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Abstract. The eIDAS 2.0 regulation aims to develop interoperable dig-
ital identities for European citizens, and it has recently become law. One
of its requirements is that credentials be unlinkable. Anonymous creden-
tials (AC) allow holders to prove statements about their identity in a
way that does not require to reveal their identity and does not enable
linking different usages of the same credential. As a result, they are likely
to become the technology that provides digital identity for Europeans.
Any digital credential system, including anonymous credentials, needs to
be secured against identity theft and fraud. In this work, we introduce
the notion of a multi-holder anonymous credential scheme that allows
issuing shares of credentials to different authentication factors (or “hold-
ers”). To present the credential, the user’s authentication factors jointly
run a threshold presentation protocol. Our definition of security requires
that the scheme provide unforgeability: the adversary cannot succeed in
presenting a credential with identity attributes that do not correspond to
an identity for which the adversary controls at least t shares; this is true
even if the adversary can obtain credentials of its choice and cause con-
current executions of the presentation protocol. Further, our definition
requires that the presentation protocol provide security with identifiable
abort. Finally, presentations generated by all honest holders must be un-
linkable and must not reveal the user’s secret identity attributes even to
an adversary that controls some of the user’s authentication factors.
We design and prove the (concurrent) security of a multi-holder version of
the BBS anonymous credential scheme. In our construction, each holder
is issued a secret share of a BBS credential. Using these shares, the
holders jointly compute a credential presentation that is identical to (and
therefore compatible with) the traditional, single-holder variant (due to
Tessaro and Zhu, Eurocrypt’23) of a BBS credential presentation.
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1 Introduction

According to W3C Verifiable Credential Data Model4, “a verifiable credential is
a tamper-evident credential that has authorship that can be cryptographically
verified”. Verifiable credentials are issued by issuers to holders, and the holders
can use them to create presentations used to prove claims about their identity
to verifiers.

Anonymous credentials are a special kind of verifiable credentials and allow
a holder to obtain and prove possession of a credential to a verifier in a way
that does not require the holder to reveal its identity or the credential itself.
This technology is particularly useful to protect the privacy of the holders by
preventing the issuers and the verifiers to track the holder’s activity.

Anonymous credentials recently attracted renewed interest due to the publi-
cation of the eIDAS 2.0 regulation5, which aims to facilitate secure cross-border
transactions by establishing a framework for digital identity and authentication
for digital services in the EU. The cryptographic community was invited to pro-
vide feedback on this regulation, and the resulting feedback document [BBC+24]
recommends the creation of the of the EUDI wallet (the digital wallet that Eu-
ropean citizens will use to store their credential) which might support the use of
anonymous credentials; it specifically encourages the EU to use the BBS-based
family [BBS04,CL04,ASM06,BL10,CDL16,TZ23,LKWL22] of constructions of
anonymous credentials.

At a minimum, anonymous credentials satisfy two main properties, namely
unforgeability and privacy. Unforgeability guarantees that a user cannot gen-
erate a verifying presentation without the consent of the issuer, and privacy
guarantees that verifiers cannot correlate presentations of the same credential or
learn anything about its attributes not explicitly revealed in the presentation. A
useful additional property we consider is selective disclosure, which allows the
credential holder to choose a subset of signed attributes to reveal to the verifier
during the credential presentation phase [FSS+24].

A natural framework for constructing anonymous credentials, the so-called
CL framework proposed by Camenisch and Lysyanskaya [CL03], is instantiated
in several anonymous credentials systems such as [CL01,CL04,CDL16,PS16,TZ23].
In the CL framework, a credential is a signature on a set of attributes, and to
prove possession of the credential, the holder proves in zero-knowledge that they
hold a signature on a set of attributes that verifies under the credential issuer’s
public key.

BBS Signatures as Anonymous Credentials. Boneh, Boyen and Shacham [BBS04]
gave a group signature scheme that Camenish and Lysyanskaya [CL04] suggested
could be adapted to anonymous credentials. The resulting scheme (and a variant
called BBS+) was subsequently analyzed, improved, and adapted, in a provably
secure fashion, for use in direct anonymous attestation (DAA) and anonymous
credential schemes [ASM06,BL10,CDL16].
4 https://www.w3.org/TR/vc-data-model-2.0/
5 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
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The state-of-the-art proof of security for this use of BBS and a zero-knowledge
protocol for proving knowledge of a BBS signature were given by Tessaro and
Zhu [TZ23]. The BBS signature as described in [TZ23] is the most efficient of the
known candidate signatures in the CL framework [CL03,CL04,PS16,CDL16]6
and is also the object of a standardization effort from W3C [LKWL22]7.

Motivation. Digital credentials require that the users protect the cryptographic
material representing the credentials. Corruption, loss, or theft of the device
where this material is stored can result in identity theft and fraud, defeating the
purpose of a digital credential system. For anonymous credentials, the threat is
all the more serious here, as it is impossible to trace how the adversary used a
stolen credential (unlike in linkable verifiable credentials [AAM23]). Addition-
ally, an adversary who compromises a single-factor credential learns sensitive
information about this user, which is a threat to privacy.

Multi-factor authentication is a popular way to enhance the security of digital
authentication. For anonymous credentials, it would amount to storing shares
of credentials on multiple devices. This is similar to how shares of secret keys
are used in threshold signature schemes. In particular, if an adversary corrupts
at most t − 1 devices (and therefore it learns the value of t − 1 shares of a
credential), it should not be able to generate a valid credential presentation. On
the other hand, if a threshold t of the devices agree to present the credential,
they can generate a valid presentation executing a multiparty protocol, while
keeping their share of the credential private.

1.1 Our Contribution

In this work, we introduce multi-holder anonymous credential (MHAC) schemes.
In a MHAC scheme, the credential attributes and the credential itself are not
stored on a single device of a single user, but instead are distributed among
multiple devices and/or holders. An adversary that gains control of fewer than t
devices will be unable to demonstrate possession of the credential or even learn
anything about the secret attributes. In order to present a credential, devices
must jointly convince a verifier that a valid credential is distributed among the
parties.

An MHAC scheme addresses the same security goals as a single-holder anony-
mous credential system: unforgeability, which roughly means that the adversary
cannot present credential attributes that it was not issued, and privacy, which
means that a credential presentation reveals nothing other than the intended at-
tribute set and cannot be linked to another presentation of the same credential.

Let us go over unforgeability for MHAC in more depth. Suppose an adversary
controls fewer than t holders of a credential with attributes a issued by an
6 A comparison between [CL03,PS16,CDL16,TZ23] is performed in [FSS+24]
7 The authors of the specification have updated the credential format from BBS+ to

BBS signatures after the publication of [TZ23], however they have decided to adopt
an alternative protocol for the creation of the presentation of BBS credentials which
has been recently included in an update of the paper of [TZ23, Appendix B].
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honest issuer. Further, suppose that the adversary can query the issuer for new
credentials with attributes; let ai correspond to credentials from query i. The
adversary can also query to see presentations of credentials with any attribute
sets it chooses. It can participate in computing several concurrent presentations
of a credential where it controls a subset of the holders, and arbitrarily schedule
messages in these presentations. Suppose some attribute aj (or, more generally, a
subset of attributes (aj1 , . . . , ajℓ)) does not appear any of ai. Then the adversary
cannot create a valid presentation of aj , even if it appears in a. Moreover, we
require that, when the adversary controls fewer than t holders, its participation
in a credential presentation results either in a correct output for the honest
participants, or in the identification (and, as a result, removal) of at least one of
the adversarial holders.

As far as privacy is concerned, we consider two different notions based on
what information the adversary already knows. Specifically, we require unlink-
ability (Definition 8) that applies in the case when the adversary controls the
credential verifier but none of the credential holders; here, a simulator creates
the adversary’s view on input just the attributes revealed as part of credential
presentation, and this simulated view is indistinguishable from the real one. Ad-
ditionally, we require attribute hiding (Definition 9) that applies in the case when
the adversary controls fewer than t credential holders involved in presenting the
credential. Here, the adversary already knows the identity of the holder devices
that computed the credential presentation, so the best we can hope for is that
the adversary not learn anything it doesn’t already know about the credential
attributes from participating in credential presentation.

Once we put forth these definitions, we satisfy them with a construction of an
efficient MHAC scheme compatible with the BBS anonymous credential scheme
described by Tessaro and Zhu in [TZ23]. By “compatible” we mean that the setup
and verification are identical, and an MHAC credential shares can be derived
from the credential issued in the underlying single-party scheme (here, BBS).
We prove that our MHAC scheme satisfies our security definition. Our scheme
also allows the holders to selectively disclose some of the attributes included in
the credential.

1.2 Our Techniques

First, let us recall BBS anonymous credentials. They require a bilinear pairing
e over groups G1, G2 of order q with generators g1 and g2, and additional
generators h1, . . . , hm for the group G1. The secret key x for the BBS signature
scheme is a random element of Zq, while the public key is pk = gx2 .

A BBS signature on the message vector a = (a1, . . . , am) is of the form (A, e),
where A = C(a)

1
e+x and C(a) is a way to encode a: C(a) = g1

∏m
i=1 h

ai
i . The

BBS verification algorithm verifies that A was computed correctly by checking
that e(C(a), (pk)ge2) = e(A, g2), or, equivalently, that e(A, pk) = e(B, g2), where
B = C(a)A−e.

Note that if this equality holds for a given pair A and B, then for any r ∈ Zq,
it will also hold for A = Ar and B = Br = C(a)rA−re = C(a)rA

−e
. Moreover,
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given A and B for which this equality holds, and the values (α, β1, . . . , βm, γ)

such that B = gα1 (
∏m

i=1 h
βi

i )A
γ
, the message vector a and the BBS signature on

this vector can be recovered as follows: set r = α, let mi = βi/α, and let e = −γ.
As a result, a zero-knowledge proof of knowledge of the message vector a and

a signature (A, e) boils down to (1) picking a random r and computing A = Ar,
a “blinded” version of the value A; (2) computing the corresponding B = Br;
and (3) proving knowledge of representation of B in bases g1, h1, . . . , hm and A.
A series of papers [CL04,BL10,CDL16] culminating in the work of Tessaro and
Zhu [TZ23] showed that indeed the resulting protocol is a zero-knowledge proof
of knowledge of a signature.

Credential secret sharing. How do we secret-share credential attributes and
a BBS anonymous credential in such a way that the protocol used to create a
presentation is efficient? Our approach is to secret-share the value e of the BBS
signature, as well as those of the attributes {aj}j∈Prv in a that are especially sen-
sitive and that we don’t want to store in the clear on any device. The remaining
attributes in a ({aj}j∈Pub) and the value A will be known to each credential
holder, i.e. they are part of the joint input to all participants. Given its shares
e(i), {a(i)j }j∈Prv of e and {aj}j∈Prv as well as the joint input, each holder par-
ticipates in a joint computation of the proof of knowledge of a, A and e, while
possibly revealing some of the attributes in {aj}j∈Pub.

Our protocol for computing this proof is efficient because the value D =(∏
j∈Prv h

aj

j

)
A−e is (implicitly) provided to all the holders. To be more precise,

we give to each holder {Di}i∈[n], with Di =
(∏

j∈Prv h
a
(i)
j

j

)
A−e(i) , from which

D can be recovered. While hiding the values of {aj}j∈Prv and e, D allows them
to compute the value B as (C(a)A−e)r, which is necessary to build the proof of
knowledge of a BBS signature. The proof of knowledge can be computed by the
holders in a distributed fashion by having each participant prove knowledge of
a different factor of B depending on its secret shares of e and {aj}j∈Prv.

One of the most tricky aspects of the proof of security for our scheme is
showing that it is safe to reveal D. We show that an adversary that breaks
unforgeability of our scheme will either lead to a reduction that forges a BBS
signature, or to another reduction that is set up such that it knows the BBS
signing key, but ends up breaking the discrete logarithm problem. This second
reduction receives as input the DL challenge (g, h), and generates the values
A, Ã = Ae such that logA Ã = logg h; thus if the adversary succeeds in forging
a proof of knowledge of a credential, our reduction solves the discrete logarithm
problem.

Access to {Di}i∈[n] is also helpful in achieving the identifiable abort property,
which allows identifying a malicious participant who would cause the protocol to
generate an invalid presentation. When the holders cooperate in the generation
of the proof of knowledge of a representation of B, each participant Pi, i ∈ S
proves knowledge of a representation of a factor B̃i of B =

∏
i∈S B̃i which can

be computed by every other party. Therefore if they generate an invalid proof,
their misbehaviour can be detected by verifying each participant proof.
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We can also optimize the size of the credential shares, which otherwise would
be linear in the number of holders (due to the need to store {Di}i∈[n]). Instead,
at issue time, each Di will be signed under a public key used just for this purpose
and each holder stores only its own signed Di. Each holder can then send its
signed Di to others as part of the presentation protocol.

Presentation protocol overview. The presentation protocol executed by the
parties Pi, i ∈ S, |S| = t instructs a protocol participant, the primary party Pj ,

to sample a random r
$←− Zp and broadcast it to the other parties in S. Next, each

participating holder derives A = Ar and B = Br as defined in the presentation
protocol described in [TZ23] that we recall at the beginning of this section.

The simplest case for our protocol is when the presentation discloses all
the attributes {ai}i∈Pub, i.e. the set of revealed indices is Rev = Pub. Then the
presentation is simply a proof of knowledge of a discrete logarithm representation
of B with respect to C(a′) = g1

∏
i∈Rev h

ai
i , {hi}i∈Prv and A, i.e.

B = C(a′)r
∏
i∈Prv

hrai
i A

−e
.

Note that the credential shares contain the values Di, i ∈ S, therefore it is
possible for every participant to compute

– B̃j = C(a′)rD
rλS,j(0)
j , corresponding to the primary party Pj ;

– B̃i = D
rλS,i(0)
i ,∀i ∈ S \ {j}, corresponding to each other party;

where λS,i(0) is the i-th Lagrange coefficient w.r.t. participating parties S.
Moreover each party Pi, i ∈ S \ {j} knows a representation of B̃i w.r.t

{hi}i∈Prv, A, and Pj knows a representation of B̃j w.r.t. C(a′), {hi}i∈Prv, A.
Therefore, since B =

∏
i∈S B̃i, we instruct each party Pi, i ∈ S to prove

knowledge of the corresponding B̃i with respect to the aforementioned basis in a
coordinated way so that the proof of knowledge can be aggregated. More specif-
ically the parties execute a variant of the threshold Schnorr signature Sparkle
[CKM23] producing in output a proof of knowledge of a representation of B w.r.t.
C(a′), {hi}i∈Prv, A. We show that this results in a concurrently secure protocol.

1.3 Outline

The rest of the paper is organized as follows. We briefly review related works in
Section 2 and preliminaries in Section 3. In Section 4, we define the notion of
multi-holder anonymous credentials, and in Section 5 we give the security notions
a multi-holder anonymous credential must satisfy. In Section 6, we give the
construction of a BBS-based multi-holder anonymous credential, and in Section 7
we prove this scheme secure.
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2 Related Works

Distributed computation of zero-knowledge proofs. In [KMR12], Keller, Mikkelsen
and Rupp describe a framework for distributing the prover side of sigma proto-
cols over multiple parties. Their framework requires (1) the presence of a (pos-
sibly malicious) combiner which aggregates the information generated by the
provers, and (2) the interaction between the combiner and a (possibly mali-
cious) verifier during the execution of the proof of knowledge protocol. Also,
they assume that the adversary can corrupt less than t-out-of-n parties (as we
do), and can have some additional control over the combiner and the verifier.
One of the examples of application of their framework that the authors include
is a multi-party version of the sigma protocol for proving knowledge of a CL
anonymous credential [CL04].

Instead in our work we will consider protocols that are non-interactive with
respect to the verifier, meaning that the provers interact for the creation of the
credential presentation and send the protocol output to the verifier.

The distribution of the prover side of (threshold) sigma protocols made non-
interactive with respect to the verifier has been studied in [BF24], where the au-
thors describe a framework for the creation of threshold signature schemes start-
ing from threshold sigma protocols similar to the ones described in [KMR12].

Our work follows the setting adopted in [BF24] and more generally by thresh-
old digital signatures [CKM23,DKL+23], and we design a protocol which does
not require the interaction between the provers and the verifier. We also do not
require the existence of the combiner since we assume a broadcast channel be-
tween the provers. Therefore in our security analysis we do not need to consider
the case in which the verifier is malicious and we only focus on:

– the unforgeability of the presentations, meaning that an adversary who cor-
rupts at most t − 1 holders (i.e. knows t − 1 shares of credentials) can not
forge a presentation;

– the unlinkability of presentation, meaning that if the participants to the
protocol are honest, the presentation is indistinguishable from a simulated
presentation.

– the unlinkability of private attributes, meaning that an adversary who cor-
rupts at most t− 1 holders and passively corrupts the issuer can not distin-
guish if a credential includes a specific private attribute.

– the identifiable abort, meaning that the honest parties can identify a misbe-
having participant when a presentation creation fails.

Distributed anonymous credentials. There is a line of works which describes
solutions to distribute anonymous credentials on two distinct devices which have
distinct computational power or corruption models; for instance [HSS23,HS21]
distributing an anonymous credential between a digital wallet on a smart phone
and a computationally constrained object such as a smart card. In both cases
the involvement of the constrained object in the creation of the presentation
is essential, but the amount of operations it must perform does not depend on
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the size of the credential and of the attributes to disclose and the authors try to
keep it as small as possible. Protocols in which the credential is shared between a
device (e.g. smartphone) and a server or a blockchain have also been considered
in [LHAT20,MY24].

In our work we describe a protocol which allows the storage and the pre-
sentation of credential over an arbitrary number of devices with an arbitrary
threshold of them needed to present the credentials. Each party is assumed to
have enough computational power to carry out the protocol and we only require
that the adversary can corrupt a number of devices below the specified threshold
needed to present the credential.

3 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}, and let x $←− S denote sampling an
element x from a set S uniformly randomly. Let x $←− A(i1, . . . , in) denote that x
is the output of the probabilistic algorithm A which takes in input (i1, . . . , in).
Alternatively, we may make explicit the randomness used by A by writing x←
A(i1, . . . , in;R). A deterministic protocol V taking in input (j1, . . . , jm) and
outputting y is represented as y ← V (j1, . . . , jm).

Security and Communication Model. We work in the synchronous model against
a static adversary that can actively corrupt up to t−1 holders in the presentation
protocol. We assume point-to-point private communication between the issuer
and each holder. For the credential presentation protocol, we assume parties
have access to a private broadcast channel between the set of parties involved in
the credential presentation protocol. Moreover, we assume that each session is
identified by a unique session identifier ssid agreed upon by the parties involved
in the protocol execution, which is included in each message sent between parties
and in broadcasts.

Bilinear Groups. A bilinear group (or pairing group) is a trio of groups (G1,G2,GT)
with an efficient map (or pairing) operation e : G1 × G2 → GT, such that (1)
for any x,∈ Zp and y ∈ Zp, e(gx1 , g

y
2 ) = e(g1, g2)

x·y and (2) e(g1, g2) ̸= 1. There
are three types of pairings [GPS08]: type-1, in which G1 = G2; type-2, in which
G1 ̸= G2 and there exists an efficient isomorphism ψ : G2 → G1; and type-3, in
which G1 ̸= G2 and there does not exist an efficient isomorphism ψ.

Secret Sharing. A classic technique to create a t-of-n secret sharing of a value
v is Shamir’s secret sharing [Sha79]: a dealer samples a random (t − 1)-degree
polynomial p(·) such that p(0) = v and gives each party Pi their own point
on the polynomial p(i). Given at least t points, Lagrange interpolation can
be used to reconstruct p and retrieve v. We use Share(t, n, v) to denote the
dealer’s algorithm for generating a t-of-n Shamir secret sharing of v. That is,
{p(i)}i∈[n]

$←− Share(t, n, v), where p(0) = v. We also make use of verifiable se-
cret sharing (VSS), a variant of secret sharing which considers a possibly corrupt
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dealer who may distribute shares that do not correspond to a valid sharing of
a value. VSS allows parties to verify that their received shares correspond to a
valid sharing of some value v.

Hardness Assumptions. We recall hardness assumptions BBS and our construc-
tion rely on: the discrete logarithm (DL) assumption and the q-strong Diffie-
Hellman (qSDH) assumption.

Definition 1 (Discrete logarithm assumption). Let pp ← (G, p, g) where
G is a cyclic groups of prime order p with generator g. The discrete logarithm
(DL) assumption holds in G if for any PPT adversary A

Pr[A(pp, g, gx) = x)] ≤ negl(λ)

where x $←− Zp, (g, g
x) ∈ G2 and κ is the security parameter.

Definition 2 (q-Strong Diffie-Hellman assumption [BB08]). Let G1 and
G2 be two cyclic groups of prime order p with generators g1 and g2, respectively.
The q-Strong Diffie-Hellman (qSDH) assumption holds in (G1,G2) if for any
PPT adversary A

Pr[A(g1, {g(x
i)

1 }i∈[q], g2, g
x
2 ) = (c, g

1
x+c

1 )] ≤ negl(λ)

where (g1, {g(x
i)

1 }i∈[q], g2, g
x
2 ) ∈ Gq+1

1 ×G2
2 and κ is the security parameter.

3.1 Sigma protocols

Sigma protocols are a type of proof of knowledge with a three-move structure,
where the first message is a commitment from the prover, the second is a random
challenge from the verifier, and the final message is a response from the prover.
We recall the formal definition of a sigma protocol in the notation of [Dam02]
as follows.

Definition 3 (Sigma protocol [Dam02, Definition 1]). Given a relation R,
a sigma protocol π for the relation R is an interactive protocol between a prover
P and a verifier V with 3-move form, i.e. P sends a commitment cmt to V, who
replies to P with a random challenge ch, and finally P computes a response rsp
that is sent back to V. π also satisfies the following properties:

– π has completeness, which means that if P and V execute π with common
input y and private input w to P, with (w, y) ∈ R, V always accepts;

– π has special soundness, which means that, from any y, and from a pair of
valid conversations for input y, (cmt, ch, rsp), (cmt, ch′, rsp′) with ch ̸= ch′,
one can easily compute w s.t. (w, y) ∈ R;

– π has (special) honest-verifier zero-knowledge (HVZK), which means that
there exists a polynomial time algorithm Sim which on input a statement y
and a random challenge ch outputs a transcript (cmt, ch, rsp) with the same
distribution of the real conversations between honest P and V on input y.

In later sections we make use of a standard sigma protocol for linear relations,
which we recall in Appendix A (Figure 1) for reference.
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3.2 BBS signatures

The BBS anonymous credential scheme presented by Tessaro and Zhu [TZ23] is
one of the pillars of our work. The authors revisit the security analysis of the
BBS signature [BBS04] and provide a novel protocol to prove possession of a
credential.

The idea of using BBS signatures [BBS04] to generate anonymous credentials
was initially proposed by Camenish and Lysyanskaya in [CL04, Section 5], and
a slightly modified version known as BBS+ was studied and proven unforge-
able by [ASM06,CDL16]. [TZ23] later showed the modification is not needed for
unforgeability and propose a protocol for proof of possession (which could be
applied also to BBS+ signatures) which produces proofs smaller in size.

Definition 4 (BBS signature scheme [BBS04,CL04]). The algorithms defin-
ing the BBS digital signature are the following:

– PgenBBS(κ). Let G1 = ⟨g1⟩,G2 = ⟨g2⟩ and GT be groups of prime order p,
and e : G1×G2 → GT be the pairing operation. Sample h1, . . . , hm

$←− G1 and
set the set of public parameters pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm).

– KGenBBS(pp). Sample a random x
$←− Zp. Compute X2 = gx2 , and set sk← x,

and pk← X2.
– SignBBS(pp, sk, (a1, . . . , am)). Compute C(a) = g1

∏m
i=1 h

ai
i . Randomly gen-

erate e $←− Zp and compute A = C(a)
1

e+x . Output the pair (A, e) ∈ G1 × Zp.
– VerifyBBS(pp, pk, (A, e),a). Set C(a) = g1

∏m
i=1 h

ai
i and check that e(A,X2g

e
2) =

e(C(a), g2), or equivalently

e(A,X2) = e(C(a)A−e, g2). (1)

Lemma 1 ([TZ23, Theorem 1]). The BBS signature scheme is strongly un-
forgeable against chosen messages under the qSDH assumption.

Zero-Knowledge Proofs of Knowledge for BBS Signatures. A few effi-
cient zero-knowledge proofs of knowledge for BBS signatures are given by [TZ23].
We recall for convenience the protocol for Partial Disclosure given in [TZ23, Sec-
tion 5.2] in Protocol 3 and Figure 2 in Appendix B.

This protocol is a proof of knowledge of a BBS signature8 and allows the
prover to reveal some of the attributes signed in it. We refer to the set of re-
vealed attributes of the signature with the symbol Rev ⊆ [m], and to the hidden
attribute with the symbol Hid = [m] \ Rev.

At a high level, the prover first randomizes the signature material and then
executes a sigma protocol for linear relations. The verifier then checks that the
randomized signature material is consistent with the public key of the signer pk,
the sigma protocol for linear relations produced a valid response, and that the
BBS verification algorithm verifies for the randomized signature material (i.e.,
e(A,X2) = e(B, g2)).
8 This statement is true if we adopt this protocol in the context of an anonymous

credential scheme, where it is assumed that the signer (the issuer) generates and
sends to the holders only valid signatures, as we elaborate in Appendix B.
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Non-interactive and fresh proofs of knowledge. The sigma protocol in Protocol 3
and Figure 2 can be made non-interactive by applying the Fiat-Shamir trans-
form. Moreover, in order to be sure that the proof of knowledge of the credential
is fresh (i.e. has been created after the session with the verifier has been opened),
the verifier sends a random nonce nonce that the prover incorporates into the
proof. For completeness, we explicitly describe the presentation algorithm and
the verification in Appendix B, Figure 3.

4 Multi-Holder Anonymous Credentials

In this section we introduce the concept of a Multi-Holder Anonymous Credential
(MHAC) scheme. At high level, a MHAC scheme allows an issuer to issue shares
credi of a credential to multiple holders Pi, i ∈ [n]. Then, if at least a threshold
t of the holders agree to present the credential, they can execute a multi-party
protocol which returns a valid presentation pres of the credential. However, with-
out the participation of at least t holders, they are unable to produce a valid
presentation.

Definition 5 (Multi-holder anonymous credential scheme). A MHAC
scheme consists of the following algorithms:

– Issuer setup algorithm:

IssSetup(κ)
$−→ (pp, (pk, sk)).

This algorithm generates public parameters pp (e.g. the number of attributes
m) and the issuer key pair (pk, sk);

– Multi-holder credential issuing protocol:

CredIss(pp, sk, t, n, {Pi}i∈[n], {ai}i∈[m],Prv)
$−→ {credi}i∈[n].

This protocol is executed by the issuer (possibly interacting with the holders
Pi, i ∈ [n]) to generate shares {credi}i∈[n] of a credential with threshold t for
attributes {aj}j∈[m], where the attributes {aj}j∈Prv,Prv ⊆ [m] are “private”
and not necessarily known in the clear to all holders.

– Multi-holder presentation protocol:

CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)
$−→ pres.

This algorithm is a protocol executed by a set {Pi}i∈S of t holders who jointly
create a presentation pres for nonce and public attributes {ai}i∈Rev.

– Multi-holder presentation verification algorithm:

VfPres(pp, pk, nonce, {ai}i∈Rev, pres)→ 0/1.

This algorithm is executed by the verifier who checks if pres is a valid presen-
tation (for nonce and {ai}i∈Rev) of a credential cred issued by pk such that,
if {a′j}j∈[m] are the attributes included in cred, then ∀j ∈ Rev, aj = a′j.
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Now we introduce a special class of MHAC scheme which is of practical
interest: a MHAC scheme compatible with secure anonymous credential schemes.
We say that a MHAC scheme is compatible with an anonymous credential scheme
if the MHAC is built on top of an existing anonymous credential scheme in a
way that:

– an anonymous credential can be reconstructed from t credential shares;
– the presentation pres produced by CredPres has the same structure and is

verified in the same way as in the underlying anonymous credential scheme.
Moreover, as long as all the holders participating to the presentation pro-
tocol are honest, the distribution of the output pres is the same as for the
distribution of the presentations of the anonymous credential scheme.

Note that it is straightforward to convert between classic anonymous cre-
dentials and their compatible multi-holder variants. To convert a multi-holder
version into the single holder, the issuer can simply send t shares to a single
party and the party can generate the presentation on its own. To convert from
a single holder credential to a multi-holder credential, the party holding the full
credential acts as the issuer and uses the issuing algorithm to split the creden-
tial into shares. It distributes the shares to the other holders and keeps only the
share it generated for itself (i.e., it deletes the full credential).

Remark 1. In the definition above, we describe an issue algorithm that outputs
credential shares based on credential attributes it takes as input. However, an
issuer may be adversarial and the user might want to ensure that the adversary
does not learn anything about the secret attributes being certified (even while
ensuring that these attributes satisfy a particular policy). Thus, as part of our
construction, we give a protocol that securely implements the issue algorithm in
a way that ensures the security of the secret attributes.

5 Security Definitions

In this section we define the security notions associated to MHAC schemes,
namely correctness (Section 5.1), unlinkability (Section 5.2), presentation with
identifiable abort (Section 5.3), and concurrent unforgeability of presentations
(Section 5.4).

Definition 6 (Secure MHAC scheme). We say that a MHAC scheme is
secure if it satisfies the notions of correctness (Definition 7), unlinkability (Defi-
nitions 8 and 9), identifiable abort (Definition 10), and concurrent unforgeability
of presentations (Definition 11).

5.1 Correctness

Intuitively, correctness states that running credential presentation with an hon-
estly generated credential will always verify.
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Definition 7 (Correctness). A MHAC scheme is correct if for values nonce, {ai}i∈[m],
Rev ⊆ [m]\Prv, S ⊆ [n], |S| = t, t ≤ n, it holds that 1← VfPres(pp, pk, nonce, {ai}i∈Rev, pres)
where

(pp, (pk, sk))
$←− IssSetup(κ)

{credi}i∈[n]
$←− CredIss(pp, sk, t, n, {ai}i∈[m],Prv)

pres
$←− CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)

5.2 Unlinkability

When defining unlinkability, there are two general notions: (1) an adversary
cannot “link” usage of the same credential across different presentations and (2)
if a credential contains secret attributes (i.e., attributes not known to all holders),
an adversary cannot learn any information about these secret attributes from
presentations.

Unlinkability of presentations. This first notion of unlinkability across cre-
dential presentations we can only hope to capture in the setting where the cre-
dential presentation is generated by all honest parties. Intuitively, unlinkability
of a credential across different presentations cannot be realized if an adversary
participates in the presentation because it inherently must know the credential
in order to participate in the protocol. Moreover, to convince another party that
a presentation the adversary took part in corresponds to a particular credential,
the adversary can reveal the credential and the randomness it used to produce
the transcript.

Experiment 1 (ExpunlinkA (κ) — MHAC Presentation Unlinkability).

1. The adversary A generates a set of public parameters pp, an issuer public
key pk, and a multi-holder credential {credi}i∈[n] on attributes {ai}i∈[m] of
its choosing issued under pk. The adversary sends this information to the
challenger C together with the information related to the presentation that C
must produce, namely nonce, {ai}i∈Rev ⊆ {ai}i∈[m].

2. C runs pres← CredPres(pp, pk, t, {(Pi, credi)i∈S , {ai}i∈Rev, nonce}) with a set
S ⊆ [n], |S| = t and records the transcript of the protocol execution as T .
C then checks that VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 1 . If the presen-
tation does not verify, C aborts and the experiment outputs 0. Otherwise, C
samples uniformly at random a bit b. If b = 1, C overwrites (pres, T ) with the
output from a simulated presentation as (pres, T )← SimCredPres(pp, pk, t, τ,
{ai}i∈Rev, nonce). Otherwise, C keeps (pres, T ) as is.

3. C sends (pres, T ) to the adversary A.
4. If b = b′, the experiments outputs 1. Otherwise the experiment outputs 0.

Definition 8 (Unlinkability of MHAC presentations). We say that the
presentations of a MHAC scheme are unlinkable if there exist an algorithm
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SimCredPres(pp, pk, t, {ai}i∈Rev, nonce) such that an adversary A can win ExpunlinkA (κ)
with at most negligible advantage. That is,∣∣∣Pr[ExpunlinkA (κ) = 1

]
− 1

2

∣∣∣ ≤ ν(κ), where ν(κ) is negligible in κ.

Remark 2. Note that if a MHAC scheme is compatible with a secure anonymous
credential scheme, then the unlinkability property is derived from the unlinka-
bility of the underlying anonymous credential scheme since the challenger can
execute the simulator of the NIZKP as SimCredPres(pp, pk, t, {ai}i∈Rev, nonce) to
generate a simulated presentation.

Unlinkability of private attributes. For settings in which some attributes are
not known to all holders, we introduce another notion of unlinkability to capture
that an adversary does not learn anything about these secret attributes when
less than t holders are corrupt. Note that these secret attributes are determined
when the credential is issued and are always a subset of the attributes that are
hidden from the verifier.

Experiment 2 (Expunlink−attr
A (κ) — MHAC Unlinkability of Private At-

tributes).

1. The challenger C runs (pp, (pk, sk))
$←− IssSetup(κ) and sends (pp, (pk, sk)) to

the adversary A.
2. A chooses and sends to C two challenge secret attributes a∗0, a∗1.
3. C flips a coin b

$←− {0, 1} and C runs CredIss with A honestly with secret
attribute a∗b and public attributes of A’s choosing9. C plays the role of the
issuer and the honest parties, and A and C receive their respective shares of
the credential.

4. The adversary may choose to run CredPres a polynomial number of times
with sets S ⊆ [n] of size t, distinct values nonce, and sets Rev of its choosing
(which do not contain the secret attribute), with C playing the role of the
honest parties.

5. At the end, A sends C its guess b′. If b = b′, the experiment outputs 1,
otherwise the experiment outputs 0.

Definition 9 (Unlinkability of Private Attributes). We say that the pri-
vate attributes of a MHAC scheme are unlinkable if any PPT adversary A can
win Expunlink−attr

A (κ) with at most negligible advantage. That is,∣∣∣Pr[Expunlink−attr
A (κ) = 1

]
− 1

2

∣∣∣ ≤ ν(κ), where ν(κ) is negligible in κ.

Remark 3. Note that Experiment 1 and 2 could be modified to allow the chal-
lenger to generate the public parameters using a trapdoor and send them, with

9 Note that the challenger C, which in this experiment acts as an issuer, knows the
value of the secret attribute. This is not always true in general, in fact a secret
attribute might be unknown both to the holders and to the issuer.
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the trapdoor, to the adversary. However, our definition, which instructs the chal-
lenger to generate the parameters honestly (Experiment 2), or allows the adver-
sary to choose them (Experiment 1), is stronger and encompasses its variant
that involves using trapdoors in the parameter generation.

Remark 4. One might ask what the motivation is behind having secret attributes
not known to holders. The secret attributes might be attributes that are some-
times revealed, but only in extremely rare circumstances. In these circumstances,
the holders reconstruct the secret attribute, reveal it, prove its correctness, and
then erase it. For secret attributes that are never revealed, we can consider a
multi-authority scenario in which issuers use a secret attributes to ensure that
multiple credentials are issued to the same entity. For example, one issuer may
be responsible for physically making sure that a user’s holder devices meet an
appropriate measure of hardware security; a secret attribute can be created by
these devices at the time this “device binding” credential is issued. Another is-
suer can incorporate the secret device binding attribute into the credential it
issues to take advantage of the hardware security guarantees that comes with it:
the holders can only successfully prove knowledge of this attribute if they are
using the appropriate hardware. In this case, the value of the attribute can never
be reconstructed. This use is specific to multi-authority case which we do not
formally address in this paper, however.

5.3 Presentation with identifiable abort

We adapt the notion of identifiable abort [IOZ14] to credential presentations.
Intuitively, in our setting, we wish to capture that a protocol satisfying iden-
tifiable abort allows the protocol participants to detect malicious behaviour by
other participants which would prevent the creation of a valid presentation. Our
definition is weaker than what is typically used in general multiparty computa-
tion [IOZ14, Appendix B] because we do not aim to realize any functionality. We
only want to be assured that the protocol does not abort if all the participant
are honest, and that when the protocol aborts, at least a corrupted participant
is detected.

Definition 10 (Presentation with identifiable abort). Let CredPres be the
multi-holder credential presentation algorithm and let {Pi}i∈S be a subset of t
parties executing the credential presentation protocol. Let W be an algorithm
which can be executed by any party Pi, i ∈ S. W is a “wrapper” interactive
algorithm that relays messages between CredPres algorithm run by Pi and the
other participants in S, as follows: W is initialized by the public inputs to the
protocol, and it keeps state (on a special state tape) after processing each message.

Each time that Pi receives a message m from another protocol participant, m
is forwarded to W ’s input tape; W ’s processing of m results in either forwarding
m to CredPres (more precisely, W clears its input tape, updates its state tape, and
outputs (message,m) on its output tape, resulting in the message going through),
or aborting the protocol and identifying another participant, Pj, that deviated
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from the prescribed protocol (more precisely, W writes (abort, j) for some j ∈ S
on its output tape).

Put another way, W observes the incoming communication of a party Pi and
has the option to either let the communication through, or to abort the protocol;
each time it chooses to abort, it also accuses another participant, j, of maliciously
deviating from the protocol. Whenever W outputs (abort, j) for some j ∈ S, it
causes Pi to abort the protocol as well.

We say that CredPres satisfies identifiable abort if there exists an efficient
wrapper algorithm W such that the following properties hold for the composed
algorithm W (CredPres):

– Correctness: Whenever W did not cause CredPres to abort, the output pres
of CredPres verifies, i.e. VfPres(pp, pk, nonce, {ai}i∈Rev, pres) = 1.

– Identifiability: Whenever the output of W is (abort, j) for some j ∈ S, Pj

did not follow the protocol instructions and is therefore corrupt.

Remark 5. Note that this property is not concerned with assuring that only a
legitimate holder can carry out the presentation protocol without being detected.
Legitimacy of the credential being presented is addressed in the unforgeability of
presentations property described in Section 5.4. For identifiable abort, we only
want to be assured that if a holder would cause the protocol to output an invalid
presentation, the honest parties can identify the this holder. Conversely, if the
algorithm does not abort, the presentation will be valid.

5.4 Concurrent unforgeability of presentations

We describe an experiment defining the unforgeability of a multi-holder anony-
mous credential presentation algorithm CredPres. The experiment resembles the
security experiment for threshold signature schemes. We can think of the the
shares of the t-of-n multi-holder credential as shares of the signing key in a
threshold signature scheme. The message that gets signed is the nonce nonce
provided by the verifier before the presentation is created (see Figure 3).

If the adversary has t or more shares of a t-of-n multi-holder anonymous
credential, we will write that the adversary is given a “full credential”, since with
t shares the adversary can produce presentations on its own.

The experiment is divided in three phases: a Setup phase, a Training phase
and a Forgery phase. In the Setup phase, the challenger generates the parameters
and credential issuing keys. During the Training phase, the forger is allowed
polynomially many queries to an issuing oracle and a credential presentation
oracle. There are two types of issuing queries: (1) a query for a full credential
where the adversary gets all the shares of the credential and can present it
on its own from now on; and (2) a query for a “target" credential for which the
adversary is only provided a subset of fewer than t shares. We limit the adversary
to just one such target query; this is without loss of generality (see Observation 2
below).

Finally, in the Forgery phase, the forger outputs a tuple consisting of a nonce,
attributes, and credential presentation. If this tuple verifies and the contents
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of the tuple do not correspond to a credential produced by the issuing oracle
or a presentation output by the presentation oracle, then the forger wins the
experiment. Otherwise, the forger loses.

The experiment Expc−uf−pres
A is given below and summarized in Figure 5.

Experiment 3 (Expc−uf−pres
F — Concurrent unforgeability of MHAC pre-

sentation).

Setup phase. The challenger executes IssSetup(κ), which returns the set of public
parameters pp and a key pair (sk, pk). The challenger sends (pp, pk) to F .

Training phase. The forger F has access to two oracles, Oiss and Opres, which it
may query in the following ways:

– F can query an issuing oracle Oiss for a polynomial number qI of full cre-
dentials cred for attributes {ai}i∈[m] of its choice, and one single query for
a partial credential (target credential) {credi}i∈cor for {ai}i∈[m].10
• Issuance of full credentials: on input the set of attributes {ai}i∈[m] chosen

by F , Oiss provides F with a credential cred = {credi}i∈[n]
$←− CredIss(pp, sk,

n, t, {ai}i∈[m],Prv) on these attributes.
Oiss stores a record (cred) in a credential table CT.

• Issuance of the target credential: F gives as input to Oiss the tuple ({ai}i∈[m],
t, n, cor) where {ai}i∈[m] are attributes chosen by F to include in the cre-
dential, (t, n) are the parameters of the secret sharing of the credential,
and cor ⊂ [n], |cor| < t, are the parties F wants to corrupt.
Oiss computes CredIss(pp, sk, t, n, {ai}i∈[m],Prv)→ {credi}i∈[n] and gives
to F only the shares corresponding to the parties in cor.
Oiss stores the value targetCred← ({credi}i∈[n], n, t, cor).

– F can query a presentation oracle Opres for a polynomial number qP of pre-
sentations specifying the nonce nonce to use and the attributes {ai}i∈Rev to
reveal. F can query Opres for two kind of presentations: the presentation of
the target credential, or of a credential it does not control at all.11 We allow
the adversary to open concurrently many session of the presentation protocol
for the target credential and interleave messages between different sessions.
Therefore, to distinguish sessions, F includes a unique session identifier ssid
to messages sent to Opres. Since ssid in each message exchanged by the pro-
tocol participants, we will omit it, and we will explicitly write only in the
oracle queries made by the adversary to the presentation oracle.
• Presentation of the target credential targetCred: F gives in input to Opres

the tuple (ssid, nonce, {ai}i∈Rev, hon) which specifies the nonce for the pre-
sentation, the set of attributes to reveal, the set of parties hon ⊆ [n] \ cor

10 In this experiment we always assume that the adversary knows all the attributes
included in the credentials it is issued, therefore we do not need to mention the
private attributes.

11 Note that F can generate presentations for the full credentials on its own, without
the help of any oracle.
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s.t. |cor| + |hon| = t and the session identifier ssid which identifies the
specific presentation protocol execution session.
Opres, acting on behalf of the parties in hon, interacts with F , who con-
trols the parties in cor, in the execution of CredPres({Pi, credi}i∈cor∪hon,
{ai}i∈Rev, nonce, pp, pk) with session identifier ssid.
If Opres sends its last protocol message associated to the protocol execu-
tion identified by ssid, it stores in the presentation table PT the record
(nonce, {ai}i∈Rev,⊥).
The last entry refers to the output of the presentation protocol, but Opres

is not guaranteed to learn the output since in the protocol execution it
always sends its messages first12.

• Presentation of a credential never issued to F : F only gives in input to
Opres the tuple (nonce, {ai}i∈Rev, t, n) (this input does not specify the set
hon), and receives a presentation pres generated autonomously by Opres

who stores in PT the record (nonce, {ai}i∈Rev, pres).
The presentation pres is generated by firstly generating a (t, n)-MHAC
cred for the attributes a = {ai}i∈Rev ∪ {ri}i∈[m]\Rev, where the attributes
ri with i ∈ [m] \ Rev are sampled uniformly at random in Zp, execut-

ing cred
$←− CredIss(sk, pp, t, n,a,Prv) and then by creating a presenta-

tion of the credential executing pres
$←− CredPres({(Pi, credi)}i∈[t], {ai}i ∈

Rev, nonce, pp, pk).

Forgery phase. At the end of the training, F must produce a forgery (nonce⋆, {a⋆i }i∈Rev⋆ ,
pres⋆) given by a presentation pres⋆ for (nonce⋆, {a⋆i }i∈Rev⋆) of its choice.
F wins the experiment if VfPres(nonce⋆, {a⋆i }i∈Rev, pres

⋆) = 1 and the follow-
ing win conditions related to the queries made by F are satisfied.

– For every record (nonce, {ai}i∈Rev, pres) in the presentation table PT the fol-
lowing holds:
• if pres ̸= ⊥: (nonce⋆, {a⋆i }i∈Rev⋆ , pres

⋆) ̸= (nonce, {ai}i∈Rev, pres)
(i.e. the record is associated to the presentation of a credential never
issued to F).

• if pres = ⊥ (i.e. the record is associated to a presentation of the target
credential) we require that (nonce⋆, {a⋆i }i∈Rev⋆) ̸= (nonce, {ai}i∈Rev).

– For every record cred in CT, being {ai}i∈[m] the attributes associated to cred,
{ai}i∈Rev⋆ ̸= {a⋆i }i∈Rev⋆ .
This guarantees that the forgery is not derived from a full credential that has
been issued by Oiss.

Definition 11 (Concurrent unforgeability of MHAC presentations). We
say that a MHAC scheme has concurrently unforgeable presentations if for any
PPT adversary F , F wins with at most negligible probability in Expc−uf−pres

F (κ).
That is, Pr

[
Expc−uf−pres

F (κ) = 1
]
≤ ν(κ), where ν(κ) is negligible in κ.

12 Note that storing cor is not useful to the scopes of checking the validity of the forgery,
since a forgery do not specify the actors involved in the creation of it.
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Observation 1. In practical scenarios, the nonce is sent to the provers by a
verifier who wants to receive a fresh presentation (see Figure 3), therefore if a
presentation protocol is unforgeable, i.e. the adversary can not forge a presen-
tation for attributes {ai}i∈Rev and a nonce nonce of its choice, then it will not
succeed in forging a presentation for a nonce chosen by the verifier.

Observation 2. Note that we could allow the adversary of the unforgeability
game to be issued a polynomial number qIp = qIp(κ) of partial credentials. It is
easy to see that a scheme secure according to our definition of security is secure
also according to this stronger notion of security. However, the reduction to the
cryptographic assumption would reduce its tightness by a factor 1

qIp
, which is

non-negligible in κ. This would impact the dimension of the parameters when it
comes the time to instantiate the scheme.

Remark 6. The only kind of queries allowing the adversary to open many con-
current sessions are the queries for the presentation of the target credential. The
reason is that the presentation queries for credentials the adversary was never
issued does not require the interaction of the adversary with Opres, moreover,
for what concerns the full credentials F has been issued, the adversary could
simulate the opening of concurrent presentation sessions since it knows t shares
of the credential, therefore it would also know all the secret shares of the parties
it does not control.

6 BBS Multi-Holder Anonymous Credentials

In this section we describe a secure MHAC scheme which is compatible with
the BBS anonymous credential scheme [TZ23]. According to the definition of
MHAC scheme compatible with an anonymous credential scheme, the credential
issuance algorithm consists in computing a secret sharing of a BBS credential,
and the presentation structure is the same as the one presented by Tessaro and
Zhu in [TZ23, Section 5] (Figure 3).

Our construction (optionally) allows private attributes; they are secret-shared
by the holders. Attributes not known in the clear are denoted by the set Prv,
and attributes known by all holders is denoted as Pub. Though our protocols
are described in terms of t-of-n Shamir secret sharing, replacing the sharing
algorithm enables using different access structures (e.g., enforcing the one party
always participate in presentations). This extension is given in Section 6.4.

6.1 Credential issuing

In this section we describe protocols involving the issuer. The issuer setup (Al-
gorithm 1) only needs to be run once locally by the issuer.

Algorithm 1 (Issuer setup algorithm).

IssSetupBBS(κ)
$−→ (pp, (pk, sk))

The algorithm IssSetupBBS(κ) works as follows.
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1. PgenBBS(κ)→ pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)
2. KGenBBS(pp)→ (sk, pk) = (x, gx2 )
3. Output (pp, (pk, sk))

The credential issuance protocol (Protocol 1) can be run by the issuer with
any set of n holders. We give two variants of the credential issuance: one for
issuing a credential when there are no private attributes and another when there
are private attributes. In the case where all attributes are known in the clear, the
holders simply supply the attributes to the issuer, and the issuer can produce
the shares of the credential locally.

In the case where some attributes may not be known to all holders, each
party’s credential will have a share of the private attribute rather than full
attribute itself. Our starting point here is multi-base Pedersen verifiable secret
sharing (VSS) [Ped91]13, for example as presented by Cachin et al. [CKLS02]
(but with threshold t < n/2 since we are in the synchronous case). That is,
for each private attribute aj , each party Pi’s share of the credential contains a
Shamir secret share a(i)j ; additionally, the mth attribute am is always a private
attribute that is meant to serve as the randomness for Pedersen VSS, so Pi also
has a Shamir share of it, a(i)m . To simplify our notation we will include m in the
set of private attributes Prv. Finally, for each Pi, a share of multi-base Pedersen

commitment Ci =
∏

j∈Prv h
a
(i)
j

j to these attribute shares is known14. We assume
this was setup prior to the protocol’s execution, and that each holder has also
published a straight-line extractable [Fis05,KS22,LR22] proof of knowledge πi
of these secret shares.

Overview of issuing with private attributes. From the multi-base Pedersen com-
mitments {Ci} and the public attributes, the issuer (after verifying the proofs
πi) computes C(a), and then computes the rest of the signature: it picks a ran-
dom e, computes A = C(a)1/(x+e), secret-shares e into {ei}, and distributes the
resulting shares.

Protocol 1. CredIssBBS — Multi-holder issuing protocol

Credential Issuance without Private Attributes. Upon receiving at-
tributes {ai}i∈[m], the issuer creates a credential as follows.

1. Compute a BBS signature as (A, e)
$←− SignBBS(sk, {ai}i∈[m])

13 The private attributes may not be known by the holders and may not be known
even by the issuer. If the holders do not know the secret attribute, the Pedersen VSS
can be executed starting from a value known by the issuer who divides it in shares,
or by the holders who generate the secret sharing of an unknown attribute [Ped91,
Section5.2], and in this case not even the issuer will know this value.

14 Note that C =
∏

j∈Prv\{m} h
aj

j ham
m for a random am is a Pedersen commitment to

{aj}j∈Prv\{m}, and therefore Ci are a shares of C.
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2. {e(i)}i∈[n]
$←− Share(t, n, e)

3. For i ∈ [n], set credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈[m],⊥)) with
Dj = A−e(j) and output credi to party Pi.

Credential Issuance with Private Attributes. Let Prv denote the set
of private attributes and Pub the set of attributes known by each holder,
with [m] = Prv ∪ Pub. We assume that private attributes have already
been shared between holders using Pedersen VSS [Ped91]. As a result,
for each private attribute aj , each party Pi’s share of the credential
contains a Shamir secret share a(i)j ; additionally, the mth attribute is
always a private attribute that is meant to serve as the randomness for
Pedersen VSS, so Pi also has a Shamir share of it, a(i)m , and in particular
if Prv ̸= ∅, then m ∈ Prv15. Finally, for each Pi, a multi-base Pedersen

commitment Ci =
∏

j∈Prv h
a
(i)
j

j and a straight-line extractable proof of
knowledge πi of these shares is known to these attribute shares is known.
To create a credential with private attributes, the issuer performs the
following:
1. For each Pi, verify proof πi corresponding to each Ci, and verify that
{Ci}i∈[n] are consistent with a Pedersen VSS of C =

∏
j∈Prv h

aj

j .
2. Compute C(a) = g1C

∏
j /∈Prv h

aj

j . Pick a random e and compute
A = C(a)1/(x+e).

3. Generate a secret sharing of e, {e(i)}i∈[n]
$←− Share(t, n, e).

4. For all k ∈ [n], compute

Dk = CkA
−e(k)

=
∏

j∈Prv

h
a
(k)
j

j A−e(k)

,

then set, for all i ∈ [n]

credi = (A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)),

and output credi to party Pi.

6.2 Multi-holder presentation

An overview of the presentation protocol is depicted in Figure 4. For simplicity,
we describe Protocol 2 in terms of attributes either known to all parties (denoted
by the set Pub) or shared among all parties (denoted by the set Prv). These sets
may be different than the set of attributes that is revealed to the verifier in the
credential presentation, which is denoted as Rev. The remaining attributes not
revealed to the verifier are denoted as Hid. An extension for handling attributes
shared only among a subset of n′ < n holders is described in Section 6.4.
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Protocol 2. CredPresBBS — Multi-holder presentation protocol

This protocol is run with parties P1, . . . ,Pn, with each party Pi holding a
share of a credential

credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

Let S ⊆ [n] denote a set of party indices, where |S| = t and j ∈ S refers
to a designated “primary” party Pj . Upon receiving the nonce nonce from
a verifier for presenting a credential with set of revealed attributes a′ =
{aj}j∈Rev, parties Pi for i ∈ S produce the credential presentation as follows.

Signature material randomization phase. Parties begin the presenta-
tion by first producing randomness.
1. The primary Pj first samples an element r $←− Zp broadcasts r to

every other party in S.
2. Every party Pi for i ∈ S computes:

A = Ar, D =
∏
k∈S

Dk
λS,k(0), C(a′) = g1

∏
j∈Rev

h
aj

j ,

B̃j =
(
C(a′) ·

( ∏
k∈Hid\Prv

hak

k

)
·Dλj,S(0)

j

)r
, B̃i =

(
D

λi,S(0)
i

)r
,

B =
∏
i∈S

B̃i =
(
C(a′) ·

( ∏
k∈Hid\Prv

hak

k

)
·D
)r
.

where λS,i(0) denotes the Lagrange coefficient for interpolating party
Pi’s share with the parties indexed by S.

Sigma protocol execution phase. The participants next jointly gen-
erate a proof of knowledge of a representation of B w.r.t.
C(a′), {hi}i∈Hid, A.
3. Parties begin the proof by doing the following:

– Pj samples α(j), {β(j)
i }i∈Hid, γ

(j) $←− Zp and computes

Uj = C(a′)α
(j)

·
∏
i∈Hid

h
β
(j)
i

i ·Aγ(j)

.
– Every other party Pk for k ∈ S \ {j} instead samples
{β(k)

i }i∈Prv, γ
(k) $←− Zp and computes

Uk =
∏
i∈Prv

h
β
(k)
i

i ·Aγ(k)

All the participants Pi, for i ∈ S, then compute commitments to
their Ui as comi = Hcom(ssid, nonce, Ui) and broadcast comi to the
other parties.
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4. Upon receiving comk from every other party k ∈ S \ {i}, each Pi

opens its commitment by broadcasting Ui to every other party.
5. For each Uk party Pi receives from each Pk for k ∈ S \ {i}, if Uk is

not a valid opening for comk, then Pi outputs (abort, k) and aborts.
6. For each k ∈ S, Pk computes:

U =
∏
i∈S

Ui, ch = Hsig

(
nonce, U,A,B, {ai}i∈Rev

)
,{

z
(k)
i

}
i∈Prv

=
{
β
(k)
i + ch

(
r · a(k)i · λS,k(0)

)}
i∈Prv

,

z(k)e = γ(k) + ch
(
−e(k) · λS,k(0)

)
and broadcasts {z(k)i }i∈Prv and z(i)e .
The primary Pj additionally computes and broadcast

z(j)r = αj + ch · r,
{
z
(j)
i

}
i∈Hid\Prv

=
{
β
(j)
i + ch · (air)

}
i∈Hid\Prv

and broadcasts z(j)r , {z(j)i }i∈Hid\Prv.
7. Upon Pi receiving {zi}i∈Hid, z

(j)
e , z

(j)
r from the primary Pj , check

Uj · B̃ch
j

?
= C(a′)z

(j)
r ·

∏
i∈Hid

h
z
(j)
i

i ·Az(j)
e .

If the equality does not hold, then Pi outputs (abort, j) and aborts.
Otherwise, upon receiving z

(k)
e , {z(k)i }i∈Prv from party Pk for k ∈

S \ {j}, check

Uk · (B̃k)
ch ?

=
∏
i∈Prv

h
z
(k)
i

i A
z(k)
e .

If the equality does not hold, then Pi outputs (abort, k) and aborts.
8. For each k ∈ S, party Pk computes

zr = z(j)r , {zi}i∈Hid\Prv =
{
z
(j)
i

}
i∈Hid\Prv

,

{zi}i∈Prv =

{∑
i′∈S

z
(i′)
i

}
i∈Prv

, ze =
∑
i∈S

z(i)e .

where j corresponds to the index of the primary. Pk sets

pres←
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
and outputs the tuple (nonce, pres) as the output of the protocol.
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Note that it is crucial to include the revealed attributes in the challenge
computation (Step 6) to avoid the principal revealing the attributes in a different
subset of Hid ∩ Pub than the one agreed with the other parties taking part to
the presentation protocol.

6.3 Verification

Algorithm 2 (Multi-holder presentation verification algorithm).

VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres)→ 0/1

Let pres =
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
. The verifier runs the same verification

algorithm as in the centralized case [TZ23]:

U ← B
−ch

C(a′)zr
∏
i∈Hid

hzii A
ze
,

ch
?
= Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
, e(A,X2)

?
= e(B, g2).

If the relations hold, the verifier outputs 1. Otherwise, outputs 0.

Remark 7. ΠMHAC−BBS = (IssSetupBBS,CredIssBBS,CredPresBBS,VfPresBBS) is com-
patible with the BBS anonymous credential scheme presented in [TZ23], in fact
the credential issuing algorithm CredIssBBS is obtained by generating a BBS
anonymous credential and by computing a secret sharing of it. Moreover, the
presentation algorithm CredPresBBS returns a presentation which has the same
structure and, assuming the participants to be honest, it has the same distribu-
tion of the presentations of BBS anonymous credentials.

6.4 Extensions

Flexible presentation subsets. Let us refer to any subset of holders who can
present a MHAC using their shares of credential as a presentation subset for the
given credential. In this work we have described a scheme where the attributes
{aj}j∈Prv are shared among the holders in an homogeneous way using a (t, n)-
Shamir secret sharing, so any subset of t parties is a presentation subset.

This construction can be easily generalized allowing the issuer to share one
attribute only among a subset of the holders (performing a (t′, n′)- Shamir secret
sharing with n′ < n), or even to a single holder (in this case the cooperation of
this holder will be necessary to create the presentation). Therefore, the presen-
tation subsets can be any subset of holders that know enough shares for each
attribute. The participants will also be required to deterministically choose a
factorization of B which allows them to generate the proof of knowledge of the
representation in a coordinated way.
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Share size optimization. In Appendix H we describe an optimization to the size of
the shares of the credentials whose size is linear in the number n of participants.
This is because every party knows the values Di of the other group members.
The idea is that the issuer gives each party Pi only its own values Di together
with a signature σi = Sign(sk, Di, ·) (where sk is the secret key of the issuer) ofDi

(and some values binding this value to the multi-holder anonymous credential).
In the first step of the presentation protocol the participants broadcast their
values comi together with the values (Di, σi) corresponding to their share and
the issuer’s signature.

Distributing the issuer. Note that while our issuing protocol (Protocol 1) is
described in terms of a single issuer, distributing the issuer can be achieved by
replacing computation of the BBS component (Steps 1 and 2) with a distributed
protocol such as [DKL+23].

7 Security Analysis

In this section we prove our BBS MHAC scheme from Section 6 satisfies the se-
curity properties defined in Section 5. We split the proof into four parts, showing
that our BBS MHAC satisfies correctness, unlinkability, identifiable abort, and
unforgeability.

Theorem 3. Let ΠMHAC−BBS = (IssSetupBBS,CredIssBBS,CredPresBBS,VfPresBBS).
Assuming BBS is SUF-CMA and the DL assumption holds in our group G1,
ΠMHAC−BBS is a concurrently secure MHAC scheme in the programmable ran-
dom oracle model satisfying the security properties in Section 5 against an active
static adversary corrupting less than t holders and an honest-but-curious issuer.

Proof. Proof follows from Lemmas 2, 3, 4, 5, and 6.

7.1 Correctness of BBS MHAC

Lemma 2. ΠMHAC−BBS satisfies correctness (Definition 7).

Proof. Checking the steps of the presentation protocol it is easy to see that the
holders in possession of a BBS MHAC execute in a multi-party fashion the same
operations described in the presentation protocol in [TZ23], namely they per-
form the signature material randomization phase computing A and B such that
e(A,X2) = e(B, g2), and then they execute the sigma protocol execution phase
which outputs a proof of knowledge of B w.r.t. C(a), {hi}i∈Hid, A. Therefore the
correctness of ΠMHAC−BBS follows from the correctness of the algorithm for the
presentation of a BBS anonymous credential.
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7.2 Unlinkability of presentations of BBS MHAC.

Lemma 3. ΠMHAC−BBS satisfies presentation unlinkability (Definition 8) in the
programmable random oracle model.

Proof. To prove unlinkability, we show there exist an algorithm SimCredPres(·)
which simulates an honest presentation of a multi-holder credential.

For what concerns the multi-holder BBS anonymous credential scheme, it
being compatible with the BBS anonymous credential scheme [TZ23], we can
choose as SimCredPres(pp, pk, τ, {ai}i∈Rev, nonce) the same algorithm used to
simulate the generation of presentation of a BBS anonymous credential presented
in [TZ23] that we recall in Appendix B16. The transcript T of the communica-
tion between the participants is instead generated as a random string of a given
length which is indistinguishable from a real transcript since the participants
execute the protocol over a private broadcast channel.

Since the challenger of the experiment programs the random oracle, the simu-
lated presentation is indistinguishable from the real one, and the simulation fails
only with negligible probability if we allow the adversary to query the random
oracle a polynomial number of times. ⊓⊔

7.3 Unlinkability of private attributes

Lemma 4. ΠMHAC−BBS satisfies private attribute unlinkability (Definition 9).

We provide a proof sketch below and give the formal proof in Appendix D.

Proof Sketch. It is possible to design a reduction to the hiding property [KL07]
of the Pedersen commitment scheme [Ped91] which is perfectly hiding.

The adversary A of private attribute unlinkability sends to the challenger (i.e.
the reduction) B two attributes a∗0, a∗1 and the set of public attributes {ai}i∈Pub.
The reduction B sends the same messages to the challenger C of the hiding
property of Pedersen commitment who samples a bit b uniformly at random and
computes a commitment c ∈ G1 to a∗b and sends it to B.

The reduction B uses the received commitment to create the shares of cre-
dential for A, and its own partial shares of credential because it does not know
the shares of the attribute a∗b committed to by C.

During the presentation protocol queries the reduction B simulates the exe-
cution of the presentation protocol programming the random oracle.

At the end of the training, the adversary A outputs a bit b′ specifying their
guess about the attribute included in the credential, and B forwards b′ to C.
16 We recall that, together with the public key pk, the adversary must provide the

challenger C with a pair (U1, U2) such that e(U1, pk) = e(U2, g2) which the simulator
must use to simulate the generation of the values A,B. Such a pair is assumed
to be known for every BBS credential issuer because it can be obtained from any
presentation of any credential issued by that specific issuer, as it is specified in
[TZ23,CDL16,LKWL22].
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7.4 Presentation with identifiable abort of BBS MHAC.

Lemma 5. Assuming Hcom is a secure commitment scheme, ΠMHAC−BBS satis-
fies presentation with identifiable abort (Definition 10).

We sketch the proof of Lemma 5. A more detailed proof is given in Appendix E.

Proof Sketch. It is easy to see that correctness holds because if W does not out-
put ⊥ at the end of Step 5, the participants have created a shared first message
U and can compute a shared challenge ch. Then if every participant Pi correctly
proves knowledge of a representation (w.r.t. the prescribed bases) of B̃i, these
proofs can be aggregated, leading to a proof of knowledge of a representation
of B. Concerning identifiability, it is easy to see that if the algorithm W out-
puts (abort, i), the party Pi has misbehaved, either because it has not opened the
commitment to Ui correctly, or because it has not created a valid zero-knowledge
proof of B̃i.

7.5 Unforgeability of presentations of BBS MHAC.

Lemma 6. Assuming BBS is SUF-CMA and the DL assumption holds in our
group, ΠMHAC−BBS satisfies concurrent unforgeability of presentations (Defini-
tion 11) against an active static adversary corrupting less than t holders and an
honest-but-curious issuer.

We sketch the security proof of Lemma 6. In Appendix F we instantiate the
security experiments to the case of the multi-holder BBS anonymous credential
as intermediate step in the description of the security proof that we sketch below
and we formally carry out in Appendix F.1.

To prove that ΠMHAC−BBS is unforgeable according to the security notion of
Definition 11, we show how it is possible to use an adversary F of the experiment
Expc−uf−pres

F,BBS (κ) as a subroutine of a reduction B to the DL assumption or to the
SUF-CMA of the BBS signature scheme.

Proof Sketch. Let us note that if an adversary F is able to win the experiment
with non-negligible probability, it is capable of producing a forgery which, by
definition, is associated either with a credential that has never been issued to F
or associated with the target credential; recall that the adversary is in possession
of t− 1 shares of the target credential. More precisely, a reduction that rewinds
the adversary F will end up extracting (from the adversary’s proof of knowledge
of a BBS credential) a credential that will fall into one of these cases (as we
will show). In particular, F loses the experiment Expc−uf−pres

F,BBS (κ) if it outputs a
forgery which is compatible with any of the full credentials F was issued during
the training phase.

We show in Appendix F.1 that if the reduction B extracts a credential which
corresponds to the target credential (case A) it has issued to F , then B can
break the DL assumption. Instead, if B, interacting with F , extracts a credential
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which does not correspond to any of the credentials issued during a creden-
tial issuance query (case B), then B breaks the qSDH assumption since that
credential is a forgery of a BBS signature17, and the BBS signature has been
proven secure under the qSDH assumption in [TZ23]. It is clear that, in general,
for MHAC schemes compatible with secure anonymous credential schemes this
proving (case B) is trivial. Some details about the techniques used to design a
secure presentation protocol are sketched in Section 1.2.

Our reduction can simulate the unforgeability experiment without rewinding
the adversary, therefore the reduction B both to the DL assumption described in
Appendix F.1, Case A, and to the strong unforgeability of the BBS signatures18,
Case B, can allow the adversary to open concurrent presentation session during
the training phase. This guarantees the concurrent security of the multi-holder
BBS anonymous credential scheme ΠMHAC−BBS.
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A Sigma Protocol for Linear Relation

We reproduce a sigma protocol for linear relations [BS23, Figure 19.8] in Fig-
ure 1, which will be used as a building block for our construction. An extensive
description of this protocol and related ones can be found in [BS23, Section 19.5].

Letting pp← (G, p, g1, . . . , gm), Figure 1 can be used to prove knowledge of
a representation of a statement h ∈ G with respect to the bases g1, . . . , gn ∈ G
for the relation

RLR(pp) = {(x1, . . . , xm, h) ∈ Zn
p ×G :

m∏
i=1

gxi
i = h}.

Sigma protocol for linear relations

P
(
(x1, . . . , xm), h =

m∏
i=1

gxi
i

)
V
(
h =

m∏
i=1

gxi
i

)
r1, . . . , rm

$←− Zp,

R←−
m∏
i=1

grii
R

ch
$←− Zp

ch

for i ∈ {1, . . . ,m}
zi ←− ri + ch · xi z1, . . . , zm

Rhch ?
=

m∏
i=1

gzii

Fig. 1. Sigma protocol for RLR(pp). The public parameters pp defining the relation are
p,G, g1, . . . , gm.

Theorem 4 ([BS23, Theorem 19.11]). The generic linear protocol in Fig-
ure 1 is a Sigma protocol for the relation RLR. Moreover, it provides special
soundness and is special HVZK.

B Analysis of BBS Presentation Protocol in [TZ23].

In this section we focus on the security analysis of Protocol 3 proposed in [TZ23].
The protocol is obtained by applying the Fiat-Shamir transform to the sigma
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protocol in Figure 2. It easy to see that this sigma protocol satisfies the com-
pleteness property, we recall how it is possible to prove the HVZK property and
we extensively discuss the special soundness property that the protocol satisfies,
because it requires some caveat based on the use of the sigma protocol.

Protocol 3. Presentation of a BBS credential of [TZ23]

Signature material randomization phase. The holder
– sets C(a)← g1

∏m
i=1 h

ai
i and C(a′)← g1

∏
i∈Rev h

ai
i

– samples uniformly at random r
$←− Zp and computes

A← Ar

B ← C(a)rA
−e

= C(a′)r
( ∏
i∈Hid

hrai
i

)
A

−e

Sigma protocol execution phase. The holder must prove knowledge of
a representation of B w.r.t. the bases C(a′), {hi}i∈Hid, A.
To do so, given the statement B the holder executes the sigma protocol
for the linear relation defined by the following parameters:

RLR(G1, p, C(a
′), {hi}i∈Hid, A) =

=
{(

(x, {yj : j ∈ Hid}, z)︸ ︷︷ ︸
witness

, B︸︷︷︸
statement

)
: B = C(a′)x

( ∏
j∈Hid

h
yj

j

)
A

z
}

(2)

with RLR(G1, p, C(a
′), {hi}i∈Hid, A) ⊂ Z|Hid|+2

p ×G1. The prover will set
the witness as the tuple (r, {raj : j ∈ Hid},−e) for the statement B 19.

HVZK. Assuming that the signer publishes a pair (U,Ux) ∈ G2
1, then it is also

possible to simulate the interaction of a prover with an honest verifier20. In fact,
a simulator can simulate the signature material randomization phase by sam-
pling r $←− Zp and computing A ← Ur and B ← (Ux)r then by simulating the
sigma protocol execution phase, which can be simulated since there exist a sim-
ulator for the sigma protocol for linear relations (see Appendix A), we obtain a
simulator for the whole interactive protocol.

Special soundness. For what concerns the special soundness property, observe
that the sigma protocol for linear relation is a knowledge sound sigma protocol,
20 Note that pairs of random elements (S, T ) in G1 can not be assumed indistinguishable

from pairs of elements of the form (U,Ux) since it is always possible to check if
e(S,X2) = e(T, g2)
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Interactive BBS credential presentation of [TZ23]

Prover P
(
(A, e, {ai}i∈Hid), ({aj}j∈Rev)

)
Verifier V

(
{aj}j∈Rev

)
r

$←− Zp, A← Ar, B ← C(a)rA
−e

vr, {vj}j∈Hid, ve
$←− Zp,

U ← C(a′)vr
( ∏
j∈Hid

h
vj
j

)
A

ve A,B,U

ch
$←− Zp

ch

zr ← vr + ch · r
zj ← vj + ch · raj , ∀j ∈ Hid

ze ← ve + ch · (−e)

rsp← (zr, {zj}j∈Hid, ze) rsp

UB
ch ?

= C(a′)zr

 ∏
j∈Hid

h
zj
j

A
ze

e(A,X2)
?
= e(B, g2)

Fig. 2. Sigma protocol for RBBS(pp, X2). We recall that C(a′) ← g1
∏

i∈Rev h
ai
i and

C(a)←
∏m

i=1 h
ai
i .

therefore from two transcripts for the same first message and different chal-
lenge it is possible to extract a witness for the statement B under the relation
R(A,Hid, pp), namely the witness (ρ, {µj : j ∈ Hid}, ε)21.

Now we must distinguish two cases:

– ρ ̸= 0: in this case the extractor can extract a valid BBS signature (A, e = −ϵ)
for the messages in a′′ = {ai : i ∈ Rev}∪ {µj

ρ : j ∈ Hid}. In fact it holds that

B = C(a′)ρ

( ∏
i∈Hid

hµi

i

)
A

ε
=⇒ B

1
ρ = C(a′)

( ∏
i∈Hid

h
µi
ρ

i

)
A

ε
ρ = C(a′′)A

ε
ρ

(3)
and also that

e(A,X2) = e(B, g2) =⇒ e(A
1
ρ , X2) = e(B

1
ρ , g2) = e(C(a′′)(A

1
ρ )ε, g2) (4)

where the last equality holds by Equation 3. Combining Equation 4 and
Equation 1, by setting A← A

1
ρ and e← −ε the extractor extracts a signa-

21 Note that this setting is different from the one described in Section A, in fact the
prover must prove knowledge of the representation of a statement with respect to a
set of bases which depend on the statement (A depends on B).

32



ture (A, e) for the messages in a′′. This contradicts the unforgeability of the
BBS signature and therefore the qSDH assumption.

– ρ = 0: in such case the extractor can not extract a valid signature for the
messages in a′′, but
• if µi = 0,∀i ∈ Hid then the extractor extracts the secret key of the signer
x = ϵ, since B = A

ϵ
and e(B, g2) = e(A,X2). Given the secret key of

the issuer the extractor can “forge” as many signatures as it wants;
• if µi ̸= 0 for some i ∈ Hid then the extractor can compute B =(∏

i∈Hid h
µi

i

)
A

ϵ
. But

e(A,X2) = e(B, g2) =⇒ e(A,X2) = e(

( ∏
i∈Hid

hµi

i

)
A

ϵ
, g2),

which means that

e(A,X2g
e
2) = e(

∏
i∈Hid

hµi

i , g2)

therefore the extractor can extract a tuple (A, e, {µi}i∈Hid) such that
A =

(∏
i∈Hid h

µi

i

) 1
x+e . We refer to such a tuple as wildcard credential22.

This is not a BBS signature on a set of attributes therefore this protocol is not
a proper special sound sigma protocol to prove knowledge of a BBS credential
but a proof of knowledge of a BBS credential or a wildcard credential. More
formally, it is a sigma protocol for the following relation.

R(pp, X2) =

=
{(

(A, e, {ai}i∈Hid)︸ ︷︷ ︸
witness

, {aj}j∈Rev︸ ︷︷ ︸
statement

)
: e(A,X2g

e
2) = e

(
g1
∏
i∈Hid

hai
i

∏
j∈Rev

h
aj

j , g2

)
∨ e(A,X2g

e
2) = e(

∏
i∈Hid

hai
i , g2)

} (5)

Now we argue why this sigma protocol can be used to create proofs of knowl-
edge of BBS credentials.

Observation 3. In an anonymous credential system we must assume that the
issuer is, in the worst case, a passive adversary (i.e. honest but curious). This
means that the issuer only issues well formed credentials of the form ((A, e), {ai}i∈[m])

satisfying e(A,X2g
e
2) = e

(
g1
∏

i∈Hid h
ai
i

∏
j∈Rev h

aj

j , g2

)
. Therefore, if it were

possible to show that an adversary who can see only BBS signatures (the only
information that the issuer gives to the other actors in the ecosystem) can not
forge a wildcard credential, then it would be possible to be assured that valid
presentation are proofs of possession of a BBS credential.
22 We call it wildcard credential because this credential would allow the holder to

present any attribute in the positions j ̸∈ Hid setting the exponent of C(a′) to 0
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In [TZ23] the authors prove the strong unforgeability under chosen message
attacks of the BBS signature under the qSDH assumption. This means that an
adversary who can see a polynomial number of BBS signatures for messages of
its choice (i.e. BBS credentials) can not create a signature different from the ones
it has seen before under the qSDH assumption. Using a similar argument, it is
possible to prove that an adversary who can see a polynomial number of BBS
signatures for messages of its choice not only it can not forge a BBS signature,
but it can not forge even a wildcard credential ((A, e), {ai}i∈Hid) under the qSDH
assumption. The proof of this statement can be obtained by adapting the proof
of unforgeability of BBS signatures in [TZ23, Section 3] by considering an adver-
sary producing as forgery a wildcard credential, and show that a reduction can
use such forgery to break the qSDH assumption. The simulation of the unforge-
ability experiment is identical, the only change required to the security proof is
the way the reduction retrieves the solution to the qSDH experiment from the
forgery of the adversary, which in this case is a wildcard credential.

This is the reason why the sigma protocol described in Protocol 3 can be
used to prove knowledge of a BBS credential. Since we must assume that the
issuer is not actively corrupt can be used to generate proof of knowledge of a
BBS credentials under the qSDH assumption.

Protocol for fresh presentations Below, in Figure 3, we describe the algorithms
for the creation and verification of a fresh BBS presentation computed using
the sigma protocol made non-interactive applying the Fiat-Shamir transform
generating the challenge using the nonce that the holder has received from the
verifier.
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Non interactive BBS credential presentation

Prover P
(
(A, e, {ai}i∈Hid), ({aj}j∈Rev)

)
Verifier V

(
{aj}j∈Rev

)
nonce

$←− Zp

nonce

r
$←− Zp, A← Ar, B ← C(a)rA

−e

vr, {vj}j∈Hid, ve
$←− Zp,

U ← C(a′)vr
( ∏
j∈Hid

h
vj
j

)
A

ve

ch← H(nonce, A,B, U, {aj}j∈Rev)

zr ← vr + ch · r
zj ← vj + ch · raj , ∀j ∈ Hid

ze ← ve + ch · (−e)
pres← (A,B, ch, zr, {zj}j∈Hid, ze)

pres

U ← B
−ch

C(a′)zr

 ∏
j∈Hid

h
zj
j

A
ze

ch
?
= H(nonce, A,B, U, {aj}j∈Rev)

e(A,X2)
?
= e(B, g2)

Fig. 3. Signature of the nonce provided by the verifier to the holder to generate a proof
of knowledge of a BBS credential issued by pk = X2.

C BBS MHAC Presentation Protocol Overview

Below we sketch the presentation protocol executed by a set of holders {Pi}i∈[n]

of a (n, n) − BBS multi-holder anonymous credential. The inputs of each party
Pi are:

– credi = (A, e(i), {Dk}k∈[n]\{i}, {a
(i)
k }k∈Prv, {ak}k∈Pub)

– a′ = {ak}k∈Rev

– the presentation nonce;

We recall that Dk =
∏

j∈Prv h
a
(k)
j

j A−e(k)

.
The boxes representing the PoK of B̃i, describes the operations that each

holder executes in the variant of Threshold Schnorr signature, it is not a separate
step. Also, in the security proof, the reduction does not have to extract the secret
shares of all the holders controlled by the adversary (otherwise it would be a ),
but only the BBS credential used by the adversary to generate its forgery.
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P1 P2 · · · Pn

r rr
$←− Zp

Broadcast r: everyone computes A = Ar, D =
∏

i∈[n] Di, B = (C(a′)D)r

A,B B =
∏

i∈[n] B̃i

Re-distribute B

B̃1 = (C(a′)D1)
r B̃2 = Dr

2 · · · B̃n = Dr
n

PoK B̃1 w.r.t.
the bases
C(a′), {hj}j∈Prv, A

PoK B̃2 w.r.t.
the bases
{hj}j∈Prv, A

· · ·
PoK B̃n w.r.t.
the bases
{hj}j∈Prv, A

Variant of Threshold Schnorr signature (Sparkle) of nonce
with bases C(a′), {hj}j∈Prv, A, with pk = {B̃i}i∈[n],

ski = (r, {a(i)
j }j∈Prv, ei),∀i ∈ [n]

pres← (A,B, nonce,a, ch, zr, {zi}i∈Prv, ze)

Fig. 4. Presentation protocol overview for the simplified case of (1)full disclosure of
the attributes {aj}j∈Pub and (2) full threshold, i.e. t = n. In this example the primary
party is P1.
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D Private Attribute Unlinkability of BBS MHAC Scheme

In this section we formally prove Lemma 4 that states that the BBS MHAC
scheme satisfies the unlinkability of private attributes defined in Definition 9.
For the sake of simplicity we consider the full threshold case, i.e. t = n and an
adversary who corrupts the parties in [t− 1].

Proof. We define a reduction B to the hiding property of the Pedersen commit-
ments which are perfectly hiding. The reduction works as follows:

1. The reduction B sends to the adversary A a set of public parameters for the
BBS MHAC scheme and an issuer key pair (x, gx2 ), x

$←− Zp.
2. A of private attribute unlinkability sends to B two attributes a∗0, a∗1 and the

set of public attributes {ai}i∈Pub.
3. B sends the same messages a∗0, a∗1 to the challenger C of the hiding property

of the Pedersen commitment who samples a bit b uniformly at random and
computes a Pedersen commitment of a∗b , namely D = h

a∗
b

m−1h
s
m ∈ G1 for

s
$←− Zp and sends it to B.

4. B generates a BBS credential cred = (A, e) with e $←− Zp and

A =

(
g1
( ∏
i∈Pub

hai
i

)
D

) 1
x+e

.

And from cred generates the shares of credential forA (controlling the parties
{Pi}i∈[n−1]):

– B samples, (a∗(i)b , s(i), e(i))
$←− Z3

p,∀i ∈ [n− 1];

– setsDi = h
a
∗(i)
b

m−1h
s(i)

m A−e(i) ,Dn ← D∏
i∈[n−1] Di

, and e(n) ← e−
∑

i∈[n−1] e
(i).

– sets for all i ∈ [n− 1]

credi =
(
A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, a

∗(i)
b , s(i))

)
,

and
credn =

(
A, e(n), {Dk}k∈[n]\{n}, ({aj}j∈Pub,⊥,⊥)

)
.

– B sends the shares credi to A.
5. A sends queries to perform presentation protocol executions giving in input

the values nonce and Rev of its choosing. We informally describe the simu-
lation of the presentation queries. B executes the presentation protocol, but
when it comes the time to execute Step 3 of the presentation protocol, since
it does not know a representation of Dn w.r.t. hm−1, hm, A. B performs the
following operations:
– it simulates a sigma protocol transcript for the proof of knowledge of

a representation of Dn, picking ch, z
(n)
m−1, z

(n)
m , z

(n)
e

$←− Zp and setting

Un ← B̃−ch
n h

z
(n)
m−1

m−1 h
z(n)
m

m Az(n)
e B obtains (Un, ch, z

(n)
m−1, z

(n)
m , z

(n)
e ).
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– At the end of Step 3 B can compute the value U =
∏

i∈[n] Ui because it
knows how to open the commitments to Ui, i ∈ [n − 1] broadcasted by
A (since it is simulating the random oracle).

– B programs the random oracle setting Hsig(nonce, U,A,B, {ai}i∈Rev) =
ch so that it can execute the following steps since it knows the responses
associated to the first message Un and the challenge ch.

The simulation of the protocol fails with negligible probability using a similar
argument as the one showed in Appendix G.1.

6. At the end of the training, the adversary A outputs a bit b′ specifying their
guess about the attribute included in the credential, and B forwards b′ to C.

7. B forwards b′ to C and wins the hiding experiment with the same advantage
of A.

E Identifiable Abort of BBS MHAC Scheme

We prove Lemma 5.

Proof. To prove that CredPres (Protocol 2), satisfies the definition of presenta-
tion with identifiable abort, we construct a wrapper algorithm W for CredPres
that satisfies correctness and identifiability. W takes as input the public inputs
to CredPres and processes each message received by a participant Pi. If at any
point during the execution of CredPres a message would result in Pi outputting
(abort, j), then W aborts with output (abort, j). Otherwise, at the conclusion of
the protocol, W outputs ⊥. Note that the only steps of CredPres which could
cause an abort are the checks in Steps 5 and 7.

Note that we assumeHcom is a secure commitment scheme, so Step 4 can only
be opened to the value committed to in Step 3. Otherwise, by binding, parties
would abort in Step 5 identifying the malicious party whose commitment was
opened dishonestly. Therefore, we only need to consider when the commitment in
Step 3 is opened to the previously committed value by the protocol participants.

We will now argue correctness and identifiability in two parts.

Correctness. Correctness states that whenever the output of W is ⊥, the output
pres of CredPres verifies. That is, if the protocol does not abort, then the output
of the protocol verifies. Let us consider a run of the protocol that does not abort:

– Pi does not abort in Step 5: it means that every participant has opened
its commitment correctly and it is possible to compute the aggregated first
message of the underlying sigma protocol U and therefore the challenge ch.

– Pi does not abort in Step 7: then every Pi, i ∈ S \ {j} has proven knowledge
of a representation of B̃i = Dr

i w.r.t. {hk}k∈Prv, A, and the primary Pj

has proven knowledge of B̃j with respect to the bases (C(a′), {hk}k∈Hid, A)
using the same challenge ch. This means that the proofs of knowledge can
be aggregated (see Step 8) resulting in the generation of a valid proof of
knowledge of a representation of B =

∏
k∈S Bk =

∏
k∈S B̃k w.r.t. the bases

(C(a′), {hk}k∈Hid, A).
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This means that the participants have generated a valid proof of knowl-
edge of a representation of B w.r.t. C(a′), {hk}k∈Hid, A, where A and B satisfy
e(A,X2) = e(B, g2), therefore the presentation is valid.

Identifiability. Now we consider identifiability, which states that whenever the
output is (abort, j) for some j ∈ S, Pj is corrupt. Let us consider the scenarios
in which an abort may occur:

– There exists j s.t. Pi outputs (abort, k) in Step 5. It means that Pk did not
open correctly its commitment, therefore it is malicious.

– There exists j s.t. Pi outputs (abort, j) in Step 7. It means that Pk did
not create a valid coordinated proof of knowledge of a representation of B̃k

therefore it misbehaved in Step 6 and is identified as corrupt.

F Unforgeability of the BBS MHAC Scheme

We now translate Experiment 3 for the specific case of the BBS multi-holder
anonymous credential scheme described in Section 6.

Expc−uf−pres
A (κ) :

pp
$←− Pgen(κ)

(pk, sk)
$←− KGen(pp)

(nonce⋆, {a⋆
i }i∈Rev⋆ , pres

⋆)
$←− AOiss,Opres(pp, pk)

// verification of the validity of the forgery

flag← 1

if
(
(nonce⋆, {a⋆

i }i∈Rev⋆ , pres
⋆) ∈ PT ∧ pres⋆ ̸= ⊥

)
∨
(
(nonce⋆, {a⋆

i }i∈Rev⋆ ,⊥) ∈ PT
)

flag← 0

for cred ∈ CT // for attributes {ai}i∈[m]

if {ai}i∈Rev⋆ = {a⋆
i }i∈Rev⋆

flag← 0

return
(
VfPres(nonce⋆, {a⋆

i }i∈Rev, pres
⋆) = 1

)
∧ flag

Fig. 5. Description of the multi-holder anonymous credential concurrent unforgeability
of presentation experiment Expc−uf−pres

A (κ).

Experiment 4 (Expc−uf−pres
F,BBS — Concurrent unforgeability for BBS MHAC

scheme).
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Setup phase. The challenger of the experiment generates the BBS public param-
eters pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

$←− PgenBBS(κ) and the issuer’s
key pair (sk, pk) = (x,X2)

$←− KGenBBS(pp) where X2 = gx2 .

Training phase. In our MHAC scheme the adversary needs to access two random
oracles, namely ROcom,ROsig to generate its commitments and the challenge for
the presentation computation. The interactions with ROcom,ROsig,Oiss and Opres

are described as follows

– Random oracle queries: the adversary has access to a random oracles ROsig,ROcom

used to create the challenge ch and the commitments comi respectively. The
adversary can send at most qH queries to the random oracles, where qH is
polynomial in the security parameter κ.

– Credential issuance queries: the oracle Oiss initialises an empty credential
table CT. We describe the two kind of queries, namely queries for a full
credentials or for the partial credentials:
• queries for full credentials: Oiss takes in input from F a set of attributes
{ai}i∈[m] and provides F with a credential cred = ((A, e), {ai}i∈[m]),
where (A, e) is a BBS signature on {ai}i∈[m].23
Finally the oracle stores in CT a record

(A, e, {ai}i∈[m]);

• query for the target credential: F sends as input to Oiss a tuple

({ai}i∈[m], t, n,Pub, cor),

then Oiss generates a credential cred = (A, e, {ai}i∈[m]) for the set of
attributes it was queried and split it in shares according to the parameters
(t, n),Pub it has received in input generating the shares

credi = (A, e(i), {Di}i∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

F receives from Oiss the |cor| < t shares of the credential associated to
the parties in cor.
Finally Oiss sets targetCred to

(A, {e(i)}i∈[n], {Di}i∈[n],Pub, ({aj}j∈Pub, {a(i)j }j∈Prv,i∈[n]), n, t, cor).

The number of issuance queries for full credentials F can perform is qI which
is polynomial in the security parameter κ.

– Presentation queries: the presentation oracle Opres initialises the presentation
table PT and has reading access to record targetCred. The adversary can query
the presentation oracle Opres for a presentation of the target credential and
queries for the presentation of credentials that it was not issued:

23 Note that F from a BBS signature can generate a multi-holder BBS credential for
any possible parameter (t, n),Pub choice.
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• query for the presentation of targetCred: F inputs to Opres a tuple

(nonce, {ai}i∈Rev, hon)

where {ai}i∈Rev are a subset of the attributes included in targetCred. Opres

interacts with F in the creation of a presentation on behalf of the parties
in hon and at the end stores in PT the record

(nonce, {ai}i∈Rev,⊥).

The adversary possibly opens many concurrent sessions of presentation
of the target credential, each of them is identified by an identifier ssid.

• query for the presentation of a credential which has never been issued
to F : F inputs to Opres a tuple (nonce, {ai}i∈Rev) and Opres generates
autonomously (as we have described in Experiment 3) a presentation
pres for nonce and {ai}i∈Rev and sends it to F .
Finally, Opres stores in PT a record

(nonce, {ai}i∈Rev, pres).

Forgery phase. At the end, F must perform its forgery and sends the challenger
a presentation pres⋆ = (A,B, ch, zr, {zj}j∈Hid, ze) for the statement {a⋆i }i∈Rev⋆

and nonce nonce⋆.

Winning conditions. The winning conditions are the same as described in Ex-
periment 3.

According to Definition 11, a protocol for the presentation of a BBS multi-
holder anonymous credentials is unforgeable if Pr

[
Expc−uf−pres

F,BBS (κ) = 1
]

is negli-
gible in the security parameter κ.

F.1 Unforgeability proof

In this section we prove the unforgeability of the multi-holder BBS presentation
protocol described in Protocol 2.

Proof. The proof is divided in two cases, corresponding to the two ways the ad-
versary can win the experiment: in the first (Case A) we consider an adversary
who wins the experiment producing a forgery associated to the target creden-
tial issued to it during the experiment, in the second (Case B) we consider an
adversary who produces a forgery for a credential it has never been issued.

Standard reduction simplifications. In the security proof we will apply the fol-
lowing simplification to our model:
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– From (t, n)-Shamir secret sharing to additive (n, n) secret sharing. For the
sake of simplicity, and without loss of generality, as we did for the description
of Protocol 2, in the security proof we assume that the issuance of the partial
credential happens using a full threshold (n, n)-secret sharing (additive secret
sharing). We will also assume that cor = [n−1], therefore the adversary will
be provided with the n− 1 shares

(A, {e(i)}i∈[n−1], {Di}i∈[n],Pub, ({aj}j∈Pub, {a(i)j }j∈Prv,i∈[n−1]))

where e =
∑n

i=1 e
(i), Ã← Ae and the issue oracle Oiss passes to the presen-

tation oracle Opres the record targetCred equal to

(A, {e(i)}i∈[n], ({aj}j∈Pub, {a(i)j }j∈Prv,i∈cor), n, n, [n− 1]).

– A mandatory random oracle query. We will assume that F , before sending
to B its forgery of presentation (A,B, ch, zr, {zj}j∈{Hid}, ze) for the message
nonce and revealed attributes {ai}i∈Rev, has queried the random oracleROsig

on the input
(ssid, nonce, U,A,B, {aj}j∈Rev).

Otherwise one can program a forger F ′ who does the same operations of F
but before outputting the forgery sends this extra query to ROsig to satisfy
this assumption. In such case we must increase the maximum amount of
queries F can perform to qH + 1.

Case A: reduction to DL Reduction B simulates the challenger of Expc−uf−pres
F,BBS (κ)

while interacting with F . Let us show how B simulates the public data genera-
tion, the oracles ROcom,ROsig,Oiss and Opres, and finally how it uses F to solve
its challenge in ExpDL

B (κ) which takes place in the group G1, the same used for
BBS.

In this reduction we consider an adversary F who wins by forging a
presentation using the target credential it is issued.

Setup, public parameters and key generation The reduction B receives in input
the tuple (p,G1, g, h) from CDL, where (g, h) ∈ G2

1 is an instance of the discrete
logarithm problem that B needs to solve. B generates the public parameters and
the issuer’s key pair for the BBS signature scheme as follows: The simulation
of the parameter generation and key generation is indistinguishable from a real
execution of the parameter generation because the key generation is computed in
the exact same way, and the elements (g2, g1, h1, . . . , hm) are chosen uniformly at
random in G2×Gm+1

1 . However B knows the discrete logarithm of the elements
in G1 with respect to k = gxh.
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B.Setup(p,G1,G2,GT , e, g, h)

g2
$←− G2 // generator for G2

x
$←− Zp // BBS issuer secret key

X2 ← gx2 // BBS issuer public key

k ← gxh // note that if logg h = e, then g
x
h = g

x+e

γ0, γ1, . . . , γm
$←− Zp

g1 ← kγ0 // generator for G1

hi = kγi , ∀i ∈ [m]

pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

HTcom,HTsig ← ∅ // hash tables

CT,PT← ∅ // credential and presentation tables

cH , cI , cP ← 0 // counters for random oracle, issuing and presentation queries

targetCred← ⊥ // the queried partial credential

(pp, X2) F
return (pp, X2,HTcom,HTsig,CT,PT, cH , cI , cP )

Random oracles simulation. B can simulate the random oracles ROcom and
ROsig programming them using the hash tables HTcom,HTsig which are initialised
to empty and whenever one of the two oracles is queried a message m, B checks
the corresponding hash table and, if there is an entry (m, d) (in such case we
write HT(m) = d), returns the digest d, otherwise it samples d $←− Zp, stores in
the corresponding hash table the record (m, d) and returns d. The counter cH is

B.ROcom(m)

if cH < qH ∧ HTcom(m) = ⊥
cH ← cH + 1

d
$←− Zp

HTcom.add(m, d)

return HTcom(m)

B.ROsig(m)

if cH < qH ∧ HTsig(m) = ⊥
cH ← cH + 1

d
$←− Zp

HTsig.add(m, d)

return HTsig(m)

shared among the two interfaces B.ROsig and B.ROcom.

Issuing oracle simulation. We distinguish two cases corresponding to the is-
suance queries for full credentials and the single query for the target credential.

– When F sends an issuance query for a full credential for the attributes
{ai}i∈[m], B simulates Oiss by generating a credential according to the BBS
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signing algorithm SignBBS(x, {ai}i∈[m])
$−→ (A, e), and sending it to F . Then

B stores in CT the credential cred← (A, e, {ai}i∈[m]). In this case the simu-
lation is perfect.

– When F sends its only issuance query for the target credential giving in input
({ai}i∈[m], t, n,Pub, cor), B simulates the issuance of the target credential
so that the value e⋆ of the underlying BBS signature (A, e⋆) is actually
the discrete logarithm logg h

24. To do so, B must produce two values A, Ã
s.t. logA Ã = logg h, and to do so, it exploits its knowledge of the discrete
logarithms of g1, h1, . . . , hm w.r.t. k, and the fact that k = gxh as we show
below. We recall that for the sake of simplicity we assume that t = n and
that F always chooses to corrupt the parties in cor = [n− 1].

24 Note that F in this experiment knows all the attributes since it can choose them,
even the secret shared ones, but we will show that it will not be able to forge a
presentation
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B.IssueCred(a = {ai}i∈[m], t, n,Pub, cor)

if (t, n, cor) = (⊥,⊥,⊥) ∧ (cI < qI) // full credential query

cI ← cI + 1

(A, e)
$←− SignBBS(sk = x, {ai}i∈[m])

cred← ((A, e), {ai}i∈[m])

CT.add(cred)

return cred

if (t, n, cor) ̸= (⊥,⊥,⊥) ∧ targetCred = ⊥ // partial credential query

α← γ0

m∑
i=1

γiai

A← gα // if h = g
e⋆ then k = g

x+e⋆ i.e. A = (k
α
)

1
x+e⋆ = (C(a))

1
x+e⋆

Ã← hα // Ã would be A
e⋆

// Note that A
x
Ã = A

x+e⋆
= A

x
A

e⋆
= g

αx
h
α

= (g
x
h)

α
= k

α
= g1

m∏
i=1

h
ai
i

{e(i)}i∈cor
$←− Z|cor|

p

{a(i)
j }i∈[n]

$←− Share(n, t, aj),∀j ∈ Prv

Ãi ← A−e(i) , ∀i ∈ cor // we assume cor = [n − 1]

Ãn ← Ã−1
∏
i∈cor

Ã−1
i // = A

−e⋆
∏
i∈cor

A
e(i)

Di ←
∏
j∈Prv

h
a
(i)
j

j Ãi,∀i ∈ [n]

{credi}i∈cor ← ((A, {e(i)}i∈cor, {Di}i∈[n], ({aj}j∈Pub, {a(i)
j }j∈Prv,i∈cor))

targetCred← ((A, {e(i)}i∈cor, {Di}i∈[n], ({aj}j∈Pub, {a(i)
j }j∈Prv,i∈[n]), t, n, cor)

// Note that e
(n) is not known to B

return {credi}i∈[cor]

return ⊥

The simulation of the issuance of the target credential is perfect as well.
The resulting value Ã will satisfy Ã = Ae⋆ , where e⋆ is the solution of
the input challenge to B, i.e. e⋆ = logg h. Moreover, the set {e(i)}i∈cor is
indistinguishable from an honest execution since, being |cor| < t they are
selected uniformly at random.

Presentation oracle simulation. We distinguish the two cases corresponding to
queries for presentation of credentials not issued to F , and queries for presenta-
tions of the target credential.

– When F sends a presentation query for non-issued credentials it inputs the
triple (nonce, {ai}i∈Rev) to Opres. B can simulate the oracle Opres generating
a presentation pres by simply generating a BBS credential for the attributes
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queried by F and other random attributes, and generating a valid presen-
tation from it. Since the presentations are unlinkable, it is not possible to
distinguish B from the presentation oracle Opres. B in the generation of the
presentation might program the hash table HTsig but it does not have to
overwrite it, so the simulation is perfect.
Note that B does not have to program the hash table HTcom since it is not
asked to provide F with the full transcript associated to a honest generation
of the presentation, so B generates a presentation as described in Protocol
325.
Then B adds to PT the record (nonce, {ai}i∈Rev, pres, T ). Then B sends pres
to F

– When F sends a presentation query for the target credential, F inputs to
Opres a tuple (nonce, {ai}i∈Rev, hon).
B simulates Opres by retrieving the tuple targetCred equal to

(A, {e(i)}i∈cor, {Di}i∈[n],Pub, ({aj}j∈Pub, {a(i)j }j∈Prv,i∈[n])), n, t, cor)

where B does not know the values in {e(i)}[n]\cor(= e(n)) which are set to ⊥
since e⋆ = logg h is unknown to B.
B must simulate an interaction between the parties in cor controlled by F
and the parties in hon controlled by Opres. Without loss of generality we can
assume that the primary party is one of the corrupted participants, so that
the adversary can choose the value r in the first step. The case where the
primary party is controlled by B can be simulated likewise.
Since we are adopting the simplification of additive secret sharing, we recall
that t = n so we do not consider the Lagrange coefficients in the aggregation
of the shares of e and aj , j ∈ Prv.

The simulation of the execution of Protocol 2 using as nonce nonce and
revealing the attributes {ai}i∈Rev works as follows:
F broadcasts, on behalf of the primary party Pj , j ∈ cor, the value r used to
generate A and B.
Every party can compute the values A,C(a′), B as prescribed by the pre-
sentation protocol in step 2.
Then the participants must generate the proof of knowledge of a representa-
tion of B w.r.t. C(a′), {hi}i ∈ Hid, A and this happens by having each party
generate a proof of knowledge of:
• B̃i = Dr

i w.r.t. the bases {hj}j∈Prv, A for each i ̸= j;
• whereas the primary participant Pj will generate a proof of knowledge

of B̃j = C(a′)rDr
j

∏
k∈Hid\Prv h

rak

k w.r.t. the bases C(a′), {hj}j∈[m], A.
Recall that every party can compute each other value B̃i, i ∈ [n].
Recall that the reduction B, acting on behalf of Pn does not know the value
e(n) but can compute the value B̃n by computing B

∏
i∈[n−1] B̃

−1
i .

25 Note that in this case B, instead of generating a credential and presenting it, could
also just simulate the presentation generation, but in this case there would be a
negligible chance that the simulation fails.
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At this point the reduction B simulates the execution of the sigma protocol
to prove knowledge of the representation of B̃n.
Since B does not know the value e(n), it must simulate the protocol execution
by firstly computing its responses z(n)e , {z(n)i }i∈Prv

$←− Zp and a challenge

ch
$←− Zp. Then B sets Un ← B̃−ch

n

(∏
i∈Prv h

z
(n)
i

i A
z(n)
e

)
.

B sets comn ← Hcom(nonce, Un) if (nonce, Un) was previously included in
the hash table HTcom, otherwise samples comn

$←− Zp and programs HTcom

adding the entry (comn, (nonce, Un)). B broadcasts comn to the other par-
ticipants.
When B has received the values comi from the other participants, it must
have received an hash query for (nonce, Ui) such that there is an entry
(comi, (nonce, Ui)) in HTcom, therefore B can compute in advance the value
U ←

∏
i∈[n] Ui and program the random oracle Hsig adding to the hash table

HTsig an entry (ch, (nonce, U,A,B, {ai}i∈Rev)).

Event bad1. The simulation might fail if the random oracle Hsig needs to be
overwritten and we call this event bad1.
Given that the challenge associated to the protocol execution is the one
corresponding to the simulated transcript, B does not have to compute the
response and can return the values sampled at random at the beginning of
the simulation, namely z(n)e , {z(n)i }i∈Prv.
This allows B to simulate the presentation protocol execution, and also to
perform all the identifiable abort checks.
This terminates the simulated execution of the presentation query of a partial
credential. The probability that B correctly simulates the experiment is

Pr[B simulates] ≥ 1−
(
(qH + qP )

2

p

)
which is overwhelming in the security parameter and is evaluated in Ap-
pendix G.1.

Exploit of the forgery. Eventually the adversary F outputs a forgery

(nonce, {ai}i∈Rev, pres)

which is valid, i.e. VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres) = 1, with

pres =
(
A,B, ch, (zr, {zj}j∈Hid, ze)

)
.

Being U ← B
−ch

C(a′)zr
∏

j∈Hid h
zj
j A

ze , according to our reduction simpli-
fications, F must have sent a query to ROsig for ({ak}k∈Rev, nonce, A,B, U),
which returned the value ch and this query happens after the signature material
randomization phase, since A,B must be determined.
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B rewinds F to the moment in which it performed such query (which is after
the signature randomization phase) and sets HTsig({ak}k∈Rev, nonce, A,B, U)←
ch′.

By the general forking lemma [BN06] (a formalisation of the Forking Lemma
in [PS96]), with non-negligible probability the adversary F will end the experi-
ment execution outputting a forgery associated to the same hash query (therefore
also for the same (nonce, {ai}i∈Rev, pres

′)) such that

pres′ =
(
A,B, ch′, (z′r, {z′j}j∈Hid, z

′
e)
)

and
B

−ch′

C(a′)z
′
r

( ∏
j∈Hid

h
z′
j

j

)
A

z′
e = U.

This allows us to extract the credential ((A, e⋆), {ai}i∈[m]) using the algo-
rithm shown in [TZ23] and that we recall in Appendix B.

We evaluate the advantage AdvDL
B (κ) of the reduction in winning the DL

experiment as a function of the advantage Adv
c−uf−pres(A)

F,BBS (κ) of the adversary F
of the presentation unforgeability experiment in Appendix G.1 where we show
that:

AdvDL
B (κ) ≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(A)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(A)

F,BBS (κ)

)
. (6)

Therefore if there exists an adversary which wins with non-negligible proba-
bility the unforgeability experiment we could design an adversary of the DL ex-
periment which wins with probability which is non-negligible as we have shown
above.

Since in this section we consider the case in which the extracted credential
is targetCred, B extracts (A, e⋆), {a1, . . . , am} such that Ae⋆ = Ã according to
the notation used in the description of the simulation of Oiss. Since A = gα and
Ã = hα, then we can state that h = ge

⋆

, therefore B sends to the challenger
of the discrete logarithm experiment the value e winning the experiment every
time that F wins.

Case B: reduction to suf − cma for BBS. Tessaro and Zhu in [TZ23] prove
the BBS signature scheme strongly unforgeable against chosen message attacks
under the qSDH assumption. In this section we prove that an attacker F of
Expc−uf−pres

F,BBS (κ) can be used to design an attacker B of the strong unforgeabil-
ity experiment for the BBS signature scheme Expsuf−cma

B,BBS (κ) described in [TZ23,
Figure 1].

A corollary of our proof is that the unforgeability of presentations of the
multi-holder BBS anonymous credential scheme reduces to the qSDH assump-
tion.
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In this reduction we consider an adversary F which forges a presentation
associated to a credential it has never been issued.

Setup, public parameters and key generation B receives the BBS public parame-
ters from the challenger of the experiment Expsuf−cma

F,BBS (κ). The reduction B per-
forms the following operations:

B.Setup(p,G1,G2,GT , e, g1, g2, h1, . . . , hm, X2)

pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

pk← X2

HTcom,HTsig ← ∅ // hash tables

CT,PT← ∅ // credential and presentation tables

cH , cI , cP ← 0 // counters for random oracle, issuing and presentation queries

targetCred← ⊥ // the queried partial credential

(pp, X2) F
return (pp, X2,HTcom,HTsig,CT,PT, cH , cI , cP )

Random oracles simulation. The random oracles are simulated as described in
Case A.

Issuing oracle simulation. When the reduction B receives a issuing query, with
input ({ai}i∈[m], t, n,Pub, cor) it sends a signing query to the oracle OSIGN of the
strong unforgeability experiment for BBS signatures for the messages {ai}i∈[m]

receiving a signature (A, e) on these messages. Then if it was a full credential
query B sends ((A, e), {ai}i∈[m]) to F and stores the credential in the credential
table CT. If it is the single partial credential query F can perform, B generates
a (t, n) secret sharing of e, {e(i)}i∈[n]

$←− Share(t, n, e) and of ak, {a(i)k }i∈[n]
$←−

Share(t, n, ak),∀k ∈ Prv and sets targetCred to be equal to

(A, {e(i)}i∈[n], {Di}i∈[n], ({aj}j∈Pub, {a(i)j }j∈Prv,i∈[n]), t, n, cor)

and sends to F the shares of credentials corresponding to the parties in cor.
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B.IssueCred({ai}i∈[m], t, n,Pub, cor)

if (t, n, cor) = (⊥,⊥,⊥) ∧ cI < qI // full credential query

cI ← cI + 1

{ai}i∈m OSIGN // send a sign query to the BBS signing oracle.

(A, e) OSIGN

cred← ((A, e), {ai}i∈[m])

CT.add(cred)

return cred

if (t, n, cor) ̸= (⊥,⊥,⊥) ∧ targetCred = ⊥ // partial credential query

{ai}i∈m OSIGN // send a sign query to the BBS signing oracle.

(A, e) OSIGN

{e(i)}i∈[n]
$←− Share(t, n, e)

{a(i)
k }i∈[n]

$←− Share(t, n, ak),∀k ∈ Prv

{credi}i∈cor ← (A, {Di}i∈[n], {e(i)}i∈cor, ({ak}k∈Pub, {a(i)
k }k∈Prv,i∈cor))

// In the reduction we will consider t = n and cor = [n − 1]

targetCred← (A, {e(i)}i∈[n], {Di}i∈[n], ({aj}j∈Pub, {a(i)
j }j∈Prv,i∈cor), t, n, cor)

// Note that {e(i)}i∈[n]\cor are known to B

return {credi}i∈[cor]

return ⊥

Presentation oracle simulation. Again we distinguish the simulation of queries
for presentations of credentials never issued to F , and presentations of the target
credential.

– The simulation of the presentation of credentials that have never been issued
to F works differently compared to Case A, where the reduction knows the
secret key of the issuer. In this case the B can not generate credentials on
its own, but instead it runs the BBS presentation simulator described by
Tessaro and Zhu [TZ23] that we recall in Appendix B, and generates the
queried presentation.

Event bad2. In this case, the simulation fails if HTsig(nonce, U,A,B, {ak}k∈Rev)
must be overwritten, and we call this event bad2.

– For what concerns the queries for presentations of the target credential, the
reduction B simply executes the presentation protocol since it knows all
the shares of the credentials associated to targetCred and in this case the
simulation is perfect since the reduction knows all the information needed
to execute the protocol steps.

Exploit of the forgery. The adversary F eventually outputs a forgery. B rewinds
F as we have described in Case A, and manages to extract a credential cred⋆ =
((A, e), {ai}i∈[m]).
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In this section we consider the case in which the extracted credential is associ-
ated to a credential never issued to F , therefore cred⋆ ̸∈ CT, and either {ai}i∈[m]

was never queried to OSIGN, the sign oracle of the strong unforgeability exper-
iment, or it was queried but returned a different signature (A′, e′), therefore B
can send to the challenger of Expsuf−cma

F,BBS (κ) the forgery ((A, e), {ai}i∈[m]), which
is a valid forgery for the strong unforgeabilty experiment for the BBS signature.

We evaluate the advantage Advsuf−cma
B,BBS (κ) of the reduction B in winning the

strong unforgeability experiment for BBS signatures [TZ23] as a function of the
advantage Adv

c−uf−pres(B)

F,BBS (κ) of the adversary F of the presentation unforgeabil-
ity experiment in Appendix G.2 where we show that:

Advsuf−cma
B,BBS (κ) ≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(B)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(B)

F,BBS (κ)

)
. (7)

⊓⊔

Remark 8. If the MHAC scheme satisfies the unforgeability of presentations, this
implies that also the credential issuing algorithm is unforgeable, otherwise the
adversary could forge a credential for a set of attributes different from the ones
included in the credentials it was issued and create a valid presentation out of
it.

G Advantage of the Presentation Unforgeability
Reduction

In this section we provide an upper-bound to the advantage of the reduction
in winning the DL experiment (Case A) or the SUF-CMA experiment for BBS
signatures (Case B).

We first upper-bound the probability that the reduction B fails the simulation
of the presentation unforgeability experiment, then we find a lower-bound to the
advantage of the reduction in winning the DL experiment (Case A) or the strong
unforgeabilty under chosen message attack experiment for BBS signatures (Case
B).

G.1 Case A: extract the target credential

Simulation failure probability We upper-bound the probability that one of the
events bad1 occurs as a consequence of the queries of F . The events happen if
the hash table HTsig is overwritten during the simulation.

Being i ∈ [qP ] the index representing the i-th presentation query performed
by F , and by bad1

(i) the event that bad1 happens during the i-th presentation
query, we can upper-bound the probability that the event bad1

(i) happens.
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Note that these events can be represented as the random sampling of an
element from a large set of distinct elements which results to assume a value
belonging to a small set of values which are the values previously included in the
hash tables. Note that the query for

(nonce, U,A,B{ai}i∈Rev)

has each component chosen by F apart from U which results to be sampled at
random. Being qH the number of hash queries F can perform and qP the number
of presentation queries, the hash table HTsig has at most qH+qP elements during
the simulation execution, therefore the probability that event bad1(i) happens is
less than qH+qP

p where p is the number of possible values of U .
Let q ← qH + qP , then

Pr[B simulates] = Pr

 ∧
i∈[qP ]

¬bad1(i)
 ≥

∏
i∈[qP ]

(
1− q

p

)
≥
(
1− q

p

)q

≥ 1−
(
q2

p

)
(8)

where the last inequality holds because(
1− q

p

)q

= 1 +
∑
i∈[q]

(
q

i

)(
−q
p

)i

and for each j, (
q

j

)(
q

p

)j

≥
(

q

j + 1

)(
q

p

)j+1

since writing explicitly the products, one obtains

1

q − j
≥ q

(j + 1)p

which holds for p≫ q.
Therefore, assuming that q is odd 26

∑
i∈[q]

(
q

i

)(
−q
p

)i

=

1− q2

p
+

q−1∑
i=2,i even

[(
q

i

)(
−q
p

)i

−
(

q

i+ 1

)(
q

p

)i+1]
≥ 1− q2

p
(9)

26 If q is even, we should add an extra positive element
(

2q
p

)3q

which makes the relation

hold anyways.
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Note that the simulation takes a polynomial time to be executed and do not
requires to rewind the adversary F .

Therefore the simulation is successful with probability

Pr[B simulates] ≥ 1−
(
(qH + qP )

2

p

)
which is overwhelming in the security parameter κ, being q polynomial in κ and
p super-polynomial.

Advantage of the reduction. We can finally evaluate the advantage of B in win-
ning the discrete logarithm experiment as a function of the advantage of F in
winning the unforgeability of presentation experiment.

Let us define

– AdvDL
B (κ) as the probability that B interacting with F wins the DL experi-

ment;
– Adv

c−uf−pres(A)

F,BBS (κ) = Pr
[
FB wins c− uf − pres(A)|B simulates

]
as the prob-

ability that F wins the unforgeability of presentation forging the target cre-
dential according to case A, which is equal to the probability that F wins
the experiment interacting with B, provided that B correctly simulates the
experiment.

Since B interacting with F wins the DL experiment if it correctly simulates
the challenger of the unforgeability experiment and F forges a presentation both
before and after being rewound, we can apply the Generalised Forking Lemma
[BN06] to the algorithm that is successful if

– F produces a valid forgery (which happens with probability Adv
c−uf−pres(A)

F (κ));
– B does not fail the simulation of the experiment.

This algorithm succeeds with probability

ϵA = Pr
[
FB wins c− uf − pres(A) ∧ B simulates

]
=

Pr[B simulates] Pr
[
FB wins c− uf − pres(A)|B simulates

]
=

Pr[B simulates]Adv
c−uf−pres(A)

F,BBS (κ) ≥(
1− q2

p

)
Adv

c−uf−pres(A)

F,BBS (κ) (10)

Therefore, by the Generalized Forking lemma we have

AdvDL
B (κ) ≥ ϵA

(
ϵA
qH
− 1

p

)
≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(A)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(A)

F,BBS (κ)

)
. (11)

53



G.2 Case B: extract a BBS forgery

Simulation failure probability In this case the reduction B reduces the hardness
of forging a multi-holder presentation to the hardness of forging a BBS signature.

We compute the probability of failure of the simulation which happens only
according to event bad2, which happens with probability Pr

[
bad2

(i)
]
≤ qH+qP

p =
q
p ,∀i ∈ [qP ].

Therefore, the simulation does not fail at the i-th presentation query with
probability 1− q

p and it never fails with probability

Pr[B simulates] ≥
(
1− q

p

)qP

≥
(
1− q

p

)q

≥ 1− q2

p
.

Advantage of the reduction. The advantage of B in winning the strong unforge-
ability experiment of the BBS signature is

Advsuf−cma
B,BBS (κ) = Pr

[
BF wins suf − cma for BBS

]
which is the probability that B interacting with F wins the strong unforgeability
experiment described in [TZ23] for BBS signatures.

As for Case A, we apply the forking lemma to the algorithm which is success-
ful if B correctly simulates and F outputs a valid forgery (constructed starting
from a credential never issued to F), and we define the probability of success of
this algorithm as

ϵB = Pr
[
FB wins c− uf − pres(B) ∧ B simulates

]
=

Pr[B simulates] Pr
[
FB wins c− uf − pres(B)|B simulates

]
=

Pr[B simulates]Adv
c−uf−pres(B)

F,BBS (κ) ≥(
1− q2

p

)
Adv

c−uf−pres(B)

F,BBS (κ) (12)

By applying the Generalised Forking Lemma [BN06] we obtain

Advsuf−cma
B,BBS (κ) ≥ ϵB

(
ϵB
qH
− 1

p

)
≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(B)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(B)

F,BBS (κ)

)
. (13)

H Reducing the Size of Credential Shares

We describe an optimization that can be used to reduce the size of the credential
shares which only requires to increase the size of the first broadcast message in
the presentation protocol execution.
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Optimization 1 (Issuing algorithm CredIssBBS ). In order to reduce the
size of the share of credential, which is polynomial in the number n of par-
ticipants, the issuer could sign the values Di and issue to each party Pi the
partial credential credi = (A, e(i), σi, Di, ({aj}j∈Pub, {a(i)j }j∈Prv)), where being
h = H(X2, pp, A, {aj}j∈Pub) the hash of the credential data which are shared
by all the participants σi is a digital signature σi = Sign(h||Di, sk) (Di =(∏

j∈Prv h
a
(i)
j

j

)
A−e(i)) created using a secret key sk possessed by the issuer. Then,

in the third step of the protocol the parties taking part to the presentation pro-
tocol execution broadcast their comi together with Di and the signature σi of the
issuer. In this way they prove that they are using a share of credential which
has been certified by the issuer. Then in order to successfully execute the pre-
sentation protocol the holder must prove knowledge of the associated integers

e(i), {a(i)j }j∈Prv s.t. Di =
(∏

j∈Prv h
a
(i)
j

j

)
A−e(i) .

If we consider a MHAC scheme compatible with a secure anonymous creden-
tial scheme, if the issuer only issues full credential we have already described
how an holder can distribute the credential issued by the issuer among multiple
holders by performing the secret sharing of the credential, giving a share to each
holder and then deleting the credential issued. In this case, the holder performing
the secret sharing of the BBS credential generates a key pair (skh, pkh), signs the
values Ãi using a secret key skh obtaining σi, and sends the pair (σi, pkh) to
each holder Pi. Then it deletes the BBS credential and the secret key skh. The
protocol participants will broadcast in the first step the signature of Di and the
other participants can verify it using pkh.

I Pedersen Verifiable Secret Sharing

In this section we describe how it is possible to generate multi-holder anonymous
credentials with private attributes using as building block the verifiable secret
sharing by Pedersen [Ped91]. We will consider three cases: the first one where
a private attribute is chosen by a dealer who is the issuer, the second case in
which the attribute is chosen by a dealer who is a holder who wants to keep it
hidden also from the issuer, the third where the private attribute is generated
by the holders (and possibly also by the issuer) and remains unknown by both
the holders and the issuer.

We will consider that the private attribute is the one in position m − 1.
Using the same notation as in [Ped91], we define the Pedersen commitment to
a∗ computed using the randomness s $←− Zp and bases hm−1, hm as

E(a∗, s) = ha
∗

m−1h
s
m

.
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I.1 Holder as a dealer

The dealer who want to distribute the private attribute a∗ performs the following
operations.

1. The dealer computes a Pedersen commitment to a∗ sampling s $←− Zp and
computing D = E(a∗, s).

2. Being n the number of holders of a (t, n)−multi-holder anonymous credential,
the dealer samples at random a polynomial

F (x) = F0 + F1x+ · · ·+ Ft−1x
t−1 $←− Zp[x]

of degree at most t − 1, and such that F (0) = F0 = a∗, and uses this
polynomial to generate a Shamir-secret sharing [Sha79] of a∗, setting a∗(i) =
F (i),∀i ∈ [n].

3. The dealer additionally generates another random polynomial of degree at
most t− 1:

G(x) = G0 +G1x+ · · · ,+Gt−1x
t−1 $←− Zp[x]

with G(0) = G0 = s, and uses it to compute a secret sharing of the random-
ness s of the commitment D. It generates the secret shares s(i) = G(i),∀i ∈
[n] and sends secretly to Pi the pair (a∗(i), s(i)).

4. The dealer also computes the commitments Ei = E(Fi, Gi) to Fi,∀i ∈ {0}∪
[k − 1] and broadcast Ei to all the participants and to the issuer (note that
E0 = D).

Share verification. Each holder Pi upon receiving (a∗(i), s(i)), {Ei}i∈{0}∪[k−1],
checks that

E(a∗(i), s(i)) =

k−1∏
j=0

Eij

j

and if it does not hold, sends an abort message.
Note that if nobody aborts, then everyone can compute the values E(a∗(i), s(i)).
Every party creates a straight-line extractable [Pas03,Fis05,Unr15,KS22] NIZKP

of knowledge of a representation of E(a∗(i), s(i)), then the issuer computes the
shares of credential executing Protocol 1.

The unlinkability with private attributes can be instantiated assuming that
the challenger of the experiment controls both the issuer of the credential, an
the dealer.

I.2 Issuer as a dealer

In this case the issuer performs the operations performed by the holder in the
previous case (Section I.1), and in this case it does not have to sign in a blind
way any attribute since it knows also the private attributes.
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I.3 Issuance without dealer

In this section we instantiate the protocol for the generation of an anonymous
shared secret proposed by Pedersen in [Ped91, Section 5.2] in the context of our
multi-holder issuing protocol, showing how the parties can generate a shared
attribute a∗ (and the masking attribute s corresponding to the m−th position)
which is not known by anyone.

Each holder Pi (and possibly the issuer) execute the following operations:

– sample a∗i
$←− Zp uniformly at random;

– distribute a∗i as if it was the dealer using the Pedersen VSS described in
Section I.1 and signs each share (a

∗(j)
i , s

(j)
i )∀j ∈ [n] \ {i} that sends to the

parties {Pj} and the broadcasted values (Ei,0, · · · , Ei,t−1);
– Pi verifies the shares received by the other parties, and if one does not verify,

Pi broadcast the share with the signature of the associated dealer and aborts.
– compute the share (a∗(i), s(i)) of a∗ =

∑
j∈[n] a

∗
j setting a∗(i) =

∑
j∈[n] a

∗(i)
j

and s(i) =
∑

j∈[n] s
(i)
j , then by computing

(E0, · · · , Et−1) = (
∏
j∈[n]

Ej,0, · · · ,
∏
j∈[n]

Ej,t−1)

Every party creates a straight line extractable [Pas03,Fis05,Unr15,KS22]
NIZKP of knowledge of a representation of E(a∗(i), s(i)), then the issuer com-
putes the shares of credential executing Protocol 1.
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