
Cryptographically Secure Digital Consent

F. Betül Durak1, Abdullah Talayhan2, and Serge Vaudenay2

1 Microsoft Research, Redmond, USA
2 EPFL, Lausanne, Switzerland

Abstract. In the digital age, the concept of consent for online actions
executed by third parties is crucial for maintaining trust and security in
third-party services. This work introduces the notion of cryptographically
secure digital consent, which aims to replicate the traditional consent
process in the online world. We provide a flexible digital consent solution
that accommodates different use cases and ensures the integrity of the
consent process.
The proposed framework involves a client (referring to the user or their
devices), an identity manager (which authenticates the client), and an
agent (which executes the action upon receiving consent). It supports
various applications and ensures compatibility with existing identity man-
agers. We require the client to keep no more than a password. The design
addresses several security and privacy challenges, including preventing of-
fline dictionary attacks, ensuring non-repudiable consent, and preventing
unauthorized actions by the agent. Security is maintained even if either
the identity manager or the agent is compromised, but not both.
Our notion of an identity manager is broad enough to include combi-
nations of different authentication factors such as a password, a smart-
phone, a security device, biometrics, or an e-passport. We demonstrate
applications for signing PDF documents, e-banking, and key recovery.

1 Introduction

In a non-digital world, giving consent for an action to be executed by a third
party is a common social and legal interaction. One can give power of attorney
to an agent to sign a document on their behalf, or one can ask to store their
keys in a storage service for a period of time. Any action performed by the agent
on behalf of a person may require an explicit permission (a.k.a. consent) from
that person, for liability reasons. An explicit consent (in the form of writing or
signing) from the person to an agent serves as non-repudiable proof of intention
that can be shown in the case of a dispute. In this work, we introduce the notion
of digital consent, where we study this problem in the digital world.

Building a framework of consent in the digital world requires several steps:
defining the parties involved, making careful choices of the constraints we put
in the design, and realizing the security and privacy requirements. One trivial
description of a digital consent is as follows: a user casts an order to their online
agent who behaves as a delegate to perform some actions on behalf of the user.
The order is kept as a proof that the authentic and authorized user has indeed

given permission to execute the order. Such consent should be non-repudiable. At
first, the functionality described above seems to be immediately realized using
digital signatures, where the order for the action becomes digitally signed by
the client. However, the client would need to maintain the signature key, and
to protect against leakage or loss. Giving consent this way does not offload any
burden from the client. Hence, it requires careful thinking on constructions where
the client only keeps a low entropy secret such as a password.

We wonder how we can model cryptographically secure digital consent so that
it provides a flexible framework accommodating applications without needing to
change from one to another. To achieve this, first, we consider a model where
there are (at least) three participants: an Identity Manager (IdM), a client (like
a browser or an app) which works for its authentic user, and an Agent. There
will be several types of use-cases determined by the usage of consent. Consent
should support various applications with straightforward extensions such as mul-
tiple IdMs; multiple modalities such as standard use with a client having secure
hardware (smartphone), but requiring backup solutions when the device is bro-
ken, lost, or stolen; and distributed Agents as detailed in section 5.

We additionally have to work with several constraints to make the proposed
protocol deployable in the real world. First, we must not make any changes
to how the existing IdMs, such as Microsoft or Google, work. For example, we
would need to be compatible with JSON Web Token (JWT) generation in the
Open ID Connect (OIDC) protocol and standard JWT verification by the Client
and Agent. Second, it would be beneficial to leverage already widely deployed
cryptography. More precisely, we should not require any changes to certain cryp-
tographic operations such as digital signature verification. Finally, we should not
rely on long-term storage on the client side. 3

We designed a straw-man application for digital document signing where the
user delegates their signing secret key to the cloud (referred to as the Agent).
Whenever a document needs to be signed, the user logs into the cloud and
requests the Agent to sign the document on their behalf. The cloud is held
accountable for any documents signed without the user’s consent. Therefore, the
Agent must maintain a record of consents to resolve any dispute. The process
involves two phases: (1) enrollment to the cloud, which needs a password for
the Agent to authenticate the user and a binding contract which registers the
information on how to verify the consent for the user, and (2) consent generation,
which needs authentication with another password to the IdM and a signed OIDC
token which serves as an order. We assert that our concrete protocol design, along
with formal security notions and proofs, consolidates the level of security and
functionality that products like DocuSign aim to achieve [Doc24].

Such a design comes with several security and privacy challenges. First and
foremost, we need to prevent offline dictionary attacks on the password during
the enrollment phase so that neither IdM nor any other party can run it. Second,
our protocol must prevent forging the digital consent without the client’s involve-

3 Except a password which is the most common authentication method used in today’s
digital world.

2

ment and prevent IdM from requesting an action without the client. Moreover,
IdM should not be able to request an action with the client that is different from
the intended client action. Another important security vulnerability to consider
is that the Agent may run an action without it being triggered by the client.
However, depending on the use-case, our protocol design will prevent it by (1)
a simple dispute protocol; (2) a trusted back-end; or (3) a specific application.
Finally, what we may need, but do not provide in our current work, is the un-
linkability between the order request from the IdM and the consent generated by
the Agent. Anonymous tokens seem like a natural solution to this, but it requires
changes to the IdM (in a sense that the protocol would not be OIDC compliant
anymore) and pairing operations (implies a more inefficient dispute protocol) for
public verifiability. Hence, in this work, we stick to the design requirements and
security goals we defined without the unlinkability notion.

2 Related Work

Password-based signatures (PBS). The aim of digital consent is to give a non-
repudiable authorization for an attribute (input) to be used along with a pre-
defined key material. Our consent is already a signature in itself. This signature
is jointly computed by all participants.

PBS schemes are the most similar primitive to digital consent. In PBS, the
client (in possession of a password) and the Agent jointly compute a signature
σ on a message m which would verify under the client’s public key pk. The re-
quirement of PBS to be secure is that the password should be protected from
offline dictionary attacks to keep the entropy requirement of the password in
memorable levels. [GT12] formalized the notion of PBS and provided two con-
structions based on RSA and CL blind signatures the latter being secure under
Generic Group Model (GGM). [JKR13] improved on [GT12] by providing a PBS
scheme using the BLS signature scheme proven secure under the random oracle
model (ROM). They further construct a strongly secure variant of PBS in which
smaller entropy passwords can be used without losing security. However, their
construction is prone to offline dictionary attacks by the Agent that is helping
with the signing (insider attack) and also by any adversary that is able to send a
single signing request to an honest Agent (outsider attack). We refer to section B
for the details.

Earlier, [HWF05] introduced server-aided digital signatures (SADS) which
utilizes a two-server mechanism. The utilization of two non-colluding servers
solves the problem of offline dictionary attacks in [GT12], assuming that at least
one server remains non corrupted. [Cam+16] takes a similar approach to SADS
where one of the servers is modeled as a user device.

Proxy signatures (PS). One of the main applications of digital consent is the
signing service where Agent signs documents on behalf of the client. This ap-
plication shares similarities with PS but has some differences. Proxy signatures
use the following terminology: a delegator (which corresponds to the client), a

3

delegate (which is the Agent), and the delegation (which is the consent in our
terminology). PS schemes such as [AN23] require the anonymity of delegation
which we do not. Delegation in PS is message-agnostic while our consent can be
message-specific: we authorize to sign a specific message. In PS, the delegator
needs to keep a high-entropy key to sign a warrant while we only require to keep
a password. PS are specific to one signature scheme while our notion of consent
is independent from the signature which is produced by the Agent in the end.
Furthermore, PS imply a strong binding between the delegation (consent) and
signature capability. Last but not least, PS require ”unframability”, meaning
the delegate cannot sign without the delegator’s consent. One drawback of un-
framibility is the recoverability: if the delagator is not able to delegate (because
of lost devices or keys), the delegate cannot sign at all. In our work, the Agent
may sign without the client’s consent (the signing is done independent of the
consent procedure) but we ensure unframeability by a dispute protocol in which
an abusive agent can be faced to evidence of misbehavior, implying some legal
consequences or loss of reputation in their business.

Some works to be cited under this theme include: [DHS14], [HS13], [FP09].

Key recovery. Another application of digital consent is the key recovery, which
allows a client to recover their keys without depending on a personal device. The
notion of credential retrieval was studied by Boyen [Boy09]. It allows a client to
store their credentials on a server and to retrieve them using a password. The
idea behind credential retrieval is to use an oblivious pseudorandom function
(OPRF). This is a 2-party protocol allowing a client to compute K = fk(pw)
when pw is the input of the client and k is the input of the server, for a specific
pseudorandom function f . This way, the client can retrieve a key K from a
password pw which allows to decrypt some storage. This is not enough to protect
against a malicious server running an offline dictionary attack as it is very likely
that they can test a value K offline. In our model, we rely on an additional
participant (the identity provider) and assume that at this participant is honest
when the server (or Agent as we call it) is not. Similarly, SADS [HWF05] uses two
OPRFs with two servers to retrieve a signing key. Acar et al. [ABK13] separate
the OPRF server and the storage for similar reasons. Likewise, Camenisch et
al. [Cam+14] use several servers.

With digital consent, we rely on a secure hardware (for this specific applica-
tion). Strictly speaking, credential retrieval does not rely on a trusted hardware
and does not require explicit authentication of the client to the server. However,
it has the fragility to offline dictionary attack. With digital consent, we rely on
a secure hardware (for this specific application).

The Boyen method was improved by Miyaji et al. [MRS10] without random
oracles and more recently by Davies et al. [Dav+23] and Faller et al. [Fal+24]
with the Password Protected Key Retrieval (PPKR) protocol, considering several
corruption models of the secure hardware being used. Compared to PPKR, we
propose a protocol which allows to work with a stateless server, we offer more

4

options for the authentication model, and we make sure that the server can keep
undeniable evidence of consent.4

Password-based credentials (PBC). Another application of digital consent is to
provide credentials to access to services. It goes beyond password-based access
control as the service may require more than just passing a gate. For example,
in smart contracts, it is hard to authenticate an order to a smart contract by
using a password. The authors of [Bal+24] studies the problem of helping a
client to make a transaction on a blockchain (or a smart contract running on
the blockchain). Essentially, making a transaction is signing it; except that now,
the client cannot miss that the signature is made as it will appear as a trans-
action on the blockchain. With our digital consent formalism, we can have the
transaction made by the agent once the consent is there. Moreover, our consent
is easily verifiable by a smart contract and can be used like zkLogin [Bal+24].
Their version also needs two servers but uses an expensive zk-SNARK to provide
additional privacy guarantees.

Dayanikli and Lehmann’s PBC scheme [DL24] uses the terminology differ-
ently. In their framework, the client keeps a high-entropy private credential which
allows them to sign with a password. However, signatures are not publicly veri-
fiable: the verification key is private. Security assumes that either the credential
or the verification key is unknown to the adversary.

3 The Consent Protocol

We consider a simplified model with the following entities to illustrate how con-
sents work:

3.1 Entities

We have 4 entities in our design:

1. Client is the device working for its authentic user who is giving the consent.
We do not distinguish the Client and the user.

2. IdM is the identity provider that Client can interact with to receive access
tokens for their identities.5

3. Agent is the entity that acts on behalf of a Client with a given consent.
4. Judge is the entity that verifies the consent.6

4 In PPKR, the client sends a signature as a last message to reset the counter of bad
attempts and avoid a future denial of service. This can play the role of a digital
consent, but a malicious client may skip this last step.

5 There can be more than one IdM, an IdM can be a trusted hardware (actually, an
identity manager for a single client), IdM can be a complex combination of several
elementary ones. We discuss it in subsection 5.2.

6 In our protocol, Judge can be anyone as we allow public verification.

5

3.2 Interfaces

We define the interfaces as follows and depict the flow of the procedures in
Figure 1.

– (skIdM, pkIdM)← IdM.Setup(1λ): IdM generates their secret/public keys. It is
run by the IdM and re-run every time the keys are rotated.

– (sA, contract)← Enroll(ID, pw, pkIdM): enrolls the Client under pw to an Agent.
Generates sA and contract. sA and contract are sent to the Agent. The contract
element defines how a consent can be verified. It is binding.

– (query, state) ← Launch(pw, att): Client initiates the consent protocol by
sending a query to IdM and keeping the state. Client wants to consent to
some action which is defined by att.

– resp← IdM(ID, skIdM, query): IdM receives the query from the Client and sends
back resp.

– order ← Commit(state, resp): Client creates an order of a consent with resp
and state. order is sent to Agent. This is the final operation by which the
Client gives consent on att.

– consent ← Agent(sA, contract, att, order): Agent receives the order and out-
puts a consent with (contract, att).

– 0/1← Verify(contract, att, consent): The verification procedure takes as input
the contract and a consent issued on att. Returns 1 if the consent is valid. 0
otherwise.

Figure 1 shows the interface between the IdM, Client, and Agent. Enrollment
phase enrolls the Client to Agent through login and pw picked by the client. ID
is the identity under which the Client is known to IdM. This could be identical
to login but does not need to. We keep the distinction between ID and login for
clarity.

The Client is stateless. In the enrollment phase, both sA and contract is sent
to the Agent to store. During the consent phase, Client is only required to enter
the pw which corresponds to the login for Agent and authenticate itself to the
IdM.

We say that the protocol is correct if for any pw, ID, att and any result of
Setup, running all these protocols in sequence leads to Verify to return 1.

3.3 Security Assumptions and Adversarial Model

We assume secure communication between participants. More precisely, an ad-
versary must not interfere with communication. Furthermore, communications
to Agent are confidential. For instance, this can be done with a regular TLS
connection, which implies trust in the browser/app on the client side or the PKI
root certificates.

We assume that Client has secure means to authenticate to IdM. How it is
done depends on how IdM is implemented. We discuss it in subsection 5.2.

We assume that Judge has means to trust that contract is correct. This can
be done by some kind of notary service. It could be an additional external service

6

IdM(skIdM) Client(ID) Agent(pkIdM, db)

Enroll

sample pw←$ D
pick login
(sA, contract)← Enroll(ID, pw, pkIdM)

login, sA, contract

store db[login] = sA, contract

Consent on att

query, state← Launch(pw, att)

auth ID

query

resp← IdM(ID, skIdM, query)

resp

order← Commit(state, resp)

login, att, order

if login /∈ db abort
sA, contract← db[login]
consent← Agent(sA, contract, att, order)

Verify(contract, att, consent)
?
= 1

Fig. 1. Consent Protocol Interface

with a trusted third party or a blockchain. We could also use IdM and Agent to
sign contract. We would need a collusion between a malicious IdM and a malicious
Agent to forge a rogue contract to be used in a consent protocol.

We assume that the storage of Agent does not leak. Hence, sA is kept safe.
Our threat model captures the possible corruption of IdM or Agent but not

both at the same time, as well as the existence of corrupted clients. We want
to protect a honest Client from being shown a valid consent, relative to some
contract that they agreed on, to some action att which was not intended by
them to consent.

3.4 Unforgeability

We model Consent UnForgeability (CUF) in two different scenarios: (1) an ad-
versary controls the IdM and can corrupt arbitrarily many client and tries to
forge a valid consent for an honest client (victim) and (2) an adversary controls
the Agent, corrupts as many clients as possible and tries to forge a valid consent
for an honest client.

7

Definition 1 (Consent Unforgeability with corrupted IdM). Let D be a
distribution with min-entropy Dmin. In the CUFIdM game defined in Figure 2, we
define the advantage of the A as follows:

AdvCUFIdM

A (λ,D) = Pr[CUFIdM(A,D)→ 1]

We say that a Digital Consent is secure under CUFIdM if for any PPT adversary
A limited to q queries to OOrder 7, we have:

AdvCUFIdM

A (λ,D) ≤ 1 + q

2Dmin
+ negl(λ)

In the CUFIdM security notion, the adversary controls IdM. The victim client
is enrolled at the beginning of the game by running Enroll and can issue consents
using OLaunch and OCommit. It returns the final consent. Other clients can be
assumed to be corrupted by default and be enrolled with OCorruptEnroll. They
can cast orders using OOrder which returns the consent.

Contrarily, in the CUFAgent security notion, the adversary controls Agent.
Clients can be enrolled honestly with OEnroll or maliciously with OCorruptEnroll.
The consent issuance protocol is triggered for a honest client with OLaunch. It
returns the communication between Client and IdM (which are not assumed to
be private) and order to be submitted to Agent. Since pw can be recovered offline
by the corrupted Agent, it plays no role in security and can be chosen by the
adversary for honest clients.

Definition 2 (Consent Unforgeability with corrupted Agent). A Digital
Consent scheme is unforgeable against a corrupted Agent if for any PPT adver-
sary A, we have

Pr[CUFAgent(A)→ 1] ≤ negl(λ)

where the CUFAgent game is defined in Figure 3.

4 Our Construction

We first introduce the building blocks: the commitment scheme and zero-knowlege
protocol.

4.1 Additively Homomorphic Commitment

We use an additively homomorphic multi-message commitment scheme, i.e. given
tuples ofmmessages (x1, x2, . . . , xm) and (y1, y2, . . . , ym) with randomness r and
s, we have

Com(x1, . . . , xm; r) + Com(y1, . . . , ym; s) = Com(x1 + y1, . . . , xm + ym; r + s)

We require that Com is perfectly hiding and computationally binding.
In our construction, we use m = 2.

7 We count the OOrder queries since each query to OOrder can be utilized as a pw
correctness check.

8

CUFIdM(A,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : pkIdM, st, login
∗, ID∗ ← A1(1

λ)

4 : pw∗ ←$ D
5 : enrolled← {login∗}
6 : (s∗A, contract

∗)← Enroll(ID∗, pw∗, pkIdM)

7 : db[login∗]← s∗A, contract
∗

8 : Aoracles
2 (contract∗, st)→ att∗, consent∗

9 : if Verify(contract∗, att∗, consent∗)

10 : ∧ consent∗ /∈ given :

11 : return 1

12 : return 0

OCorruptEnroll(login, sA, contract)

1 : if login ∈ enrolled

2 : abort

3 : enrolled← enrolled ∪ login

4 : db[login]← sA, contract

5 : return ⊥

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : (query, state)← Launch(pw∗, att)

4 : cst[sid].att← att

5 : cst[sid].state← state

6 : return query

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : order← Commit(cst[sid].state, resp)

4 : db[login∗]→ s∗A, contract
∗

5 : cst[sid].state→ att

6 : remove sid from cst

7 : consent← Agent(s∗A, contract
∗,

8 : , att, order)

9 : if consent = ⊥
10 : return false

11 : given← given ∪ consent

12 : return consent

OOrder(login, att, order)

1 : db[login]→ sA, contract

2 : consent← Agent(sA, contract, att, order)

3 : return consent

Fig. 2. CUFIdM Game.

9

CUFAgent(A)

1 : corrupted← ∅
2 : ordered← ∅

3 : (skIdM, pkIdM)← IdM.Setup(1λ)

4 : Aoracles(pkIdM)→ ID∗, att∗, consent∗

5 : abort if ID∗ /∈ db

6 : db[ID∗]→ contract∗

7 : if Verify(contract∗, att∗, consent∗)

8 : ∧ (ID∗, att∗) /∈ ordered :

9 : return 1

10 : return 0

OEnroll(ID, pw)

1 : if ID ∈ db ∨ ID ∈ corrupted

2 : abort

3 : (sA, contract)← Enroll(ID, pw, pkIdM)

4 : db[ID]← (contract, pw)

5 : return (sA, contract)

OLaunch(ID, att)

1 : if ID /∈ db

2 : abort

3 : db[ID]→ pw

4 : (query, state)← Launch(pw, att)

5 : resp← IdM(ID, skIdM, query)

6 : order← Commit(state, resp)

7 : ordered← ordered ∪ (ID, att)

8 : return query, resp, order

OCorruptQuery(ID, query)

1 : if ID /∈ corrupted

2 : abort

3 : resp← IdM(ID, skIdM, query)

4 : return resp

OCorruptEnroll(ID)

1 : if ID ∈ db

2 : abort

3 : corrupted← corrupted ∪ ID

4 : return ⊥

Fig. 3. CUFAgent Game

10

Example. Let (G1, G2, G3) be three generators of a group G. We use a multi-
message Pedersen commitment to commit to 2 messages (x1, x2) as follows:

Com(x1, x2; r) = x1 ·G1 + x2 ·G2 + r ·G3

The above scheme is additively homomorphic, perfectly hiding, and compu-
tationally binding (assuming the hardness of the discrete logarithm problem).

4.2 NIZK for Commitment to the Same Value

Given two commitments comID and com and a value att, we would like to prove
the following statement:

NIZK{(a, r1, r2) : Com(a, 0; r1) = comID ∧ Com(a, att; r2) = com︸ ︷︷ ︸
R((comID,com,att),(a,r1,r2))

}

The relation R(x,w) is between a statement x = (comID, com, att) and a
witness w = (a, r1, r2).

We use a generalized Schnorr proof [Sch89; Sch91] compiled with Fiat-Shamir [FS86].
We denote the prover and verifier for the NIZK above asΠMULTEQ.PoK

H , ΠMULTEQ.Verify
respectively which are explicitly defined in Figure 4. We further denote the
HVZK-simulator ΠMULTEQ.Sim which on input a statement x, returns an ac-
cepting view (α, ch, γ) with α = (com1, com2) and γ = (resp1, resp2, resp3). The
generalized Schnorr proof is a non-trivial Σ-protocol with s unique response in
the sense of [Fau+12].

ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

1 : a, b, c←$ Z3
q

2 : com1 ← Com(a, 0; b)

3 : com2 ← Com(a, 0; c)

4 : ch← H(comID, com, att, com1, com2)

5 : resp1 ← a+ ch · hID

6 : resp2 ← b+ ch · rID
7 : resp3 ← c+ ch · r
8 : π ← (ch, resp1, resp2, resp3)

9 : return π

ΠMULTEQ.Verify(π, comID, com, att)

1 : π → ch, resp1, resp2, resp3

2 : com′
1 ← Com(resp1, 0; resp2)− ch · comID

3 : com′
2 ← Com(resp1, ch · att; resp3)− ch · com

4 : ch′ ← H(comID, com, att, com′
1, com

′
2)

5 : return ch = ch′

ΠMULTEQ.Sim(comID, com, att)

1 : ch, resp1, resp2, resp3 ←$ Z4
q

2 : com1 ← Com(resp1, 0; resp2)− ch · comID

3 : com2 ← Com(resp1, ch · att; resp3)− ch · com
4 : α← (com1, com2)

5 : γ ← (resp1, resp2, resp3)

6 : return (α, ch, γ)

Fig. 4. NIZK for ΠMULTEQ

We define three oracles S1(x, α), S
′
2(x), and S2(x,w). The oracle S1(x, α)

simulates H(x, α) by lazy sampling: it maintains a table LH which is originally

11

empty and, upon a query (x, α), returns LH(x, α), possibly by first defining it at
random if not already defined. The oracle S′

2(x) runs Sim(x)→ (α, ch, γ). Then,
it aborts if LH(x, α) is already defined. Otherwise, it defines LH(x, α) = ch (this
is called programming the random oracle) and returns π = (ch, γ). The oracle
S2(x,w) first verifies thatR(x,w) is true (it returns ⊥ otherwise), then continues
with S′

2(x).
We use the fact that the NIZK is zero-knowledge in the random oracle model,

following [Fau+12, thm. 1]. It means that running a PPT adversaryA interacting
with either the two oracles H and PoK or the two oracles S1 and S2 produce
indistinguishable outputs. The advantage of the distinguisher is the probability
that S′

2 ever aborts. In our NIZK case, the probability of a matching between
two hash queries is 1

q2 .
We also use the fact that the NIZK is weakly simulation extractable, fol-

lowing [Fau+12, thm. 3]. This means that for any PPT adversary A interacting
with S1 and S′

2 with a total of qS queries, and forging with probability pacc a
proof (x∗, π∗) which is valid and not the result of a query to S′

2, there exists an
extractor E such that running A then E with the coins of A and the input/output
queries to S1 and S′

2, the probability that A forges a new valid proof (x∗, π∗)
and E extracts a witness w∗ satisfying R(x∗, w∗) is pext such that

pext ≥
1

qS

(
pacc −

qS
q

)2

4.3 Our Protocol Design

Our goal in the protocol design is to make no modifications to the existing IdM
structure. For example, we do not assume any new secrets or new operations
done by the IdM. The IdM interface is used to generate OpenID Connect (OIDC)
tokens 8.

In Figure 6, the Enroll protocol computes the hash of the pw and commitment
on that with randomness rID. The hash and rID forms the sA secret. The contract
is specified as ID (as known by the IdM), the commitment on the hash of the
password, and public key of the IdM.

Essentially, Client commits to pw and the commitment is put inside contract.
The value sA includes the opening information for the commitment. To consent to
att, Client commits to pw and to att and the commitment is sent as a nonce to the
OIDC service of IdM. Hence, after authenticating ID, IdM signs this commitment
together with ID. The signed commitment is sent to Agent together with the
opening information. Then, Agent can make a non-interactive zero-knowledge
proof that the commitment in contract and the signed commitment commit to
the same secret pw. The final consent consists of the signed commitment and
this proof. The opening information is then destroyed.

We recall that it is essential that the communication between Client and Agent
is confidential, as it would reveal H(pw) otherwise. We use an hash instead of

8 OIDC is generated in the form of a JSON Web Token (JWT) as a signature on a
“nonce” along with other parameters for user identification.

12

a PRF. It is because PRFs require an additional round-trip communication in
order to evaluate them in an oblivious manner.

The client runs two algorithms in the Consent phase in Figure 6: Launch, and
Commit. Launch algorithm requires the client to log in to the IdM every time
the client consents to the tasks to be run by the Agent and to enter pw. This
inevitably creates some friction for the user and workload for the IdM. Instead,
the client can request an order in batch to consent to the tasks. It works as
follows: the client generates a short-living secret/public key pair, it sets this
short term public key as an att in the Launch algorithm to get it signed by the
IdM. Later when the client wants to order a task from the Agent, it can use any
attribute it needs as atti which is signed with the short-living secret key and
appends this signature to the order with signature on the public key from the
IdM. This allows batch consent generation with less interaction with the IdM.
Such approach is already used by zkLogin [Bal+24].

Another way to see this approach is to take the consent on att as a sub-
contract contract′ where sA is set to the obtained consent. This contract registers
a new IdM′ which is run by the client and a password pw set to void. Hence, resp
is actually a signature on atti. We set order = resp in the Commit algorithm. The
consent on atti becomes the orderi concatenated with sA.

5 Applications and Variants

5.1 Use Cases

In our consent protocol, Client aims at giving consent to an Agent to perform an
action defined by att. We discuss here how applications can use the consent. We
consider three types of applications.

Type I. Applications where nothing prevents the action from being executed by the
Agent even when there is no consent but any such action is visible by the
Client and provable to a Judge. Here, the contract should also be signed by the
Agent to be undeniable to the Judge. That is, there is a trivial dispute proto-
col which can be triggered by the Client because the Client can easily prove
that the action was done by the Agent without their consent. This would
require the Agent to keep a log of all (att, consent) associated to contract for
possible disputes for a short time. 9

Type II. Applications where the action leaves no evidence, but the Agent is split in
two parts: a frontend part which runs the consent protocol and a backend
part which executes the action. The backend must be trusted (as being a
smart contract or a TEE) to execute the action only when the consent is
shown.

Type III. Applications where the action cannot be executed without consent by design
because it is not valid without the consent. It is not necessary to keep logs.
Typically, the action cannot be validated or executed without a valid consent.

9 The Client will be given a time interval for the dispute.

13

IdM(skIdM) Client(ID) Agent(pkIdM, db)

Enroll

pw←$ D
pick login
rID ←$ {0, 1}λ
hID ← H(pw)
comID ← Com(hID, 0; rID)
sA ← (hID, rID)
contract← (ID, comID, pkIdM)

login, sA, contract

store db[login] = sA, contract

Consent on att

r ←$ {0, 1}λ
com← Com(H(pw), att; r)

auth ID

com

σ ← Σ.Sign(skIdM, com, ID)

σ

login, att, com, r, σ

abort if login /∈ db
sA, contract← db[login]
sA, contract→ hID, rID, ID, pkIdM, comID

abort if com ̸= Com(hID, att, r)
abort if Σ.Verify(pkIdM, σ, com, ID) ̸= 1
π ← PoKH(comID, com, att, hID, rID, r)
consent← (σ, com, π)

Fig. 5. Consent Protocol with PoK{(hID, rID, r) : comID = Com(hID, 0; rID) ∧ com =
Com(hID, att; r)}

The distinction with Type II is that the validation of the action happens
outside of Agent. It is done by an independent service executing the action
or by other participants who must verify the legitimacy of the action.

In Type I and Type II applications, it is easy to have some form of resilience
for credential losses. A Client with lost pw or credentials to authenticate to IdM
(or unavailable IdM) can activate a rescue process to define a new contract. This
process must be cumbersome to prevent from being maliciously used.

Signing Service. As an example, we propose a service by which an Agent digitally
signs documents on behalf of the Client by holding the signing key of the Client.
In this way, the Agent effectively has the power of attorney.

14

Enroll(ID, pw, pkIdM)

1 : rID ←$ {0, 1}λ

2 : hID ← H(pw)

3 : comID ← Com(hID, 0; rID)

4 : sA ← (hID, rID)

5 : contract← (ID, comID, pkIdM)

6 : return sA, contract

Launch(pw, att)

1 : r ←$ {0, 1}λ

2 : com← Com(H(pw), att; r)

3 : query← com

4 : state← (r, com)

5 : return query, state

IdM(ID, skIdM, query)

1 : query→ com

2 : resp← Σ.Sign(skIdM, com, ID)

3 : return resp

Commit(state, resp)

1 : state→ r, com

2 : resp→ σ

3 : order← com, r, σ

4 : return order

Agent(sA, contract, att, order)

1 : order→ com, r, σ

2 : sA, contract→ hID, rID, ID, comID, pkIdM

3 : abort if com ̸= Com(hID, att, r)

4 : abort if Σ.Verify(pkIdM, σ, com, ID) ̸= 1

5 : π ← ΠMULTEQ.PoK(comID, com, att, hID, rID, r)

6 : consent← (σ, com, π)

Verify(contract, att, consent)

1 : consent→ (σ, com, π)

2 : contract→ (ID, comID, pkIdM)

3 : return false if Σ.Verify(pkIdM, σ, com, ID) ̸= 1

4 : return ΠMULTEQ.Verify(π, comID, com, att)

Fig. 6. Consent Protocol

In this application, the att value can be the hash of the document to be signed,
so that Agent does not even see the document itself. 10 For signed documents
based on the sign-and-hash paradigm, nothing needs to be changed on the side
of the signature verifiers.

For liability reasons, the Agent must be the only repository of the signing
key, even if the key is connected to the Client. So, any valid signature must have
been created by the Agent. Assuming that signed documents eventually come
back to Client, we are in the case of Type I.

More precisely, we assume that Agent signs att together with ID to notify that
it is a signature on behalf of ID. The enrollment of a new user would work as
follows. The user triggers our enrollment protocol to define a new contract. The
Client also launches the consent protocol with att set to a special setup message
with a reference to contract. This produces a consent assuring that contract was
set by the ID owner, as certified by IdM. The Agent signs (contract, consent) to
get a signature σ and sets cert = (contract, consent, σ). Then, cert is returned
to the Client. The Client and the Agent keep cert for reference. This cert can be
given to a signature verifier to show that Agent has the power of attorney for ID.
It can also be given to the Judge to prove that Agent took the responsibility of a
signing key for ID and committed to keep valid consents for each valid signature.

10 This is compliant with how Adobe signs PDFs with RSA-PSS.

15

Note that a malicious IdM can impersonate the Client to register a contract.
Hence, the Agent should never register two contracts with the same ID. Assuming
that signed documents come back to the Client, it will be visible if the IdM
registered a contract and the Client did not.

If signed documents do not come back to the Client, we are in Type II and
we must use a trusted Agent backend.

If we allow modifications on signature verifiers, we can declare that verifica-
tion of a signature must also verify an existing consent. In that case, we obtain
an application of Type III.

Bank Transaction. In e-banking applications, the Agent is the bank which is
executing orders on behalf of the Client. Actions can be payments or other trans-
actions on the account of the Client. It is important for liability reasons that the
Agent keeps logs with evidence of their consents.

With a traditional bank, the Client would clearly see on their balance that
an action was made. We are in a Type I case.

With crypto-currencies, we can mandate that actions require a consent, to be
verified by a smart contract on which contract was set up. We are in a Type III
case. This generalizes to other services based on smart contracts.

The zkLogin [Bal+24] is offering a similar functionality. It uses an OpenID
Connect provider as (IdM), a salt server (comparable to Agent), and assumes
that they are not corrupted at the same time. They also need a ZKP service to
offload the computation of the proof (the consent). In zkLogin, the salt is some
Client-specific secret which is comparable to sA.

Cryptographic Secret Key Storage. Instead of signing or authorizing, the Agent
could be a service to keep secret keys safe. The action would be an order to
retrieve one specific key. Here, the Client cannot control if a key is retrieved
without consent so we are in a Type II case and we need a trusted backend.

Key storage can be used as a safe repository, like another banking service. It
can be used to access to a crypto wallet or a password repository.

5.2 Variants for IdM

So far, in the paper, IdM is treated as an abstract identity manager but it
could be more general than a regular identity provider. Here, we discuss possible
instances.

Identity provider IdM. In the Single-Sign-On (SSO) design, services can rely on
a common and independent identity provider. In the OpenID Connect (OIDC)
protocol, this service provides access tokens which are signed by the identity
provider together with some identity ID. The signature is made on a nonce
which is provided by the client. Hence, this perfectly matches to our proposed
protocol.

16

Composite IdM. Instead of relying on a single IdM, we could treat IdM as
a composition of several IdM1, IdM2 with a specific composition rule. Hence,
pkIdM = (pkIdM1

, pkIdM2
).

For instance, if IdM = IdM1 ∧ IdM2 (the AND composition), a valid order
must be endorsed by both IdM1 and IdM2 to be valid. One benefit is that we
would need to rely less on CUFIdM security as it is unlikely that both IdM1 and
IdM2 would be corrupted.

If IdM = IdM1 ∨ IdM2 (the OR composition), a valid order must be endorsed
by either IdM1 or IdM2 to be valid. It makes CUFIdM more essential but also
makes the functionality of our protocol more reliable as Client would be able to
handle the unavailability of either IdM1 or IdM2.

Any other monotone composition rule can be imagined.

Smartphone IdM. A client may use their smartphone as an IdM which provides
identity to a single client. In that case, we may wonder why not using a trivial
consent protocol where the smartphone directly signs a consent. However, this
approach is not secure in the sense of CUFIdM (if the smartphone is corrupted,
then consents may be forged). Also, this type of IdM may find more sense when
combined with others. The AND composition may capture the notion of mul-
tifactor authentication. The OR composition may allow the client to still give
consents when their smartphone is lost, stolen, or broken.

Secure hardware IdM. In general, any personal secure hardware to which we can
send a nonce and which returns a signature of it can be used in lieu of our IdM.

Using biometry in IdM. Adding a virtual IdM which authenticates the Client
based on biometry is trivial. This could be done by the smartphone. As biometric
systems may have false non-matches, it is advisable to combine it with another
modality.

Password-based IdM. The fact that our protocol uses a password pw can actually
be seen as an extra IdM where the signature of com is π and the public key to
verify it is comID. To sign, this virtual IdM uses the secret sA.

11 Our proposed
protocol can be seen as an AND composition of a regular IdM with this password-
based one. This virtual IdM is integrated in Agent.

E-passport-based IdM. We can build an IdM which authenticates the Client by
their e-passport, following the ICAO MRTD standard. Assuming that Chip Au-
thentication is implemented with the PACE-CAM protocol, the IdM can re-
motely interact with the IC chip of the passport, go through passive authenti-
cation: get the certificate to have the public verification key, read the Security
Object of the Document (SOD), read the DG1 and DG14 files containing the IC

11 Technically, the virtual IdM makes a pre-proof (ch, resp1, resp2, c) and π is finished
by setting resp3 = c+ ch · r.

17

public key, authenticate it using the previous information, then run the PACE-
CAM protocol to prove to IdM that it is interacting with the e-passport, then
deduce from DG1 the identity of Client. After this, IdM may sign an OIDC token.

Unfortunately, it does not seem possible to have the e-passport to directly
sign an OIDC token. This could be done with the Active Authentication (AA)
protocol but it is not commonly available and probably outdated. It seems that
we need a trusted intermediary.

5.3 Variants for Agent

Password-less Agent. We can replace pw to authenticate to the Agent by a
constant. In that case, comID is no longer needed in contract and sA is void. The
NIZK proof can be replaced by π = r. Consequently, we no longer have CUFIdM

security: a corrupted IdM can impersonate the Client. This is fine if we can rely
on the integrity of IdM, for instance when we use a composite IdM to make it
stronger. However, the CUFAgent security reduces directly to the unforgeability
of σ and the binding security of com:

Adv
CUFAgent

A (λ) ≤ AdvUFB (λ) + AdvBINDC (λ)

This is better than Theorem 2.

We can further replace com by att and rely on the unforgeability of σ only.
However, the honest (but curious) IdM would see att.

Biometric-based Agent. We can replace pw to authenticate to the Agent by a
biometry. Enrollment would define a biometric template to be put in sA and
contract would commit to it. Then, consent issuance would commit to a biomet-
ric probe and consent would prove that both commitments commit to matching
templates. It makes π much more complex. Another option (which is not ad-
visable for privacy reasons) is to let the template in contract and the probe in
consent in clear. But, this implies to keep both contract and consent private for
a Judge in the case of a dispute.

6 Implementation

We implemented12 our digital consent scheme in Rust with Ristretto group using
curve25519-dalek library (SIMD and BasePointTable optimizations disabled).
We implement Com as Pedersen Commitment with multiscalar multiplication.
We use eddsa25519-dalek for Σ.Sign and Σ.Verify which is compliant with OIDC
JWTs. We use SHA256 for H. The benchmarks have been obtained using the
Criterion.rs statistical benchmarking suite on a laptop with Apple M1 processor.
We report the benchmark results in Table 1.

12 The source code is available at: https://github.com/bufferhe4d/consent

18

https://github.com/bufferhe4d/consent

Table 1. Benchmark Results (with att of 1KB).

Client.Enroll Client.Launch IdM Agent Verify

Running Time (µs) 94.63 146.75 23.58 387.64 323.87

Note on real world deployments: OpenPubKey [Hei+23] introduced the clever
idea of using existing OIDC providers to sign ephemeral metadata (a public key
in their case) by replacing the nonce field of the OIDC token with a public key.
This idea is also used by zkLogin [Bal+24] and Aptos Keyless Accounts13 where
both applications replace the nonce field with an ephemeral public key to sign
transactions on a blockchain. Similarly in our case, we are able to replace the
nonce field with a commitment to the hash of a password and the attribute we are
giving a consent to. Hence, the reason that our IdM only having a single signing
operation is by design and aims to facilitate this out of the box compatibility
with existing OIDC providers. Note that compared to zkLogin and Aptos Keyless
Accounts, the relation we prove on the Agent side is a simple sigma protocol
compared to a generic zk-SNARK.

7 Security of Our Protocol

We provide here security results as well as sketches of proofs. The full proofs are
provided in section A.

Theorem 1. Let Com be an additively homomorphic, computationally binding
and perfectly hiding commitment scheme, H be a hash function with output do-
main Zq, Dmin be the min-entropy of Com(H(pw), 0; 0) and ΠMULTEQ be our
NIZK proof in the random oracle model. For any PPT adversary A playing the
CUFIdM game, the following advantage against the construction on Figure 5

AdvCUFIdM

A (λ,D) ≤ (qH + qCom + qOrd) · (qCom + qOrd)

q2
+

qOrd

2Dmin
+

qH + qCom + qOrd

q
+

√
qH + qCom + qOrd

q
· AdvBINDB (λ)

where B is an adversary playing the binding-security game against Com, qH,
qCom, and qOrd are the number of queries for NIZK to the random oracle H, to
OCommit, and OOrder, respectively.

In practice, is it reasonable to assume that the min-entropy of Com(H(pw), 0; 0)
is the same as the min-entropy of pw, as it is unlikely what we have a collision
on pw 7→ Com(H(pw), 0; 0) in the password domain.

Proof (Sketch of proof). We first use the zero-knowledge property of π by sim-
ulating the proofs, adding an oracle to program the random oracle. Then, we

13 https://aptos.dev/en/build/guides/aptos-keyless

19

https://aptos.dev/en/build/guides/aptos-keyless

realize that commitments can be replaced by random ones to remove some us-
ages of pw. The last part which still uses pw is the OOrder oracle when verifying
that com commits to hID. We simulate it by an extra test oracle which verifies
whether a guess for com(hID, 0; 0) is correct. Then, we can use the min-entropy
of com(hID, 0; 0) to replace OOrder by an oracle which always rejects. We then
use the knowledge soundness of π to get openings of commitments. The game
then boils down to a binding game in the commitment. See section A for details.

Theorem 2. Let Com be an additively homomorphic, computationally binding
commitment scheme, Σ be a signature scheme which is secure against existential
forgeries, H be a hash function with output domain Zq, and ΠMULTEQ be our
NIZK proof in the random oracle model. For any PPT adversary A playing the
CUFAgent game, the following advantage against the construction on Figure 5

Adv
CUFAgent

A (λ) ≤AdvUFB (λ) +
qH
q

+

√
qH
q
· AdvBINDC (λ)

where B is an adversary playing the existential forgery game against Σ, C is
an adversary playing the binding-security game against Com, and qH and the
number of queries for NIZK to the random oracle H.

Proof (Sketch of proof). We first use the unforgeability of the signature scheme
in order to reduce to a game where the final consent was signed by the OLaunch
oracle. The signature holds on a commitment. We use the knowledge soundness
of π in order to get opening information on the commitment, and deduce a
breach in the binding security of the commitment. See section A for details.

8 Conclusion

In this work, we have introduced the concept of cryptographically secure digital
consent, aiming to replicate traditional consent processes in the digital realm.
Our proposed framework involves key participants such as an Identity Manager,
ensuring compatibility with existing systems and addressing various security and
privacy challenges. By leveraging existing cryptographic operations and avoiding
long-term client-side storage, our protocol provides a flexible and secure solution
for digital consent, accommodating different use cases and ensuring the integrity
of the consent process.

References

[ABK13] Tolga Acar, Mira Belenkiy, and Alptekin Küpçü. “Single password
authentication”. In: Computer Networks 57.13 (2013), pp. 2597–
2614. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.
2013.05.007. url: https://www.sciencedirect.com/science/
article/pii/S1389128613001667.

20

https://doi.org/https://doi.org/10.1016/j.comnet.2013.05.007
https://doi.org/https://doi.org/10.1016/j.comnet.2013.05.007
https://www.sciencedirect.com/science/article/pii/S1389128613001667
https://www.sciencedirect.com/science/article/pii/S1389128613001667

[AN23] Ghada Almashaqbeh and Anca Nitulescu. Anonymous, Timed and
Revocable Proxy Signatures. Cryptology ePrint Archive, Paper 2023/833.
2023. url: https://eprint.iacr.org/2023/833.

[Bal+24] Foteini Baldimtsi et al. zkLogin: Privacy-Preserving Blockchain Au-
thentication with Existing Credentials. 2024. eprint: 2401.11735.
url: https://arxiv.org/abs/2401.11735.

[Boy09] Xavier Boyen. “Hidden Credential Retrieval from a Reusable Pass-
word”. In: Proceedings of the 4th International Symposium on In-
formation, Computer, and Communications Security. ASIACCS ’09.
Sydney, Australia: Association for Computing Machinery, 2009, pp. 228–
238.

[Cam+14] Jan Camenisch et al. “Memento: How to Reconstruct Your Secrets
from a Single Password in a Hostile Environment”. In: Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. Lecture
Notes in Computer Science. Springer, 2014, pp. 256–275. doi: 10.
1007/978-3-662-44381-1_15. url: https://doi.org/10.1007/
978-3-662-44381-1%5C_15.

[Cam+16] Jan Camenisch et al. “Virtual Smart Cards: How to Sign with a
Password and a Server”. In: Proceedings of the 10th International
Conference on Security and Cryptography for Networks - Volume
9841. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 353–371. isbn:
9783319446172. doi: 10.1007/978- 3- 319- 44618- 9_19. url:
https://doi.org/10.1007/978-3-319-44618-9_19.

[CL01] Jan Camenisch and Anna Lysyanskaya. “An Efficient System for
Non-transferable Anonymous Credentials with Optional Anonymity
Revocation”. In: Advances in Cryptology — EUROCRYPT 2001.
Ed. by Birgit Pfitzmann. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2001, pp. 93–118. isbn: 978-3-540-44987-4.

[Dav+23] Gareth T. Davies et al. “Security Analysis of the WhatsApp End-
to-End Encrypted Backup Protocol”. In: Advances in Cryptology –
CRYPTO 2023: 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023,
Proceedings, Part IV. Santa Barbara, CA, USA: Springer-Verlag,
2023, pp. 330–361. isbn: 978-3-031-38550-6. doi: 10.1007/978-3-
031-38551-3_11. url: https://doi.org/10.1007/978-3-031-
38551-3_11.

[DHS14] David Derler, Christian Hanser, and Daniel Slamanig. “Privacy-
Enhancing Proxy Signatures from Non-Interactive Anonymous Cre-
dentials”. In: Data and Applications Security and Privacy XXVIII.
Springer Berlin Heidelberg, 2014, pp. 49–65.

[DL24] Dennis Dayanikli and Anja Lehmann. “Password-Based Credentials
with Security Against Server Compromise”. In: Springer-Verlag,
2024, pp. 147–167. isbn: 978-3-031-50593-5.

21

https://eprint.iacr.org/2023/833
2401.11735
https://arxiv.org/abs/2401.11735
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1007/978-3-662-44381-1%5C_15
https://doi.org/10.1007/978-3-662-44381-1%5C_15
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-031-38551-3_11
https://doi.org/10.1007/978-3-031-38551-3_11
https://doi.org/10.1007/978-3-031-38551-3_11
https://doi.org/10.1007/978-3-031-38551-3_11

[Doc24] DocuSign. Security for DocuSign eSignature. 2024. url: https://
www.docusign.com/trust/security/esignature.

[Fal+24] Sebastian Faller et al. Password-Protected Key Retrieval with(out)
HSM Protection. Cryptology ePrint Archive, Paper 2024/1384. To
appear at ACM CCS 2024. 2024. url: https://eprint.iacr.org/
2024/1384.

[Fau+12] Sebastian Faust et al. “On the Non-Malleability of the Fiat-Shamir
Transform”. In: Progress in Cryptology - INDOCRYPT 2012. Springer
Berlin Heidelberg, 2012, pp. 60–79.

[FP09] Georg Fuchsbauer and David Pointcheval. “Anonymous Consecu-
tive Delegation of Signing Rights: Unifying Group and Proxy Sig-
natures”. In: Formal to Practical Security: Papers Issued from the
2005-2008 French-Japanese Collaboration. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 95–115.

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical So-
lutions to Identification and Signature Problems”. In: Advances in
Cryptology - CRYPTO ’86. Vol. 263. Lecture Notes in Computer
Science. Springer, 1986, pp. 186–194.

[GT12] Kristian Gjøsteen and Øystein Thuen. “Password-Based Signatures”.
In: Public Key Infrastructures, Services and Applications. Springer
Berlin Heidelberg, 2012, pp. 17–33.

[Hei+23] Ethan Heilman et al. OpenPubkey: Augmenting OpenID Connect
with User held Signing Keys. Cryptology ePrint Archive, Paper
2023/296. 2023. url: https://eprint.iacr.org/2023/296.

[HS13] Christian Hanser and Daniel Slamanig. “Blank Digital Signatures”.
In: Proceedings of the 8th ACM SIGSAC Symposium on Informa-
tion, Computer and Communications Security. ASIA CCS ’13. New
York, NY, USA: Association for Computing Machinery, 2013, pp. 95–
106. isbn: 9781450317672.

[HWF05] Yong-Zhong He, Chuan-Kun Wu, and Deng-Guo Feng. “Server-
Aided Digital Signature Protocol Based on Password”. In: Proceed-
ings 39th Annual 2005 International Carnahan Conference on Se-
curity Technology. 2005, pp. 89–92.

[JKR13] Sangeetha Jose, Preetha Mathew K., and C. Pandu Rangan. Strongly
Secure Password Based Blind Signature for Real World Applica-
tions. 2013.

[MRS10] Atsuko Miyaji, Mohammad Shahriar Rahman, and Masakazu Soshi.
“Hidden Credential Retrieval without Random Oracles”. In: Web
Information System and Application Conference. 2010. url: https:
//api.semanticscholar.org/CorpusID:46197738.

[Sch89] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards”. In: Advances in Cryptology - EUROCRYPT ’89, Work-
shop on the Theory and Application of of Cryptographic Techniques.
Vol. 434. Lecture Notes in Computer Science. 1989, pp. 688–689.

22

https://www.docusign.com/trust/security/esignature
https://www.docusign.com/trust/security/esignature
https://eprint.iacr.org/2024/1384
https://eprint.iacr.org/2024/1384
https://eprint.iacr.org/2023/296
https://api.semanticscholar.org/CorpusID:46197738
https://api.semanticscholar.org/CorpusID:46197738

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”.
In: Journal of Cryptology 4.3 (1991), pp. 161–174.

23

Supplementary Materials

A Security of Our Protocol

A.1 CUFIdM Security: Proof of Theorem 1

Proof. For the games we construct during the proof, we denote the i-th game
with Gi. We set G0 = CUFIdM.

G1 (Figure 7): We expand the subprocedures Launch,Commit and Agent. We
have,

AdvG0A = AdvG1A

G2 (Figure 8): Since all the enrolled users except the victim enrolled with login∗

are corrupted, if login ̸= login∗ OOrder is simulatable by the adversary A2, hence
we rewrite it with login∗ only. We also remove line 2 of Agent in OCommit in G1
as it always passes the check. We have,

AdvG1A = AdvG2A2

G3 (Figure 9): We drop the db structure along with the OCorruptEnroll oracle
and the enrolled set, as the corrupted enrollments are not used anymore and
simulate these calls in A3. We have,

AdvG2A2
= AdvG3A3

G4 (Figure 10): We replace π in OCommit and OOrder with a simulated proof by
equipping the technique used in [Fau+12]. The technique works as follows: First
we introduce a lazy sampling table LH along with two oracles S1 which simulates
the random oracle using LH and S2 which on input a valid statement x and
witness w, checks the validity and returns a simulated proof while programming
LH respectively. We use the fact that ΠMULTEQ is perfect zero-knowledge, as
discussed in subsection 4.2. The advantage loss is introduced by the abort cases
in S1 and S2. For each new query to S2 and each existing LH entry, the probability
to match (so to abort) is the probability of a collision on the random selection
of α = (com1, com2). There are up to qS1

+ qS2
entries in LH, and qS2

queries to
S2. We have:

AdvG3A3
≤ AdvG4A3

+
(qS1 + qS2) · qS2

q2

24

G1(A,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : pkIdM, st, login
∗, ID∗ ← A1(1

λ)

4 : pw∗ ←$ D
5 : enrolled← {login∗}
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : db[login∗]← s∗A, contract
∗

8 : Aoracles
2 (contract∗, st)→ att∗, consent∗

9 : if Verify(contract∗, att∗, consent∗)

10 : ∧ consent∗ /∈ given :

11 : return 1

12 : return 0

OCorruptEnroll(login, sA, contract)

1 : if login ∈ enrolled

2 : abort

3 : enrolled← enrolled ∪ login

4 : db[login]← sA, contract

5 : return ⊥
OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : Launch

1 : r ←$ {0, 1}λ

2 : com← Com(H(pw∗), att; r)

3 : query← com

4 : state← (r, com)

5 : cst[sid].att← att

6 : cst[sid].state← state

7 : return query

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : Commit

1 : cst[sid].state→ r, com

2 : cst[sid].att→ att

3 : resp→ σ

4 : order← com, r, σ

5 : remove sid from cst

6 : Agent

1 : s∗A, contract
∗ → hID, rID, pkIdM, comID

2 : return false if com ̸= Com(hID, att, r)

3 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

4 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

5 : consent← (σ, com, π)

6 : given← given ∪ consent

7 : return consent

OOrder(login, att, order)

1 : db[login]→ sA, contract

2 : order→ com, r, σ

3 : Agent

1 : sA, contract→ hID, rID, pkIdM, comID

2 : return false if com ̸= Com(hID, att, r)

3 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

4 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

5 : consent← (σ, com, π)

6 : return consent

Fig. 7. CUFIdM G1

25

G2(A2,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : pkIdM, st, login
∗, ID∗ ← A2,1(1

λ)

4 : pw∗ ←$ D
5 : enrolled← {login∗}
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : db[login∗]← s∗A, contract
∗

8 : Aoracles
2,2 (contract∗, st)→ att∗, consent∗

9 : if Verify(contract∗, att∗, consent∗)

10 : ∧ consent∗ /∈ given :

11 : return 1

12 : return 0

OCorruptEnroll(login, sA, contract)

1 : if login ∈ enrolled

2 : abort

3 : enrolled← enrolled ∪ login

4 : db[login]← sA, contract

5 : return ⊥
OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : r ←$ {0, 1}λ

4 : com← Com(H(pw∗), att; r)

5 : query← com

6 : state← (r, com)

7 : cst[sid].att← att

8 : cst[sid].state← state

9 : return query

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ r, com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : s∗A, contract
∗ → hID, rID, pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : s∗A, contract
∗ → hID, rID, pkIdM, comID

3 : return false if com ̸= Com(hID, att, r)

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

6 : consent← (σ, com, π)

7 : return consent

Fig. 8. CUFIdM G2

26

G3(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

4 : pw∗ ←$ D
5 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

6 : Aoracles
3,2 (contract∗, st)→ att∗, consent∗

7 : if Verify(contract∗, att∗, consent∗)

8 : ∧ consent∗ /∈ given :

9 : return 1

10 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : r ←$ {0, 1}λ

4 : com← Com(H(pw∗), att; r)

5 : query← com

6 : state← (r, com)

7 : cst[sid].att← att

8 : cst[sid].state← state

9 : return query

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ r, com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : s∗A, contract
∗ → hID, rID, pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : s∗A, contract
∗ → hID, rID, pkIdM, comID

3 : return false if com ̸= Com(hID, att, r)

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← ΠMULTEQ.PoK
H(comID, com, att, hID, rID, r)

6 : consent← (σ, com, π)

7 : return consent

Fig. 9. CUFIdM G3

27

G4(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

8 : if Verify(contract∗, att∗, consent∗)

9 : ∧ consent∗ /∈ given :

10 : return 1

11 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : r ←$ {0, 1}λ

4 : com← Com(H(pw∗), att; r)

5 : query← com

6 : state← (r, com)

7 : cst[sid].att← att

8 : cst[sid].state← state

9 : return query

S2(x,w)

1 : if R(x,w) = ⊥
2 : return ⊥
3 : π ←$ ΠMULTEQ.Sim(x)

4 : π → (α, ch, γ)

5 : if (x, α) ∈ LH

6 : abort

7 : LH[(x, α)]← ch

8 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ r, com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : s∗A, contract
∗ → hID, rID, pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S2((comID, com, att), (hID, rID, r))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : s∗A, contract
∗ → hID, rID, pkIdM, comID

3 : return false if com ̸= Com(hID, att, r)

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← S2((comID, com, att), (hID, rID, r))

6 : consent← (σ, com, π)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 10. CUFIdM G4

28

G5 (Figure 11): We observe that since S2 is only accessed through OCommit and
OOrder the instance witness pair (x, ω) will always be valid. Hence we remove
the check in S2 in order to remove hID, rID, r from the input to S2. We obtain the
oracle S′

2.

AdvG4A3
= AdvG5A3

G6 (Figure 12): Note that r is not used in OCommit anymore, hence we remove
it from state. Moreover, we use the fact that Com is perfectly hiding and replace
com with a random group element. We further remove the generation of r. Note
that OLaunch does not contain pw∗ anymore.

AdvG5A3
= AdvG6A3

G7 (Figure 13): We want to remove hID from line 3 in OOrder. Note that com =
Com(hID, att; r) = Com(0, att; r) + Com(hID, 0; 0). Instead of checking com =
Com(hID, att; r). We rewrite this test whether a given hID is correct using the
following: com−Com(0, att; r) = Com(hID, 0; 0). We introduce an OTest(w) oracle
that helps to rewrite this in the game. Since hID and rID is not used, we remove
them along with s∗A from OOrder:

AdvG6A3
= AdvG7A3

G8 (Figure 14): We expand Enroll and since rID is removed we replace comID by
a random group element by using the hiding property of Com. Since hID is also
removed, we remove s∗A entirely. Now pw∗ is only used in OTest:

AdvG7A3
= AdvG8A3

G9 (Figure 15): Observe that passing the OTest oracle is equivalent to recov-
ering Com(H(pw∗), 0; 0). We can replace OTest with an always reject oracle by
introducing a loss of qOrd

2Dmin
which is the probability of correctly guessing pw∗

with qOrd queries to the OOrder oracle:

AdvG8A3
= AdvG9A3

+
qOrd

2Dmin

29

G5(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

8 : if Verify(contract∗, att∗, consent∗)

9 : ∧ consent∗ /∈ given :

10 : return 1

11 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : r ←$ {0, 1}λ

4 : com← Com(H(pw∗), att; r)

5 : query← com

6 : state← (r, com)

7 : cst[sid].att← att

8 : cst[sid].state← state

9 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ r, com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : s∗A, contract
∗ → hID, rID, pkIdM, comID

3 : return false if com ̸= Com(hID, att, r)

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← S′
2((comID, com, att))

6 : consent← (σ, com, π)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 11. CUFIdM G5

30

G6(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

8 : if Verify(contract∗, att∗, consent∗)

9 : ∧ consent∗ /∈ given :

10 : return 1

11 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : com←$ G

4 : query← com

5 : state← com

6 : cst[sid].att← att

7 : cst[sid].state← state

8 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : s∗A, contract
∗ → hID, rID, pkIdM, comID

3 : return false if com ̸= Com(hID, att, r)

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← S′
2((comID, com, att))

6 : consent← (σ, com, π)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 12. CUFIdM G6

31

G7(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : s∗A, contract

∗ ← Enroll(ID∗, pw∗, pkIdM)

7 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

8 : if Verify(contract∗, att∗, consent∗)

9 : ∧ consent∗ /∈ given :

10 : return 1

11 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : com←$ G
4 : query← com

5 : state← com

6 : cst[sid].att← att

7 : cst[sid].state← state

8 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, s

2 : contract∗ → pkIdM, comID

3 : return false if OTest(com− Com(0, att; r)) ̸= 1

4 : return false if Σ.Verify(pkIdM, s, com) ̸= 1

5 : σ ← S′
2((comID, com, att))

6 : consent← (σ, com, σ)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

OTest(w)

1 : return w
?
= Com(H(pw∗), 0; 0)

Fig. 13. CUFIdM G7

32

G8(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D

6 : h∗, r∗ ←$ Zq

7 : comID ←$ Com(h∗, 0; r∗)

8 : contract∗ ← ID∗, comID, pkIdM

9 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

10 : if Verify(contract∗, att∗, consent∗)

11 : ∧ consent∗ /∈ given :

12 : return 1

13 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : com←$ G
4 : query← com

5 : state← com

6 : cst[sid].att← att

7 : cst[sid].state← state

8 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : contract∗ → pkIdM, comID

3 : return false if OTest(com− Com(0, att; r)) ̸= 1

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← S′
2((comID, com, att))

6 : consent← (σ, com, π)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

OTest(w)

1 : return w
?
= Com(H(pw∗), 0; 0)

Fig. 14. CUFIdM G8

33

G9(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : h∗, r∗ ←$ Zq

7 : comID ←$ Com(h∗, 0; r∗)

8 : contract∗ ← ID∗, comID, pkIdM

9 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

10 : if Verify(contract∗, att∗, consent∗)

11 : ∧ consent∗ /∈ given :

12 : return 1

13 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : com←$ G
4 : query← com

5 : state← com

6 : cst[sid].att← att

7 : cst[sid].state← state

8 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : order→ com, r, σ

2 : contract∗ → pkIdM, comID

3 : return false if OTest(com− Com(0, att; r)) ̸= 1

4 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

5 : π ← S′
2((comID, com, att))

6 : consent← (σ, com, π)

7 : return consent

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

OTest(w)

1 : return false

Fig. 15. CUFIdM G9

34

G10 (Figure 16): Since the OTest check in OOrder will always fail, we replace
OOrder with returning false:

AdvG9A3
= AdvG10A3

G11 (Figure 17): We simulate the OLaunch and the OCommit oracle using a
single oracle OSim that returns simulated proofs for a given commitment with
an input (com, att). We simplify the game by removing the unused variables and
signatures. We also explicit the random coins ρ of the adversary. Now we have
an adversary that tries to forge a valid proof by observing simulated proofs.

AdvG10A3
= AdvG11A11

G12 (Figure 18): We use the weak simulation extractability of our NIZK, as
discussed in subsection 4.2, to obtain the extraction of a witness for the newly
generated proof, thanks to an extractor E .

AdvG11A11
≤ qS1

+ qS2

q
+
√
(qS1 + qS2) · Adv

G12
A11

G13 (Figure 19): By now including nearly everything inside the adversary, we
obtain an new adversary B who can open any random commitment com∗

ID.

AdvG12A11
= AdvG13B

G14 (Figure 20): We introduce a new condition for success: that hID ̸= h∗.
The failing event hID = h∗ happens with probability 1

q , due to that Com being
perfectly hiding. Hence,

AdvG13B ≤ AdvG14B +
1

q

Wrapping up: The game G14 is the binding security game for the commitment.
Hence, AdvG14B is the advantage in the binding game. The number of queries to
S1 corresponds to the queries qH to the random oracle. The number of queries
to S2 (or S′

2) is the number of queries to either OCommit or OOrder.

35

G10(A3,D)

1 : given← ∅
2 : cst← {} // challenge state

3 : LH← {} // lazy sampling oracle

4 : pkIdM, st, login
∗, ID∗ ← A3,1(1

λ)

5 : pw∗ ←$ D
6 : h∗, r∗ ←$ Zq

7 : comID ←$ Com(h∗, 0; r∗)

8 : contract∗ ← ID∗, comID, pkIdM

9 : AO∗,S1
3,2 (contract∗, st)→ att∗, consent∗

10 : if Verify(contract∗, att∗, consent∗)

11 : ∧ consent∗ /∈ given :

12 : return 1

13 : return 0

OLaunch(sid, att)

1 : if sid ∈ cst

2 : abort

3 : com←$ G
4 : query← com

5 : state← com

6 : cst[sid].att← att

7 : cst[sid].state← state

8 : return query

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OCommit(sid, resp)

1 : if sid /∈ cst

2 : abort

3 : cst[sid].state→ com

4 : cst[sid].att→ att

5 : resp→ σ

6 : remove sid from cst

7 : contract∗ → pkIdM, comID

8 : return false if Σ.Verify(pkIdM, σ, com) ̸= 1

9 : π ← S′
2((comID, com, att))

10 : consent← (σ, com, π)

11 : given← given ∪ consent

12 : return consent

OOrder(att, order)

1 : return false

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

OTest(w)

1 : return false

Fig. 16. CUFIdM G10

36

G11(A11,D)

1 : given← ∅
2 : LH← {} // lazy sampling oracle

3 : h∗, r∗ ←$ Zq

4 : comID ←$ Com(h∗, 0; r∗)

5 : pick ρ

6 : AO∗,S1
11 (comID; ρ)→ π, att∗, com∗

7 : if ¬ΠMULTEQ.Verify(π, com
∗
ID, com

∗, att∗)

8 : ∨ (com∗, π) ∈ given :

9 : return 0

10 : return 1

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OSim(com, att)

1 : π ← S′
2((com

∗
ID, com, att))

2 : given← given ∪ (com, π)

3 : return π

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 17. CUFIdM G11

A.2 CUFAgent Security: Proof of Theorem 2

Proof. For the games we construct during the proof, we denote the i-th game
with Gi. We set G0 = CUFAgent.

G1 (Figure 21): We expand each subprocedure.

AdvG0A = AdvG1A

G2 (Figure 22):

AdvG1A = AdvG2A

G3 (Figure 23): The Σ.Sign operations could be outsourced to a signing oracle
OSign, which is the only place where we need skIdM. A valid consent in G2 must
include a valid signature σ on some (com∗, ID∗) pair. We reduce to a game G3
where this signature is not a forgery, by using the unforgeability of the signature
(i.e. by defining an adversary B who would make a forgery on Σ). Clearly, the

37

G12(A11,D)

1 : given← ∅
2 : LH← {} // lazy sampling oracle

3 : h∗, r∗ ←$ Zq

4 : comID ←$ Com(h∗, 0; r∗)

5 : pick ρ

6 : AO∗,S1
11 (comID; ρ)→ π, att∗, com∗

7 : if ¬ΠMULTEQ.Verify(π, com
∗
ID, com

∗, att∗)

8 : ∨ (com∗, π) ∈ given :

9 : return 0

10 : E(com∗
ID, com

∗, att∗, π; ρ, LH, given)→ hID, rID, r

11 : if R((com∗
ID, com

∗, att∗), (hID, rID, r)) :

12 : return 1

13 : return 0

S′
2(x)

1 : π ←$ ΠMULTEQ.Sim(x)

2 : π → (α, ch, γ)

3 : if (x, α) ∈ LH

4 : abort

5 : LH[(x, α)]← ch

6 : return π

OSim(com, att)

1 : π ← S′
2((com

∗
ID, com, att))

2 : given← given ∪ (com, π)

3 : return π

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 18. CUFIdM G12

G13(B,D)

1 : h∗, r∗ ←$ Zq

2 : comID ←$ Com(h∗, 0; r∗)

3 : B(comID)→ hID, rID

4 : if Com(hID, 0; rID) = com∗
ID :

5 : return 1

6 : return 0

Fig. 19. CUFIdM G13

38

G14(B,D)

1 : h∗, r∗ ←$ Zq

2 : comID ←$ Com(h∗, 0; r∗)

3 : B(comID)→ hID, rID

4 : if Com(hID, 0; rID) = com∗
ID ∧ hID ̸= h∗ :

5 : return 1

6 : return 0

Fig. 20. CUFIdM G14

signed pair cannot be one of those signed in OCorruptQuery as ID∗ would not be
in db otherwise and thus would make the game abort. Hence, it must come from
OLaunch, which was for some attribute att. But to make the game succeed, we
must have att ̸= att∗.

AdvG2A ≤ AdvG3A + AdvUFB

G4 (Figure 24): We make A4 simulate everything in the game except the random
oracle, the computation of com∗, and the verification of π.

AdvG3A = AdvG4A4

G5 (Figure 25): We use the weak simulation extractability of our NIZK, as
discussed in subsection 4.2, to obtain the extraction of a witness for the newly
generated proof, thanks to an extractor E .

AdvG4A4
≤ qS1

q
+

√
qS1 · Adv

G5
A4

G6 (Figure 25): The game G5 boils down to the binding security game for the
commitment.

AdvG5A4
= AdvG6C

Wrapping up: Clearly, AdvG6C is the advantage in the binding game. The number
of queries to S1 corresponds to the queries qH to the random oracle.

39

G1(A)

1 : corrupted← ∅
2 : ordered← ∅

3 : skIdM, pkIdM ← IdM.Setup(1λ)

4 : Aoracles(pkIdM)→ ID∗, att∗, consent∗

5 : abort if ID∗ /∈ db

6 : db[ID∗]→ contract∗

7 : if Verify(contract∗, att∗, consent∗)

8 : ∧ (ID∗, att∗) /∈ ordered :

9 : return 1

10 : return 0

OEnroll(ID, pw)

1 : if ID ∈ db ∨ ID ∈ corrupted

2 : abort

3 : (sA, contract)← Enroll(ID, pw, pkIdM)

4 : db[ID]← (contract, pw)

5 : return sA, contract

OLaunch(ID, att)

1 : if ID /∈ db

2 : abort

3 : db[ID]→ pw

4 : Launch

1 : r ←$ {0, 1}∗

2 : com← Com(H(pw), att; r)

3 : IdM

1 : σ ← Σ.Sign(skIdM, com, ID)

2 : Commit

1 : order← (com, r, σ)

2 : ordered← ordered ∪ (ID, att)

3 : return com, σ, order

OCorruptQuery(ID, query)

1 : if ID /∈ corrupted

2 : abort

3 : IdM

1 : σ ← Σ.Sign(skIdM, com, ID)

2 : return resp

OCorruptEnroll(ID)

1 : if ID ∈ db

2 : abort

3 : corrupted← corrupted ∪ ID

4 : return ⊥

Fig. 21. CUFAgent G1

40

G2(A)

1 : corrupted← ∅
2 : ordered← ∅

3 : skIdM, pkIdM ← IdM.Setup(1λ)

4 : Aoracles(pkIdM)→ ID∗, att∗, consent∗

5 : abort if ID∗ /∈ db

6 : db[ID∗]→ contract∗

7 : if Verify(contract∗, att∗, consent∗)

8 : ∧ (ID∗, att∗) /∈ ordered :

9 : return 1

10 : return 0

OEnroll(ID, pw)

1 : if ID ∈ db ∨ ID ∈ corrupted

2 : abort

3 : (sA, contract)← Enroll(ID, pw, pkIdM)

4 : db[ID]← (contract, pw)

5 : return sA, contract

OLaunch(ID, att)

1 : if ID /∈ db

2 : abort

3 : db[ID]→ pw

4 : r ←$ {0, 1}∗

5 : com← Com(H(pw), att; r)

6 : σ ← Σ.Sign(skIdM, com, ID)

7 : order← (com, r, s)

8 : ordered← ordered ∪ (ID, att)

9 : return com, σ, order

OCorruptQuery(ID, query)

1 : if ID /∈ corrupted

2 : abort

3 : σ ← Σ.Sign(skIdM, com, ID)

4 : return resp

OCorruptEnroll(ID)

1 : if ID ∈ db

2 : abort

3 : corrupted← corrupted ∪ ID

4 : return ⊥

Fig. 22. CUFAgent G2

41

G3(A)

1 : corrupted← ∅
2 : ordered← ∅

3 : signed← ∅

4 : skIdM, pkIdM ← IdM.Setup(1λ)

5 : Aoracles(pkIdM)→ ID∗, att∗, consent∗

6 : abort if ID∗ /∈ db

7 : db[ID∗]→ (., com∗
ID, .)

8 : consent∗ → (σ∗, com∗, π∗)

9 : if ΠMULTEQ.Verify(π
∗, com∗

ID, com
∗, att∗)

10 : ∧ (ID∗, att∗) /∈ ordered

11 : ∧(ID∗, com∗) ∈ signed :

12 : return 1

13 : return 0

OEnroll(ID, pw)

1 : if ID ∈ db ∨ ID ∈ corrupted

2 : abort

3 : (sA, contract)← Enroll(ID, pw, pkIdM)

4 : db[ID]← (contract, pw)

5 : return sA, contract

OLaunch(ID, att)

1 : if ID /∈ db

2 : abort

3 : db[ID]→ pw

4 : r ←$ {0, 1}∗

5 : com← Com(H(pw), att; r)

6 : σ ← Σ.Sign(skIdM, com, ID)

7 : order← (com, r, s)

8 : ordered← ordered ∪ (ID, att)

9 : signed← signed ∪ (ID, com)

10 : return com, σ, order

OCorruptQuery(ID, query)

1 : if ID /∈ corrupted

2 : abort

3 : σ ← Σ.Sign(skIdM, com, ID)

4 : return resp

OCorruptEnroll(ID)

1 : if ID ∈ db

2 : abort

3 : corrupted← corrupted ∪ ID

4 : return ⊥

Fig. 23. CUFAgent G3

G4(A4)

1 : AS1
4 ()→ hID, comID, att, r, att

∗, π

2 : com← Com(hID, att; r)

3 : if ΠMULTEQ.Verify(π, comID, com, att∗)

4 : ∧ att ̸= att∗ :

5 : return 1

6 : return 0

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 24. CUFAgent G4

42

G5(A4)

1 : pick ρ

2 : AS1
4 (ρ)→ hID, comID, att, r, att

∗, π

3 : com← Com(hID, att; r)

4 : E(ρ, LH)→ h∗
ID, r

∗
ID, r

∗

5 : if R(comID, com, att∗, h∗
ID, r

∗
ID, r

∗)

6 : ∧ att ̸= att∗ :

7 : return 1

8 : return 0

S1(x, α)

1 : if (x, α) /∈ LH

2 : LH[(x, α)]←$ Zq

3 : return LH[(x, α)]

Fig. 25. CUFAgent G5

G6(C)

1 : C()→ hID, att, r, h
∗
ID, att

∗, r∗

2 : com← Com(hID, att; r)

3 : com∗ ← Com(h∗
ID, att

∗; r∗)

4 : if com = com∗ ∧ att ̸= att∗ :

5 : return 1

6 : return 0

Fig. 26. CUFAgent G6

43

B PBS based on blind RSA

In this section, we explain the PBS based on RSA from [JKR13]. Let N, e, d be
RSA modulus, exponent and private key respectively. We assume there exists
shares d1, d2 of an RSA private key d. Such that d = d1 + d2. This can be done
by a joint protocol between Client and Agent or by a dealer. G is a random map
for mapping low entropy pw to a group element. H is a random oracle.

Client(d1) Agent(d2)

pw←$ D
η ← G(pw)− d1

η

sA ← d2 − η

Request
Agent(sA)Client(pw,m)

r ←$ Z∗
N

ρ← H(m) · re

ρ

σ̃ ← ρsA mod N

σ̃

σ ← σ̃ · ρG(pw) · r−1

// Check if RSA signature verifies

if σe = H(m)
return σ

return ⊥

Fig. 27. Password Based Signature Based on RSA

Outsider attack on PBS based on blind RSA. An adversary that can send arbi-
trary messages to the Agent can mount an offline dictionary attack on the pass-
word. First the adversary picks a random r and m. Computes ρ ← H(m) · re.
Obtains the corresponding σ̃ from the agent. After one such query, the following
equation can be checked offline to find the password:

(σ̃ · ρG(pw) · r−1)e
?
= H(m)

Once the password is found, the adversary can interact with the Agent to
forge signatures.

44

C PBS based on CL Signatures

In [JKR13], the authors also propose a PBS protocol based on CL Signatures
[CL01]. Let e be a type 3 pairing group (G1 × G2 → G3) with all groups have
prime order p. Let g1 and Z be generators of G1 and g2 be the generator of G2.
Let G be a hash function G : {0, 1}∗ → Zp × Zp. See Fig. 28 for the protocol
flow.

Outsider attack on PBS based on CL signatures An adversary that can send
arbitrary messages to the Agent can mount an offline dictionary attack on the
password. After capturing pk from agent’s last message. First the adversary
picks a random r and m. Computes ρ ← gm1 · Zr. Obtains the corresponding
A,C and D from the agent. After one such query, the CL Signature verification
equation can be checked offline to find the password. Note that at this point,
the adversary is already in possession of a forged signature on message m.

D Server Aided Digital Signatures (SADS)

Notation for the SADS protocol [HWF05] below:

– RSA.Gen: RSA Key Generator
– H: Random Oracle
– MACkey(m): Message authentication code with key key for message m.
– Enckey(m): Symmetric encryption with key key for message m
– Deckey(c): Symmetric decryption with key key for ciphertext c
– PKE.Gen(): Key generator of a PKE.
– PKE.Encpk(m): PKE encryption with key pk for message m
– PKE.Decsk(c): PKE decryption with key sk for message c
– Sig.Gen(): Key generator of a signature scheme.
– Sig.Signsk(m): Signing algorithm of a signature scheme with secret key sk

for message m.
– Sig.Verpk(m, sig): Verification algorithm of a signature scheme with public

key pk on a message m with signature sig.

45

Client() Agent()

pw←$ D
(x2, y2)← G(pw)
X2, Y2 ← gx2

2 , gy22
η ← (X2, Y2)

η

x1, y1 ←$ Zp

X1, Y1 ← gx1
2 , gy12

X,Y ← X1 ·X2, Y1 · Y2

pk ← (X,Y)
sA ← (x1, y1)
τ ← (X1, Y1)

pk, τ

pk′ ← X1 ·X2, Y1 · Y2

abort if pk′ ̸= pk

Request
Client(pk, pw,m) Agent(sA)

r ←$ Zp

ρ← gm1 · Zr

ρ

a←$ Z∗
p

A← ga1
C ← ga·x1

1 · ρa·y1
D ← Za·y1

A,C,D

(x2, y2)← G(pw)
C ← C ·D−r

C ← C ·Ax2+m·y2

// Check if CL signature verifies

if A ̸= 0 ∧ e(C, g2)
?
= e(A,X) · e(A, Y)m

t←$ Zp

return (At, Ct)
return ⊥

Fig. 28. Password Based Signature Based on CL Signatures

46

KeyGen(pw)

1 : δ1, δ2 ←$ Zq

2 : key ← H(H(pw)δ1+δ2 mod p)

3 : a1 ← H(H(pw)δ1 mod p)

4 : a2 ← H(H(pw)δ2 mod p)

5 : e, d,N ←$ RSA.Gen(1λ)

6 : d1 ←$ Zϕ(N)

7 : d2 = d− d1 mod ϕ(N)

8 : A← Enckey(d1||N ||MACkey(d1||N))

9 : ssk1, spk1 ← Sig.Gen(λ)

10 : sk1, pk1 ← PKE.Gen(λ)

11 : sk2, pk2 ← PKE.Gen(λ)

12 : return to Server 1(A, δ1, a2, ssk1, sk1)

13 : return to Server 2(δ2, d2, a1, sk2)

14 : return to All(p,N, e, spk1, pk1, pk2)

Fig. 29. KeyGen for SADS

47

Server1(A, δ1, a2, ssk1, sk1) Client(pw,M) Server2(δ2, d2, a1, sk2)

b←$ Z∗
q

c← H(pw)b mod p

c

t1 ← cδ1 mod p
v1 ← Sigssk1

(t1||c)

(v1, t1, A)

abort if Verspk1(t1||c, v1) ̸= 1

u1 ← tb
−1

1 mod p
auth1 ← MACH(u1)(M ||c)
r1 ←$ {0, 1}λ
eau1 ←$ PKE.Encpk2(auth1, r1)

(c,M, eau1)

auth′
1, r

′
1 ← PKE.Decsk2(eau1)

abort if auth1 ̸= MACa1(M ||c)
s1 ← H(M)d2 mod N

t2 ← cδ2 mod p

(s1, t2)

u2 ← tb
−1

2 mod p
key′ ← H(u1 · u2 mod p)
d1, N, auth′ ← Deckey′(A)
abort if MACkey′(d1||N) ̸= auth′

s2 ← s1 ·H(M)d1 mod N
abort if se2 ̸= H(M) mod N
auth2 ← MACH(u2)(M ||c)
r2 ←$ {0, 1}λ
eau2 ←$ PKE.Encpk1(auth2, r2)

(eau2,M)

auth′
2, r

′
2 ← PKE.Decsk1(eau2)

abort if auth′
2 ̸= MACa2(M ||c)

Fig. 30. SADS Protocol Construction

48

	Cryptographically Secure Digital Consent

