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Abstract. NTRU-like constructions are among the most studied lattice-
based schemes. The freedom of design of NTRU resulted in many variants
in literature motivated by faster computations or more resistance against
lattice attacks by changing the underlying algebra. To the best of our
knowledge, BQTRU (DCC 2017), a noncommutative NTRU-like cryp-
tosystem, is the fastest claimed variant of NTRU built over the quater-
nion algebra of the bivariate ring of polynomials. The key generation and
the encryption of BQTRU are claimed to be 16/7 times faster than stan-
dard NTRU for equivalent levels of security. For key recovery attacks, the
authors claim that retrieving a decryption key is equivalent to solving
the Shortest Vector Problem (SVP) in expanded Euclidean lattices of
giant dimensions. This work disproves this claim and proposes practical
key and message recovery attacks that break the moderate parameter
sets of BQTRU estimated to achieve 292 message security and 2166 key
security on a standard desktop within less than two core weeks. Further-
more, our analysis shows that the proposed parameter set for the highest
security level claiming 2212 message security and 2396 key security can
barely achieve 282 message security and 2125 key security. Our work not
only provides cryptanalysis for BQTRU but also demonstrates the po-
tential of extending Gentry’s attack to other rings beyond the cyclotomic
polynomial ring.

Keywords: Post-quantum cryptography · Lattice · NTRU · BQTRU ·
Quaternion algebra

1 Introduction

NTRU [19] is one of the initial and extensively studied lattice-based post-quantum
cryptosystems. It is known for its efficiency, low memory requirements, and long
cryptanalytic history. Its design flexibility allows the construction of new schemes
with different algebras. NTRU proposals [10, 23] that proceeded to the final
round of NIST’s post-quantum standardization process are built over commu-
tative rings of polynomials. However, there is also growing interest in utilizing
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noncommutative algebras within the NTRU framework motivated by improved
performance or resistance against some attacks. Recently, Raya et al. [37, 38]
and Kumar et al. [28,29] designed variants of NTRU over the group rings of the
noncommutative groups. The quaternion algebra has also been investigated in
the context of designing noncommutative NTRU-like cryptosystems. QTRU [34]
is built upon the quaternion algebra of the ring of polynomials. It is claimed to
be more resistant to lattice attacks than NTRU, with a performance trade-off
of 4 times slower than NTRU for equivalent security levels. Ling and Mendel-
sohn [32] theoretically introduced an IND-CPA secure variant of NTRU using
quaternion algebra of bounded discriminant.

BQTRU [5] is a noncommutative variant of NTRU built upon the quaternion
algebra of the bivariate ring of polynomials. The scheme’s security is considered
based on hard problems in hybrid lattices rather than the usual Euclidean lat-
tices. Hybrid lattices are algebraic objects that provide a way to combine two
mainstream post-quantum families, lattice-based and code-based cryptography.
Hence, they can be used to build cryptosystems whose security relies upon hard
problems in lattices and codes.

BQTRU is a timely advancement of a series of works beginning with GB-
NTRU [9] that uses a hidden ideal of a bivariate ring of polynomials for key
construction and decryption. Although deciphering is more costly, GB-NTRU
claimed to improve the encryption costs compared to NTRU. Boschini et al. [8]
showed that GB-NTRU can be interpreted as a cryptosystem over hybrid lat-
tices combining Euclidean and Hamming distances. GB-NTRU was shown to
be vulnerable to some algebraic attacks on messages [8]. In the same work [8],
NTWO was proposed as a modification to address the vulnerabilities of GB-
NTRU. Similarly to GB-NTRU, the decryption process of NTWO is costly as it
involves solving a hard lattice problem. Consequently, NTWO failed to provide
a practical alternative to NTRU but introduced an interesting application of hy-
brid lattices as a proof-of-concept. The advertised attractive feature of NTWO
is its enhanced key security, which makes lattice-based key attacks almost in-
feasible. According to the authors, the secret key is the shortest vector in the
hybrid lattice and, hence, cannot be recovered by usual lattice reduction algo-
rithms. One can map the secret to the short vector of purely Euclidean lattice
but with such an extended dimension where the complexity of lattice reduction
algorithms is too high to be practical.

Motivation behind cryptanalysis. BQTRU is the blend of NTWO and
QTRU. The authors claim that it inherits the amplified key security due to
its hybrid lattice structure, and the quaternion algebra makes the decryption
possible, which was a bottleneck in the previous designs. It is claimed to be the
fastest variant of NTRU in the literature, with key generation and encryption
being 16/7 times faster compared to NTRU. Additionally, the noncommutativ-
ity of BQTRU could be an extra advantage from a security standpoint, as some
attacks could exploit the commutative structure. For instance, Kim and Lee [25]
and Bai et al. [6] demonstrated attacks on the NTRU Learning Problem [36, Sec-
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tion 4.4.4] by leveraging the commutativity to recover the secret key, as discussed
and motivated in [29,37].

Despite these promising features and theoretical soundness, BQTRU has
a few shortcomings. The lack of robust security analysis and implementation
raises concerns about its practical suitability, prompting us to delve into its se-
curity and implementation aspects. Our study identified technical weaknesses
that render the cryptosystem susceptible to attacks. We successfully compro-
mised the keys and messages for the proposed moderate-level security param-
eters and proved that the highest-level security parameters do not provide the
claimed security. Interestingly, we discovered that the specific structure of the
chosen quaternion algebra, intended to improve performance, actually weakens
the security of the cryptosystem. Therefore, our work highlights the significance
of addressing new security vulnerabilities arising from changing the underlying
algebra for fast multiplications. In brief, this work provides a perspective to
generalize Gentry’s dimension reduction attack [17] on NTRU-composite over
the commutative ring of polynomials R′ = Z[x]/⟨xN − 1⟩ (N composite) to
the noncommutative algebra of quaternions. Gentry’s approach is based on the
Chinese Remainder Theorem (CRT) that factors the ring R′ into polynomial
rings of smaller degrees. Here, we provide a different frame of view to look for
the possibilities of dimension reduction in a particular algebraic structure using
the matrix representations and folding them to reduce dimensions. We find our
method easy to implement, and the concept of dealing with matrices may extend
its applicability to other algebras.

1.1 Technical Overview

Simply put, a parameter set that achieves a certain security level λ for a spe-
cific construction indicates that an adversary requires at least 2λ operations to
break the scheme using the best-known attacks. Lattice attacks are the most suc-
cessful attacks against NTRU-like constructions. In the first proposal of NTRU
introduced over the truncated polynomial ring Z[x]/⟨xN − 1⟩ for prime N and
modulus q, the public key is calculated as h = f−1 ∗ g (mod q) for ternary poly-
nomials f and g with f being invertible modulo q. Key recovery attack against
NTRU is mapped into finding the vector (f, g) associated with the private key or
its rotations in the lattice ΛCS [13], also referred to as Coppersmith and Shamir
lattice, generated by the basis matrix

MCS =

(
IN H
0N qIN

)
(1)

whereH is a circulant matrix constructed from h; the i−th row ofH is calculated
as xi ∗ h mod (xN − 1), for i = 0, 1, . . . , N − 1.

For BQTRU, the public key is calculated as h = f−1 ∗ g + v (mod q), where
f, g, and v are sampled from the quaternion algebra of the bivariate ring of
polynomials denoted by A (as detailed in Section 3) with the following conditions:
– f, g are ternary elements (i.e., small in Euclidean norm), and f is invertible

modulo q and a private ideal of A.
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– v has just a small number of non-zero coefficients with respect to the Lagrange
basis (i.e., small in Hamming weight).

Since v does not need to have small coefficients as in f, g, the authors claim
that any search attack to retrieve the decryption key (f, g, v) is extremely costly
and much harder than that for the original NTRU. Additionally, lattice attacks
are not as efficient as NTRU key recovery attacks since the problem of finding
the decryption key is mapped into finding short vectors in expanded Euclidean
lattices of extremely large dimensions.

This work disproves this claim and shows that getting a possible decryption
key in BQTRU is much easier than the original NTRU for equivalent dimen-
sions. Our key recovery attack involves two main steps: 1○ guessing step, 2○
lattice reduction step. We show that according to the procedure of the proposed
key generation in BQTRU, guessing the positions of the non-zero coefficients
of v (with respect to Lagrange basis) is enough to correctly retrieve v. After
retrieving v correctly, one can compute s = h − v (mod q) and proceed using
lattice reduction attacks against Euclidean lattices to find a short vector (f, g)
as in the case of the original NTRU. It may look like finding a decryption key
is at least as hard as that for the original NTRU in the same dimension, as
the attacker needs to guess the positions of nonzero elements before proceeding
with the lattice reduction. However, the lattice LCS associated with BQTRU, is
generated from the basis

BCS =

(
IN S
0N qIN

)
(2)

where N = 4n2 for quaternion algebras of the bivariate ring of polynomials, and
S is the matrix corresponding to s that has a special structure:

S =


S0 S1 S2 S3

S1 S0 S3 S2

S2 −S3 S0 −S1

−S3 S2 −S1 S0

 . (3)

Our dimension reduction method, which we call folding, exploits the structure
of S, and define a map from S to a matrix of half the dimension given by

ϕ(S) −→

(
S0 + S1 S2 + S3

S2 − S3 S0 − S1

)
(4)

that preserves the matrix addition and multiplication. Therefore, instead of look-
ing for the short vector (f, g) ∈ LCS , we look for its image in the lattice LCS,ϕ

generated by the basis

BCS,ϕ =

(
IN/2 ϕ(S)
0N/2 qIN/2

)
. (5)

Finding this image in LCS,ϕ is much easier for a lattice reduction algorithm like
BKZ [39] as the dimension of the lattice is reduced by a factor of 2, while the
norm of the target vector (on average) does not increase. Overall, combining the
costs of the guessing step and the lattice reduction step is more beneficial for
attacking the cryptosystem and retrieving the decryption key. Furthermore, the
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idea of key folding attack is extended to the message recovery attack against the
lattice generated from BQTRU’s ciphertext. This work proves the efficiency of
our folding attack theoretically and cross-validates the results experimentally.

1.2 Our work

Implementation of BQTRU. We provide an implementation of BQTRU for
a better understanding of the practical aspects of the cryptosystem. Our find-
ings identify some issues related to the key generation process proposed in the
original work, as well as some other problems related to the decryption failure
and possible alternative keys.

Efficient key and message recovery attacks. We propose an efficient key
and message recovery attack against BQTRU. For a key recovery attack, in-
stead of considering only the authors’ search cost or the proposed lattice reduc-
tion in expanded lattices, we consider a combined approach that searches for
some values of the key before converting the key retrieval attack into reducing
a structured lattice of lower dimension that is further susceptible to dimension
reduction attacks. For message recovery attacks, similarly, we show that one can
benefit from the structure of the underlying ring to launch an attack in a lattice
of smaller dimensions compared to the original NTRU. Using our approach, we
estimate that the proposed parameter sets of BQTRU achieve much lower secu-
rity levels than claimed, as shown in Figure 1 and Table 4. Further, this work
experimentally breaks the moderate parameter set of claimed key security 2166

and message security 292 just in less than 12 core days (on average) for key and
message attacks on a standard desktop.

How NOT to fix BQTRU. We provide our attempts to fix the BQTRU
cryptosystem against the proposed attacks, especially the key recovery attack.
These attempts originated from the trials to change the key generation process
to make the guessing part harder for an attacker. However, we managed to show
that an extension of the proposed attack can be applied even against the new
proposal. We consider these attempts unsuccessful and advise against using them
in future efforts to fix BQTRU.
Our artifacts for the experiment with a detailed documentation can be accessed
at https://github.com/Mr-PQ-Crypto/BQTRU_cryptanalysis.

1.3 Road map

Section 2 introduces the preliminaries and notations and briefly discusses the
lattice attacks on NTRU-like constructions. Section 3 describes BQTRU and its
relation to hybrid lattices. Section 4 is about the security claims by authors of
BQTRU regarding keys and messages. In Section 5, we propose our key and
message attacks, while Section 6 experimentally verifies the correctness of our
attacks along with a cost analysis. Section 7 gives a few of our unsuccessful
attempts to fix BQTRU. We conclude our work in Section 8.

https://github.com/Mr-PQ-Crypto/BQTRU_cryptanalysis
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Fig. 1: The claimed vs. our estimation of the security level for the moderate parameter
set of BQTRU (n = 7 and q = 113). The original proposal of BQTRU estimates the
key security to be greater than 2166−bit and the message security to be 292−bit. On
the other hand, our estimation shows that the key security and the message security
provide no more than 247 and 237−bit security level and hence can be broken on
a standard desktop within 2 core weeks, approximately. Although the experimentally
obtained blocksizes for the key attack are lower than for the message attack, our worst-
case estimate for the key security is higher than the message as the key attack involves
guessing and lattice reduction, whereas the message is straightforward based on lattice
reduction.

2 Preliminaries

2.1 Notations

– Z,R denote the set of integers and real numbers, respectively.
– For a positive integer q, Zq is the ring of integers modulo q, and Z⋆

q is the
group of units, i.e., group of invertible elements in Zq.

– For a set A, |A| is the cardinality of A, and a
$← A denotes sampling an

element a uniformly at random from A.
– For any ring R and a positive integer m, Rm = {(a1, a2, . . . , am) : ai ∈ R},

and Mm(R) denotes the ring of m×m matrices with entries from R.
– The symbols ∗ and ⋆, respectively, denote the multiplication of elements of

the underlying algebraic structure and the multiplication of their associated
vectors. The underlying algebras should be clear from the context. Further, ⋆
is also used to denote matrix multiplication.

– The symbol ⊗ denotes the Kronecker product of matrices.
– For a vector v = (v1, v2, . . . , vm) ∈ Rm, the Euclidean norm of v is defined as
||v || =

√∑m
i=1 v

2
i , and for a vector v = (v1, v2, . . . , vm) ∈ Zm

q , the Hamming
norm of v is defined as ||v ||H = |{i : vi ̸= 0}|.

– A ∼= B denotes that two algebraic structures A and B are isomorphic to each
other.
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2.2 Lattices: definitions and reductions

Definition 1 (Lattice). Let B be a d ×m matrix with d linearly independent
rows {b0, b1, . . . , bd−1} ⊂ Rm. The lattice generated by B is defined as

LB = ZdB =


d−1∑
i=0

γibi : γi ∈ Z

 . (6)

The matrix B is called the basis matrix for the lattice LB . Here, d, i.e., the
number of linearly independent rows in the basis matrix, is called the rank, and
m is called the dimension of LB . The lattice is referred to as full-rank if d = m.
If bi ∈ Zm, we call the lattice to be an integral lattice. For this work, we consider
full-rank integral lattices. The volume of a lattice LB defined by a basis matrix B
is given by vol(LB) =

√
|det(BBTr)|, and it is independent of the choice of basis.

For i ∈ {0, 1, . . . , d−1}, define πi to be the projection on the space orthogonal to
the span of {b0, . . . bi−1}, and denote Gram-Schmidt basis as {b⋆0, b

⋆
1, . . . b

⋆
d−1},

where b⋆i = πi(bi). We refer to the lattice generated from {πℓ(bℓ), . . . , πℓ(br−1)}
as the projected sublattice and denote it by LB[ℓ,r). We refer to the lengths of
||b⋆i || for i ∈ {0, 1, . . . , d− 1} as the profile of the basis B.

Definition 2 (q−ary lattice). A lattice of dimension d is called q−ary lattice
if qZd ⊂ LB for some q > 0.

Definition 3 (Minimum length). The minimum length λ1(L) of a lattice L is
defined as the length of its shortest nonzero vector, i.e., λ1(L) = minv∈L−{0} ||v ||.

Definition 4 (Gaussian heuristics). Given a random d−dimensional lattice
LB defined by basis B, Gaussian heuristic estimates that the expected length of
the shortest nonzero vector in LB is

λ1(LB) ≈
√

d

2πe
vol(LB)

1
d . (7)

Definition 5 (Hard lattice problems). Let LB ⊂ Rd be a full-rank lattice
defined by the basis B.
1. Shortest Vector Problem (SVP): Find a nonzero vector v ∈ LB such that
||v || = λ1(LB).

2. Closest Vector Problem (CVP): Find a vector v ∈ LB closest to the given
target vector t ∈ Rd, i.e., ||v− t || ≤ ||w− t || for all w ∈ LB. Further, when
||v−t || < αλ1(LB) for some α < 1, the problem is referred to as the Bounded
Distance Decoding (BDD) problem.

The Kannan embedding technique [24] transforms the problem of solving the
Closest Vector Problem (CVP) in a d−dimensional lattice into solving the Short-
est Vector Problem (SVP) in a (d+1)−dimensional lattice. For instance, finding
the closest vector in the lattice LB (generated by basis B) to the target vector
t ∈ Rd can be converted into solving the SVP in the lattice generated by the
basis

B′ =

(
B 0
t u

)
(8)

where u ∈ R is the embedding factor (usually 1).
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2.3 Lattice reduction

There are infinitely many bases to define a lattice of dimension ≥ 2. From the
attacker’s perspective, some bases are more friendly to launch lattice attacks
against the public key and, therefore, described as ‘good’ basis. Compared to
‘bad’ basis, good ones are defined with a set of reasonably short and almost
orthogonal vectors. Given a publicly available bad basis, a lattice reduction al-
gorithm tries to find a good basis that defines the same lattice. LLL [31] is a
famous example of a polynomial-time basis reduction algorithm that produces a
reasonably reduced good basis for low dimensions. Although LLL runs in poly-
nomial time, the quality of the reduced basis degrades as the dimension of the
lattice increases. BKZ [39] can be thought of as a generalization of LLL that
considers an additional parameter: the blocksize or β.

Definition 6 (BKZ). A basis B = {b0, b1, . . . , bd−1} is called BKZ−β reduced
if ∥∥b⋆

κ

∥∥ = λ1(LB[κ:min(κ+β,d))) for all κ = 0, . . . , d− 1.

For each κ ∈ {0, 1, . . . , d− 1}, the BKZ algorithm calls internally an SVP oracle
to find the shortest vector in the projected sublattice LB[κ:min(κ+β,d)). Repeating
this process for all the indices is called a BKZ tour, and the algorithm keeps on
applying tours until the condition is satisfied for all the positions. The most
expensive part of generating the BKZ−β reduced basis is due to calling the SVP
oracle while the number of the tours is polynomially bounded. Enumeration [16,
35] and Sieving [7, 18] are commonly used techniques in the oracle. Although
the memory requirements for enumeration are polynomial, the running time
is super-exponential in the blocksize β. On the other hand, memory and time
requirements for sieving are both exponential in β.

Several improvements have been introduced to BKZ, resulting in BKZ2.0 [12]
and progressive BKZ [4]. Progressive BKZ reduces the running time in practice
while instead of running many tours for a blocksize β, the algorithm applies a
few tours for increasing blocksizes up to β. Generally, the quality of a BKZ−β
reduced basis is measured by a quantity called the root Hermite factor.

Definition 7 (Root Hermite factor). For a d−dimensional lattice LB, the
root Hermite factor is defined as

δβ =
(
∥b1∥ /vol(LB)

1/d
)1/d

. (9)

For a small blocksize β, the root Hermite factor can be computed experimentally,
while Chen [11] showed that for reasonably large β > 50, δβ can be estimated
as

δβ =

(
β

2πe
(πβ)

1
β

) 1
2(β−1)

. (10)

This leads to the Geometry Series Assumption(GSA) that heuristically estimates
the profile for a BKZ−β reduced basis.

Definition 8 (Geometry Series Assumption). Let B = {b0, b1, . . . , bd−1}
be a BKZ−β reduced basis, then the GSA estimates that

∥∥b⋆i ∥∥ ≈ δβ−2
∥∥b⋆i−1

∥∥.
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The accuracy of the GSA is observed for sufficiently large blocksizes (β > 50
and β ≪ d) when BKZ is applied to random lattices.

2.4 Lattice attack against NTRU-like constructions

Since its introduction in 1998, several versions of NTRU have emerged in the
literature. NTRU is now recognized as a hard problem in cryptography rather
than a unique cryptosystem that can be extended to different algebraic struc-
tures. The NTRU design and the problem can be outlined as:

Definition 9 (NTRU). Let N be a prime, q be a positive integer, and f, g ∈
Z[x]/⟨xN − 1⟩ be two polynomials with small coefficients (mostly ternary) such
that f is invertible modulo q. The pair (f, g) forms the secret key and h =
f−1 ∗ g (mod q) ∈ Zq[x]/⟨xN − 1⟩ is the public key. The NTRU problem asks to
find the private key or its rotations (xi ∗ f, xi ∗ g).

As discussed earlier, the most renowned technique to attack the NTRU problem
is to solve SVP in the 2N−dimensional lattice ΛCS generated by the basis

MCS =

(
IN H
0N qIN

)
, (11)

since the vector (f, g) associated with the private key (f, g) or its rotations are
the shortest vectors in the lattice ΛCS with high probability.
Gentry attack. The selection of N as prime is crucial to NTRU construction
over the ring Zq[x]/⟨xN − 1⟩. For example, Silverman [40] proposed a variant of
NTRU where N was selected to be a power of 2 to enable Fast Fourier Transfor-
mations (FFTs) for fast polynomial multiplications. However, Gentry [17] used
the Chinese Remainder Theorem (CRT) to demonstrate that for composite val-
ues of N , the ring Zq[x]/⟨xN − 1⟩ can be factored into polynomial rings with
smaller degree such that the coefficients of the polynomials under this factor-
ing map do not grow much. In particular, for even N , we have the following
isomorphism:

Zq[x]

⟨xN − 1⟩ →
Zq[x]

⟨xN/2 − 1⟩
× Zq[x]

⟨xN/2 + 1⟩
(12)

u→ (u0 + u1, u0 − u1)

for every u = (u0, u1) ∈ Zq[x]/⟨xN − 1⟩. Consequently, the secret vector (f, g) ∈
ΛCS is mapped to the short vectors (f0+f1, g0+g1) ∈ Λ+

CS and (f0−f1, g0−g1) ∈
Λ−
CS , where Λ+

CS and Λ−
CS are the N−dimensional lattices generated by the

matrices

M+
CS =

(
IN/2 H+

0N/2 qIN/2

)
and M−

CS =

(
IN/2 H−

0N/2 qIN/2

)
. (13)

Here, H+ is the matrix representation of the image of the public key h0 + h1 ∈
Zq[x]/⟨xN/2 − 1⟩ whose i−th row is defined by xi ∗ (h0 + h1) mod (xN/2 − 1)
and H− is the matrix representation of h0 − h1 ∈ Zq[x]/⟨xN/2 + 1⟩ whose i−th
row is defined by xi ∗ (h0 − h1) mod (xN/2 +1). This way, Gentry exploited the
special structure of the underlying algebra to reduce the dimension of the lattice
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to be attacked by half.

Different perspective. We look at Gentry’s dimension reduction from the
perspective of matrices. For even N , the matrix of the public key h is of a
particular form

H =

(
H0 H1

H1 H0

)
∈MN (Zq). (14)

The effect of the Chinese Remainder Theorem in Gentry’s method can be cap-
tured in the matrix ring homomorphisms H → H+ = H0 + H1 and H →
H− = H0 − H1 ∈ MN/2(Zq). These homomorphisms allow mapping the pub-
lic key equation f ⋆ H = g (mod q) to (f0 + f1) ⋆ H+ = g0 + g1 (mod q) and
(f0−f1)⋆H− = g0−g1 (mod q). As a result, the vectors (f0+f1, g0+g1) ∈ Λ+

CS

and (f0 − f1, g0 − g1) ∈ Λ−
CS , which is the same scenario as for Gentry.

We find our description of Gentry’s attack in terms of matrices suitable to
those algebras whose matrix representations possess special structures and can
be reduced homomorphically; however, it is difficult to define algebra linked
to the matrices of reduced dimensions. We believe that our approach extends
the possible applicability of Gentry’s attack to different rings. In this work,
we demonstrate an application of our dimension reduction technique based on
matrices on BQTRU, which is built over the quaternion algebra of a bivariate
ring of polynomials.

3 BQTRU

In this section, we give a detailed description of BQTRU and its relation to the
hybrid lattices. For more insights, we refer the readers to [5].
Definition 10 (Quaternion algebra). [5, Definition 1] The quaternion alge-
bra A over a field F by two nonzero elements a, b ∈ F is a 4-dimensional vector
space generated with basis 1, i, j, and k, defined as(

a, b

F

)
= {f0 + f1i+ f2j + f3k : fi ∈ F}. (15)

The bilinear multiplication is defined by the conditions that 1 is the unity element
and

i2 = a, j2 = b, ij = −ji = k. (16)

Consequently,
k2 = −ab, jk = −kj = −ib, ki = −ik = −ja. (17)

For an element f = f0 + f1i+ f2j + f3k ∈ A, the conjugate of f is given by f̄ =
f0−f1i−f2j−f3k, and norm of f is N(f) = f ∗f̄ = f̄ ∗f = f20−af21−bf22 +abf23 .
A quaternion f is invertible if and only if N(f) is nonzero, and in that case,
the inverse of f is given by f−1 = N(f)−1 ∗ f̄ . A quaternion with norm 1 is
called a unit quaternion. It is known that for any field F, the quaternion algebra(

1,1
F

)
∼=M2(F) [33], where the isomorphism ψ :

(
1,1
F

)
→M2(F) is given by

ψ(f0 + f1i+ f2j + f3k) =

(
f0 + f1 f2 + f3
f2 − f3 f0 − f1

)
. (18)
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In general, the quaternion algebra A can be defined over any commutative ring
with unity R, i.e., A =

(
a,b
R

)
where a, b are nonzero elements of the ring R. For

the rings R, considered in this paper, we have
(

a,b
R

)
∼= M2(R) with the same

isomorphism as defined in (18).
Setup. The parameters (n, p, q) are chosen such that n, p, and q are primes with
p ≪ q, and let df = dg = dr = dm = ⌊n2/7⌋, where ⌊·⌋ is the greatest integer
function. Let T (d1, d2) be a subset of R consisting of ternary elements with d1
coefficients equal to 1, d2 coefficients equal to −1, other coefficients equal to
0. Define Lf = Lg = Lr = Lm = T (⌊n2/7⌋, ⌊n2/7⌋). BQTRU operates on the
quaternion algebras of the bivariate ring of polynomials

A =

(
1, 1

R

)
, Ap =

(
1, 1

Rp

)
, and Aq =

(
1, 1

Rq

)
,

where,

R =
Z[x, y]

⟨xn − 1, yn − 1⟩ , Rp =
Zp[x, y]

⟨xn − 1, yn − 1⟩ , and Rq =
Zq[x, y]

⟨xn − 1, yn − 1⟩ .

Every element v(x, y) = v0 + v1x + . . . + vn−1x
n−1 + vny + vn+1yx + . . . +

v2n−1yx
n−1 + . . .+ vn2−ny

n−1 + vn2−n+1y
n−1x+ . . .+ vn2−1y

n−1xn−1 ∈ R can
be uniquely mapped to its coefficient vector

v = (v0, v1, . . . , vn2−1) ∈ Zn2

.

Therefore, considering the monomial basis, R is isomorphic to Zn2

as an additive
module over Z. Similarly, A ∼= Z4n2

as every quaternion f = f0+f1i+f2j+f3k ∈
A can be mapped uniquely to its coefficient vector

f = (f0, f1, f2, f3) ∈ Z4n2

,

where fi ∈ Zn2

is the coefficient vector of fi for i = 0, 1, 2, 3. For two quaternions
f, g ∈ A, the coefficient vectors of f + g and f ∗ g are denoted by f+ g and f ⋆ g,
respectively.

In addition, n is chosen such that n|q − 1 so that Zq contains the nth roots
of unity. Let E = {(a, b) ∈ Zq × Zq : an = bn = 1}, then |E| = n2. The ring
Rq is an n2−dimensional vector space over the field Zq with Lagrange basis
{λa,b(x, y) : (a, b) ∈ E}, where λa,b(x, y) are the Lagrange interpolants given by

λa,b(x, y) =
ab(xn − 1)(yn − 1)

n2(x− a)(y − b) . (19)

Every polynomial f(x, y) ∈ Rq can be expressed uniquely as the linear combi-
nation of Lagrange basis as

f(x, y) =
∑

(a,b)∈E

f(a, b)λa,b(x, y). (20)

Let T be a non-empty subset of E and Qq be the ideal of Rq consisting of all
polynomials vanishing outside T . The ideal Qq is also a vector subspace of Rq
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generated by the basis elements corresponding to T ∩E. The set T is chosen to
be small for cryptographic purposes, particularly to facilitate correct decryption.
Without loss of generality, assume that T consists of the first |T | elements of E.
As an ideal, Qq can be generated by a polynomial

σ(x, y) =

|T |∑
i=1

qiλai,bi(x, y), (21)

where qi are randomly chosen nonzero elements in Zq. Let Q = ⟨q, σ(x, y)⟩R be
the ideal ofR and J = Q+Qi+Qj+Qk = ⟨q, σ(x, y)⟩A be the ideal of A. The ideal
J is called the private ideal and is used for key generation and decryption. Since
Q is an ideal of R and hence an additive subgroup. Therefore, Q can be viewed as
an n2−dimensional lattice LQ in Zn2

. Similarly, A ∼= Zn2

+Zn2

i+Zn2

j+Zn2

k ∼=
Z4n2

and the ideal J can be viewed as a 4n2−dimensional lattice in Z4n2

. This
lattice is called private lattice and is denoted by Lprivate.

We discuss the method given in [5] to construct the generator matrixD′ of the
lattice LQ. First, consider a matrix L whose rows are the coefficients vectors of
the Lagrange interpolants {λai,bi(x, y) : i = 1, 2, . . . , |T |}. Since the row rank of a
matrix is equal to the column rank, suppose that i1, i2, . . . , i|T | columns in L are
linearly independent. Let {j1, j2, . . . , jn2−|T |} = {1, 2, . . . , n2}\{i1, i2, . . . , i|T |}.
Then the matrix D′ whose rows are the coefficient vectors of Lagrange inter-
polants {λai,bi(x, y)}

|T |
i=1 and qej1 , qej2 , . . . , ejn2−|T |

forms a basis of LQ with a
high probability. Further, since J ∼= Q4, the private lattice Lprivate is generated
by the basis matrix

Bprivate =


D′ 0 0 0
0 D′ 0 0
0 0 D′ 0
0 0 0 D′

 . (22)

Key generation. Two quaternions f = f0 + f1i+ f2j+ f3k and g = g0 + g1i+
g2j+g3k are randomly chosen such that f0 ∈ T (df+1, df ), fi ∈ Lf for i = 1, 2, 3,
and gi ∈ Lg, for i = 0, 1, 2, 3. Since fi, gi are ternary polynomials, therefore, the
Euclidean norm of coefficients vectors f = (f0, f1, f2, f3) and g = (g0, g1, g2, g3)
is small. Further, f and g are chosen to be invertible in A modulo the private
ideal J , i.e., there are elements f−1, g−1 ∈ A such that

f ∗ f−1 = f−1 ∗ f = 1 (mod J)

g ∗ g−1 = g−1 ∗ g = 1 (mod J).

Additionally, f must also be invertible in Ap, i.e., there is an element f−1
p ∈ Ap

such that f∗f−1
p = f−1

p ∗f = 1( mod p). For f and g to be invertible in A/J , their
norms N(f), N(g) must be invertible in R/Q. Similarly, for f to be invertible in
Ap, N(f) must be invertible in Rp. Here, we describe the technique given in [5]
to generate such f and g. First, randomly choose g = g0 + g1i+ g2j+ g3k where
gi ∈ Lg and define the set

T = ∩3
i=0{(a, b) ∈ E : gi(a, b) = 0}.
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If T is empty, choose another g. Then, randomly choose f such that fset =
{(a, b) ∈ E : N(f)(a, b) = 0} ⊆ T. This gives the required f and g since
N(f), N(g) are invertible in R/Q if and only if the roots of N(f), N(g) in E
are also contained in T . However, this method has some issues, which we will
discuss later. Finally, to construct the public key, a quaternion w ∈ Lq =

(
1,1
Zq

)
is chosen such that w is invertible in Lq, and the public key is computed as

h = f−1 ∗ g + v (mod q) (23)

where v = w ∗ σ (mod q) is kept private. The above-discussed key generation
process (as given on [5, Page 11]) is compiled in Algorithm 1.

Algorithm 1: Key generation

1 for i← 0 to 3 do gi
$← Lg

2 g ← g0 + g1i+ g2j + g3k
3 T ← ∩3

i=0{(a, b) ∈ E : gi(a, b) = 0}
4 if T is empty then go to step 2

5 for (ai, bi) ∈ T do qi
$← Z⋆

q

6 σ ←
∑

(ai,bi)∈T qiλai,bi(x, y)

7 w
$← L⋆

q /* L⋆
q := set of invertible elements in Lq */

8 v ← w ∗ σ (mod q)

9 f0
$← T (df + 1, df )

10 for i← 1 to 3 do fi
$← Lf

11 f ← f0 + f1i+ f2j + f3k
12 fset ← {(a, b) ∈ E : N(f)(a, b) = 0}
13 if fset ⊆ T then
14 return Public Key: h = f−1 ∗ g + v (mod q)
15 Private key: f, g, v

16 else go to step 9

Encryption. To encrypt a message m = m0+m1i+m2j+m3k where mi ∈ Lm,
a random quaternion r = r0 + r1i + r2j + r3k ∈ A is chosen such that ri ∈ Lr.
Then, the ciphertext is given by c = ph ∗ r +m (mod q).

Decryption. In order to decrypt c, first compute a = f ∗ c (mod q). Then, find
the closest vector to a in the private lattice Lprivate, call it b, and let v = a− b.
The receiver then recovers the message by m = f−1

p ∗ v (mod p).

Correctness of decryption. We have f ∗ f−1 = f−1 ∗ f = 1 + α ∗ σ (mod q),
for some α ∈ A. Therefore,

f ∗ h = (f ∗ f−1) ∗ g + f ∗ v (mod q)

= g + α ∗ σ ∗ g + f ∗ v (mod q)

= g + γ (mod q)
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where γ = α ∗ σ ∗ g + f ∗ v (mod q). Receiver on computing a = f ∗ c (mod q)
gets

f ∗ c = f ∗ (ph ∗ r +m) (mod q)

= pg ∗ r + pγ ∗ r + f ∗m (mod q)

= pg ∗ r + f ∗m+ (pγ ∗ r + εq)

= pg ∗ r + f ∗m+ b

where ε ∈ A and b = (pα∗g∗r+pf∗w∗r)∗σ+εq ∈ J. The element b is unknown to
the receiver and must be found to decrypt the ciphertext. Since f, g, r, and m are
ternary polynomials, therefore, the norm of vector pg⋆r+f⋆m is small compared
to norm of b ∈ Lprivate. Hence, the vector b ∈ Lprivate is closest to f ⋆c that the
receiver recovers by solving 4 instances of CVP in n2−dimensional lattice LQ.
Subtracting b from f ⋆ c gives pg ⋆ r+ f ⋆m. Therefore, for the correct choice of
parameters, m can be recovered similarly to NTRU as m = f−1

p ⋆ (pg⋆r+ f⋆m)
(mod p). For more details, refer to [5].

4 Claimed Security

4.1 Key security

Lemma 1. [5, Lemma 1] Let ρ : Aq → (Lq)
n2

be a map defined as

ρ(f) = (f(a1, b1), f(a2, b2), . . . , f(an2 , bn2)), (24)

where (ai, bi) ∈ E and Lq =
(

1,1
Zq

)
is the quaternion algebra over Zq. Then, the

following properties hold

ρ(f + g) = ρ(f) + ρ(g) and ρ(f ∗ g) = ρ(f) ∗ ρ(g), (25)

where
ρ(f) ∗ ρ(g) = (f(a1, b1) ∗ g(a1, b1), . . . , f(an2 , bn2) ∗ g(an2 , bn2)).

For an element f = f0+f1i+f2j+f3k ∈ Aq, ρ(f) = ρ(f0)+ρ(f1)i+ρ(f2)j+ρ(f3)k
and the associated vector is given by

ρ(f ) = (ρ(f0), ρ(f1), ρ(f2), ρ(f3)) ∈ Z4n2

q .

Further, every quaternion f = f0 + f1i + f2j + f3k ∈ A is associated with its
unique matrix representations

F =


F0 F1 F2 F3

F1 F0 F3 F2

F2 −F3 F0 −F1

−F3 F2 −F1 F0

 , F̃ =


F0 F1 F2 F3

F1 F0 −F3 −F2

F2 F3 F0 F1

−F3 −F2 F1 F0

 ∈M4n2(Z), (26)

where Fi ∈ Mn2(Z) is the matrix representation of fi ∈ R, such that for every
g ∈ A,

f ⋆ g = f ⋆ G = g ⋆ F̃ , (27)
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where G is the matrix representation of quaternion g. We refer the readers to
Appendices A, B for more details on the matrix representations of elements in
the ring R and the quaternion algebra A.

Theorem 1. [5, Proposition 1] Suppose that f, g, γ, and h be the private and
public BQTRU keys with a quaternion u ∈ A such that

f ∗ h = g + γ + qu. (28)

Then, the vector (g, f,−ρ(γ)) belongs to the BQTRU lattice LBQTRU generated by the
basis matrix

BBQTRU =

qI4n2 0 0
H I4n2 0
D 0 I4n2

 (29)

where, H is the matrix representation of h, and

D =


D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D

 (30)

with D ∈ Mn2(Z) is a matrix whose rows are the coefficient vectors of the La-
grange interpolants λa,b(x, y) for (a, b) ∈ E.

Since g, f are ternary vectors, they have small Euclidean norms. And, γ
is the linear combination of λa,b’s for (a, b) ∈ T with |T | small. Thus, the
Hamming norm of ρ(γ) is small. Consequently, the hybrid norm of the vector
(g, f,−ρ(γ)) ∈ Z4n2 × Z4n2 × Z4n2

q defined as

||(g, f,−ρ(γ))||Hyb = ||(g, f )||+ ||ρ(γ)||H (31)

is also small. In fact, (g, f,−ρ(γ)) is most likely one of the shortest vectors in
the hybrid lattice LBQTRU [5, Theorem 4]. Therefore, the usual lattice reduction
algorithms cannot find this short vector in hybrid metric. However, authors in [5]
show that the security of the key can be related to finding short vectors in higher
dimensional Euclidean lattices by expanding the hybrid lattice.

An attacker can select a subset {b0, b1, . . . , bℓ} ⊆ Zq such that every ele-
ment a ∈ Zq can be expressed as a =

∑ℓ
i=0 aibi where (a0, a1, . . . , aℓ) is a vec-

tor with small Euclidean norm. In particular, one can choose {b0, b1, . . . , bℓ} =
{1, 2, . . . , 2ℓ} where 2ℓ ≤ q < 2ℓ+1 then for every a ∈ Zq, (a0, a1, . . . , aℓ) is a bi-
nary vector. Then, expand the BQTRU lattice LBQTRU to the Euclidean lattice
Lexp generated by the rows of the matrix

Bexp =

qI4n2 0 0
H I4n2 0
Dexp 0 I4(ℓ+1)n2

 (32)

where

Dexp =


b⊗D 0 0 0

0 b⊗D 0 0
0 0 b⊗D 0
0 0 0 b⊗D

 , b = (b0, b1, . . . , bℓ)
Tr. (33)
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It can be shown that the image of the private vector (g, f,−ρ(γ)) is one of the
shortest vectors in the expanded lattice with high probability [5, Proposition 3].
Therefore, the problem of finding the private key is equivalent to solving SVP
in a lattice of dimension (4ℓ + 12)n2, which is very large. E.g. for n = 7, the
dimension of the expanded lattice is approximately 2036. Therefore, the authors
claim that the hybrid structure of BQTRU thwarts lattice attacks on key for the
proposed parameters.

Alternatively, a brute-force search for the key can be performed. As per
the BQTRU authors, an attacker first needs to guess the polynomial σ(x, y) =∑|T |

i=1 qiλai,bi(x, y) that is a generator for the ideal Q = ⟨q, σ⟩R. Since |T | ≤ n is
unknown to the attacker, the worst-case cost of searching for σ is

n∑
i=1

(q − 1)i
(
n2

i

)
. (34)

Then, for each choice of σ, the attacker searches for all the quaternions f =
f0 + f1i+ f2j + f3k ∈ A where fi ∈ Lf such that f ∗ h (modJ) is small ternary
quaternion. The possible number of such f is roughly

|Lf | =

(
n2

df

)4(
n2 − df
df

)4

. (35)

In fact, a meet-in-the-middle search [20] is possible on the ternary vector. Fur-
ther, since ρ(γ) = ρ(f ∗ v) where v = w ∗ σ, the attacker needs to search for
w ∈ A⋆

q (space of invertible quaternions in Aq) in order to find ρ(γ). Hence, the
size of the search space is approximately(

key

security

)
= |A⋆

q |

(
n2

df

)2(
n2 − df
df

)2 n∑
i=1

(q − 1)i
(
n2

i

)
, (36)

that amounts to 2166 and 2396 for the moderate and highest level security pa-
rameters, respectively (see Table 4).

4.2 Message security

The authors discuss the search attack on messages without any mention of the
possibility of lattice attacks. As per them, the message can be deciphered by
randomly searching for a ternary r = r0 + r1i + r2j + r3k ∈ A where ri ∈ Lr

such that c− ph ∗ r (mod q) is ternary quaternion. The size of the search space
following the meet-in-the-middle strategy is(

message

security

)
=

(
n2

dr

)2(
n2 − dr
dr

)2

=
(n2!)2

(dr!)4(n2 − 2dr)!2
. (37)

This results in 292 and 2212 message security achieved for the proposed moderate
and highest level security parameters, respectively (see Table 4).
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5 Our attack

5.1 On the proposed key generation

As discussed above, the authors estimated the key security based on the com-
binatorial search solely since, according to them, the lattice attacks on the keys
are not feasible. However, they neglected the possibility of combining both kinds
of attacks. We propose a hybrid attack that involves searching for the low Ham-
ming weight part of the key and then applying lattice reduction techniques on
the remaining Euclidean part.

For a quick revision, the private keys are ternary vectors f, g, both are in-
vertible modulo J = ⟨q, σ⟩A. The set T = ∩3i=0{(a, b) ∈ E : gi(a, b) = 0} is
non-empty, and fset = {(a, b) ∈ E : N(f)(a, b) = 0} ⊆ T to ensure the invert-
ibility of f modulo J . We have

f ∗ f−1 = f−1 ∗ f = 1 + α ∗ σ (mod q) (38)

for some α ∈ A. An attacker first tries to guess the indices of elements of T
in E. In simple words, if E = {(ai, bi) : i = 1, 2, . . . , n2} then guess the set
I = {i : (ai, bi) ∈ T} ⊂ {1, 2, . . . , n2} where |I| = |T | ≤ n. For the correct guess
of I and using the relation

h = f−1 ∗ g + v (mod q),

one can compute
h(ai, bi) = v(ai, bi) for i ∈ I, (39)

as g(a, b) = 0 for (a, b) ∈ T . Since v = w ∗ σ (modq) ∈ J (modq) = ⟨σ⟩A,
therefore v is completely determined by its evaluation over the set T . Let

s = h− v (mod q) = f−1 ∗ g (mod q)

and S be the matrix representation of s. Then,

f ∗ s = (f ∗ f−1) ∗ g (mod q)

= (1 + α ∗ σ) ∗ g (mod q) = g (mod q)

= g + qu for some u ∈ A

since σ ∗ g = 0 (mod q) as σ ∈ J (mod q) and g vanishes on T . Equivalently,
f ⋆S = g+ qu. Therefore, the private key (f, g) can be recovered by solving SVP
in 8n2−dimensional Euclidean lattice LCS generated by the matrix

BCS =

(
I4n2 S
0 qI4n2

)
. (40)

It is worth noting that the matrix S has a specific structure, as shown in
Equation (26). We will now discuss how this structure can be exploited to re-
duce the dimension of the lattice based on the idea introduced by Gentry [17].
We demonstrate that the matrices associated with the elements of quaternion
algebra can be homomorphically folded, which will reduce the dimension of the
lattice to be attacked by half. This thereby disproves the conjecture that BQTRU
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is safe against Gentry’s attack.

Using f ⋆ S = g+ qu, we get the following set of equations:

f0 ⋆ S0 + f1 ⋆ S1 + f2 ⋆ S2 − f3 ⋆ S3 − qu0 = g0

f0 ⋆ S1 + f1 ⋆ S0 − f2 ⋆ S3 + f3 ⋆ S2 − qu1 = g1

f0 ⋆ S2 + f1 ⋆ S3 + f2 ⋆ S0 − f3 ⋆ S1 − qu2 = g2

f0 ⋆ S3 + f1 ⋆ S2 − f2 ⋆ S1 + f3 ⋆ S0 − qu3 = g3

 (41)

Lemma 2 (Key folding). The map ϕ : {F : f ∈ A} →M2n2(Z) defined as

ϕ(F) =

(
F0 + F1 F2 + F3

F2 − F3 F0 − F1

)
(42)

is a matrix ring homomorphism, i.e., ϕ(F + G) = ϕ(F) + ϕ(G) and ϕ(F ⋆ G) =
ϕ(F) ⋆ ϕ(G) for all f, g ∈ A.

Proof. See Appendix C. ⊓⊔

To simplify notations, for every quaternion f = f0 + f1i + f2j + f3k ∈ A, we
denote by

ϕ1(f ) = (f0 + f1, f2 + f3) and ϕ2(f ) = (f2 − f3, f0 − f1). (43)

Then, Lemma 2 and equation set (41) give

(ϕ1(f ), ϕ1(u)) ⋆ BCS,ϕ = (ϕ1(f ), ϕ1(g)),
(ϕ2(f ), ϕ2(u)) ⋆ BCS,ϕ = (ϕ2(f ), ϕ2(g))

where

BCS,ϕ =

(
I2n2 ϕ(S)
0 qI2n2

)
(44)

generates a 4n2−dimensional lattice that we call LCS,ϕ. The Gaussian heuristic
estimates the expected length of the shortest vector in the lattice LCS,ϕ to be

gh(LCS,ϕ) =

√
4n2

2πe
|det(BCS,ϕ)|

1
4n2 =

√
2qn2

πe
. (45)

Whereas the images of the private key belonging to the lattice LCS,ϕ have norms

||(ϕ1(f ), ϕ1(g))|| ≈ ||(ϕ2(f ), ϕ2(g))|| ≤
√
2||(f, g)|| =

√
32n2

7
. (46)

Since q is taken to be approximately 24n2/7, therefore, for the recommended
parameters of BQTRU, the vectors (ϕ1(f ), ϕ1(g)) and (ϕ2(f ), ϕ2(g)) are O(1/n)
shorter than estimated by the Gaussian heuristics. Thus, we expect them to be
the shortest vectors in the lattice LCS,ϕ with high probability. This proves that
attacking the key is equivalent to searching for the indices of elements of set T
in set E times the cost of solving SVP in a 4n2−dimensional lattice. We discuss
the concrete cost analysis of our attack in Section 6.
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Alternative keys. In case the lattice reduction algorithms do not return the
exact images of the private keys in the lattice LCS,ϕ, we provide an alternative
way to handle such situations.

Theorem 2 (Lift-back). Let the vectors (x,y) = (x0,x1,y0,y1) and (w, z) =
(w0,w1, z0, z1) belonging to the lattice LCS,ϕ. Then the vector

lift(x,y,w, z) = (x0 +w1,x0 −w1,x1 +w0,x1 −w0,y0 + z1,y0 − z1,y1 + z0,y1 − z0)

belongs to the lattice LCS.

Proof. Let a = (a0,a1), b = (b0, b1) ∈ Z2n2

be such that

(x,a) ⋆ BCS,ϕ = (x,y) and (w, b) ⋆ BCS,ϕ = (w, z). (47)

From (47), we get

x0 ⋆ (H0 +H1) + x1 ⋆ (H2 −H3) + qa0 = y0

x0 ⋆ (H2 +H3) + x1 ⋆ (H0 −H1) + qa1 = y1

w0 ⋆ (H0 +H1) +w1 ⋆ (H2 −H3) + qb0 = z0
w0 ⋆ (H2 +H3) +w1 ⋆ (H0 −H1) + qb1 = z1

 (48)

Using (48), one can show that

lift(x,a,w, b) ⋆ BCS = lift(x,y,w, z).

This proves our claim. ⊓⊔

Moreover,
|| lift(x,y,w, z)|| ≤ 2

√
||(x,y)||2 + ||(w, z)||2. (49)

Therefore, if one is able to find two short enough vectors in the lattice LCS,ϕ,
then their lift-back can serve as a possible decryption key with high probability.
The same is reflected in our experiments.

Similar to NTRU, all the rotations of the private key of BQTRU are also
potential decryption keys.

Definition 11 (Rotations). For an element f = f0 + f1i + f2j + f3k ∈ A
where fi ∈ Z[x,y]

⟨xn−1,yn−1⟩ , the 4n2 rotations of f are given by

xayb ∗ f ∗ δ = (xayb ∗ f0)δ + (xayb ∗ f1)(iδ) + (xayb ∗ f2)(jδ) + (xayb ∗ f3)(kδ)

where δ ∈ {1, i, j, k} and a, b ∈ {0, 1, . . . , n− 1}.

It is clear that if f, g, and h ∈ A are such that f ∗ h = g (mod q). Then,
(xayb ∗ f ∗ δ) ∗ h = (xayb ∗ g ∗ δ) (modq), for all δ ∈ {1, i, j, k} and a, b ∈
{0, 1, . . . , n − 1}. Therefore, all the rotations of the private key belong to the
lattice LCS and, by definition, have the same norm as the private key. Hence,
their images in the lattice LCS,ϕ are also short vectors with high probability.
This increases the chances of an attacker to find suitable short vectors in lower
dimensional lattices and lift them back to the original lattice to check for their
eligibility as a decryption key.
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5.2 On messages
The ciphertext c = c0+c1i+c2j+c3k for a message m = m0+m1i+m2j+m3k
is computed as

c = ph ∗ r +m (mod q) (50)

where r = r0 + r1i + r2j + r3k ∈ A such that each ri is chosen randomly from
Lr. Using Equation (26), we get

c = pr ⋆ H̃+m+ qu for some u ∈ A. (51)

This gives us the following set of equations:

p(r0 ⋆ H0 + r1 ⋆ H1 + r2 ⋆ H2 − r3 ⋆ H3) +m0 + qu0 = c0

p(r0 ⋆ H1 + r1 ⋆ H0 + r2 ⋆ H3 − r3 ⋆ H2) +m1 + qu1 = c1

p(r0 ⋆ H2 − r1 ⋆ H3 + r2 ⋆ H0 + r3 ⋆ H1) +m2 + qu2 = c2

p(r0 ⋆ H3 − r1 ⋆ H2 + r2 ⋆ H1 + r3 ⋆ H0) +m3 + qu3 = c3

 (52)

Lemma 3 (Message folding). The map ϕ̃ : {F̃ : f ∈ A} → M2n2(Z) defined
as

ϕ̃(F̃) =

(
F0 + F1 F2 − F3

F2 + F3 F0 − F1

)
(53)

is a matrix ring homomorphism.

Proof. Similar to the proof of Lemma 2. ⊓⊔

Further, for every quaternion f = f0 + f1i+ f2j + f3k ∈ A, we denote by

ϕ̃1(f) = (f0 + f1, f2 − f3) and ϕ̃2(f) = (f2 + f3, f0 − f1). (54)

Then, Lemma 3 and equation set (52) give

(0, ϕ̃1(c)) = (ϕ̃1(r), ϕ̃1(u)) ⋆ BCS,ϕ̃ + (−ϕ̃1(r), ϕ̃1(m)),

(0, ϕ̃2(c)) = (ϕ̃2(r), ϕ̃2(u)) ⋆ BCS,ϕ̃ + (−ϕ̃2(r), ϕ̃2(m))

where

BCS,ϕ̃ =

(
I2n2 ϕ̃(H̃)
0 qI2n2

)
(55)

generates a 4n2−dimensional lattice that we call LCS,ϕ̃. Since r,m are ternary
vectors with many zeros, therefore, (−ϕ̃1(r), ϕ̃1(m)), (−ϕ̃2(r), ϕ̃2(m)) take val-
ues from the set {0,±1,±2} with majority of 0s, ±1s and a few ±2s. Therefore,
we expect with a high probability that the vectors

(ϕ̃1(r), ϕ̃1(u)) ⋆ BCS,ϕ̃ and (ϕ̃2(r), ϕ̃2(u)) ⋆ BCS,ϕ̃

in the lattice LCS,ϕ̃ are closest to the targets (0, ϕ̃1(c)) and (0, ϕ̃2(c)), respec-
tively. Thus, the message can be recovered by solving CVP in 4n2−dimensional
lattice LCS,ϕ̃.
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5.3 Other related issues

Small values of q. Since df = dr = dg = dm ≈ n2/7 and p is fixed to be 3, the
value of q required to avoid decryption failure is q ≥ 72n2/7. One can choose
smaller values of q, allowing negligible decryption failure to only an extent that
does not pose any security threat [21]. For instance, a cryptosystem achieving
security level 2λ should not have the probability of decryption failure higher
than 2−λ. However, the proposed parameters (n, q, p) = (7, 113, 3), (11, 199, 3)
claiming to achieve moderate and highest security levels allow approximately
2−10 and 2−22 decryption failure rate, respectively, which are far away from the
requirements.

Low cardinality of T . The greater the size of set T , the better security against
combinatorial search. However, our experiments indicate that for the suggested
parameters, the size of set T is quite small when g is randomly selected. In al-
most all the cases, we found that |T | = 1 or 2, which benefits the attacker.

Weak instances. In experiments, we encountered some instances where for a
wrong guess of T , say T ′ ̸= T , and corresponding v′, the lattice generated by
the matrix

B′
CS =

(
I4n2 H′

0 qI4n2

)
where H′ is matrix of h′ = h − v′ (mod q), contains short vector (f ′, g′). This
gives a potential decryption key as f ′ ∗ (h − v′) = g′ (mod q). Therefore, for a
ciphertext c = ph ∗ r+m (mod q), f ′ ∗ c = pg′ ∗m+ f ′ ∗m+ pf ′ ∗ r ∗ v′+ ϵ′q, for
some ϵ′ ∈ A. Now, decrypt in a similar way as for BQTRU but with the private
lattice corresponding to T ′. Therefore, these weak instances are beneficial to an
adversary when |T ′| < |T |.

6 Cost analysis and experimental verification

Besides the proposed parameter sets in the original paper, we consider another
set of parameters that provides no decryption failure in the same dimension and
a toy parameter set with decryption failure for reference comparison in Table 1.

Table 1: Original and decryption-free BQTRU parameter sets (n, q, df , dg, dr) in equiv-
alent dimensions.
Security tag No Decryption failure Decryption failure

Toy (5, 241, 3, 3, 3) (5, 71, 3, 3, 3)
Moderate (7, 547, 7, 6, 6) (7, 113, 7, 6, 6)

}
original parametersHighest (11, 1277, 17, 17, 13) (11, 199, 17, 17, 13)

As per the claimed security estimation for key and message attack (equa-
tions (36), (37)), the decryption-free parameter sets have higher key security
and equivalent message security compared to the original BQTRU parameter
sets in the same dimension. Later, our analysis shows that they are easier to
attack than the original parameter sets.
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Key recovery attack. We first guess the positions of the low Hamming weight
vector v with respect to the Lagrange basis. Then, for each guess, we attempt
to find a short vector in the lattice LCS constructed based on the guessed v.
If the positions are guessed correctly, the vector (f, g) or its rotations (as in
Definition 11) lie in the lattice LCS .

The cost of guessing is related to the cardinality of the set T . In BQTRU’s
paper, the authors state that |T | ≤ n is needed for successful decryption. There-
fore, in the worst case, the attacker has to try

∑n
i=1

(
n2

i

)
different guesses for

the nonzero positions of v. Since the lattice LCS is vulnerable to the folding
attack introduced in subsection 5.1, the attacker constructs the folded lattice
and runs a lattice reduction algorithm, such as the progressive BKZ, in a spe-
cific range where β is expected to successfully retrieve the secret key (f, g). The
lattice reduction cost is estimated based on the blocksize needed to find the two
short vectors (ϕ1(f ), ϕ1(g)) and (ϕ2(f ), ϕ2(g)) as summarized in Figure 2. Con-
sequently, the total cost of the key attack is calculated as the guessing cost ×
lattice reduction cost.

h = f−1 ∗ g + v (mod q) BCS =

(
I4n2 S
0 qI4n2

)
(f, g) ∈ LCS

BCS,ϕ =

(
I2n2 ϕ(S)
0 qI2n2

)
ϕ1(f), ϕ1(g) ∈ LCS,ϕ

ϕ2(f), ϕ2(g) ∈ LCS,ϕ

get s = h− v (mod q)
ap

pl
y
ϕ

lif
t

ba
ck

Fig. 2: Key recovery attack against BQTRU lattice; instead of reducing a lattice of
dimension 8n2 to find a short vector (f, g), we map the problem into reducing a lattice
of dimension 4n2 to find two short vectors (ϕ1(f), ϕ1(g)), (ϕ2(f), ϕ2(g)) of the same
norm (on average) as (f, g).

Message recovery attack. The message recovery attack, as discussed in sub-
section 5.2, is relatively straightforward. The complexity of recovering the mes-
sage is determined by the effort required to solve the Closest Vector Problem
(CVP) for the lattice LCS,ϕ̃ with respect to two distinct target vectors, namely
(0, ϕ̃1(c)) and (0, ϕ̃2(c)). To assess the difficulty of solving the CVP involved in
the message attack, we employ the embedding technique (Equation 5) to trans-
form the CVP into the Shortest Vector Problem (SVP). Consequently, the attack
cost depends on the blocksize required to identify the shortest vectors in the two
lattices generated from the basis BCS,ϕ1

and BCS,ϕ2
, as summarized in Figure 3.

Estimating β. The literature has introduced several works [3,26] that estimate
the blocksize needed for BKZ to recover an unusually short vector (that serves
as a decryption key) in lattices. The 2016-estimate is a well-regarded estimate
that suggests that, under the GSA, the BKZ algorithm can find a short vector
v in a random d−dimensional lattice LB if the following condition is met:√

β/d ||v || < δβ
2β−d−1 · det(LB)

1/d, (56)
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BCS =

(
I4n2 H̃
0 qI4n2

)
BCS,ϕ̃ =

(
I2n2 ϕ̃(H̃)
0 qI2n2

)

I4n2 H̃ 0
0 qI4n2 0
0 c 1

 BCS,ϕ1 =

I2n2 ϕ̃(H̃) 0
0 qI2n2 0

0 ϕ̃1(c) 1

 BCS,ϕ2 =

I2n2 ϕ̃(H̃) 0
0 qI2n2 0

0 ϕ̃2(c) 1



CVP target
vector: (0, c)

CVP target vectors:
Target 1: (0, ϕ̃1(c))
Target 2: (0, ϕ̃2(c))

(−r,m, 1) is the
shortest vector

(−ϕ̃1(r), ϕ̃1(m), 1) is
the shortest vector

(−ϕ̃2(r), ϕ̃2(m), 1) is
the shortest vector

Apply ϕ̃

em
be

dd
in

g

em
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dd
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g
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Fig. 3: Message recovery attack against BQTRU lattice; instead of reducing a lattice
of dimension 8n2 to find a short vector (−r,m, 1), we map the problem into reducing
two lattices of dimension 4n2 + 1 to find two short vectors (−ϕ̃1(r), ϕ̃1(m), 1) and
(−ϕ̃2(r), ϕ̃2(m), 1) of the same norm (on average) as (−r,m, 1).

where δ represents the root Hermite factor. Having the inequality satisfied (for
some β) indicates that the BKZ algorithm has potentially identified the projec-
tion of the unusually short vector v in the projected sublattice LB[d−β:d) that
can be lifted to the vector v ∈ LB and serve as a decryption key. A simple anal-
ysis shows that higher values of β are needed to satisfy the inequality (56) when
the dimension of the lattice d or the lattice gap, defined as ||v ||

gh(L) , increases.
The NTRU Fatigue-estimate [15] is the state-of-art estimate for NTRU-like

lattices. The estimate itself is a refinement of the 2016-estimator and the proba-
bilistic estimate [14] that allows for describing the profile of a reduced basis even
using a few tours of progressive BKZ. The Fatigue-estimator incorporates the
ZGSA (instead of GSA) as a more accurate description of the profile as well.

Definition 12 (ZGSA). [15, Heuristic 2.8] Let B be a basis of a 2d−dimensional
q−ary lattice LB with d q−vectors. After BKZ−β reduction, the profile of the
reduced basis (for t = 1

2 + ln(q)
ln(δβ)

) has the following shape:

||b⋆
i || =


q, if i ≤ d− t
√
q · δ2d−1−2i

β , if d− t < i < d+ t

1, if i ≥ d+ t

(57)

The Fatigue-estimate gives a better prediction for the blocksize in both the
lattices LCS and LCS,ϕ as the two lattices are NTRU-like lattices.

Although our attack reduces the dimension of the lattices by half, the block-
size and, hence, the reduction cost depends not only on the dimension but also
on the lattice gap. Therefore, to prove the effectiveness of our attack, we need
to demonstrate that the blocksize required to find (ϕ1(f ), ϕ1(g)), (ϕ2(f ), ϕ2g)) ∈
LCS,ϕ is much smaller than that needed for finding (f, g) ∈ LCS .

The secret key (f, g) ∈ Z8n2

consists of ternary coefficients, with approxi-
mately 8n2/7 of the coefficients equal to 1 and −1 each, and the rest being 0.
When estimating β using the Fatigue-estimator, we consider the coefficients of
(f, g) to follow a discrete Gaussian distribution with mean µ = 0 and variance
σ2 = 2/7. Using the fact that if X and Y are two independent and identically
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distributed discrete Gaussian random variables with mean µ and variance σ2,
then X + Y is a discrete Gaussian random variable with mean 2µ and variance
2σ2, we get that the coefficients of (ϕ1(f ), ϕ1(g)) and (ϕ2(f ), ϕ2(g)) take val-
ues from the set {−2,−1, 0, 1, 2} following a discrete Gaussian distribution with
mean µ′ = 0 and variance σ′2 = 2σ2 = 4/7. This gives

||(ϕ1(f ), ϕ1(g))|| ≈ ||(ϕ2(f ), ϕ2(g))|| ≈
√

4n2 σ′2 = 2nσ′ = ||(f, g)||. (58)

We experimentally also verified that (58) holds with minor deviations while
equation (46) gives an upper bound on the norm.

One can check that any β that satisfies the inequality (56) for the lattice
LCS of dimension 8n2 also satisfies it for the lattice LCS,ϕ of dimension 4n2 for
the same norm ||v || = 2nσ′. Therefore, 2016-estimator results in smaller values
of β for LCS,ϕ compared to LCS . A more precise description of the blocksize
estimation for the concrete parameters (with and without decryption failure)
based on the Fatigue and 2016-estimator is given in Table 2. The noticeable
difference in the blocksizes before and after dimension reduction clearly shows
the benefit of our folding.

Table 2: Blocksize estimation using 2016-estimate and Fatigue-estimate for retrieving
a short vector that represents a key/message in BQTRU lattices of dimension 8n2

without folding versus 4n2 with folding attack; the estimators predicts lower blocksizes
when our folding reduction is applied.

Parameters No folding Folding

(n, q, df , dg, dϕ) βFatigue β2016 βFatigue β2016

Decryption
Failure

(5, 71, 3, 3, 3) 52 72 3 −
(7, 113, 7, 6, 6) 145 166 56 77

(11, 199, 17, 17, 13) 421 456 204 224
(13, 677, 24, 24, 24) 529 562 250 268
(17, 919, 41, 41, 41) 960 1014 469 493

No Decryption
Failure

(5, 241, 3, 3, 3) 20 39 2 −
(7, 547, 7, 6, 6) 101 115 18 −

(11, 1277, 17, 17, 13) 320 340 137 152
(13, 1847, 24, 24, 24) 465 490 210 225
(17, 3061, 41, 41, 41) 840 879 395 414

Experimental verification. For experimental verification, we apply our key
and message attack against the parameter sets of BQTRU. We run progressive
BKZ and identify the smallest blocksize needed to retrieve the decryption key
and the message with enumeration as an SVP oracle. We depend on FPyLLL [43]
as a Python wrapper to FPLLL [42]. Timed results‡ have been measured on a
system running Linux (Ubuntu 22.04.2 LTS) with 13th Gen Intel(R) Core(TM)
i7-13700 equipped with 16 physical cores @ 800 MHZ (min) and 32 GB RAM;
each core can run up to 2 threads on parallel.

‡Other devices have also been used to run different experiments, as detailed on
the GitHub link. We are reporting only the blocksize β for the other results; the time
required is an orthogonal question.
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Trivial short vectors. As in NTRU lattice, BQTRU key recovery lattice LCS

contains trivial short vectors like (14n2

,04n2

) that does not help in the decryp-
tion process. After applying our folding reduction, the images of these vectors
also lie in the lattice LCS,ϕ. To avoid these useless vectors, one can project
against using what so-called short vector hints [14]. However, the cost of retriev-
ing the decryption key may increase as the volume of the lattice to be reduced
decreases [27, Theorem 5.6]. In our experiment, we ignore these vectors automat-
ically, considering only the invertible short vectors as possible decryption keys.

Effect of rotations. Similarly to NTRU, the BQTRU key-recovery lattice does
not contain only the decryption key but also other ‘rotations’ with respect to
the underlying structure. While in NTRU, these rotations are cyclic rotations,
for BQTRU, these rotations are slightly different (given by Definition 11) but
maintain the same norm as the decryption key. Additionally, the number of these
rotations is similar to the NTRU lattice and equal d/2 where d is the lattice
dimension. The effect of these rotations is reflected as lower values of β that
are needed to recover the secret key. Fatigue-estimate takes into consideration
the probabilities of finding one of these rotations, and hence the expected β is
smaller compared to the 2016-estimate that considers only the lattice volume
and vector projection. Experimentally, one can also notice that the blocksize
required for retrieving the key is smaller than that needed to retrieve messages
for roughly the same dimension and lattice volume. See Table 3.

Table 3: Blocksize required to retrieve the key/message verified experimentally against
BQTRU parameter sets. The blocksizes are averaged over at least 50 trials except for
β > 60 where only 10 trials have been executed.

Parameters No folding Folding

(n, q, df , dg, dϕ) βKey βMessage βKey βMessage

Decryption
Failure

(5, 71, 3, 3, 3) 27 56 2.5 7.3
(7, 113, 7, 6, 6) − − 52.6 63.4

No Decryption
Failure

(5, 241, 3, 3, 3) 4.4 17.9 2 2.3
(7, 547, 7, 6, 6) − − 7 18.1

From Table 3, we can see the efficiency of our folding attack. When a decryp-
tion failure is allowed, for n = 5, the blocksize required to retrieve the key and
message drop from 27 and 56 (when no folding is applied) to just 2.5 and 7.3
on average (when folding is used). Furthermore, for n = 7, the estimated block-
size to retrieve the key and the message with no folding is greater than 100,
which is higher than the record β that ever has been reached experimentally for
NTRU-like lattice [27]. However, with our folding attack, we can retrieve the
key and the message with average blocksize 52.6 and 63.4, respectively, for the
parameters with decryption failure and just 7 and 18.1 for the no decryption
failure parameter sets.

Revised security estimation. Following our experimental findings and dis-
cussion on the estimated blocksize to find the decryption key or the message,
we find that the Fatigue estimate serves as a good estimator for the blocksize
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required to retrieve the decryption key, and the 2016-estimate serves as a con-
servative estimator for the blocksize needed to retrieve the message (for larger
blocksize β > 50).

As stated earlier, the cost of the lattice reduction using an algorithm like
BKZ is heavily determined by the SVP oracles: Enumeration and sieving. Re-
cent advances [2, 27] suggest that sieving can outperform enumeration starting
from β > 65. The literature has introduced different models to estimate the se-
curity based on the blocksize β. The proposed models have different elementary
operations of measurements. In enumeration, the unit is the number of nodes
visited during enumeration, which costs approximately 100 CPU cycles, while in
sieving, the unit is an operation on a word-sized integer that costs about 1 CPU
cycle. One can refer to [1] for a detailed discussion of these models. By analyzing
the different models, it is observed that the security level increases almost by
1−bit every 2− 4 blocksizes (a relation that does not need to be linear).

For the parameter sets with n > 7, the estimated blocksize to get the decryp-
tion key or the message is greater than 65; therefore, we rely on the sieving as an
SVP oracle for the lattice reduction. The conservative cost of BKZ with the siev-
ing model, which is widely used to estimate security in many schemes, is given
by 20.292β+o(β) (classically) [7] and 20.265β+o(β) (quantumly) [30]. However, in
our security estimation, we rely on the sieving model that gives the highest clas-
sical security estimation of 20.368β (according to survey [1]) in favor of BQTRU
construction. For n = 7, we report our experimental findings as an accurate
description of the security level. For key lattice, the average β to retrieve the
vector is approximately 52.6 compared to 63.4 for the message recovery attack;
however, guessing v also contributes to the total cost of the key recovery attack.
Similarly to sieving, if we consider the enumeration model that gives the highest
security estimation that is 20.000784β

2+0.366β−0.9+log2(8d) (classically), then the
lattice reduction part of the key and the message contributes 31 and 36−bit, re-
spectively. The guessing part for v in the key attack contributes at maximum by
26−bit security when the set |T | cardinality is maximal. Overall, the key security
is estimated to be 47−bit versus 36−bit for the message security. Experimen-
tally, the key attack is much more successful than estimated as the cardinality
of T is coming to be smaller than the maximum possible value n for most of the
generated keys as in Algorithm 1. On our system, it takes almost 12 core days
(on average) to retrieve the key and the message for the moderate parameter
sets of BQTRU. Consequently, we can summarize our security estimation (in
favor of BQTRU construction) for the message and key recovery attack against
the parameter sets proposed in the original work of BQTRU as in Table 4.

7 Failed attempts to fix BQTRU

7.1 Modifying the key generation

Our attack on the key works for the following reasons. Guessing the set I =
{i : (ai, bi) ∈ T} is enough to completely determine v. Further, since σ ∗ g =
0 (mod q) gives f ∗ (h − v) = g (mod q). Therefore, for the correct v, one can
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Table 4: Revised security levels for proposed BQTRU parameter sets. The key security
estimation is calculated as the cost of guessing v (that is

∑n
i=1

(
n2

i

)
) times the lattice

reduction cost, while the message security cost is due to the lattice reduction only.
key sec. message sec.

claimed security tag parameters claimed our estimate claimed our estimate

Moderate (7, 113, 7, 6, 6) > 166 47 92 36
Highest (11, 199, 17, 17, 13) > 396 125 212 82

overcome the hybrid nature of the associated lattice by searching for the private
key as a short vector in an 8n2−dimensional q−ary lattice LCS that can be
further subjected to a dimension reduction by half. Moreover, the low cardinality
of T also favors the adversary.

To avoid the above-discussed scenarios, we modified the key generation as
follows:
Algorithm 2: Modified key generation

1 f0
$← T (df + 1, df )

2 for i← 1 to 3 do fi
$← Lf

3 f ← f0 + f1i+ f2j + f3k
4 fset ← {(a, b) ∈ E : N(f)(a, b) = 0}
5 if |fset| ≥ n or fset is empty then go to step 1
6 T ← fset
7 while |T | < n do
8 (a, b)

$← E\T
9 T = T ∪ {(a, b)}

10 for (ai, bi) ∈ T do qi
$← Z⋆

q

11 σ ←
∑

(ai,bi)∈T qiλai,bi(x, y)

12 for i← 0 to 3 do gi
$← Lg

13 g ← g0 + g1i+ g2j + g3k
14 if σ ∗ g = 0 (mod q) or gset ← {(a, b) ∈ E : g(a, b) = 0} ⊆ T then
15 go to step 12

16 w
$← L⋆

q

17 v ← w ∗ σ (mod q)
18 return Public Key: h = f−1 ∗ g + v (mod q), Private key: f, g, v

Since fset is a proper subset of T and gset ⊈ T , the equation h(a, b) ̸=
v(a, b) ( mod q) for at least some of the (a, b) ∈ T. Therefore, Algorithm 2 returns
keys such that guessing the set I is not enough to determine v. Moreover, since
fset is non-empty, f ∗ f−1 = 1 + α ∗ σ (mod q) for some nonzero α ∈ A, and
σ ∗ g ̸= 0 (mod q). Therefore, even for the correct v, f ∗ (h − v) ̸= g (mod q).
Hence, (f, g) cannot be recovered as a short vector in the q−ary lattice LCS .

Intuitively, this approach seems to thwart our key attack. However, we demon-
strate that a similar hybrid attack is feasible on the modified key generation. The
only change is that we now need to solve SVP in a lattice with a smaller deter-



28 A. Raya et al.

minant, making the problem slightly harder. Suppose the attacker can correctly
guess the set I, then, he can construct the 4n2 × 4n2 matrix

Bprivate =


D′ 0 0 0
0 D′ 0 0
0 0 D′ 0
0 0 0 D′


generating the private lattice Lprivate corresponding to the ideal J ∼= Q4 ⊆ A
where D′ is n2 × n2 generator matrix for the lattice LQ corresponding to the
ideal Q ⊆ R. We have,

f ∗ h = (f ∗ f−1) ∗ g + v (mod q)

= (1 + α ∗ σ) ∗ g + f ∗ v (mod q)

= g + (α ∗ g + f ∗ w) ∗ σ (mod q)

= g + (α ∗ g + f ∗ w) ∗ σ + qu for some u ∈ A
= g + γ

where, γ = (α ∗ g + f ∗ w) ∗ σ + qu ∈ J . Therefore, there exists some u ∈ Z4n2

such that γ = u ⋆ Bprivate. As a result,

(f,−u) ⋆ Bnew
CS = (f, g), (59)

where,

Bnew
CS =

(
I4n2 H
0 Bprivate

)
. (60)

Consequently, the private key can be recovered by solving SVP in 8n2−dimensional
lattice Lnew

CS generated by the matrix BnewCS . Further, a similar dimension reduc-
tion as for our attack on the original key generation is possible for the lattice
Lnew
CS . Recovering the private key for the modified key generation is also equiva-

lent to solving SVP in a 4n2−dimensional lattice Lnew
CS,ϕ generated by the matrix

Bnew
CS,ϕ =

(
I2n2 ϕ(H)
0 Bprivate,ϕ

)
, (61)

where Bprivate,ϕ =

(
D′ 0
0 D′

)
. However, since

det(BnewCS,ϕ) = det(D′)2 = q2(n
2−|T |) < q2n

2

= det(BCS,ϕ).

Therefore, solving SVP in the lattice Lnew
CS,ϕ is costlier than LCS,ϕ as reflected in

our experiments. For instance, for the parameter set with n = 7 and q = 547,
the average blocksize to find a decryption key increases from 7 (for the old
key generation process, Algorithm 1) to 9 (for the modified key generation,
Algorithm 2 ). Similarly for n = 7 and q = 113, the average blocksize increases
from 52.6 to 56. This increment makes the key attack slightly higher but does
not thwart the practicality of our folding technique.
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7.2 Updating parameters

The other straightforward way to avoid potential attacks is by increasing the
parameter size. For example, one could allow for a larger set T to increase the
search cost. However, as discussed in [5], and also experimentally observed, that
|T | ≤ n is essential for successful decryption. Another possible attempt could be
to increase the value of n, which will increase both the search and the lattice
reduction cost. We searched for the BQTRU parameter set achieving the first
level, i.e., 128-bit security, as suggested by NIST, that allows for no more than
2−128 decryption failure probability. Considering our key and message attack,
n = 17 with q = 919 is the smallest prime that reaches the desired requirements.
However, the issue with BQTRU is that the attacker needs to solve CVP in
an n2−dimensional (n2 = 289, for n = 17) lattice to decrypt. Even with the
best algorithms for solving CVP in this dimension, the cost of decryption is
prohibitively high, making it impractical as a cryptosystem.

8 Concluding remarks

The proposal of building a cryptosystem based on the hardness of two promi-
nent post-quantum families (lattice and code-based) is undoubtedly interesting.
BQTRU has been introduced as a possibly practical scheme after a few at-
tempts to build such construction based on the hardness of solving the SVP
in hybrid lattices. In principle, choosing quaternion algebra was a smart choice
to make the decryption practical by mapping the problem of solving CVP in
a 4n2−dimensional private lattice to 4 instances of CVP in an n2−dimensional
lattice. Further, fast multiplication methods [41] that enable faster multiplica-
tion in quaternion algebra defined over

(
1,1
R

)
was an additional reason for the

authors of BQTRU to consider their construction. Our analysis indicates that
the same reason that allowed for faster multiplication and feasible decryption in
the chosen structure made the construction susceptible to a dimension folding
attack.

This work demonstrates the effectiveness of the proposed attack both the-
oretically and experimentally. Consequently, we were able to compromise the
moderate BQTRU parameter set and show that higher parameter sets offer much
lower security levels than claimed. Further, our few attempts to fix BQTRU in
its current form show the possibility of extending our folding attack to the mod-
ified key generation or that the scheme is yielding an impractical construction
for secure parameter sets.

As a result, creating a secure yet practical cryptosystem based on the hard-
ness of the SVP in a hybrid lattice remains an open research problem. One
future direction is to explore different structures that are not vulnerable to fold-
ing attacks or to build a trapdoor that enables solving the CVP easily in the
decryption process for the party possessing the trapdoor information.
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A Group rings

For a ring R and a finite group G = {gi : i = 1, 2, . . . , n} of order n, the group
ring of G over R is the set of formal sums

RG =

{
a =

n∑
i=1

αgigi : αgi ∈ R for i = 1, 2, . . . , n

}
, (62)

that forms a ring under the following operations: let a =
∑n

i=1 αgigi and b =∑n
i=1 βgigi in RG then the sum of a and b is defined as:

a+ b =

n∑
i=1

αgigi +

n∑
i=1

βgigi =

n∑
i=1

(αgi + βgi)gi , (63)

and the product of a and b as:

a ∗ b =

 n∑
i=1

αgigi

 ∗
 n∑

i=1

βgigi

 =

n∑
i=1

γgigi , (64)

where

γgk =
∑

gigj=gk

αgiβgj =

n∑
i=1

αgiβgi−1gk
=

n∑
i=1

αgkgi
−1βgi . (65)

For each element a =
∑n

i=1 αgigi ∈ RG, we associate a unique coefficient vector
a = (αg1 , αg2 , . . . , αgn). We use a and a interchangeably to refer to an element
of group ring RG. In vector notation

a+ b = (αg1 + βg1 , αg2 + βg2 , . . . , αgn + βgn), a ⋆ b = (γg1 , γg2 , . . . , γgn)

where γgi , for i = 1, 2, . . . , n, are given by (65), denote coordinatewise addition
and the convolutional product of two vectors a, b ∈ RG, respectively. Using
Equation (65), we have

a ⋆ b = (αg1 , αg2 , . . . , αgn) ⋆


β
g−1
1 g1

β
g−1
1 g2

. . . . . . β
g−1
1 gn

β
g−1
2 g1

β
g−1
2 g2

. . . . . . β
g−1
2 gn

...
...

. . .
...

β
g−1
n g1

β
g−1
n g2

. . . . . . β
g−1
n gn

 (66)

(a ⋆ b)Tr =


α
g1g

−1
1

α
g1g

−1
2

. . . . . . α
g1g

−1
n

α
g2g

−1
1

α
g2g

−1
2

. . . . . . α
g2g

−1
n

...
...

. . .
...

α
gng−1

1
α
gng−1

2
. . . . . . α

gng−1
n

 ⋆


βg1
βg2
...
βgn

 . (67)

Definition 13 (RG-matrices). [22] For an element a = (αg1 , αg2 , . . . , αgn) ∈
RG, define the RG−matrices of a in Mn(R) as follows:

A =


α
g−1
1 g1

α
g−1
1 g2

. . . . . . α
g−1
1 gn

α
g−1
2 g1

α
g−1
2 g2

. . . . . . α
g−1
2 gn

...
...

. . .
...

α
g−1
n g1

α
g−1
n g2

. . . . . . α
g−1
n gn

 , A′ =


α
g1g

−1
1

α
g1g

−1
2

. . . . . . α
g1g

−1
n

α
g2g

−1
1

α
g2g

−1
2

. . . . . . α
g2g

−1
n

...
...

. . .
...

α
gng−1

1
α
gng−1

2
. . . . . . α

gng−1
n

 .



Cryptanalysis of BQTRU 31

Lemma 4. For a = (αg1 , αg2 , . . . , αgn), b = (βg1 , βg2 , . . . , βgn) ∈ RG, the fol-
lowing hold:

a ⋆ b = a ⋆ B and (a ⋆ b)Tr = A′ ⋆ bTr. (68)

Further, if G is abelian group then a ⋆ b = b ⋆ A.

Proof. The first part of the proof immediately follows from Equations (66) and
(67). The other part follows from the observation that if G is an abelian group,
then A = (A′)Tr. ⊓⊔

Theorem 3. [22, Thereom 1] The mapping τ : RG→Mn(R) defined as τ(a) =
A is a ring homomorphism, i.e., τ(a+ b) = A+B and τ(a ⋆ b) = A ⋆B, where
+, ⋆ denote the usual matrix addition and multiplication, respectively.

Example 1. Suppose v(x) = v0 + v1x + . . . + vn−1x
n−1 ∈ Z[x]/⟨xn − 1⟩. Let

G = ⟨x : xn = 1⟩ be a cyclic group of order n, then Z[x]/⟨xn − 1⟩ ∼= ZG. The
matrix representation of the vector v = (v0, v1, . . . , vn−1) associated with the
element v(x) is a circulant matrix whose first row is the vector v, i.e.,

V =


v0 v1 . . . vn−1

vn−1 v0 . . . vn−2

...
...

. . .
...

v1 v2 . . . v0

 ∈Mn(Z). (69)

Example 2. Let G = ⟨x, y : xn = 1, yn = 1, xy = yx⟩ be a group of order n2,
then R = Z[x, y]/⟨xn − 1, yn − 1⟩ ∼= ZG. We can express every element of ring
R as

v(x, y) = v0(x) + yv1(x) + y2v2(x) + . . .+ yn−1vn−1(x),

where each vi(x) ∈ Z[x]/⟨xn − 1⟩. Then, the coefficient vector of v(x, y) is v =

(v0, v1, . . . , vn−1) ∈ Zn2

, where vi ∈ Zn is the coefficient vector of vi(x), and the
matrix representation of v has the form

V =


V0 V1 . . . Vn−1

Vn−1 V0 . . . Vn−2

...
...

. . .
...

V1 V2 . . . V0

 ∈Mn2(Z), (70)

where Vi ∈Mn(Z) is the matrix representation of vi and V ′ = V Tr.

B Multiplication in A =
(

1,1
R

)
For two quaternions, f = f0 + f1i + f2j + f3k, g = g0 + g1i + g2j + g3k ∈ A,
consider the product

f ∗ g =(f0g0 + f1g1 + f2g2 − f3g3) + (f1g0 + f0g1 + f3g2 − f2g3)i+
(f2g0 − f3g1 + f0g2 + f1g3)j + (f3g0 − f2g1 + f1g2 + f0g3)k (71)
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Using Lemma 4, the coefficient vector of the product f ∗ g is given by

f ⋆ g = (f0, f1, f2, f3) ⋆


G0 G1 G2 G3

G1 G0 G3 G2

G2 −G3 G0 −G1

−G3 G2 −G1 G0

 , (72)

(f ⋆ g)Tr =


F ′
0 F ′

1 F ′
2 −F ′

3

F ′
1 F ′

0 F ′
3 −F ′

2

F ′
2 −F ′

3 F ′
0 F ′

1

F ′
3 −F ′

2 F ′
1 F0

 ⋆


gTr
0

gTr
1

gTr
2

gTr
3

 . (73)

where Gi, F
′
i ∈ Mn2(Z) are the matrix representations of gi, fi as defined in

Equation (70), respectively.

Definition 14 (Quaternion matrices). For a quaternion f = f0+f1i+f2j+
f3k ∈ A, define the matrix representations of f in M4n2(Z) as follows:

F =


F0 F1 F2 F3

F1 F0 F3 F2

F2 −F3 F0 −F1

−F3 F2 −F1 F0

 , F ′ =


F ′
0 F ′

1 F ′
2 −F ′

3

F ′
1 F ′

0 F ′
3 −F ′

2

F ′
2 −F ′

3 F ′
0 F ′

1

F ′
3 −F ′

2 F ′
1 F0

 . (74)

where Fi, F
′
i ∈ Mn2(Z) are the matrix representations of fi as defined in Equa-

tion (70).

Lemma 5. For two quaternions f = f0+f1i+f2j+f3k, g = g0+g1i+g2j+g3k ∈
A , the following hold:

f ⋆ g = f ⋆ G and (f ⋆ g)Tr = F ′ ⋆ bTr. (75)

Further, if F̃ = (F ′)Tr then f ⋆ g = g ⋆ F̃ .
Proof. The proof immediately follows from Equations (72) and (73). ⊓⊔
Note: We would like to point out that in [5], the matrix representation of the
quaternions in A is incorrect due to the wrong multiplication in [5, Equation 16].

C Proof of Lemma 2

Let F and G be matrices of elements f and g ∈ A, respectively. Then,

ϕ(F + G) = ϕ


F0 +G0 F1 +G1 F2 +G2 F3 +G3

F1 +G1 F0 +G0 F3 +G3 F2 +G2

F2 +G2 −F3 −G3 F0 +G0 −F1 −G1

−F3 −G3 F2 +G2 −F1 −G1 F0 +G0


=

(
F0 +G0 + F1 +G1 F2 +G2 + F3 +G3

F2 +G2 − F3 −G3 F0 +G0 − F1 −G1

)

=

(
F0 + F1 F2 + F3

F2 − F3 F0 − F1

)
+

(
G0 +G1 G2 +G3

G2 −G3 G0 −G1

)
= ϕ(F) + ϕ(G).
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Similarly, one can verify that ϕ(F ⋆ G) = ϕ(F) ⋆ ϕ(G). Therefore, ϕ is a matrix
ring homomorphism.
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