
Improving Differential-Neural Distinguisher For

Simeck Family

Xue Yuan∗ and Qichun Wang†‡

Abstract. In CRYPTO 2019, Gohr introduced the method of differential neu-
ral cryptanalysis, utilizing neural networks as the underlying distinguishers to
achieve distinguishers for (5-8)-round of the Speck32/64 cipher and subsequently
recovering keys for 11 and 12 rounds. Inspired by this work, we propose an
enhanced neural cryptanalysis framework that combines the Efficient Channel
Attention (ECA) module with residual networks. By introducing the channel
attention mechanism to emphasize key features and leveraging residual networks
to facilitate efficient feature extraction and gradient flow, we achieve improved
performance. Additionally, we employ a new data format that combines the ci-
phertext and the penultimate round ciphertext as input samples, providing the
distinguisher with more useful features. Compared with the known results, our
work enhance the accuracy of the neural distinguishers for Simeck32/64 (10-12)-
round and achieve a new 13-round distinguisher. We also improve the accuracy
of the Simeck48/96 (10-11)-round distinguishers and develop new (12-16)-round
neural distinguishers. Moreover, we enhance the accuracy of the Simeck64/128
(14-18)-round distinguishers and obtain a new 19-round neural distinguisher. As
a result, we achieve the highest accuracy and the longest rounds distinguishers
for Simeck32/64, Simeck48/96, and Simeck64/128.
Keywords: Neural-Distinguisher, Differential Cryptanalysis, Simeck Cipher,
Neural Network, ECA module

1 Introduction

Differential cryptanalysis [3] is a powerful attack technique in the field of cryp-
tography, primarily used to analyze and break symmetric cryptographic systems.
By studying the differential propagation characteristics of ciphertext pairs, this
method reveals potential weaknesses in encryption algorithms, thereby effec-
tively recovering key information. Since its disclosure in the early 1990s, dif-
ferential cryptanalysis has become an essential component of cryptographic re-

∗School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing
Normal University, Nanjing, China. Email: 232202034@njnu.edu.cn

†School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing
Normal University, Nanjing, China. Email: qcwang@fudan.edu.cn

‡Corresponding author.

1

search, exerting a profound influence on the design and evaluation of modern
cryptographic algorithms. The technique was first proposed by Eli Biham and
Adi Shamir in 1990. The core idea of differential cryptanalysis is to determine
the possible values of keys by comparing the differences between two inputs and
their corresponding output differences. The fundamental principle of differen-
tial cryptanalysis is to identify specific patterns in an encryption algorithm by
analyzing the relationships between input pairs (input differences) and output
pairs (output differences). With the introduction of this technique, cryptogra-
phers have paid greater attention to the resistance of encryption algorithms to
differential attacks, promoting the continuous development and improvement of
new cryptographic algorithms.

In resource-constrained environments, lightweight block ciphers serve as a
fundamental basis for ensuring data confidentiality, owing to their capability to
operate efficiently on small devices while providing adequate security. In the
design and analysis of lightweight block ciphers, integrating differential crypt-
analysis methods enables a more comprehensive evaluation of their resistance
to attacks.

With the advancement of artificial intelligence (AI), technologies such as
deep learning present new opportunities for cryptanalysis. By employing deep
learning algorithms, researchers can automate the differential cryptanalysis pro-
cess, enhancing both the efficiency and accuracy of attacks. Deep learning can
rapidly identify and learn patterns within encryption algorithms, thereby en-
abling effective differential analysis on large-scale datasets. This integration not
only applies to traditional symmetric cryptosystems but also introduces new
perspectives for the design and security assessment of lightweight block ciphers.

In CRYPTO 2019, Gohr [5] first proposed the thought of combining neural
networks with differential cryptanalysis. The differential neural distinguisher,
serving as a fundamental distinguisher, can differentiate whether a ciphertext
is produced by encrypting plaintext that satisfies a specific input differential or
by random encryption. During the training process, the differential neural dis-
tinguisher provides an accuracy metric, which, if greater than 0.5, indicates the
effectiveness of the distinguisher. Gohr utilized a residual network [6] in conjunc-
tion with differential cryptanalysis [3], applying this approach to reduced-round
Speck32/64 cipher, obtaining distinguishers for (5-8)-round and achieving key
recovery for 11 and 12 rounds using these distinguishers.

To improve the accuracy of distinguishers, there are two main approaches.
The first approach involves enhancing the network architecture by combin-
ing different networks with differential cryptanalysis. Bao et al. [1] employed
DenseNet and SENet to train neural distinguishers, applying them to the Si-
mon32/64 cipher and obtaining effective differential neural distinguishers for
(7-11)-round. Inspired by GoogLeNet, Zhang et al. [14] added an Inception
module, composed of multiple parallel convolutional layers with various kernel
sizes, before the Residual network [6] to capture more dimensions of informa-
tion. This approach was applied to the Speck32/64 and Simon32/64 ciphers,
improving the accuracy of (6-8)-round distinguishers for Speck32/64, obtaining
a new 9-round distinguisher, and achieving 14-round key recovery. Additionally,

2

it enhanced the accuracy of (9-11)-round distinguishers for Simon32/64, result-
ing in a new 12-round distinguisher and achieving 17-round key recovery. Lyu
et al. [10] improved Gohr’s framework and applied it to Simeck32/64, obtaining
neural network distinguishers for (8-10)-round of Simeck32/64 and achieving
key recovery attacks for (13-15)-round of Simeck32/64.

Another approach involves changing the format of the input data to the
neural network. In 2023, Chen et al. [4] proposed a new data format that used
multiple ciphertext pairs as input to the neural network, applying this method
to the Speck32/64 cipher and improving the accuracy of its (5-7)-round neural
distinguishers. Zhang et al. [13] improved the input format of neural networks
for the Simeck cipher, enhancing the accuracy of (9-12)-round neural distin-
guishers and achieving 16-round key recovery attacks. Hou et al. [7] suggested
using multiple output differential pairs as the input to the neural network rather
than multiple ciphertext pairs, applying it to the Simon cipher, and enhancing
the accuracy of distinguishers, achieving key recovery attacks for 13-round of
Simon32/64, 14-round of Simon48/96, and 13-round of Simon64/128. Benamira
et al. [2] provided an explanation for Gohr’s neural distinguisher, demonstrating
that the neural distinguisher’s decision is based on the differences between ci-
phertext pairs and the differences in internal states from the penultimate round
and prior rounds. Liu et al. [8] proposed a new data format utilizing charac-
teristics from the penultimate round, experimentally verifying that the features
provided to the neural network by ciphertext pairs differ from those provided
by penultimate round data. This method was applied to the Speck and Simon
ciphers, obtaining the highest accuracy and longest round neural distinguishers
for the Speck and Simon families. Lu et al. [9] introduced a new data format for
Simon and Simeck, using multiple ciphertext pairs to train SE-ResNet neural
networks, resulting in (9-12)-round distinguishers for Simeck32/64.

Inspired by the aforementioned works, we conduct innovative research by
modifying the input data format for the neural network and improving Gohr’s
network framework. Applied to the Simeck cipher, we achieve notable results.
Our contributions : The contributions are summarized as follows.

We modify Gohr’s network, drawing inspiration from ECA-net [11], by in-
corporating an ECA layer after each residual layer. By introducing the chan-
nel attention mechanism, the model’s focus on important features is enhanced,
allowing it to better identify and utilize useful features, thus improving the
accuracy and training efficiency of the distinguisher. We replace the ReLU acti-
vation function with the LeakyReLU activation function, which provides better
feature learning capabilities during the training of differential neural network
distinguishers, mitigates the vanishing gradient problem, stabilizes the training
process, and enhances the robustness and generalization ability of the model.

We also modify the input data format by combining multiple sets of differ-
ential data from the penultimate round with the differential data of ciphertext
pairs as a single input instance to the neural network. Applying the above
modifications to the Simeck cipher, we improve the accuracy of (9-12)-round
neural distinguishers for Simeck32/64, obtaining a new 13-round distinguisher.
Simultaneously, we enhance the accuracy of (10-11)-round neural distinguishers

3

for Simeck48/96, obtaining new (12-16)-round neural distinguishers, and finally
improve the accuracy of (14-18)-round neural distinguishers for Simeck64/128,
obtaining a new 19-round distinguisher.

2 Preliminaries

The Simeck family of lightweight block ciphers [12] is designed to provide effi-
cient encryption solutions for resource-constrained environments. By integrating
the design principles of both the Simon and Speck ciphers, the Simeck family
achieves high efficiency in both hardware and software implementations. This
cipher family was introduced by Yang et al. in 2015.

Simeck ciphers [12] utilize a Feistel structure and offer three variants with
different block and key sizes: 32/64, 48/96, and 64/128. The design incorporates
a simple yet efficient round function primarily involving shift operations, bitwise
AND operations, and addition. The number of rounds for the three variants is
32, 36, and 44. Despite the differences in block and key sizes, the encryption and
decryption algorithms, as well as the key expansion algorithm, remain consistent
across the variants. Below, we provide a detailed description of the encryption
and key expansion algorithms.

First, the encryption algorithm of the Simeck cipher is discussed. For differ-
ent variants of Simeck, the encryption algorithm differs only in the length of the
plaintext, ciphertext, and key, as well as the number of rounds. The encryption
process and the round function remain identical. Below is a detailed description
of the encryption algorithm.

Algorithm 1 Simeck Encryption
Input:Plaintext (L,R), Key (K), Number of Rounds (N)
Output:Ciphertext (LN , RN)
1.Intialize:

L0 ← L
R0 ← R

2.For i=0 to N-1:
Li+1 ← Ri

Ri+1 ← Li ⊕ f(Ri)⊕Ki

Return (LN , RN)
Function f(x):

return (x <<< 5)⊙ (x <<< 0)⊕ (x <<< 1)

Next, the decryption algorithm of the Simeck cipher is discussed. The de-
cryption algorithm is the inverse of the encryption algorithm. Therefore, sim-
ilar to the encryption algorithm, the decryption algorithm only differs in the
length of the plaintext, ciphertext, and key, as well as the number of encryption
rounds for different variants. Below is a detailed description of the decryption
algorithm.

4

Algorithm 2 Simeck Decryption
Input:Ciphertext (LN , RN), Key (K), Number of Rounds (N)
Output:Ciphertext (L,R)
1.Intialize:

LN ← L
RN ← R

2.For i = N-1 down to 0:
Ri ← Li+1

Li ← Ri+1 ⊕ f(Ri)⊕Ki

Return (L0, R0)

The key expansion algorithm involves the use of round constants. For differ-
ent variants of the Simeck cipher, the round constant sequences vary. We define
the constant C = 2n−4, where n refers to the word size. The m-sequence z is de-
rived using a specific method outlined in [12]. The m-sequences for Simeck32/64
and Simeck48/96 are identical, while the m-sequence for Simeck64/128 is dif-
ferent and requires separate derivation. The key expansion algorithm process is
entirely consistent across Simeck ciphers with different block lengths. Below is
a detailed description of the key expansion algorithm.

Algorithm 3 Simeck Key Expansion
Input: K: the master key

T: the number of rounds
C: the round constants

Output: Kseq = (k1, k2, ..., kT) : the round key sequence
1.Intialize:

K = (t2, t1, t0, k0)
2.Round Constant Initialization:

C = 2n − 4
z = generate m sequence()

3.Generate Round Keys:
for i = 0 to T - 1 do:

ki ← k0
knext ← t0
tnext ← k0 ⊕ f(t0)⊕ C ⊕ z[i]
t2 ← t1
t1 ← t0
t0 ← t2
k0 ← tnext
end for

4.Return the set of round keys
return Kseq

5

3 Differential-Neural Distinguishers

3.1 Distinguisher Model

A neural distinguisher is a supervised model used to determine whether a ci-
phertext is generated by encrypting plaintexts that satisfy a specific input
differential or by encrypting random numbers. Given m pairs of plaintexts
{(Pi,0, Pi,1), i ∈ [0,m − 1]} and the target cipher algorithm Simeck, the out-
put differentials of the generated ciphertext pairs and the differentials of the
ciphertext outputs after one round of decryption from the penultimate round
{(∆Ci,0,∆Ci,1,∆C ′

i,0,∆C ′
i,1), i ∈ [0,m− 1]} are considered as a single sample.

Each sample is assigned a label Y .

Y =

{
1, ifPi,0 ⊕ Pi,1 = ∆, i ∈ [0,m− 1]

0, ifPi,0 ⊕ Pi,1 ̸= ∆, i ∈ [0,m− 1]

When the plaintext pairs satisfy the specific input differential, the label Y
is set to 1; otherwise, it is set to 0. During the training process, if the accuracy
of the neural distinguisher exceeds 0.5, the distinguisher is deemed effective.

3.2 Efficient Channel Attention (ECA) Module

In convolutional neural networks (CNNs), different channels of feature maps
may contain different types of information. Effectively enhancing important
features is key to improving network performance. The Squeeze-and-Excitation
(SE) network was the first to propose a channel attention mechanism, using
fully connected layers after global average pooling to learn the importance of
each channel. However, the fully connected layers in SE networks introduce
additional parameters and computational overhead. To address this issue, the
Efficient Channel Attention (ECA) [11] mechanism was developed. Bao et al. [1]
utilized SE-Net to train neural distinguishers and achieved promising results.
Inspired by this, we attempted to combine the ECA module with residual net-
works to train neural distinguishers and obtained notable results.

The ECA module is an efficient channel attention mechanism that adaptively
adjusts the weights of feature map channels, enhancing the network’s feature
representation capability and overall performance. The design philosophy of
the ECA module is to avoid using fully connected layers to maintain compu-
tational efficiency while applying different weights to each channel to enhance
the network’s attention mechanism. In the ECA module, the input features are
first subjected to global average pooling to obtain the global feature of each
channel. Then, a one-dimensional convolution (Conv1D) operation is applied
to the global features, with the convolution kernel size typically being an odd
number (e.g., 3, 5, 7) to capture inter-channel dependencies. This step does
not use fully connected layers, thereby reducing the number of parameters and
computational load. Next, the Sigmoid activation function is used to convert
the convolved features into channel weights. Finally, these channel weights are

6

multiplied element-wise with the input features on a per-channel basis to obtain
the enhanced features.

The ECA module is characterized by its lightweight design, achieving effi-
cient computation of the channel attention mechanism. Within the same layer,
the ECA module collects features from different channels through global aver-
age pooling and one-dimensional convolution operations. This design not only
improves the network’s feature representation ability but also enhances the at-
tention mechanism, thereby boosting overall performance.

3.3 Improving Network Architecture

In CRYPTO 2019, Gohr [5] utilized a residual network with a depth of five to
capture differential characteristics between single ciphertext pairs. His network
architecture employed one-dimensional convolutions with a kernel size of 1 to
learn differential features at the same position within the ciphertext. Building
upon Gohr’s network architecture, we introduce several improvements. Specif-
ically, we add an Efficient Channel Attention (ECA) module after the second
convolution layer of each residual block to enhance the network’s feature repre-
sentation capability and attention mechanism, thereby improving overall perfor-
mance. Additionally, we incorporate a Dropout layer after each residual block
to mitigate overfitting. Training the Simeck cipher using the improved network
resulted in neural distinguishers with higher accuracy. Our network architecture
is illustrated in Figure 1.

Figure 1: Improved Network Architecture

7

Input Representation. We use the output differentials of m ciphertext pairs
and the output differentials of the penultimate round ciphertexts after one round
of decryption {(∆Ci,0,∆Ci,1,∆C ′

i,0,∆C ′
i,1), i ∈ [0,m − 1]} as the input to the

neural network. These sample instances are converted into a two-dimensional
matrix and arranged into an m × 2L array in the input layer of the neural
network, where L denotes the block size of the target cipher.

Initial Convolution Layer (Module 1). The input layer is connected to
an initial convolution layer with Nf filters and a kernel size of 1. The out-
puts are then batch normalized to stabilize the learning process. Subsequently,
the LeakyReLU nonlinear activation function (with α = 0.1) is applied to the
normalized outputs. The resulting matrix, of size [m, 2L], is then passed to
subsequent residual block layers to facilitate further feature extraction.

Residual Blocks (Module 2). Each residual block in the network consists
of two layers, each equipped with Nf filters. The operations within each block
commence with a convolution layer having a kernel size of 3. This is fol-
lowed by batch normalization to enhance training stability and efficiency. The
LeakyReLU layer is then applied to introduce nonlinearity. Additionally, an
Efficient Channel Attention (ECA) layer is added after the second convolution
layer to emphasize significant inter-channel features. At the end of each block,
a skip connection directly links the ECA layer’s output to the block’s input,
facilitating information transfer to subsequent blocks. A Dropout layer, with
a dropout rate of 0.3, is added after each residual block to reduce overfitting.
The network architecture includes a configurable number of residual blocks, de-
termined by the depth parameter. In our experiments, we select a depth of
3.

Prediction Head (Module 3 and Output). The prediction head comprises
two hidden layers, ultimately outputting a single unit. Each hidden layer con-
sists of d units, followed by batch normalization and the LeakyReLU activation
function. The output unit employs the Sigmoid activation function to generate
the final prediction.

4 Model Training Process and Results

4.1 Training Process

Data Generation. The training and testing datasets are obtained using the
Linux random number generator. This method ensures the uniform distribution
of the keys Ki and the random generation of ciphertext pairs, with specified in-
put differentials ∆ and binary labels Yi. For the r-round Simeck encryption
process, when Yi = 1, multiple plaintext pairs undergo r rounds of encryption.
When Yi = 0, the second plaintext in each pair is replaced with a newly gener-
ated random plaintext before undergoing r rounds of encryption. A subkey for

8

one round is then randomly generated, and the ciphertext pairs are decrypted
for one round to obtain a set of penultimate round ciphertexts. Our data sam-
ples combine the output differentials of multiple ciphertext pairs and the output
differentials of multiple sets of penultimate round ciphertext pairs into a single
instance. Below is a detailed description of the data generation process using
Simeck32/64 as an example.

Algorithm 4 Data Generation for Neural-Distinguisher
Input:

m: The number of difference pairs contained in a sample
n: Number of samples
nr: Number of encryption rounds
diff: Input differential

Output:
X: Ciphertext differences in binary format
Y: Labels (0 or 1)
ks: The one-round subkey

1. X ← []
2. Y← urandom(n)⊙ 1
3. keys ← urandom(8 * n).reshape(4, -1)
4. ks ← urandom(8).reshape(4, -1)
5. ks ← expand key(ks, 1)
6. for i from 0 to m-1 do
7. p0 ← urandom(4 * n)
8. if Y[i] == 1 then
9. p1 ← p0 ⊕ diff
10. else
11. p1 ← urandom(4 * n)
12. end if
13. ks expanded ← expand key(keys[:, i], nr)
14. c0 ← encrypt(p0, ks expanded)
15. c1 ← encrypt(p1, ks expanded)
16. c0 prime← dec one round(c0, ks)
17. c1 prime← dec one round(c1, ks)
18. ct diff ← c0 ⊕ c1
19. ct prime diff ← c0 prime⊕ c1 prime
20. X.append([ct diff, ct prime diff])
21. end for
22. X ← convert to binary(X)
23. return (X, Y, ks)

The generation of the validation dataset uses the same one-round subkey
returned by the aforementioned algorithm, and the data generation process is
similar, thus will not be repeated.

9

Basic Training Method. We train the neural distinguisher for 20 epochs us-
ing a training dataset of size N and a validation dataset of size M , with a batch
size of bs. For Simeck32/64, Simeck48/96, and Simeck64/128, we use input dif-
ferences of (0x0000, 0x0040), (0x000000, 0x000040), and (0x00000000, 0x00000040),
respectively, to train the distinguisher. We employ the adaptive optimization
algorithm Adam, with L2 weight regularization parameter c = 10−5, to optimize
the mean square error loss with a small penalty. A learning rate scheduler is
used to implement cyclical learning rate adjustments, setting the learning rate

li for epoch i as li = α+ (n−i) mod (n+1)
n ·(β−α), where α = 10−4, β = 2×10−3,

and n = 9. After training, the model file is saved for subsequent evaluation.

Staged Training Method. The staged pre-training method is used to train
differential neural distinguishers for (12-13)-round for Simeck32/64. Initially, we
use a 10-round distinguisher to identify 7-round Simeck32/64 with input differ-
ences (0x0140, 0x0080), which are the most likely three-round differences after
the initial difference (0x0040, 0x0000). Subsequently, we train a distinguisher
to identify 12-round Simeck32/64 with input differences (0x0040, 0x0000), pro-
cessing 107 new instances over 10 epochs using the same cyclical learning rate
schedule as in basic training. After the second stage, the model continue to pro-
cess another 107 instances over 10 epochs. The 13-round distinguisher is trained
similarly, with the primary change being the use of an 11-round distinguisher
to identify 8-round Simeck32/64 with input differences (0x0040, 0x0000).

The staged pre-training method is also applied to train (14-16)-round differ-
ential neural distinguishers for Simeck48/96. Initially, we use a 13-round distin-
guisher to identify 10-round Simeck48/96 with input differences (0x000140, 0x000080).
Subsequently, we train a distinguisher to identify 14-round Simeck48/96 with
input differences (0x000040, 0x000000), processing 107 new instances over 10
epochs using the same cyclical learning rate schedule as in basic training. After
the second stage, the model continue to process another 107 instances over 10
epochs. The (15-16)-round distinguishers are trained similarly.

The staged pre-training method is further applied to train (18-19)-round dif-
ferential neural distinguishers for Simeck64/128. Initially, we use a 16-round dis-
tinguisher to identify 13-round Simeck48/96 with input differences (0x00000140, 0x00000080).
Subsequently, we train a distinguisher to identify 18-round Simeck48/96 with
input differences (0x00000040, 0x00000000), processing 107 new instances over
10 epochs using the same cyclical learning rate schedule as in basic training.
After the second stage, the model continue to process another 107 instances
over 10 epochs. The 19-round distinguisher is trained similarly.

Model and Training Parameter. An important parameter for differential
neural distinguishers is the number m of ciphertext pair differences and penul-
timate round ciphertext pair differences contained in a sample. For different
variants of Simeck, we select different values for m. Table 1 lists the parameters
related to the network architecture and the training process of the differential
neural distinguishers.

10

Table 1: Related parameter for differential-neural distinguishers
Simeck32/64 m=64 Nf = 64 d=128

bs=5000 N = 107 M = 106Simeck48/96 m=48 Nf = 128 d=256
Simeck64/128 m=32 Nf = 128 d=256

4.2 Results

Below are our experimental results. First, for the Simeck32/64 cipher, we com-
pare our results with those of Lu et al. [9] and Zhang et al. [13]. Our training
results are superior, enhancing the accuracy of the neural distinguishers for
rounds (10-12) of Simeck32/64. Additionally, we obtain a new 13-round distin-
guisher using the staged training method.

Table 2: Accuracy of distinguisher for Simeck32/64

Ciphers
Attack
Model

Round Accuracy TPR TNR Source

Simeck32/64 ND

10 0.7354 0.7207 0.7501 [9]
10 0.7371 0.7165 0.7525 [13]
10 0.9319 0.8846 0.9676 Sect.4

11 0.5609 0.5366 0.5852 [9]
11 0.5666∗ 0.5441 0.5895 [13]
11 0.6676 0.6195 0.7157 Sect.4

12 0.5152∗ 0.4799 0.5505 [9]
12 0.5161∗ 0.4807 0.5504 [13]
12 0.5429 0.4771 0.6042 Sect.4

13 0.5074∗ 0.3457 0.6631 Sect.4

Next, for the Simeck48/96 cipher, we compare our results with those of Hou
et al. [7]. We improve the accuracy of the distinguishers for (10-11)-round and
obtain new neural distinguishers for (12-16)-round.

11

Table 3: Accuracy of distinguisher for Simeck48/96

Ciphers
Attack
Model

Round Accuracy TPR TNR Source

Simeck48/96 ND

10 0.5789 — — [7]
10 0.9987 0.9964 0.9999 Sect.4

11 0.8140 — — [7]
11 0.9834 0.9676 0.9999 Sect.4

12 0.8955 0.8320 0.9551 Sect.4

13 0.7138 0.5167 0.8859 Sect.4

14 0.5921∗ 0.4727 0.7132 Sect.4

15 0.5316∗ 0.3971 0.6622 Sect.4

16 0.5074∗ 0.1359 0.8689 Sect.4

Finally, for the Simeck64/128 cipher, we compare our results with those of
Lu et al. [9]. We improve the accuracy of the distinguishers for (14-18)-round
and obtain a new 19-round neural distinguisher.

Table 4: Accuracy of distinguisher for Simeck64/128

Ciphers
Attack
Model

Round Accuracy TPR TNR Source

Simeck64/128 ND

14 0.9142 0.8914 0.9371 [9]
14 0.9916 0.9928 0.9914 Sect.4

15 0.7663 0.6981 0.8345 [9]
15 0.9176 0.8736 0.9590 Sect.4

16 0.6356 0.5245 0.7467 [9]
16 0.7548 0.6595 0.8452 Sect.4

17 0.5577 0.4301 0.6853 [9]
17 0.6095 0.5111 0.7058 Sect.4

18 0.5202 0.3917 0.6486 [9]
18 0.5256 0.4254 0.6607 Sect.4
18 0.5218∗ 0.3927 0.6510 [9]
18 0.5476∗ 0.4534 0.6384 Sect.4

19 0.5160∗ 0.3201 0.7055 Sect.4

We obtain favorable training results with an error margin of±0.005 . The
results presented are the best from multiple training sessions. *: The staged
training method is used to train ND.

12

5 Conclusion

In this paper, we employed an improved network architecture to train the neural
distinguishers, integrating the ECA module with a residual network and intro-
ducing a channel attention mechanism. This enhancement improved the model’s
feature recognition and generalization capabilities. Moreover, we adopted a new
data format that combines the ciphertext with the penultimate round ciphertext
as sample inputs, providing the distinguisher with more usable features. Con-
sequently, we improved the accuracy of the distinguishers and developed longer
round distinguishers. We achieved the highest accuracy and the longest rounds
distinguishers for Simeck32/64, Simeck48/96, and Simeck64/128 ciphers.

Funding

This work was supported by the National Natural Science Foundation of China
(Grant 62172230) and Natural Science Foundation of Jiangsu Province (No.
BK20201369).

Conflict of Interest

The authors declare that there are no conflict of interests, we do not have any
possible conflicts of interest.

Data availability statement

The data for this research will be available upon request.

References

[1] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing
differential-neural cryptanalysis. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 318–347.
Springer, 2022.

[2] Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan.
A deeper look at machine learning-based cryptanalysis. In Advances in
Cryptology–EUROCRYPT 2021: 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17–21, 2021, Proceedings, Part I 40, pages 805–835. Springer, 2021.

[3] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-
tems. Journal of CRYPTOLOGY, 4:3–72, 1991.

13

[4] Yi Chen, Yantian Shen, Hongbo Yu, and Sitong Yuan. A new neural
distinguisher considering features derived from multiple ciphertext pairs.
The Computer Journal, 66(6):1419–1433, 2023.

[5] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In Advances in Cryptology–CRYPTO 2019: 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part II 39, pages 150–179. Springer, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[7] Zezhou Hou, Jiongjiong Ren, and Shaozhen Chen. Improve neural distin-
guisher for cryptanalysis. Cryptology ePrint Archive, 2021.

[8] JiaShuo Liu, JiongJiong Ren, ShaoZhen Chen, and ManMan Li. Im-
proved neural distinguishers with multi-round and multi-splicing construc-
tion. Journal of Information Security and Applications, 74:103461, 2023.

[9] Jinyu Lu, Guoqiang Liu, Bing Sun, Chao Li, and Li Liu. Improved (related-
key) differential-based neural distinguishers for simon and simeck block
ciphers. The Computer Journal, 67(2):537–547, 2024.

[10] Lijun Lyu, Yi Tu, and Yingjie Zhang. Deep learning assisted key recov-
ery attack for round-reduced simeck32/64. In International Conference on
Information Security, pages 443–463. Springer, 2022.

[11] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and
Qinghua Hu. Eca-net: Efficient channel attention for deep convolutional
neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11534–11542, 2020.

[12] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D Aagaard, and Guang
Gong. The simeck family of lightweight block ciphers. In International
workshop on cryptographic hardware and embedded systems, pages 307–329.
Springer, 2015.

[13] Liu Zhang, Jinyu Lu, Zilong Wang, and Chao Li. Improved differential-
neural cryptanalysis for round-reduced simeck32/64. Frontiers of Computer
Science, 17(6):176817, 2023.

[14] Liu Zhang, Zilong Wang, et al. Improving differential-neural cryptanalysis.
Cryptology ePrint Archive, 2022.

14

