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Abstract. We construct and implement an efficient post-quantum com-
mutative cryptographic group action based on combining the SCALLOP
framework for group actions from isogenies of oriented elliptic curves on
one hand with the recent Clapoti method for polynomial-time evaluation
of the CM group action on elliptic curves on the other. We take advantage
of the very attractive performance of (2e, 2e)-isogenies between products
of elliptic curves in the theta coordinate system. To successfully apply
Clapoti in dimension 2, it is required to resolve a particular quadratic
diophantine norm equation, for which we employ a slight variant of the
KLPT algorithm. Our work marks the first practical instantiation of the
CM group action for which both the setup as well as the online phase
can be computed in (heuristic) polynomial time.

1 Introduction

Isogenies of abelian varieties, in particular elliptic curves, are viewed as one of
the main contenders for post-quantum cryptography. In the context of the NIST
post-quantum standardization project, two schemes SIKE [20] and SQIsign [17]
have played prominent roles.

The catastrophic break of SIKE in 2022 was far from the end of the history
of isogeny-based cryptography; in fact, quite the opposite: Tools arose from the
attack which have since revolutionized algorithms used in the field. The perfor-
mance issues which are often attributed to isogenies when compared to other
post-quantum cryptography paradigms are partially alleviated by new algorith-
mic tools from and with higher-dimensional isogenies.

Generally speaking, isogeny-based cryptography falls into two large concep-
tual families, depending on whether they make use of the “full” supersingular
isogeny graph or of an isogeny graph of oriented curves. The former can be
seen as being more rigid as a cryptographic design tool, but more conservative
∗ Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. Christophe Petit is partly supported by EPSRC through
grant number EP/V011324/1. Date of this document: 2024-11-10.
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in terms of security, while the latter offers some more convenient mathematical
structure which is useful to protocol designers; however, it also gives rise to a
subexponential (but superpolynomial) quantum attack.

In the first family, the structure of the full supersingular isogeny graph is
dictated by lattices embedded in certain quaternion algebras. A key algorithmic
tool in this context is the Kohel–Lauter–Petit–Tignol algorithm (KLPT) [24],
which is capable of solving diophantine norm equations in some of these lattices
efficiently, an operation that is required as a subroutine in many cryptographic
constructions. Typically, KLPT has been understood to apply only in the “full
supersingular graph” setting. In this paper, we will give an application of this
algorithm to the oriented setting.

The “Clapoti” algorithm for group-action evaluation [29] solves the scaling
issues which were previously inherent in all approaches to construct a true ef-
fective group action from “restricted” effective group actions such as CSIDH [8].
It does so by embedding the oriented isogenies to be constructed inside of a
higher-dimensional isogeny, similar to the provable polynomial-time version of
the SIDH attack [35]. While this solves the problem in theory, running the full
version of the algorithm is currently impractical since it requires isogenies of
abelian varieties in dimension 4 or even 8. In this work, we show how to make
the Clapoti approach work in dimension 2 in an important special case.

The key issue lies in finding two representatives of an imaginary-quadratic
ideal class whose norms sum to a power of two. This type of norm equation looks
superficially similar to quaternionic norm equations as encountered by the KLPT
algorithm, and indeed, we will show that the KLPT algorithm does extend to
this setting. We also note that representing integers by this type of norm form
can be seen as a generalization of the four-squares theorem.

Contributions. We revisit the Clapoti method to compute the CM group ac-
tion on oriented elliptic curves, in particular working only with two-power isoge-
nies of 2-dimensional abelian varieties for efficiency. The result is a novel variant
of the CSI-FiSh/SCALLOP/SCALLOP-HD family of group actions which fully
solves (in the sense of heuristic polynomial time) the scaling issues inherent
in those existing constructions, while offering decent practical performance, as
demonstrated by our implementation in Rust. The resulting group action, which
we call SCALLOP2D, can be used to directly instantiate various group-action-
based protocols.

We further discuss two optimizations applicable to non interactive key ex-
change and signatures respectively. More precisely, we show that a pairing com-
putation normally involved in the group action computation can be altogether
avoided by choosing a specific initial curve and slightly tweaking the key ex-
change protocol. Similarly, we show that the canonical representations normally
computed in the group action can be replaced by more efficient random repre-
sentations in a CSI-FiSh-style signature. We expect these optimizations to be
more generally useful in other group-action-based protocols.
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Concurrent work. After we first presented an overview of these results at
the Quantum Safe Workshop held at IBM Research Zürich on May 24, 2024,
we were informed that the authors of [29] had previously and independently
discovered the same fundamental idea (using KLPT for Clapoti) while working
on [29], but had not announced it publicly. Our work indeed starts from this
combination (see Section 5) but reaches far beyond: It also includes the design
and implementation of a post-quantum cryptographic commutative group action
(see Section 6) resulting from the approach, as well as some techniques and
optimizations of independent interest.

2 Preliminaries

For an element α of a quadratic field or quaternion algebra, we write n(·) for
its norm, which is defined as αα ∈ Q. Similarly for ideals I, where n(I) is the
non-negative generator in Z of the principal ideal II. In addition, for a quadratic
or quaternion ideal I and an element α ∈ I, we write nI(α) = n(α)/n(I) ∈ Z
for the “reduced” norm of α relative to I.

Throughout, we consider supersingular elliptic curves E defined over Fp2 ,
where p ≥ 5, such that E(Fp2) = E[p+1]. (This component of the isogeny graph
includes the base-changes of supersingular elliptic curves defined over Fp.) We
refer to the endomorphism ring of E by End(E); it is isomorphic to a maximal
order in the quaternion algebra Bp,∞ over Q ramified at p at infinity.

The dual of an isogeny φ : E → E′ is denoted by φ̂ : E′ → E. On the abstract
side (imaginary-quadratic or quaternion orders), taking the dual corresponds to
conjugation α 7→ α.

2.1 The KLPT algorithm

The quaternion algebra Bp,∞ can concretely be represented by a 4-dimensional
Q-basis 1, i, j, ij satisfying the relations i2 = −q, j2 = −p, ji = ij for some
positive integer q. We consider quaternion orders Q inside Bp,∞: They are full-
rank subrings. An order Q is called special if it contains a non-scalar element of
very small norm.

Given a (one-sided) ideal I of a maximal order Q, the KLPT algorithm [24]
can be used to find an element α ∈ I of given (large enough) norm in polynomial
time under various heuristic assumptions. This yields another representative
J = Iα/n(I) of norm nI(α) in the (left) ideal class of I. When Q is special,
the KLPT algorithm can produce elements of norm larger than p7/2, and a later
improvement by Petit–Smith [33] reduces this to p3. There is also a version of
KLPT that only relies on GRH, but outputs elements with larger norms [38].
We postpone a description of the KLPT algorithm to Section 5.

2.2 Oriented curves

Let O be an imaginary-quadratic order. An O-oriented elliptic curve is a pair
(E, ι) where ι : O ↪→ End(E) is an embedding of rings. For ease of notation, we

3



will in the following assume that O is given by a fixed generator a ∈ O, thus
O = Z[a], and specify the embedding ι by an explicit endomorphism τ := ι(a)
instead —this is equivalent and reflects more closely how such an orientation is
represented in computational practice. The orientation of E by τ is primitive
if Q(τ) ∩ End(E) = Z[τ ].

It is well-known that the ideal class group of O acts on the set of primitively
O-oriented elliptic curves; see [11, 28]. In all cases, the action of an (invert-
ible, integral) ideal a of O on a curve (E, τ) is given by evaluating its gener-
ators as endomorphisms on E, then returning the (oriented) codomain of the
isogeny whose kernel is the intersection of the kernels of those endomorphisms:
Set E[a] =

⋂
α∈a ker(α) ≤ E, compute ϕ : E → E′ with kernel E[a], and re-

turn
(
E′, (ϕτϕ̂)/deg ϕ

)
.1 For any ideal a of an imaginary-quadratic order O and

O-oriented curve (E, τ), we write ϕa : E → Ea for the corresponding isogeny.
CSIDH [8] is the CM group action on supersingular elliptic curves over Fp

oriented by the Frobenius order Z[
√
−p], for well-chosen primes p. In this case it

is not necessary to explicitly encode the endomorphism τ as part of the oriented-
curve data; it can be taken as the Frobenius π : (x, y) 7→ (xp, yp).

For a commutative group action ∗ : G×X → X, one considers the following
analogues of the classical discrete-logarithm and Diffie–Hellman problems: The
vectorization problem is to recover g ∈ G from a pair (x, g∗x). The parallelization
problem is to recover gh ∗ x from a triple (x, g ∗ x, h ∗ x).

2.3 Kani’s lemma

Kani’s lemma [22] as used in contemporary isogeny-based cryptography permits
embedding isogenies of elliptic curves into an isogeny of abelian surfaces (or
even higher-dimensional abelian varieties). Concretely, a commutative diagram
of elliptic-curve isogenies

E F

E′ F ′

φ

ψ ψ′

φ′

with a := deg(φ) = deg(φ′), b := deg(ψ) = deg(ψ′), and gcd(a, b) = 1 induces
the (a+b)-isogeny of (principally polarized) abelian surfaces

Φ =

(
φ ψ̂′

−ψ φ̂′

)
: E × F ′ −→ F × E′

which can be computed from its kernel

kerΦ =
{(
φ̂(R), ψ′(R)

)
: R ∈ F [a+ b]

}
.

1 The divisibility of ϕτϕ̂ by deg ϕ follows from the fact that kerϕ is an eigenspace of O
on E[deg ϕ], hence ϕτϕ̂(E[deg ϕ]) = ϕτ(kerϕ) ⊆ ϕ(kerϕ) = {∞}.
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3 Cryptographic instantiations of the CM action

The CM action has been used in several different ways to construct restricted
effective group actions (CRS [13, 36], CSIDH [8]), where only some sequences of
operations can be applied efficiently, as well as (unrestricted) effective group ac-
tions (CSI-FiSh [4], SCALLOP [15], SCALLOP-HD [10]), where arbitrary com-
binations of operations in the group followed by applying the actions remain
efficient. In this section we survey these existing instantiations.

3.1 CSI-FiSh

CSI-FiSh [4] is a signature algorithm based on CSIDH group action, i.e., super-
singular elliptic curves oriented by O = Z[

√
−p]. The signature is based on the

Fiat–Shamir paradigm and an underlying identification protocol with soundness
error 1/2, which is repeated λ times to achieve soundness error 2−λ.

In the identification protocol, the prover chooses an O-ideal a as secret key,
and they deduce their public key E = a ∗ E0. Upon starting an interactive
proof of knowledge of a, they choose a random ideal b and send a commitment
Ec = b ∗ E. The challenge is made of a single bit, and depending on its value
the prover answers with either b or an ideal c in the equivalence class of ba. The
verifier then verifies whether Ec is b∗E or c∗E0 depending on the challenge bit.
Note that returning ba directly would leak the secret as this random variable
has mean b0a where b0 is the expected value of the random variable b, but
returning a canonical representative in the ideal class of ba solves the problem
if the class of b is (sufficiently close to) uniform. Moreover, this representative
must be chosen such that the group action c ∗ E0 can be efficiently computed.

In the CSI-FiSh protocol, the security level and characteristic are fixed. A
short basis for the lattice of relations in the class group of O is precomputed.
Fix some set of small primes ℓi that split in O as ℓiO = lili where li is some
ideal of norm ℓi. Then the relation lattice is

LB =
〈
(e2, e3, e5, . . .)

∣∣∣ ∏
ℓi<B

leii = 1
〉

.

Computing a suitable representative c then amounts to computing a reduced rep-
resentative in the ideal class of ba, then a B-smooth representative in this class,
and finally reducing it by the relation lattice to obtain a canonical powersmooth
representative.

The CSI-FiSh paper provides concrete timings for CSIDH-512 parameters
based on a record class group (pre-)computation. However, larger parameter
sets appear out of practical range, with the best class group computation algo-
rithms requiring Lp[1/2] subexponential time [21, 5, 23, 4]. The relation lattice
and a short basis for it can be precomputed by fixing the prime, but these com-
putations are still subexponential and hardly scalable to larger parameters. More
annoyingly, computing a powersmooth representative c and evaluating the group
action c ∗ E0 had conflicting requirements on B, with the optimal tradeoff also
seemingly leading to a Lp[1/3] subexponential-time computation [31].
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3.2 SCALLOP

SCALLOP [15] modifies CSI-FiSh with the aim of improving its scalability, and
particularly the class group computation bottleneck. The main change is that
the order O is now equal to Z+ fO0, where O0 is the maximal order of a nega-
tive fundamental discriminant −d0 of class number one, and the conductor f is
a large prime integer. One advantage of this approach is that the class number
h(O) = f −

(−d0
f

)
can be computed efficiently in this setting. Moreover, when h

is smooth enough, then the relation lattice can be computed by solving discrete
logarithms using the Pohlig–Hellman algorithm rather than index calculus. The
conductor f is required to be prime for security reasons: a smooth conductor
would allow inverting the group action by “walking up the volcano” [37, The-
orem 5]. SCALLOP also requires a generator τ of O with smooth norm (for
efficient computation of the group action). In the parameter selection one there-
fore first generates τ as a product of principal ideals of small prime norms in
O0, until h(Z[τ ]) is smooth enough (asymptotically Lp[1/2]-smooth). This com-
putation requires subexponential time Lp[1/2], but the authors of SCALLOP
argue that a smaller hidden constant in the complexity makes SCALLOP more
practical than CSI-FiSh [15, p. 17].

In CSI-FiSh, the Frobenius is readily available on any Fp-rational curve and
it generates the order Z[

√
−p]. In SCALLOP one must provide an explicit repre-

sentation of an endomorphism ϕτ corresponding to τ , or equivalently an explicit
embedding O ↪→ End(E). The representation chosen aims at minimizing the size
of the characteristic p while keeping all computations over Fp2 . More precisely,
two points P and Q on the curve are given, respectively generating the kernels
of two isogenies φP and φQ such that ϕτ = φ̂PφQ.

The SCALLOP paper provides an algorithm to evaluate the action of any
ideal of powersmooth norm; for optimal efficiency the characteristic p is chosen
such that p − 1 is a small multiple of the product of all primes split in O and
smaller than a suitable bound. To evaluate the action of an arbitrary ideal,
one must first compute a Lp[1/2]-smooth representative of that ideal using a
precomputed short basis for the lattice of relations. One then computes the
action of that representative, which amounts to computing Lp[1/2] isogenies of
small degrees and pushing torsion points trough them. So while removing the
class group computation that was necessary for CSI-FiSh may result in practical
improvements, evaluating the action still requires Lp[1/2] subexponential time.

3.3 SCALLOP-HD

The SCALLOP-HD paper [10] revisits the SCALLOP group action using tools
introduced to cryptography via the SIDH attacks [7, 27, 35]. In particular, a
generator τ of O is now embedded into a two-power-isogeny between princi-
pally polarized abelian varieties of dimension 2 with Kani’s Lemma. One first
(pre-)computes two elements β, γ ∈ O such that

n(β) + n(γ) = 2e (1)
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for some integer e. One then considers the (2e, 2e)-isogeny F : E × E → E × E
defined by

F =

(
ϕβ ϕγ
−ϕγ ϕβ

)
where for any µ ∈ O we write ϕµ for the corresponding endomorphism. This
isogeny can be efficiently represented and evaluated at any point from its kernel,
and from there one can also efficiently evaluate ϕβ and thus ϕτ on any point.

The polynomial-time algorithm used to solve Equation (1) (see Section 4)
is heuristic. The SCALLOP-HD authors also suggest an alternative, provable
version resorting to higher-dimensional isogenies, where the sum of two norms in
Equation (1) is replaced by either a sum of four norms or a sum of eight norms,
both of which are easier to solve. However, they argue that only dimension-2
isogenies are currently fast enough in practice [10].

The new representation for endomorphisms greatly simplifies parameter se-
lection in SCALLOP by removing the powersmoothness requirement on n(τ). In
particular, one can choose the class number polynomially smooth, so that the
lattice of relations can now be computed in polynomial time by solving discrete
logarithm problems in the class group.

On the other hand, the class group action is still computed by first com-
puting a smooth norm ideal representative, then applying a class group action
algorithm in the smooth case. While precomputing a short basis for the rela-
tion lattice will reduce the online costs, they can only be reduced to polynomial
with an exponential time precomputation, and the optimal total cost is still
subexponential.

3.4 Clapoti

The remaining subexponential costs in SCALLOP-HD come from the group
action computation and its reduction to the smooth case. Clapoti [29] removes
these costs with another use of Kani’s lemma. The key idea for Clapoti can be
seen as a generalization of what was done in SCALLOP-HD. We sketch this
idea in dimension 2 for simplicity, but stress that [29] only includes concrete
realizations in dimensions 4 and 8.

Let E be an O-oriented curve and let a be an O-ideal of norm N . Let β, γ ∈ a
such that

na(β) + na(γ) = 2e. (2)

The ideals b = aβ/N and c = aγ/N are O-ideals in the same class as a. One
then considers the (2e, 2e)-isogeny F : E × E → Ea × Ea defined by

F =

(
ϕb ϕ̂c
−ϕc ϕ̂b

)

where ϕb and ϕc are the isogenies corresponding to b and c. The isogeny F can
be efficiently represented and evaluated at any point from its kernel, and from
there one can also efficiently evaluate ϕb and ϕc on any point.
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As mentioned above, the Clapoti paper only includes realizations of the above
idea in dimensions 4 and 8. The sum-of-two-norms Equation (2) above is then
replaced by a sum of four norms or a sum of eight norms respectively, both of
which are easier to solve. While this provides a polynomial-time algorithm to
evaluate the class group action in theory, working in dimension 4 or 8 renders the
algorithm currently impractical in practice. On the other hand, the key obstacle
to a dimension-2 realization, which we overcome in this paper for important
cases, is an efficient solution to Equation (2).

4 Sum-of-two-norms equations

As discussed above, the key task for getting Clapoti to work in a given setting
using only 2-dimensional isogenies is to resolve a diophantine equation of the
form shown in Equation (2) in the target ideal a. To the best of our knowledge,
Equation (2) was only introduced recently in the Clapoti paper [29], and no
efficient solution was known before. However, variants of this equation, where
the solutions belong to different rings, are very well-known.

When β, γ belong to Z, the equation becomes a sum-of-two-squares equa-
tion. The equation x2 + y2 = S has solutions if and only if all primes con-
gruent to 3 mod 4 divide the right-hand term with even multiplicity (possibly
zero). Moreover, a solution can be computed efficiently using Cornacchia’s al-
gorithm [12] when the number of distinct prime factors is small. When S = 2e,
we trivially have solutions (x, y) ∈ {(±2e/2, 0), (0,±2e/2)} when e is even, and
(x, y) ∈ {(±2(e−1)/2,±2(e−1)/2)} when e is odd.

When β, γ belong to the ring of Gaussian integers, Equation (2) becomes a
sum of four squares, and a solution always exists by Lagrange’s theorem [19,
Theorem 369]. Moreover, the solution can (heuristically) be efficiently computed
by assigning random values to two variables and either using Cornacchia’s algo-
rithm [12] to recover values for the remaining two variables, or retrying.

An interesting generalization of Lagrange’s four-squares theorem includes
coefficients a, b, c, d on the squares. Ramanujan [34] proved that there are only 54
integer choices a ≤ b ≤ c ≤ d such that aw2+ bx2+ cy2+dz2 = n has a solution
for all n. In fact all those tuples (a, b, c, d) are small, and the heuristic algorithm
existing in the case a = b = c = d = 1 therefore easily generalizes to them.

Equation (1) solved in SCALLOP-HD [10] is similar to Equation (2), except
that, crucially, solutions are searched for in an imaginary-quadratic order O
instead of one of its ideals. The equation is solved as follows. Let ∆ be the
discriminant of O; hence, O = Z

[
∆+

√
∆

2

]
and we can write β = x+ ∆+

√
∆

2 and
γ = y + z∆+

√
∆

2 with integer unknowns x, y, z, leading to the equation

(2x+∆)2 + (2y +∆)2 = 2e+2 +∆(z2 + 1). (3)

This equation can be efficiently solved by choosing random values for z until the
right-hand side is a sum of two squares with the correct parity. As sums of two
squares are very common, one heuristically expects to need only a few trials.
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When considering β, γ in an ideal of O instead of O itself, one can still fix
a basis α,N for the ideal, write β = wα + xN and γ = yα + zN , and derive a
quadratic diophantine equation

n(wα+ xN) + n(yα+ zN) = N2e. (4)

However, note that the resolution approach used for SCALLOP-HD crucially
uses the fact that 1 belongs to the order, and therefore x and y only appear once
in Equation (3), with small coefficients attached and no cross-term. In contrast,
all quadratic terms in Equation (4) have a priori large coefficients, and the above
strategy does not work.

Coming back to Lagrange’s four-squares theorem, we note that some proofs
involve the Hurwitz quaternions. Interestingly, our solution to Equation (5) will
also use quaternions, together with the KLPT algorithm which was first intro-
duced in [24].

5 KLaPoTi: dimension-2 Clapoti via KLPT

We now present our solution of the 2-dimensional Clapoti norm equation, which
relies on KLPT.

Let O be a quadratic imaginary order, let a be an ideal of O of norm N
and let α ∈ O be an element such that a = (N,α). Our goal is to solve a
“sum-of-two-norms equation in the ideal” of the form

na(β) + na(γ) = 2e

for some e ∈ Z>0, and for β, γ ∈ a.
The discussion below is restricted to the case of O being an order of discrim-

inant ∆ = −f2d0, where d0 is a prime congruent to 3 modulo 4 such that the
class number h(−d0) equals one. In particular, we will assume without loss of
generality that O = Z

[
1+ω
2

]
where ω is a fixed square root of −f2d0 in O.

5.1 General idea

Consider the quaternion algebra B−∆,∞ = Q+Qi+Qj+Qij with multiplication
defined by i2 = −1, j2 = ∆, and ji = −ij. To any pair (β, γ) ∈ O × O we asso-
ciate a quaternion β + iγ via the identification ω 7→ j. Let Q be the quaternion
order O + iO and I := a+ ia ⊆ Q. Note that Q has discriminant |∆| = f2d0,
and that I = Qa = QN +Qα is a left Q-ideal of norm N . Our key observation
is that a × a is in bijection with I via the map O × O ∼−→ Q from above, i.e.,
I = {β + iγ | β, γ ∈ a}, and furthermore that

na(β) + na(γ) = nI(β + iγ)

where the latter is the (reduced) quaternion norm in B−∆,∞. One can therefore
apply the KLPT algorithm [24] with the Petit–Smith improvement [33] and
obtain a solution of size about |∆|3 ≈ f6d30.
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In the special case where ω2 = −p, the ideal I corresponds to one of the two
Fp-rational isogenies of degree N ; the other one is obtained by mapping i 7→ −i.2
More generally, the ideal I is distinguished among all ideals of Q by being one
of the two ideals of norm N that is generated by an ideal of the subring O. This
leads to some simplification of the KLPT algorithm, which we detail below.

5.2 KLPT for Clapoti

As mentioned above, Equation (2) can be solved with the KLPT algorithm.
However, it is worth noticing that the input provided to the algorithm for
this equation is in some sense special. Indeed, the ideal I = Qa is one of
the two ideals generated by an ideal of O, and we can write a = ZN + Zα
where α = α0 + α1(1+ω)/2 has norm divisible by N . Writing β = wN + xα
and γ = yN + zα with w, x, y, z ∈ Z, the norm equation na(β) + na(γ) = 2e

becomes
n
(
(wN + xα) + i(yN + zα)

)
= N2e ,

which can then be written as

4(Nw + α0x)
2 + 4(Ny + α0z)

2 + |∆|α2
1(x

2 + z2) = N2e+2. (5)

One can also normalize either α0 or α1 to 1 in this equation (but their quotient
moduloN is fixed). This equation looks easier than a generic ideal norm equation
solved by the KLPT algorithm, which would involve all quadratic monomials and
generally distinct coefficients for all monomials.

In this section we briefly recall the various steps of the KLPT algorithm,
and highlight some steps that can be simplified in our particular context. This
includes a slightly more efficient way to compute a prime-ideal representative at
the start of the algorithm, and a guarantee that the linear algebra step always
succeeds. One may wonder whether more significant changes to the KLPT al-
gorithm, or an altogether different algorithm, could lead to a better (shorter)
solution; investigating this is left for future work.

Prime representative. This is the first step in KLPT algorithm, replacing
the ideal by an ideal of prime norm in the same equivalence class. While not
essential, it simplifies later steps by making non-invertible elements modulo N
exponentially rare.

In KLPT we would first enumerate short elements of the quaternion ideal I
until we obtain an element δ ∈ I with prime reduced norm nI(δ); then Iδ/n(I)
is an equivalent Q-ideal of prime norm nI(δ), so we may perform the rest of the
KLPT algorithm with Iδ/n(I) in place of I. For a random ideal of Q = O+ iO
the reduced basis elements all have norm roughly |∆|1/2, and the prime norm
representative is (on average) only bigger than that by a logarithmic factor.

2 In general, p ̸= −∆ hence this is not the same quaternion algebra Bp,∞ in which
endomorphism rings of supersingular elliptic curves over Fp embed.
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Here we have the following alternative option: Enumerate short elements of
the quadratic ideal a until an element δ ∈ a with prime reduced norm na(δ) is
found; then a′ := aδ/n(a) is an equivalent O-ideal of prime norm na(δ). Finally,
compute the corresponding quaternion ideal Qa′. The shortest representative of
any ideal class of O has norm bounded by |∆|1/2 since every class of binary
quadratic forms contains a reduced representative, and the shortest prime rep-
resentative is expected to have norm only slightly larger than that (heuristically,
by a single logarithmic factor).

Overall, the two approaches are expected to produce ideals of similarly-sized
norms. Using the second method is slightly more efficient as the manipulations
involve smaller lattices, though the benefit will be negligible in the context of
the overall computation.

Represent integer. The next step in KLPT algorithm is to find an element γ1
in Q with norm N2e1 . This step amounts to finding elements ρ, ν in the subring
R := Z[i] of Q such that

n(ρ) +∆n(ν) = N2e1

and letting γ1 := ρ+ jν. (Here the norms are from R.) In KLPT one generates ν
randomly and small until N2e1 −∆n(ν) is “Cornacchia-friendly”, i.e., such that
Cornacchia’s algorithm will find a solution quickly.

Anticipating the next step, we choose ν ̸= 0, which is automatically satisfied
if “Cornacchia-friendly” is interpreted as “a prime congruent to 1 modulo 4”.

Reduction to a simplified lifting step. In this step, we search for µ0 ∈ Rj
such that γ1µ0 ∈ I. This will ensure that J = Iµ0γ1/N is in the same class as
I, while replacing µ0 with a suitably smooth lift (in the next step) will ensure
that the norm of J is as required.

This is just a small linear algebra system, posing no computational challenge
once the existence of a solution is guaranteed. The KLPT paper [24, Section 4.3]
argues about existence based on the orbits of the action of Rj/NQ over the ideals
of norm N : When N is inert there is a single orbit, hence the system always has
a solution. When N is split, there is a large orbit of size N − 1 and a small orbit
of size 2, and a solution exists whenever I and QN +Qγ1 are in the same orbit.
The two elements in the small orbit are of the form QN +Qγ1 with γ1 ∈ R.

In our case, I is in the large orbit because it is generated by elements of O.
Forcing ν ̸= 0 in the represent-integer algorithm will ensure γ1 /∈ R, so that this
step always succeeds.

Lifting step/strong approximation. Given µ0 ∈ Rj/NQ, this step aims to
compute a lift in Q with suitable norm. The goal is to compute µ = δµ0+Nµ1 of
form 2e2 . The element γ1µ ∈ I is then of norm N2e1+e2 . Consequently, Iγ1µ0/N
has norm 2e1+e2 = 2e.

As the input µ0 not only depends on I but also on γ1, it is not clear how
the special form of I can help to improve this step. To reduce the overall output
size we use the Petit–Smith’s lifting algorithm here [33].
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Summary of KLaPoTi. We summarize the use of the KLPT algorithm for
Clapoti in Algorithm 1.

Algorithm 1: KLPT for Clapoti.

Input: An integral ideal a of norm N of a quadratic imaginary order O and a large
enough target norm 2e.

Output: A solution to the Clapoti equation: Elements β, γ ∈ a such that
gcd(na(β), na(γ)) = 1 and na(β) + na(γ) = 2e.

1: Let I = a+ ia.
2: Replace I by an equivalent ideal of prime norm.
3: Find γ1 ∈ Q with norm N2e1 , where e1 < e, and let e2 := e− e1.
4: Find µ0 ∈ Rj such that γ1µ0 ∈ I ▷ J = Iµ0γ1/N is equivalent to I.
5: Find µ = δµ0 +Nµ1 of norm 2e2 ▷ γ1µ ∈ I is of norm N2e.
6: Extract β, γ from the quaternion element β + iγ := γ1µ.
7: If gcd(na(β),na(γ)) ̸= 1, retry with new randomness.
8: Return (β, γ)

6 The SCALLOP2D group action

In this section, we apply KLaPoTi to construct a new variant of SCALLOP
where both the orientation and the group action are represented and computed
using dimension-2 isogenies.

We start by describing the group action and we then briefly discuss protocols
that can be built on top of it. Following that, we present two optimizations of
the group action in particular protocol contexts.

6.1 The group action

Representing oriented curves. An O-oriented curve can be described by a
j-invariant which can be expanded to a curve E using a canonical method, and
an endomorphism τ ∈ End(E). The endomorphism itself is represented by the
two points

(
τ(P ), τ(Q)

)
where P,Q are a deterministically generated basis of

the 2e-torsion on E. Such a representation requires 3 elements in Fp2 , plus a
constant number of bits for sign disambiguation, amounting to roughly 6 log p
bits in total.

For efficiency, the points P,Q may be encoded as part of the representation
instead of being reconstructed on the fly; this way, an O-oriented curve is stored
using 10 log p bits in total. This option offers a size vs. computation trade-off.

Group action evaluation. There is a transitive action of the ideal class group
of O on the set of primitively O-oriented elliptic curves [11, 28]. We now show
how to evaluate this group action for our SCALLOP variant.
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The group action evaluation consists of two distinct phases, one that only
depends on O, followed by one that depends on the particular O-oriented curve
in use. In many application scenarios, the first phase can be computed during
key generation, and only the second phase needs to be performed online; in
particular, this is the case for a CSIDH-like key exchange.

Our main contribution compared to previous works lies in the first phase.
Let a be an O-ideal. Using the approach described in Section 5, we compute
β, γ ∈ a such that

na(β) + na(γ) = 2e

with both summands odd and coprime. We then compute the ideals b = aβ/N
and c = aγ/N , both of which are integral O-ideals lying in the same class as a, as
well as the principal ideal d = bc, and compute u, v ∈ Z such that d = (u+vτ)O.
This completes the first phase of the algorithm.

The second phase follows the Clapoti framework [29]. We detail the steps here
for completeness. We are given an O-oriented curve, represented by a curve E
and four points

(
P,Q, τ(P ), τ(Q)

)
, as described above. As in Clapoti, we consider

the (2e, 2e)-isogeny Φ : E × E → Ea × Ea coming from the following diagram:

E Ea

Ea E

ϕb

ϕc ϕc

ϕb

The isogeny Φ is thus defined by

Φ =

(
ϕb ϕ̂c
−ϕc ϕ̂b

)
. (6)

Its kernel is
kerΦ =

〈(
[n(b)]R, ϕ̂cϕb(R)

)
: R ∈ {P,Q}

〉
.

The kernel be computed by finding u, v ∈ Z such that u + vτ = ϕ̂cϕb, which
is easy since ϕ̂cϕbO = bc, and thus evaluating ϕ̂cϕb(R) as [u]R + [v]τ(R) for
R ∈ {P,Q} using the images of P,Q given as part of the orientation. From kerΦ
we compute Φ using theta coordinates, using the formulas of [14].

The theta isogeny formulas yield the two elliptic factors of the image of Φ,
but it is a priori unknown which one is which, so we are left with a set of two
curves {E1, E2} = {Ea, Ea} and the corresponding projection maps

πi : E × E
Φ−−−→ Ea × Ea

proj−−−−→ Ei .

At this point, it remains to identify the correct component Ea, and to compute
the data defining the orientation on that curve.

Differentiation between Ea and Ea can be done using pairings, as described
in [29]. Let ϕi be the elliptic curve isogeny E → Ei defined by R 7→ πi((R, 0)).
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Indeed, from Equation (6) we see that ϕi(R) must for all points R ∈ E be either
ϕb(R) or −ϕc(R), depending on whether Ei = Ea or Ei = Ea. To distinguish the
two cases, one may thus exploit the fact that the Weil pairing is compatible with
isogenies: We have et(ϕi(P ), ϕi(Q)) = et(P,Q)deg ϕi for all points P,Q ∈ E[t].
Using a t-torsion basis for some small t such that n(b) ̸≡ n(c) (mod t), we may
thus identify whether ϕi = ϕb or ϕi = −ϕc. In practice, it is convenient to
choose t as a (small) power of two, since (see below) points of two-power order
have to be pushed through Φ anyway in order to propagate the orientation to
the new curve Ea.

To compute an embedding of τ in Ea, we proceed as in SCALLOP-HD [10].
Since ϕa and ϕb both commute with O by definition of the group action, the
four-tuple (

ϕb(P ), ϕb(Q), ϕb
(
τ(P )

)
, ϕb

(
τ(Q)

))
(7)

is a valid representation of the orientation by O on Ea induced by ϕa, and these
four points can be efficiently computed using the 2-dimensional representation Φ
of ϕb once the component of the codomain of Φ which corresponds to Ea has been
identified. Converting this representation of the orientation using four points into
the more compact representation using a deterministic basis and two points is
straightforward by computing discrete logarithms (possibly using pairings as an
optimizations) in a group of two-power order and some linear algebra.

It should also be noted that standardizing the representation of the orien-
tation is in fact crucial for security: Revealing ϕb(P ) and ϕb(Q) directly would
provide nontrivial information about the degree of ϕb to an attacker, which
could then possibly be exploited in a variant of the SIDH attack [7, 27, 35]; see
also [16].

Sampling random ideals. For the sake of completeness, we describe a simple
algorithm to sample random secret ideals a ⊆ O in Algorithm 3. We note that a
significantly faster method for the same task has recently been proposed in [9].

System parameter generation. Like in SCALLOP, the orientation is chosen
as O = Z + fO0 where f is a large prime. We also assume p ≡ 3 (mod 4) for
simplicity. By using the Clapoti group action evaluation, we have no smoothness
requirement on the class number h(O).

Finally, we compute an initial O-oriented curve using Eriksen’s SageMath
implementation3 of [2, Algorithm 3]: Starting from a “special” starting curve
E0 with known endomorphism ring and an endomorphism τ/f , we compute the
images of a 2e-torsion basis of a degree-f isogeny ϕI : E0 → E given by an
ideal I as in Lemma 2, and deduce the action of ϕI ◦ (τ/f)◦ ϕ̂I on the 2e-torsion.
This information encodes an orientation by τ on E as a “2dim representation”,
following the terminology of [10].

3 https://github.com/Jonathke/deuring-2D
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Algorithm 2: Group action.

Input: An integral ideal a of an imaginary-quadratic order O of norm N and a large
enough target norm 2e; an O-oriented curve (E, τ) where τ is represented by the
images τ(P ), τ(Q) of a 2e-torsion basis (P,Q) on E.

Output: O-oriented curve (Ea, τ
′).

Precomputation part (only dependent on a but not E)
1: Compute a pair (β, γ) of elements in O such that gcd(na(β), na(γ)) = 1 and na(β)+

na(γ) = 2e using KLPT for Clapoti.
2: Compute the two ideals equivalent to a: b = aβ/N and c = aγ/N .
3: Compute the principal ideal d = bc and find a generator u+ vτ ∈ O.

Online part (dependent on both a and E)
4: Compute the kernel of Φ : E × E → Ea × Ea, namely〈(

[n(b)]R, (u+ vτ)(R)
)

: R ∈ {P,Q}
〉

.

5: Compute Φ using kerΦ and theta coordinates.
6: Differentiate between Ea and Ea using the Weil pairing.
7: Push the points P,Q, τ(P ), τ(Q) through ϕa to obtain a representation of the new

orientation τ ′ ∈ End(Ea) on Ea.
8: Return (Ea, τ

′).

Algorithm 3: Sampling of the secret ideal a.
Input: Imaginary-quadratic order O = Z[τ ] of discriminant ∆.
Output: Random ideal a of O whose class is close to uniform.
1: Let χ ∈ Z[X] be the minimal polynomial of τ .
2: Find a prime ℓ ≫ |∆| such that χ has a root λ modulo ℓ.
3: Return a = (ℓ, τ − λ)O.

Security considerations. Let λ be the security parameter, i.e., we want the
best attacks to cost at least 2λ operations.

The endomorphism ring computation problem must be hard as otherwise the
group action can be efficiently inverted [37, Section 6]; this requires log p ≥ 2λ
to protect against classical cycle-finding attacks [18], and log p ≥ 4λ to protect
against quantum versions of this attack using Grover’s algorithm.

As in previous SCALLOP variants, we also require O to have class number h
bounded by log h ≥ 2λ bits to prevent meet-in-the-middle search attacks against
the vectorization problem. This implies log∆ ≥ 4λ and thus log f ≥ 2λ.

Quantum security for the vectorization problem is much harder to assess.
Asymptotically the best attacks are variants of Kuperberg’s algorithm [26, 32],
which have Lh[1/2] subexponential time and gate complexity, forcing log∆ to
scale quadratically with λ. It turns out that evaluating the group action con-
tributes to an important factor in those costs [3]. One can roughly infer the
quantum security level for our group action from existing analysis on CSIDH [32,
6], provided a cost estimate for a quantum circuit evaluating the group action.
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We leave this to further work, but note that the original CSIDH-512 parameters
may be considered too small depending on the model [32, 6]; see also [30, § 11.4].

Efficiency considerations. Recent high-dimensional techniques like Clapoti
have largely lifted the smoothness and powersmoothness requirements that pre-
viously were the marks of KLPT-like techniques. In SCALLOP and previous
variants, these requirements also came from the relation lattice.

Paradoxically, in this paper we obtain a practical improvement to Clapoti by
relying on KLPT and re-introducing smoothness requirements.

More precisely, the KLPT algorithm [24], in its Petit–Smith variant [33],
gives output size |∆|2N2 where N is the norm of the target ideal. We a priori
expect N ≈ |∆|1/2, resulting in an output size of about |∆|3. Torsion points of
order 2e ≈ |∆|3 will need to be efficiently represented. We choose p = 2ec−1 for
a small cofactor c and work with the component of the isogeny graph containing
curves defined over Fp, so that the entire 2e-torsion is Fp2-rational. Together
with the security considerations above, this means one needs to take log p ≈ 12λ
for λ bits of security against classical attacks.

Comparison with other isogeny group actions. Compared to CSIDH,
SCALLOP and SCALLOP-HD, our group action is fully scalable, requiring no
superpolynomial computation for either the class group, a relation lattice, a
short basis of that lattice, or parameter search with smoothness requirements.
Moreover, the use of 2-dimensional isogenies, as opposed to 4- or 8-dimensional
isogenies in Clapoti, makes it reasonably efficient as shown by our preliminary
Rust implementation results (Section 7).

Public keys for our group action SCALLOP2D will generally be a factor of
3 to 5 times larger than for CSIDH. Comparisons with SCALLOP and SCAL-
LOP-HD are exacerbated by the fact that they depend on various parameter
choices: There is a tradeoff between key sizes and efficiency in those schemes.
Public keys in protocols based on all these group actions typically comprise of one
O-oriented curve. This requires 2 log p bits for CSI-FiSh, 6 log p bits for SCAL-
LOP, and 10 log p bits for SCALLOP-HD and SCALLOP2D (6 log p with com-
pressed representations). In SCALLOP2D, this leads to choosing 12λ-bit char-
acteristic p as explained above. For CSI-FiSh, SCALLOP and SCALLOP-HD,
the link between p and λ is less clear: keeping all computations over Fp2 (as
suggested in those works) will require p to grow superpolynomially in λ, but
for large parameters one may also drop the requirement and prefer to incur the
practical overhead costs of working with moderate degree extension fields instead
(on top of other superoplynomial factors in the cost for those schemes).

For the classical 128-bit security level, total public key sizes for SCALLOP2D
can therefore be about 1152 bytes, as opposed to 128, 469, and 852 bytes for
CSI-FiSh, SCALLOP, and SCALLOP-HD.
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6.2 Group-action-based cryptographic protocols

Starting from an effective group action as above, a whole range of cryptographic
protocols can be built, including CSI-FiSh-like signatures [4], CSIDH-like key
exchange [8], and many more [1]. Since instantiating these general constructions
is straightforward from our description of the group action and the literature,
we omit their details here, and only focus on relevant optimizations.

6.3 Protocol-specific optimizations

In this section we provide two optimizations to the SCALLOP2D group action
which are applicable in some, but a priori not all, group-action-based isogeny
protocols. The first optimization allows to avoid pairing computation, and ap-
plies to a CSIDH-type non interactive key exchange. The second optimization
replaces canonical representations of oriented curves by carefully randomized
ones, and applies to a CSI-FiSh-like signature protocol. These optimizations
might also apply to other group-action-based isogeny protocols.

Optimization 1: avoiding pairing computation. In the final step of the
(2, 2)-isogeny walk, one must split a principally polarized abelian variety as a
product of two elliptic curves Ea × Ea, and in particular identify its projection
onto Ea to evaluate ϕb on given points. As described above, this can be done
using two pairing computations. While efficient pairing algorithms exist, this
certainly adds to computation time and code complexity.

In this section, we observe that instead of identifying the correct component,
one can often simply work with both.

Following [37], we define a twisting operation on O-oriented curves by

(E, τ)t = (E(p), π ◦ τ ◦ π−1)

where π is the p-power Frobenius isogeny E → E(p). Then, for any a ∈ O,

a ∗ (E, τ)t =
(
a ∗ (E, τ)

)t ,
see [37, Lemma 7]. Moreover, we observe that when E is defined over Fp and τ
anticommutes with the p-power Frobenius endomorphism on E, then the twisting
operation leaves the oriented curve (E, τ) invariant:

Lemma 1. Let E be a supersingular elliptic curve over Fp and let τ ∈ End(E)
such that τπ = −πτ , where π is the p-power Frobenius endomorphism on E.
Then (E, τ)t = (E, τ).

Proof. Clearly E(p) = E since E/Fp. For the second component, first notice
that τ must have trace zero: On the one hand tr(τ)π = π tr(τ) since tr(τ) ∈ Z,
but on the other hand tr(τ)π = (τ+τ)π = −π(τ+τ) = −π tr(τ) since τπ = −πτ
and hence also πτ = −πτ . Thus τ = −τ , and it follows that

πτ = −πτ = τπ .

This proves the claim πτπ−1 = τ . ⊓⊔
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We also observe that one can efficiently compute an O-oriented curve defined
over Fp for the case O ∼= Z[fϑ] where Z[ϑ] has small discriminant:

Lemma 2. Fix p≥ 5 and let E0 be a supersingular elliptic curve defined over Fp
whose endomorphism ring Q0 contains an endomorphism ϑ ∈ Q0 that anti-
commutes with the p-power Frobenius endomorphism π of E0. Given a prime
f ≡ 3 (mod 4) not dividing disc(Z[ϑ]) modulo which −p is a square, let λ ∈ Z
satisfy λ2 ≡ −p (mod f), and let I := Q0f +Q0(π − λ). Then I corresponds to
an Fp-rational isogeny ϕI : E0 → E. The curve E/Fp together with a concrete
embedding of O ∼= Z[fϑ] in End(E) can be computed in polynomial time using
KLPT-based [25] or higher-dimensional techniques [2, Algorithm 3].

Proof. The claim that ϕI is an Fp-rational isogeny follows immediately from the
fact that I is generated by endomorphisms contained in the subring Z[π].

Now define τ := ϕI ◦ ϑ ◦ ϕ̂I . Clearly O := Z[τ ] is isomorphic to Z[fϑ]: Let
µ = X2 − tX + n ∈ Z[X] be the minimal polynomial of ϑ; hence, the minimal
polynomial of fϑ is µ′ = X2 − ftX + f2n. On the other hand,

τ2 = fϕIϑ
2ϕ̂I = fϕI(tϑ− n)ϕ̂I = ftϕIϑϕ̂I − f2n = ftτ − f2n ,

which shows µ′(τ) = 0. Thus τ 7→ fϑ defines a ring isomorphism Z[τ ] → Z[fϑ].
To prove that the orientation of E by τ is primitive, it suffices to show that

kerϕI = E0[I] does not form an eigenspace of ϑ: Since E0[I] = (π̂ − λ)(E0[f ])
and π̂ = −π, we get

ϑ(E0[I]) =
(
ϑ(π̂ − λ)

)
(E0[f ]) =

(
ϑ(π + λ)

)
(E0[f ])

=
(
(π − λ)ϑ

)
(E0[f ]) = (π − λ)(E0[f ]) = E0[I] .

Any nonzero point P ∈ E0[I] ∩ E0[I] must simultaneously satisfy π(P ) = [λ]P
and π(P ) = [−λ]P , hence λ2 ≡ −1 (mod f), which would contradict the as-
sumption that f ≡ 3 (mod 4). Therefore ϑ(E0[I]) ∩ E0[I] = {∞}. ⊓⊔

We are now ready to sketch how our optimization works, in the particular
case of a CSIDH-like key exchange protocol. In a straightforward application of
the protocol, public keys would be of the form a ∗ E and b ∗ E, and the shared
secret would be equal to ab ∗E, which is then typically fed into a key derivation
function.

Under the above restrictions, we can use public keys of the same shape;
however instead of computing the correct component a ∗ E, we just compute a
random component aϵa ∗ E for ϵa ∈ {−1, 1} (and similarly for the other party).
No pairing computation is needed here because the elliptic curve component is
chosen randomly.

As for the shared secret, given bϵb ∗ E, one applies the action of a as above,
up to the points where the two components abϵb ∗E and a−1bϵb ∗E are obtained.
Note that no pairing computation is applied, so although we have both curves
we do not know which one is which. Then one simply applies twists to both
curves to obtain four curves aϵabϵb ∗ E for ϵa, ϵb ∈ {−1, 1}. Finally, the four
corresponding j-invariants are ordered in a canonical way, and a key derivation
function is applied to the resulting tuple.
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Remark. Computing an isogeny between two O-oriented curves does not seem
to become easier when the starting curve is one of the two “special” O-oriented
curves that are also defined over Fp, much like starting from the curve with
j-invariant 1728 does not make the isogeny problem easier in CSIDH. Indeed,
assuming there exists an algorithm that solves the isogeny problem from one
special curve, one can call this algorithm twice to solve the isogeny problem
between any two O-oriented curves.

Optimization 2: avoiding canonical representations. Within the context
of our preliminary SageMath implementation we observed that a significant frac-
tion of the total time was spent on computing a canonical representation of the
information needed to represent oriented curves. This procedure has been ap-
plied since [15], both to allow the generation of unique shared secrets, and to
avoid leaking any (torsion-point) information about previously computed group
actions. (The leakage of information is not a mere theoretical possibility, as
explained in Section 6.) While seemingly innocent, this computation actually
contributes to significant computation costs.

We observe that in some contexts, and in particular when generating pub-
lic keys, or when computing challenge curves inside a CSI-FiSh-style signature
algorithms, a unique representation is not needed, and the canonicalization can
be replaced by a more efficient randomization procedure. More precisely, after
computing the tuple from Equation (7), which is a valid representation but leaks
information on previously computed group actions, we generate a random invert-
ible matrix M ∈ GL2(Z/2e) and construct the new representation by applying
the matrix M to the first and second half of the tuple separately. Note that the
randomization only involves a couple of “bi-scalar multiplications”: elliptic-curve
point computations of the form [a]P + [b]Q.

7 Implementation

To demonstrate the practical feasibility of implementing and running our new
cryptographic group action, we provide a semi-optimized implementation of
SCALLOP2D. However, we emphasize once more that the main purpose of this
work is not to achieve practical speed improvements over existing group actions,
but to achieve polynomial-time asymptotic scaling while retaining the concrete
instantiability and practicality of the construction.

We present implementations of our algorithm in SageMath and Rust. The
Rust implementation runs about 70 times faster than the equivalent SageMath
implementation for a parameter set with log2 |∆| ≈ 512.

7.1 SageMath implementation

Our SageMath implementation of SCALLOP2D is loosely based on the SCAL-
LOP-HD proof-of-concept implementation4, which in turn relies on the imple-
4 https://github.com/isogeny-scallophd/scallophd
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mentation of the Deuring correspondence from [25] and the implementation of
(2e, 2e)-isogenies in the theta model from [14].

In particular, the generation of the starting curve and general algorithmic
wrappers for “2dim representations” of 1-dimensional isogenies are borrowed from
there. The KLPT implementation for our proof-of-concept implementation of
SCALLOP2D was written from scratch in SageMath.

Timings are not representative of actual performance potential due to various
overhead costs affecting the performance of SageMath in general, but to give a
rough ballpark figure, we mention that the SageMath implementation for a 512-
bit discriminant ∆ takes about three minutes on a standard consumer laptop.
Given our plans to proceed with a Rust implementation, we made no serious
attempt at optimizing the SageMath implementation further.

Code. Our SageMath implementation is available here:
https://github.com/isogeny-klapoti/klapoti-sage

7.2 Rust implementation

We designed our Rust implementation to be reusable and to offer the function-
ality needed for implementing isogeny-based cryptographic protocols.

In recent years, the world of isogeny-based cryptography gravitated from
C and C++ to Rust. Interestingly, the implementation of building blocks for
dimension-2 isogenies was provided in [14], but there is still a lack of Rust build-
ing blocks for dimension-1 isogenies. Our library aims to at least partially close
that gap. We provide the functionality for big integer matrices, lattices, quater-
nion algebras, and number fields which are required for dimension-1 isogenies,
but not for dimension-2. Additionally, we provide the first Rust implementation
of the Cornacchia and KLPT algorithms.

Our work is based on the following libraries:

– The two-isogenies Rust implementation of (2e, 2e)-isogenies from [14].
– two-isogenies in turn is based on Pornin’s crrl library5 for finite field

arithmetic and elliptic curves.
– The quaternion parts are heavily influenced by the C implementation of

SQIsign submitted to NIST6.

The Rust implementation takes about 2.5 wall-clock seconds on standard
hardware for a single group-action evaluation with a 512-bit discriminant ∆.
(The equivalent SageMath implementation takes approximately three minutes.)
We report the timings of the Rust implementation in Tables 1 and 2.

While there are other challenges remaining to be addressed in the future
(including a constant-time implementation), we believe that our work provides
an important building block in the isogeny-based cryptography Rust ecosystem.

Code. Our Rust implementation is available here:
https://github.com/isogeny-klapoti/klapoti-rust

5 https://github.com/pornin/crrl
6 https://github.com/SQISign/the-sqisign
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Table 1: Timing results for a single group-action evaluation of our Rust imple-
mentation of the SCALLOP2D group action (mean of 100 measurements). Times
are given in wall-clock time on an Apple M1 MacBook Pro clocked at 3.2GHz.
Generating parameter sets for larger security levels is work in progress.

≈ log2 |∆| 64 128 512

KLPT 3.58ms 37.89ms 0.43 s
Isogenies 3.56ms 12.18ms 2.06 s

Table 2: Mean number of CPU cycles for a single group-action evaluation of our
Rust implementation of the SCALLOP2D group action on Apple M1 MacBook
Pro clocked at 3.2GHz.

≈ log2 |∆| 64 128 512

KLPT 1.14e7 1.21e8 1.38e9
Isogenies 1.14e7 3.90e7 6.59e9

References

[1] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
“Cryptographic Group Actions and Applications”. In: ASIACRYPT (2).
Vol. 12492. LNCS. Springer, 2020, pp. 411–439. url: https://ia.cr/
2020/1188.

[2] Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Lu-
ciano Maino, Giacomo Pope, Damien Robert, and Benjamin Wesolowski.
SQIsign2D-West: The Fast, the Small, and the Safer. To appear at Asi-
acrypt 2024. 2024. url: https://ia.cr/2024/760.

[3] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
“Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Iso-
genies”. In: EUROCRYPT (2). Vol. 11477. LNCS. Springer, 2019, pp. 409–
441. url: https://ia.cr/2018/1059.

[4] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh:
Efficient Isogeny based Signatures through Class Group Computations”. In:
ASIACRYPT (1). Vol. 11921. LNCS. Springer, 2019, pp. 227–247. url:
https://ia.cr/2019/498.

[5] Jean-François Biasse. “Improvements in the computation of ideal class
groups of imaginary quadratic number fields”. In: Advances in Mathematics
of Communication 4.2 (2010), pp. 141–154.

[6] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analy-
sis of CSIDH”. In: EUROCRYPT (2). Vol. 12106. LNCS. Springer, 2020,
pp. 493–522. url: https://ia.cr/2018/537.

21

https://ia.cr/2020/1188
https://ia.cr/2020/1188
https://ia.cr/2024/760
https://ia.cr/2018/1059
https://ia.cr/2019/498
https://ia.cr/2018/537


[7] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery At-
tack on SIDH”. In: EUROCRYPT (5). Vol. 14008. LNCS. Springer, 2023,
pp. 423–447. url: https://ia.cr/2022/975.

[8] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: ASIACRYPT (3). Vol. 11274. LNCS. Springer, 2018, pp. 395–
427. url: https://ia.cr/2018/383.

[9] Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy. An Efficient
Hash Function for Imaginary Class Groups. Preprint. 2024. url: https:
//ia.cr/2024/295.

[10] Mingjie Chen, Antonin Leroux, and Lorenz Panny. “SCALLOP-HD:
Group Action from 2-Dimensional Isogenies”. In: Public Key Cryptogra-
phy (3). Vol. 14603. LNCS. Springer, 2024, pp. 190–216. url: https:
//ia.cr/2023/1488.

[11] Leonardo Colò and David Kohel. “Orienting supersingular isogeny graphs”.
In: NutMiC 2019. 2019. url: https://ia.cr/2020/985.

[12] Giuseppe Cornacchia. “Su di un metodo per la risoluzione in numeri interi
dell’ equazione

∑n
h=0 Chx

n−hyh = P ”. In: Giornale di Matematiche di
Battaglini 46 (1908), pp. 33–90.

[13] Jean-Marc Couveignes. Hard Homogeneous Spaces. Preprint. 2006. url:
https://ia.cr/2006/291.

[14] Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert. An
Algorithmic Approach to (2, 2)-isogenies in the Theta Model and Appli-
cations to Isogeny-based Cryptography. Preprint. url: https://ia.cr/
2023/1747.

[15] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. “SCALLOP: Scal-
ing the CSI-FiSh”. In: Public Key Cryptography (1). Vol. 13940. LNCS.
Springer, 2023, pp. 345–375. url: https://ia.cr/2023/058.

[16] Luca De Feo, Tako Boris Fouotsa, and Lorenz Panny. “Isogeny Problems
with Level Structure”. In: EUROCRYPT (6). Vol. 14656. LNCS. Springer,
2024, pp. 181–204. url: https://ia.cr/2024/459.

[17] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. “SQISign: Compact Post-quantum Signatures from
Quaternions and Isogenies”. In: ASIACRYPT (1). Vol. 12491. LNCS.
Springer, 2020, pp. 64–93. url: https://ia.cr/2020/1240.

[18] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and
Jennifer Park. “Computing endomorphism rings of supersingular elliptic
curves and connections to pathfinding in isogeny graphs”. In: ANTS XIV:
Proceedings of the fourteenth algorithmic number theory symposium. Ed.
by Steven Galbraith. Auckland: Mathematical Sciences Publishers, 2020,
pp. 215–232. url: https://arxiv.org/abs/2004.11495.

[19] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
5th ed. Oxford University Press, 1979.

22

https://ia.cr/2022/975
https://ia.cr/2018/383
https://ia.cr/2024/295
https://ia.cr/2024/295
https://ia.cr/2023/1488
https://ia.cr/2023/1488
https://ia.cr/2020/985
https://ia.cr/2006/291
https://ia.cr/2023/1747
https://ia.cr/2023/1747
https://ia.cr/2023/058
https://ia.cr/2024/459
https://ia.cr/2020/1240
https://arxiv.org/abs/2004.11495


[20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Ur-
banik. Supersingular Isogeny Key Encapsulation. Submission to the NIST-
PQC post-quantum standardization project. 2017. url: https://sike.
org.

[21] Michael J. Jacobson Jr. “Applying sieving to the computation of quadratic
class groups”. In: Mathematics of Computation 68.226 (1999), pp. 859–867.

[22] Ernst Kani. “The number of curves of genus two with elliptic differentials”.
In: Journal für die reine und angewandte Mathematik (Crelles Journal)
1997 (1997), pp. 122–93.

[23] Thorsten Kleinjung. “Quadratic sieving”. In: Mathematics of Computation
85.300 (2016), pp. 1861–1873.

[24] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol.
“On the quaternion ℓ-isogeny path problem”. In: LMS Journal of Compu-
tation and Mathematics 17 (2014), pp. 418–432. url: https://ia.cr/
2014/505.

[25] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia
Veroni. “Deuring for the People: Supersingular Elliptic Curves with Pre-
scribed Endomorphism Ring in General Characteristic”. In: LuCaNT 2023.
2023. url: https://ia.cr/2023/106.

[26] Greg Kuperberg. “A subexponential-time quantum algorithm for the di-
hedral hidden subgroup problem”. In: SIAM Journal on Computing 35.1
(2005), pp. 170–188.

[27] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. “A Direct Key Recovery Attack on SIDH”. In: EURO-
CRYPT (5). Vol. 14008. LNCS. Springer, 2023, pp. 448–471. url: https:
//ia.cr/2023/640.

[28] Hiroshi Onuki. “On oriented supersingular elliptic curves”. In: Finite Fields
and Their Application 69 (2021). url: https://arxiv.org/abs/2002.
09894.

[29] Aurel Page and Damien Robert. Introducing Clapoti(s): Evaluating the
isogeny class group action in polynomial time. Preprint. 2023. url: https:
//ia.cr/2023/1766.

[30] Lorenz Panny. “Cryptography on Isogeny Graphs”. PhD thesis. Technische
Universiteit Eindhoven, 2021. url: https://yx7.cc/docs/phd/thesis.
pdf.

[31] Lorenz Panny. CSI-FiSh really isn’t polynomial-time. https://yx7.cc/
blah/2023-04-14.html. Accessed: 2024-09-17. 2023.

[32] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT (2).
Vol. 12106. LNCS. Springer, 2020, pp. 463–492.

[33] Christophe Petit and Spike Smith. “An improvement to the quaternion
analogue of the ℓ-isogeny path problem”. In: MathCrypt 2018. 2018. url:
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-
50_3.pdf.

23

https://sike.org
https://sike.org
https://ia.cr/2014/505
https://ia.cr/2014/505
https://ia.cr/2023/106
https://ia.cr/2023/640
https://ia.cr/2023/640
https://arxiv.org/abs/2002.09894
https://arxiv.org/abs/2002.09894
https://ia.cr/2023/1766
https://ia.cr/2023/1766
https://yx7.cc/docs/phd/thesis.pdf
https://yx7.cc/docs/phd/thesis.pdf
https://yx7.cc/blah/2023-04-14.html
https://yx7.cc/blah/2023-04-14.html
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf


[34] Srinivasa Ramanujan. “On the expression of a number in the form ax2 +
by2 + cz2 + dw2”. In: Proceedings of the Cambrdige Philosophical Society
19 (1917), pp. 11–21.

[35] Damien Robert. “Breaking SIDH in Polynomial Time”. In: EURO-
CRYPT (5). Vol. 14008. LNCS. Springer, 2023, pp. 472–503. url: https:
//ia.cr/2022/1038.

[36] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based on Isogenies. Preprint. 2006. url: http://ia.cr/2006/145.

[37] Benjamin Wesolowski. “Orientations and the Supersingular Endomor-
phism Ring Problem”. In: EUROCRYPT (3). Vol. 13277. LNCS. Springer,
2022, pp. 345–371. url: https://ia.cr/2021/1583.

[38] Benjamin Wesolowski. “The supersingular isogeny path and endomorphism
ring problems are equivalent”. In: FOCS. IEEE, 2021, pp. 1100–1111. url:
https://ia.cr/2021/919.

24

https://ia.cr/2022/1038
https://ia.cr/2022/1038
http://ia.cr/2006/145
https://ia.cr/2021/1583
https://ia.cr/2021/919

	KLaPoTi: An asymptotically efficient isogeny group action from 2-dimensional isogenies

