matrices of fixed size, plus local operations meant for noise reduction.

Roughly speaking, homomorphic evaluation of a circuit 𝑓 translates to a circuit of similar topology
where any gate operation is replaced by a small circuit, which is essentially its homomorphic equivalent.
Since the added noise-reducing steps are local, namely are performed individually on each homomorphic
wire, the final key derivation circuit 𝑓 is of similar dimensions. Moreover, if we consider a repeated circuit
𝑓 𝑡 , then its homomorphic equivalent is also a repeated circuit 𝑓 𝑡 of similar dimensions. See Appendix A for
more details.

2 Preliminaries

Throughout this work, we denote by 𝜆 the security parameter. We say a function 𝑓 is negligible in the
security parameter 𝜆 if 𝑓 = 𝜆−𝜔 (1) . We denote this by writing 𝑓 (𝜆) = negl(𝜆). We write poly(𝜆) to denote a
function that is bounded by a fixed polynomial in 𝜆. We say an algorithm is efficient if it runs in probabilistic
polynomial time (PPT) in the length of its input. Throughout this work, we consider security against
non-uniform adversaries (indexed by 𝜆) that run in deterministic polynomial time in the length of their
input and takes in an advice string of poly(𝜆) size.

For positive integers 𝑛 < 𝑚, we denote by [𝑛] the set {1, . . . , 𝑛} and by 𝑛+ [𝑚] the set {𝑛 + 1, . . . , 𝑛 +𝑚}.
For some circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑛 , we denote 𝑡 repeated evaluations of the circuit by the notation 𝐶𝑡 ,
i.e., for all inputs 𝑥 ∈ {0, 1}𝑛 , 𝐶𝑡 (𝑥) = 𝐶 (𝐶𝑡−1(𝑥)), where 𝐶1 = 𝐶 . Abusing notation, we write M𝑡 (𝑥) to
denote the execution of a Turing machineM on input 𝑥 for 𝑡 steps. We denote the first 𝑘 bits of a string
𝑠 ∈ {0, 1}𝑘+ℓ , by the notation 𝑠 |1...𝑘 .

We next review the main cryptographic primitives we use in this work.

2.1 SREs for Space Bounded Computations and Repeated Circuits

A succinct randomized encoding (SRE) scheme [BGL+15, CHJV15, KLW15] allows to encode a uniform
computation 𝑀 (𝑥) fast, independently of the computation’s complexity, while hiding the input 𝑥 . We
consider a restricted notion of SRE where the encoding procedure is sub-linear in the time of computation
𝑡 but is allowed to scale with the space of the computation 𝑠 . This notion is accordingly meaningful for
space-bounded computations, where 𝑠 ≪ 𝑡 .

Definition 2.1 (Succinct Randomized Encodings for Space-Bounded Machines). A succinct randomized
encoding for space-bounded machines consists of two algorithms SRE = (SRE.Encode, SRE.Eval) with the
following syntax:

Encode(1𝜆,M, 𝑥, 𝑡, 𝑠) → 𝑥 . The encode algorithm takes the security parameter 𝜆, Turing Machine (TM) M,
input 𝑥 , time bound 𝑡 , and space bound 𝑠 , and outputs an encoding, 𝑥 .

Eval(M, 𝑥, 𝑡, 𝑠) → 𝑦. The evaluation algorithm takes in an encoding 𝑥 , Turing machineM, time bound 𝑡 ,
and space bound 𝑠 , and outputs an evaluation 𝑦.
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The scheme should satisfy the following properties:

• Correctness: For any polynomial ℓ (𝜆), there exists a negligible function negl such that for all
𝜆 ∈ N and for all Turing machines M with space bound 𝑠 , inputs 𝑥 , and number of steps 𝑡 , such that
|M|, |𝑥 |, 𝑡, 𝑠 ≤ ℓ (𝜆) we have,

Pr
[
M𝑡 (𝑥) ≠ 𝑦 : 𝑥 ← Encode(1𝜆,M, 𝑥, 𝑡, 𝑠)

𝑦 ← Eval(M, 𝑥, 𝑡, 𝑠)

]
= negl(𝜆),

where the randomness is over the coins of Encode.

• Security: There exists a polynomial-time simulator Sim such that for all 𝜆 ∈ N, polynomially bounded
𝑡, 𝑠 , Turing machinesM with polynomial-size description, and polynomial-size inputs 𝑥 ∈ {0, 1}𝑛 ,

Sim
(
1𝜆,M,M(𝑥), 𝑡, 𝑠, 𝑛

)
≈𝑐 Encode(1𝜆,M, 𝑥, 𝑡, 𝑠) .

• Semi 𝜀-succinctness: There exists a polynomial poly such that for any 𝜆,M, 𝑥, 𝑠 and 𝑡 ≤ 2𝜆 , the
running time of Encode(1𝜆,M, 𝑥, 𝑡, 𝑠) is at most 𝑡𝜀 · poly( |M|, |𝑥 |, 𝑠, 𝜆).

• Semi-efficient evaluation: There exists a polynomial poly such that for any 𝜆,M, 𝑥, 𝑠 and 𝑡 ≤ 2𝜆 ,
and for any 𝑥 in the support of Encode(1𝜆,M, 𝑥, 𝑡, 𝑠), the running time of Eval(M, 𝑥, 𝑡, 𝑠) is at most
𝑡 · poly( |M|, |𝑥 |, 𝑠, 𝜆).

Remark 2.2 (Semi-efficient evaluation). The above semi-efficient evaluation property can be naturally
relaxed to allow a fixed polynomial blowup also in 𝑡 . However, in some contexts, evaluation efficiency
is a measure one tries to optimize. For example, in the context of delegation, it affects the efficiency of
the server to which the computation is delegated. In the context of time-lock puzzles, it translates to the
running time of the honest decryptor, and is particularly of interest, in order to tighten the relation between
the time it takes to honestly solve the puzzle and the time required to maliciously solve the puzzle.

To guarantee semi-efficient evaluation, we shall also require corresponding efficient decryption/evaluation
from the functional evaluation. (All of these can be relaxed, to allow some fixed polynomial blowup.)

Remark 2.3. We require SRE that is only input-hiding, namely hides 𝑥 , but not necessarily machine hiding,
namely it may not hideM. This somewhat simplifies the description of our construction and is not essential.
Indeed, machine hiding could be generically achieved by considering a universal Turing machine and
treating the Turing machine M as part of the input.

Remark 2.4 (Simulator Efficiency). Above, we do not make any explicit requirements on the efficiency of
the simulator. In fact, even an unbounded simulator gives a meaningful notion of indistinguishability-based
SRE that suffices for the applications mentioned in the intro. Since we allow the complexity of encoding to
grow with 𝑠 and the output size of the computation𝑚 ≤ 𝑠 , there is a simulator that runs essentially at the
same time of the encoder, encoding a dummy computation that outputs the intended output 𝑦.

SRE for repeated circuits. We also define a notion of SRE for repeated circuits. Here the goal is to
encode a computation of a repeated circuit 𝐶𝑡 , for some 𝐶 : {0, 1}𝑛 → {0, 1}𝑛 in time that is sub-linear in 𝑡 .
As we note later such SREs in particular imply corresponding SRE for space-bounded Turing machines.
However, using SREs for repeated circuits will make it easier to obtain better dependence on the space in
our final construction.
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Definition 2.5 (Succinct Randomized Encodings for Repeated Circuits). A succinct randomized encoding
for repeated circuits consists of two algorithms SRE = (SRE.Encode, SRE.Eval) with the following syntax:

Encode(1𝜆,𝐶, 𝑥, 𝑡) → 𝑥 . The encode algorithm takes the security parameter 𝜆, circuit 𝐶 , input 𝑥 , number
of repetitions 𝑡 and outputs an encoding, 𝑥 .

Eval(𝐶, 𝑥, 𝑡) → 𝑦. The evaluation algorithm takes in an encoding 𝑥 , circuit 𝐶 , number of repetitions 𝑡 , and
outputs an evaluation 𝑦.

The scheme should satisfy the following properties:

• Correctness: For any polynomial ℓ (𝜆), there exists a negligible function negl such that for all 𝜆 ∈ N
and for all circuits 𝐶 , inputs 𝑥 , and number of repetitions 𝑡 , such that, |𝐶 |, |𝑥 |, 𝑡 ≤ ℓ (𝜆) we have,

Pr
[
𝐶𝑡 (𝑥) ≠ 𝑦 : 𝑥 ← Encode(1𝜆,𝐶, 𝑥, 𝑡)

𝑦 ← Eval(𝐶, 𝑥, 𝑡)

]
= negl(𝜆),

where the randomness is over the coins of Encode.

• Security: There exists a polynomial-time simulator Sim such that for all 𝜆 ∈ N, polynomial-size
circuits 𝐶 , polynomial-size inputs 𝑥 , and polynomially bounded 𝑡 ,

Sim
(
1𝜆,𝐶,𝐶𝑡 (𝑥), 𝑡

)
≈𝑐 Encode(1𝜆,𝐶, 𝑥, 𝑡) .

• Semi 𝜀-succinctness: There exists a polynomial poly such that for any 𝜆,𝐶, 𝑥 and 𝑡 ≤ 2𝜆 , the running
time of Encode(1𝜆,𝐶, 𝑥, 𝑡) is at most 𝑡𝜀 · poly( |𝐶 |, 𝜆).

• Semi-efficient evaluation: There exists a polynomial poly such that for any 𝜆,𝐶, 𝑥 and 𝑡 ≤ 2𝜆 , and
for any 𝑥 in the support of Encode(1𝜆,𝐶, 𝑥, 𝑡), the running time of Eval(𝐶, 𝑥, 𝑡) is at most 𝑡 ·poly( |𝐶 |, 𝜆).

We state a general (straightforward) relation between SREs for repeated circuits and SREs for bounded-
space Turing machines. Jumping forward, our SREs for repeated circuits will achieve certain encoding and
evaluation, we state how these are reflected when moving between repeated circuits and Turing machines.

Proposition 2.6. Assuming there exists semi 𝜀-succinct randomized encoding for repeated circuits, there also
exists semi 𝜀-succinct randomized encoding for bounded space Turing machine.

Proof sketch. For a space-bounded Turing machine𝑀 computing a function {0, 1}𝑛 → {0, 1}𝑛 , we assume
w.l.o.g 𝑠 (𝑛) ≥ 𝑛. We consider the uniform circuit 𝑆𝑀 of size 𝑠 · poly( |𝑀 |), which performs one transition of
𝑀 . Then a repeated-circuit encoding of (𝑆𝑀 , 𝑥, 𝑡) yields the required Turing machine randomized encoding
of (𝑀,𝑥, 𝑡, 𝑠). □

2.2 Weak Laconic Functional Evaluation for Repeated Circuits

We consider a laconic functional evaluation scheme, where the function is known at setup time. We
focus on functions that can be represented by repeated circuits 𝐶𝑡 (jumping ahead we will later consider
space-bounded Turing machine computations, which in particular can be described by repeated applications
of a transition circuit). Functionality and security for repeated circuits schemes are defined as for general
circuits. The repeated-circuit aspect will be relevant in the context of efficiency, where we’ll require that
key derivation for a repeated circuit is also a repeated circuit with roughly the same circuit size and the
same input-output length.
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Definition 2.7. A weak laconic functional evaluation scheme for repeated circuits consists of PPT algo-
rithms LFE = (LFE.Setup, LFE.Enc, LFE.Dec) with the following syntax:
Setup(1𝜆,𝐶, 𝑡) → pk. The setup algorithm takes as input a security parameter 𝜆, a circuit 𝐶 : {0, 1}𝑛 →

{0, 1}𝑛 , a repetition parameter 𝑡 , and outputs a public key pk.

Encpk(𝑥 ∈ {0, 1}𝑛) → ct. The encryption algorithm takes in the public key pk and an input 𝑥 and outputs
a ciphertext ct.

Decpk(𝐶, ct, 𝑡) → 𝑦. The decryption algorithm takes in a public key pk, an input a circuit 𝐶 , ciphertext ct,
and the repeated parameter 𝑡 and outputs a value 𝑦.

The scheme should satisfy the following properties:
• Correctness: For any polynomial ℓ (𝜆), there exists a negligible function negl such that for any 𝜆,
circuit 𝐶 , repetition parameter 𝑡 , and inputs 𝑥 , s.t. |𝐶 |, |𝑥 |, 𝑡 ≤ ℓ (𝜆),

Pr
𝐶𝑡 (𝑥) ≠ 𝑦 :

pk← Setup(1𝜆,𝐶, 𝑡)
ct← Encpk(𝑥)

𝑦 ← Decpk(𝐶, ct, 𝑡)

 = negl(𝜆) .

• Selective security: There exists a polynomial-time simulator Sim such that for all 𝜆 ∈ N, all
polynomial-size circuits 𝐶 : {0, 1}𝑛 → {0, 1}𝑛 , inputs 𝑥 ∈ {0, 1}𝑛 , and polynomially bounded 𝑡 ,{

pk, Simpk(𝐶𝑡 (𝑥))
}
≈𝑐

{
pk, Encpk(𝑥)

}
,

where in both distributions pk← Setup(1𝜆,𝐶, 𝑡).

• Succinctness: There exists a polynomial poly(𝜆), such that for any 𝜆, circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑛 ,
repetition parameter 𝑡 , keys pk in the support of Setup(1𝜆,𝐶, 𝑡), and ciphertext ct in the support of
Encpk(𝑥 ∈ {0, 1}𝑛),

|pk|, |ct| ≤ 𝑛 · poly(𝜆) .

Furthermore, Encpk(𝑥 ∈ {0, 1}𝑛) can be computed by a uniform circuit of size 𝑛 · poly(𝜆).

• Efficiency preservation: There exists a polynomial poly(𝜆), such that for any 𝜆, circuit 𝐶 :
{0, 1}𝑛 → {0, 1}𝑛 , and repetition parameter 𝑡 , there exists a circuit 𝑆𝐶 : {0, 1}𝑚 → {0, 1}𝑚 such that

for all 𝑟 ∈ {0, 1}𝑚 : 𝑆𝑡𝐶 (𝑟 ) = Setup(1𝜆,𝐶, 𝑡 ; 𝑟 ) .

Furthermore,
𝑚 ≤ 𝑛 · poly(𝜆), 𝑆𝐶 ≤ |𝐶 | · poly(𝜆),

and 𝑆𝐶 can be efficiently computed from 𝐶 in time 𝑂 ( |𝑆𝐶 |).

• Efficient decryption: There exists a polynomial poly( |𝐶 |, 𝜆) such that for any 𝜆, circuit𝐶 : {0, 1}𝑛 →
{0, 1}𝑛 , any input 𝑥 ∈ {0, 1}𝑛 , repetition parameter 𝑡 , where 𝑛, 𝑡 ≤ 2𝜆 , and for any pk in the support of
Setup(1𝜆,𝐶, 𝑡), any ct in the support of Encpk(𝑥), the running time ofDecpk (·) is at most 𝑡 ·poly( |𝐶 |, 𝜆).

Remark 2.8. In traditional laconic functional evaluation [QWW18], there is a global trusted crs, sampled
which then allows a party to compute a short digest for any function deterministically. In our notion a
single function is known at setup time, and the setup is randomized, accordingly no CRS is needed. Such
LFE is potentially weaker than traditional LFE, and in particular may not imply collision-resistant hash
functions. That said, we are not aware of simpler/better constructions than the traditional stronger notion
of LFE.

8



2.3 Garbled Circuits

We define (the circuit-private version of) garbled circuits [Yao86] with an input-efficient and a decomposable
encoding property.

Definition 2.9 (Garbled Circuits). A circuit garbling scheme consists of the following PPT algorithms
GC = (GC.Garble,GC.Enc,GC.Eval) with the syntax:

Garblegsk(𝐶) → 𝐶. The garble algorithm takes in a garbling secret key gsk ∈ {0, 1}𝜆 , circuit 𝐶 : {0, 1}𝑛 →
{0, 1}𝑚 and outputs a garbled circuit 𝐶 .

Encgsk(𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ [𝑛]) → 𝑥𝑖 . The encryption algorithm takes in a garbling secret key gsk, input bit
𝑥𝑖 ∈ {0, 1}, position 𝑖 ∈ [𝑛] and outputs an encoding of the input 𝑥𝑖 .

Eval
(
𝐶, {𝑥𝑖}𝑖∈[𝑛]

)
→ 𝑦. The evaluation algorithm takes in the garbled circuit 𝐶 and encoded inputs for

each position {𝑥𝑖}𝑖∈[𝑛] and outputs 𝑦, the evaluation the circuit 𝐶 on the input 𝑥 .

The scheme should have the following properties:

• Correctness: For any 𝜆 ∈ N and for all circuits 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 , polynomial in 𝜆, and all valid
inputs 𝑥 ∈ {0, 1}𝑛 ,

Pr


𝐶 (𝑥) = 𝑦 :

gsk← {0, 1}𝜆
𝐶 ← Garblegsk(𝐶)

∀𝑖 ∈ [𝑛], 𝑥𝑖 ← Encgsk(𝑥𝑖 , 𝑖)
𝑦 ← Eval

(
𝐶, {𝑥𝑖}𝑖∈[𝑛]

)

= 1.

• Security: There exists a polynomial-time simulator Sim such that for all 𝜆 ∈ N, all polynomial-size
circuits 𝐶 and valid inputs 𝑥 ,

{
Sim

(
1𝜆, 1 |𝐶 | , 1𝑛,𝐶 (𝑥)

)}
≈𝑐


(
𝐶, {𝑥}𝑖∈[𝑛]

)
:

gsk← {0, 1}𝜆,
𝐶 ← Garblegsk(𝐶){

𝑥𝑖 ← Encgsk(𝑥𝑖 , 𝑖)
}
𝑖∈[𝑛] .


• Efficient encoding: There is a polynomial poly(𝜆), such that for any 𝜆 and circuit 𝐶 : {0, 1}𝑛 →
{0, 1}𝑚 , where |𝐶 |, 𝑛 ≤ 2𝜆 , the input encoder Encgsk(·) is computable by a uniform circuit of size at
most poly(𝜆) and Garblegsk(·) is computable by a uniform circuit of size at most |𝐶 | · poly(𝜆).

3 Boosting Succinctness

In this section, we present a boosting theorem that takes any semi 𝜀-succinct SRE, for constant 𝜀 ≤ 1, and
turns it into an semi 𝜀′-succinct SRE for 𝜀′ = 𝜀/(1 + 𝜀), relying on efficiency-preserving laconic FE for
repeated circuits.

Before diving into the construction, we present the following (straightforward) lemma that essentially
says that a repeated circuit𝑋 𝑡 followed by an application of another circuit𝑌 , can be represented by another
repeated circuit 𝑍 𝑡 .
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Lemma 3.1. Let 𝑋 : {0, 1}𝑛 → {0, 1}𝑛 and 𝑌 : {0, 1}𝑛+𝑚 → {0, 1}𝑘 be circuits. Then there exists a circuit
𝑍 : {0, 1}𝑛+𝑚+𝜆 → {0, 1}𝑛+𝑚+𝜆 of size𝑂 ( |𝑋 |+|𝑌 |)+poly(𝜆) such that for any 𝑥,𝑦, 𝑡 ∈ {0, 1}𝑛×{0, 1}𝑚×{0, 1}𝜆 ,

𝑍 𝑡 (𝑥,𝑦, 𝑡) |1...𝑘 = 𝑌 (𝑋 𝑡 (𝑥), 𝑦) .

Furthermore, 𝑍 is computable from 𝑋,𝑌, 1𝜆 in time 𝑂 ( |𝑍 |).

Proof. The repeated circuit 𝑍 in Fig. 1 is essentially a branching circuit that maintains a counter. For the
first 𝑡 − 1 repetitions, the counter is set so that the circuit 𝑍 computes a repeated circuit 𝑋 . On the final 𝑡-th
repetition, the counter reaches the end and 𝑍 computes circuit 𝑋 followed by circuit 𝑌 and outputs the
resulting computation.

The circuit 𝑍 (in Fig. 1) consists of a branching circuit to check if ind ?
= 1, circuit description of 𝑋 for

one branch, circuit description of 𝑋 and 𝑌 for the other branch. Thus, |𝑍 | ≤ 𝑂 ( |𝑋 |, |𝑌 |) +poly(log 𝑡), where
the polynomial is the size of the branching circuit and does not depend on circuits 𝑋,𝑌 .

Finally, for 0 < 𝑖 < 𝑡 , 𝑍 𝑖 (𝑥,𝑦, 𝑡) |1...𝑘 the input index is not equal to 1 and we compute (𝑋 𝑖 (𝑥), 𝑦, 𝑡 −
𝑖). On the 𝑡-th repetition, the input to the repeated circuit is (𝑋 𝑡−1(𝑥), 𝑦, 1) and the circuit computes
(𝑌 (𝑋 𝑡 (𝑥), 𝑦), 0𝑛+𝑚+𝜆−𝑘 ).

□

Constants: Circuit descriptions 𝑋 : {0, 1}𝑛 → {0, 1}𝑛 , 𝑌 : {0, 1}𝑛+𝑚 → {0, 1}𝑘
Inputs: 𝑥 ∈ {0, 1}𝑛 , 𝑦 ∈ {0, 1}𝑚 , current index ind ∈ {0, 1}𝜆
Outputs: updated parameters 𝑥 ′ ∈ {0, 1}𝑛 , 𝑦′ ∈ {0, 1}𝑚 , ind′ ∈ {0, 1}𝜆

1. If ind > 1, compute 𝑥 ′ ← 𝑋 (𝑥). Output updated computation, (𝑥 ′, 𝑦, ind − 1).

2. If ind = 1,

(a) Compute 𝑥 ′ ← 𝑋 (𝑥).
(b) Compute 𝑧 ← 𝑌 (𝑥 ′, 𝑦).
(c) Output updated computation, (𝑧, 0𝑛+𝑚+𝜆−𝑘 )a.

Figure 1: Circuit 𝑍 [𝑋,𝑌 ] (𝑥,𝑦, ind)

aWe assume without loss of generality, we can pad the circuit 𝑌 so𝑚 ≥ 𝑘 and hence, 𝑛 +𝑚 + 𝜆 ≥ 𝑘 .

Theorem 3.2 (Boosting succinctness of randomized encodings). Assume there exists a semi 𝑡1/𝑐-succinct
randomized encoding scheme for some constant 𝑐 ∈ (0, 1] (Definition 2.1) and a weak-laconic functional
evaluation scheme for repeated circuits (Definition 2.7). Then, there exists a semi 𝑡1/𝑐+1-succinct randomized
encoding scheme.

Construction 3.3 ( SRE with boosted succinctness). Throughout, let 𝜆 be a security parameter. Some of
the construction’s parameters are set later in the analysis section.

Ingredients and notation: We consider a boolean circuit 𝐶 such that 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 .

• Let SRE = (SRE.Encode, SRE.Eval) be a 𝑡1/𝑐-succinct randomized encoding scheme according to
Definition 2.1 for some constant 𝑐 ∈ (0, 1].

• Let LFE = (LFE.Setup, LFE.Enc, LFE.Dec) be a weak laconic functional evaluation scheme according
to Definition 2.7.
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– Let the LFE.Setup algorithm output pk ∈ {0, 1}𝑝 and sample from a randomness space 𝑟 ∈
{0, 1}ℓ𝑠 .

– Let the LFE.Enc algorithm sample random coins from a space 𝑟 ∈ {0, 1}ℓ𝑒 .

• Let GC = (GC.Garble,GC.Enc,GC.Eval) be a garbling scheme according to Definition 2.9.

– The circuit we wish to garble in our construction takes an input of the form (pk, st) where
pk ∈ {0, 1}𝑝 , st ∈ {0, 1}𝑠 . For concise notation and ease of readability, we simplify our garbling
encoding algorithm to write p̃k← Encgsk(pk, [𝑝]), and s̃t← Encgsk(st, 𝑝 + [𝑠]), where,

∗ p̃k =

{
p̃k𝑗

}
𝑗∈[𝑝 ]

and for every 𝑗 ∈ [𝑝], p̃k𝑗 ← Encgsk(pk𝑗 , 𝑗).

∗ s̃t =
{
s̃t𝑗

}
𝑗∈[𝑠 ] and for every 𝑗 ∈ [𝑠], s̃t𝑗 ← Encgsk(st𝑗 , 𝑝 + 𝑗).

– Additionally, let the lengths |p̃k|, |s̃t| be denoted by 𝑝, �̃� .

The boosted SRE: Let the boosted SRE be denoted by (SRE′.Encode, SRE′.Eval). Our construction of
these algorithms is mentioned below.

Algorithm SRE′.Encode(1𝜆,𝐶, 𝑥, 𝑡):

1. Let 𝐶 be a boolean circuit such that 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 . Let 𝑡1 denote 𝑡
1

𝑐+1 and 𝑡2 denote 𝑡
𝑐

𝑐+1 , such
that 𝑡 = 𝑡1 · 𝑡2.3

2. Let E be the FE encryption circuit which takes as input public key pk ∈ {0, 1}𝑝 , current state
st ∈ {0, 1}𝑠 , and has hardwired values gsk ∈ {0, 1}𝜆 , randomness for encryption 𝑟𝑒 ∈ {0, 1}ℓ𝑒 ,
repetition parameter 𝑡2, and outputs a LFE ciphertext ct (encrypting st) and a garbled public key p̃k
(encrypting pk with respect to gsk).
Circuit E[gsk, 𝑟𝑒 , 𝑡2] (pk, st).

(a) Compute ct← LFE.Encpk (st, gsk, 𝑡2; 𝑟𝑒).
(b) Compute p̃k← GC.Encgsk(pk, [𝑝]).

(c) Output
(
ct, p̃k

)
.

Let gsk𝑡1+1 ← {0, 1}
𝜆 . For 𝑖 ∈ [𝑡1],

(a) Sample gsk𝑖 ← {0, 1}𝜆 .
(b) Sample random coins 𝑟𝑒,𝑖 ← {0, 1}ℓ𝑒 for the LFE.Enc algorithm.
(c) Consider the circuit E𝑖 = E

[
gsk𝑖+1, 𝑟𝑒,𝑖 , 𝑡2

]
, where we hardcode the garbling secret key gsk𝑖+1,

the random coins 𝑟𝑒,𝑖 and repetition parameter 𝑡2.
(d) Compute a garbled circuit, Ẽ𝑖 ← GC.Garblegsk𝑖 (E𝑖).

Let Ẽ𝑡1+1 ← GC.Garblegsk𝑡1+1 (I), where I is the identity circuit that takes in a public key and a state
(pk, st) ∈ {0, 1}𝑝+𝑠 and outputs st.

3We assume these powers of 𝑡 are integral, and avoid ceiling notation for ease of readability.
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3. Let C : {0, 1}𝑠′ → {0, 1}𝑠′ , be the repeat-then-encrypt circuit defined according to the transformation
in Lemma 3.1 with the following setting.

• The circuit 𝑋 is equal to circuit 𝐶 .
• The circuit 𝑌 takes as input a state st ∈ {0, 1}𝑠 and a garbling secret key gsk.
It outputs s̃t← GC.Encgsk(st, 𝑝 + [𝑠]).

• C is then the resulting circuit 𝑍 [𝑋,𝑌 ], so that the repeated 𝑍 𝑖 applies the repeated𝐶𝑖 and finally
garbles the output.

4. Let LFE.Setup
(
1𝜆, C, 𝑡2; 𝑟𝑠

)
be denoted by some repeated circuit 𝑆C such that,

for all 𝑟𝑠 : LFE.Setup
(
1𝜆, C, 𝑡2; 𝑟𝑠

)
= 𝑆

𝑡2
C (𝑟𝑠)

5. Let K be the functional key generation circuit defined according to the transformation in Lemma 3.1
with the following setting.

• Circuit 𝑋 is equal to circuit 𝑆C : {0, 1}𝑠
′ → {0, 1}𝑠′ .

• Circuit 𝑌 takes as input state st ∈ {0, 1}𝑠′ , additional input (gsk, 𝑥).
Parse st as pk. Output pk and p̃k← GC.Encgsk(pk, [𝑝]) and 𝑥 ← GC.Encgsk(𝑥, 𝑝 + [𝑠]).

• 𝑆C is then the resulting circuit 𝑍 [𝑋,𝑌 ], so that the repeated 𝑍 𝑖 applies the repeated 𝑆𝑖C and
finally outputs the resulting public key pk, garbled public key p̃k, and garbled 𝑥 .

6. Sample random coins 𝑟𝑠 ← {0, 1}𝑠
′ , and compute,

SRE.𝑥 ← SRE.Encode
(
1𝜆, K [𝑆C] ,

(
𝑟𝑠 ,

(
gsk1, 𝑥

)
, 𝑡2

)
, 𝑡2

)
.

7. Output SRE′.𝑥 ←
(
SRE.𝑥,

{
Ẽ𝑖
}
𝑖∈[𝑡1+1]

)
.

Algorithm SRE′.Eval(𝐶, 𝑥, 𝑡)

1. Parse 𝑥 =

(
SRE.𝑥,

{
Ẽ𝑖
}
𝑖∈[𝑡1+1]

)
.

2. Let circuits 𝐶, C, 𝑆C, K, variables 𝑡1, 𝑡2 be defined as in SRE′.Encode.

3. Compute
(
pk, p̃k, 𝑥

)
← SRE.Eval (K[𝑆C], SRE.𝑥, 𝑡2) |1...𝑝+�̃� . Let ĩnp1 = (p̃k, 𝑥).

4. For 𝑖 ∈ [𝑡1],

(a) Compute
(
ct𝑖 , p̃k𝑖+1

)
← GC.Eval

(̃
E𝑖 , ĩnp𝑖

)
.

(b) Compute, s̃t𝑖+1 ← LFE.Decpk (C, ct𝑖 , 𝑡2) |1...̃𝑠 .
(c) Let ĩnp𝑖+1 ← (p̃k𝑖+1, s̃t𝑖+1).

5. Let st𝑡1+1 ← GC.Eval
(̃
E𝑡1+1, ĩnp𝑡1+1

)
.
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3.1 Analysis

The correctness of the scheme follows readily from the correctness of the underlying primitives. For
completeness, we include below a detailed proof. An already convinced reader may want to skip it.

Proposition 3.4. Assuming SRE is a correct scheme according to Definition 2.1, assuming LFE is a correct
scheme according to Definition 2.7, and GC is a correct scheme according to Definition 2.9, then Construction 3.3
is a correct scheme according to Definition 2.1.

Proof. We run through the evaluation algorithm to argue correctness.

1. Evaluation algorithm parses 𝐶, C, 𝑆C, K, 𝑡1, 𝑡2, SRE′.𝑥 exactly as the computation of the encode algo-
rithm.

2. Since SRE is a correct scheme, with overwhelming probability, we have that SRE.Eval computes the
evaluation of K on input

(
𝑟𝑠 ,

(
gsk1, 𝑥

)
, 𝑡2

)
after 𝑡2 repetitions. From correctness of Lemma 3.1, we

have that
K𝑡2

(
𝑟𝑠 ,

(
gsk1, 𝑥

)
, 𝑡2

)
|1...𝑝+�̃� = 𝑌

(
𝑆
𝑡2
C (𝑟𝑠) ,

(
gsk1, 𝑥

) )
= 𝑌

(
pk,

(
gsk1, 𝑥

) )
where the circuit 𝑌 encrypts inputs using gsk1 and the second equality holds from the correctness of
the repeated circuit computation. From the description of circuit 𝑌 , we have that ĩnp1 =

(
p̃k, 𝑥

)
is

the encoding of input (pk, 𝑥) using gsk1.

3. Next we show the invariant that for all 𝑗 ∈ [𝑡1], ĩnp𝑗 is the encoding of input
(
pk,𝐶𝑡2 · ( 𝑗−1) (𝑥)

)
using

gsk𝑗 (let 𝐶0(𝑥) be defined as 𝑥 ).
We perform an induction over 𝑗 ∈ [𝑡1 + 1],

• Base case, when 𝑗 = 1: We have shown above, from evaluation of SRE.Eval, that our invariant
is true for 𝑗 = 1.

• Inductive step: Assuming that the invariant statement is true for 𝑗∗ ∈ [𝑡1]. On loop iteration,
𝑖 = 𝑗∗,
(a) SinceGC is perfectly correct, and from our invariant condition that the input

(
pk,𝐶𝑡2 · ( 𝑗−1) (𝑥)

)
is garbled using gsk𝑗∗ and Ẽ𝑗∗ is garbled using gsk𝑗∗ . We have that(

ct𝑗∗, p̃k
′)

= E
[
gsk𝑗∗+1, 𝑟𝑒,𝑗∗

] (
pk,𝐶𝑡2 · ( 𝑗∗−1) (𝑥)

)
, where

ct𝑗∗ = LFE.Encpk
(
𝐶𝑡2 · ( 𝑗∗−1) (𝑥), gsk𝑗∗+1, 𝑡2

)
, and p̃k

′
= GC.Encgsk𝑗∗+1 (pk, [𝑝])

(b) Next the algorithm performs LFE decryption,

s̃t′ = LFE.Decpk
(
C, ct𝑗∗, 𝑡2

)
|1...̃𝑠 , where

s̃t′ = C𝑡2
(
𝐶𝑡2 · ( 𝑗∗−1) (𝑥), gsk𝑗∗+1, 𝑡2

)
|1...̃𝑠 ,

here the second equality holds with overwhelming probability from LFE correctness.
– From definition of C,

C𝑡2
(
𝐶𝑡2 · ( 𝑗∗−1) (𝑥), gsk𝑗∗+1, 𝑡2

)
|1...̃𝑠 = 𝑌

(
𝐶𝑡2

(
𝐶𝑡2 · ( 𝑗∗−1) (𝑥)

)
, gsk𝑗∗+1

)
|1...̃𝑠

= 𝑌

(
𝐶𝑡2 · ( 𝑗∗ ) (𝑥), gsk𝑗∗+1

)
|1...̃𝑠

13



– From the description of 𝑌 , we have, s̃t′ = GC.Encgsk𝑗∗+1 (𝐶
𝑡2 · ( 𝑗∗ ) (𝑥), 𝑝 + [𝑠]).

As inp𝑗+1 ← (p̃k
′
, s̃t′), and p̃k

′
, s̃t′ are garbled appropriately using gsk𝑗∗+1, we’ve shown

that our invariant condition holds.

4. Finally, Ẽ𝑡1+1 is a garbling of the identity circuit using gsk𝑡1+1, and from the invariant, we garbled input
𝐶𝑡2 ·𝑡1 (𝑥) = 𝐶𝑡 (𝑥) using gsk𝑡1+1. Thus, from perfect evaluation of the garbled circuit, st𝑡1+1 = 𝐶𝑡 (𝑥).

As st𝑡1+1 = 𝐶𝑡 (𝑥), correctness holds for our SRE scheme with overwhelming probability. □

Proposition 3.5. Assuming SRE is semi 𝑡1/𝑐 -succinct for some constant 𝑐 ∈ (0, 1], has semi-efficient evaluation
according to Definition 2.1, assuming LFE is succinct, efficiency preserving and has efficient decryption according
to Definition 2.7, and GC has efficient encoding according to Definition 2.9, then Construction 3.3 is semi
𝑡1/𝑐+1-succinct according to Definition 2.1.

Proof. In the discussion below, we abuse notation and use poly(·) to denote different universal polynomials
(in 𝜆), such that for any 𝜆, circuit 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 , 𝑥 ∈ {0, 1}𝑠 an input, and 𝑡 ≤ 2𝜆 , we have:

• Circuit C. Recall that C : {0, 1}𝑠′ → {0, 1}𝑠′ is a circuit that computes𝐶 and then garbles the resulting
state. From Lemma 3.1, |C| ≤ 𝑂 ( |𝐶 | + |𝑌 |) + poly(𝜆) (where circuit 𝑌 garbles 𝑠 bit input). As the
garbled circuit has efficient encoding, |𝑌 | ≤ 𝑠 · poly(𝜆) and |C| ≤ |𝐶 | · poly(𝜆). In particular, in what
follows, 𝑠′ ≤ |𝐶 | · poly(𝜆). Additionally, from Lemma 3.1, computing the description of circuit C takes
time 𝑂 ( |C|).

• Laconic Functional Evaluation scheme LFE. Recall that 𝑝, ℓ𝑠 , |ct|, ℓ𝑒 are the public key, secret key,
randomness for the setup algorithm, ciphertext length and randomness for the encryption algorithm
respectively. Since the input and output of the circuit C are of length at most 𝑠′ and the underlying
LFE scheme is succinct, we have, 𝑝, ℓ𝑠 , |ct|, ℓ𝑒 ≤ |𝐶 | · poly(𝜆).

• Circuit E. Recall that E is the LFE encryption circuit. Since the garbled circuit has efficient encoding
and garbles inputs of length 𝑝 , and 𝑝, 𝑠, ℓ𝑒 ≤ |𝐶 | · poly(𝜆), |E| ≤ |𝐶 | · poly(𝜆). Additionally, our LFE
scheme is succinct and computing the description of circuit E takes time 𝑂 ( |E|).

• Circuit 𝑆C. Recall that this is the repeated circuit representation of the key generation algorithm
on circuit C. Since our LFE scheme is efficiency preserving, we have that 𝑆C : {0, 1}𝑚 → {0, 1}𝑚 ,
where𝑚 ≤ 𝑠′ · poly(𝜆) ≤ |𝐶 | · poly(𝜆). Additionally, |𝑆C | ≤ |C| · poly(𝜆) ≤ |𝐶 | · poly(𝜆). Addition-
ally,computing the description of circuit 𝑆C takes time 𝑂 ( |𝑆C |).

• Circuit K. Recall that K is the function key generator circuit. From Lemma 3.1, |K| ≤ 𝑂 ( |𝑆C | + |𝑌 |) +
poly(𝜆) where the circuit 𝑌 garbles a 𝑝 + 𝑠 bit input. Since the garbled circuit has efficient encoding,
|𝑌 | ≤ (𝑝 + 𝑠) · poly(𝜆) and we have from the values set above that, |K| ≤ |𝐶 | · poly(𝜆). Additionally,
from Lemma 3.1, computing the description of circuit K takes time 𝑂 ( |K|).

Encoding Time. We analyze the efficiency of the resulting SRE′.Encode algorithm.

• We’ve shown above that the circuits C, E, 𝑆C, K are computable by SRE′.Encode in time𝑂 ( |C|), 𝑂 ( |E|),
𝑂 ( |𝑆C |), 𝑂 ( |K|) respectively and each of the circuits are bounded by size |𝐶 | · poly(𝜆). Hence, these
circuits can be computed in time at most |𝐶 | · poly(𝜆).
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• Succinct randomized encoding scheme (SRE.Encode, SRE.Eval) is run on K with number of steps 𝑡2.
Since SRE is semi 𝑡1/𝑐-succinct, the runtime of running the inner SRE is at most 𝑡1/𝑐2 · poly( |K|, 𝜆) ≤
𝑡1 · poly( |𝐶 |, 𝜆).

• The time taken to garble 𝑡1 circuits of size |E| ≤ |𝐶 | · poly(𝜆) is 𝑡1 · |𝐶 | · poly(𝜆).

Since 𝑡
1/𝑐
2 = 𝑡1 = 𝑡1/(𝑐+1) , the resulting scheme is semi 𝑡1/(𝑐+1) -succinct. The total encoding time is

𝑡1/(𝑐+1) · poly( |𝐶 |, 𝜆).

Evaluation Time. We analyze the efficiency of our SRE′.Eval algorithm.

• Succinct randomized encoding scheme (SRE.Encode, SRE.Eval) is run on K with number of steps
𝑡2. Since SRE has semi-efficient evaluation, the runtime of running the inner SRE is at most 𝑡2 ·
poly( |K|, 𝜆) ≤ 𝑡2 · poly( |𝐶 |, 𝜆).

• Resulting evaluation procedure. For 𝑖 ∈ [𝑡1],

– We compute a garbled circuit evaluation, where the garbled inputs and circuit are at most
poly( |𝐶 |, 𝜆).

– The resulting LFE, has efficient decryption and can decrypt the computation of C in time
𝑡2 · poly( |𝐶 |, 𝜆).

– The size of ĩnp𝑖+1 is atmost poly( |𝐶 |, 𝜆) (as size of K is at most poly( |𝐶 |, 𝜆)).

Running time of our computation is 𝑡2 · poly( |𝐶 |, 𝜆) + 𝑡2 · 𝑡1 · poly( |𝐶 |, 𝜆) ≤ 𝑡 · poly( |𝐶 |, 𝜆).

□

Claim 3.6. If SRE is semi 𝑡1/𝑐 -succinct for some constant 𝑐 ∈ (0, 1] where the running time of SRE.Encode is at
most 𝑡1/𝑐 · |𝐶 | · poly(𝜆) (namely, linear dependence on |𝐶 |), then the running time of the resulting SRE′.Encode
is at most 𝑡1/(𝑐+1) · |𝐶 | · poly(𝜆).

Proof. The only place in the running time analysis where the dependence is not necessarily linear is in
the time to encode K using SRE.Encode. Since |K| ≤ |𝐶 | · poly(𝜆), linear dependence of SRE.Encode on |K|
immediately translates to linear dependence of SRE′.Encode on |𝐶 |. □

In Appendix B , we show further optimizations to the evaluation time, making the evaluation linear in
time 𝑡 and size of the repeated circuit |𝐶 |. This more careful analysis pertains to the simulation complexity
of circuits on a Turing machine, where we run the evaluation algorithm in a RAM model.

Proposition 3.7. Assuming SRE is secure according to Definition 2.1, assuming LFE is secure according to
Definition 2.7, and GC is secure according to Definition 2.9, then SRE′ given by Construction 3.3 is secure
according to Definition 2.1.

Proof. Simulator SRE′.Sim(1𝜆,𝐶,𝐶 (𝑥), 𝑡) outputs SRE′.𝑥 and is defined below.

Let the circuits 𝐶, E, C, 𝑆C, K and parameters 𝑡1, 𝑡2 and LFE scheme parameters be defined similarly to
SRE′.Encode. Below we restate the notation.
Let 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 . Let 𝑡1, 𝑡2, be such that 𝑡 = 𝑡1 · 𝑡2. Let E[gsk, 𝑟 , 𝑡2] be the LFE encryption circuit
and 𝑢 be the size of the circuit. Let C be the repeat-then-encrypt circuit, and let 𝑆C be the repeated circuit
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corresponding to LFE.Setup
(
1𝜆, C, 𝑡2; ·

)
. Let K[𝑆C] be the key-generation circuit. Let 𝑝, ℓ𝑠 , |ct|, ℓ𝑒 be the

public key, secret key, randomness for the setup algorithm, ciphertext length and randomness for the
encryption algorithm respectively.

1. Compute pk← LFE.Setup
(
1𝜆, C, 𝑡2

)
.

2. Let
(̃
E𝑡1+1, ĩnp𝑡1+1

)
← GC.Sim

(
1𝜆, 1 |I | , 1𝑝+𝑠 ,

(
𝐶𝑡 (𝑥)

) )
, where I is the identity circuit that takes in a

public key and a state (pk, st) ∈ {0, 1}𝑝+𝑠 and outputs st.
For 𝑖 ∈ {𝑡1, . . . , 1},

• Let (p̃k′, s̃t′) = ĩnp𝑖+1. Compute ct𝑖 ← LFE.Simpk

(
s̃t′, 0 . . . 0

)
.

• Compute
(̃
E𝑖 , ĩnp𝑖

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
ct𝑖 , p̃k

′)) .
3. Simulate SRE,

SRE.𝑥 ← SRE.Sim
(
1𝜆, K [𝑆C] ,

(
sk, ĩnp1

)
, 𝑡2

)
.

4. Output SRE′.𝑥 =

(
SRE.𝑥,

{
Ẽ𝑖
}
𝑖∈[𝑡1+1]

)
.

We define a sequence of hybrids starting with a hybrid that captures real encodings produced by
SRE′.Encode and ending with simulated encodings produced by SRE′.Sim.

Hybrid −1. The Encode algorithm presented in Construction 3.3.

1. Let the circuits𝐶, E, C, 𝑆C, K and parameters 𝑡1, 𝑡2 and LFE scheme parameters be defined similarly
to SRE′.Encode.

2. Let gsk𝑡1+1 ← {0, 1}
𝜆 . For 𝑖 ∈ [𝑡1], let E be the FE encryption circuit,

(a) Sample gsk𝑖 ← {0, 1}𝜆 .
(b) Sample random coins 𝑟𝑒,𝑖 ← {0, 1}ℓ𝑒 for the LFE.Enc algorithm.
(c) Consider the circuit E𝑖 = E

[
gsk𝑖+1, 𝑟𝑒,𝑖 , 𝑡2

]
, where we hardcode the garbling secret key

gsk𝑖+1, the random coins 𝑟𝑒,𝑖 and repetition parameter 𝑡2.
(d) Compute a garbled circuit, Ẽ𝑖 ← GC.Garblegsk𝑖 (E𝑖).
Let Ẽ𝑡1+1 ← GC.Garblegsk𝑡1+1 (I), where I is the identity circuit that takes in a public key and a
state (pk, st) ∈ {0, 1}𝑝+𝑠 and outputs st.

3. Let C : {0, 1}𝑠′ → {0, 1}𝑠′ , be the repeat-then-encrypt circuit. Let LFE.Setup
(
1𝜆, C, 𝑡2; 𝑟𝑠

)
be

denoted by some repeated circuit 𝑆C(𝑟𝑠), and K be the functional key generation circuit.
Sample random coins 𝑟𝑠 ← {0, 1}𝑠

′ , and compute,

SRE.𝑥 ← SRE.Encode
(
1𝜆, K [𝑆C] ,

(
𝑟𝑠 ,

(
gsk1, 𝑥

)
, 𝑡2

)
, 𝑡2

)
.

4. Output SRE′.𝑥 ←
(
SRE.𝑥,

{
Ẽ𝑖
}
𝑖∈[𝑡1+1]

)
.

Hybrid 0. We sample SRE.𝑥 using the simulator SRE.Sim instead of the real encoder SRE.Encode.
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3. Let C : {0, 1}𝑠′ → {0, 1}𝑠′ , be the repeat-then-encrypt circuit and K be the functional key
generation circuit.
Compute pk← LFE.Setup

(
1𝜆, C, 𝑡2

)
.

Compute p̃k = GC.Encgsk1 (pk, [𝑝]) and s̃t = GC.Encgsk1 (𝑥, 𝑝 + [𝑠]). Let ĩnp1 = (p̃k, s̃t).
Simulate SRE,

SRE.𝑥 ← SRE.Sim
(
1𝜆, K [𝑆C] ,

(
pk, ĩnp1

)
, 𝑡2

)
.

Hybrid 𝑗 , for 𝑗 ∈ [𝑡1]. For 𝑖 ∈ [ 𝑗], we sample simulated garbled circuits (and input encodings), and for all
𝑖 > 𝑗 , we sampled real garbled circuits (and input encodings).

2. Let gsk𝑡1+1 ← {0, 1}
𝜆 . For 𝑖 ∈ { 𝑗 + 1, . . . , 𝑡1}, let E be the FE encryption circuit,

(a) Sample gsk𝑖 ← {0, 1}𝜆 .
(b) Sample random coins 𝑟𝑒,𝑖 ← {0, 1}ℓ𝑒 for the LFE.Enc algorithm.
(c) Consider the circuit E𝑖 = E

[
gsk𝑖+1, 𝑟𝑒,𝑖 , 𝑡2

]
, where we hardcode the garbling secret key

gsk𝑖+1, the random coins 𝑟𝑒,𝑖 and repetition parameter 𝑡2.
(d) Compute a garbled circuit, Ẽ𝑖 ← GC.Garblegsk𝑖 (E𝑖).
Let Ẽ𝑡1+1 ← GC.Garblegsk𝑡1+1 (I), where I is the identity circuit that takes in a public key and a
state (pk, st) ∈ {0, 1}𝑝+𝑠 and outputs st.

3. Let C : {0, 1}𝑠′ → {0, 1}𝑠′ , be the repeat-then-encrypt circuit and K be the functional key
generation circuit.
Compute pk← LFE.Setup

(
1𝜆, C, 𝑡2

)
.

Compute p̃k = GC.Encgsk𝑗+1 (pk, [𝑝]) and s̃t = GC.Encgsk𝑗+1
(
𝐶𝑡2 · 𝑗 (𝑥 ) , 𝑝 + [𝑠]

)
, where𝐶0(𝑥) ← 𝑥 .

Let �inp𝑗+1 = (p̃k, s̃t).
For 𝑖 ∈ { 𝑗, . . . , 1},
(a) Let (p̃k′, s̃t′) = ĩnp𝑖+1.
(b) Compute ct𝑖 ← LFE.Simpk

(
s̃t′, 0 . . . 0

)
.

(c) Compute
(̃
E𝑖 , ĩnp𝑖

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
ct𝑖 , p̃k

′)) .
Compute p̃k = GC.Encgsk1 (pk, [𝑝]) and s̃t = GC.Encgsk1 (𝑥, 𝑝 + [𝑠]). Let ĩnp1 = (p̃k, s̃t).
Simulate SRE,

SRE.𝑥 ← SRE.Sim
(
1𝜆, K [𝑆C] ,

(
pk, ĩnp1

)
, 𝑡2

)
.

Observe that if we set, 𝑗 = 0 in the hybrid above, our steps would be identical to Hyb0.

Hybrid 𝑡1 + 1. The simulated algorithm. Here we simulate garbled circuit 𝑡1 + 1.

1. Let the circuits 𝐶, E, C, 𝑆C, K be defined similarly to step 1 of hybrid −1.
Compute pk← LFE.Setup

(
1𝜆, C, 𝑡2

)
.

2. Let
(̃
E𝑡1+1, ĩnp𝑡1+1

)
← GC.Sim

(
1𝜆, 1 |I | , 1𝑝+𝑠 ,

(
𝐶𝑡 (𝑥)

) )
, where I is the identity circuit that takes

in a public key and a state (pk, st) ∈ {0, 1}𝑝+𝑠 and outputs st.
For 𝑖 ∈ {𝑡1, . . . , 1},
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(a) Let (p̃k′, s̃t′) = ĩnp𝑖+1.
(b) Compute ct𝑖 ← LFE.Simpk

(
s̃t′, 0 . . . 0

)
.

(c) Compute
(̃
E𝑖 , ĩnp𝑖

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
ct𝑖 , p̃k

′)) .
3. Simulate SRE,

SRE.𝑥 ← SRE.Sim
(
1𝜆, K [𝑆C] ,

(
pk, ĩnp1

)
, 𝑡2

)
.

4. Output SRE′.𝑥 =

(
SRE.𝑥,

{
Ẽ𝑖
}
𝑖∈[𝑡1+1]

)
.

Observe that our steps are identical to Hyb𝑡1 .

We write Hyb𝑖 to denote the output distribution of hybrid 𝑖 . We now show that each pair of adjacent
distributions defined above are computationally indistinguishable.

Claim 3.8. Suppose SRE is secure according to Definition 2.1. Then,

Hyb−1 ≈𝑐 Hyb0.

Proof. The main difference between the hybrids is the following: In Hyb−1, we compute a real SRE en-
coding of the functional key generation computation. In Hyb0, we perform the functional key generation
computation explicitly, and then simulate the SRE encoding using the output of the resulting output.
Indistinguishability follow from the security of the underlying SRE. Details follow.

Recall that for all 𝑟𝑠 ,
LFE.Setup

(
1𝜆, C [𝐶, 𝑡2] , 𝑡2; 𝑟𝑠

)
= 𝑆

𝑡2
C (𝑟𝑠),

and hence the two processes have the exact same output distribution pk. Accordingly also the garbled input
encoding p̃k is distributed the same in both hybrids and so is ĩnp1 = (p̃k, s̃t).

Hence, from indistinguishability of the underlying SRE, we have,

SRE.Encode
(
1𝜆, K [𝑆C] ,

(
𝑟𝑠 , 𝑥, gsk1

)
, 𝑡2

)
≈𝑐 SRE.Sim

(
1𝜆, K [𝑆C] ,

(
pk, ĩnp1

)
, 𝑡2

)
,

which concludes the proof. □

Claim 3.9. Suppose LFE is selectively-secure according to Definition 2.7 and GC is secure according to
Definition 2.9. Then, for 𝑗 ∈ [𝑡1],

Hyb𝑗−1 ≈𝑐 Hyb𝑗 .

Proof. We define the following sub-hybrid, where we simulate the 𝑗𝑡ℎ garbled circuit in the computation.

Hybrid ( 𝑗 − 1) .5. For 𝑖 ∈ [ 𝑗 − 1], we sample simulated garbled circuits (and input encodings), and for all
𝑖 > 𝑗 , we sampled real garbled circuits (and input encodings). For iteration we simulate the garbled
circuit, but run the real LFE encryption algorithm.

3. Let C : {0, 1}𝑠′ → {0, 1}𝑠′ , be the repeat-then-encrypt circuit and K be the functional key
generation circuit.
Compute pk← LFE.Setup

(
1𝜆, C, 𝑡2

)
.

Compute p̃k = GC.Encgsk𝑗+1 (pk, [𝑝]) and s̃t = GC.Encgsk𝑗+1
(
𝐶𝑡2 · 𝑗 (𝑥), 𝑝 + [𝑠]

)
, where 𝐶0(𝑥) ←

𝑥 . Let �inp𝑗+1 = (p̃k, s̃t).
For 𝑖 = 𝑗 ,
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(a) Sample some random coins 𝑟𝑒,𝑗 ∈ {0, 1}ℓ𝑒 .
Let ct𝑗 ← LFE.Encpk

(
𝐶𝑡2 · ( 𝑗−1) (𝑥), gsk𝑗+1, 𝑡2; 𝑟𝑒,𝑗

)
, where 𝐶0(𝑥) ← 𝑥 .

(b) Let
(̃
E𝑖 , ĩnp𝑖

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
ct𝑗 , p̃k

′)) , where (p̃k′, s̃t′) = ĩnp𝑖+1.

For 𝑖 ∈ { 𝑗 − 1, . . . , 1},

(a) Let
(̃
E𝑖 , ĩnp𝑖

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
LFE.Simpk

(
s̃t′, 0 . . . 0

)
, p̃k
′)) , where (p̃k′, s̃t′) =

ĩnp𝑖+1.
Compute p̃k = GC.Encgsk1 (pk, [𝑝]) and s̃t = GC.Encgsk1 (𝑥, 𝑝 + [𝑠]). Let ĩnp1 = (p̃k, s̃t).
Simulate SRE,

SRE.𝑥 ← SRE.Sim
(
1𝜆, K [𝑆C] ,

(
pk, ĩnp1

)
, 𝑡2

)
.

Claim 3.10. Suppose GC is secure according to Definition 2.9. Then, for 𝑗 ∈ [𝑡1],

Hyb( 𝑗−1) ≈𝑐 Hyb( 𝑗−1) .5.

Proof. Observe that the only difference between the hybridsHyb( 𝑗−1) andHyb( 𝑗−1) .5 is how the 𝑗-th garbled
circuit Ẽ𝑗 and garbled input ĩnp𝑗 are computed. The main difference between the hybrids is the following:
In Hyb( 𝑗−1) , we garble the real circuit. In Hyb( 𝑗−1) .5, we perform the circuit computation explicitly, and
then simulate the garbled circuit encoding using the output of the resulting output. Indistinguishability
follow from the security of garbled circuits. Details follow.

• In Hyb( 𝑗−1) .

– We sample gsk𝑗 , . . . , gsk𝑡1 .

– We compute p̃k = GC.Encgsk𝑗 (pk, [𝑝]), s̃t = GC.Encgsk𝑗 (st, 𝑝 + [𝑠]) where st = 𝐶𝑡2 · ( 𝑗−1) (𝑥). Let
ĩnp𝑗 ←

(
p̃k, s̃t

)
.

– We compute Ẽ𝑗 as follows.

1. Consider the circuit E𝑗 = E
[
gsk𝑗+1, 𝑟𝑒,𝑗 , 𝑡2

]
, where we hardcode, the garbling secret key

gsk𝑗+1, and the random coins 𝑟𝑒,𝑗 .
2. Compute a garbled circuit, Ẽ𝑗 ← GC.Garblegsk𝑗

(
E𝑗
)
.

• In Hyb( 𝑗−1) .5.

– We sample gsk𝑗+1, . . . , gsk𝑡1 (or we no longer sample gsk𝑗 ).

– We compute Ẽ𝑗 as follows.

1. Compute ct𝑗 ← LFE.Encpk
(
𝐶𝑡2 · ( 𝑗−1) (𝑥), gsk𝑗+1, 𝑡2; 𝑟𝑒,𝑗

)
, where 𝐶0(𝑥) ← 𝑥 .

2. Compute
(̃
E𝑗 , ĩnp𝑗

)
← GC.Sim

(
1𝜆, 1𝑢, 1𝑝+𝑠 ,

(
ct𝑗 , p̃k

′)) .
Where p̃k′ = GC.Encgsk𝑗+1 (pk, [𝑝]).
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The difference is in how Ẽ𝑗 , ĩnp𝑗 are computed. Observe that, for circuit E
[
gsk𝑗+1, 𝑟𝑒,𝑗 , 𝑡2

]
, and input(

pk,
(
𝐶𝑡2 · ( 𝑗−1) (𝑥)

) )
, the real circuit performs the same computation as the simulated circuit. The cir-

cuit E computes, ct𝑗 ← LFE.Encpk
(
𝐶𝑡2 · ( 𝑗−1) (𝑥), gsk𝑗+1, 𝑡2; 𝑟𝑒,𝑗

)
, where 𝐶0(𝑥) ← 𝑥 and computes p̃k′ ←

GC.Encgsk𝑗+1 (pk, [𝑝]). Thus, security follows from the security of the garbled circuit.
□

Claim 3.11. Suppose LFE is secure according to Definition 2.7. Then, for 𝑗 ∈ [𝑡1],

Hyb( 𝑗−1) .5 ≈𝑐 Hyb𝑗 .

Proof. Observe that the only difference between the hybrids Hyb( 𝑗−1) .5 and Hyb( 𝑗 ) is how the ciphertext on
𝑗-th iteration is computed. In the former hybrid we explicitly perform the computation, while in the latter
we simulate the computation using the FE simulator. Security follows from the security of the functional
encryption scheme. The details are sketched below.

• In Hyb( 𝑗−1) .5.

– We set, ct𝑗 ← LFE.Encpk
(
𝐶𝑡2 · ( 𝑗−1) (𝑥), gsk𝑗+1, 𝑡2; 𝑟𝑒,𝑗

)
(where 𝐶0(𝑥) ← 𝑥 ).

• In Hyb( 𝑗 ) .

– We set ct𝑗 ← LFE.Simpk

(
s̃t′, 0 . . . 0

)
, where s̃t′ = GC.Encgsk𝑗+1

(
𝐶𝑡2 · 𝑗 (𝑥), 𝑝 + [𝑠]

)
.

Observe that the functional encryption scheme has input
(
𝐶𝑡2 · ( 𝑗−1) (𝑥), gsk𝑗+1, 𝑡2

)
for the repeated circuit C

with 𝑡2 repetitions.
Running C𝑡2 on our input (Lemma 3.1), we compute circuit𝐶 for 𝑡2 repetitions and then garble state using

gsk𝑗+1. Thus computing 𝑡2 repetitions of𝐶 , we compute
(
𝐶𝑡2 · ( 𝑗−1)+𝑡2 (𝑥)

)
andwe garble using gsk𝑗+1 to obtain

output
(
s̃t′, 0 . . . 0

)
exactly as used in the above FE simulation. From the underlying indistinguishability of

the functional encryption scheme, the two hybrids are indistinguishable.
□

Combining the above two claims, we have that Hyb( 𝑗−1) ≈𝑐 Hyb𝑗 . □

Claim 3.12. Suppose GC is secure according to Definition 2.9.

Hyb𝑡1 ≈𝑐 Hyb𝑡1+1.

Proof. Observe that the only difference between the hybrids Hyb𝑡1 and Hyb𝑡1+1 is how the garbled circuit
corresponding to I and input encoding ĩnp𝑡1+1 is computed. Thus security follows from the security of
garbled circuits. In Hyb𝑡1 , we compute ĩnp𝑡1+1 as garbled encryptions of inputs pk,𝐶𝑡 (𝑥) using key gsk𝑡1+1.
The real computation outputs 𝐶𝑡 (𝑥) on the evaluation of circuit I. In Hyb𝑡1+1, we simulate the garbled
inputs ĩnp𝑡1+1 using the output 𝐶

𝑡 (𝑥). □

From inspection, note that Hyb−1 is the real algorithm, Hyb𝑡1+1 is the simulated algorithm. Thus, from
the claims proved above, the security of our randomized encoding scheme holds true. □
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A Construction in [HLL23] satisfies Definition 2.7

TheoremA.1 ([HLL23]). Assuming that the circular LWE assumption holds, there exists a selective simulation-
secure laconic function evaluation scheme that satisfies Definition 2.7.

Proof. The theorem statement in [HLL23], proved correctness, security, and succinctness as defined in
Definition 2.7.

The authors [HLL23] showed that their construction satisfies a stronger computational correctness
notion. Since in our setting, we can choose the function and the input selectively, any non-uniform
computational attacker will imply our correctness definition. More concretely, for every 𝜆, fix |𝐶𝜆 |, 𝑥𝜆, 𝑡𝜆 ≤
ℓ (𝜆) that maximize the probability of winning. These parameters can be selectively output by the non-
uniform computational attacker.

The only remaining proof we need to show is that their scheme is additionally efficiency-preserving. We
show that the input independent homomorphic evaluation procedure from [HLL23] is efficiency preserving.

Claim A.2. Algorithm UEvalC (construction 2 in [HLL23]) is efficiency preserving.

Proof Sketch. Let 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 be a boolean circuit, Aattr ∈ Z(𝑛+1)×(𝑠 ·𝑚)𝑞 ,Acirc ∈ Z(𝑛+1)×𝑚𝑞 , where
𝑛,𝑚,𝑞 are some polynomially bounded functions (in 𝜆).

Let UEvalC𝐶 be a circuit that runs UEval on input Aattr,Acirc,𝐶 , and computes A𝐶 = (A𝐶 :1, . . . ,A𝐶 :𝑠)
where (𝐶 : 1, . . . ,𝐶 : 𝑠) are the output wires of circuit 𝐶 . UEvalC𝐶 outputs (A𝐶 ,Acirc). We claim that,
|UEvalC𝐶 | ≤ |𝐶 | · poly(𝜆), can be computed in from 𝐶 in time 𝑂 ( |UEvalC𝐶 |) and,

∀𝑡 ∈ N, UEvalC𝑡
𝐶 (Aattr,Acirc) =

(
UEvalC

(
Aattr,Acirc,𝐶

𝑡
)
,Acirc

)
.
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It is easy to see that |UEvalC𝐶 | ≤ |𝐶 | · poly(𝜆) and can be computed in time 𝑂 ( |UEvalC𝐶 |) as the algo-
rithm garbles gate-by-gate and performs poly(𝜆, 𝑛,𝑚, 𝑞) operations on each gate. We show the functionality
by induction on 𝑡 . Clearly, the above claim holds for 𝑡 = 1 by definition. Assuming it holds for some 𝑡 , our
circuit outputs matrices, which are associated with output wires 𝐶 : 1, . . . ,𝐶 : 𝑠 . These output wires are the
inputs to the new circuit when performing a repeated computation. Hence these can be considered as Aattr

for the (𝑡 + 1)-th computation and the claim follows.

Claim A.3. AB-LFE scheme (construction 3 in [HLL23]) is efficiency preserving in its setup.

Proof Sketch. Recall that the setup in construction 3 consists of sampling random matrices to generate crs
and running procedure UEvalC on the crs and circuit 𝐶 to output crs, digest𝐶 .

Similar to Lemma 3.1, if the repeated circuit computation is performed after some non-repeated compu-
tation, i.e. we compute𝑋 𝑡 (𝑌 (𝑦), 𝑥), for some repeated computation𝑋 and non-repeated computation𝑌 - the
resulting computation can also be represented as a repeated circuit. The claim follows by a straightforward
modification of Lemma 3.1.

Claim A.4. If the AB-LFE scheme is efficiency preserving, then the transformation in section 4.4. [QWW18] to
a two-outcome AB-LFE scheme is efficiency-preserving in its setup.

Proof Sketch. In the transformation, we repeat the circuit into a copy of the circuit and it’s negation. Since
both circuit 𝐶 and negation circuit 𝐶 when run on the original AB-LFE scheme are efficiency-preserving,
the resulting setup is also efficiency-preserving.

The LFE scheme in [HLL23] is finally constructed by a generic transformation from a (two-outcome)
attribute-based LFE and a fully-homomorphic encryption scheme [GKP+13, QWW18]. We sketch that their
template preservers efficiency.

Claim A.5. The evaluation function of a fully-homomorphic encryption, such as [GSW13], is efficiency-
preserving.

Proof Sketch. Similar to the proof of Claim A.2, most FHE evaluation algorithms (including [GSW13]) in
literature perform a gate-by-gate computation on the ciphertext. Since each gate can be replaced by a
meta-gate, the evaluation algorithm is efficiency-preserving.

Claim A.6. If a (two-outcome) AB-LFE scheme has an efficiency preserving setup, then the transformation in
section 4.4. [QWW18] to a LFE scheme is efficiency preserving in its setup.

Proof Sketch. The setup procedure can be summarized as running the (two-outcome) AB-LFE on the
function FHE.Eval(𝐶𝑡 , ·). Since the FHE.Eval function and the (two-outcome) AB-LFE function are efficiency
preserving, then so is their composition.

ABLFE.Setup
(
1𝜆, FHE.Eval(𝐶𝑡 , ·)

)
= ABLFE.Setup

(
1𝜆, 𝑆𝑡FHE.Eval(·)

)
= 𝑆𝑡ABLFE.Setup(·)

Combining all the proofs, we have that their scheme satisfies the efficiency-preserving property. □

B Linear Space Dependence of Evaluation Time

The runtime of our evaluation algorithm (Proposition 3.5), depends on the evaluation of the base SRE
scheme, garbled circuit evaluation and LFE decryption. This includes how long it takes to evaluate a
repeated circuit K[𝑆C] on the SRE algorithm and the circuit 𝐶 on the LFE decryption.
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We observe that when evaluating a circuit on a Turing Machine, one critical factor in the evaluation time
is the time required to run the circuit. For a general layered circuit with width 𝑠 and depth 𝑑 , this could take
𝑠2 ·𝑑 , rather than 𝑠 ·𝑑 . This inefficiency arises because at each depth of the circuit, the wires connecting gates
can be arbitrary. Thus, the Turing machine might have additional head movement overhead to evaluate
each gate i.e. the TM head might need to move to the appropriate position, potentially taking 𝑠 time for
every gate. These efficiencies can be mitigated in two ways, (i) use the RAM model - by considering the
computation in the RAM model, we can access the memory in 𝑂 (1) time, (ii) if the circuit is designed such
that within each layer, gates depend only on inputs that are spatially close (local connections), then the
evaluation time also reduces to 𝑠 · 𝑑 .

For simplicity, we just state our evaluation efficiency in the RAM model. But since we consider step
circuits for a Turing machine (the step circuits only write on the tape in the current head position and
move the head left or right on one invocation), it’s possible to evaluate this structured step circuit in time
𝑠 · 𝑑 . Here, we present the simplified proposition only focusing on the RAM model.

Proposition B.1. Assuming SRE has semi-effient evaluation and the LFE scheme has efficient-decryption
where the running time of SRE.Eval,Decpk(·) is at most 𝑡 · |𝐶 | · poly(𝜆) (namely, linear dependence on |𝐶 |) in
the RAM model then the running time of the resulting SRE′.Eval is at most 𝑡 · |𝐶 | · poly(𝜆) in the RAM model.

Proof Sktech. Similar to the proof above, because the LFE has the required efficiency properties, the Setup
circuit has depth 𝑡2, width |𝐶 | · poly(𝜆), the GC satisfies evaluation efficiency, and the SRE is assumed to
have efficient evaluation, then the complete scheme has linear evaluation efficiency in the RAM model.

C Fully Succinct RE from Sub-Exponential Hardness

In this section, we observe that there is a efficiency vs security tradeoff of our succinct-randomized encodings
which we can leverage to gain more efficiency at the cost of a higher security loss.

Our scheme satisfies the parameters detailed in Corollary 1.2. We begin by constructing a base scheme
that is 1-succinct, which can then be amplified using the transformation in Section 3. Notably, there exists
a trivial method to construct 1-succinct randomized encodings, without the use of cryptography - the
encoding algorithm simply runs the circuit𝐶 (𝑡 ) on input 𝑥 and outputs𝐶 (𝑡 ) (𝑥). However, this approach does
not guarantee that the efficiency of the encoding algorithm is linear in |𝐶 |(see discussion in Appendix B).
We instead use garbled circuits to make the run-time of encoding efficient.

Let’s assume that there exists a garbled circuit scheme that is secure against adversaries running
in time 2𝜆𝑎 , where 𝑎 ∈ (0, 1) is some constant and the security parameter is 𝜆. We can construct a
1-succinct randomized encoding for circuit 𝐶 : {0, 1}𝑠 → {0, 1}𝑠 with the following encode algorithm
SRE.Encode(1𝜆,𝐶, 𝑥, 𝑡),

• We fix the security parameter to be 𝜆 = (log 𝜆)𝛼 where 𝛼 is a constant such that 𝛼 = 2/𝑎.

• Sample gsk← {0, 1}𝜆 and compute𝐶 (𝑡 ) ← GC.Garblegsk(1𝜆,𝐶 (𝑡 ) ), and∀𝑖 ∈ [𝑠], 𝑥𝑖 ← GC.Encgsk(𝑥𝑖 , 𝑖).

• Output SRE.𝑥 ←
(
𝐶 (𝑡 ) , {𝑥𝑖}𝑖∈[𝑠 ]

)
.

The efficiency of SRE.Encode is 𝑡 · |𝐶 | · poly(log 𝜆), and efficiency of SRE.Eval is 𝑡 · |𝐶 | · poly(log 𝜆) in the
RAM model.
We now discuss security, let A be an adversary that runs in time poly(𝜆) and breaks security of the
1-succinct SRE aboove with non-negligible advantage. We use A(1𝜆) to construct an efficient adversary
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B(1𝜆) which runs in time 2𝜆𝑎 and contradicts the security of GC with non-negligible advantage. B(1𝜆)
calls the adversary A(1𝜆) on input SRE.𝑥 and outputs whatever A outputs. Since, 2𝜆𝑎 = 2log2 𝜆 , adversary
A runs in polynomial in 𝜆 i.e. 2𝑂 (log𝜆) and runs within time 2𝜆𝑎 . By contradiction, our resulting scheme is
secure.

We can amplify this scheme by repeatedly applying the transformation in Section 3. Let the 𝑖-th iteration
of the transofrmation, be such that,

• Let the primitives LFE,GC be sub-exponentially secure such that security holds against adversaries
running in time 2𝜆𝑎 where 𝑎 ∈ (0, 1) is some constant.

• Let SRE be a 1/𝑖-succinct randomized encoding scheme such that the runtime of encode is 𝑡1/𝑖 · |𝐶 | ·
poly𝑖 (log 𝜆), and the runtime to evaluate is 𝑡 · |𝐶 | · poly𝑖 (log 𝜆) in the RAM model. Additionally,
security holds against adversaries running in time poly(𝜆).

Construction sketch - We construct SRE′, a 1/(𝑖 + 1)-succinct randomized encoding scheme by running
the tranformation in Section 3 where primitives LFE,GC are run on security parameter 𝜆 = (log 𝜆)𝛼 where
𝛼 = 2/𝑎, and the base SRE is run on security parameter 𝜆.
The runtime of encode is 𝑡1/(𝑖+1) · |𝐶 | · poly𝑖+1(log 𝜆) and the runtime to evaluate is 𝑡 · |𝐶 | · poly𝑖+1(log 𝜆)
in the RAM model. Additionally, by similar reductions to the 1-succinct case, the security can be shown
against any adversaries running in polynomial time.

Let poly(log 𝜆) = (log 𝜆)𝑘 for some constant 𝑘 . After 𝑖 = log 𝜆/log log 𝜆 − 1 iterations of the transfor-
mation, we have,

• Efficiency of the resulting encode algorithm is,

𝑡1/(𝑖+1) · |𝐶 | · (log 𝜆)𝑘 ·𝑖+1 = 𝑡 log log(𝜆)/log(𝜆) · |𝐶 | · (log 𝜆)𝑘 ·log𝜆/log log𝜆 .

Since 𝑡 is polynomial, we have that 𝑡 = 2𝑂 (log𝜆) , and hence, 𝑡 log log(𝜆)/log(𝜆) ≤ 2𝑂 (log log𝜆) ∈ poly(log 𝜆).
Additionally, log 𝜆𝑘 ·log𝜆/log log𝜆 = 2𝑘 ·log𝜆 = 𝜆𝑘 .
Thus, the time to encode is

∈ poly(log 𝜆) · |𝐶 | · 𝜆𝑘 ∈ |𝐶 | · poly(𝜆).

• The efficiency of evaluate is similarly, 𝑡 · |𝐶 | · poly(𝜆) in the RAM model.

• The resulting randomized encoding is secure against adversaries running in time poly(𝜆).

Thus, we can construct a fully-succinct SRE from sub-exponential circular-secure LWE assumption as
in Corollary 1.2.

D Time lock puzzle from SREs

In this section, we sketch the construction of time-lock puzzles from semi 𝜀-succinct SRE scheme and
worst-case non-parallelizable language. We use the notation and theorem statement from [BGJ+16] almost
verbatim.
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Assumption D.1. (Worst-Case Non-parallelizable Languages) A language L that is decidable by a turing
machine in time 𝑡 (·) and space 𝑠 (·) is non-parallelizable in the worst-case with gap 𝜀 < 1 if for every family
of non-uniform circuits B ∈ {B𝜆}𝜆∈N where depth(B𝜆) ≤ 𝑡𝜀 (𝜆) and every large enough 𝜆, B𝜆 fails to
decide L ∩ {0, 1}𝜆 .

In the following construction, we use the machine-hiding version of SREs (see Remark 2.3). Accordingly,
the simulator does not take the machine as input. (Also, the evaluation algorithm does not take the machine
as input.)

Construction D.2 (Construction 3.5 [BGJ+16] (adapted)). Let 𝑠 (𝜆) be a fixed polynomial in 𝜆. Let SRE be
a semi 𝜀sre-succinct randomized encoding scheme. For 𝜇 ∈ {0, 1}𝜆, 𝑡 ≤ 2𝜆 , let 𝑀𝑡

𝜇 be the machine that on
input 𝑥 ∈ {0, 1}𝜆 outputs 𝜇 after 𝑡 steps (assume that 𝑡 ≥ 𝜆 +𝜔 (1) and that |𝑀𝑡

𝜇 | can be described by 3𝜆 bits
and is padded to use up space 3𝜆 + 𝑠 (𝜆)).

• Time-lock puzzle generation on message 𝜇 ∈ {0, 1}𝜆 - 𝑥 ← SRE.Encode(1𝜆, 𝑀𝑡
𝜇, 0𝜆, 𝑡, 13𝜆+𝑠 (𝜆) ).

• Time-lock puzzle evaluation - 𝜇 ← SRE.Eval(𝑥, 𝑡, 1𝜆).

Proposition D.3. Assuming there exists a worst-case parallelizable language with gap 𝜀wc that is decidable
in bounded-space i.e. time 𝑡 (𝜆), space 𝑠 (𝜆) where 𝑠 (·) is a fixed polynomial independent of 𝑡 (·). Then the
construction above using 𝜀sre-succinct randomized encoding is secure for any gap 𝜀tlp where 𝜀sre < 𝜀wc and
𝜀tlp < 𝜀wc. The time-lock puzzle can be constructed in time 𝑡 (𝜆)𝜀sre · 𝑠 (𝜆) · poly(𝜆) and can be evaluated in
time 𝑡 (𝜆) · 𝑠 (𝜆) · poly(𝜆) in the RAM model.

Proof. The proof follows identically to Theorem 3.7 in [BGJ+16]. We repeat the proof almost verbatim
and sketch the major difference in our proof which exists as the time to encode SRE.Encode is no-longer
independent of 𝑡 .

Assume towards contradiction that there exists a polynomial size adversary A = {A𝜆}𝜆∈N, and a
polynomially bounded function 𝑡 (·) ≥ 𝑡 (·) such that depth(A𝜆) < 𝑡𝜀tlp (𝜆) and for some polynomial 𝑝 (·)
and infinitely many 𝜆 ∈ N, there exists a pair of solutions 𝜇0, 𝜇1 ∈ {0, 1}𝜆 such that,

Pr
[
𝑏 ← A𝜆 (𝑍 ) :

𝑏 ← {0, 1}
𝑍 ← Puzzle.Gen(𝑡 (𝜆), 𝜇𝑏)

]
≥ 1

2 +
1

𝑝 (𝜆) .

Let L be the worst-case non-parallelizable language that is decidable in time 𝑡 (𝜆) and space 𝑠 (𝜆). We
construct an adversary B = {B𝜆}𝜆∈N that decides L ∩ {0, 1}𝜆 . For any 𝜆 as above with corresponding
𝜇0, 𝜇1 ∈ {0, 1}𝜆 , let𝑀L,𝑡𝜇0,𝜇1 be a machine that on input 𝑥 ∈ {0, 1}𝜆 , outputs 𝜇1 if 𝑥 ∈ L and 𝜇0 if 𝑥 ∉ L, after
exactly 𝑡 (𝜆) steps. Such a machine exists, takes space at most 3𝜆 + 𝑠 (𝜆) and we further assume that it can
be described in 3𝜆 bits (which is possible for large enough 𝜆), and has the same description as𝑀𝑡

𝜇𝑏
. Given

input 𝑥 ∈ {0, 1}𝜆 , to decide if 𝑥 ∈ L, a randomized B′
𝜆
acts as follows:

• Sample 𝑍 ← 𝑀
L,𝑡
𝜇0,𝜇1 (𝑥) ← SRE.Encode(1𝜆, 𝑀L,𝑡𝜇0,𝜇1, 𝑥, 𝑡 (𝜆), 13𝜆+𝑠 (𝜆) ).

• Obtain 𝑏 ← A𝜆 (𝑍 ) and output 𝑏.

Note that B′
𝜆
is of polynomial size and depth 𝑡𝜀sre · 𝑠 (𝜆) · poly(𝜆) + depth(A𝜆) ≤ 𝑡𝜀sre · 𝑠 (𝜆) · poly(𝜆) +

𝑡𝜀tlp (𝜆) ∈ 𝑜 (𝑡𝜀wc (𝜆)), where the last membership holds since 𝑠 (·) and poly(·) are fixed polynomials and thus
holds for large enough 𝑡 (𝜆).
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The rest of the proof follows identically where we first show that B′
𝜆
decides the language 𝑥 ∈ L with

noticable advantage, and then do the parallel repition argument to construct B that contradicts the fact
that L is non-parallelizing.

□
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