
Ideal Pseudorandom Codes

Omar Alrabiah∗ Prabhanjan Ananth† Miranda Christ‡ Yevgeniy Dodis§

Sam Gunn¶

November 8, 2024

Abstract

Pseudorandom codes are error-correcting codes with the property that no efficient adversary can dis-
tinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn
[CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as genera-
tive AI models. Several constructions of pseudorandom codes have since been proposed, but none of them
are robust to error channels that depend on previously seen codewords. This stronger kind of robustness
is referred to as adaptive robustness, and it is important for meaningful applications to watermarking.

In this work, we show the following.
• Adaptive robustness: We show that the pseudorandom codes of Christ and Gunn are adaptively

robust, resolving a conjecture posed by Cohen, Hoover, and Schoenbach [S&P 2025]. Our proof
involves several new ingredients, combining ideas from both cryptography and coding theory and
taking hints from the analysis of Boolean functions.

• Ideal security: We define an ideal pseudorandom code as one which is indistinguishable from the
ideal functionality, capturing both the pseudorandomness and robustness properties in one simple
definition. We show that any adaptively robust pseudorandom code for single-bit messages can be
bootstrapped to build an ideal pseudorandom code with linear information rate, under no additional
assumptions.

• CCA security: In the setting where the encoding key is made public, we define a CCA-secure
pseudorandom code in analogy with CCA-secure encryption. We show that any adaptively ro-
bust public-key pseudorandom code for single-bit messages can be used to build a CCA-secure
pseudorandom code with linear information rate, in the random oracle model.

Together with the result of Christ and Gunn, it follows that there exist ideal pseudorandom codes
assuming the 2O(

√
n)-hardness of LPN. This extends to CCA security in the random oracle model. These

results immediately imply stronger robustness guarantees for generative AI watermarking schemes, such
as the practical quality-preserving image watermarks of Gunn, Zhao, and Song (2024).

∗UC Berkeley. Email: oalrabiah@berkeley.edu
†UCSB. Email: prabhanjan@cs.ucsb.edu
‡Columbia University. Email: mchrist@cs.columbia.edu
§NYU. Email: dodis@cs.nyu.edu
¶UC Berkeley. Email: gunn@berkeley.edu

Contents

1 Introduction 1
1.1 Results . 3
1.2 Relationship to watermarking . 4

2 Technical overview 5
2.1 Organization . 5
2.2 Pseudorandom codes . 6
2.3 Adaptively robust public-key PRCs based on LDPC codes . 6
2.4 Ideal PRCs: the secret-key setting . 9
2.5 CCA security: the public-key setting . 11

3 Preliminaries 13
3.1 Pseudorandom codes . 15

4 Adaptively robust public-key PRCs based on LDPC codes 15
4.1 Definitions . 15
4.2 The scheme . 17
4.3 The toolkit . 18
4.4 An adaptively robust zero-bit PRC . 19
4.5 An adaptively robust single-bit PRC . 22

5 Ideal PRCs: the secret-key setting 25
5.1 Definition . 25
5.2 Boosting the information rate . 26
5.3 The non-malleable transformation and ideal security . 27

6 CCA security: the public-key setting 29
6.1 CCA security definition . 29
6.2 Boosting the information rate . 30
6.3 Construction and security proof . 31

A Related work 38

1 Introduction

Pseudorandom codes. Suppose that Alice wishes to send a message to Bob over some channel. The
fields of cryptography and coding theory each address a different concern that Alice might have about the
channel:

• if the channel is untrusted in the sense that there may be an eavesdropper, then we use encryption;

• if the channel is unreliable in the sense that information may be corrupted in transit, then we use
error-correcting codes.

If the channel is both untrusted and unreliable, there is typically no issue with combining these techniques.
That is, if Alice wishes only to hide the content of her message, then she can simply error correct an
encryption of her message. However, this is insufficient if Alice doesn’t want the channel to even know that
communication has occurred.1

Concretely, imagine that Alice wishes for it to appear as if her transmissions are uniformly random. What
Alice needs is then robust, pseudorandom encryption — transmissions should appear random, and decryption
should function even if they are corrupted. Such an object is called a pseudorandom code (PRC).

More formally, a (secret-key) PRC is a keyed error correction scheme consisting of algorithms for encoding
and decoding. To an adversary without knowledge of the key, an encoding oracle is computationally indis-
tinguishable from an oracle that outputs a freshly random string on each query. With the secret key, one
can decode codewords even after they are subjected to an error channel.2

To build a PRC, the basic results of cryptography and coding theory fall short. The central difficulty is
that Alice’s transmission must, on the one hand, appear completely structure-less to the channel, and on the
other, appear highly redundant to Bob so that he can reliably recover the message even if the transmission is
corrupted. Therefore pseudorandom codes force us to push the boundaries of both cryptography and coding
theory, a tension that is reflected in the fact that all known constructions of PRCs have quasipolynomial-time
distinguishing attacks [CG24, GM24, GG24].

Watermarking. PRCs are not only natural cryptographic and coding-theoretic objects, but also powerful
tools for constructing watermarks for generative AI. See Section 1.2 for an explanation of how this works;
for now let us just say that at a high level, this is because one can typically view generative AI models as
approximate reparameterizations of “content” (e.g. images or text) into a space where the content has a
natural distribution (e.g. normal or uniform). With this observation, [CG24, GM24] use PRCs to construct
watermarks for language models that are undetectable in that the watermarked model is computationally
indistinguishable from the original model (thereby ensuring that the watermark does not degrade generation
quality), and robust in that the watermark tolerates a constant rate of errors. Prior text watermarks were
either only undetectable but not robust [CGZ24], or robust but significantly altered the model’s output
distribution [ZALW24, KTHL24]. Similarly, the only known quality-preserving and robust watermarks for
image generation models uses a PRC. This approach was demonstrated in practice by [GZS24].

These schemes essentially embed a PRC codeword in the space where content has a natural distribution;
pseudorandomness of the PRC implies undetectability of the watermark, and robustness of the PRC implies
robustness of the watermark. As we explain in Section 1.2, PRCs are in fact equivalent to undetectable and
robust watermarks for language models.

1This kind of covert communication is the classic problem of steganography, but classic stateless steganographic techniques
fail on unreliable channels.

2We are interested in error channels that introduce a constant rate of errors, and reserve the term “pseudorandom code” for
schemes that handle such channels. This is the more practically relevant as well as theoretically interesting setting; it is easy
to handle any sub-constant error rate using just one-way functions [GG24].

1

Oblivious vs adaptive robustness. While existing PRCs (and their corresponding watermarks) tolerate
a high rate of errors, these errors must be made obliviously, i.e., by a memoryless channel. This falls short
of the worst-case error model commonly considered in coding theory. Furthermore, errors introduced by
realistic adversaries are non-oblivious: A realistic adversary can see multiple watermarked responses, and
sometimes even query a detection oracle. It turns out that PRCs (and watermarks) that are highly robust to
oblivious attacks may be easily removable by such adversaries, as demonstrated by an example in [CHS24].3

In fact, this is not just a theoretical possibility. Several practical attacks leverage access to encoding and
decoding oracles to remove or forge watermarks [JSV24, PHZS24].

Therefore it is of both practical and theoretical importance to have PRCs that are robust to non-oblivious
adversaries. We say that a PRC is adaptively robust if it can handle adversaries who are given an encoding
oracle (or key). We introduce ideal security and CCA security to handle cases where the adversary addition-
ally queries a detection oracle. Adaptive robustness was previously studied in [CHS24], but they showed only
that the watermark of [CGZ24] was adaptively robust to a very low (specifically, inverse security parameter)
rate of errors. [CHS24] conjectured but did not prove that the PRC of [CG24] is adaptively robust.

This work. We prove that a slight modification of the PRC of [CG24] is adaptively robust to a constant
rate of substitutions, resolving the conjecture of [CHS24]. That is, for any δ < 1/4 (or δ < 1/2 if we wish
only to detect but not decode messages), we show that no adversary can produce an error of relative weight
at most δ that causes the decoder to fail — even if the adversary is provided with the encoding key. We
call this property adaptive δ-robustness. Our proof involves an interesting combination of techniques from
cryptography and coding theory.

We then ask whether it is possible to achieve robustness to an adversary with access to both an encoding
oracle and a decoding oracle. Rather than contribute to a growing list of separately defined properties, we
take a principled approach and consider the ideal functionality of a PRC. This functionality dictates how
the code should behave to any adversary, regardless of the adversary’s goal (e.g., distinguishing codewords
from random, or mauling codewords). We say that a PRC satisfies ideal security (or is an ideal PRC) if the
real PRC encoding and decoding oracles are indistinguishable from this ideal functionality. This definition
combines soundness, pseudorandomness, and adaptive robustness into one simple definition.

We show a generic and simple transformation from any adaptively robust PRC capable of encoding a single-
bit message to an ideal PRC with linear information rate. Our transformation requires only a pseudorandom
function, the existence of which is implied by that of a PRC. This transformation, applied to the adaptively
robust PRCs discussed above, yields a construction of an ideal PRC.

Finally, we turn to the public-key setting, where both pseudorandomness and robustness are defined with
respect to adversaries that have access not only to an encoding oracle, but an encoding key. While ideal
security is the strongest possible definition in the secret-key setting, there is no obvious “ideal” security
notion in the public-key setting. Instead, we define a strengthening of adaptive robustness that we call
CCA security in analogy with CCA secure encryption. This definition generalizes standard CCA security
for pseudorandom encryption. In the random oracle model, we show a generic transformation that builds a
CCA-secure PRC from any adaptively robust public-key PRC.

We summarize our four definitions of PRC robustness in Table 1.

3Let W be a watermarked model. Consider another watermarked model W ′ that, given a prompt π, outputs W(π) if π is
unwatermarked and outputs an unwatermarked response if π is watermarked. Then W ′ has the same oblivious robustness as
W, because an oblivious adversary cannot find a watermarked π; however, it is not at all robust to an adversary that makes
just two queries to W ′: The adversary can simply obtain a watermarked response x from W ′, then query W ′ on x to obtain an
unwatermarked response. The adversary doesn’t even need to make any edits!

2

No decoder access Decoder access
Secret-key Secret-key adaptive robustness Ideal security
Public-key Public-key adaptive robustness CCA security

Table 1: The four definitions of robustness considered in this work. “Secret-key” means the adversary is
given oracle access to the encoder and “public-key” means the adversary is given the encoding key. “No
decoder access” and “decoder access” distinguish whether the adversary is additionally given oracle access to
the decoder. We satisfy the “no decoder access” column in Theorems 1 and 2, ideal security in Theorem 3,
and CCA security in Theorem 4.

1.1 Results

In this subsection we highlight our main results, which can be summarized follows: (a) We prove uncon-
ditionally that certain PRCs based on LDPC codes are (maximally) adaptively robust in both the secret-
and public-key settings; (b) In the secret-key setting, we present a generic transformation converting any
adaptively robust PRC into an ideal PRC; (c) In the public-key setting, we present a generic transformation
converting any adaptively robust PRC into a CCA-secure PRC in the random oracle model.

In presenting our results, we use the term “δ-robust” to indicate that the attacker can adaptively corrupt
up to a δ fraction of the codeword. By “zero-bit” PRC we mean a PRC that is only capable of encrypting
a fixed message; by “single-bit” we mean that the PRC can encrypt 0 or 1.

Our first two results show essentially optimal robustness of the zero-bit LDPC-based PRC from [CG24],
and our single-bit version of it. Any zero-bit PRC is at most 1/2-adaptively robust, since such errors can
completely randomize the codeword. Any single-bit PRC is at most 1/4-adaptively robust, since an adversary
can always construct a string that is 1/4-close to two codewords encoding different messages (see the remark
at the end of Section 2.3).

Theorem 1 (Adaptively robust zero-bit PRC). For any ε > 0, the public-key zero-bit pseudorandom code
from [CG24] is adaptively (1/2− ε)-robust for appropriate choice of parameters.

Theorem 2 (Adaptively robust single-bit PRC). For any ε > 0, our public-key single-bit pseudorandom
code is adaptively (1/4− ε)-robust for appropriate choice of parameters.

Our secret-key transformation is lightweight in that it makes no additional assumptions beyond the security
of the underlying PRC,4 and it preserves the quantitative level of robustness.

Theorem 3 (Ideal PRC). Suppose that there exists a secret-key single-bit pseudorandom code that is adap-
tively δ-robust. Then there exists a δ-robust ideal pseudorandom code with linear information rate.

The result is somewhat worse for the public-key case, incurring a constant-factor loss in robustness and
requiring the random oracle model.

Theorem 4 (CCA-secure PRC). Suppose that there exists a public-key single-bit pseudorandom code that is
adaptively δ-robust. Then in the random oracle model, there exists an Ω(δ)-robust CCA-secure pseudorandom
code with linear information rate.

By applying Theorems 3 and 4 to the PRCs from [CG24], which are pseudorandom assuming the certain-
subexponential hardness of LPN and adaptively δ-robust for δ < 1/4 by Theorem 2, we have the following
corollary.

Corollary 5. Assuming the 2O(
√
λ)-hardness of learning parity with noise (LPN), there exist separate linear-

rate PRCs satisfying

• δ-robust ideal security for any δ < 1/4, and

4It makes use of a pseudorandom function, whose existence is implied by that of a PRC.

3

• δ-robust CCA security for some δ = Ω(1) in the random oracle model.

While the above robustness is optimal for the ideal PRC result, we do not achieve the optimal robustness
for the CCA-secure PRC result.

1.2 Relationship to watermarking

Christ and Gunn [CG24] presented a general template for using pseudorandom codes to watermark suffi-
ciently high-entropy outputs of randomized algorithms. We recall that template here for reference.

Consider a randomized algorithm that, given an input x and a random seed r, generates an output y.
Suppose that there exists a randomness recovery algorithm that, given y, outputs an approximation of
the random seed r used to generate it. Randomness recovery algorithms indeed exist for generative mod-
els used in practice, and their approximation accuracy increases with the amount of entropy in the out-
put distribution. The basic observation is that replacing r with an output of PRC.Encode(1) immediately
yields a watermark. Pseudorandomness ensures that this replacement does not perceptibly alter the qual-
ity of the model. Error correction enables detection, with the content being considered watermarked if
PRC.Decode(RandomnessRecovery(y)) = 1. This watermarking approach works for any randomized algo-
rithm with a randomness recovery algorithm whose approximation error is within the PRC’s tolerance.

Remark. It is not a coincidence that randomness recovery algorithms exist in almost every generative AI
framework. In some cases, randomness recovery can be viewed as an essential part of training. It is also
useful to have randomness recovery in many independent generative AI applications, because it can allow for
content manipulation in a more natural “latent space” where features correspond to higher-order features of
the content.

It is known that this framework yields an undetectable and robust watermark for large language models
[CG24, GM24]. This framework has also been demonstrated experimentally by [GZS24], which builds a
robust undetectable watermarking scheme for generative image models (in particular, latent diffusion models)
using essentially the same PRC as we consider here.

Not only are pseudorandom codes useful for constructing robust undetectable watermarks, but they are also
necessary in a formal sense. Consider a model that can be prompted to output a uniformly random binary
string (e.g., one can ask a language model to output a random sequence of “apple” and “orange”). Suppose
we can undetectably watermark this model, with robustness to a given error channel. This implies that
on each query, the model outputs a fresh pseudorandom string such that the detector outputs True even if
this string is subjected to this error channel. Soundness (i.e., the low false positive rate) of the watermark
ensures that unrelated strings decode to False. Thus, the model with this fixed prompt is exactly an encoder
for a zero-bit PRC, where the PRC decoder is the watermark detector.

PRC robustness and watermark robustness. Typical randomness recovery algorithms for generative
AI are crucially imperfect, even on unedited generations. If one wishes to have a robust watermark, then
randomness recovery will be still more inaccurate. Therefore, it is essential for applications to watermarking
that we use a PRC with strong robustness. The watermark will be detectable as long as the composition of
an adversary’s modifications to the output, and any intrinsic error from randomness recovery, falls within
the class of error channels tolerated by the PRC.

For example, a PRC with robustness to a constant rate of errors chosen by an adversary that observes only
the given output translates to a watermark with robustness to an adversary making a single query to the
generation algorithm. In practice, however, an adversary attempting to remove the watermark can make
arbitrarily many generation queries, translating to a PRC error channel that observes many codewords.
Therefore we need our PRC to be adaptively robust if we wish to handle such watermark removal attacks.

Similarly, a watermark that is robust to an adversary with access to a watermark detection oracle necessitates
a PRC that is robust to an adversary with a decoding oracle. This robustness is satisfied by the ideal PRCs

4

that we define here. Similarly, an adversary given a watermark detection oracle and the watermark generation
key is handled by our CCA-secure PRCs.

On robustness to substitutions. In this work, we only consider PRCs with robustness to substitutions.
This is sufficient for some watermarking applications, like those where the PRC is embedded in a semantic
representation of the content, and general edits in the content itself translate to substitutions in the semantic
space. This is the case, for instance, in the image watermark of [GZS24] because the models they consider
map between images and a latent space consisting of fixed-length vectors. They embed a PRC codeword in
this latent representation of the generated image, and their decoder maps the given image back to its latent
representation before decoding the PRC. Since these latent vectors are of fixed size, modifications to the
image translate to changes to components, but not insertions or deletions.

For other applications — especially watermarking language models — it can be useful to have a PRC with
robustness to more general forms of edits. Random deletions were considered in [CG24], and oblivious
deletions and insertions were considered in [GM24] (over a polynomial-sized alphabet). However, we note
that both of these methods work by reduction to the binary substitution channel. Therefore improved results
about substitution channels may translate to improved results for editing channels, although we do not
investigate this here.

On the alphabet size. One can think of the watermark generation process as sampling each “component”
of the output y to be correlated with the corresponding bit of the random seed r. The amount of entropy in
a given component yi determines how much signal from the corresponding seed bit ri it contains. In order to
plant one symbol of a PRC codeword in each component with significant signal, we require Ω(|PRC alphabet|)
entropy per component.

For language models, these “components” might be the tokens of the response. Typical language models
have on the order of one bit of entropy per word, necessitating a PRC with a constant-sized (ideally, binary)
alphabet.5 Other watermarking applications will also suffer from the use of a larger alphabet. Therefore, in
this work we only consider binary-alphabet PRCs.

Related work. We have referred to most of the relevant existing works, particularly those about pseudo-
random codes, throughout this introduction. For a more detailed discussion on related work on watermarking,
see Appendix A.

2 Technical overview

2.1 Organization

Adaptive robustness, ideal security, and CCA security define robustness for a PRC under various adversarial
models, as shown in Table 1. See Figure 1 for a visual representation of the structure of the paper.

We briefly recall the definition of a pseudorandom code in Section 2.2 (and Section 3.1).

In Section 2.3 (and Section 4), we show that a particular PRC construction based on LDPC codes is
adaptively robust in the public-key setting. This immediately implies that the same construction is adaptively
robust in the secret-key setting. This is the only section that is particular to any specific PRC construction;
all of our results in later sections are are generic in the underlying PRC.

In Section 2.4 (and Section 5), we show that in the secret-key setting, any single-bit adaptively δ-robust
PRC can be converted to a δ-robust ideal PRC with a linear information rate.

5While it is possible to increase the entropy per component by taking each component to be a sequence of k words, this
harms robustness as changing one in every k words now changes every symbol of the underlying codeword.

5

Section 2.5 (and Section 6) mirrors the preceding section, but in the public-key setting. As is the case with
standard encryption, in the public-key setting there is no longer a clear notion of “ideal security,” but we
nonetheless present a definition we call “CCA security” in analogy with CCA-secure encryption. We show
that in the random oracle model, any public-key adaptively δ-robust PRC can be converted to an Ω(δ)-robust
CCA-secure PRC with a linear information rate.

2.2 Pseudorandom codes

We recall the definition of a public-key PRC.

Definition. Let Σ be an alphabet and E : Σ∗ → Σ∗ be an error channel. A public-key PRC with oblivious
robustness to E is described by efficient randomized algorithms Encodepk : Σk → Σn and Decodesk : Σ∗ →
Σk ∪ {⊥}, parameterized by keys sk, pk, satisfying the following criteria for every security parameter λ:

• (Oblivious robustness) For any message m ∈ Σk,

Pr
sk,pk

[Decodesk(E(x)) = m : x← Encodepk(m)] ≥ 1− negl(λ) .

• (Soundness) For any fixed c ∈ Σ∗,

Pr
sk

[Decodesk(c) = ⊥] ≥ 1− negl(λ) .

• (Pseudorandomness) For any polynomial-time adversary A,∣∣∣∣Pr
pk

[AEncodepk(1λ, pk) = 1]− Pr
pk,U

[AU (1λ, pk) = 1]

∣∣∣∣ ≤ negl(λ) ,

where AU means that the adversary has access to an oracle that, on any (even previously queried)
input, responds with a freshly drawn uniform value in Σn.

If the scheme can only encode a singular message (i.e. k = 0), then we call it a zero-bit PRC.

Observe that the robustness condition in this definition does not allow the error channel E to use information
about the PRC keys, or even previously seen codewords, to choose the error. Prior results on PRCs only
achieve this kind of robustness, which we refer to as oblivious robustness.

2.3 Adaptively robust public-key PRCs based on LDPC codes

In this subsection we will outline our proof that the zero-bit LDPC-based PRCs of [CG24] are adaptively
robust in the public-key setting. We then show how to build a single-bit adaptively robust PRC, using a
different construction from theirs. These results immediately imply the corresponding results in the secret-
key setting.

The zero-bit LDPC-based PRC. Let us begin by recalling the zero-bit LDPC-based PRC construction.
It will be useful to define the set of all t-sparse vectors in Fn2 ,

St,n = {w ∈ Fn2 : wt(w) = t}.

The secret key consists of a collection of r = nΩ(1) random parity checks w1, . . . , wr ← St,n, for some
t = Θ(log n). Arrange these parity checks into a matrix sk = H ∈ Fr×n2 , which will serve as the secret
detection key. The public encoding key consists of a random matrix pk = G ∈ Fn×d2 such that HG = 0,
where d = Θ(log2 n). Let C be the image of G.

6

Since this is a zero-bit PRC, we only need to describe a procedure for encoding 1. To encode 1, the encoder
outputs c ⊕ e∗, where c ← C and e∗ ← Sηn,n for some small constant η > 0.6 To decode a string x, the
decoder computes wt(Hx), where wt is the Hamming weight. If wt(Hx) is significantly less than r/2, then
the decoder outputs 1; otherwise it outputs ⊥.

For an appropriate choice of parameters, this scheme is robust to a constant rate of errors if the errors are
chosen independently of H. In that case, each parity check has an Ω(1)t bias towards 0, which is significant
if t is small enough. And since there are r = nΩ(1) independent parity checks in H, a Chernoff bound implies
that detection fails with negligible probability. This was essentially the argument used by [CG24] to show
that their zero-bit LDPC-based PRCs are robust to a constant rate of errors that are oblivious to the PRC
keys H,G.

Of course, this argument breaks down when the errors are allowed to depend on H: Indeed, there is a simple
attack that uses H to select o(n) errors that fool the detector.7 Instead, we will show that this scheme
is robust against an adversary that is given G, but not H. Following [CHS24], we refer to this kind of
robustness as adaptive robustness.

Definition (Definition 3, public-key adaptive δ-robustness, informal). A public-key pseudorandom code
(Encode,Decode) is adaptively δ-robust if, for all efficient adversaries A,

Pr
sk,pk

[Decode(sk, c⊕ e) 6= m and wt(e) ≤ δn | (m, r, e)← A(pk), c = Encode(pk,m; r)] ≤ negl(n) .

In this definition, we allow the adversary to select a message m (which must be m = 1 for a zero-bit PRC)
and randomness r that together define a codeword c = Encode(pk,m; r). The adversary wins if they find a
perturbation e, which has weight at most δn, such that c⊕ e does not decode to m.

The secret-key definition is similar, except that the adversary does not get to choose the randomness r and
instead interacts with Encode only via oracle access.

Remark. In this work we only consider robustness to substitution channels. See the paragraph “PRC error
model” in Section 1.2 for a discussion on this point.

Adaptive robustness of the zero-bit LDPC-based PRC. The main technical challenge that we
overcome in this work is in proving that the zero-bit LDPC-based PRC is adaptively robust, i.e., that it is
robust even when the adversary knows G. More formally, we need to show that any low-weight error vector
e that the adversary comes up with must satisfy significantly more than 1/2 of the parity checks in H. Since
we know that there exist bad o(n)-weight errors that depend on H, our proof strategy must crucially use
the fact that e is computed without knowledge of H.

Our first key observation is that, from the perspective of the adversary, H is a uniformly random collection
of r vectors chosen from all t-sparse parity checks consistent with G. That is, the rows of H can equivalently
be sampled at random from8

PC,t = C⊥ ∩St,n,

where C is the image of G, at the time of decoding. This is formalized in Lemma 4.1. Observe that if we
choose the dimension of C as d = t log n/2,

|PC,t| ≈
(
n

t

)
· 2−d ≈ 2t logn/2,

6In [CG24], the error was chosen to be i.i.d Bernoulli. For technical reasons, in this work we use random errors of fixed
weight instead. In this overview, we also use a star to distinguish the encoding noise e∗ from the adversarial perturbation e.

7The algorithm uses Gaussian elimination to find an assignment of the first k = o(n) coordinates such that the first k parity
checks in H are unsatisfied, if the remaining n− k coordinates are all 0.

8We define C⊥ = {w ∈ Fn
2 : w · c = 0 ∀c ∈ C}.

7

which is super-polynomial in n since t = Θ(log n). Because there are so many parity checks in PC,t, we
expect that it should be difficult to find low-weight errors that fool PC,t.

Indeed, our proof will proceed by showing that for any low-weight error e (depending arbitrarily on G), a
random parity check from PC,t is satisfied by e with probability significantly greater than 1/2. The adaptive
robustness of our scheme will then follow by a Chernoff bound over the choice of H.

We now turn to our proof that every low-weight error e satisfies significantly more than half of the parity
checks in PC,t. First, for S ⊆ F`2 and z ∈ F`2, we define

bias(z) = E
i←[`]

[(−1)1{zi=1}] and

bias(S, z) = E
w←S

[(−1)1{w·z=1}].

The key ingredient is the following lemma, which serves as the technical backbone of Section 4.

Lemma (Lemma 4.2, informal). For any code C ⊆ Fn2 , there is a γC ∈ R such that the following holds. For
every x ∈ Fn2 ,

bias(PC,t, x) = γC
∑
c∈C

bias(St,n, (x⊕ c)).

Furthermore,9 if C is a random linear code, then γC = 1± negl(n) with probability 1− negl(n).

This lemma allows us to reason about the number of parity checks satisfied by x under PC,t, by reasoning
instead about random parity checks from St,n. See Section 4.3 for the proof of this lemma, which is short,
elementary, and motivated by ideas from the analysis of Boolean functions.

If x has low weight, then it turns out that the terms corresponding to non-zero c typically have little
contribution in the lemma. This can be viewed as a consequence of the Johnson bound, which says that for a
high-distance code there are not many codewords within any given Hamming ball of small radius. Therefore,
the lemma implies that10

bias(PC,t, e) ≈ bias(St,n, e).

What we have described so far means that PC,t = C⊥ ∩St,n is enough to essentially capture the structure of
all of St,n, for a random code C. It is easy to see that bias(St,n, e) ≈ bias(e)t, so we can approximate this
quantity as a function only of wt(e) (because bias(e) = 1− 2 wt(e)/n).

The final step is to recall Lemma 4.1, which says that we can sample the rows of H as a random subset
of r parities from PC,t after the adversary has decided on e. By a Chernoff bound over the choice of H,
it follows that bias(He) ≈ bias(PC,t, e). Together with the approximations bias(PC,t, e) ≈ bias(St,n, e) and
bias(St,n, e) ≈ bias(e)t, we finally have that

bias(He) ≈ bias(e)t. (1)

With appropriate choice of parameters, this completes the proof of zero-bit adaptive robustness.

Adaptive robustness of single-bit LDPC-based PRCs. We now describe a single-bit PRC that is
adaptively δ-robust for any δ < 1/4. The reader might wonder why a zero-bit PRC cannot be immediately
used as a single-bit PRC by re-interpreting ⊥ as 0. But with this re-interpretation, zero-bit robustness only
requires that it is hard for an adversary to turn an encoding of 1 into an encoding of 0, while single-bit
robustness also requires that the adversary cannot turn an encoding of 0 into an encoding of 1.

Instead, our strategy is to generate two independent pairs of zero-bit adaptively δ-robust PRC keys (H0, G0)
and (H1, G1), and to define the encoding of m ∈ {0, 1} as a noisy sample from the image of Gm.11 The

9Technically, this part is Fact 4.2.
10This approximation is not strictly true in general, but we prove it for the relevant regimes of e.
11Actually we only allow the encoder to output non-zero vectors. This is because the adversary in the public-key adaptive

robustness game chooses the encoding randomness, and the zero vector would trivially violate robustness.

8

decoder outputs m ∈ {0, 1} if the given string decodes to 1 under the Hm zero-bit decoder and it decodes
to ⊥ under the H1−m zero-bit decoder. If both zero-bit decoders output 1 or ⊥, then our single-bit decoder
cannot determine which bit is encoded, so it outputs ⊥.

Adaptive δ-robustness of the zero-bit PRC implies that the adversary cannot find a δn-weight error that
causes both zero-bit decoders to output ⊥. However, it says nothing about the possibility of causing both
zero-bit decoders to output 1. In other words, we still need to rule out the possibility that the adversary can
sample a codeword under G0 or G1 and produce a nearby string that decodes to 1 under both H0 and H1.

Let Cm be the image of Gm for m ∈ {0, 1}. The idea is to use the fact that C0 and C1 are well-separated
with high probability: That is, the closest non-zero pair of codewords c0 ∈ C0, c1 ∈ C1 are approximately
n/2-far with probability 1 − negl(n) over G0, G1. Therefore, if the adversary produces c ⊕ e where c ∈ Cm
and wt(e) ≤ δn, then c⊕ e will be at least roughly (1/2− δ)n-far from any codeword in C1−m. For δ < 1/4,
this yields our separation: c⊕ e is δn < n/4 far from Cm, and (1/2− δ)n > n/4 far from C1−m.

So the question is whether our parity check matrices H0, H1 will be able to observe this difference. But
fortunately, this was already addressed in Equation (1)! The only thing that remains is to account for
parameters, making sure that the zero-bit decoder thresholds are set appropriately so as not to detect
beyond the δn radius desired.

Remark. While we construct zero-bit PRCs that are adaptively δ-robust for any δ < 1/2, it is not possible to
construct single-bit PRCs for δ ≥ 1/4, as demonstrated by the following attack. The attacker draws random
x0 and x1, encoding 0 and 1 respectively. By pseudorandomness, x0 and x1 must be equal on roughly half of
their locations. Therefore, the adversary can craft x′ that differs from each of x0 and x1 on at most a 1/4
fraction of locations. Since x′ cannot decode to both 0 and 1, robustness is violated for either x0 or x1.

2.4 Ideal PRCs: the secret-key setting

So far, we’ve considered robustness against an adversary with access to only the encoder. In this section,
we give the adversary access to both encoding and decoding oracles.12 An ideal PRC should retain both
robustness and pseudorandomness in this setting.

Defining pseudorandomness requires some care in this case. Of course, an adversary can distinguish a
codeword from random simply by submitting the codeword as a decoding query. Nonetheless, we find that
robustness and pseudorandomness can be elegantly combined into a single definition in the secret-key setting,
which we call ideal security. This definition uses the real/ideal world paradigm, common in cryptography.
Ideal security requires that no adversary can distinguish between the ideal world, where the challenger
responds to encoding and decoding queries by comparing to previous responses; and the real world, where
the challenger responds according to the PRC algorithms.

The ideal world. A PRC simply produces codewords that are pseudorandom, which can be decrypted
even when subjected to errors. Strings that are far from all observed codewords should decode to ⊥. Given
this, an ideal δ-robust PRC should satisfy the following requirements:

• Responses to encoding queries should appear random.

• Any string that is within δ of an observed codeword should decode to its underlying message.

• Any string that is at least δ-far from all observed codewords should decode to ⊥.

These requirements fully specify the behavior of the PRC in the ideal world. Therefore, we define the ideal
world as follows. The challenger responds to each encoding query with a fresh uniformly random string,
storing the queried message and response in memory. The challenger responds to each decoding query by

12Since the adversary is only given to encoding and decoding oracles, this is the secret-key setting. In the next section we
will consider adversaries with access to an encoding key and a decoding oracle.

9

checking if the given string is close to any response in memory. If so, it returns the corresponding message;
otherwise, it returns ⊥.

Ideal security. A PRC satisfies ideal security if no adversary can distinguish between the real world
and the ideal world. Observe that ideal security constitutes a complete definition of a PRC: Whereas an
adaptively robust PRC needs to satisfy separate definitions of soundness, pseudorandomness, and adaptive
robustness, ideal security encompasses all of these properties at once.

Proving ideal security. We show that the existence of an adaptively δ-robust single-bit PRC implies the
existence of an ideal δ-robust PRC with linear information rate.

We first show that the single-to-multi-bit PRC transformation from [CG24] preserves adaptive robustness.
This transformation is simple. Let PRC be any single-bit adaptively robust secret-key PRC, let PRG be a
pseudorandom generator, and let ECC be an error-correcting code. An encoding of m takes the form

π(PRC.Encodesk(r1)|| . . . ||PRC.Encodesk(rλ),PRG(r)⊕ ECC(m)), (2)

where r ← {0, 1}λ is a fresh sample for each encoding and π is a random permutation of the bits which
is included as part of the key. The decoder is straightforward. The random permutation ensures that any
errors introduced by the adversary are balanced across the blocks encoding the ri’s and the error-corrected
message.13 Note also that if ECC has linear rate, then so does this resulting PRC (since λ does not need to
grow with the message length).

We now turn to showing that one can use any adaptively robust PRC with polynomial information rate,
PRC, to construct one satisfying ideal security. The basic strategy is to build a scheme that satisfies ideal
security in the case that the adversary makes only one decoding query. Once this is established, complete
ideal security will follow directly from a hybrid argument.

The main challenge is that, perhaps unintuitively, the PRC may sometimes be too robust. Ideal δ-robustness
requires a sharp decoding threshold: any string that is δ-far from all observed codewords must decode to ⊥.
If our decoder accepts strings outside of this threshold, then it could accidentally leak information about the
key! Therefore, we need our decoder to be able to determine precisely if a given string is within distance δn
of a previously seen codeword.

Suppose an adversary takes a codeword c and adds some (possibly greater than δn-weight) error to obtain
c′. Our key idea is that if the decoder can somehow recover from c′ both the message and randomness used
to generate c, then it can recover c and exactly compute its distance from c′. We define PRCsharp to allow
exactly this, by drawing a random r ← {0, 1}λ and letting the encoding of a message m under PRCsharp be14

c← PRC.Encodesk(r||m;PRFsk(r)),

where PRF is a pseudorandom function. In words, we encode a seed r as part of the message, and use
PRFsk(r) as the randomness in the encoding. Pseudorandomness of PRF implies that codewords of PRCsharp

are indistinguishable from those of PRC. Now suppose we are given c′ that is δ-far from c yet still decodes
validly under PRC.Decodesk. Our PRCsharp decoder will then recover m and r, recompute c, and observe
that c′ is too far from c. It then knows to output ⊥.

We’ve now addressed the issue where c′ is too far from a previously seen c, but still decodes validly to the
message encoded by c. But there is still the possibility that the adversary produces a c′ that decodes to

13This point is actually quite subtle. Because it is not possible to test whether an error is successful without the key, we
cannot rely directly on pseudorandomness here. Instead, we use the fact that it is possible to test whether the errors are
balanced using only π, but not the underlying PRC key.

14Note that this is essentially the Fujisaki-Okamoto transformation [FO99], but in a secret-key setting where a PRF suffices
instead of a random oracle.

10

some message that it has never queried. We address this issue by simply adding an authentication tag to
the message. That is, our final PRCsharp codewords take the form

c← PRC.Encodesk(r||m||R1;R2),

where (R1, R2) = PRFsk(r||m). Now, if a received string decodes to r||m||R1 under PRC.Decodesk, the

PRCsharp decoder checks that R1 = PRFsk(r||m). If so, it outputs m; otherwise it outputs ⊥. Pseudoran-
domness of PRF implies that the adversary cannot produce an accepting r,m, R1 that were not included in
a previous response.

Therefore, if the adversary produces x that decodes to anything other than ⊥, it must be the case that x
is δ-far from some previously-seen codeword produced by the challenger. This yields single-decoding-query
ideal security, from which ideal security follows by a simple hybrid argument.

Remark. Multi-bit δ-ideal security is only possible for δ < 1/4, by the same example in the remark at the
end of Section 2.3. However, we proved that adaptive robustness is possible up to 1/2 for zero-bit PRCs. It
would be interesting to construct zero-bit PRCs that satisfy δ-ideal security for δ ≥ 1/4, but it appears that
new ideas would be needed.

2.5 CCA security: the public-key setting

In this subsection we will outline our definition and construction of CCA-secure PRCs.

Single-bit to multi-bit PRC transformation. We first present a simple transformation from an adap-
tively robust single-bit PRC to an adaptively robust PRC with linear rate, in the public-key setting. In the
public-key setting, the transformation described earlier in Equation (2) is no longer robust because it relies
on the secrecy of the permutation π.

Our solution is to first encode r in an error-correcting code, and encode each bit of the resulting codeword
separately under the single-bit PRC. We also make the block encoding r and the block encoding the message
equal lengths. Now, an adversary introducing a δ rate of errors can introduce at most a 2δ rate of errors to
either the message block or the r block. If the errors on the r block are concentrated on any given single-bit
PRC, then the error-correcting code handles them; if they are spread out among the single-bit PRCs, then
the PRC robustness handles them. This transformation is quite lossy in terms of robustness, which is at
most 1/32 regardless of the underlying PRC and error-correcting codes. The information rate is also at most
half that of the error-correcting code. It would be interesting to come up with a better transformation, but
we do not pursue this here. In any case, we still achieve Ω(1)-robustness and a linear information rate.

CCA security: definition. Our CCA (chosen codeword attack) security definition subsumes both pseu-
dorandomness and adaptive robustness. It also generalizes CCA security for pseudorandom encryption.
Roughly speaking, the security definition states that pseudorandomness of public-key PRC should be secure
against computationally bounded adversaries even when given the public key and access to the decoding
oracle. This definition will be modeled similar to the private-key setting, except that we need to additionally
take into consideration that the adversary can create its own codewords. We formalize the security definition
by again considering a real and a “random” experiment. Whereas we refer to the latter as the “ideal” world
in the secret-key setting, in the public-key setting we use a different word because it is not clearly “ideal.”
In particular, in the public-key setting our definition of the random world still makes use of the real PRC
decoder.

The random world. In the random game, the adversary receives the following:

• The public encoding key pk,

• Access to the random encoding oracle: the random encoding oracle on input a message m, outputs a
random string c as a codeword.

11

• Access to the corresponding decoding oracle: upon receiving a codeword c′, this oracle first checks if
c′ is close to any of the codewords returned by the random encoding oracle. If so, it returns m, where
c was returned as a response to the encoding query m. If c′ is not close to any of the outputs of the
encoding oracle then it responds according to the actual decoder on input c′.

The real world. In the real game, the adversary receives the public encoding key pk and has access to
the real encoding and decoding oracles.

CCA security simply says that any computationally bounded adversary cannot distinguish whether it is
participating in the random or the real game.

Achieving CCA security generically. We show how to achieve CCA security generically starting with
any adaptively robust PRC with polynomial information rate in the random oracle model. Our transfor-
mation is essentially identical to the ideal PRC transformation, except that we use a random oracle instead
of a PRF. This makes it very similar to the Fujisaki-Okamaoto (FO) transformation [FO99], although the
analysis is slightly different. Specifically, we crucially rely upon the adaptive robustness property in the
security proof unlike the FO transformation.

Suppose PRC is any adaptively robust pseudorandom code supporting multi-bit messages. We construct a
CCA-secure pseudorandom code PRCCCA as follows:

• The key generation algorithm of PRCCCA simply runs the key generation of the PRC to generate (pk, sk).
It also samples F from a hash function family; F will be modeled as a random oracle in the security
proof. The new public key of PRCCCA is set to be (pk, F) and the new secret key is set to be sk.

• The encode algorithm of PRCCCA, on input a message m, does the following. It first samples a λ-bit
string r uniformly at random. It then computes F (m, r) to obtain a string that can be broken down
into two parts (R1, R2), each of length at least λ. It then encodes the new message (m, r,R2) using
the encode algorithm of PRC and using the randomness R1. Denote the resulting codeword to be c.

• The decode algorithm, on input the secret key sk and the codeword c, does the following: it first runs
the PRC decoding algorithm on c to obtain (m, r,R′2). It then computes F (m, r) to obtain (R1, R2).
It outputs m if R2 = R′2. Otherwise, it outputs ⊥.

To prove the CCA security of the above scheme, we undertake the following three steps.

In the first step, we observe the queries made by the adversary. Specifically, we consider the following
event.

NeverQueried: The adversary, during the decoding query phase, submits a codeword c that de-
codes to (m, r,R2) such that (m, r) has never been queried by the adversary to F .

We argue that NeverQueried only happens with negligible probability. Indeed, if the adversary has never
queried F on (m, r) then the probability that it predicts R2 is negligible in λ.

This suggests that there are only two types of decoding queries c that the adversary can submit. Either

• c is close to one of the codewords returned by the challenger to the adversary during the encoding
phase, or

• c decodes to (m, r,R2), where (m, r) is a random oracle query made by the adversary.

This suggests that the challenger does not need the decoding key to answer the decoding queries at all! It can
answer just by (a) observing the adversarial queries to the F and, (b) by keeping tracking of the codewords
it returns during the encoding phase.

12

This leads us to the second step. In the second step, the challenger does not use the decoding key
to answer the decoding queries. Instead it uses an alternate decoding procedure, referred to as AltDecode.
Upon receiving a codeword c during the decoding query phase, AltDecode first performs the following checks:

• It checks if c is close to any of the codewords returned during the encoding phase,

• It checks if c is to close to any of the codewords created by the adversary using the queries to F . In
more detail, for every adversarial query (m, r), create a codeword with (m, r,R2) as the message and
R1 as the randomness, where (R1, R2) is the output of F on (m, r). Check if c is close to any of the
created codewords.

If any of these two checks pass,15 return the message encoded in the codeword close to c. Else, return ⊥.

To argue that AltDecode simulates the use of the real decoding algorithm during the decoding phase, we need
to argue that for every decoding query, the output of AltDecode and the real decoder is the same. If not, then
we claim that the adaptive robustness property is violated. This is because the adversary efficiently came
up with two different, but close, codewords that open to two different messages. Thus, from the adaptive
robustness property, we can conclude that the outputs of AltDecode and the real decoder are the same for
every decoding query.

In the third step, we invoke the pseudorandomness guarantee of PRC to switch all the codewords generated
during the encoding phase to be uniformly random strings. In order to do this switch, it was crucial that
the challenger was using AltDecode, which in turn does not use any secret key, in the decoding phase.

All the three steps combined prove the CCA security of PRCCCA.

3 Preliminaries

For a randomized algorithm A(·), we write A(x; r) to denote the output of A on input x and randomness r.

For a set X, we define X∗ = {(x1, . . . , xk) | x1, . . . , xk ∈ X ∧ k ∈ Z≥0} to be the set of all strings over the
alphabet X. For a binary string s ∈ X∗, we let si denote the ith symbol of s and len s denote the length of
s.

We write [n] = {1, . . . , n}. Let x ∈ {0, 1}n and let π be a permutation over [n]. We let PermBits(x, π) denote
the function that outputs xπ(1)|| · · · ||xπ(n) ∈ {0, 1}n.

Lemma 3.1 (Hypergeometric tail bounds [Hoe94]). Let X ∼ Hyp(N,K, n) and p = K/N . Then for any
0 < t < K/N ,

Pr [X ≤ (p− t)n] ≤ e−2t2n, and

Pr [X ≥ (p+ t)n] ≤ e−2t2n.

Lemma 3.2 (Chernoff bounds). Let X1, . . . , Xn ∈ [0, 1] be independent random variables. Let µ = E [
∑n
i=1Xi].

Then for any δ ∈ (0, 1):

Pr

[
n∑
i=1

Xi ≥ (1 + δ)µ

]
≤ exp

(
−µδ

2

3

)
and

Pr

[
n∑
i=1

Xi ≤ (1− δ)µ

]
≤ exp

(
−µδ

2

2

)
.

15It could be that there is more than one codeword that is close to c. In this case, pick one of them at random.

13

Public-key zero-bit non-adaptive PRC from [CG24]

Public-key zero-bit adaptive PRC

Public-key single-bit adaptive PRC

Secret-key optimal-rate adaptive PRC

Ideal PRC with optimal rate

Public-key linear-rate adaptive PRC

CCA-secure PRC with linear rate

Section 4.4

Section 4.5

Section 5.2

Section 5.3

Section 6.2

Section 6.3

Figure 1: Organization of the paper. The red boxes are particular to the LDPC-based public-key PRCs
related to [CG24], the green boxes are generic in the secret-key setting, and the purple boxes are generic in
the public-key setting.

Coding theory notation. Let n be the dimension, let t be an even integer, and let d = Θ(log
(
n
t

)
).

Let Wt ∈ F(nt)×n
2 be the matrix whose rows are all weight-t parity checks. For a linear code C ⊆ Fn2 , let

PC,t be the matrix whose rows are all weight-t parity checks satisfied by C. Let NC,t be the number of
rows in PC,t. For z ∈ {0, 1}m, we define bias(z) = 1

m

∑m
i=1(−1)zi . Note that bias(z) = 1 − 2 wt(z)/n and

wt(z) = (1/2− bias(z)/2) · n.

Cryptography preliminaries. A pseudorandom function is a function that behaves indistinguishably
from a random function, from the perspective of any computationally-bounded adversary that makes only
black-box queries to the function. Pseudorandom functions are equivalent to one-way functions [GGM86],
the minimal object of classical cryptography.

Pseudorandom function (PRF). Let F = {Fsk : {0, 1}`1(λ) → {0, 1}`2(λ) | sk ∈ {0, 1}λ} be a family of
functions. F is a PRF if Fsk is efficiently computable and for all polynomial-time distinguishers D,∣∣∣∣ Pr

sk←{0,1}λ

[
DFsk(·)(1λ) = 1

]
− Pr

f

[
Df(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ) .

where f denotes a random function from {0, 1}`1(λ) to {0, 1}`2(λ).

14

3.1 Pseudorandom codes

We recall the definition of a public-key pseudorandom code (PRC) with oblivious robustness from [CG24].
We present only the public-key definition; the secret-key version is identical except that the public key is
included in the secret key, and the adversary in the pseudorandomness condition is only given 1λ as input.
Secret-key PRCs are defined fully in [CG24].

Definition 1 (Public-key PRC). Let Σ be a fixed alphabet. A public-key pseudorandom error-correcting
code (abbreviated as public-key PRC) with (oblivious) robustness to a channel E : Σ∗ → Σ∗ is a triple of
polynomial-time randomized algorithms (KeyGen,Encode,Decode) satisfying

• (Syntax) There exist functions `Dec, `Enc, n, k : N → N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}`Dec(λ) × {0, 1}`Enc(λ), Encode(1λ, pk,m) ∈ Σn(λ) takes inputs pk ∈ {0, 1}`Enc(λ), m ∈ Σk(λ), and
Decode(1λ, sk, x) ∈ Σk(λ) ∪ {⊥} takes inputs sk ∈ {0, 1}`Dec(λ), x ∈ Σ∗.

• (Oblivious robustness) For any λ ∈ N and any message m ∈ Σk(λ),

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, E(x)) = m : x← Encode(1λ, pk,m)] ≥ 1− negl(λ) .

• (Soundness) For any fixed c ∈ Σ∗,

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, c) = ⊥] ≥ 1− negl(λ) .

• (Pseudorandomness) For any polynomial-time adversary A,∣∣∣∣∣∣ Pr
(sk,pk)←KeyGen(1λ)

[AEncode(1λ,pk,·)(1λ, pk) = 1]− Pr
(sk,pk)←KeyGen(1λ)

U

[AU (1λ, pk) = 1]

∣∣∣∣∣∣ ≤ negl(λ) ,

where AU means that the adversary has access to an oracle that, on any (even previously queried)
input, responds with a freshly drawn uniform value in Σn(λ).

We say that a PRC is “zero-bit” if it can encode only a singular message (Σ = {1} and k = 0), or “single-bit”
if it can encode two messages (Σ = {0, 1} and k = 1).

For completeness, we include the original oblivious robustness definition from [CG24]. However, in this work
we focus on stronger notions of robustness, which in particular imply oblivious robustness to substitution
channels.

4 Adaptively robust public-key PRCs based on LDPC codes

This section is dedicated to proving that variants of (public-key) PRCs from [CG24] satisfy the adaptive
robustness notion (without decoder access) we introduce in this work. Correspondingly, in Section 4.1 we
give our new notion of adaptive robustness for both the public-key and the secret-key PRC variants (where
the former is clearly stronger than the latter). In Section 4.2 we review the zero-bit (public-key) PRC from
[CG24], in Section 4.3 we prove some technical tools that we will use, in Section 4.4 we prove the (public-key,
and hence, also secret-key) adaptive security of this construction. And, finally, in Section 4.5 we show how
to extend the resulting zero-bit construction to a single-bit adaptively-secure (still public-key) PRC.

4.1 Definitions

We define adaptive robustness in the secret-key setting via the following security game.

Grobust−skA,PRC,δ (1λ):

15

1. The challenger sets transcript = ∅ and samples sk← PRC.KeyGen(1λ).

2. The adversary is allowed to make encoding queries. For each encoding query m, the challenger responds
with c← PRC.Encode(sk,m) and sets transcript = transcript ∪ {(m, c)}.

3. The adversary sends the challenger x.

4. The challenger computes m′ = PRC.Decode(sk;x) (which could be ⊥).

5. If there exists (m, c) ∈ transcript such that wt(x ⊕ c) ≤ δn and m 6= m′, then the adversary wins;
otherwise the adversary loses.

Definition 2 (Secret-key adaptive robustness). We say that a secret-key pseudorandom code PRC is adap-
tively δ-robust if, for any efficient adversary A,

Pr
[
A wins Grobust−skA,PRC,δ (1λ)

]
≤ negl(λ) .

The public-key setting is similar, except that the adversary gets the encoding key itself rather than merely
oracle access to the encoder. Since the adversary can therefore encode messages on their own, we require
the adversary to submit a message and randomness that witness the failure of the decoder.

Grobust−pkA,PRC,δ (1λ):

1. The challenger samples (pk, sk)← PRC.KeyGen(1λ) and sends pk to the adversary.

2. The adversary sends (m, r, x) to the challenger.

3. The challenger computes c = PRC.Encode(pk,m; r) and m′ = PRC.Decode(sk, x). If wt(x ⊕ c) ≤ δn
and m′ 6= m, then the adversary wins; otherwise the adversary loses.

Definition 3 (Public-key adaptive robustness). We say that a public-key pseudorandom code PRC is adap-
tively δ-robust if, for any efficient adversary A,

Pr
[
A wins Grobust−pkA,PRC,δ (1λ)

]
≤ negl(λ) .

Note that Definition 3 is a stronger definition than Definition 2 — any scheme satisfying Definition 3 auto-
matically satisfies Definition 2. We therefore devote this section to proving public-key adaptive robustness
of the PRC from [CG24], which immediately implies the secret-key adaptive robustness of the same PRC.

At this point, a few remarks are in order about our choice of definitions.

Remark. The reader may wonder why we don’t just have the adversary produce two nearby strings x, x′ that
decode to different values. This would be an impossibly strong definition: The adversary could choose x with
slightly fewer errors than the scheme tolerates, and x′ with slightly more. A successful adversary must come
up with a valid codeword, together with a low-weight modification of it that decodes incorrectly.

Remark. It is possible to define public-key robustness along the same lines as Definition 2 (secret-key
adaptive robustness). That is, we could consider the following game: the adversary has adaptive access to
the encoding oracle and later on, is expected to come up with a string c that is close to one of the codewords,
say c′, returned by the encoding oracle. It wins if c′ is an encoding of m and c does not decode to m.
There are a couple of reasons behind our choice of the adaptive robustness definition in the public-key setting
(Definition 3). First, Definition 3 is stronger than the public-key analogue of Definition 2, and we will see
that our scheme satisfies this stronger notion anyways. Second, the definition is more compact and easier
to work with. In particular, we crucially invoke this stronger Definition 3 in our later proofs about CCA
security (see the proof of Lemma 6.3).

16

Remark. One can also similarly define a stronger version of our symmetric-key Definition 2, where the
attacker can also control the randomness for the encoding oracle (and not only the message). Of course,
our scheme will satisfy this stronger definition too (as it satisfies the public-key analog of this strengthening
given in Definition 3). However, we did not choose to follow this route for several reasons. First, unlike the
public-key case, this definition is not significantly more compact or intuitive than our definition. Second, we
do not have any real-world motivation for this notion, and unlike the public-key case, we do not require the
stronger notion for any proofs later on in the paper. Third, unlike the public-key setting, there is a simple
generic transformation from our Definition 2 to the stronger variant: instead of sampling randomness r
for PRC.Encode directly, we sample auxiliary randomness s, and set r = PRFsk(m, s), where PRFsk is a
pseudorandom function whose key is part of the overall secret key.

4.2 The scheme

Here we recall the LDPC-based zero-bit PRC construction from [CG24]. For technical reasons, we modify
the definition slightly to use fixed-weight error instead of Bernoulli.

Let
St,n = {s ∈ Fn2 : wt(s) = t}

be the set of all t-sparse vectors in Fn2 , and

St,r,n = {H ∈ Fr×n2 : wt(Hi,:) = t ∀i ∈ [r]}

be the set of all t-row-sparse matrices in Fr×n2 .

Our zero-bit pseudorandom LDPC codes are parameterized by a public generator matrix G ∈ Fn×d2 and a
secret parity-check matrix H ∈ Fr×n2 . The sampling process for these matrices is described in Definition 4.

Definition 4 (Random LDPC code, LDPC[n, d, t, r]). For n, d, t, r ∈ N, define the distribution LDPC[n, d, t, r]
over Fr×n2 × Fn×d2 as follows:

LDPC[n, d, t, r]:

1. Sample H ← St,r,n, i.e. H ∈ Fr×n2 is chosen to have i.i.d random t-sparse rows.

2. Sample G← (kerH)d, i.e. G ∈ Fn×d2 is a random matrix subject to HG = 0.

3. Output (H,G).

An (n, d, t, r) random LDPC code is a pair of matrices (H,G)← LDPC[n, d, t, r].

We now define our LDPC-based zero-bit PRC. Recall that a zero-bit PRC is one whose message space is just
{1}. The following construction differs slightly from that in [CG24], in that the error distribution is uniform
over Sηn,n instead of Ber(n, η).

Construction 1 (Zero-bit public-key pseudorandom LDPC code, LDPC-PRC0[n, d, t, r, η, ζ]). Let n, d, t, r :
N → N and η, ζ : N → [0, 1/2) be efficiently-computable functions of the security parameter. We define
LDPC-PRC0[n, d, t, r, η, ζ] by the following algorithms, where we leave the dependence of n, d, t, r, η, ζ on λ
implicit:

• KeyGen(1λ): Sample (H,G)← LDPC[n, d, t, r] and z ← Fn2 . Output (sk = (H, z), pk = (G, z)).

• Encode(1λ, (G, z)): Sample u← Fd2, e← Sηn,n. Output Gu⊕ z ⊕ e.

• Decode(1λ, (H, z), x): If wt(H(x⊕ z)) <
(

1
2 − ζ

)
· r, output 1; otherwise output ⊥.

The original construction of [CG24] is pseudorandom under the subexponential LPN assumption. Since ours
is the same except that we used fixed-weight error, ours is pseudorandom under the polynomially related
exact LPN assumption:

17

Assumption 1 (Exact LPN assumption [JKPT12]). For η ∈ (0, 1/2) and g : N→ N, the xLPNg,η assump-
tion states that for every n ∈ N and every polynomial-time adversary A,∣∣∣∣∣∣∣∣∣∣∣

Pr
A←Fn×g(n)

2

s←Fg(n)
2

e←Sηn,n

[A(A,As⊕ e) = 1]− Pr
A←Fn×g(n)

2
u←Fn2

[A(A, u) = 1]

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

Similarly to standard LPN, the exact LPN assumption implies that any polynomial number of samples of
the form (A,As⊕ e) are indistinguishable from uniformly random samples.

Importantly, the exact LPN assumption is equivalent to the standard LPN assumption.

Fact 4.1 (Proposition 2.3 from [JKPT12]). The hardness of xLPNg,η is polynomially related to the hardness
of LPNg,η as defined in [CG24].

4.3 The toolkit

The basic idea is to use the fact that there are actually nΩ(logn) parity checks that are satisfied by a random C,
even though our detector uses just r = O(n) of them. Since the adversary only sees C, from their perspective
the actual parity checks used by our detector are chosen uniformly at random from PC,t. This is formalized
in Lemma 4.1.

Lemma 4.1. Let H ∈ Fr×n2 be a random matrix where each row is t-sparse. Let C be a random d-dimensional
subspace selected from kerH. Then for all d-dimensional subspaces C∗ ⊆ Fn2 and all H∗, H

′
∗ ∈ Fr×n2 such

that C∗ ⊆ kerH∗ ∩ kerH ′∗,
Pr[H = H∗ | C = C∗] = Pr[H = H ′∗ | C = C∗].

Proof. Since C is selected uniformly at random from all d-dimensional subspaces of kerH,

Pr[C = C∗ | H = H∗] = Pr[C = C∗ | H = H ′∗].

Since H is selected uniformly at random to begin with, we also have Pr[H = H∗] = Pr[H = H ′∗]. The result
follows from Bayes’ rule.

Lemma 4.1 reduces the problem to showing that decoding with PC,t is adaptively robust — even though PC,t
contains far too many parity checks for the decoder to actually use. The following lemma is the key ingredient
to showing that decoding with PC,t is adaptively robust. Recall from Section 3 that bias(z) = 1

m

∑m
i=1(−1)zi .

Note that bias(z) = 1 − 2 wt(z)/n and wt(z) = (1/2 − bias(z)/2) · n. Recall that we use Wt ∈ F(nt)×n
2 to

denote the matrix whose rows are all weight-t parity checks.

Lemma 4.2. Let NC,t be the number of t-sparse parities consistent with C. For any vector x ∈ Fn2 and code
C with NC,t > 0, we have that

bias(PC,tx) =

(
n
t

)
· 2− dim(C)

NC,t

∑
c∈C

bias(Wt(x⊕ c)).

Proof. First, observe that for any vector v ∈ Fn2 , we have that

1{v ∈ C⊥} = 2− dim(C)
∑
c∈C

(−1)v·c .

18

Using this identity, we have the following series of equalities:

NC,t · bias(PC,tx) =
∑

v∈rows(PC,t)

(−1)v·x

=
∑

v∈rows(Wt)∩C⊥
(−1)v·x

=
∑

v∈rows(Wt)

(−1)v·x1{v ∈ C⊥}

=
∑

v∈rows(Wt)

(−1)v·x

(
2− dim(C)

∑
c∈C

(−1)v·c

)

= 2− dim(C)
∑
c∈C

 ∑
v∈rows(Wt)

(−1)v·(x⊕c)


= 2− dim(C)

∑
c∈C

(
n

t

)
bias(Wt(x⊕ c)) .

The quantity outside of the sum,
(
n
t

)
· 2− dim(C)/NC,t, can be assumed to be 1 by Fact 4.2. Therefore

Lemma 4.2 allows us to reason about bias(PC,t), which appears to be a hopelessly unwieldy quantity, by
reasoning instead about random t-sparse parities.

4.4 An adaptively robust zero-bit PRC

We will show in Theorem 6 that, if C is selected as the span of d random vectors, then bias(PC,tx) ≥ nΩ(1)−1/2

for every x ∈ Fn2 with bias(x) = Ω(1); by [CG24, Lemma 9], this also holds when C is selected by the key
generation algorithm described above. By Lemma 4.1, it follows that any x the adversary chooses based
only on knowledge of C will be detected with high probability over the choice of r parities from PC,t.

Fact 4.2. If ω(1) ≤ t ≤ no(1) and d ≤ (1− Ω(1)) · t log n, then

Pr
G←Fn×d2

[
NIm(G),t = (1± negl(n)) ·

(
n

t

)
· 2−d

]
= 1− negl(n) .

Proof. The proof is a simple application of Chebyshev’s inequality, and is also shown in [CG24, Lemma 11].
We present it here for completeness.

For uniformly random G ← Fn×d2 , let Xw = 1{wG = 0} be random variables for each w ∈ Wt. Note that
NIm(G),t =

∑
w∈Wt

Xw, and for each w ∈Wt, E[Xw] = 2−d and Var[Xw] = 2−d − 2−2d.

Letting α =
(
n
t

)
· 2−d,

ENIm(G),t =
∑
w∈Wt

E[Xw] = α.

Furthermore, {Xw}w∈Wt are pairwise independent. So by Chebyshev’s inequality,16

Pr
[∣∣NIm(G),t − α

∣∣ > τ
]
≤
(
n

t

)
· (2−d − 2−2d)/τ2

≤ α/τ2.

16We use the following version of Chebyshev’s inequality: for N pairwise independent random variables X1, . . . , XN where

EX1 = · · · = EXN = µ and VarX1 = · · · = VarXN = σ2, Pr
[∣∣∣∑N

i=1Xi −Nµ
∣∣∣ > τ

]
≤ Nσ2/τ2.

19

Let τ = α2/3. We have
Pr
[
NIm(G),t =

(
1± α−1/3

)
α
]
≥ 1− α−1/3.

Invoking the assumptions that t ≤ no(1) and d ≤ (1− Ω(1)) · t log n,

α ≥
(n
t

)t
· 2−d

= 2t logn−d−t log t

= 2t logn−(1−Ω(1))·t logn−o(t logn)

= 2Ω(t logn),

which is super-polynomial by the assumption that t = ω(1). This completes the proof.

Fact 4.3. For any vector x ∈ Fn2 and any even t ≤
√
n/2,

bias(x)t ·
(

1− 2t2/n

bias(x)2

)
≤ bias(Wtx) ≤ bias(x)t (3)

Proof. Recall that bias(Wtx) = Ew←Wt
(−1)v·x. Let W ∗t be the distribution over Fn2 defined by summing t

independent, random indicator vectors ei. In other words, W ∗t is the same distribution as Wt except that
we allow repeats. Let Qt = Pr[wt(w) = t | w ←W ∗t] be the probability that there are no repeated indices
sampled under W ∗t . Note that W ∗t conditioned on having no repeats is exactly Wt; and W ∗t conditioned on
having repeats is exactly W ∗t−2. We have

bias(x)t = E
w←W∗t

(−1)w·x

= Qt E
w←Wt

[(−1)w·x | wt(w) = t] + (1−Qt) E
w←W∗t

[(−1)w·x | wt(w) < t]

= Qt · bias(Wtx) + (1−Qt) · bias(x)t−2.

Rearranging and using the fact that Qt ≥ 1− t2/n, we obtain the lower bound on bias(Wtx) as

bias(Wtx) = Q−1
t · bias(x)t + (1−Q−1

t) · bias(x)t−2

≥ bias(x)t +

(
1− 1

1− t2/n

)
· bias(x)t−2

≥ bias(x)t − 2t2

n
· bias(x)t−2.

For the last inequality, we used that t is even and t ≤
√
n/2 and 1− 1/(1− z) ≥ −2z for z ∈ [0, 1/2]. The

upper bound on bias(Wtx) follows by maximizing Q−1
t ·bias(x)t+(1−Q−1

t) ·bias(x)t−2 over Qt ∈ [0, 1], using
the fact that 0 ≤ bias(x)t ≤ bias(x)t−2.

Fact 4.4. For any vector x ∈ Fn2 and any even t = no(1),

bias(Wtx) ≥ −n−(1/2−o(1))·t.

Proof. If bias(x)2 ≥ 2t2/n, then Fact 4.3 implies that bias(Wtx) ≥ 0.

20

If bias(x)2 < 2t2/n, then by Fact 4.3 we still have that

bias(Wtx) ≥ −2t2

n
· bias(x)t−2

≥ −2t2

n
·
(

2t2

n

)t/2−1

= −
(

2t2

n

)t/2
≥ −n−(1/2−o(1))·t.

Note that Theorem 6 only applies for even values of t.

Theorem 6. Let t = no(1) be even and d ≤ (1/2− Ω(1)) · t log n. Let G← Fn×d2 be uniformly random and
C be the column span of G. Then with probability 1− negl(n) over G,

bias(PC,te) ≥ (1− o(1)) · bias(e)t for all e ∈ Fn2 s.t. bias(e) = Ω(1).

Proof. By Lemma 4.2 and Fact 4.2, it suffices to bound∑
c∈C

bias(Wt(x⊕ c)) = bias(Wtx) +
∑

c∈C \{0}

bias(Wt(x⊕ c)).

We bound the first and second terms separately. For the first term, Fact 4.3 implies that that for any x such
that bias(x) = Ω(1),

bias(Wtx) ≥ bias(x)t ·
(

1− 2t2/n

bias(x)2

)
= (1−O(t2/n)) · bias(x)t.

For the second term, Fact 4.4 and the assumption that d ≤ (1/2− Ω(1)) · t log n imply that∑
c∈C \{0}

bias(Wt(x⊕ c)) ≥ −2d · n−(1/2−o(1))·t

≥ −n(1/2−Ω(1))·t · n−(1/2−o(1))·t

= −n−Ω(t).

Corollary 7. For any δ ∈ (0, 1/2) and r = nΩ(1), there exist η = Ω(1), t = Θ(log n), and d = Ω(log2 n) such
that the zero-bit public-key pseudorandom code LDPC-PRC0[n, d, t, r, η, r−1/4] is adaptively δ-robust (Defini-
tion 3).

Proof. Let

• η = 1/4− δ/2,

• t = log
(
4r−1/4

)
/ log(1/2− δ), and

• d = (1/3) · t log n.

In order to invoke Fact 4.3, t must be even, so we assume for simplicity that 4 log
(
4r−1/4

)
/ log(1/2− δ) is

an even integer.

Let m′, c, x, r be defined as in Grobust−pk and suppose that wt(x ⊕ c) ≤ δn. Since LDPC-PRC0 is a zero-bit
PRC, we omit m from Grobust−pk. We do not omit m′, however, because it could still potentially be ⊥.

21

Let c∗ = c⊕ e∗ where e∗ is the ηn-sparse noise added by PRC.Encode(pk; r). Let e = x⊕ c∗ be the combined
error c⊕ c∗ and x⊕ c. By our choice of η and the assumption that wt(x⊕ c) ≤ δn,

wt(e) ≤ wt(x⊕ c) + wt(c⊕ c∗)
≤ δn+ ηn

= (1/4 + δ/2) · n

Equivalently, this means that bias(e) ≥ 1/2− δ = Ω(1). By Theorem 6, we have that

bias(PC,te) ≥ (1− o(1)) · bias(e)t

≥ (1− o(1)) · (1/2− δ)t

= (1− o(1)) · 4r−1/4,

so Prw←PC,t [w · e = 1] ≤ 1/2− 2r−1/4.

Now since e is computed as a function of the public key alone, Lemma 4.1 implies that we can view H as
being sampled after e. Therefore each parity check w in H has Prw←PC,t [w · e = 1] ≤ 1/2− 2r−1/4, and by
a Chernoff bound over the parity checks in H,

Pr
[
wt(He) > (1/2− r−1/4) · r

]
≤ negl(n) .

This means that
Pr[PRC.Decode(sk;x) = ⊥] ≤ negl(n) ,

completing the proof.

4.5 An adaptively robust single-bit PRC

Let us now state our single-bit public-key PRC construction. It is essentially a combination of two zero-bit
public-key PRCs, used to encode 0 and 1 separately. The decoder checks whether exactly one of the zero-bit
detectors accepts, in which case our decoder outputs the corresponding bit. While this construction is generic
in the underlying zero-bit PRC, our proof of adaptive robustness relies on the particular structure of the
LDPC-based PRCs.

Construction 2 (Single-bit public-key pseudorandom LDPC code, LDPC-PRC1[n, d, t, r, η, ζ]). Let n, d, t, r :
N → N and η, ζ : N → [0, 1/2) be efficiently-computable functions of the security parameter. We define
LDPC-PRC0[n, d, t, r, η, ζ] by the following algorithms, where we leave the dependence of n, d, t, r, η, ζ on λ
implicit:

• KeyGen(1λ): Sample (H0, G0), (H1, G1)← LDPC[n, d, t, r] and z ← Fn2 . Output (sk = (H0, H1, z), pk =
(G0, G1, z)).

• Encode(1λ, (G0, G1, z),m): Sample u← Fd2 \ {0}, e← Sηn,n. Output Gmu⊕ z ⊕ e.

• Decode(1λ, (H0, H1, z), x): For m ∈ {0, 1}, if wt(Hm(x ⊕ z)) <
(

1
2 − ζ

)
· r and wt(H1−m(x ⊕ z)) >(

1
2 − ζ

)
· r, output m; otherwise output ⊥.

In order to prove adaptive robustness of Construction 2, we need to show two things. First, that the zero-bit
decoders are robust up to errors of weight δn < n/4. This follows from the same argument as in Section 4.4
(although with different parameters). Second, we need to show that the zero-bit decoders will not detect
any codewords that are within δn Hamming distance of a codeword from the other zero-bit code. This
is crucial for our decoder to know which of the zero-bit PRCs was used. We prove this second claim in
Theorem 8, using our special sauce Lemma 4.2, the Johnson bound, and the fact that random linear codes
are approximately unbiased.

22

Lemma 4.3 (Random linear codes are ε-balanced). Let C ⊆ Fn2 be a random linear code of dimension d.
Then with probability 1− negl(d), C is ε-biased for ε = 2

√
d/n, i.e.,

|bias(c)| ≤ 2

√
d

n
for all c ∈ C \{0}.

Proof. Let G be the generator matrix for C. For any z ∈ Fd2 \ {0},

Pr
G

[|bias(Gz)| > ε] ≤ 2e−ε
2n/2

by a Chernoff bound. By a union bound over z,

Pr
G

[∃z ∈ Fd2 \ {0} s.t. |bias(Gz)| > ε] ≤ 2d−ε
2n/2+1 = negl(d)

if ε = 2
√
d/n.

Fact 4.5. With probability 1−negl(n) over random linear codes C0, C1 of dimensions d0, d1 where ω(log n) ≤
d0, d1 ≤ o(n), for every e we have

max
c0∈C0

c1∈C1 \{0}

|bias(c0 ⊕ c1 ⊕ e)| ≤ 1− bias(e) + 2
√

(d0 + d1)/n.

Proof. First we use the fact that |wt(c0 ⊕ c1 ⊕ e)− wt(c0 ⊕ c1)| ≤ wt(e) to see that

max
c0∈C0

c1∈C1 \{0}

|bias(c0 ⊕ c1 ⊕ e)| = max
c∈C
|1− 2 wt(c0 ⊕ c1 ⊕ e)/n|

≤ 2 wt(e)/n+ max
c0∈C0

c1∈C1 \{0}

|1− 2 wt(c0 ⊕ c1)/n|

= 1− bias(e) + max
c0∈C0

c1∈C1 \{0}

|bias(c0 ⊕ c1)|.

Let C = {c0 ⊕ c1 | c0 ∈ C0, c1 ∈ C1}. With probability 1 − negl(n), C0 and C1 are linearly independent, in
which case C is a random linear code of dimension d0 + d1. So by Lemma 4.3,

max
c0∈C0

c1∈C1 \{0}

|bias(c0 ⊕ c1)| ≤ max
c∈C \{0}

|bias(c)|

≤ 2
√

(d0 + d1)/n

with probability 1− negl(n) over C0, C1, completing the proof.

Lemma 4.4 (Johnson bound adapted from [GRS12, Equation 7.6]). Let C ⊆ Fn2 be a code of distance at
least (1− δ)n/2. Then for any x ∈ Fn2 and any τ >

√
δ,

|{c ∈ C : |bias(x⊕ c)| ≥ τ}| ≤ 1− δ
τ2 − δ

.

Theorem 8. Suppose that ω(1) ≤ t ≤ no(1) and d = εt log n for some constant ε ∈ (0, 1/8). Let G,G′ ←
Fn×d2 be uniformly random and C, C′ be the column spans of G,G′. Then with probability 1 − negl(n) over
G,G′,

bias(PC,t(c
′ ⊕ e)) ≤ (1 + o(1)) · n4ε ·

(
1− bias(e) +

√
8d/n

)t
for all c′ ∈ C′ \{0}, e ∈ Fn2 .

23

Proof. By Lemma 4.2 (with Facts 4.2 and 4.3 applied), it suffices to bound∑
c∈C

bias(c′ ⊕ e⊕ c)t =
∑
c∈C

|bias(c′⊕e⊕c)|≥n−2ε

bias(c′ ⊕ e⊕ c)t +
∑
c∈C

|bias(c′⊕e⊕c)|<n−2ε

bias(c′ ⊕ e⊕ c)t.

Since dim C ≤ d, the term on the right is at most 2d · n−2εt.

By Lemmas 4.3 and 4.4 and Fact 4.5, with probability 1− negl(n) the term on the left is at most(
1− 2

√
d/n

n−4ε − 2
√
d/n

)
·max
c∈C

bias(c′ ⊕ e⊕ c)t ≤

(
1

n−4ε − 2
√
d/n

)
·
(

1− bias(e) +
√

8d/n
)t

≤ (1 + o(1)) · n4ε ·
(

1− bias(e) +
√

8d/n
)t

for all c′ ∈ C′ \{0} and e ∈ Fn2 .

Corollary 9. For any δ ∈ (0, 1/4) and r = nΩ(1), there exist η = Ω(1), t = Θ(log n), and d = Ω(log2 n)
such that the single-bit public-key pseudorandom code LDPC-PRC1[n, d, t, r, η, 3r−1/5/2] is adaptively δ-robust
(Definition 3).

Proof. Let

• η = 1/8− δ/2,

• t = (1/5) · log r,

• δ′ = log(1/(1/4 + δ))− 1,

• ε = min{tδ′/4 log n, 1/17}, and

• d = εt log n.

Let C0, C1 be the column spans of G0, G1, and z be the one-time pad, sampled from LDPC-PRC1. Let
m, r, c, x,m′ be defined as in Grobust−pk and suppose that wt(x⊕ c) ≤ δn.

We need to show that x is detected under Hm and not detected under H1−m. Recall from Construction 2
that this means that bias(Hm(x⊕ z)) > 3r−1/5 and bias(H1−m(x⊕ z)) < 3r−1/5.

We will prove these two inequalities separately, but both cases will center on the total error e induced by
the adversary (including both the ηn-sparse encoding noise, selected via r, and the δn-sparse attack). Let
c∗ ∈ Cm \{0} and e be such that

x = c∗ ⊕ e⊕ z
and wt(e) ≤ (δ + η) · n = (1/8 + δ/2) · n (or equivalently, bias(e) ≥ 3/4− δ).

Proof that bias(Hm(x ⊕ z)) > 3r−1/5. This part is essentially the same as Section 4.4, except that we
have set t to be larger because we do not want to detect beyond 1/4 errors anymore.

By Theorem 6, we have that with probability 1− negl(n),

bias(PCm,t(x⊕ z)) = bias(PCm,te)

≥ (1− o(1)) · bias(e)t

≥ (1− o(1)) · (3/4− δ)t

= (1− o(1)) · 2t log(3/4−δ)

= rlog(3/4−δ)/5

≥ 4r−1/5

24

because log(3/4− δ) > log(1/2) = −1. By Lemma 4.1 and a Chernoff bound, it follows that

Pr
[
bias(Hm(x⊕ z)) ≤ 3r−1/5

]
≤ negl(n) .

Proof that bias(H1−m(x⊕ z)) < 3r−1/5. By Theorem 8, with probability 1− negl(n),

bias(PC1−m,t(x⊕ z)) = bias(PC1−m,t(c
∗ ⊕ e))

≤ (1 + o(1)) · n4ε ·
(

1/4 + δ +
√

8d/n
)t

≤ (1 + o(1)) · n4ε ·
[
(1/4 + δ)t + t

√
8d/n

]
= (1 + o(1)) ·

[
24ε logn−t log(1/(1/4+δ)) + n4ε · t

√
8d/n

]
= (1 + o(1)) ·

[
24ε logn−tδ′−t + n4ε · t

√
8d/n

]
.

Recall that δ′ = log(1/(1/4 + δ))− 1, which is positive since δ < 1/4, and ε = min{tδ′/4 log n, 1/17}. Using
ε ≤ tδ′/4 log n for the left term and ε ≤ 1/17 for the right, we have

bias(PC1−m,t(x⊕ z)) ≤ (1 + o(1)) ·
[
2−t + r−1/4 · t

√
8d
]

≤ 2r−1/5.

By Lemma 4.1 and a Chernoff bound, it follows that

Pr
[
bias(H1−m(x⊕ z)) ≥ 3r−1/5

]
≤ negl(n) .

5 Ideal PRCs: the secret-key setting

This section is dedicated to extending the notion of secret-key adaptively secure PRC to what we call Ideal
PRC. The corresponding definition is given in Section 5.1. We then show how to generically build such
a PRC from any (secret-key) single-bit adaptively secure PRC — such as the one from Section 4.5 — in
two-steps. First, in Section 5.2 we generically show how to boost the information rate of adaptively-secure
PRC to become essentially optimal, almost without sacrificing the robustness. Then, in Section 5.3, we (also
generically) show how to upgrade the secret-key adaptive security from Section 4.1 to our notion of ideal
security in Section 5.1, using any PRF (which is implied by the existence of PRC, and thus does not require
a new assumption). Moreover, this transformation almost preserves the information rate and the robustness,
resulting in nearly optimal-rate ideal PRCs.

5.1 Definition

Consider the following security games. The goal of the adversary is to determine whether it is given oracle
access to the actual detector of the PRC, or to an ideal decoding oracle.

GrealA,δ,PRC(1λ):

1. The challenger samples sk← PRC.KeyGen(1λ).

2. The adversary is allowed to make encoding and decoding queries:

• For each encoding query m, the challenger responds with PRC.Encode(sk,m).

• For each decoding query x, the challenger responds with PRC.Decode(sk, x).

3. The adversary returns a bit b̂.

25

G idealA,δ (1λ):

1. The challenger sets transcript = ∅.

2. The adversary is allowed to make encoding and decoding queries:

• For each encoding query m, the challenger responds with a fresh random string c and sets
transcript = transcript ∪ {(m, c)}.

• For each decoding query x, the challenger responds with a random m such that (m, c) ∈ transcript
and wt(c⊕ x) ≤ δn; if no such m exists, the challenger responds with ⊥.

3. The adversary returns a bit b̂.

Definition 5 (Ideal secret-key PRC security). We say that a secret-key pseudorandom code PRC satisfies
ideal δ-robust security if, for any efficient adversary A,∣∣∣Pr

[
GrealA,δ,PRC(1λ) = 1

]
− Pr

[
G idealA,δ (1λ) = 1

]∣∣∣ ≤ negl(λ) .

5.2 Boosting the information rate

We recall the linear-rate PRC from [CG24]:

Construction 3 (Linear-rate public-key PRC). Let PRC1 be a single-bit public-key PRC with block length
λ. Let (Enc,Dec) be any error-correcting code with block length n ≥ λ and messages of length k. Let
PRG : {0, 1}λ → {0, 1}n be any pseudorandom generator. We define PRCk[PRC1, (Enc,Dec),PRG] which is
a k-bit public-key PRC as follows:

• KeyGenk(1λ): Sample sk′ ← PRC1.KeyGen(1λ) and a random permutation π : [λ2 + n] → [λ2 + n].
Output sk = (sk′, π).

• Encodek(sk,m): Given as input a message m ∈ {0, 1}k, let s← {0, 1}λ, r ← PRG(s), and

x← PRC1.Encode(pk, r1)|| . . . ||PRC1.Encode(pk, rλ)||PRG(r)⊕ Enc(m).

Output PermBits(x, π).

• Decodek(sk, c′): Let c = PermBits(c′, π−1). Parse c = c1|| . . . ||cλ||cλ+1 as λ length-λ blocks followed
by a length-n block. The decoder then computes yi = PRC1.Decode(sk, yi) for all i ∈ [λ] and lets
y = y1|| . . . ||yλ. It then outputs m← Dec(PRG(y)⊕ cλ+1).

Observe that asymptotically as the message length increases, the information rate of PRCk approaches that
of the underlying error-correcting code (Enc,Dec). There exist binary, linear-rate error-correcting codes that
are robust to any rate of worst-case errors α ∈ (0, 1/4) — for instance, see [JST21].

Remark. This PRC is public-key in the sense that codewords are pseudorandom even to an adversary that
knows the public key. However, it is only secret-key adaptively robust, to an adversary that does not know
the public key. Later, in Section 6.2, we construct a linear-rate PRC that is public-key adaptively robust.

Theorem 10. If PRC1 and (Enc,Dec) are both α secret-key adaptively robust, then PRCk[PRC1, (Enc,Dec),PRG]
is α− o(1) secret-key adaptively robust.

Proof. First, observe that by pseudorandomness of PRC1 we can replace the bits r1, . . . , rλ encoded under
PRC1 with 0λ. Then, by pseudorandomness of PRG, we can replace PRG(r) with a uniformly random string.

Let c̃ denote the output of PRCk.Encode(sk,m) with up to an α − ε fraction of adversarial substitutions
applied, for any constant ε > 0. Recall that c̃ consists of a permutation applied to λ + 1 blocks each of
length at least λ. We will show that the adversary cannot find errors that concentrate on any block; we then
complete the proof by invoking the adaptive robustness of PRC1 and (Enc,Dec).

26

For any c such that (m, c) ∈ transcript, let e = x ⊕ c. PermBits(e, π−1) consists of ` + 1 blocks of length at
least λ. If the permutation were to be chosen independently of e, the number of errors in block i ∈ [`] is
a random variable Xi ∼ Hyp(`n′ + n, (α − ε)(`n′ + n), n), following the hypergeometric distribution. The
number of errors in the last block would be distributed as X`+1 ∼ Hyp(`n′ + n, (α − ε)(`n′ + n), n′). By
Lemma 3.1, for all i ∈ [`+ 1],

Pr [Xi ≥ αn] ≤ e−2ε2n = negl(λ) .

By a union bound, every block would have less than an α fraction of errors with overwhelming probability.

We’ll next show that if an adversary can find an error that concentrates on some block more than the above
bounds, one can break pseudorandomness.

Consider an adversary A that is given oracle access to Encodek(sk, ·), and returns an error vector e that has
at least an α fraction of errors on some block with non-negligible probability. A can be used to construct a
distinguisher B breaking pseudorandomness of PRCk as follows. B chooses a random permutation π. When A
queries m to Encodek(sk, ·), B forwards the corresponding queries mi to its oracle (which is either Encode1 or
the uniform distribution) to obtain responses ci. It then lets c = c1|| . . . ||c`+1 and returns c′ = PermBits(c, π).
When B obtains an error vector e from A, it inverts the permutation and checks if e has at least an α fraction
of errors on any block; if so, it knows it received PRC codewords rather than true randomness.

We’ve thus shown that there are less than an α fraction of errors on every block. Furthermore, these errors
are chosen by an efficient adversary, since A and B together run in polynomial time. Therefore, adaptive
robustness of PRC1 implies that Decode1 recovers every bit of r correctly. Adaptive robustness of the error-
correcting code implies that m is recovered by Dec.

5.3 The non-malleable transformation and ideal security

Let PRC be a k-bit pseudorandom code with adaptive robustness up to δ errors. Let F : {0, 1}∗ → {0, 1}λ×
{0, 1}λ be a PRF. Then there exists a secret-key PRC, say PRCsharp, satisfying δ-ideal security.

PRCsharp[PRF,PRC, δ] = (KeyGensharp,Encodesharp,Decodesharp):

• KeyGensharp(1λ): Sample PRF.sk ← PRF.KeyGen(1λ) and PRC.sk ← PRC.KeyGen(1λ). Output sk =
(PRF.sk,PRC.sk).

• Encodesharp(sk,m): Sample r ← {0, 1}λ and let (R1, R2) = FPRF.sk(r||m).

Output PRC.Encode(PRC.sk, r||m||R2;R1).

• Decodesharp(sk, c): Compute r||m||R2 = PRC.Decode(PRC.sk, c) and let (R1, R̃2) = FPRF.sk(r||m). If

R̃2 = R2 and wt(PRC.Encode(PRC.sk, r||m||R2;R1)⊕ c) ≤ δn,

output m; otherwise, output ⊥.

Now PRCsharp behaves almost identically to PRC, except that it has a sharp decoding threshold. That is,
any string that is more than δ-far from a codeword will always be rejected. This is important because it
allows our simulator to simply reject all inputs that are more than δ far from any of the codewords output
so far.

Theorem 11. Let PRC be any k-bit pseudorandom code that is δ adaptively robust, and let PRF be any
pseudorandom function. Then PRCsharp[PRF,PRC, δ] satisfies δ ideal security.

Proof Sketch. We use a hybrid argument. Suppose that the adversary makes at most T queries to the
decoding oracle. For i ∈ 0, . . . , T , define the following hybrid game. Let Encodef and Decodef denote the
encoding and decoding algorithms of PRCsharp, where its PRF is replaced with a random function f .

HiA,PRCsharp,δ(1λ):

27

1. The challenger samples sk← PRCsharp.KeyGen(1λ)

2. The challenger sets q = 1 and transcript = ∅.

3. The adversary is allowed to make encoding and decoding queries.

• For each encoding query m:

(a) The challenger computes c← PRCsharp.Encodef (sk,m).

(b) The challenger lets transcript = transcript ∪ {(m, c)}.

(c) The challenger responds with c.

• For each decoding query x:

(a) If q ≤ i, the challenger responds with a random m such that (m, c) ∈ transcript and wt(c⊕x) ≤
δn; if no such m exists, the challenger responds with ⊥.

(b) If q > i, the challenger responds with PRCsharp.Decodef (sk, x).

(c) The challenger increments q, setting q = q + 1.

4. The adversary returns a bit b̂.

Greal toH0. Observe that H0 is identical to Greal, but with the PRF replaced with a random function. This
is indistinguishable from Greal by security of the PRF.

Hi−1 to Hi. For each i ∈ [T], we show that the adversary’s views in hybrids Hi−1 and Hi are statistically
close by showing that the response to the adversary’s ith decoding query is the same in both cases.

Let x be the adversary’s ith decoding query, and let transcript be as defined in Hi at the time that the
adversary makes the ith decoding query. We show consider two cases, showing that in both cases the
response in Hi is the same as in Hi−1 with high probability:

1. There exists (m, c) ∈ transcript such that wt(c⊕ x) ≤ δn. In this case, with overwhelming probability,
there is a unique such m and PRCsharp.Decodef (sk, x) = m. This follows from adaptive robustness of
PRCsharp.

2. There is no (m, c) ∈ transcript such that wt(c ⊕ x) ≤ δn. In this case, because of the sharp decoding
threshold of PRCsharp, we have PRCsharp.Decodef (sk, x) = ⊥ with overwhelming probability.

Proof of (1). Let xi be the adversary’s ith decoding query, and consider the challenger’s behavior in Hi
in the case that wt(c ⊕ xi) ≤ δn for some (m, c) ∈ transcript. Let m′ = PRCsharp.Decodef (sk, xi) be the
challenger’s response, and observe that by adaptive robustness, m′ = m. Note that we can invoke adaptive
robustness (where the adversary is only given a single decoding query) because the responses to the decoding
queries before i can be computed from the transcript alone.

InHi−1, the challenger responds with a randommj of the (mj , cj) in the transcript such that wt(cj⊕xi) ≤ δn.
By the above argument, mj = m′ for all such j, and therefore the challenger responds with m′ in both Hi
and Hi−1.

Proof of (2). Let xi be the adversary’s ith decoding query, and consider the challenger’s behavior in Hi
in the case that wt(c ⊕ xi) > δn for all (m, c) ∈ transcript. The challenger first computes ri||mi||R2 =
PRCsharp.Decodef (PRC.sk, xi). It then computes (R1, R̃2) ← f(ri||mi). Suppose for the sake of con-
tradiction the challenger does not output ⊥; this implies that R̃2 = R2. Furthermore, letting x̃i =
PRC.Encode(PRC.sk, ri||mi||R2;R1), we have that wt(x̃i ⊕ c) ≤ δn. If ri||mi has not been queried to
f yet, R̃2 = R2 holds with only negligible probability. Therefore, ri||mi must have been queried to f ,

28

and the challenger must have made this query in responding to one of the adversary’s encoding queries.
That is, the challenger must have added to the transcript c = PRC.Encode(PRC.sk, ri||mi||R2;R1) where
(R1, R2) = f(ri||mi). Observe that c = x̃i, which is within distance δn of xi; we have thus arrived at a
contradiction.

Therefore, in Hi the challenger responds with ⊥ if xi is far from all codewords in the transcript, which is
identical to the challenger’s behavior in Hi−1.

HT to G ideal. Observe that HT is identical to G ideal, except that in HT the challenger responds to encoding
queries according to PRCsharp.Encodef . Observe that PRCsharp.Encodef is identical to PRC.Encode, provided
that PRCsharp.Encodef never samples the same r more than once. As some r is repeated with only negligible

probability, HT is indistinguishable from a hybrid HT ′ where PRCsharp.Encodef is replaced by PRC.Encode.

Now, observe that the challenger in HT ′ makes only encoding (and not decoding) queries to PRC; by
pseudorandomness of PRC the challenger’s responses are indistinguishable from uniform randomness.

This completes the proof.

6 CCA security: the public-key setting

This section is dedicated to extending the notion of public-key adaptively secure PRC to what we call
CCA-secure (public-key) PRC. The corresponding definition is given in Section 6.1. We then show how to
generically build such a CCA-secure PRC from any public-key single-bit adaptively secure PRC — such
as the one from Section 4.5 — in two-steps. First, in Section 6.2 we generically show how to boost the
information rate of adaptively-secure public-key PRC to become become a constant. Unfortunately, this
suffers from worse — but still constant — robustness as compared to the secret-key transformation described
in Section 5.2. Then, in Section 6.3, we (also generically) show how to upgrade the public-key adaptive
security from Section 4.1 to our notion of CCA security in Section 6.1. This transformation preserves the
information and error rates of the corresponding adaptively-secure public-key PRC. However, we are only
able to prove its security in the random oracle model.

6.1 CCA security definition

We present a stronger definition of public-key PRC that captures both pseudorandomness and adaptive
robustness. We refer to this security definition as CCA (Chosen Codeword Attack) security, in analogy with
the related Chosen Ciphertext Attack security definition of normal encryption schemes.

Consider the following security games defined for a pseudorandom code PRC = (PRC.KeyGen,PRC.Encode,
PRC.Decode). The goal of the adversary is to determine whether it is given oracle access to the encryption
oracle or to a random codeword oracle, even in the presence of the decoding oracle. Simultaneously, robust-
ness is ensured by modifying the decoding oracle in the “random case” to always output the message for
codewords close to previously returned codewords.

GpubA,δ,PRC(1λ, b):

1. The challenger samples (pk, sk)← PRC.KeyGen(1λ). It sends pk to A.

2. The adversary is allowed to make encoding and decoding queries. Depending on the value of the bit b,
the challenger responds.

• If b = 0:

– For each encoding query m, the challenger responds with PRC.Encode(pk,m).

– For each decoding query x, the challenger responds with PRC.Decode(sk, x).

29

• If b = 1:

– For each encoding query m, the challenger responds with a fresh random string c and sets
transcript = transcript ∪ {(m, c)}.

– For each decoding query x, the challenger responds with a random m such that (m, c) ∈
transcript and wt(c⊕x) ≤ δn. If no suchm exists, the challenger responds with PRC.Decode(sk, x).

3. The adversary returns a bit b̂.

Definition 6 (CCA security for PRCs). We say that a secret-key pseudorandom code PRC satisfies δ-CCA
security if, for any efficient adversary A,∣∣∣Pr

[
GpubA,δ,PRC(1λ, 0) = 1

]
− Pr

[
GpubA,δ,PRC(1λ, 1) = 1

]∣∣∣ ≤ negl(λ) .

Remark. Notice that when δ = 0, this definition is equivalent to the (simulation-based) notion of CCA-
security with pseudorandom ciphertexts, where the challenge ciphertext is either the encryption of the chal-
lenge message, or random. Normally, the attacker is prohibited from decrypting such challenge ciphertext,
which is of course equivalent to modifying the decryption oracle to return the challenge message even in the
random case.

6.2 Boosting the information rate

We now show that one can boost an adaptively robust single-bit public-key PRC to a one with a linear
information rate. This transformation incurs a significant reduction (from 1/4 to at best 1/32) in the (albeit
still constant) error rate tolerated, which we do not attempt to optimize.

Let PRC1 = (PRC1.KeyGen,PRC1.Encode,PRC1.Decode) be a single-bit public-key PRC with codewords of
length λ that is adaptively robust up to error rate β ∈ (0, 1/4). Let ECC1 = (Enc1,Dec1) and ECC2 =
(Enc2,Dec2) be error-correcting codes from {0, 1}λ to {0, 1}`j for ` ≥ λ, and {0, 1}λ` to {0, 1}λ`j , that are
robust up to error rate α ∈ (0, 1/4). There are many standard codes which achieve this desired adaptive
robustness for any message length, with j equal to a constant. We also let PRG : {0, 1}λ → {0, 1}λ`j be a
pseudorandom generator.

Then we define a public-key PRC, PRCk = (KeyGenk,Encodek,Decodek), which for k = λ` encodes k-bit
messages into 2kj-bit codewords, as follows:

PRCk[ECC1,ECC2,PRC1,PRG] = (KeyGenk,Encodek,Decodek):

• KeyGenk(1λ): Output (pk, sk)← PRC1.KeyGen(1λ).

• Encodek(pk,m): Draw a random r ← {0, 1}λ, and let r′ = Enc1(r). For each i ∈ [k], let xi ←
PRC1.Encode(pk, r

′
i). Output

x1|| . . . ||xk||PRG(r)⊕ Enc2(m).

• Decodek(sk, c): Parse c as k blocks of length n, x1|| . . . ||xk, followed by a block y of length nk. Let
si = PRC1.Decode(sk, xi) for each i ∈ [k]. Let r = Dec1(s1|| . . . ||sk). Output

Dec2(PRG(r)⊕ y).

Theorem 12. If ECC1 and ECC2 be error-correcting codes which are (worst-case) robust to substitutions up
to rate α ∈ (0, 1/4), and PRC1 is a pseudorandom code which is adaptively robust to substitutions up to rate
β ∈ (0, 1/4). Then PRCk above is adaptively robust to substitutions, up to error rate αβ/2. Furthermore
PRCk has a linear information rate.

30

Proof. Let x1, . . . , xk, y denote the blocks of a given codeword as defined in Decodek. Recall that x1|| . . . ||xk
has length nk, and y has length nk as well.

We’ll first show that we can recover r from x1, . . . , xk. Since these blocks make up half of the codeword, the
adversary can introduce a rate of αβ errors here. Therefore, at most an α fraction of blocks xi have an error
rate of greater than β. By adaptive robustness of PRC1, this 1− α fraction of blocks all decode correctly to
r′i. By adaptive robustness of ECC1, decoding recovers r from the r′i’s.

We now show that given r, one can recover the message from y. Since y makes up half of the codeword,
the adversary can introduce at most an αβ < α rate of errors to y. Therefore, adaptive robustness of ECC2

ensures that Dec2(PRG(r)⊕ y) yields m.

Finally, observe that PRCk encodes k-bit messages using codewords of length 2kj.

6.3 Construction and security proof

Inspired by the Fujisaki-Okamoto (FO) transformation [FO99] from semantic security to CCA security, we
present a transformation from public-key adaptively robust PRC to public-key CCA-secure PRC in the
random oracle model.

Construction. Let PRC be a public-key pseudorandom code for multi-bit messages with adaptive robust-
ness up to δ errors. Let Hn,m = {H : {0, 1}n → {0, 1}m} be a hash function family. We define a public-key

pseudorandom code PRCCCA, satisfying δ-CCA security, below.

• KeyGenCCA(1λ): SampleH ← Hn,m, where polynomials n(1λ) ≥ λ, m(1λ) ≥ 2λ and (PRC.pk,PRC.sk)←
PRC.KeyGen(1λ). Output sk = PRC.sk and pk = (PRC.pk, H).

• EncodeCCA(pk,m): Sample r ← {0, 1}λ and let (R1, R2) = H(r||m), where R1 ≥ λ and R2 ≥ λ.

Output PRC.Encode(PRC.pk, r||m||R2;R1).

• DecodeCCA(sk, c): Compute r||m||R2 = PRC.Decode(PRC.sk, c) and let (R1, R̃2) = H(r||m). If

R̃2 = R2 and wt(PRC.Encode(PRC.pk, r||m||R2;R1)⊕ c) ≤ δn,

output m; otherwise, output ⊥.

We show that the above construction satisfies CCA security.

Theorem 13. PRCCCA satisfies δ-CCA security.

Proof. SupposeA is a probabilistic polynomial time adversary participating in the experiment GpubA,δ,PRCCCA(1λ, b).

We establish some notation first.

• Let ` be the number of encoding and decoding queries made by A; we can assume that the number
of encoding and decoding queries is the same without loss of generality. Recall that A is allowed to
intersperse the encoding and decoding queries arbitrarily.

• Denote (m1, . . . ,m`) to be the sequence of (adaptive) encoding queries made by A.

• For the ith encoding query mi, the challenger does the following: it picks ri ← {0, 1}λ. It then
queries (mi, ri) to the random oracle (RO) to obtain H(mi||ri) = ((R1)i||(R2)i). Then it sets ci =
EncodeCCA(pk, (ri||mi||(R2)i); (R1)i). It responds to A with ci. Thus, (c1, . . . , c`) is the list of responses
to the encoding queries.

• Denote QRO
Ch = {(m1, r1), . . . , (m`, r`)} to be the set of RO queries made by the challenger during the

encoding queries.

• Denote (c′1, . . . , c
′
`) to be the sequence of (adaptive) decoding queries.

31

• For the ith decoding query c′i, the challenger does the following: it returns the output of DecodeCCA(sk, c′i)
to A. In more detail, DecodeCCA first computes (m′i, r

′
i, (R2)′i) ← PRC.Decode(sk, c′i) and then re-

turns m′i to A if and only if (R2)′i = (R2)′′i , where H(mi||ri) = ((R1)′′i ||(R2)′′i). Otherwise, it

returns ⊥. Denote QResp
Ch to be the set of responses to the adversarial decoding queries. That is,

QResp
Ch = {m′1, . . . ,m′q}. Let QDec

Ch be the set of decoded outputs of the adversarial decoding queries.

That is, QDec
Ch = {(m′1, r′1, (R2)′1), . . . , (m′q, r

′
q, (R2)′q)}. Note that QResp

Ch can be obtained by considering

the first components of all the elements in QDec
Ch .

• Denote QRO
A =

{
(m′′1 , r

′′
1), . . . , (m′′Q, r

′′
Q)
}

to be the set of RO queries made by the adversary.

We describe the hybrids below.

Hybrid Hyb1: GpubA,δ,PRCCCA(1λ, 0).

Before describing Hyb2, we define an event below.

NeverQueried: There exists (m′i, r
′
i, (R2)′i) such that (m′i, r

′
i) has never been queried by A to

the RO until the point where the adversary makes the ith decoding query c′i. Recall that
(m′i, r

′
i, (R2)′i) ∈ QDec

Ch .

Hybrid Hyb2: This hybrid is identical to the previous hybrid except that if NeverQueried happens at any
point, immediately abort.

Lemma 6.1. Pr[NeverQueried] = negl(λ).

Proof. We first show that Pr[NeverQueried] is negligible. Note that the probability that we can predict the
output of H on x where x has never been queried before is at most 1

2λ
. Since A can submit ` decoding

queries, the probability that A can successfully predict the output of H is at most `
2λ

.

Lemma 6.2. Hybrids Hyb1 and Hyb2 can be distinguished by A with advantage at most negl(λ).

Proof. Conditioned on NeverQueried never happening, hybrids Hyb1 and Hyb2 are identical. This observation
along with Lemma 6.1 completes the proof.

Hybrid Hyb3: We first define an alternate decoding procedure, denoted by AltDecode.

AltDecode: on input a codeword c and a set {(m′′1 , r′′1), . . . , (m′′q , r
′′
q),mi1 , ci1 , . . . ,mit , cit},

• It first computes the codewords {c′′1 , . . . , c′′q}, where c′′i = PRC.Encode(PRC.pk, r′′i ||m′′i ||(R2)′′i ; (R1)′′i)
and H(r′′i ||m′′i) = ((R1)′′i , (R2)′′i).

• It then checks17 if wt(c ⊕ c′′j) ≤ δn for some j ∈ [q]. It also checks if wt(c ⊕ cik) ≤ δn, for
some k ∈ [t]. If such a j (or k) exists then it outputs m′′j (or mik). Otherwise, it outputs ⊥.

This hybrid is identical to the previous hybrid except that the above alternate decoding procedure AltDecode
is used to answer decoding queries. In more detail, whenever A submits the ith decoding query c′i, run
Altdecode(c′i, {(m′′1 , r′′1), . . . , (m′′q , r

′′
q),mi1 , ci1 , . . . ,mit , cit}), where {(m′′1 , r′′1), . . . , (m′′q , r

′′
q)} is the set of recorded

RO queries made so far by A and ci1 , . . . , cit is the set of codewords generated for the messages mi1 , . . . ,mit

during the encoding queries made so far by A. Denote the result to be m
(i)
alt . Also, run the real decoding

procedure Decode(sk, c) to obtain m
(i)
real. If m

(i)
alt 6= m

(i)
real, abort the experiment. Otherwise, return m

(i)
alt to A.

Lemma 6.3. Assuming the adaptive robustness property of PRC, hybrids Hyb2 and Hyb3 can be distinguished
by A with advantage at most negl(λ).

17It could be the case that c is close to more than one codeword in the set {c′′1 , . . . , c′′q }∪{ci1 , . . . , cit}. In this case, AltDecode
picks one of the matched codewords at random.

32

Proof. Conditioned on m
(i)
alt = m

(i)
real, for every i ∈ [`] – i.e. the outputs of the alternate and the real decoding

procedures are the same – the hybrids Hyb2 and Hyb3 are identical. Consider the following event.

UnEqual: there exists i∗ ∈ [`] such that m
(i∗)
alt 6= m

(i∗)
real .

We claim that Pr[UnEqual] is negl(λ). Suppose Pr[UnEqual] is non-negligible, we violate the adaptive
robustness property of PRC.

We design the following reduction that violates the adaptive robustness property of PRC:

• It samples î
$←− [`].

• It employs lazy sampling to simulate the RO queries made by A.

• It duly forwards the public key it receives from the external challenger to A.

• Encoding queries: for the ith query mi from A, the reduction samples ri uniformly at random and
submits (mi, ri) to the external challenger. It receives a codeword ci from the external challenger which
it duly forwards to A.

• Decoding queries: for the ith decoding query c′i, it first checks if i < î. If so, it employs the al-

ternate decoding procedure AltDecode to respond to decoding queries. For the (̂i)th decoding query,

it checks if m
(̂i)
alt 6= m

(̂i)
real, where m

(̂i)
alt and m

(̂i)
real are as defined in the description of Hyb3. If the

check did not pass, it aborts the experiment. Otherwise, it sets ((m, r,R2), R1) as follows: (a) c ←
PRC.Encode(PRC.pk, (m, r,R2);R1), (b) wt(c, c′

î
) ≤ δn and, (c) m = m

(̂i)
alt . It sends ((m, r), (R2), c′

î
)

to the external challenger and ends the adaptive robustness experiment. In other words, after the (̂i)th

decoding query, the execution of the reduction ends.

• RO queries: The reduction answers consistently according to the table generated during the lazy
sampling procedure.

With probability 1
` Pr[UnEqual], which is non-negligible by our assumption, the following events holds: (̂i)th

decoding query is the first decoding query where the event UnEqual holds.

This shows that the reduction violates the adaptive robustness property of PRC with non-negligible proba-
bility, which is a contradiction.

Hybrid Hyb4: Sample (c1, . . . , c`) instead from the uniform distribution.

Lemma 6.4. Assuming the pseudorandomness of PRC, the hybrids Hyb3 and Hyb4 can be distinguished by
A with advantage at most negl(λ).

Proof. We define the following event.

BadDecodingQuery: If there exists i such that (mi, ri) ∈ QRO
A .

We first claim that the probability that BadDecodingQuery happens in Hyb3 is p = negl(λ).

Suppose not; that is, let p be non-negligible. We show that we can violate the pseudorandomness of PRC.
The reduction, that violates the pseudorandomness of PRC, does the following:

• It employs lazy sampling to simulate the RO queries made by A.

• It duly forwards the public key it receives from the external challenger to A.

• Encoding queries: for the ith query mi from A, the reduction samples ri uniformly at random and
submits (mi, ri) to the external challenger. It receives a codeword ci from the external challenger which
it duly forwards to A.

33

• Decoding queries: it employs the alternate decoding procedure AltDecode described in Hyb3 to respond
to decoding queries.

• RO queries: if the adversary ever queries (mi, ri), the reduction stops the execution and outputs 1.
Otherwise, it answers consistently according to the table generated during the lazy sampling procedure.

If A finishes its execution successfully then the reduction outputs 0.

Note that the probability that the reduction outputs 1 in the case when the reduction receives pseudorandom
codewords from the external challenger (as generated in Hyb3) is non-negligible. This is due to our hypothesis
that the probability that BadDecodingQuery happens in Hyb3 is p, which is assumed to be non-negligible.
On the other hand, the probability that the reduction outputs 1 in the case when the reduction receives
uniformly random codewords from the external challenger is negl(λ). This is due to the fact that {r1, . . . , r`}
is information-theoretically hidden from A. Hence, the probability that the adversary queries on (mi, ri), for
any i, is at most `

2λ
. Thus, the reduction successfully violates the pseudorandomness of PRC, a contradiction.

From this we can conclude that p has to be negl(λ).

We are now ready to prove the lemma. Suppose the hybrids Hyb3 and Hyb4 can be distinguished by A with
probability ε. We prove by contradiction that ε is non-negligible. Consider the following reduction:

• It employs lazy sampling to simulate the RO queries made by A.

• It duly forwards the public key it receives from the external challenger to A.

• Encoding queries: for the ith query mi from A, the reduction samples ri uniformly at random and
submits (mi, ri) to the external challenger. It receives a codeword ci from the external challenger which
it duly forwards to A.

• Decoding queries: it employs the alternate decoding procedure described in Hyb3 to respond to decoding
queries.

• RO queries: if the adversary ever queries (mi, ri), the reduction aborts. Otherwise, it answers consis-
tently according to the table generated during the lazy sampling procedure.

After the execution of A, the output of the reduction is set to be the output of A.

Since the probability that BadDecodingQuery happens is negligible in both the hybrids Hyb3 and Hyb4,
the probability that the reduction aborts (in both the cases) is negligible. Conditioned on the reduction
never aborting, the simulation of A by the reduction in the case when {c1, . . . , c`} are pseudorandom (resp.,
uniform) is identical to Hyb3 (resp., Hyb4). Thus, the probability that the reduction violates the pseudoran-
domness of PRC is negligibly close to ε, which is non-negligible. This contradicts the pseudorandomness of
PRC. Thus, ε is negligible, which completes the proof.

Hybrid Hyb5: This is identical to GpubA,δ,PRCCCA(1λ, 1) except that if NeverQueried ever happens, abort.

Lemma 6.5. Hybrids Hyb4 and Hyb5 can be distinguished by A with advantage at most negl(λ).

Proof. This proof is similar to the proof of Lemma 6.3.

Hybrid Hyb6: GpubA,δ,PRCCCA(1λ, 1).

Lemma 6.6. Hybrids Hyb5 and Hyb6 can be distinguished by A with advantage at most negl(λ).

34

Proof. This proof is similar to the proof of Lemma 6.2.

This completes the proof of Theorem 13.

Acknowledgments. Omar Alrabiah was supported in part by a Saudi Arabian Cultural Mission (SACM)
Scholarship, NSF CCF-2210823 and V. Guruswami’s Simons Investigator Award. Prabhanjan Ananth was
supported by NSF CNS-2329938 and NSF Career-2341004. Miranda Christ was supported by a Google
CyberNYC grant, an Amazon Research Award, and NSF grants CCF-2312242, CCF-2107187, and CCF-
2212233. Yevgeniy Dodis was partially supported by NSF grant CNS-2055578, and a gift from Google.
Sam Gunn was partially supported by a Google PhD fellowship. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the United States Government, Amazon, Google, or any other supporting organization.

We thank Shivam Nadimpalli for helpful conversations in the early stages of this work.

35

References

[Aar22] Scott Aaronson. My AI Safety Lecture for UT Effective Altruism. https://scottaaronson.

blog/?p=6823, November 2022. Accessed May 2023.

[CG24] Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and
Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part VI,
volume 14925 of Lecture Notes in Computer Science, pages 325–347. Springer, 2024.

[CGZ24] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
Shipra Agrawal and Aaron Roth, editors, The Thirty Seventh Annual Conference on Learning
Theory, June 30 - July 3, 2023, Edmonton, Canada, volume 247 of Proceedings of Machine
Learning Research, pages 1125–1139. PMLR, 2024.

[CHS24] Aloni Cohen, Alexander Hoover, and Gabe Schoenbach. Watermarking language models for
many adaptive users. IACR Cryptol. ePrint Arch., page 759, 2024.

[FGJ+23] Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
Mingyuan Wang. Publicly detectable watermarking for language models. Cryptology ePrint
Archive, 2023.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In Annual international cryptology conference, pages 537–554. Springer, 1999.

[GG24] Surendra Ghentiyala and Venkatesan Guruswami. New constructions of pseudorandom codes.
IACR Cryptol. ePrint Arch., page 1425, 2024.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GM24] Noah Golowich and Ankur Moitra. Edit distance robust watermarks for language models. IACR
Cryptol. ePrint Arch., page 898, 2024.

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory.
Draft available at https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-
book.pdf, 2(1), 2012.

[GZS24] Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
models. Cryptology ePrint Archive, Paper 2024/1597, 2024.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pages 409–426, 1994.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments and efficient
zero-knowledge proofs from learning parity with noise. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 663–680. Springer, 2012.

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear time de-
coding of ta-shma’s codes via splittable regularity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1527–1536. ACM, 2021.

[JSV24] Nikola Jovanovic, Robin Staab, and Martin T. Vechev. Watermark stealing in large language
models. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[KGW+23] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

36

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823

[KJGR21] Gabriel Kaptchuk, Tushar M. Jois, Matthew Green, and Aviel D. Rubin. Meteor: Cryptograph-
ically secure steganography for realistic distributions. In Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, pages
1529–1548. ACM, 2021.

[KTHL24] Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-
free watermarks for language models. Trans. Mach. Learn. Res., 2024, 2024.

[PHZS24] Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia Smith. Attacking LLM watermarks by
exploiting their strengths. CoRR, abs/2402.16187, 2024.

[ZALW24] Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust
watermarking for ai-generated text. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[ZDR19] Zachary M. Ziegler, Yuntian Deng, and Alexander M. Rush. Neural linguistic steganography.
In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 1210–1215. Association for Computational Linguistics, 2019.

[ZZXR24] Tong Zhou, Xuandong Zhao, Xiaolin Xu, and Shaolei Ren. Bileve: Securing text provenance in
large language models against spoofing with bi-level signature. CoRR, abs/2406.01946, 2024.

37

A Related work

We are motivated by a line of work on embedding hidden patterns into the outputs of generative models.
To our knowledge, the first of these works was [ZDR19] in the context of steganography using text. Later,
[KJGR21] observed that the scheme of [ZDR19] could be made secure by applying pseudorandom encryption
(which can be built from one-way functions). However, both of these works require full knowledge of the
prompt and that there are no modifications to the text, rendering them inapplicable to watermarking.

Due to the rise of generative AI, there has been a renewed interest in watermarking. Starting with [Aar22,
KGW+23], which focus on language models, there has emerged a line of work that embeds watermarks by
modifying the randomness used in these generative algorithms. In [CGZ24], they showed that it is possible
to modify the randomness of a language model such that the distribution of the watermarked model is
computationally indistinguishable from that of the original model. This indistinguishability property, called
undetectability, implies that the watermark does not degrade the quality of the model under any efficiently
computable metric. Undetectability is identical to steganographic secrecy, and an undetectable multi-bit
watermark implies stateless, robust steganography.

While the watermark of [CGZ24] achieves a very strong quality guarantee, it has only very weak robustness
— that is, a small number of edits can remove the watermark from the text. This is because it relies on
using a security-parameter-length substring of the text to seed a pseudorandom function used to embed a
watermark in the remainder of the response. If any word in this substring is changed, the seed cannot be
recovered at detection time and the watermark disappears. Therefore the [CGZ24] scheme is only robust
against a very constrained adversary that may crop a response to a sufficiently long contiguous substring,
but not replace words.

In [FGJ+23], they introduce a notion of publicly-detectable watermarks. While it is of course possible
to publish the secret watermarking key for any scheme to make it “publicly detectable,” the feature that
distinguishes [FGJ+23] is that the watermark is unforgeable even by an adversary who knows the detection
key. However, their notion of public detectability directly contradicts their definition of robustness — an
issue that other works overcome by introducing two separate watermark detection keys [CG24, ZZXR24].
Furthermore, this scheme (even the version that uses an error-correcting code) has the same level of very-
weak robustness as that of [CGZ24], and is only undetectable under the assumption that every response
from the model has high entropy per fixed-length “chunk” of tokens.

Other text watermarks such as [ZALW24, KTHL24] achieve stronger robustness, to even a constant rate
of edits, but at the cost of significant degradation in quality. This state of affairs suggested to many a
fundamental tradeoff between quality and robustness of text watermarks.

Pseudorandom codes (PRCs) were introduced to overcome this trade-off, allowing for undetectable water-
marks with robustness to even a constant rate of substitutions and random deletions [CG24]. In the same
paper, they also demonstrate that PRCs immediately allow for unforgeable publicly-detectable watermarks,
overcoming the aforementioned issues with [FGJ+23]. Since [CG24], a few works have used pseudorandom
codes and their watermarking framework to construct language model watermarks [GM24, GG24], as well
as an image model watermark [GZS24].

As stronger robustness of a PRC directly translates to stronger watermark robustness, some works have
focused on constructing PRCs with stronger robustness guarantees. In [CHS24], they consider a notion of
adaptive robustness of a watermark, where the errors are allowed to depend on previously seen watermarked
responses. They prove that the scheme of [CGZ24] is adaptively robust, but as discussed above, that scheme
is only very-weakly robust. They conjecture that the PRC of [CG24] is adaptively robust to even a constant
rate of substitutions.

Subsequently, Golowich and Moitra [GM24] showed how to construct binary PRCs from an alternative
assumption — namely, the existence of a family of (log n)-juntas that is hard to learn. They then presented

38

a powerful and generic transformation that converts any binary-alphabet PRC into a polynomial-sized-
alphabet PRC with robustness to non-adaptive edits.

The most recent work on constructing PRCs is that of Ghentiyala and Guruswami [GG24]. They first
show that, assuming just the existence of one-way functions, there exist PRCs with robustness to any non-
adaptive channel that introduces any o(1) rate of errors. They then construct PRCs under alternative notions
of pseudorandomness, where the distinguisher is space-bounded or is allowed o(1) distinguishing advantage.
They also present an interesting variant of the codes from [CG24] that permits pseudorandomness to be
based on a wider range of assumptions.

Although work on watermarks offering provable guarantees has focused largely on language models, the
framework of [CG24] is applicable to generative AI more broadly. For instance, [GZS24] used PRCs to build
a practical image watermark for diffusion models that is quality-preserving. Therefore, improving PRCs is
an avenue for improving watermarks in general.

39

	Introduction
	Results
	Relationship to watermarking

	Technical overview
	Organization
	Pseudorandom codes
	Adaptively robust public-key PRCs based on LDPC codes
	Ideal PRCs: the secret-key setting
	CCA security: the public-key setting

	Preliminaries
	Pseudorandom codes

	Adaptively robust public-key PRCs based on LDPC codes
	Definitions
	The scheme
	The toolkit
	An adaptively robust zero-bit PRC
	An adaptively robust single-bit PRC

	Ideal PRCs: the secret-key setting
	Definition
	Boosting the information rate
	The non-malleable transformation and ideal security

	CCA security: the public-key setting
	CCA security definition
	Boosting the information rate
	Construction and security proof

	Related work

