
A Fault Analysis on SNOVA

Gustavo Banegas1 and Ricardo Villanueva-Polanco2

1Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
2Technology Innovation Institute, UAE

ricardo.polanco@tii.ae

Abstract. SNOVA is a post-quantum cryptographic signature scheme
known for its efficiency and compact key sizes, making it a second-round
candidate in the NIST post-quantum cryptography standardization pro-
cess. This paper presents a comprehensive fault analysis of SNOVA, fo-
cusing on both permanent and transient faults during signature genera-
tion. We introduce several fault injection strategies that exploit SNOVA’s
structure to recover partial or complete secret keys with limited faulty
signatures. Our analysis reveals that as few as 22 to 68 faulty signatures,
depending on the security level, can suffice for key recovery. We propose a
novel fault-assisted reconciliation attack, demonstrating its effectiveness
in extracting the secret key space via solving a quadratic polynomial
system. Simulations show transient faults in key signature generation
steps can significantly compromise SNOVA’s security. To address these
vulnerabilities, we propose a lightweight countermeasure to reduce the
success of fault attacks without adding significant overhead. Our results
highlight the importance of fault-resistant mechanisms in post-quantum
cryptographic schemes like SNOVA to ensure robustness.

Keywords: Physical attack · Fault-attack · SNOVA · MQ-based cryp-
tography.

1 Introduction

The National Institute of Standards and Technology (NIST) initiated an addi-
tional call for post-quantum digital signature proposals to introduce variability
in the mathematical foundations of digital signatures. In response, NIST received
40 submissions based on diverse mathematical problems. Among these, 10 sub-
missions were based on multivariate polynomial equations over finite fields, a
branch of post-quantum cryptography known as MQ-based cryptography.

MQ-based cryptography relies on the difficulty of solving systems of multi-
variate quadratic equations over finite fields. The fundamental problem can be

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf.

https://orcid.org/0000-0001-5502-2977
https://orcid.org/0000-0002-8682-4830
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

defined as follows: given a system of m quadratic equations in n variables over
a finite field Fq, find a solution x = (x1, x2, . . . , xn) ∈ Fn

q such that:
Q1(x1, x2, . . . , xn) = 0

Q2(x1, x2, . . . , xn) = 0
...

Qm(x1, x2, . . . , xn) = 0

where each Qi is a quadratic polynomial of the form:

Qi(x1, x2, . . . , xn) =
∑

1≤j≤k≤n

aijkxjxk +
∑

1≤j≤n

bijxj + ci,

with coefficients aijk, bij , ci ∈ Fq.
The security of MQ-based cryptography is based on the computational hard-

ness of the Multivariate Quadratic problem. Specifically, for large values of n,
solving a random system of such equations is known to be NP-hard, making
it computationally infeasible for an attacker to solve within a reasonable time
frame, even with powerful computational resources.

In addition to the inherent mathematical complexity, implementing robust
protections is essential for securing MQ-based cryptographic schemes against
both side-channel and fault attacks. Side-channel attacks exploit various forms
of leakage—such as timing variations, power consumption, or electromagnetic
emissions—to gain insights into the cryptographic process. These attacks take
advantage of unintended information leaks that arise during the physical imple-
mentation of a cryptographic algorithm, rather than exploiting weaknesses in
the algorithm itself.

Fault attacks, in contrast, involve deliberately introducing errors during cryp-
tographic execution, such as memory corruption or inducing bit flips, to extract
sensitive information by analyzing erroneous outputs. To mitigate these threats,
countermeasures such as constant-time algorithms, masking techniques, noise
generation, and redundancy checks can be integrated, significantly enhancing
the robustness of cryptographic implementations. These safeguards help ensure
that the theoretical security of MQ-based schemes translates into practical re-
silience, providing strong protection against both side-channel and fault attacks
in real-world environments.

1.1 MQ signature schemes

One of the earliest efforts to convert the MQ problem into a digital signature
scheme was introduced in 1988 with the C∗ scheme [20]. However, Patarin suc-
cessfully attacked this scheme in 1995 [23], rendering it insecure. Since then,
numerous advancements have been made in digital signature schemes based on
multivariate polynomials. A prominent example of these advancements is the
Unbalanced Oil-Vinegar (UOV) scheme, which offers strong security features.

2

The UOV-like schemes are an extension of the original Oil-Vinegar (OV)
scheme and they are designed to enhance security by introducing an imbalance
between the number of “oil” and “vinegar” variables. We can briefly define UOV
as: let v be the number of vinegar variables: v1, v2, . . . , vv, and o be the number
of oil variables: o1, o2, . . . , oo. The public key consists of o quadratic polynomials
Pi in n = v + o variables over a finite field Fq, defined as:

Pi(v1, . . . , vv, o1, . . . , oo) =
∑

1≤j≤k≤v

aijkvjvk +

v∑
j=1

o∑
k=1

bijkvjok

+
∑

1≤j≤k≤o

cijkojok +

v∑
j=1

dijvj +

o∑
k=1

eikok + fi,

where aijk, bijk, cijk, dij , eik, fi ∈ Fq.
The private key consists of the secret lineal transformation and the so-called

central map that link the vinegar and oil variables to the public key polyno-
mials. During the signing process, random values are selected for the vinegar
variables v1, . . . , vv. These values are then substituted into the quadratic poly-
nomials, resulting in a system of linear equations involving the oil variables.
Next, the system is solved to determine the values of the oil variables o1, . . . , oo,
and the signature is produced by combining the values of both the vinegar and
oil variables.

To verify the signature, the signed values are substituted into the public
polynomials to ensure they satisfy the equations Pi − yi = 0 for all i.

In the world of UOV-like schemes, we can remark that there are several
benefits such as small signatures, fast verification, and reasonable public key
sizes. This is the case of MAYO [4,6] and SNOVA [19,28].

1.2 Fault attacks

Fault attacks are techniques used to exploit cryptographic implementations. This
section provides an overview of fault attacks.

Fault Attacks. Fault injection attacks intentionally disrupt a device’s normal op-
eration to induce errors and extract information from cryptographic processes.
Techniques such as electromagnetic pulses, lasers, voltage glitches, and DRAM
row hammering are commonly used for fault injection, each varying in precision
and complexity [1,7,16]. For example, laser-based injections offer high accuracy
but are expensive, whereas DRAM row hammering requires extensive profiling.
Inducing faults often requires multiple attempts; however, this does not neces-
sarily mean causing multiple distinct faults. It may involve repeatedly inducing
a specific fault over several runs to collect sufficient data for exploitation.

Fault Attacks against other MQ-based cryptosystems Table 1 compares previ-
ous fault injection attacks on multivariate signature schemes, highlighting key

3

Table 1. Comparison of Previous Fault Attacks on Multivariate Signature Schemes.

Algorithm #Signatures #Faults Evaluation Assumptions

Multiple [13] Multiple Multiple Theoretical None

UOV/Rainbow [17] Multiple Multiple Theoretical None

UOV [26] 44–103 Multiple Theoretical None

LUOV [21] Multiple Multiple Practical Key in F2

Rainbow [3] Multiple 1 Simulation Exact memory reuse

UOV [11] Multiple 2–40 Simulation Enumeration 241–289

MAYO [25] 2 1 Theoretical None

MAYO [2] 1 1 Practical Zero-initialization

MAYO [15] 1 1 Practical, Simulation None

SNOVA
permanent fault strategy 22–68 1 Theoretical, Simulation None

SNOVA
Fault-assisted reconciliation attack 1 Multiple Theoretical, Simulation None

features such as the number of signatures and faults required, the evaluation
method, and any assumptions made.

Recently, [15] presented an attack on a MAYO implementation that success-
fully recovered the private key. This attack targeted a single execution of MAYO.
However, the fault was not in MAYO itself, but rather in the C implementation
of Keccak, which is responsible for generating the Vinegar and Oil variables.
The paper exploits a vulnerability in the pseudorandom function, using a fault
in this component to reveal information leading to private key recovery.

In this work, we explore a similar attack. However, instead of targeting Kec-
cak, we focus directly on the vinegar variables by inducing faults—i.e., fixing
specific bit values—which allows us to recover the private key. Despite this sim-
ilarity, our approach differs in the algorithm used for key recovery. Moreover,
we introduce an SNOVA fault-assisted reconciliation attack that requires only a
single signature. This approach is distinct from previous works.

1.3 Our contributions

In this paper, we explore fault injection attacks and their impact on the secu-
rity of SNOVA. We present an analysis demonstrating that by inducing either a
single permanent fault or transient faults in specific operations of the signature
generation algorithm, an attacker can create faulty signatures that reveal par-
tial private key information. Our comprehensive analysis covers several scenarios.
First, we investigate which rows of T , the matrix representation of the SNOVA
private linear map, an attacker can recover after fixing certain F16 elements in
some (or all) vinegar variables during signature generation. We then generalize
this by examining the recovery of rows of T after fixing bits in the binary repre-
sentation of the vinegar variables. In both cases, we show that collecting enough
faulty signatures allows an attacker to recover T partially, compromising the

4

private key. We then turn our attention to another scenario where, by inducing
transient faults in the generation of vinegar variables, the attacker can recover
the secret space via a reconciliation attack. Simulations of our fault attack are
included to substantiate our claims.

Our detailed examination highlights the critical need for fault attack coun-
termeasures to implement SNOVA. Therefore, we also provide a countermeasure
and its corresponding analysis to counteract our fault attacks. Finally, our find-
ings underscore the importance of incorporating comprehensive security strate-
gies to protect against this type of attack, ensuring the integrity and reliability
of cryptographic systems.

Paper organization. This paper is organized as follows. Section 2 presents a self-
contained description of the SNOVA signature scheme. Section 3 presents our
fault analysis on SNOVA, introducing several scenarios along with the implica-
tions of our recovery algorithms. Section 4 describes our experimental setting,
our simulation of our fault attacks on SNOVA, and its results. Section 5 presents
a countermeasure to protect SNOVA against the fault attack introduced previ-
ously. Finally, Section 6 concludes our work by highlighting our findings and
their implications and delineating future works.

2 A simple non-commutative UOV scheme

In this section, we introduce SNOVA, a simple non-commutative UOV scheme.
SNOVA is a recently proposed UOV-like signature scheme, as outlined in [28],
and has been submitted to the NIST competition for Post-Quantum Digital
Signature Schemes.

Let v, o, l ∈ N with v > o and Fq a finite field with q being a power of a prime
number. Set n = v + o and m = o. By [m] we denote the set {1, . . . ,m} and
by R we denote the ring of l × l matrices over the finite field Fq. Also, by
U = (U1, . . . , Un)

t ∈ Rn we denote a column vector with n entries from R. Let
Q ∈ R, we denote by ΛQ, the nl×nl block diagonal matrix with Q-blocks along
the diagonal.

The subring Fq[S] of R is defined to be

Fq[S] = {a0 + a1S + . . .+ al−1S
l−1|a0, a1, . . . , al−1 ∈ Fq}

where S is a l × l symmetric matrix with irreducible characteristic polynomial.
Note that the elements in Fq[S] are symmetric and all commute. Additionally,
the non-zero elements in Fq[S] are invertible. In particular, Fq[S] is a finite field
with Fq[S] ∼= Fql .

The central map is given by F = [F1,F2, . . . ,Fm] : Rn → Rm, and Fi is defined
as

5

Fk(X1, X2, . . . , Xn) =

l2∑
α=1

Aα ·
(∑
(i,j)∈Ω

Xt
i · (Qα1Fk,ijQα2)Xj

)
·Bα

where Ω = {(i, j) : 1 ≤ i, j ≤ n} \ {(i, j) : m + 1 ≤ i, j ≤ n}, Fk,ij
$←−

R, Aα, Bα
$←− R (invertibles), and Qα1, Qα2

$←− Fq[S] (invertibles). Set Fk =
[Fk,ij](i,j)∈Ω for each k ∈ [m].

Invertible linear map for this scheme is the map T : Rn → Rn corresponding
to the matrix

T =

[
I11 T 12

O I22

]
where T 12 is a v × o matrix consisting of nonzero entries T 12

i,j chosen randomly

from Fq[S]. Note that T−1 = T , if Fq is of characteristic 2. In addition, I11 and
I22 are identity matrices over R of size v × v and o× o respectively.

Public map is defined as P := F ◦ T = [P1 = F1 ◦ T , . . . ,Pm = Fm ◦ T]. Set
U = (U1, . . . , Un)

t ∈ Rn, then

Pk(U) =

l2∑
α=1

Aα(TU)tΛQα1FkΛQα2(TU) ·Bα (1)

for any k ∈ [m]. Moreover, Pk(U) can be written as

Pk(U) = Fk(T (U)) =

l2∑
α=1

n∑
i=1

n∑
j=1

Aα · U t
i (Qα1Pk,ijQα2)Uj ·Bα,

where Pk,ij =
∑

(s,t)∈Ω TisFk,stTtj , by the commutativity of Fq[S] and that the

elements in Fq[S] are symmetric. Set Pk = [Pk,ij](i,j)∈[n]×[n] for each k ∈ [m].
The SNOVA signature scheme [28] consists of a triple of algorithms (KeyGen,

Sign, Verify). Moreover, a SNOVA parameter set is given by values for v, o, l, λ.
The KeyGen function runs a probabilistic algorithm as shown by Algorithm

1. It outputs a SNOVA key pair (sk, pk).
The public key pk is a representation of P. A full public key consists of

the list of matrices
{
Pk =

[
P 11
k P 12

k

P 21
k P 22

k

]
: k ∈ [m]

}
and the list of matrices{

Aα, Bα, Qα1, Qα2 : α ∈ [l2]
}
. However, it is enough to store (Spublic, {P 22

k }k∈[m]).
Indeed, the public seed Spublic is used to regenerate P 11

k , P 12
k and P 21

k for
k ∈ [m], and Aα, Bα, Qα1 and Qα2 for α ∈ {1, . . . , l2}. Therefore, the public key
size is m ·m2 · l2 field elements plus the size of the public seed Spublic.

The private key sk is a representation of (F , T). A full private key consists of
a matrix T 12 and the list of matrices

{
Fk : k ∈ [m]

}
. In practice, a private seed

6

Sprivate is used to generate T 12, and the matrices {Fk}k∈[m] are computed by
exploiting the relation between Fk, Pk along with T 12, as shown by the lines
from 8 to 11 of Algorithm 1.

Table 2 summarizes current SNOVA parameters, and public and private keys
sizes, as well as, signature sizes for each security level.

Algorithm 1 Key generation algorithm

1: function KeyGen(v, o, l, λ)
2: m← o;n← o+ v;

3: Sprivate
$←− {0, 1}2λ

4: Spublic
$←− {0, 1}2λ

5: T 12 ← PRG(Sprivate), where T 12
ij ∈ F16[S].

6: {P 11
k }k∈[m], {P 12

k }k∈[m], {P 21
k }k∈[m], {Aα}α∈[l2], {Bα}α∈[l2], {Qα1}α∈[l2], {Qα2}α∈[l2] ←

PRG(Spublic)
7: for (k ← 1, k ≤ m, k ← k + 1) do
8: F 11

k ← P 11
k

9: F 12
k ← P 11

k T 12 + P 12
k

10: F 21
k ← (T 12)tP 11

k + P 21
k

11: P 22
k ← (T 12)t

(
P 11
k T 12 + P 12

k

)
+ P 21

k T 12

12: end for
13: sk← ({F 11

k }k∈[m], {F 12
k }k∈[m], {F 21

k }k∈[m], T
12)

14: pk← (Spublic, {P 22
k }k∈[m])

15: return (sk, pk);
16: end function

Table 2. Parameters for SNOVA [19].

Sec. Level (v, o, q, l, λ) Public key (B) Signature (B) Private key (B)

I
(37, 17, 16, 2, 128) 9826(+16) 108(+16) 60008(+48)
(25, 8, 16, 3, 128) 2304(+16) 148.5(+16) 37962(+48)
(24, 5, 16, 4, 128) 1000(+16) 232(+16) 34112(+48)

III
(56, 25, 16, 2, 192) 31250(+16) 162(+16) 202132(+48)
(49, 11, 16, 3, 192) 5989.5(+16) 270(+16) 174798(+48)
(37, 8, 16, 4, 192) 4096(+16) 360(+16) 128384(+48)

V
(75, 33, 16, 2, 256) 71874(+16) 216(+16) 515360(+48)
(66, 15, 16, 3, 256) 15187.5(+16) 364.5(+16) 432297(+48)
(60, 10, 16, 4, 256) 8000(+16) 560(+16) 389312(+48)

The Sign function runs a UOV-like signing procedure as shown by Algo-
rithm 2. It digitally signs a message M under the private key sk. It first samples
a salt from {0, 1}2λ, then sets Y ← H1(Spublic||H0(M)||salt) where Y ∈ Rm.

7

The algorithm then chooses random values V1, . . . , Vv ∈ R as the vinegar vari-
ables. Then, it attempts to find the values (Vv+1, . . . , Vn) by solving the equation
F(V1, . . . , Vv, Vv+1, . . . , Vn) = Y . If no solution to the equation is found, the al-
gorithm will choose random values V ′1 , . . . , V

′
v ∈ R and repeat the procedure

until it finds a solution to the equation. Let X = (V1, . . . , Vv, Vv+1, . . . , Vn)
t be

the solution to the equation. This algorithm then computes the signature as
S = T −1(X) and outputs (S, salt).

Algorithm 2 signs message M
1: function sign(v, o, l, λ, sk, spublic, M)
2: m← o
3: n← o + v
4: ({F 11

k }k∈[m], {F 12
k }k∈[m], {F 21

k }k∈[m], T
12)← sk

5: {Aα}α∈[l2], {Bα}α∈[l2], {Qα1}α∈[l2], {Qα2}α∈[l2] ← PRG(spublic)

6: digest← H0(M)

7: salt
R←− {0, 1}λ

8: is done← False
9: cont← 0;
10: [Y1, Y2, . . . , Ym]← H1(Spublic||digest||salt)
11: Fk ←

∑l2

α=1 Aα

(∑v
i=1

∑v
j=1 Xt

i (Qα1F
11
k,ijQα2)Xj +

∑v
i=1

∑m
j=1 Xt

i (Qα1F
12
k,ijQα2)Xj +∑m

j=1

∑v
i=1 Xt

j(Qα1F
21
k,jiQα2)Xi

)
· Bα

for all i ∈ [m].
12: while not is done do
13: [V1, V2, . . . , Vv]← PRG(Sprivate||digest||salt||cont)
14: Compute Fk,V V ←

∑l2

α=1 Aα

(∑v
i=1

∑v
j=1 V

t
i(Qα1F

11
k,ijQα2)Vj

)
· Bα for all k ∈ [m].

15: Express Yk − Fk,V V =
∑l2

α=1 Aα

(∑v
i=1

∑m
j=1 V

t
i(Qα1F

12
k,ijQα2)Xj +∑m

j=1

∑v
i=1 Xt

j(Qα1F
21
k,jiQα2)Vi

)
· Bα for all k ∈ [m] as an equation system on the

oil variables
−→
X1,
−→
X2, . . . ,

−−→
Xm.

M1,1
−→
X1 + M1,2

−→
X1 + . . . + M1,m

−−→
Xm =

−→
Y1 −

−−−−→
F1,V V

M2,1
−→
X1 + M2,2

−→
X2 + . . . + M2,m

−−→
Xm =

−→
Y2 −

−−−−→
F2,V V

.

.

.

Mm,1
−→
X1 + Mm,2

−→
X2 + . . . + Mm,m

−−→
Xm =

−→
Ym −

−−−−→
Fm,V V

16: Represent this equation system as an (ml2)× (ml2 + 1) matrix A over F16

17: LO, output← Gauss(A)
18: if output then
19: [Vv+1, Vv+2, . . . , Vn]← LO

20: V← [V1, V2, . . . , Vv, Vv+1, . . . , Vn]

21: T ←
[
I11 T 12

O I22

]
22: S← T · Vt
23: is done← True
24: else
25: cont← cont + 1
26: end if
27: end while
28: return (S, salt);
29: end function

The Verify function runs a deterministic algorithm. It simply verifies if a
signature (S, salt) for M is valid under the public key pk. If H1(Spublic||H0(M)
||salt) = P(S), then the signature is accepted, otherwise it is rejected.

8

Reconciliation attack. Ikematsu, and Akiyama [14], Li and Ding [18], and
Nakamura, Tani, and Furue [22] analyzed the security of SNOVA against key-
recovery attacks, unveiling all known key-recovery attacks for an instance of
SNOVA can be seen as key-recovery attacks to instances of an equivalent UOV
signature scheme. Particularly, [14] and [18] concluded that all known key-
recovery attacks for SNOVA with parameters (v, o, l, q) can be seen as attacks
to a UOV signature scheme with lo2 equations and l(v+ o) variables over Fq. In
particular, for the reconciliation attack, the attacker must find a specific solution
u0 ∈ Fln

q from among many solutions of a quadratic polynomial system of the
form

ut
0(ΛSiPkΛSj)u0 = 0 ∈ Fq, (2)

for k ∈ [m], i, j ∈ {0, 1, . . . , l − 1}.
Once u0 is found, any u in the linearly independent set {ΛSju0 : 0 ≤ j ≤ l−1}

will also satisfy Eq. (2). Additionally, the remaining vectors in the secret space
O can be determined by leveraging the fact that for any u,v ∈ O, it holds

vt(ΛSiPkΛSj)u = 0 ∈ Fq for k ∈ [m], 0 ≤ i, j ≤ l − 1. (3)

Finally, for any U ∈ K, it holds Pk(U) = 0 for all k ∈ [m], where

K := O ⊗ Fl
q = {u⊗ et ∈ Rn : u ∈ O, e ∈ Fl

q}. (4)

Thus, the complexity of the reconciliation attack is dominated by finding
a solution to the quadratic system in Eq. (2). A recent paper [9] introduces
a new algorithm that exploits the stability of the quadratic system in Eq. (2)
under the action of a commutative group of matrices, reducing the complexity
of solving SNOVA systems, over generic ones. In particular, they show how
their new algorithm decreases the complexity of solving such a system. On the
other hand, we here explore other directions by introducing a new fault-assisted
reconciliation attack in Section 3.7. This attack leverages induced transient faults
to recover the secret key space by solving the system as mentioned earlier.

3 Fault analysis on SNOVA

In this section, we present our comprehensive fault analysis on SNOVA. We first
state our attack model, then explore a first unsuccessful attempt at mounting a
fault attack, and then turn our attention to our successful attempts at mounting
a fault attack against SNOVA.

3.1 Adversarial Model

We consider an adversarial model similar to those assumed in previous works,
particularly in [17], within the context of UOV and RAINBOW.

9

In this model, the attacker targets the signature generation process and can
induce transient or permanent faults affecting specific operations within Algo-
rithm 2. These faults enable the attacker to manipulate certain values during the
execution of the signature generation algorithm. Importantly, the attacker may
be unaware of the exact number of manipulated values or their specific content.

Subsequently, the attacker can invoke the faulty Algorithm 2 multiple times
–where the number of invocations depends on the attack strategy– to gather
message-signature pairs. Each signature is generated with the tampered values,
and the attacker’s ultimate goal is to analyze these pairs to extract partial in-
formation about the private key.

3.2 Attack strategy by fixing field elements of the central map

1. The attacker causes a single permanent fault, which affects line 4 of Algo-
rithm 2, such that some Fq elements in Fi ∈ Fln×ln

q , for i ∈ I ⊆ [m] and
|I| ≥ 1, are fixed and unknown. In particular, for Fi, there is a fixed non-
empty subset Ji ⊆ [nl] × [nl], such that F̄i,(r0,r1) ∈ Fq, (r0, r1) ∈ Ji is fixed
and unknown. We remark the line 4 in practice is an expansion of a private
seed along with other operations to compute the list of matrices {Fk}k∈[m].

2. For each ω ∈ [Nmsg], the attacker calls Algorithm 2 for the randomly chosen
message M(ω) ∈ Rm and receives the signatures (S(ω), salt(ω)).

Let F̄ be the faulty central map and P̄ = F̄ ◦ T be the faulty public map.
Recall that the SNOVA public map is defined as

Pk(S
(ω)) =

l2∑
α=1

Aα(TS
(ω))tΛQα1FkΛQα2(TS

(ω)) ·Bα

for any k ∈ [m]. Therefore, it holds

P̄k(S
(ω))− Pk(S

(ω)) =

l2∑
α=1

Aα(V
(ω))tΛQα1

(F̄k − Fk)ΛQα2
(V(ω)) ·Bα (5)

where TS(ω) = V(ω) with V(ω) = (V
(ω)
1 , . . . , V

(ω)
n)t, by the line 22 of Algorithm 2.

We remark the attacker can compute the left hand of Eq. (5), since P̄k(S
(ω)) =

H1(Spublic||H0(M
(ω))||salt(ω))k and P is public.

Moreover, for any i ∈ [m] \ I, both sides of Eq. (5) vanish. However, for any
i ∈ I, the left hand of Eq. (5) is expected to be a non-zero element in R, and
F̃i = F̄i−Fi ∈ Fln×ln

q , on the right side of Eq. (5), is expected to become a sparse

matrix, since the entries F̃i,st ∈ Fq with (s, t) ∈ Ji are the only ones expected to
be non-zero.

We remark, nonetheless, that these observations may not be easily exploitable
for the attacker to gain information on T , since the attacker does not know
I, F̃i, Ji, V

(ω) and P̄i. Therefore, our following scenario focuses on inducing a
permanent fault affecting the line 13 of Algorithm 2 to further exploit the relation
TS(ω) = V(ω).

10

3.3 Attack strategy by fixing field elements of vinegar variables

1. The attacker introduces a single permanent fault, which affects line 13 of
Algorithm 2, causing certain Fq elements in Vi ∈ R, for i ∈ I ⊆ [v] with
|I| ≥ 1, to be fixed and unknown. Specifically, for each variable Vi, there is a
fixed non-empty subset Ji ⊆ [l]× [l], such that V̄i,(r0,r1) ∈ Fq for (r0, r1) ∈ Ji
is fixed and unknown.

2. For each ω ∈ [Nmsg], the attacker calls Algorithm 2 for the randomly chosen
message M(ω) ∈ Rm and receives the signature (S(ω), salt(ω)).

3. The attacker then calls Algorithm 3 with parameters v, o, l, [S(1), . . . , S(Nmsg)]
to obtain dic, a dictionary-like data structure indexed by [v] × [l]2. When
Nmsg > lo + 1, Algorithm 3 will output dic such that dic[(i, r0, r1)] =
[T 12

i1 , . . . , T
12
io] for i ∈ I and (r0, r1) ∈ Ji, and dic[(i, r0, r1)] = None other-

wise.

Why is Step 3 of the attack strategy expected to work correctly? As seen in
Section 2, the invertible linear map T for the SNOVA scheme is given by the
matrix

T =

[
I11 T 12

O I22

]
,

where T 12 is a v × o matrix with nonzero entries T 12
ij chosen randomly from

Fq[S]. From the line 22 of Algorithm 2, it holds TS(ω) = V(ω), that is,

1 0 . . . 0 T 12
11 . . . T 12

1o
...
...
. . .

...
...

. . .
...

0 0 . . . 1 T 12
v1 . . . T 12

vo
...
...
. . .

...
...

. . .
...

0 0 0 . . . 1





S
(ω)
1
...

S
(ω)
v

...

S
(ω)
n


=



V
(ω)
1
...

V
(ω)
v

...

V
(ω)
n


.

Since T 12
ij ∈ Fq[S], it holds T

1,2
ij =

∑l
j1=1 t

12
ij,j1

Sj1−1, where t12ij,j1 ∈ Fq, and

S
(ω)
i +

o∑
j=1

T 12
ij S

(ω)
v+j = S

(ω)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1S

(ω)
v+j = V

(ω)
i , i ∈ [v]

S
(ω)
i = V

(ω)
i , v + 1 ≤ i ≤ n

For 2 ≤ ω ≤ Nmsg, we can write

S
(ω)
i − S

(1)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1(S

(ω)
v+j − S

(1)
v+j) = V

(ω)
i − V

(1)
i , i ∈ [v]

S
(ω)
i − S

(1)
i = V

(ω)
i − V

(1)
i , v + 1 ≤ i ≤ n

11

Let us fix 2 ≤ ω ≤ Nmsg and i ∈ [v]. Also, let us set S
(ω,1)
i = S

(ω)
i − S

(1)
i ,

S
(j1,ω,1)
v+j = Sj1−1(S

(ω)
v+j − S

(1)
v+j) and V

(ω,1)
i = V

(ω)
i − V

(1)
i . Consider

S
(ω,1)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j = V

(ω,1)
i . (6)

Since Eq. (6) is defined over R, it is equivalent to l2 equations on lo unknowns
over Fq. Therefore,

S
(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= V
(ω,1)
i,(r0,r1)

, for r0, r1 ∈ [l]. (7)

Note that the attacker can compute S(ω,1) and S(j1,ω,1) on the left hand of
Eq. (6). Additionally, for a fixed i ∈ I and for 2 ≤ ω ≤ Nmsg, a linear system of
(Nmsg − 1)|Ji| equations and lo unknowns over Fq can be obtained and is given
by

{S(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= 0, for (r0, r1) ∈ Ji}2≤ω≤Nmsg
. (8)

However the attacker does not know either I or Ji. If Ji were known by the
attacker, collecting Nmsg > o·l

|Ji| + 1 would be enough to guarantee an unique

solution to the linear system of Eq. (8).
In order for the attacker to gain knowledge of I and Ji for i ∈ I, and recover

T 12
i,j for i ∈ I, j ∈ [o], the attacker may try to solve v ·l2 linear systems separately,

i.e. one for i ∈ [v] and (r0, r1) ∈ [l]2,

{S(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= 0}2≤ω≤Nmsg
, (9)

where each has Nmsg − 1 equations and lo unknowns. If Nmsg > l · o + 1, then
the linear systems for (r0, r1) ∈ Ji, i ∈ I will have a unique solution, while the
other linear systems are expected to have no solution. Therefore, when Nmsg >
lo+1, Algorithm 3 will output dic such that dic[(i, r0, r1)] = [T 12

i1 , . . . , T
12
io] for

i ∈ I, (r0, r1) ∈ Ji and dic[(i, r0, r1)] = None otherwise.
Furthermore, if the attacker is able to fix at least an entry of each vinegar

variable (i.e. I = [v] and so |Ji| ≥ 1) and collect at least lo + 2 signatures,
Algorithm 3 will recover the entire matrix T 12.

3.4 What if the attacker only can fix some bits of Vi for i ∈ I?

In this section, we assume a variable Vi is represented as a bit-string of length
Nbits · l2, where q = 2Nbits as it is the case for SNOVA. The attack strategy is
as follows.

12

Algorithm 3 partially recovers T 12 from fixed field elements.

1: function recover partial T F16(v, o, l, [S(1), . . . , S(Nmsg)])
2: S ← getS(l)
3: dic← {}
4: for (i← 1, i ≤ v, i← i+ 1) do
5: for (r0 ← 1, r0 ≤ l, r0 ← r0 + 1) do
6: for (r1 ← 1, r1 ≤ l, r1 ← r1 + 1) do

7: A← F(Nmsg−1)×ol
16

8: Y ← F(Nmsg−1)×1
16

9: for (ω ← 2, ω ≤ Nmsg, ω ← ω + 1) do

10: S
(ω,1)
i ← S

(1)
i − S

(ω)
i

11: for (j ← 1, j ≤ o, j ← j + 1) do
12: for (j1 ← 1, j1 ≤ l, j1 ← j1 + 1) do

13: S
(j1,k,1)
v+j ← Sj1−1(S

(ω)
v+j − S

(1)
v+j)

14: A(ω−1),j·l+j1 ← S
(j1,k,1)

v+j,(r0,r1)

15: end for
16: end for
17: Y(ω−1),0 ← S

(ω,1)

i,(r0,r1)

18: end for
19: X, output← Gauss(A,Y)
20: if output then
21: [T 12

i1 , . . . , T 12
io]← get elements in FqS(X, l)

22: dic[(i, r0, r1)]← [T 12
i1 , . . . , T 12

io]
23: else
24: dic[(i, r0, r1)]← None

25: end if
26: end for
27: end for
28: end for
29: return dic

30: end function

13

1. The attacker causes a single permanent fault, which affects the line 13 of
Algorithm 2, such that some bits of Vi ∈ R, with i ∈ I ⊆ [v] and |I| ≥ 1, are
fixed and unknown. In particular, for the variable Vi, there is a fixed non-
empty subset Bi ⊆ [l]× [l]× [Nbits], such that V̄i,(r0,r1,b) ∈ F2, (r0, r1, b) ∈ Bi

is fixed and unknown.

2. For each ω ∈ [Nmsg], the attacker calls Algorithm 2 for the randomly chosen
message M(ω) ∈ Rm and receives the signature (S(ω), salt(ω)).

3. The attacker calls Algorithm 4 with parameters v, o, l, [S(1), . . . , S(Nmsg)] to
get dic, a dictionary-like data structure indexed by [v]× [l]2× [Nbits]. When
Nmsg > Nbits·lo+1, Algorithm 4 will output dic such that dic[(i, r0, r1, b)] =
[T 12

i1 , . . . , T
12
io] for i ∈ I, (r0, r1, b) ∈ Bi and dic[(i, r0, r1, b)] = None other-

wise.

Why is Step 3 of the attack strategy expected to work correctly? Since Fq can be
seen as a vector space of dimension Nbits over F2, we can obtain similar equations
to those of Eq. (8). That is, for i ∈ I, we have

{S(ω,1)
i,(r0,r1,b)

+

o∑
j=1

l∑
j1=1

κi,j,j1,ω,1
(r0,r1,b)

= 0, for (r0, r1, b) ∈ Bi}2≤ω≤Nmsg
. (10)

where κi,j,j1,ω,1
(r0,r1)

= t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

. Eq. (10) represents a linear system with |Bi| ·
(Nmsg − 1) equations and Nbits · l · o unknowns over F2. However, the attacker
does not know either I or Bi. For the attacker to gain knowledge of I and Bi for
i ∈ I, and recover T 12

i,j for i ∈ I, j ∈ [o], the attacker may try to solve Nbits · v · l2
linear systems separately, i.e. one for i ∈ [v] and (r0, r1, b) ∈ [l]× [l]× [Nbits],

{S(ω,1)
i,(r0,r1,b)

+

o∑
j=1

l∑
j1=1

κi,j,j1,ω,1
(r0,r1,b)

= 0}2≤ω≤Nmsg , (11)

where each has Nmsg − 1 equations and Nbits · l · o unknowns over F2. If Nmsg >
Nbits · l · o + 1, then the linear systems for (r0, r1, b) ∈ Bi, i ∈ I will have a
unique solution, while the other linear systems are expected to have no solution.
Algorithm 4 details the recovery strategy by the attacker and exploits the fact
that F16

∼= F2[x]
/
⟨x4 + x+ 1⟩ for SNOVA.

Therefore, when Nmsg > Nbits · lo+1, Algorithm 4 will output dic such that
dic[(i, r0, r1, b)] = [T 12

i1 , . . . , T
12
io] for i ∈ I, (r0, r1, b) ∈ Bi and dic[(i, r0, r1, b)] =

None otherwise.

3.5 How can the attacker recover T 12
i,j for a fixed i ∈ [v] \ I, j ∈ [o]?

For 1 ≤ ω ≤ Nmsg, we have

14

S
(ω)
i +

o∑
j=1

T 12
ij S

(ω)
v+j = S

(ω)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1S

(ω)
v+j = V

(ω)
i , i ∈ [v] \ I,

Note that the previous equations can always be arranged as

Si +

o∑
j=1

l∑
j1=1

t12ij,j1Sj1,j = Vi

with Si =


S
(1)
i
...

S
(Nmsg)
i


t

, Sj1,j =


Sj1−1S

(1)
v+j

...

Sj1−1S
(Nmsg)
v+j


t

, Vi =


V
(1)
i
...

V
(Nmsg)
i


t

∈ R1×Nmsg .

This indeed induces an instance of the MinRank problem [8] over Fq. Note

that by setting M = (Si,S1,1, . . . ,Sl,o) ∈ (Fl×(Nmsg·l)
q)l·o+1, there exists a (ti1,1,

. . . , tio,l) ∈ Fol
q and a matrix M ∈ Fl×(Nmsg−1)·l

q such that

(Si +

o∑
j=1

l∑
j1=1

t12ij,j1Sj1,j)

[
I
−M

]
= 0

where I ∈ F(Nmsg−1)·l×(Nmsg−1)·l
q is a non-singular matrix.

3.6 Discussion of previous scenarios

We remark that the scenarios described in Sections 3.3 and 3.4 are particular
cases of related randomness attacks [24] because what the attacker accomplishes
by injecting a permanent fault is force the signature algorithm to reuse the same
sub-bitstrings within the Nbitsvl

2 bitstring that represent the vinegar values
V1, V2, . . . , Vv, even though these fixed sub-bitstrings are unknown to the at-
tacker each time a valid signature is generated for a random message. Therefore,
partially recovering the private linear map represented by T is always possible
by using the techniques presented in Sections 3.3 and 3.4, as long as the attacker
finds any other means of fixing sub-bitstrings within the Nbitsvl

2 bitstring and
collects enough valid signatures generated using these fixed values.

Moreover, if the attacker might distinguish a bit at a fixed position of each
Vi during signature generation, then the attacker could leverage Algorithm 4
to recover T after collecting a sufficient number of signatures. Indeed, define
J := [v] × [l]2 × [Nbits], G and OI as shown by Algorithm 5. Suppose that the
attacker is given access to the set I ← G() and the oracle OI .

This adversary can leverage his knowledge of I, his access to OI and Algo-
rithm 4 to fully recover the private linear transformation T as follows.

15

Algorithm 4 Partially Recovers T 12 from Fixed Bits

1: function recover partial T F2(v, o, l, [S(1), . . . , S(Nmsg)])
2: S ← getS(l)
3: dic← {}
4: for i← 1 to v do
5: for r0 ← 1 to l do
6: for r1 ← 1 to l do
7: for b← 1 to 4 do
8: A← F(Nmsg−1)×4·ol

2

9: Y ← F(Nmsg−1)×1
2

10: for ω ← 2 to Nmsg do

11: S
(ω,1)
i ← S

(1)
i − S

(ω)
i

12: for j ← 1 to o do
13: for j1 ← 1 to l do
14: S

(j1,k,1)
v+j ← Sj1−1(S

(ω)
v+j − S

(1)
v+j)

15: if b = 1 then
16: A(ω−1),j·l+4·j1+1 ← S

(j1,k,1)

v+j,(r0,r1,1)

17: A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,4)

18: A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,3)

19: A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,2)

20: else if b = 2 then
21: A(ω−1),j·l+4·j1+1 ← S

(j1,k,1)

v+j,(r0,r1,2)

22: A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,1)

23: A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,3)

24: A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,3)
+ S

(j1,k,1)

v+j,(r0,r1,2)

25: else if b = 3 then
26: A(ω−1),j·l+4·j1+1 ← S

(j1,k,1)

v+j,(r0,r1,3)

27: A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,2)

28: A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,1)
+ S

(j1,k,1)

v+j,(r0,r1,4)

29: A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,3)

30: else
31: A(ω−1),j·l+4·j1+1 ← S

(j1,k,1)

v+j,(r0,r1,4)

32: A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,3)

33: A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,2)

34: A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,1)

35: end if
36: end for
37: end for
38: Y(ω−1),0 ← S

(ω,1)

i,(r0,r1,b)

39: end for
40: X, output← Gauss(A,Y)
41: if output then
42: [T 12

i1 , . . . , T 12
io]← get elements in FqS from bits(X, l)

43: dic[(i, r0, r1, b)]← [T 12
i1 , . . . , T 12

io]
44: else
45: dic[(i, r0, r1, b)]← None

46: end if
47: end for
48: end for
49: end for
50: end for
51: return dic

52: end function

16

Algorithm 5 defines functions G and OI .
1: function G()
2: I ← ∅
3: for (i← 1, i ≤ v, i← i+ 1) do

4: (r0, r1, b)
$←− [l]× [l]× [Nbits]

5: I ← I ∪ {(i, r0, r1, b)}
6: end for
7: return I
8: end function

1: function OI(ι ∈ J , b ∈ F2)
2: if ι ∈ J \ I then

3: c
$←− F2

4: return c
5: end if
6: Let Vι be the random bit chosen by

the line 13 of Algorithm 2 in the most
recent call.

7: if b = Vι then
8: return 1
9: end if
10: return 0
11: end function

1. The attacker sets S = [], creates the lists Lι = [] and sets bι
$←− F2 for all

ι ∈ I.
2. The attacker calls Algorithm 2 for the random message M(j), which outputs

(S(j), salt(j)), and then updates S.append((S(j), salt(j))).
Additionally, the attacker updates its lists Lι for all ι ∈ I as follows.

(a) For each ι ∈ I, Lι.append(OI(ι, bι)).
3. After collecting sufficient signatures, Nmsg, the attacker stops. In particular,

once
∑Nmsg

i=1 Lι[i] > Nbits · l · o+ 1 for all ι ∈ I, it will stop.
4. The attacker then uses the collected signatures and calls Algorithm 4 |I|

times to recover the matrix T .

(a) For each ι = (i, r0, r1, b) ∈ I, the attacker creates Sι = [S[j] for j ∈
[Nmsg] if Lι[j] = 1] and calls Algorithm 4 with parameters v, o, l and Sι.
From Section 3.4, it follows each call of Algorithm 4 with parameters
v, o, l and Sι will return dic[ι] = [T 12

i1 , . . . , T
12
io].

We remark that the previous example scenario is yet another case of related
randomness attacks, since the attacker at step 2a marks what signatures share
the bit bι in Vι. However, we stress that we do not know how to instantiate this
oracle OI in a real scenario effectively, and therefore this question remains open.

3.7 Fault-assisted reconciliation attack

As seen in Section 2, for the reconciliation attack, the attacker must find a
specific solution u0 ∈ Fln

q from among many solutions to the quadratic system
of the form

ut
0(ΛSiPkΛSj)u0 = 0 ∈ Fq, (12)

for k ∈ [m], i, j ∈ {0, 1, . . . , l−1}. Furthermore, for any valid signature (S, salt),
it holds S = T−1V, with V = (V1, . . . , Vv, O1, . . . , Oo)

t and T−1 = T . Consequently,
for any β ∈ [l], we have

17

S:β =



S1,:β
...

Sv,:β
...

Sn,:β

 =



1 0 . . . 0 T 12
1,1 . . . T 12

1,o
...
...
. . .

...
...

. . .
...

0 0 . . . 1 T 12
v,1 . . . T 12

v,o
...
...
. . .

...
...

. . .
...

0 0 0 . . . 1





V1,:β
...

Vv,:β
O1,:β
...

Oo,:β


=



V1,:β −
∑o

j=1 T
12
1j Oj,:β

...
Vv,:β −

∑o
j=1 T

12
vj Oj,:β

O1,:β
...

Oo,:β


where S:β denotes the β-th column of S. If an attacker knows V1,:β , . . . , Vv,:β ,
then the attacker can set

u0 =



S1,:β − V1,:β
...

Sv,:β − Vv,:β
...

Sn,:β

 ,

which will satisfy Eq. (12). Therefore, the main task of the attacker is to find
V1,:β , . . . , Vv,:β for a valid signature (S, salt) and some β ∈ [l].

Attack strategy

1. The attacker introduces transient faults affecting line 13 of Algorithm 2,
specifically targeting Vi,jβ for all i ∈ [v], j ∈ [l] and β ∈ C ⊆ [l] independently.
In particular, for the variable Vi, there is a fixed non-empty subset Ji ⊆ [l]×C
such that V̄i,(r0,r1) = ω for (r0, r1) ∈ Ji, where ω ∈ Fq is some unknown and
fixed value.

2. The attacker then calls Algorithm 2 with a randomly chosen message M ∈ Rm

and receives the signature (S, salt).
3. If Step 2 succeeds, then call Algorithm 6 with parameters v, o, l, S, C, Γβ for

β ∈ C1, where Γβ ⊆ [lv]. Furthermore, Fγ denotes the set of all subsets of γ
integers that can be selected from [lv] and Ac = [lv] \A with A ∈ Fγ .

We remark that by choosing proper Γβ ’s, the attacker can ensure that the
quadratic systems to be solved at the line 9 of Algorithm 6 have ol2 equations
and lv − γ < ol2 unknowns. Thus, they are expected to have either no solution
or very few solutions.

Let V = (Vt1, . . . , V
t
v)

t ∈ Fvl2

q . If after carrying out Steps 1 and 2, there exists
β ∈ C such that Viβ = ω, for i ∈ A, with A ∈ Fγ and γ ∈ Γβ , then Algorithm 6
will find an U satisfying Eq. (12) and an secret space O. Otherwise, the attacker
may start the attack again. In Appendix B, we analyse Algorithm 6’s runtime
complexity.

1 If C is unknown, the attacker can always set C = [l].

18

Algorithm 6 attempts to find O after having run the attack strategy.

1: function fault assisted reconcilation attack(v, o, l, S, C, Γβ for β ∈ C)
2: for β ∈ C do
3: for γ ∈ Γβ do
4: for A ∈ Fγ do
5: for ω ∈ Fq do
6: Set Ω ← (x1, . . . , xlv, 0, . . . , 0)

t ∈ Fln
q

7: Set Ωi ← w for i ∈ A
8: X← S:β −Ω
9: Attempt to solve the quadratic system

X
t(ΛSiPkΛSj)X = 0 ∈ Fq,

for k ∈ [m], i, j ∈ {0, 1, . . . , l − 1}. This system has ml2 equations and
lv − γ unknowns, namely xi for i ∈ Ac

10: if xi for i ∈ Ac are found then
11: Set U as the solution.
12: Recover O from the linearly independent set {ΛSjU : 0 ≤ j ≤ l − 1}
13: return O
14: end if
15: end for
16: end for
17: end for
18: end for
19: return ⊥

Success Probability of our Attack Strategy. For i ∈ [vl], j ∈ C, let Xij ∈ {0, 1}
be a Bernoulli random variable that indicates whether Vij is fixed to ω due to
the corresponding transient fault. Let Pr(Xij) = pij be the probability that

Xij = 1, i.e., that Vij is fixed to ω. Define Yβ =
∑lv

i=1 Xiβ . The probability of
obtaining 0 ≤ γ ≤ lv successful fixes out of a total of lv in the β-th column of V
can be expressed as

Pr(Yβ = γ) =
∑
A∈Fγ

∏
i∈A

piβ
∏
j∈Ac

(1− pjβ).

Let ρβ be the probability there exists γ ∈ Γβ such that Yβ = γ. Therefore,

ρβ =
∑
γ∈Γβ

Pr(Yβ = γ).

Let ρ denote the success probability of Algorithm 6, meaning there exists
β ∈ C such that Viβ = ω, for i ∈ A, with A ∈ Fγ and γ ∈ Γβ . Therefore,

ρ = Pr(Yβ = γ for some β ∈ C with A ∈ Fγ and γ ∈ Γβ) = max{pβ : β ∈ C}.

Overall, a run of the attack strategy is successful with probability ρ(1 − δ),
where δ is the failure probability of Step 2 of the attack strategy (i.e., when
Algorithm 2 fails to return a signature after one iteration). Furthermore, if the

19

pij ’s remain constant for each run of the attack strategy, the attacker is expected
to execute the attack strategy 1/ρ(1− δ) times.

We note that Step 1 of this attack strategy can potentially be implemented by
inducing a single transient fault, similar to the one found in the C implementation
of Keccak used to generate the vinegar variables for MAYO [15]. For SNOVA,
such a transient fault would target Viβ for i ∈ [lv], β ∈ [l]. Therefore, the attacker
would need to run the attack strategy 1/(1− δ) times if piβ = 1 for all i and β.
However, if the attacker only can ensure ϵ ≤ piβ ≤ 1 with ϵ ≥ 0, they can choose
some Γϵ for all β ∈ [l], and hence

(1−δ)
∑
γ∈Γϵ

(
lv

γ

)
ϵγ(1−ϵ)lv−γ ≤ (1−δ)max{ρβ =

∑
γ∈Γϵ

Pr(Yβ = γ) : β ∈ C} ≤ (1−δ).

Moreover, the attacker might improve the attack strategy’s success probabil-
ity by inducing transient faults that specifically target Viβ for all i ∈ [lv], and
β ∈ C with |C| = 1. In such a case, δ is expected to be very low. Therefore, if
the attacker only can ensure ϵ ≤ piβ ≤ 1 for a ϵ ≥ 0, they might set a proper

Γϵ such that
∑

γ∈Γβ

(
lv
γ

)
ϵγ(1− ϵ)lv−γ ≈ 1, and expect to run the attack strategy2

only once. We analyze various scenarios in our simulations in Section 4.2.

3.8 Alternative Versions of SNOVA

The SNOVA team recently released a preprint [27] that proposes two new ver-
sions of SNOVA to counteract Buellen’s attack [5].

The first alternative version of SNOVA is choose randommatricesAk,α, Bk,α ∈
R and Qk,α1, Qk,α2 ∈ Fq[S], for k ∈ [o] and α ∈ [l2], and define the k-th coordi-
nate of the public map P(U) as

Pk(U1, . . . , Un) =

l2∑
α=1

n∑
i=1

n∑
j=1

Ak,α · U t
i (Qk,α1Pk,i,jQk,α2)Uj ·Bk,α.

The second alternative version of SNOVA defines the k-th coordinate of the
public map P(U) as follows

Pk(U) =

l4∑
α=1

n∑
i=1

n∑
j=1

Aα · U t
i (Qα1Pk,i,jQα2)Uj ·Bα,

where the matrices Aα, Bα ∈ R, and Qα1, Qα2 ∈ Fq[S], for α ∈ [l4], are deter-

mined by fixed matrices Ẽi,j ∈ Fl2×l2
q , for i, j ∈ [l], specified in [27].

We remark that either alternative version is still vulnerable to our fault at-
tacks described in Sections 3.3 and 3.4 since we exploit the related randomness

present in the vinegar variables V(ω) = (V
(ω)
1 , . . . , V

(ω)
n)t when a permanent fault

has been established and the relation S(ω) = T−1V(ω). Additionally, the proposed
alternatives do not affect the reconciliation attack.
2 The runtime of Algorithm 6 depends on Γϵ.

20

4 Experiments of our fault attacks

To validate our claims, we conducted simulations of our fault attack and pre-
sented a step-by-step procedure for our tests along with their results. We begin
by explaining the conceptual framework of the attack. We implement the SNOVA
signature scheme in SAGE, adhering to its specification document [19]. This im-
plementation serves as the foundation for our analysis. Additionally, we utilized
the latest version of the SNOVA code provided by the SNOVA team3 to generate
the signatures. In these simulations, we introduced faults by fixing specific values
in the vinegar variables, thereby mimicking the fault injection process described
in our attack model in Section 3.1.

4.1 Evaluating the fault attack from Sections 3.3 and 3.4

We evaluate our attack by considering two scenarios.
In Scenario I, we replace line 13 of Algorithm 2 with the function described

in Algorithm 7. This function takes a set of SNOVA parameters, a binary string
x of size l2v, and a list L of the same size containing random field elements from
F16. The binary string x directs Algorithm 7 regarding which elements are to be
drawn from L and which are to be generated randomly. This approach ensures
that each time the signature algorithm is executed, the same field elements in
each Vi remain fixed.

Algorithm 7 simulates a fault by fixing F16 elements in the vinegar variables.

1: function assign values to vinegar variables fault F16(v, o, l, x, L)
2: V← []
3: for (i← 1, i ≤ v, i← i+ 1) do
4: Vi ← [0]l×l

5: for (r0 ← 1, r0 ≤ l, r0 ← r0 + 1) do
6: for (r1 ← 1, r1 ≤ l, r1 ← r1 + 1) do
7: if (xi·l2+r0·l+r1

= 1) then
8: Vi[r0, r1]← Li·l2+r0·l+r1

9: else
10: Vi[r0, r1]

$←− F16

11: end if
12: end for
13: end for
14: V.append(Vi)
15: end for
16: return V

In Scenario II, we replace line 13 of Algorithm 2 with the function represented
by Algorithm 8. This function takes a SNOVA parameter set, a binary string x

3 https://github.com/PQCLAB-SNOVA/SNOVA using commit
3d7e8c7cebdd57293d74dc6c2608656697b99597.

21

https://github.com/PQCLAB-SNOVA/SNOVA

of size 4l2v, and a list L of size 4l2v containing random field elements from F2.
Similar to the previous scenario, Algorithm 8 guarantees that the same bits in
the binary representation of each Vi are fixed each time Algorithm 2 is executed.

Algorithm 8 simulates a fault by fixing F2 elements in the vinegar variables.

1: function assign values to vinegar variables fault F2(v, o, l, x, L)
2: V← []
3: for (i← 1, i ≤ v, i← i+ 1) do
4: Vi ← [0]l×l

5: for (r0 ← 1, r0 ≤ l, r0 ← r0 + 1) do
6: for (r1 ← 1, r1 ≤ l, r1 ← r1 + 1) do
7: e← [0]4

8: for (r2 ← 1, r2 ≤ 4, r2 ← r2 + 1) do
9: if (xi·l2+r0·l+4·r1+r2

= 1) then
10: e[r2]← Li·l2+r0·l+4·r1+r2

11: else
12: e[r2]

$←− F2

13: end if
14: end for
15: Vi[r0, r1]← e

16: end for
17: end for
18: V.append(Vi)
19: end for
20: return V

In summary, our test experiments run the following step-by-step procedure:

1. Select a SNOVA parameter set and then create a key pair (sk, pk) by calling
Algorithm 1.

2. In either scenario, create the bitstring x by performing either l2v or 4 · l2v
Bernoulli trials given a probability 0 < ρ < 1. Furthermore, create L by
generating a list of size |x| of random field elements (from either F16 or F2).

3. Collect Nmsg signatures by calling the tweaked version of Algorithm 2. The
value of Nmsg depends on the scenario we are running. For the scenario I,
Nmsg is set to o · l + 2, while, for the scenario II, Nmsg is set to 4 · o · l + 2

4. Once Nmsg signatures are collected, then call the corresponding recovery
algorithm, i.e. either Algorithm 3 for Scenario I or Algorithm 4 for Scenario
II.

5. Compare the recovered part of T with the corresponding part of the real T
to verify the effectiveness of our recovery algorithms.

Our experimental results confirm that our recovery algorithms perform as
expected. Specifically, when provided with the required number of faulty sig-
natures, they successfully recover the correct components of T , as outlined in

22

Sections 3.3 and 3.4. Table 3 summarizes the minimum number of faulty signa-
tures required for each SNOVA parameter set to guarantee the success of our
recovery algorithms.

Table 3. Minimum number of signatures per SNOVA parameter set

Recovery from Recovery from
Security (v, o, q, l, λ) fixed field elements fixed bits
Level by Algorithm 3 by Algorithm 4

I
(37, 17, 16, 2, 128) 34 138
(25, 8, 16, 3, 128) 26 98
(24, 5, 16, 4, 128) 22 82

III
(56, 25, 16, 2, 192) 52 202
(49, 11, 16, 3, 192) 35 134
(37, 8, 16, 4, 192) 34 130

V
(75, 33, 16, 2, 256) 68 266
(66, 15, 16, 3, 256) 47 182
(60, 10, 16, 4, 256) 42 162

In addition to the SAGE implementation, we utilize the C version of the SNOVA
code to evaluate our attack by generating faulty signatures. Specifically, we in-
corporate Algorithm 7 into the C code. The vinegar values are generated within
the function sign digest core ref found in the file snova kernel.h. To gener-
ate these values, SNOVA uses Keccak, and in the reference implementation, the
authors rely on the eXtended Keccak Code Package (XKCP)4. Listing 1.1 details
the method for generating these values and demonstrates how they are assigned
to the appropriate structure, a matrix variable named X in GF16Matrix.

1 // generate the vinegar value
2 Keccak_HashInstance hashInstance;
3 Keccak_HashInitialize_SHAKE256 (& hashInstance);
4 Keccak_HashUpdate (& hashInstance , pt_private_key_seed , 8 *

seed_length_private);
5 Keccak_HashUpdate (& hashInstance , digest , 8 * bytes_digest);
6 Keccak_HashUpdate (& hashInstance , array_salt , 8 * bytes_salt);
7 Keccak_HashUpdate (& hashInstance , &num_sign , 8);
8 Keccak_HashFinal (& hashInstance , NULL);
9 Keccak_HashSqueeze (& hashInstance , vinegar_in_byte , 8 * ((v_SNOVA *

lsq_SNOVA + 1) >> 1));
10

11 counter = 0;
12 for (int index = 0; index < v_SNOVA; index ++) {
13 for (int i = 0; i < rank; ++i) {
14 for (int j = 0; j < rank; ++j) {
15 set_gf16m(X_in_GF16Matrix[index], i, j,
16 ((counter & 1) ? (vinegar_in_byte[counter >> 1]

>> 4) : (vinegar_in_byte[counter >> 1] & 0xF)));
17 counter ++;

4 https://github.com/XKCP/XKCP

23

https://github.com/XKCP/XKCP

18 }
19 }
20 }

Listing 1.1. Code snippet of generation of vinegar values.

To generate faulty signatures, we employ the get F16 function, which gener-
ates random field elements in F16 and creates a binomial random variable array,
denoted as x. This array plays a crucial role in determining which entries in the
matrix X in GF16Matrix will be assigned random values versus those that
will be derived from the vinegar variables. As illustrated in Listing 1.2, we mod-
ify the variable X in GF16Matrix to incorporate these random values, replacing
the original values obtained from the hash function. For more details about the
implementation of the function get F16, see Appendix A.

1 uint8_t x[v_SNOVA*lsq_SNOVA] = {0};
2 uint8_t I[v_SNOVA*lsq_SNOVA] = {0};
3 get_F16(v_SNOVA , o_SNOVA , I, x, 0.5);
4 for (int index = 0; index < v_SNOVA; index ++) {
5 for (int i = 0; i < rank; ++i) {
6 for (int j = 0; j < rank; ++j) {
7 if (x[index * lsq_SNOVA + i * l_SNOVA + j] == 1) {
8 set_gf16m(X_in_GF16Matrix[index], i, j, I[index *

lsq_SNOVA+ i * l_SNOVA + j]);
9 } else {

10 set_gf16m(X_in_GF16Matrix[index], i, j,
11 ((counter & 1) ? (vinegar_in_byte[counter

>> 1] >> 4) : (vinegar_in_byte[counter >> 1]
12 & 0xF)));
13 counter ++;
14 }
15 }
16 }
17 }

Listing 1.2. Code snippet for setting random values as Algorithm 6.

Now, we use the faulty ‘X in GF16Matrix’ to generate the signature, where
the matrix ‘T12’ is part of the private key. The process is shown in Listing 1.3.
Specifically, the matrix ‘T12’ is multiplied with parts of the ‘X in GF16Matrix‘,
and the results are accumulated to form the final signature.

1 for (int index = 0; index < v_SNOVA; ++index) {
2 gf16m_clone(signature_in_GF16Matrix[index], X_in_GF16Matrix[index]);
3 for (int i = 0; i < o_SNOVA; ++i) {
4 gf16m_mul(T12[index][i], X_in_GF16Matrix[v_SNOVA + i],

gf16m_secret_temp0);
5 gf16m_add(signature_in_GF16Matrix[index], gf16m_secret_temp0 ,

signature_in_GF16Matrix[index]);
6 }
7 }
8 for (int index = 0; index < o_SNOVA; ++index) {
9 gf16m_clone(signature_in_GF16Matrix[v_SNOVA + index], X_in_GF16Matrix[

v_SNOVA + index]);
10 }

Listing 1.3. Usage of X in GF16Matrix to generate the final signature.

As one expects, the results obtained from SAGE—when generating signatures
and employing our recovery algorithms—are quite comparable to those produced

24

by the C code for generating faulty signatures, followed by the execution of re-
covery algorithms in SAGE. The C code and SAGE scripts are publicly accessible
in this repository: https://github.com/gbanegas/fault_sim_snova.

4.2 Evaluating the fault-assisted reconciliation attack

Using our SAGE implementation and the C version, we also evaluated the fault
attack described in Section 3.7.

Let P be a matrix of size v × l × l, where the elements Pijk represent the
probabilities pi,jk as described in Section 3.7. We replace line 13 of Algorithm 2
with a function that takes a set of SNOVA parameters and the matrix P , ran-
domly selects ω ∈ Fq and returns the vinegar variables Vi, where each Vi,jk is
equal to ω with probability Pijk.

We conducted experiments, each consisting of 100 runs of SNOVA and our
algorithms. In each trial, probabilities for Pi,jk are set, and the modified version
of Algorithm 2 is run. A “failure” in Step 2 occurs if the modified algorithm
cannot compute a signature after one iteration. A success in Algorithm 6 occurs
if the secret space can be computed after Step 2 has completed successfully.
Therefore, the success rate of Algorithm 6 is the number of successful compu-
tations divided by the number of trials, excluding those that failed in Step 2.
Finally, the overall success rate of the attack strategy is the number of successes
in Algorithm 6 divided by the total number of trials.

In our experiments we set ϵ ∈ {1, 0.97, 0.95, 0.93} and Γϵ,r = {⌊µ+rσ⌋ , . . . , ⌊µ−
rσ⌋}, where µ = lvϵ, σ =

√
lvϵ(1− ϵ) and r ∈ {1, 2}. Table 4 shows our results

for different assignment for P and the SNOVA parameter (37, 17, 16, 2, 128). Al-
gorithm 6’s runtime was computed by using Eq. (13) and the Cryptographic
Estimators library [10].

Table 4. Table with the results of our experiments for the SNOVA parameter
(37, 17, 16, 2, 128), where Cβ := {(i, j, β) : i ∈ [v], j ∈ [l]} for some β ∈ [l].

Assignments for P Failure Rate Algorithm 6 Attack Strategy Algorithm 6
Step 2 Success Rate Success Rate Runtime (bits)

r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

Pι = 1 for ι ∈ [v]× [l]2 6% 100% 100% 94% 94% 6 7

0.97 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 6% 44% 100% 41% 94% 42 52

0.95 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 7% 33% 100% 31% 93% 52 60

0.93 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 5% 19% 100% 18% 95% 60 67

Pι = 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 2% 100% 100% 98% 98% 5 6

0.97 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 8% 41% 100% 38% 92% 41 51

0.95 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 5% 37% 100% 35% 95% 51 59

0.93 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 4% 40% 93% 38% 89% 59 66

25

https://github.com/gbanegas/fault_sim_snova

5 Countermeasure

In this section, we present a countermeasure for the fault attacks described in
Section 3.

This countermeasure adapts a general strategy designed to defend against
fault attacks targeting multivariate public key cryptosystems. This strategy was
initially proposed in [12] and later extended and tailored for the UOV and Rain-
bow schemes in [17].

Specifically, Algorithm 9 implements this countermeasure for SNOVA and
should be invoked by Algorithm 2 immediately after executing line 13.

Algorithm 9 accepts three positive integers, Γ and Λ, with the condition that
Γ < Λ, and Υ , as well as a tuple of finite field elements (α1, . . . , αl2v) of size l

2v.
This tuple represents the SNOVA vinegar values [V1, V2, . . . , Vv] generated at line
13 of Algorithm 2. Furthermore, the function compare, called by Algorithm 9 at
line 14, takes two tuples of size l2v: (α1, . . . , αl2v) and (β1, . . . , βl2v). It returns
a tuple of size l2v where the j-th entry is 1 if αj ̸= βj and 0 otherwise. Finally,
the function checkColumn takes (α1, . . . , αl2v), x, β, Υ and checks if there are at
least Υ occurrences of x in the sequence V1,1β , . . . , V1,lβ , . . . , Vv,lβ .

Algorithm 9 Countermeasure by checking and storing vinegar values

1: function countermesure(Γ,Λ, Υ, (α1, . . . , αl2v))
2: for x ∈ Fq do
3: for β ∈ {1, 2, . . . , l} do
4: if checkColumn((α1, . . . , αl2v), x, β, Υ) then
5: return fail

6: end if
7: end for
8: end for
9: if L has not been created then
10: L← []
11: end if
12: count← [0]vl

2

13: for (i← 0, i < |L|, i← i+ 1) do
14: count← count+ compare(L[i], (α1, . . . , αl2v))
15: end for
16: if count[j] > Γ for some j ∈ [l2v] then
17: return fail

18: end if
19: if |L| = Λ then
20: L.removeEntryAtIndex(0)
21: end if
22: L.append((α1, . . . , αl2v))
23: return success

26

Why does this countermeasure work? Let us assume that the countermeasure is
already in place in the signing algorithm, with Λ = l · o and Γ < Λ.

We begin by analyzing the check performed between lines 1 and 8, which
targets the attack strategy outlined in Section 3.7. Let V = (Vt1, . . . , V

t
v)

t and let
Zβ be the random variable that counts the number of occurrences of x ∈ Fq in
the β-th column of V. Zβ follows a binomial distribution with probability p = 1/q
in the absence of faults. Therefore, we have to take Υ such that Pr(Zβ ≥ Υ),
the probability of checkColumn returning True at line 3, is negligible. For any
current SNOVA parameters, Υ = ⌊l · v · p + r

√
l · v · p(1− p)⌋, where r ≥ 6 is

natural number.
On the one hand, if the step described in Section 3.7 successfully fixes at least

Υ entries in the β-th column of V to x, the function checkColumn will return
True. On the other hand, if the faults fix at most Υ − 1 entries in any column
of V to x, the corresponding checks will return False. In this case, the attacker
can proceed with the attack strategy. However, running Algorithm 6 under these
conditions would lead to a prohibitive runtime, as discussed in Appendix B.

We now examine the countermeasure against the attack strategy described
in Section 3.3.

Assume that |L| = Λ, meaning the list maintained by Algorithm 9 has reached
its maximum allowed size, and that the countermeasure function is called with
parameters Γ , Λ, and (α1, . . . , αl2v).

Let E denote the event where line 17 of Algorithm 9 returns fail in the ab-
sence of fault injection. For this event to occur, there must exist some j ∈ [l2v]
such that count[j] > Γ , meaning the tuple (L[i][j])Λ−1i=0 contains count[j] in-
stances of αj . Let Xj be the random variable that counts the number of occur-
rences of αj in the tuple (L[i][j])Λ−1i=0 . Each Xj follows a binomial distribution
with probability pj = 1

|Fq| , and the variables are mutually independent. There-

fore, the probability that Algorithm 9 reaches line 17 is

pfail = Pr(Xj > Γ for some j ∈ [l2v])

= 1− Pr(Xj ≤ Γ for all j ∈ [l2v]).

On the other hand, if an attacker introduces a permanent fault injection, as
described in Section 3.3, the signing algorithm will abort after producing Γ faulty
signatures. In this case, the attacker could construct v2l linear systems (as in Eq.
(9)), each consisting of Γ − 1 equations and lo unknowns. Since Γ − 1 < Λ = lo,
these linear systems are under-determined, meaning they have multiple solutions.
Moreover, the attacker is unaware of which field elements, if any, from each
vinegar variable Vi are fixed by the permanent fault. In other words, out of the
total vl2 field elements representing a vinegar variable set, the attacker does not
know the indices of the fixed elements or their values.

Let us consider the j-th linear system. To solve this system, the attacker
could specialize lo − Γ + 1 variables (i.e., assign random values to lo − Γ + 1
variables) and then solve the resulting linear system with Γ − 1 equations and
Γ − 1 unknowns. Consequently, the probability of finding the correct solution

27

for this particular system is approximately pΓ−lo−1j . However, the attacker will
not be able to verify whether a given solution is correct.

Therefore, Γ must be chosen such that both pfail and the probability of suc-
cessfully executing a key recovery attack via fault injection is negligible. Table 5
provides possible values for Γ and Λ corresponding to each SNOVA parameter
set.

Table 5. Suggested values for Γ and Λ.

Security
level (v, o, q, l, λ) Γ Λ

I
(37, 17, 16, 2, 128) 10 34
(25, 8, 16, 3, 128) 10 24
(24, 5, 16, 4, 128) 6 20

III
(56, 25, 16, 2, 192) 14 50
(49, 11, 16, 3, 192) 9 33
(37, 8, 16, 4, 192) 8 32

V
(75, 33, 16, 2, 256) 15 66
(66, 15, 16, 3, 256) 14 45
(60, 10, 16, 4, 256) 9 40

6 Conclusion

In this paper, we presented several fault attack strategies against the SNOVA
cryptographic scheme. Initially, we proposed two methods of executing a fault
attack, showing that our novel key recovery algorithm can recover the secret key
with as few as 22 to 34 faulty signatures at the lowest security level, and up to
42 or 68 signatures at the highest level. Our experiments, implemented in both
SAGE and C, demonstrated the efficiency of our algorithm under varying fault
conditions.

In addition to these earlier methods, we introduced a new fault-assisted rec-
onciliation attack in Section 3.7. This attack leverages induced transient faults
to recover the secret key space by solving a quadratic system. The attack was
evaluated using the lowest security parameter set for SNOVA, and the results
indicated a high success rate under specific probability conditions for fault oc-
currence. Our experiments validated the feasibility of this attack, emphasizing
its potential to weaken SNOVA’s security when fault injections are possible.

To mitigate these vulnerabilities, we proposed a lightweight countermeasure
that can effectively reduce the probability of successful key recovery without
significantly impacting SNOVA’s performance. This countermeasure is flexible
and scalable, making it applicable across various SNOVA parameter sets.

28

Our findings underline the importance of robust fault-resistant implemen-
tations in post-quantum cryptographic schemes such as SNOVA. Future work
could focus on further optimizing the countermeasures and exploring the impact
of these attacks on other cryptographic systems.

References

1. Manuel Agoyan, Jean-Michel Dutertre, Philippe Hoogvorst, Emmanuel Jaulmes,
Alfredo Tria, and Florent Valette. Efficient fault attacks on AES. In IEEE Work-
shop on Fault Diagnosis and Tolerance in Cryptography, pages 16–23. IEEE, 2010.

2. Tobias Aulbach and Florian König. Exploring the implementation security of the
post-quantum signature scheme MAYO. In Workshop on Fault Diagnosis and
Tolerance in Cryptography - FDTC 2023, pages 10–30, 2023.

3. Tobias Aulbach, Florian König, and Jürgen Kraämer. Recovering Rainbow’s secret
key with a first-order fault attack. In Progress in Cryptology - AFRICACRYPT
2022, pages 348–368, 2022.

4. Ward Beullens. MAYO: practical post-quantum signatures from oil-and-vinegar
maps. In Riham AlTawy and Andreas Hülsing, editors, Selected Areas in Cryp-
tography - 28th International Conference, SAC 2021, Virtual Event, September
29 - October 1, 2021, Revised Selected Papers, volume 13203 of Lecture Notes in
Computer Science, pages 355–376. Springer, 2021.

5. Ward Beullens. Improved cryptanalysis of SNOVA. Cryptology ePrint Archive,
Paper 2024/1297, 2024.

6. Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwis-
cher. MAYO, June 2023. Available at https://pqmayo.org/assets/specs/mayo.
pdf.

7. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
Advances in Cryptology—CRYPTO’97, pages 513–525, 1997.

8. Jonathan F Buss, Gudmund S Frandsen, and Jeffrey O Shallit. The computational
complexity of some problems of linear algebra. Journal of Computer and System
Sciences, 58(3):572–596, 1999.

9. Daniel Cabarcas, Peigen Li, Javier Verbel, and Ricardo Villanueva-Polanco. Im-
proved attacks for SNOVA by exploiting stability under a group action. Cryptology
ePrint Archive, Paper 2024/1770, 2024.

10. Andre Esser, Javier A. Verbel, Floyd Zweydinger, and Emanuele Bellini.
{CryptographicEstimators}: a software library for cryptographic hardness estima-
tion. {IACR} Cryptol. ePrint Arch., page 589, 2023.

11. Hiroshi Furue, Yuichi Kiyomura, and Takashi Takagi. A new fault attack on uov
multivariate signature scheme. In Post-Quantum Cryptography - PQCrypto 2022,
pages 124–143, 2022.

12. Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault attacks
on multivariate public key cryptosystems. In Bo-Yin Yang, editor, Post-Quantum
Cryptography, pages 1–18, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

13. Yoshinori Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault attacks
on multivariate public key cryptosystems. Post-Quantum Cryptography, pages 1–
18, 2011.

14. Yasuhiko Ikematsu and Rika Akiyama. Revisiting the security analysis of SNOVA.
Cryptology ePrint Archive, Paper 2024/096, 2024. https://eprint.iacr.org/

2024/096.

29

https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://eprint.iacr.org/2024/096
https://eprint.iacr.org/2024/096

15. Sönke Jendral and Elena Dubrova. MAYO key recovery by fixing vinegar seeds.
Cryptology ePrint Archive, Paper 2024/1550, 2024.

16. Yoongu Kim, Peter Daly, Jeremie Kim, Christopher Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Lusky, Justin Meza, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of dram disturbance errors. ACM
SIGARCH Computer Architecture News, 42(3):361–372, 2014.

17. Joachim Krämer and Maurus Loiero. Fault attacks on uov and rainbow. Construc-
tive Side-Channel Analysis and Secure Design, pages 193–214, 2019.

18. Peigen Li and Jintai Ding. Cryptanalysis of the SNOVA signature scheme. Cryptol-
ogy ePrint Archive, Paper 2024/110, 2024. https://eprint.iacr.org/2024/110.

19. Chun-Yen Chou Lih-Chung Wang, Jintai Ding, Yen-Liang Kuan, Ming-Siou Li,
Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. Snova: Proposal for nist-
pqc: Digital signature schemes project. Proposal for NISTPQC: Digital Signature
Schemes project, 2023. https://snova.pqclab.org/.

20. Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller,
J. Stoer, N. Wirth, and Christoph G. Günther, editors, Advances in Cryptology
— EUROCRYPT ’88, pages 419–453, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg.

21. Kaan Mus, Seungwon Shin, and Berk Sunar. Quantumhammer: A practical hybrid
attack on the luov signature scheme. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1071–1084, 2020.

22. Shuhei Nakamura, Yusuke Tani, and Hiroki Furue. Lifting approach against the
SNOVA scheme. Cryptology ePrint Archive, Paper 2024/1374, 2024.

23. Jacques Patarin. Cryptanalysis of the matsumoto and imai public key scheme of
eurocrypt’88. In Don Coppersmith, editor, Advances in Cryptology - CRYPTO
’95, 15th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 27-31, 1995, Proceedings, volume 963 of Lecture Notes in Computer
Science, pages 248–261. Springer, 1995.

24. Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn. Related random-
ness attacks for public key encryption. Cryptology ePrint Archive, Paper 2014/337,
2014. https://eprint.iacr.org/2014/337.

25. Anis Sayari, Denis Butin, and Thomas Fuhr. Practical fault injection attacks on
multivariate signature schemes. In Constructive Side-Channel Analysis and Secure
Design - COSADE 2021, pages 101–121, 2021.

26. Ki Shim and Bum Kyu Koo. Full key recovery on uov with fault injection. ICISC
2009, pages 123–140, 2009.

27. Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Jan Adriaan
Leegwater, Ming-Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. A
note on the SNOVA security. Cryptology ePrint Archive, Paper 2024/1517, 2024.

28. Lih-Chung Wang, Po-En Tseng, Yen-Liang Kuan, and Chun-Yen Chou. A simple
noncommutative uov scheme. Cryptology ePrint Archive, Paper 2022/1742, 2022.
https://eprint.iacr.org/2022/1742.

A Implementation details

1 // Function to generate random field element
2 uint8_t random_field_element () {

30

https://eprint.iacr.org/2024/110
https://snova.pqclab.org/
https://eprint.iacr.org/2014/337
https://eprint.iacr.org/2022/1742

3 return rand() % 16; // Adjust based on field size (for GF(2^k), mod
appropriately)

4 }
5

6 // Function to generate binomial random variable (Bernoulli trial)
7 uint8_t binomial_trial(double prob) {
8 double r = (double)rand() / RAND_MAX;
9 return r < prob ? 1 : 0;

10 }
11

12 // Function equivalent to get_F16
13 void get_F16(int v, int o, int l, uint8_t *I, uint8_t *x, double prob) {
14 int size = v * l * l;
15 // Generate I array with random field elements
16 for (int i = 0; i < size; i++) {
17 I[i] = random_field_element ();
18 }
19 // Generate x array with binomial random variables
20 for (int i = 0; i < size; i++) {
21 x[i] = binomial_trial(prob);
22 }
23 }

Listing 1.4. Generate random elements of F16.

B Agorithm 6’s runtime complexity

Given a homogeneous multivariate quadratic map P : FN
q → FM

q , we denote
MQ(N,M, q) the field multiplications required to find a non-trivial solution u
satisfying P(u) = a ∈ FM

q if such solution exists. The runtime complexity of
Algorithm 6 is bounded by

O(q
∑
β∈C

∑
γ∈Γβ

(
lv

γ

)
· MQ(lv − γ,ml2, q)) (13)

field multiplications.

31

	 A Fault Analysis on SNOVA

