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Abstract

Several protocols have been proposed recently for threshold ECDSA signatures, mostly in
the dishonest-majority setting. Yet in so-called key-management networks, where a fixed set of
servers share a large number of keys on behalf of multiple users, it may be reasonable to assume
that a majority of the servers remain uncompromised, and in that case there may be several
advantages to using an honest-majority protocol.

With this in mind, we describe an efficient protocol for honest-majority threshold ECDSA
supporting batch generation of key-independent presignatures that allow for “non-interactive”
online signing; these properties are not available in existing dishonest-majority protocols. Our
protocol offers low latency and high throughput, and runs at an amortized rate of roughly
1.3 ms/presignature (after which signatures can be generated in ≈80 µs).

1 Introduction

In a (t, n)-threshold signature scheme, a private (signing) key is shared among n servers that can
jointly interact to generate a signature; at the same time, an adversary compromising up to t of
those servers learns nothing about the key and is unable to generate new signatures. Threshold
signature schemes have received a lot of attention in the past few years, primarily (though not only)
for their application to the secure management of keys controlling cryptocurrency assets. Because
ECDSA is by far the most commonly used signature scheme in that setting, much of this work has
focused on protocols for threshold ECDSA, and several “wallet-as-a-service” (WaaS) companies such
as Fireblocks, Dfns, and Coinbase are actively using such schemes.

Most recent work on threshold ECDSA has focused on the dishonest-majority setting (where
t = n− 1), whether for the special case of n = 2 [14, 12, 6] or arbitrarily many parties [13, 7, 1, 8].
(We refer to [8, Section 1.1] for a nice survey of that work.) Comparatively less recent attention
has focused on the honest majority case [9, 4, 10, 5, 15, 8] where t < n/2. Yet in some real-world
deployments of threshold ECDSA—particularly in key-management networks, where a fixed set of
parties (aka servers) share a large number of keys, possibly on behalf of multiple users—it may
be reasonable to assume that a majority of the parties remain uncompromised, and there may be
significant advantages to using an honest-majority protocol.

In this work we initiate explicit consideration of key-management networks in the context of
threshold cryptography, and propose an honest-majority threshold ECDSA protocol especially
suited to that setting. In particular, our protocol supports two properties (explained in further
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detail in the following section) that are critical for real-world deployments of key-management net-
works: key-independent presigning and batch presignature generation. We are not aware
of any prior work on threshold ECDSA that offers both these features.

1.1 Threshold Cryptography in Key-Management Networks

To the best of our knowledge, all prior work on threshold cryptography only explicitly considers
the monolithic setting where a single key is shared among n parties. This is in contrast to the
key-management networks deployed by some WaaS companies, where a fixed set of n servers share
a large number of keys, possibly on behalf of multiple users. (For example, Dfns operates a key-
management network hosting ≈10 million keys.) While it is of course possible to run independent
executions of a “monolithic” threshold protocol for each key held by the servers, this misses out on
opportunities for efficiency improvements and at the same time ignores some real-world challenges.
We discuss two examples next.

Presignature generation has become an essential feature of modern threshold signature schemes.
Roughly, presignature generation allows parties sharing a key to run some (expensive, interactive)
protocol before a message to be signed is known, resulting in shared state (a “presignature”) held
by the parties. Later, to sign some message, the parties can use an existing presignature to non-
interactively generate a signature. (By default, when we refer to presignatures we mean those
that allow for non-interactive signing.) Presignature generation is important in many practical
deployments of threshold signatures, since it makes the on-line latency for signature generation
(which is what the end-user cares about) essentially instantaneous.

Consider using presignature generation in a key-management network where a total of N keys
are shared. An immediate problem is that most1 existing protocols for presignature generation
generate key-dependent presignatures; that is, each presignature is tied to a specific key shared
by the parties. Using such protocols in a key-management network can be done in essentially
two ways: the servers can generate one presignature for each key they share (requiring generation
and storage of N presignatures, even if many of them may not be used for a long time), or they
can selectively generate presignatures for a subset of the shared keys (which risks high latency if
they are then asked to issue a signature with a key for which no presignature exists). Neither
of these approaches is satisfactory. Thus, for key-management networks it is critical to have key-
independent presignatures, not tied to any specific key. It is worth noting that there seem to
be inherent difficulties in constructing efficient threshold ECDSA protocols with key-independent
presignatures in the dishonest-majority setting.2

Key-management networks sharing a large number of keys can also be expected to issue signa-
tures at a higher rate than in a monolithic setting. The servers in the network may therefore need
to have multiple presignatures available at any time. In that case, it is advantageous for the servers
to utilize protocols for batch presignature generation that can generate m≫ 1 presignatures at an
aggregate cost significantly lower than the cost of independently generating m presignatures. (Note
that m may be much lower than the number of keys held by the servers.) Such batch presigning is
especially beneficial when presignatures are key-independent.

1An exception is the work of Damgård et al. [5], which also considers the honest-majority setting. Note, however,
that their work does not consider key-management networks and they do not observe the benefits of key-independence.

2We do not claim any formal impossibility result, and in fact it is possible to construct protocols offering key-
independent presignatures in the dishonest-majority setting based on, e.g., fully homomorphic encryption. Such
protocols are unlikely to be competitive with state-of-the-art threshold ECDSA protocols, however.
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1.2 Our Contribution

We focus on designing a threshold ECDSA protocol suitable for deployment in key-management
networks. In particular—as discussed in the previous section—we are interested in protocols sup-
porting batch generation of key-independent presignatures. Efficient protocols with these properties
seem possible only if an honest majority is assumed and, indeed, this assumption can lead to more-
efficient protocols in general; we thus concentrate on the honest-majority setting. Our focus is only
on the signing protocol, and we leave distributed key generation out of scope.

Several prior works have designed protocols for threshold ECDSA in the honest-majority set-
ting [9, 4, 10, 5, 15, 8]. Only the protocol of Damgård et al. [5] offers key-independent presignatures;
note that aspects of their protocol have been patented (see https://patents.google.com/patent/
US11757657B2/en). None of the aforementioned works consider batch presigning.

Here we describe a protocol satisfying our requirements, based on techniques for generic secure
multiparty computation in the honest-majority setting but adapted to the case of threshold ECDSA.
We aim to make our protocol as practical as possible, introducing a number of optimizations and
working explicitly in a point-to-point network model (i.e., without assuming broadcast).

Novelty with respect to prior work. The core framework for threshold ECDSA that we present
in Section 3 has appeared in many prior works, but we are not aware of any prior work that explic-
itly considers (1) batch presignature generation, or (2) key-independent presignature generation (in
a network of signers who hold shares for multiple keys). Techniques for generating multiplication
triples (cf. Section 4) have been used many times before, but as we discuss in Section 4 our approach
is explicitly directed to batch triple generation and is more efficient than existing approaches target-
ing general-purpose secure computation. Finally, while pseudorandom secret sharing (cf. Section 5)
has been used many times before, we are not aware of any prior work allowing the parties to set
up the shared keys themselves (i.e., with no dealer) without any additional additional rounds for
commitments or complaint resolution and without a broadcast channel.

Guide to the paper. To make the description of our protocols and its proof easier to follow, our
construction is entirely modular. In Section 3 we give a framework for constructing (honest-majority)
threshold ECDSA protocols based on an ideal functionality Frss for “random secret sharing” and an
ideal functionality Ftriple for generating Beaver (multiplication) triples. In Section 4 we show how
to realize Ftriple based on Frss and a functionality Fwmult for “weak” multiplication of shared values.
Our protocol for Ftriple involves a batch verification check of (random) multiplication triples based on
prior work but optimized for our setting. We realize Frss using existing techniques for pseudorandom
secret sharing [3] (Section 5), though explicitly adapting that work to a setting without broadcast
or trusted setup. (Our protocol realizing Frss has complexity exponential in n. We target practical
deployments in which n is relatively small, e.g., n < 20.) We show how to realize Fwmult (using
standard techniques) in Appendix A. Experimental results are included in Section 6.

2 Preliminaries

2.1 Notation and Background

G is a group of prime order q, with generator g. We let Zq be the field with q elements, and
Z∗
q = Zq \ {0}. We let [n] = {1, . . . , n}, and s← S denote uniform selection of s from finite set S.
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Lagrange interpolation. If f ∈ Zq[X] is a polynomial of degree at most t, then it is determined
by its values on any t + 1 distinct points. Thus, for any j ∈ Zq and S ⊂ Zq of size t + 1, there
are efficiently computable Lagrange coefficients {λS

i,j}i∈S such that f(j) =
∑

i∈S λS
i,j · f(i). For any

S ⊂ Zq of size t+ 1 and any {yi}i∈S with yi ∈ Zq, we let interpolatet(j, S, {yi}i∈S) =
∑

i∈S λS
i,j · yi.

When |S| ≥ t + 1, we can verify whether values {yi}i∈S (with yi ∈ Zq) are consistent with
a degree-t polynomial f (i.e., whether there exists a polynomial f of degree at most t such that
f(i) = yi for all i ∈ S) by letting S′ ⊆ S be an arbitrary subset of size t + 1 and checking that
yj

?
= interpolatet(j, S

′, {yi}i∈S′) for all j ∈ S \S′. (Note that when |S| = t+1, any values {yi}i∈S are
consistent.) Overloading notation, for |S| ≥ t + 1 we let interpolatet(j, S, {yi}i∈S) be the function
that returns ⊥ if the {yi}i∈S are not consistent with a degree-t polynomial, and otherwise returns
interpolatet(j, S

′, {yi}i∈S′) for an arbitrary S′ ⊆ S of size t+ 1.
We further overload notation by allowing for interpolation “in the exponent.” That is, for S ⊂ Zq

of size t + 1 and any {gi}i∈S with gi ∈ G, we let interpolatet(j, S, {gi}i∈S) =
∏

i∈S g
λS
i,j

i . Note that
if we let xi = logg gi for all i, then logg interpolatet(j, S, {gi}i∈S) = interpolatet(j, S, {xi}i∈S). For
|S| ≥ t + 1, we can verify whether values {gi}i∈S are consistent with a degree-t polynomial in the
natural way, and define interpolatet(j, S, {gi}i∈S) in a manner exactly analogous to above.

Shamir secret sharing. The (t + 1)-out-of-n Shamir secret sharing of a value x ∈ Zq works by
setting a0 := x, choosing a1, . . . , at ← Zq, defining the polynomial f(X) =

∑t
i=0 aiX

i ∈ Zq[X] of
degree at most t, and outputting the shares x1 = f(1), . . . , xn = f(n). The value of f at any point
can be derived from any set of t + 1 of the shares using Lagrange interpolation; in particular, this
allows for reconstructing the secret x = f(0) from any t+ 1 shares.

ECDSA. For our purposes, the ECDSA signature scheme works as follows. To sign a hashed
message h = H(msg) ∈ Zq with private key x ∈ Zq, the signer chooses k ← Z∗

q , sets R := gk, and
computes r := F (R) ∈ Zq for a publicly known function F . It then computes s := k−1·(h+rx) mod q
and, if s > q/2, sets s := q−s.3 It outputs the signature (r, s). Signature (r, s) on hashed message h
with respect to public key y is verified by checking that 0 < s < q/2 and F (gh·s

−1 · yr·s−1
) = r. We

denote such signature verification by Vrfyy(h, (r, s)).

2.2 Threshold ECDSA

We consider threshold protocols for ECDSA, where private keys are shared by n parties P1, . . . , Pn,
and an adversary who corrupts up to t of those parties should be unable to forge a signature under
any key on any message that has not been explicitly signed by the parties. In the honest-majority
setting we consider it holds that t < n/2. Throughout this work we assume for simplicity that
n = 2t + 1, and that the adversary always corrupts exactly t parties.4 We let C ⊂ [n] denote the
indices of the corrupted parties, and let H = [n] \ C be the indices of the honest parties.

We leave key generation out of scope, and simply assume that the n parties begin holding (t+1)-
out-of-n Shamir secret shares of one or more private keys x(1), . . ., with party Pi holding the ith share
x
(1)
i , . . . of each key. We assume a coordinator, distinct from P1, . . . , Pn, who coordinates execution

of the protocol among the n parties, and who holds the (correct) public keys y(1), . . . associated with
the private keys shared by the parties. The coordinator is assumed to be (semi-)honest; since the

3We assume signature normalization is done to prevent malleability attacks. This is not essential for our results.
4The protocol of course remains secure if fewer than t parties are corrupted, but some of the ideal functionalities

we rely on need to be modified in that case. See footnote 6.
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FECDSA

Presigning: On input (presign,m) from the coordinator and each of the n parties, do:

1. For i = 1, . . . ,m, choose ki ← Z∗
q and compute Ri := gki and ri := F (Ri).

Send R1, . . . , Rm to the adversary S, who responds with either abort or continue.

2. If S sent abort, send abort to the coordinator. Otherwise, send completed to the
coordinator and store the tuples {(ki, ri)}mi=1.

Signing: On input (sign, i, h, y) from the coordinator and (sign, i, h, xj) from Pj for j ∈ H, do:

1. Let x := interpolatet(0,H, {xj}j∈H).

2. Compute s′ := k−1
i · (h+ ri · x). If s′ > q/2, set s := q − s′; else set s := s′.

3. Delete (ki, ri). Send (i, h, y, s′) to S, who responds with either abort or continue. If S
sent abort, send abort to the coordinator. Else, send (ri, s) to the coordinator.

Figure 1: ECDSA signing functionality.

coordinator in our model determines which messages get signed by the parties, meaningful security
is not possible without this assumption.

We assume the parties P1, . . . , Pn and the coordinator communicate via a synchronous network in
which each pair of parties is connected by a point-to-point secure (i.e., private and authenticated)
channel. We do not require a broadcast channel. An adversary can statically corrupt t of the
parties, and cause any corrupted party to deviate arbitrarily from the protocol. We assume a
rushing adversary that can obtain the messages sent by the honest parties in any round of the
protocol before corrupted parties send their messages for that round.

Our threshold ECDSA protocols are designed to have a preprocessing phase for batch gener-
ation of presignatures, following which signing can be done “non-interactively,” using one of those
presignatures, when a message to be signed is known. The coordinator initiates execution of the
different phases of the protocol, and handles usage of the presignatures; see the reactive function-
ality FECDSA in Figure 1. Each presignature is used only once, and can be used with any key. To
initiate computation of m presignatures, the coordinator sends (presign,m) to each of the n parties.
In response, the parties execute a protocol at the end of which (if the execution is not aborted) they
each output a collection of m tuples. To initiate computation of a signature on message msg using
the private key associated with public key y, the coordinator computes h = H(msg) and sends to
the parties an index i indicating which presignature to use, the hashed message h, and an indication
of which key share to use. (In FECDSA we leave the latter implicit, and instead simply provide each
party with their share of the corresponding private key.) The coordinator also tells all parties to
delete all information related to the presignature that was used. In response to a signing request,
the parties each perform some local computation and send a result back to the coordinator; the
coordinator computes and outputs a signature based on the information it receives.

Explicitly, we assume that whenever the parties execute the signing protocol the honest parties
each (1) hold the same hashed message h, (2) use shares for the private key associated with public
key y (thus, their shares form a valid (t+1)-out-of-n sharing of logg y), (3) use the same presignature,
and (4) never reuse a presignature. A semi-honest coordinator can enforce all these.

We remark that although unforgeability of ECDSA in a setting where the adversary can observe
presignatures before choosing messages to be signed is not equivalent to unforgeability of standard
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ECDSA, it has been assumed in prior works and can be shown to hold in the generic group model.
We refer to the work of Groth and Shoup [11] for extensive discussion. When the coordinator is
(semi-)honest, as we assume, some of the attack scenarios considered in their work do not apply.

We prove that our protocol securely realizes FECDSA for t corrupted parties. Since none of our
proofs uses rewinding, one can verify that our proofs carry over to the UC setting.

3 A Framework for Honest-Majority Threshold ECDSA

In Figure 2 we give a general framework for constructing protocols for threshold ECDSA realiz-
ing FECDSA. While our framework is conceptually the same as in several prior works, we stress that
we explicitly incorporate batch presigning and key-independent presignatures (in both our ideal
functionality and our protocol framework). Our framework is based on ideal functionalities Frss (cf.
Figure 3) for generating (t + 1)-out-of-n shares of a random value or (2t + 1)-out-of-n shares of 0,
and Ftriple (cf. Figure 4) for generating shares of two random values and their product. We show
how to realize Frss based on pseudorandom secret sharing in Section 5, and show how to realize
Ftriple (based on other ideal functionalities) in Section 4.

Theorem 1. Protocol ΠECDSA t-securely realizes FECDSA in the {Frss,Ftriple}-hybrid model.

Protocol ΠECDSA

Presigning: On input (presign,m), each party Pj does:

1. Send init to Frss.

2. Call Frss on input (zero,m), and let {oi,j}i∈[m] be the result.

3. Call Ftriple on input (triple,m). If the result is abort then abort; otherwise, let
{(ai,j , ki,j , wi,j)}i∈[m] be the result.

4. For i ∈ [m], send wi,j and Ri,j := gki,j to all other parties.

5. Let wi := interpolatet(0, [n], {wi,j}j∈[n]) and Ri := interpolatet(0, [n], {Ri,j}j∈[n]) for
all i ∈ [m]. If wi ∈ {⊥, 0} or Ri =⊥ for some i, abort. Otherwise, for i ∈ [m] set
k′i,j := w−1

i · ai,j and ri := F (Ri). Store the tuples {(ri, oi,j , k′i,j)}i∈[m] and send
completed to the coordinator.

If the coordinator receives completed from all parties, it outputs completed; otherwise it
outputs abort.

Signing: On input (sign, i, h, xj), each party Pj does:

1. Set sj := k′i,j · (h+ ri ·xj)+oi,j . Send (ri, sj) to the coordinator. Delete (ri, oi,j , k
′
i,j).

The coordinator, with (sign, i, h, y), then does:

1. Given {(rj , sj)}j∈[n], let r := r1. If rj ̸= r1 for some j, output abort.

2. Set s := interpolate2t(0, [n], {si,j}j∈[n]); if s > q/2, set s := q−s. If Vrfyy(h, (r, s)) ̸= 1,
output abort; else output (r, s).

Figure 2: General framework for computing ECDSA signatures.
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Proof. Fix a hybrid-world adversary A corrupting {Pi}i∈C , and set C∗ := C ∪ {0}. We model the
semi-honest coordinator by treating it as honest, but giving A all the messages it receives. We
describe an ideal-world adversary S with access to FECDSA that works as follows:

Presigning: When corrupted parties receive (presign,m), send (presign,m) to FECDSA on behalf
of each corrupted party, and receive R1, . . . , Rm in return. Then run A with the corrupted
parties given input (presign,m) and do:

1. Let A’s inputs to Frss be {oi,j}i∈[m],j∈C .

2. Let A’s inputs to Ftriple be {(ai,j , k̄i,j , w̄i,j)}i∈[m],j∈C and H⊥. Let H+ := H \ H⊥. For
i ∈ [m] and j ∈ C, set R̄i,j := gk̄i,j .

3. For i ∈ [m], set R̄i,0 := Ri. Choose w̄i,0 according to5 the following distribution:

w̄i,0 =

{
0 with probability 2

q −
1
q2

a uniform element of Z∗
q otherwise.

For i ∈ [m] and j ∈ H+, compute wi,j := interpolatet(j, C∗, {w̄i,ℓ}ℓ∈C∗) and Ri,j :=
interpolatet(j, C∗, {R̄i,ℓ}ℓ∈C∗). Give A the values {(wi,j , Ri,j)}i∈[m],j∈H+

as the messages
sent by the (non-aborting) honest parties. In return, receive for each honest party P the
values {wP

i,j , R
P
i,j}i∈[m],j∈C sent by A on behalf of the corrupted parties to P .

4. If for any honest P we have wP
i,j ̸= w̄i,j or RP

i,j ̸= R̄i,j for some i ∈ [m] and j ∈ C, or if
w̄i,0 = 0 for some i ∈ [m], or if H⊥ ̸= ∅, send abort to FECDSA and stop. Otherwise, give
completed to A as the message sent by each honest party to the coordinator, and receive
from A the messages from corrupted parties to the coordinator. If any of the corrupted
parties fails to send completed to the coordinator, send abort to FECDSA and stop.

5. If abort was not sent to FECDSA, send continue to FECDSA. Then for i ∈ [m] do:

(a) Set ri := F (Ri).
(b) For j ∈ C set k′i,j := w̄−1

i,0 · ai,j .
Store the tuples {(ri, {(oi,j , k′i,j)}j∈C)}i∈[m].

Signing: When each corrupted Pj receives (sign, i, h, xj), forward those to FECDSA and receive s′

in return. Let C∗∗ be a set of size 2t+ 1 with C∗ ⊂ C∗∗ ⊂ [n] ∪ {0}, set r := ri, and do:

1. Set s0 := s′. For j ∈ C, set sj := k′i,j · (h+ r ·xj)+ oi,j . For j ∈ C∗∗ \ C∗, choose sj ← Zq.
For j ∈ H \ C∗∗, set sj := interpolate2t(j, C∗∗, {sℓ}ℓ∈C∗∗).

2. Run A with corrupted parties given their respective inputs, and with {(r, sj)}j∈H as the
messages sent by honest parties to the coordinator. Receive the messages {(rj , s̄j)}j∈C
sent by corrupted parties to the coordinator.

3. For j ∈ H, set s̄j := sj . Set s̄ := interpolate2t(0, [n], {s̄j}j∈[n]). If rj ̸= r for some j ∈ C,
or if s̄ ̸= ±s′, or if s′ = 0, send abort to FECDSA. Otherwise, send continue to FECDSA.

When A’s execution is complete, output whatever A outputs.

5This is the distribution of the product of two uniform elements of Zq.
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Frss

Let C∗ := C ∪ {0}. Let j∗ be the lowest index in H, and let H∗ := H \ {j∗}.

Init: On input init from all parties in H, send initialized to all parties. Each of the following can
then be called at most once.

Rand: On input (rand,m) from each party in H and {ri,j}i∈[m],j∈C from the adversary, do:

1. For i ∈ [m], choose ri,0 ← Zq.

2. For i ∈ [m] and j ∈ H, set ri,j := interpolatet(j, C∗, {ri,ℓ}ℓ∈C∗).

3. For j ∈ H, send {ri,j}i∈[m] to Pj .

Zero: On input (zero,m) from each party in H and {oi,j}i∈[m],j∈C from the adversary, do:

1. For i ∈ [m], set oi,0 := 0. For i ∈ [m] and j ∈ H∗, choose oi,j ← Zq.

2. For i ∈ [m], set oi,j∗ := interpolate2t(j
∗,H∗ ∪ C∗, {oi,j}j∈H∗∪C∗).

3. For j ∈ H, send {oi,j}i∈[m] to Pj .

Figure 3: Ideal functionality for “random secret sharing.”

Ftriple

Let C∗ := C ∪ {0}.

1. Receive (triple,m) from each honest party, and {(ai,j , ki,j , wi,j)}i∈[m],j∈C and H⊥ ⊆ H from
the adversary.

2. For i ∈ [m] do:

(a) Choose ai,0, ki,0 ← Zq. Set wi,0 := ai,0 · ki,0.
(b) For j ∈ H, compute the shares ai,j := interpolatet(j, C∗, {ai,ℓ}ℓ∈C∗), ki,j :=

interpolatet(j, C∗, {ki,ℓ}ℓ∈C∗), and wi,j := interpolatet(j, C∗, {wi,ℓ}ℓ∈C∗).

3. For j ∈ H do: if j ∈ H⊥ send abort to Pj ; else send {(ai,j , ki,j , wi,j)}i∈[m] to Pj .

Figure 4: Ideal functionality for batch generation of multiplication triples.

We claim that the distribution of the output of A and the outputs of the coordinator in the
hybrid world is statistically indistinguishable from the distribution of the output of S and the
outputs of the coordinator in the ideal world. In fact, if we let Bad denote the event that Ri = 1
for some i (which cannot occur in the ideal world, and occurs with negligible probability in the
hybrid world), and condition on the event that Bad does not occur (which we denote by Bad), the
distributions are identical. To see this, compare the above execution of S in the ideal world to an
execution of A with Πt,n

ECDSA in the hybrid world conditioned on Bad:

Presigning: We first consider the presigning phase.

1. The view of A in its interaction with ideal functionalities Frss and Ftriple in the hybrid
world is the same as in the execution of A as a subroutine of S in the ideal world.

2. The shares {ki,j}i∈[m],j∈H+
sent to the honest parties by Ftriple in the hybrid world are

uniquely determined by the inputs sent by A to Ftriple and the uniform values {ki,0}i∈[m]
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chosen internally by Ftriple. Thus, the values {Ri,j}i∈[m],j∈H+
are uniquely determined

by the inputs sent by A to Ftriple and the values {Ri = gki,0}i∈[m]. The distribution
of the {Ri}i∈[m] chosen by FECDSA in the ideal world is identical to the distribution
of those values in the hybrid world conditioned on Bad. Thus, the distribution of the
{Ri,j}i∈[m],j∈H+

given to A as a subroutine of S in the ideal world is identical to the
distribution of those messages in the hybrid world (conditioned on Bad).
A similar argument applies to {wi,j}i∈[m],j∈H+

, even conditioned on {Ri,j}i∈[m],j∈H+
.

3. Assuming H⊥ = ∅, the messages {(wi,j , Ri,j)}i∈[m],j∈H sent by the honest parties in the
hybrid world uniquely determine values {(wi, Ri)}i∈[m] as well as the messages that are
supposed to be sent by the corrupted parties. Thus, in particular, any deviation by the
corrupted parties in the messages they send would cause the honest parties (and hence
the coordinator) to abort in either the hybrid or ideal worlds.

4. Assuming the honest parties have not aborted in the hybrid world, they will all send
completed to the coordinator. So the coordinator’s output depends only on whether
the corrupted parties all send completed to the coordinator or not. The view of the
coordinator in the hybrid world is thus identically distributed to the simulated view of
the coordinator in the ideal world, and the output of the coordinator is also identical in
the hybrid and ideal worlds.

Assuming successful completion of the presigning phase in the hybrid world, let k′i,j := w−1
i ·ai,j

for i ∈ [m] and j ∈ C. For i ∈ [m], the values {k′i,j}j∈[n] are (t + 1)-out-of-n shares of k−1
i ,

where ki = logg Ri. The honest parties also hold shares {oi,j}i∈[m],j∈H that are uniform and
independent subject to the constraint that the {oi,j}i∈[m],j∈[n] are (2t+1)-out-of-n shares of 0.

Signing: Now consider an execution of the signing phase in the hybrid world, where each corrupted
party Pj has input (sign, i, h, xj). The input values {xj}j∈[n] (including those being used by the
honest parties) are, by assumption, (t + 1)-out-of-n shares of a private key x corresponding
to the public key y held by the coordinator, and the shares {xj}j∈H of the honest parties
uniquely determine x as well as the shares {xj}j∈C held by the corrupted parties. Letting
sj := k′i,j · (h + ri · xj) + oi,j for j ∈ C, it follows that the {sj}j∈H sent by the honest
parties are uniform subject to the constraint that the {sj}j∈[n] are (2t+ 1)-out-of-n shares of
s′ = k−1

i · (h+ ri · x). This matches the distribution of the {sj}j∈H in the ideal world.

A can either cause the coordinator to abort or to output a correct signature (on hashed
message h with respect to public key y = gx) with first component ri. Since the first component
of a valid signature uniquely determines the second component, this implies that the output
of the coordinator in the hybrid world matches what would be output in the ideal world.

This completes the proof.

Running multiple executions. As written, ΠECDSA requires parties to re-initialize Frss each time
the presigning phase is run. This, in turn, is necessary because the Frss functionality only allows a
single call to each of Rand/Zero per initialization. Looking ahead to the protocol realizing Frss (cf.
Section 5), these limitations are due to the fact that the protocol involves calls to a pseudorandom
function that requires appropriate domain separation. In practice, such domain separation can be
enforced within an execution of the protocol by using distinct identifiers, and across executions by
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incorporating a non-repeating session-id; this allows initialization of Frss to be done once-and-for-all,
after which an unbounded number of invocations of presigning/signing can be done.

4 Secure Triple Generation

In this section, we show an approach for securely realizing Ftriple. Our construction is inspired by
the work of Chida et al. [2]. In their work, roughly speaking, parties multiply secret-shared values
in the course of evaluating a circuit using a weak multiplication functionality Fwmult that preserves
privacy of inputs and outputs but allows the adversary to introduce arbitrary additive shifts in the
results. (See Figure 5.) The parties additionally share a random value r, and for each multiplication
of shared values a, b to give output ab they also compute shares of ra, rb, and rab using the same
weak multiplication functionality. At the end of the computation of the circuit, the parties perform
a probabilistic check using fresh random values to verify that the adversary has not introduced an
additive shift in any of the multiplications.

The technique of Chida et al. [2], which is geared to general secure computation, does not directly
support preprocessing because the values being multiplied depend on the inputs to the circuit being
evaluated. In the context of ECDSA, however, it suffices to securely generate multiplication triples
during a preprocessing phase, as shown in Section 3. (Fundamentally, this is because in the context
of ECDSA correctness of the output can be verified using the public key.) Directly using the
technique of Chida et al. to evaluate a circuit that outputs m multiplication triples would involve
generating 3m + 1 random values and performing 4m weak multiplications. We observe that it is
enough to generate 2m + 2 random values and perform 3m weak multiplications. Roughly, this is
because we do not need to preserve privacy of any of the shared values when cheating is detected.

In Figure 6 we show a protocol Πtriple for realizing Ftriple based on Fwmult. (We show how
to realize Fwmult using standard techniques in Appendix A.) Before turning to the full proof of
security for protocol Πtriple, we provide some intuition. In the protocol, parties first generate shares
of uniform values {ai}i∈[m], {ki}i∈[m], and r, β, where ai = interpolatet(0,H, {ai,j}j∈H) and ki, r,
and β are defined similarly. They then use Fwmult to compute shares of {wi}i∈[m] (where wi is

Fwmult

Let C∗ := C ∪ {0}.

1. Receive {(ai,j , ki,j)}i∈[m],j∈H from the honest parties. (If some honest parties H′ ⊆ H
do not provide input, then send abort to all honest Pj , send (abort,H′) to the adversary,
and halt.) For i ∈ [m] and j ∈ C∗, set ai,j := interpolatet(j,H, {ai,ℓ}ℓ∈H) and ki,j :=
interpolatet(j,H, {ki,ℓ}ℓ∈H). Send {(ai,j , ki,j)}i∈[m],j∈C to the adversary.

2. Receive
(
{di}i∈[m], {wi,j}i∈[m],j∈C

)
from the adversary.

3. For i ∈ [m] do:

(a) Set wi,0 := ai,0 · ki,0 + di.

(b) For j ∈ H, set wi,j := interpolatet(j, C∗, {wi,ℓ}ℓ∈C∗).

4. For j ∈ H, send {wi,j}i∈[m] to Pj .

Figure 5: Functionality for (weak) multiplication secure up to additive attacks.

10



Protocol Πtriple

On input (triple,m), each party Pj does:

1. Send init to Frss.

2. Call Frss on input (rand, 2m+2). Denote the first 2m results by {ai,j}i∈[m] and {ki,j}i∈[m],
and the final two results by rj , βj .

3. Call Fwmult with inputs {(ki,j , ai,j)}i∈[m] and {(rj , ai,j)}i∈[m], and let {wi,j}i∈[m] and
{µi,j}i∈[m], respectively, be the results.

4. Call Fwmult with inputs {(µi,j , ki,j)}i∈[m], and let {τi,j}i∈[m] be the result.

5. Send rj , βj to all parties. Let r := interpolatet(0, [n], {rj}j∈[n]) and β :=
interpolatet(0, [n], {βj}j∈[n]). If r =⊥ or β =⊥, abort.

6. Compute Tj =
∑m

i=1(τi,j − r · wi,j) · βi and send it to all parties. Let T :=
interpolatet(0, [n], {Tj}j∈[n]). If T ̸= 0, abort; otherwise, output {(ai,j , ki,j , wi,j)}i∈[m].

Figure 6: Realizing Ftriple in the {Frss,Fwmult}-hybrid model.

supposed to equal ki · ai), {µi}i∈[m] (where µi is supposed to equal r · ai), and {τi}i∈[m] (where τi is
supposed to equal µi · ki). Finally, they reconstruct r and β, and publicly reveal

T =

m∑
i=1

(τi − rwi) · βi.

If all parties behave honestly, then τi = rai · ki = rwi for all i and so T = 0.
The more interesting case is when the adversary exploits the weak multiplication functionality

to give incorrect output by using a nonzero shift. The following lemma shows that such behavior is
detected by the honest users with overwhelming probability.

Lemma 1. Let wi = kiai + di, µi = rai + δi, and τi = µiki + δ′i. If there exists an i∗ such that
di∗ , δi∗ , or δ′i∗ is nonzero, then T ̸= 0 except with probability at most (m+ 1)/q.

Proof. The shifts {di}i∈[m], {δi}i∈[m], and {δ′i}i∈[m] are all controlled by the adversary, but are
independent of {ki}i∈[m], r, and β. We have

T =
m∑
i=1

(τi − rwi) · βi

=

m∑
i=1

(
µiki + δ′i − r · (kiai + di)

)
· βi

=
m∑
i=1

(
ki · (rai + δi) + δ′i − r · (k1ai + di)

)
· βi

=

m∑
i=1

(
kiδi + δ′i − rdi

)
· βi =

m∑
i=1

Ti · βi,

where Ti
def
= kiδi + δ′i − rdi. We now consider different cases:
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1. If there is an i∗ with di∗ ̸= 0, then—since r is uniform and independent of everything else—it
holds that Ti∗ ̸= 0 except with probability 1/q.

2. If di = 0 for all i but there is an i∗ with δi∗ ̸= 0, then—since ki∗ is uniform and independent
of everything else—it holds that Ti∗ ̸= 0 except with probability 1/q.

3. If di = δi = 0 for all i but there is an i∗ with δ′i∗ ̸= 0, then Ti∗ = δ′i∗ ̸= 0.

Thus, if there exists an i∗ such that di∗ , δi∗ , or δ′i∗ is nonzero, then T (X)
def
=

∑m
i=1 Ti ·Xi is a nonzero

polynomial of degree at most m except with probability at most 1/q; assuming that to be the case,
T = T (β) ̸= 0 except with probability at most m/q. This completes the proof.

We remark that if T ̸= 0 the adversary may potentially learn information about {(ai,j , ki,j)}i∈[m].
However, since honest parties abort when T ̸= 0 and the {(ai,j , ki,j)}i∈[m] are just random values
(that do not need to be kept private), this is not a problem in our setting.

Theorem 2. Protocol Πtriple t-securely realizes Ftriple in the {Frss,Fwmult}-hybrid model.

Proof. Fix some hybrid-world adversary A. We describe an adversary S operating in the ideal world
with access to Ftriple. When corrupted parties receive input (triple,m), adversary S does:

1. Run A with the corrupted parties given input (triple,m). Let {(ai,j , ki,j)}i∈[m],j∈C , {rj}j∈C ,
and {βj}j∈C be the inputs A sends to Frss.

Choose r, β ← Zq, and set r0 := r and β0 := β. For j ∈ H, set rj := interpolatet(j, C∗, {rℓ}ℓ∈C∗)
and βj := interpolatet(j, C∗, {βℓ}ℓ∈C∗).

2. Send {(ki,j , ai,j)}i∈[m],j∈C , and {rj}j∈C to A on behalf of Fwmult. Let the inputs A sends
to Fwmult be ({di}i∈[m], {wi,j}i∈[m],j∈C) and ({δi}i∈[m], {µi,j}i∈[m],j∈C).

3. Send {(µi,j , ki,j)}i∈[m],j∈C to A on behalf of Fwmult, and let ({δ′i}i∈[m], {τi,j}i∈[m],j∈C) be the
inputs A sends to Fwmult.

4. Let H+ := H. For each honest party P receive the values {(rPj , βP
j )}j∈C sent by A on behalf

of the corrupted parties to P . For each honest P for which rPj ̸= rj or βP
j ̸= βj for some

j ∈ C, remove P from H+.

5. If di = δi = δ′i = 0 for all i, then:

(a) For j ∈ C, compute Tj :=
∑m

i=1(τi,j − r · wi,j) · βi. Set T0 := 0. For j ∈ H+, set
Tj := interpolatet(j, C∗, {Tℓ}ℓ∈C∗). Send {Tj}j∈H+ to A on behalf of the parties in H+.
In return, receive for each honest party P values {TP

j }j∈C sent by A.

(b) For each P ∈ H+ for which TP
j ̸= Tj for some j ∈ C, remove P from H+. Then send

{(ai,j , ki,j , wi,j)}i∈[m],j∈C and H⊥ := H \H+ to Ftriple.

6. If di ̸= 0, δi ̸= 0, or δ′i ̸= 0 for some i ∈ [m], do:

(a) For i ∈ [m], choose ai,0, ki,0 ← Zq and set wi,0 := ai,0 · ki,0 + di, µi,0 := r · ai,0 + δi,
and τi,0 := µi,0 · ki,0 + δ′i. Set T0 :=

∑m
i=1(τi,0 − r · wi,0) · βi. If T0 = 0 output fail and

stop. Otherwise, for j ∈ C, compute Tj :=
∑m

i=1(τi,j − r · wi,j) · βi, and for j ∈ H+, set
Tj := interpolatet(j, C∗, {Tℓ}ℓ∈C∗).
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(b) Send {Tj}j∈H+ to A. Then send {(ai,j , ki,j , wi,j)}i∈[m],j∈C and H⊥ := H to Ftriple.

7. Output whatever A outputs and stop.

The statistical difference between the distribution of the output of A and the outputs of the
honest parties in the hybrid world and the distribution of the output of S and the outputs of the
honest parties in the ideal world is bounded by the probability with which S outputs fail in the
ideal world. By Lemma 1, this is at most (m+ 1)/q.

5 Pseudorandom Secret Sharing

To realize Frss, we rely on pseudorandom secret sharing (PRSS) [3] which we now describe. For
t ≤ n, let Sn−t,n denote the collection of all subsets of [n] of size n−t. For A ∈ Sn−t,n, let fA ∈ Zq[X]
be the polynomial of degree at most t such that

fA(x) =

{
1 x = 0
0 x ∈ [n] \A.

Let Ψ : {0, 1}κ × {0, 1}∗ → Zq be a pseudorandom function with key length κ. Assume there
are keys {kA}A∈Sn−t,n such that each party Pi holds {kA}i∈A. Then parties can non-interactively
generate a (t+ 1)-out-of-n sharing of a secret indexed by α by having each Pi compute the share

σα
i :=

∑
A∈Sn−t,n : i∈A

ΨkA(α) · fA(i).

To see that this gives a valid (t+ 1)-out-of-n Shamir sharing, define the polynomial

α(X) =
∑

A∈Sn−t,n

ΨkA(α) · fA(X)

that has degree at most t. Then observe that for i ∈ [n] it holds that

α(i) =
∑

A∈Sn−t,n

ΨkA(α) · fA(i) =
∑

A∈Sn−t,n : i∈A
ΨkA(α) · fA(i) = σα

i .

The value defined by these shares is

α(0) =
∑

A∈Sn−t,n

ΨkA(α) · fA(0) =
∑

A∈Sn−t,n

ΨkA(α).

If kH is uniform and independent of the other keys, then for any set C of t corrupted parties and
any distinct values α1, . . ., the shared values α1(0), . . . are jointly pseudorandom, even conditioned
on the keys held by the corrupted parties. This holds regardless of how the {kA}A ̸=H are chosen
(since kH is independent of the other keys).

The above can be extended to generate a random (2t + 1)-out-of-n sharing of 0, something
referred to as pseudorandom zero sharing (PRZS). Assume keys {kA}A∈Sn−t,n distributed as before.
Now, a party Pi can compute a 0-sharing indexed by β as

ρβi =
∑

A∈Sn−t,n

i∈A

t∑
j=1

ΨkA(β∥j) · i
j · fA(i)
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(where “∥” denotes concatenation). These shares correspond to points on the polynomial

β(X) =
∑

A∈Sn−t,n

t∑
j=1

ΨkA(β∥j) ·X
j · fA(X),

which has degree at most 2t and satisfies β(0) = 0. If kH is uniform and independent of the other
keys as above, it can be verified that (even given the view of an adversary corrupting up to t parties)
the shares {ρβi }i∈H are uniform subject to the constraint that interpolate2t(0, [n], {σ

β
i }i∈[n]) = 0.

In prior work on PRSS/PRZS, it is assumed that a trusted dealer chooses keys and distributes
them to the appropriate parties, or else a complex protocol is run to securely establish those keys.
We observe that neither of these are necessary, and it suffices to have a designated party P ∗

A for each
set A ∈ Sn−t,n (say, P ∗

A = Pi where i is the smallest index in A) choose a uniform key kA ∈ {0, 1}κ
and send it (via private channel) to each Pi with i ∈ A. At a high level, this is still secure since

• The key kH will still be chosen uniformly and independently of the other keys, shared correctly
among the honest parties, and unknown to the adversary.

• For any set A ∈ Sn−t,n that contains a corrupted party, the adversary anyway learns kA even
when a trusted dealer distributes keys.

• If the designated party for some subset A is corrupted, that party can send inconsistent keys
to different parties in A. Nevertheless, for PRSS the shares computed by the honest parties
still lie on6 a degree-t polynomial and define a uniform secret; for PRZS, the shares computed
by the honest parties are jointly uniform subject to the linear constraint above (that depends
on the view of the corrupted parties), as required by the functionality.

The overall protocol is described in Figure 7.

Theorem 3. If Ψ is a pseudorandom function, then protocol PRSS t-securely realizes Frss.

Proof. Fix some adversary A attacking PRSS and corrupting the set of parties C. Consider the
ideal-world adversary S interacting with Frss that operates as follows:

Init: On input init to parties in C, for all A ∈ Sn−t,n do:

1. If A = H then do nothing.

2. If A ̸= H and P ∗
A is honest, then choose kA ← {0, 1}κ and send it to A. For j ∈ A ∩ H,

set kjA := kA.

3. If P ∗
A is corrupt, then receive {kjA}j∈A∩H from A.

Rand: On input (rand,m) to parties in C, do:

1. For j ∈ H and i ∈ [m], compute r′i,j :=
∑

A∈Sn−t,n\H : j∈AΨ
kjA

(0∥i) · fA(j).

2. For j ∈ C and i ∈ [m], compute r′i,j := interpolatet(j,H, {ri,ℓ}ℓ∈H).
3. Send {r′i,j}i∈[m],j∈C to Frss.

6This assumes exactly t+ 1 honest parties. If there are more than t+ 1 honest parties then the definition of Frss

needs to be modified appropriately.
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Protocol PRSS

Init: For every set A ∈ Sn−t,n do:

1. Let P ∗
A be a designated party with P ∗

A ∈ {Pi}i∈A.

2. P ∗
A chooses kA ← {0, 1}κ and sends kA to {Pi}i∈A.

3. Each party Pj lets kjA be the key it received from P ∗
A for set A.

Rand: On input (rand,m), each party Pj does:

1. For i ∈ [m], set ri,j :=
∑

A∈Sn−t,n : j∈A Ψkj
A
(0∥i) · fA(j).

2. Output {ri,j}i∈[m].

Zero: On input (zero,m), each party Pj does:

1. For i ∈ [m], set oi,j :=
∑

A∈Sn−t,n : j∈A

∑t
ℓ=1 Ψkj

A
(1∥i∥ℓ) · jℓ · fA(j).

2. Output {oi,j}i∈[m].

Figure 7: Protocol for pseudorandom secret sharing.

Zero: On input (zero,m) to parties in C, do:

1. For j ∈ H and i ∈ [m], compute oi,j :=
∑

A∈Sn−t,n\H
j∈A

∑t
ℓ=1ΨkjA

(1∥i∥ℓ) · jℓ · fA(j).

2. Let j∗ be the smallest index in C, and let C := (C \ {j∗}) ∪ {0}.
3. For j ∈ C and i ∈ [m], set oi,j := 0.

4. For i ∈ [m], set oi,j∗ := interpolate2t(j
∗, C ∪ H, {oi,ℓ}ℓ∈C∪H).

5. Send {oi,j}i∈[m],j∈C to Frss.

When A’s execution is complete, output whatever A outputs.

It is clear that the view (and hence the output) of A in the real world is identically distributed to
its view (and hence the output of S) in the ideal world. Since no messages are exchanged following
initialization, we focus on the outputs of the honest parties. We show that the distributions of their
outputs in the real and ideal worlds are indistinguishable. For simplicity and notational clarity, we
assume m = 1 and so omit reference to the index i.

Invocation of Rand. Consider a real-world execution of Rand. Each honest party Pj outputs

rj =
∑

A∈Sn−t,n : j∈A
Ψ

kjA
(0) · fA(j) = ΨkH(0) · fH(j) +

∑
A∈Sn−t,n\H : j∈A

Ψ
kjA

(0) · fA(j)

= ΨkH(0) · fH(j) + r′j ,

where r′j
def
=

∑
A∈Sn−t,n\H : j∈AΨ

kjA
(0) · fA(j).

Consider next an experiment Expt1 where we choose r ← Zq and then set rj := r · fH(j) + r′j
for all j ∈ H. Since Ψ is a pseudorandom function, the distribution of the outputs of the honest
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parties in Expt1 is computationally indistinguishable from the distribution of their outputs in the
real-world execution.

Let f ′ be the polynomial of degree at most t with f ′(j) = r′j for j ∈ H. In experiment Expt′1,
we choose r ← Zq and then let f be the polynomial of degree at most t with f(0) = r and f(j) = 0
for j ∈ C. Finally, set rj := f(j) + f ′(j) for all j ∈ H. It is easily seen that Expt′1 is merely an
alternate, but equivalent, way of describing Expt1.

Expt2 proceeds as in Expt′1, except that we now let f be the polynomial of degree at most t with
f(0) = r − f ′(0) and f(j) = 0 for j ∈ C. Since f(0) is uniformly distributed in both experiments,
the honest parties’ outputs are identically distributed in Expt2 and Expt′1.

Let r′j
def
= interpolatet(j,H, {r′ℓ}ℓ∈H) for j ∈ C, and let f ′′ = f + f ′. Observe that f ′′ has degree

at most t and satisfies f ′′(0) = r and f ′′(j) = r′j for j ∈ C.
Consider the following experiment Expt3. Set r′j := interpolatet(j,H, {r′ℓ}ℓ∈H) for j ∈ C. Choose

uniform r ← Zq, and let f ′′ be the polynomial of degree at most t with f ′′(0) = r and f ′′(j) = r′j
for j ∈ C. Finally, set rj := f ′′(j) for j ∈ H. This is an alternate, but equivalent, way of
describing Expt2. But it is also equivalent to the ideal-world execution involving the adversary S
described earlier, and thus completes the proof for Rand.

Invocation of Zero. Consider a real-world execution of Zero with A. Honest party Pj outputs

oj =
t∑

ℓ=1

ΨkH(1∥ℓ) · j
ℓ · fH(j) +

∑
A∈Sn−t,n\H

j∈A

t∑
ℓ=1

Ψ
kjA

(1∥ℓ) · jℓ · fA(j)

=
t∑

ℓ=1

ΨkH(1∥ℓ) · j
ℓ · fH(j) + o′j ,

where o′j
def
=

∑
A∈Sn−t,n\H

j∈A

∑t
ℓ=1ΨkjA

(1∥ℓ) · jℓ · fA(j).

Consider next an experiment Expt1 where we instead choose r1, . . . , rt ← Zq and then set
oj :=

∑t
ℓ=1 rℓ · jℓ · fH(j) + o′j for j ∈ H. The fact that Ψ is a pseudorandom function means that

the distribution of the outputs of the honest parties in Expt1 is computationally indistinguishable
from the distribution of their outputs in the real-world execution.

Let j∗ be the smallest index in C, and let C = (C \{j∗})∪{0}. Let f ′ be the polynomial of degree
at most 2t with f ′(j) = 0 for j ∈ C and f ′(j) = o′j for j ∈ H. In experiment Expt′1 we proceed as
follows. Choose r1, . . . , rt ← Zq and let f(X) =

∑t
ℓ=1 rℓ ·Xℓ · fH(X). Then set oj := f(j) + f ′(j)

for j ∈ H. This is merely an alternate, but equivalent, way of expressing Expt1.
Let j∗∗ be the smallest index in H, and let H∗ := H \ {j∗∗}. In Expt2 we choose rj ← Zq for

j ∈ H∗ and then let f be the polynomial of degree at most 2t such that f(j) = 0 for j ∈ C ∪ {0}
and f(j) = rj for j ∈ H∗. Polynomial f ′ is defined as before. Then set oj := f(j)+ f ′(j) for j ∈ H.
The distributions of the honest parties’ outputs in Expt2 and Expt′1 are identical (the proof follows
from that of PRZS [3]).

In Expt3 we choose rj ← Zq for j ∈ H∗ and then let f be the polynomial of degree at most 2t
such that f(j) = 0 for j ∈ C∪{0} and f(j) = rj−f ′(j) for j ∈ H∗. The {oj}j∈H are then computed
as before. Since the {f(j)}j∈H∗ are uniformly distributed in both Expt2 and Expt3, this does not
change the distribution of the honest parties’ outputs.
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Let f ′′ = f + f ′, and observe that f ′′ has degree at most 2t with

f ′′(j) =


0 j ∈ C
f ′(j∗) j = j∗

rj j ∈ H∗.
(1)

In Expt4, choose rj ← Zq for j ∈ H∗ and let f ′′ be the polynomial of degree at most 2t satisfying
the constraints of Eq. (1); then set oj := f ′′(j) for j ∈ H. This is an alternate, but equivalent,
way of describing Expt3. But it is also equivalent to the ideal-world execution involving S, and thus
completes the proof for Zero.

6 Experimental Results

We compare the performance of our protocol to the CGGMP protocol [1], a leading protocol for
threshold ECDSA in the dishonest-majority setting. Both protocols were implemented in Rust using
the same underlying cryptographic libraries. We then evaluated both protocols for n = 5, t = 2 by
simulating multiple parties executing each protocol (with a coordinator) on a single M1 Macbook Pro
with artificial network delays. Both protocols allow for presigning after which signature generation
is network-bounded; i.e., signature generation requires only ≈ 80 µs of local computation, so the
time required to generate a signature is equal to the time required for the parties to communicate
with the coordinator. We therefore focus on presigning.

Network delay Batch size CGGMP Here
0 1 1074 1.27

50 1 1500 680
10,000 — 1.30

Table 1: Amortized time for presignature generation. All times in ms.

Table 1 shows the amortized time for each protocol to generate one presignature, as a function of
the network delay and the batch size m. (Note that CGGMP does not support batch presignature
generation.) Unsurprisingly, given the threat models for which the two protocols were designed, our
protocol is noticeably faster than the CGGMP protocol even without batching for network delay
up to 50 ms. The effect of batching becomes significant in the presence of network delay. (When
there is no network delay, the amortized time to generate a presignature in our protocol is almost
unchanged.) Specifically, using a batch size of m = 10, 000 reduces the (amortized) time to generate
a presignature by over 500×.
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A Realizing Weak Multiplication

Here we show how to realize Fwmult based on Frss. Although the protocol is standard, we are not
aware of any previous analysis of the protocol when a broadcast channel is not available.

Protocol Πwmult

On input {(ai,j , ki,j)}i∈[m], each party Pj does:

1. Send init to Frss.

2. Call Frss on input (rand,m). Denote the result by {ri,j}i∈[m].

3. Call Frss on input (zero,m). Denote the result by {oi,j}i∈[m].

4. For i ∈ [m] compute ei,j := ai,j · ki,j + ri,j + oi,j and send ei,j to all parties. If some party
does not send a value, abort.

5. For i ∈ [m], compute ei := interpolate2t(0, [n], {ei,j}j∈[n]) and output {wi,j := ei−ri,j}i∈[m].

Figure 8: Realizing Fwmult in the Frss-hybrid model.

Theorem 4. Protocol Πwmult t-securely realizes Fwmult in the Frss-hybrid model.

Proof. For simplicity we assume m = 1 and omit the indexing by i. Fix some hybrid-world ad-
versary A. We describe an adversary S operating in the ideal world with access to Fwmult. Upon
receiving input for the corrupted parties, S does:

1. Run A with corrupted parties given their inputs. Let {rj}j∈C be the inputs A sends to the
first invocation of Frss, and let {oj}j∈C be the inputs A sends to the second invocation of Frss.

2. Let {(aj , kj)}j∈C be the values received from Fwmult. For j ∈ H, choose ej ← Zq and send
{ej}j∈H to A on behalf of the honest parties. For j ∈ C, set ēj := aj · kj + rj + oj . For j ∈ H,
set ēj := ej . Let ē := interpolate2t(0, [n], {ēj}j∈[n]).

3. Let H⊥ := ∅. Then for j ∈ H do:

• Let {eℓ}ℓ∈C be the values sent to Pj by A on behalf of the corrupted parties.
• Compute e := interpolate2t(0, [n], {eℓ}ℓ∈[n]) and set dj := e− ē.

Finally, set d := interpolatet(0,H, {dj}j∈H).

4. For j ∈ C, set wj := ē− rj . Send (d, {wj}j∈C) to Fwmult and output whatever A outputs.

One can verify that the distributions of the outputs of A and the honest parties in the hybrid
and ideal worlds are equivalent.
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