
Efficient Error-tolerant Side-channel Attacks on
GPV Signatures Based on Ordinary Least

Squares Regression

Jaesang Noh, Dongwoo Han, and Dong-Joon Shin

Department of Electronic Engineering, Hanyang University, Seoul, Korea
{darkelzm, hdw0131, djshin}@hanyang.ac.kr

Abstract. The Gentry-Peikert-Vaikuntanathan (GPV) framework is uti-
lized for constructing digital signatures, which is proven to be secure in
the classical/quantum random-oracle model. Falcon is such a signature
scheme, recognized as a compact and efficient signature among NIST-
standardized signature schemes. Although a signature scheme based on
the GPV framework is theoretically highly secure, it could be vulnerable
to side-channel attacks and hence further research on physical attacks is
required to make a robust signature scheme.

We propose a general secret key recovery attack on GPV signatures
using partial information about signatures obtained from side-channel
attack. The three main contributions are summarized as follows.

First, we introduce, for the first time, a concept of vulnerable par-
tial information of GPV signatures and propose a secret key recovery
attack, called OLS attack, which effectively utilizes partial information.
In contrast to the approaches of Guerreau et al. (CHES 2022) and Zhang
et al. (Eurocrypt 2023), which utilize filtered (or processed) signatures
with hidden parallelepiped or learning slice schemes, the OLS attack
leverages all the available signatures without filtering. We prove that the
secret key recovered by the OLS attack converges to the real secret key
in probability as the number of samples increases.

Second, we utilize Gaussian leakage as partial information for the
OLS attack on Falcon. As a result, the OLS attack shows a significantly
higher success rate with fewer samples than the existing attack schemes.
Furthermore, by incorporating the DDGR attack, the OLS attack can
recover the secret key using much less samples with a success rate close
to 100%. Moreover, we propose more efficient OLS attack on Falcon,
which reduces the number of required side-channel attacks.

Third, we propose an error-tolerant power analysis attack using MAP
decoding, which effectively corrects the errors in samples to utilize Gaus-
sian leakage correctly. In conclusion, the OLS attack is expected to
strengthen the security of the GPV signatures including Falcon.

1 Introduction

A rapid advancement of quantum computing has posed a significant threat to
traditional cryptosystems. In particular, Shor’s algorithm can break RSA cryp-
tosystems in polynomial time [33], and Grover’s search algorithm reduces the

security bit size of symmetric key cryptosystems by half [14]. To address these
quantum threats, the national institute of standards and technology (NIST) ini-
tiated a competition to identify post-quantum cryptographic (PQC) algorithms
that are resilient against quantum attacks. After three rounds of evaluation,
NIST finally selected Falcon [31], CRYSTALS-Dilithium [20], and SPHINCS+
[2] as quantum-resistant signature schemes.

Falcon and Dilithium are constructed based on different cryptographic frame-
works: Falcon is built on the GPV framework [12], and Dilithium is based on
Fiat-Shamir with abort. The security of the GPV framework is based on the
hardness of the short integer solution (SIS) problem, and its security is proven
even in both classical and quantum random-oracle models [4]. By appropriately
selecting lattices and trapdoor samplers, the GPV framework can be used to con-
struct signatures with strong PQC security. Therefore, several signature schemes,
including Falcon, Mitaka [8] and HuFu [37], have been developed using the GPV
framework. However, despite theoretical security guarantee, GPV signatures may
have vulnerabilities in physical implementations, and for this reason, research
on resistance of GPV signatures to side-channel attacks becomes more critical.

In the PQC standardization process, NIST has been evaluating algorithms
in terms of not only their resistance to quantum attack but also their security
against side-channel attacks in real situations. Moreover, in the status report on
the third round of NIST PQC standardization, NIST emphasized to the future
engineers and researchers the importance of side-channel analysis of PQC and
expressed hope that such research would continue [1]. Therefore, side-channel
attack is a very important issue in PQC algorithms and the NIST standard
signature schemes have made significant progress in addressing side-channel at-
tacks, gradually strengthening their defenses. Although additional computations
are needed in Dilithium, its signatures become resilient to the t-probing model by
employing masking scheme [24]. Falcon adopts a constant-time Gaussian sampler
[32] in its reference implementation to resist timing attacks [10]. Despite such
protections, a practical side-channel attack through floating-point operations
has fully recovered the secret key of Falcon using 5,000 traces on chipwhisperer
[18]. More recently, hidden parallelepiped [15] and learning slice [38] schemes
can recover the secret key of Falcon by leveraging Gaussian leakage. Some ini-
tial research results of the hidden parallelepiped scheme showed that the secret
key of Falcon-512 could be recovered using 1 million samples, while the learning
slice scheme demonstrated that a direct recovery of the secret key is possible
using just 70,000 samples with 25% success rate. If the learning slice scheme is
combined with the exhaustive search, it can recover the secret key using 45,000
samples with 25% success rate.

However, the above schemes rely on filtered (or processed) signatures, and
generating filtered signatures requires a substantial number of power traces. To
our knowledge, no attack has been proposed, which can recover the secret key
using all the available signatures without filtering, regardless of their correctness.
Furthermore, no general attack schemes have been proposed for GPV signatures.
Therefore, in this paper, we identify vulnerable partial information in general

2

GPV signatures and propose an efficient attack scheme on GPV signatures,
especially on Falcon, which utilizes all the available signatures without filtering.

1.1 Our Contributions

General Secret Key Recovery Attack on GPV Signatures. We estab-
lish, for the first time, a new concept of vulnerable partial information of GPV
signatures and propose a general secret key recovery attack, called ordinary
least squares (OLS) attack, based on simple OLS regression. Unlike the existing
schemes, the OLS attack efficiently recovers the secret key of GPV signatures by
exploiting all the available signatures and partial information without filtering.
We also theoretically prove its consistency. i.e., the secret key recovered by the
OLS attack converges to the real secret key in probability.

Efficient and Fast OLS Attack on Falcon. The OLS attack recovers the se-
cret key of high-security variant of Falcon (Falcon-256, -512, -1024) using Gaus-
sian leakage as partial information, which is more effective for recovering the
secret key of Falcon compared to the state-of-the-art attacks. For Falcon-512,
the OLS attack directly recovers the secret key using only 35,000 samples with
60% success rate. By combining it with the DDGR attack in [22], the secret key
is recovered using 25,000 samples with a high success rate close to 100%. Since
the OLS attack is based on simple linear regression, the secret key of Falcon-
512 is directly recovered in about 8 seconds without using equipment such as
high-performance CPUs. Furthermore, we develop an efficient OLS attack on
Falcon by leveraging the orthogonal basis properties of NTRU lattice, thereby
mitigating side-channel attacks by a factor of 1/2n for n = 256, 512, 1024.

Error-tolerant Power Analysis Attacks on Half-Gaussian Sampler. The
power analysis attack on the BaseSampler (half-Gaussian sampler) of Falcon is
highly inefficient if noise exists in power trace. Therefore, we propose an error-
tolerant power analysis attack using maximum a posteriori (MAP) decoding,
which corrects the errors in samples due to noise. The OLS attack combined with
MAP decoding further reduces the errors of the recovered secret key. Specifically,
the combined scheme reduces about 50 errors in 30,000 samples at SNR 30 dB
for Falcon-512, compared to the ordinary OLS attack. Therefore, the combined
scheme can effectively recover the secret key with fewer samples and in less time
than the OLS attack without MAP decoding.

2 Preliminaries

2.1 Notations

This section introduces the conventional notations used in the paper except when
specified otherwise.

3

Linear Algebra. Vectors and matrices are denoted in bold lowercase and up-
percase letters, respectively. Vectors are considered row vectors. ⟨u,v⟩ denotes
the inner product of vectors u and v, and if ⟨u,v⟩ = 0, u and v are called
orthogonal. ∥v∥ denotes the Euclidean norm (L2 norm) of v, and ∥v∥1 denotes
the Manhattan norm (L1 norm) of v. BT represents the transpose of B, and B∗

represents a Hermitian matrix of B, i.e., B∗ is the conjugate transpose of B.

Distribution. For a distribution Qσ,λ, σ is the standard deviation and λ is
the expectation. The notation x ∼ Qσ,λ denotes that a random variable x is
distributed according to Qσ,λ, and the probability density function (PDF) of x
is denoted by Qσ,λ(x). x ← Qσ,λ implies that x is independently sampled from
the distribution Qσ,λ. For any set S, x ← S represents that x is independently
and randomly sampled from S. Given an algorithm or a real-valued function A,
x← A(y) represents that x is an output of A on the input y.

Statistical Analysis. For a random variable x, Ex[x] and V ar[x] denote the ex-
pected value and variance of x, respectively. A random vector x = (x1, x2, . . . , xn)
is a multivariate random variable where xi’s are random variables. A random
matrix X is also a multivariate random variable whose elements are random
variables. In the paper, all random variables in a multivariate random variable
are considered to be identically distributed. Given real random vectors x and y
having finite variance and expected values, the covariance matrix Kxx is defined
as

Kxx := Cov[x,x] = Ex[(x− Ex[x])
T (x− Ex[x])],

and the cross-covariance matrix Kxy is defined as

Kxy := Cov[x,y] = Ex,y[(x− Ex[x])
T (y− Ey[y])].

2.2 Convergence in Probability and Related Results

Convergence in Probability [11]. Let (X, dX) be the metric space where X
is a set and dX is a metric on X. Let (Ω,F ,P) be the probability space where Ω
is a sample space, F is a σ-algebra on Ω, and P is a probability measure. Given
a sequence of random variables {xn} on (Ω,F ,P) such that xn : Ω → X for all
n ∈ Z+ = {1, 2, . . . }, then the sequence {xn} is said to converge to a random
variable x : Ω → X in probability if for every ε > 0,

lim
n→∞

P(dX(x, xn) > ε) = 0.

The convergence in probability is denoted by using the probability limit operator
‘plim’ such that plimn→∞ xn = x.

Let (V, ∥·∥V) be a normed space where V is a vector space and ∥·∥V is a norm
on V . Let {xn = (xn,1, xn,2, . . . , xn,m)} be the sequence of multivariate random
variables such that xn : Ωm → V for n ∈ Z+ where all coordinates xn,i of xn are
random variables on the same probability space (Ω,F ,P). The convergence in

4

probability of the sequence {xn} to a multivariate random variable x : Ωm → V
is defined as follows. For every ε > 0,

lim
n→∞

P(∥x− xn∥V > ε) = 0,

which can be written by plimn→∞ xn = x.

Convergence Theorems. Three theorems related to the convergence in prob-
ability are introduced, which are used in the proofs of Theorems 4 and 5. The
first theorem is the weak law of large numbers (WLLN).

Theorem 1 (Weak Law of Large Numbers [9]). Let x1,x2, . . . ,xn be in-
dependent and identically distributed (IID) multivariate random variables with
Exi [xi] = c <∞ for all i ∈ {1, 2, . . . , n}. If sn = 1

n

∑n
i=1 xi then

plim
n→∞

sn = c.

The following Slutsky’s theorem shows the convergence of some simple oper-
ational results of two random matrices.

Theorem 2 (Slutsky’s Theorem [9]). Let {Xn} and {Yn} be sequences of
random matrices. If plimn→∞ Xn = X and plimn→∞ Yn = C for a random
matrix X and a constant matrix C, then

(a) plim
n→∞

(Xn +Yn) = X+C.

(b) plim
n→∞

(XnYn) = XC, if XnYn is defined.

(c) plim
n→∞

(XnY
−1
n) = XC−1, if XnY

−1
n is defined and

C is an invertible matrix.

The final theorem is the continuous mapping theorem, which concerns the
convergence of functions at continuous points.

Theorem 3 (Continuous Mapping Theorem [3]). Let (X, ∥·∥X) and (Y, ∥ ·
∥Y) be normed spaces, and let f be a measurable function from X to Y . Let Df

denote the discontinuity set of f . Given a sequence of multivariate random vari-
ables {xn} defined on the metric space X, if plimn→∞ xn = x for a multivariate
random variable x and P(x ∈ Df) = 0, then

plim
n→∞

f(xn) = f

(
plim
n→∞

xn

)
= f(x).

2.3 The Gentry-Peikert-Vaikuntanathan (GPV) Framework

Lattice. A basis B of a lattice L is a set {b1,b2, . . . ,bn} of linearly independent
vectors bi ∈ Rm for i ∈ {1, 2, . . . , n}, which also generates the lattice L as

L =

{
n∑

i=1

xibi | xi ∈ Z

}
.

5

Also, B can be expressed as an n×m full-rank matrix where bi is located as the
ith row vector. A lattice generated by a basis B is a discrete additive subgroup
of Rm, which is denoted by L(B), and n is the dimension of L(B).

A q-ary lattice, which satisfies qZn ⊆ L ⊆ Zn for some integer q ∈ Z+, is
primarily used in the construction of lattice-based cryptography. For any full-
rank matrix B ∈ Zn×m

q , the q-ary lattice generated by B is defined as

Λq(B) := {y ∈ Zm | y = zB mod q for z ∈ Zn}.

The orthogonal lattice of Λq(B) modulo q, denoted as Λ⊥
q (B), is defined as

Λ⊥
q (B) := {y ∈ Zm | yBT = 0 mod q}.

The orthogonal lattice Λ⊥
q (B) will be used for defining the GPV framework.

GPV framework. The GPV framework is a hash-and-sign paradigm to con-
struct a lattice-based signature [12]. Its security is guaranteed based on the
hardness of the SIS problem, which has been proven under the classical/quantum
random oracle model [4]. The GPV framework can be briefly described as follows.

– Public key: A full-rank matrix P ∈ Zn×m
q (n < m) denotes a basis of an

n-dimensional q-ary lattice Λq(P). The public key contains the matrix P,
called a public basis.

– Secret key: A matrix B ∈ Zm×m
q is a short basis of the q-ary lattice Λ⊥

q (P),

satisfying B×PT = 0 mod q. The secret key contains the matrix B, called
a secret basis.

– Signing: Given a messagem and a salt r ∈ {0, 1}k, the signature s ∈ Zm
q ofm

is a short vector satisfying sPT = H(m||r), where H : {0, 1}∗ → Zn
q is a hash

function and m||r denotes a concatenation of m and r. The computation of
signature s is performed as follows.

1. Choose a salt r← {0, 1}k and find a preimage c ∈ Zm
q such that cPT =

H(m||r).
2. Compute v ← TB(c), where TB : Zm → Λ⊥

q (P) is a trapdoor sampler

that samples a lattice point v ∈ Λ⊥
q (P) close to the input c.

3. Compute s← c−v. Since v satisfies vPT = 0. Thus sPT = (c−v)PT =
cPT = H(m||r) and s is short.

– Verifying: If the signature s is short and satisfies sPT = H(m||r), the sig-
nature is accepted. Otherwise, the signature is rejected.

A signature scheme based on the GPV framework, called GPV signature, is
constructed by properly choosing the lattices Λq(P) and Λ⊥

q (P), and a trapdoor
sampler TB which leaks no information about the secret basis B from the sig-
nature distribution. The Klein-GPV algorithm [12] is the first trapdoor sampler
family, which is proven to leak no information about the secret basis B from the
signature distribution.

6

2.4 Trapdoor Sampler

Gram-Schmidt Orthogonalization. The Gram-Schmidt orthogonalization
(GSO) is a linear transformation that uniquely generates a set of mutually or-
thogonal vectors from a given set of linearly independent vectors. Let B ∈ Rn×m

be a basis of a lattice. Then the Gram matrix BB∗ is uniquely decomposed by
LDL∗ decomposition as follows.

BB∗ = LDL∗ = L(B̃B̃
∗
)L∗,

where L ∈ Rn×n is a lower triangular matrix, D ∈ Rn×n is a diagonal matrix,
and B̃ is the orthogonal basis of B such that B = LB̃. The row vectors b̃i of B̃
are pairwise orthogonal.

Gaussians. Let ρσ,c : Rn → R be the n-dimensional Gaussian PDF with the
standard deviation σ and the center c ∈ Rn, defined as

ρσ,c(x) := exp

(
−∥x− c∥2

2σ2

)
.

For a lattice Λ ⊂ Rn, the discrete Gaussian distribution DΛ,σ,c over Λ with the
standard deviation σ and the center c ∈ Rn is defined as follows. For all z ∈ Λ,

DΛ,σ,c(z) :=
ρσ,c(z)∑

x∈Λ ρσ,c(x)
.

If the center c is omitted from the discrete Gaussian distribution such as DΛ,σ

then c is assumed to be 0.

Trapdoor Sampler. GGH [13] and NTRUSign [16] are signature schemes that
generate short signatures by using Babai’s rounding-off algorithm. The signature
distributions of them can be exploited to recover the secret basis B by learning
a parallelepiped scheme [25]. This attack scheme can recover the secret basis B
even if Babai’s nearest plane algorithm is used in the signature scheme.

In the GPV framework, a trapdoor sampler is constructed to leak no infor-
mation about the secret basis B from the signature distribution. The trapdoor
sampler makes the signature distribution statistically close to a discrete Gaus-
sian distribution over the lattice Dc+L(B),σ which is isotropic and centered at
zero (Es[s] = 0). Therefore, the learning a parallelepiped scheme cannot ex-
tract the information about B from the signature distribution. The Klein-GPV
algorithm [12] is proven to prevent any leakage of the secret basis B because
the signature distribution is statistically close to Dc+L(B),σ. The hybrid sam-
pler [6] and Peikert sampler [26] are similar to the Klein-GPV algorithm such
that the signature distribution is statistically close to Dc+L(B),σ. These trap-
door samplers are a type of randomized rounding-off algorithm or nearest-plane

7

algorithm, which modifies the coefficients of the secret basis B or the orthogonal
basis B̃ to generate the signature s in the following form.

s = c− v = (r− u)A = wA, (1)

where r is a random vector which is generated by the trapdoor sampler using
c and A, w is the coefficient vector of A, u is a partial information which is
adjusted by the trapdoor sampler to construct the signature distribution close
to Dc+L(B),σ, and A is either B or B̃. Each scheme employs a different matrix

to generate the signature (Peikert sampler: B, Klein-GPV algorithm: B̃), which
results in different variance of the signature distribution [30]. The trapdoor sam-
pler in Falcon is a variant of the Klein-GPV algorithm, known as Ducas-Prest’s
fast Fourier orthogonal (FFO) sampler. Note that this FFO sampler applies
Ducas FFO scheme [7] to the Klein-GPV algorithm to accelerate the sampling
process.

2.5 An Overview of FALCON

NTRU. The NTRU lattice was first introduced in 1996 by Hoffstein, Pipher,
and Silverman to construct a lattice over a ring [17]. Let n, q ∈ Z+, R :=
Z[x]/⟨xn+1⟩ andRq := Zq[x]/⟨xn+1⟩ be the quotient ring of the polynomial ring
Z[x] and Zq[x], respectively. The NTRU lattice employs a ring structure, which
reduces the public key size to a single polynomial h ∈ Rq. Let f, g, F,G ∈ R
be the small secret polynomials of the NTRU lattice, which satisfy the following
NTRU equation:

fG− gF = q mod (xn + 1).

The secret key f should be invertible modulo q and the NTRU public key h
is generated as h = gf−1 mod q. If the average norms of f and g are slightly
larger than

√
q and n is a power of two, it was proven that h is statistically

indistinguishable from a uniformly sampled element in Rq [34]. However, in
practice, the NTRU assumption still states that it is hard to find small secret
polynomials f, g ∈ R from the public key h ∈ Rq [27].

When instantiating the GPV framework over the NTRU lattice, the public
basis P ∈ R2

q and the secret basis B ∈ R2×2 are determined as follows:

P =
(
1 h∗) , B =

(
g −f
G −F

)
.

Here, h∗ is the Hermitian adjoint which is a unique polynomial in Q[x]/⟨xn +1⟩
satisfying h∗(ζ) = h(ζ) for any root ζ of xn + 1 where · denotes the complex
conjugate over C. Since polynomial multiplication overR orRq can be performed
by negacyclic matrix multiplication, all polynomials in R or Rq can be expressed
as negacyclic matrices. A negacyclic matrix has a property that each row is
a cyclic shift of the previous row, with the last element negated. Since each
component polynomial of P and B can be replaced by a negacyclic matrix, P
and B can be represented as the matrices in Zn×2n

q and Z2n×2n, respectively.

8

Note that converting h∗ into a negacyclic matrix is the same as converting
h into a negacyclic matrix and then taking the conjugate transpose. Hence, the
operator ∗ for the Hermitian adjoint polynomial h∗ is the same as the Hermitian
(conjugate and transpose) operator ∗ for making Hermitian matrix. As men-
tioned in Section 2.3, B and P are orthogonal to each other such that BP∗ = 0
mod q.

Falcon Signature. Falcon is the GPV signature whose trapdoor sampler is
a FFO sampler over the NTRU lattice [31]. Let q = 12289 and n be a power
of two. The FFO sampler efficiently implements the Klein-GPV algorithm on
the ring structure such as R. Since the public key is a polynomial h ∈ Rq, the
NTRU lattice reduces the size of public key. The combination of FFO sampler
and NTRU lattice makes Falcon one of the most compact and efficient schemes
in the NIST standard. In the NIST standard, Falcon-512 and Falcon-1024 are
adopted where 512 and 1024 denote the dimension n of the polynomial xn + 1.

Algorithm 1. FalconSign(m, sk)

Input: A message m and a secret key sk
Output: A signature sig of m
1: r← {0, 1}320
2: c← HashToPoint(r||m, q, n) ▷ c ∈ Rq

3: t← (c, 0)B−1

4: while ∥s∥2> ⌊2.42 · n · σ2⌋ do ▷ σ = 1.17

π
√
2
·
√

q · log
(
4n(1 + 232 ·

√
n/4)

)
5: z← ffsamplingn(t, T) ▷ zB ∼ DL(B),σ,(c,0)

6: s← (t− z)B ▷ s ∼ DL(B)+(c,0),σ

7: end while
8: return sig = (r, s)

Algorithm 1 shows a pseudo-code of Falcon signing. As described in [31], Fal-
con utilizes FFT to efficiently perform polynomial multiplication in R. However,
Algorithm 1 in this paper omits the FFT part for the simplicity of explanation.
The inputs m and sk = (B, T) represent the message string and the secret
key of Falcon, respectively, where B is the secret basis and T is the LDL∗

tree of B. HashToPoint is a hash function mapping a string (r||m, q, n) to a
polynomial in Rq. Falcon generates the signature s by finding a lattice point
zB ∼ DL(B),σ,(c,0) using the FFO sampler ffsamplingn. The FFO sampler en-
sures that the signature distribution is (statistically) close to DL(B)+(c,0),σ which
leaks no information about the secret basis B.

An FFO sampler requires an oracle that exactly samples from the discrete
Gaussian distribution over integers DZ,σ,λ for any desired σ > 0 and λ ∈ R. The
FFO sampler in Falcon uses the SamplerZ in Algorithm 2 as a discrete Gaussian
sampler over integers. SamplerZ performs rejection sampling to sample an integer
z from the distribution close to DZ,σ′,c in a constant time [32]. If the operation

9

Algorithm 2. SamplerZ(c, σ′)

Input: The center of the discrete Gaussian distribution c ∈ R and the standard devi-
ation σ′ ∈ [σmin, σmax]

Output: An integer z ∈ Z such that z ∼ DZ,σ′,c

1: c̄← c− ⌊c⌋
2: z0 ← BaseSampler() ▷ See Algorithm 3
3: b← {0, 1}
4: z̄ ← b+ (2 · b− 1) · z0
5: x← (z̄−c̄)2

2σ′2 −
z20

2σ2
max

6: z ← z̄ + ⌊c⌋
7: return z passing with a probability of σmin

σ′ exp(−x), otherwise go to Line 2 and
restart

time is not constant, the SamplerZ is vulnerable to timing attacks that estimate
the standard deviation σ′ to recover the secret basis B [10]. BaseSampler is a
half-discrete Gaussian sampler which samples an integer z0 from DZ+,σmax

and
the value b ∈ {0, 1} determines the sign of integer z̄. In the reference code of
Falcon, BerExp function is used to pass z with probability σmax

σ′ exp(−x) [31].
However, the BerExp function is omitted for the simplicity of explanation.

Algorithm 3. BaseSampler()

Input: -
Output: An integer z0 ∈ {0, 1, . . . , 18} such that z0 ∼ DZ+,σmax

1: u← {0, 1}72
2: z0 ← 0 ▷ Set the initial value of z0 as 0
3: for i = 0, 1, . . . , 17 do
4: z+ ← [[u < RCDT[i]]]
5: z0 ← z0 + z+

6: end for
7: return z0

Algorithm 3 shows a pseudo-code of BaseSampler as a half-discrete Gaussian
sampler from DZ+,σmax

. The array RCDT denotes the (scaled) reverse cumula-

tive distribution table, where RCDT[i] is equal to 272− 272 ·
∑i

k=0 DZ+,σmax
(k)

for all i ∈ {0, 1, . . . , 18}. A random 72-bit u is compared with RCDT[i] for
i ∈ {0, 1, . . . , 18} to determine the value z+ ∈ {0, 1}. If u < RCDT[i], then
z+ = 1, and otherwise, z+ = 0. The output z0 of BaseSampler is computed by
summing all z+.

10

3 Secret Key Recovery Attack on GPV Signatures Using
Partial Information about Signature

In this section, we propose a secret key recovery attack, called OLS attack, on
GPV signatures based on ordinary least squares (OLS) regression, and demon-
strate the consistency of the proposed scheme.

3.1 Problem Setup for OLS Attack on GPV Signatures

There have been a few research results on the side-channel attack using the
vector z̄ = (z̄1, z̄2, . . . , z̄2n) to recover the secret basis B of Falcon, where z̄i is
used to compute zi = z̄i+⌊ci⌋ in Algorithm 2 for the output z = (z1, z2, . . . , z2n)
of FFO sampler. The timing attack in [10] aims to estimate all the variance σi

of z̄i distributed according to Dσi,ri and to recover the secret basis B of Falcon
using them. Recently, power analysis attack schemes are proposed to classify the
signatures s according to the first coordinate z̄1 as 0 or 1, and then to recover
the secret basis B of Falcon by using the signatures with z̄1 = 0 or 1 through the
hidden parallelepiped or the learning slice schemes [15], [38]. As will be derived
in Section 4.1, z̄ in Falcon can be used as a partial information u of signature s
in Eq. (1) such that

s = (r− z̄)B̃ for ri ∼ χζi,λi
and z̄i ∼ DZ,σi,ri , (2)

where r = (r1, r2, . . . , r2n) is an unknown random vector, χζi,λi
is a distribution

of ri whose support is [0, 1) for i ∈ {1, 2, . . . , 2n}, and B̃ is the orthogonal basis
of B. If the signature s is expressed as in Eq. (2), the proposed OLS attack can
be effectively applied as presented in Section 3.3.

Next, we will generalize Eq. (2) from the Falcon signature to the GPV signa-
ture, in order to apply the OLS attack more broadly. Consider a GPV signature

described in Section 2.3. Let B =
(
bT
1 bT

2 · · · b
T
n

)T ∈ Zn×n
q be the secret basis of

GPV signature and s be the signature. The coefficient vector w in Eq. (1) must
satisfy Ew[w] = 0 because Es[s] = 0 as described in Section 2.4. To generate w
with Ew[w] = 0, a partial information u = (u1, u2, . . . , un) used in the trapdoor
sampler must satisfy the following relation:

s = wA = (r− u)A for ri ∼ Υζi,λi
and ui ∼ Qσi,ri , (3)

where A is either B or B̃, r = (r1, r2, . . . , rn) is an unknown random vector,
and ζi and σi are also unknown. Similar to z̄ in Eq. (2) for Falcon, u used in
the trapdoor sampler of GPV signature satisfy Eu|r[u | r] = r to ensure that
Ew[w] = Er,u[r− u] = Er[r− Eu|r[u |r]] = Er[r− r] = 0 for r.

If u and Er[r] = λ = (λ1, λ2, . . . , λn) of Eq. (3) are estimated through side-
channel attack or other method, an attacker attempting to recover the secret
key faces the following problem.

Problem 1. Let B ∈ GLn(Z) be the secret basis of GPV signature and s ∈ Zn

be a signature. Define the probabilistic algorithm WΥ,Q(A) which outputs (s,u)

11

such that s = (r−u)A for ri ∼ Υζi,λi
and ui ∼ Qσi,ri . Here, A is either B or B̃,

and r, ζi, σi are unknown. Given N statistically independent samples (s,u) ←
WΥ,Q(A) and Er[r] = λ = (λ1, λ2, . . . , λn) ∈ Rn, find a good approximation of
A. Note that, in this case, u is the partial information about s.

Definitely, the solution of Problem 1 is an approximation of B or B̃ which
serves as the secret key of GPV signatures.

3.2 Transforming Problem 1 into Multiple Linear Regression
Problem

Consider m statistically independent samples (si,ui)←WΥ,Q(A) in Problem 1,
where si is the ith GPV signature and ui is the partial information about si for
i ∈ {1, 2, . . . ,m}. Let Sm = {(si,ui) ← WΥ,Q(A) | i ∈ {1, 2, . . . ,m}}. For any
i ∈ {1, 2, . . . ,m}, the vector ri ∈ Rn, used for sampling (si,ui) from WΥ,Q(A),
satisfies si = (ri − ui)A, which can be transformed as follows:

λ− ui = siA
−1 + (λ− ri), (4)

where λ denotes the expectation of ri. Eq. (4) can be regarded as a multiple
linear regression (MLR) model as explained below, which is used for recoveringA
in Section 3.3. The MLR model for the samples (si,ui) ∈ Sm, i ∈ {1, 2, . . . ,m},
is as follows.

yi = xiA
−1 + ei, (5)

where yi := λ− ui is the dependent output vector, xi := si is the independent
input vector, and ei := λi − ri is the noise vector. Then, xi ∈ Zn and ei ∈ Rn

of the proposed MLR model in Eq. (5) satisfy the following Lemma 1.

Lemma 1 (Uncorrelatedness). Let x = s ∈ Zn and e = λ − r ∈ Rn be the
independent input and noise vectors, respectively, in Eq. (5). Then, x and e are
uncorrelated, i.e., Kxe = Cov[x, e] = 0.

The complete proof of Lemma 1 is provided in Supplementary Material A.
The MLR model in Eq. (5) can be represented in matrix form for the given set
Sm as follows.

Y = XA−1 +E, Y =


y1

y2
...

ym

, X =


x1

x2

...
xm

, E =


e1
e2
...

em

, (6)

where Y ∈ Rm×n is the dependent output matrix, X ∈ Zm×n is the independent
input matrix, and E ∈ Rm×n is the noise matrix. Then, the proposed MLR model
in Eq. (6) satisfies the following Lemma 2.

12

Lemma 2. Let Sm = {(si,ui) | i ∈ {1, 2, . . . ,m}} be a set of m independent
samples (si,ui) ← WΥ,Q(A). Let X ∈ Zm×n and E ∈ Rm×n be the input and

noise matrices, respectively, in Eq. (6). As m goes to infinity, 1
mXTE converges

to 0 in probability, and 1
mXTX converges to Cov[s, s] in probability. In other

words,

plim
m→∞

(
1

m
XTE

)
= 0 and plim

m→∞

(
1

m
XTX

)
= Cov[s, s].

The complete proof of Lemma 2 is provided in Supplementary Material A.
Lemma 2 is used in Section 3.3 for proving the consistency of the proposed OLS
attack.

3.3 OLS Attack on GPV Signatures Using Partial Information
about Signature

Algorithm 4. OLS attack(Sm,λ)

Input: A sample set Sm = {(si,ui)←WΥ,Q(A) | i ∈ {1, 2, . . . ,m}} and the expected
vector λ = (λ1, λ2, . . . , λn)

Output: Â: an approximations of secret key A
1: for i = 1, 2, . . . ,m do
2: xi ← si ▷ si is the ith GPV signature
3: yi ← λ− ui ▷ λ = Er[r] and ui is partial information of si in Eq. (3)
4: end for

5: X←


x1

x2

...
xm

 and Y←


y1

y2

...
ym

 ▷ Vertical concatenation of each xi and yi

6: Â← (XTY)−1XTX

7: return Â

In this section, an ordinary least squares (OLS) attack on GPV signatures,
which estimates A, is proposed and it is shown that this estimator of A is
consistent. Algorithm 4 is a pseudo-code of the OLS attack for recovering A
from the collected samples (s,u) using the proposed MLR model in Eq. (6). The
inputs of the OLS attack in Algorithm 4 are a sample set Sm consisting of m
independent samples (s,u)← WΥ,Q(A), and an expected vector λ = Er[r] (see

Eq. (4)). The output Â in Algorithm 4 is the estimation of the secret key A.

By applying an ordinary least squares (OLS) estimator to the proposed MLR
model in Eq. (6), we can obtain an estimation of A−1 as follows:

Â−1 = (XTX)−1XTY. (7)

13

It is clear that the estimator Â−1 minimizes the squared error
∑m

i=1(yi −
xiÂ

−1)(yi − xiÂ
−1)T over the sample set Sm. Note that xi and yi are the

ith row vectors of X and Y, respectively. The estimator Â is the inverse of Â−1

in Eq. (7) as follows:

Â =
(
Â−1

)−1

= (XTY)−1XTX. (8)

Since Â in Eq. (8) is a simple linear estimator, the proposed OLS attack is very
efficient and its consistency is proven in the following Theorem 4. Note that the
consistency implies that the linear estimator Â converges to A in probability as
the number of samples (s,u) increases.

Theorem 4 (Consistency of the Proposed OLS Estimator). Let Sm =
{(si,ui)← WΥ,Q(B) | i ∈ {1, 2, . . . ,m}} be a set of m independent GPV signa-
ture samples. Let X ∈ Zm×n and Y ∈ Rm×n be the input and output matrices,
respectively, in Eq. (6). The estimator Â = (XTY)−1XTX of the OLS attack

in Algorithm 4 is consistent, i.e., plimm→∞ Â = A.

Proof. For any X ∈ Zm×n and Y ∈ Rm×n, we have

Â−1 −A−1 = (XTX)−1XTY−A−1 (by the definition of Â−1)

= (XTX)−1XT (XA−1 +E)−A−1 (by the definition of Y)

= (XTX)−1XTXA−1 + (XTX)−1XTE−A−1

= (XTX)−1XTE.

It follows that

plim
m→∞

(Â−1 −A−1) = plim
m→∞

(XTX)−1XTE

= plim
m→∞

m(XTX)−1 1

m
XTE

= plim
m→∞

(
1

m
XTX

)−1
1

m
XTE

=

(
plim
m→∞

1

m
XTX

)−1

plim
m→∞

1

m
XTE - - - - - - - - (9)

= Cov[s, s]−1 · 0 (by Lemma 2)

= 0.

Here, the equality (9) holds as follows. Since Cov[s, s] is a positive semi-definite
matrix, it is invertible except when βCov[s, s]βT = 0 for some β ∈ Rn \ {0}.

14

Then, βCov[s, s]βT can be expressed as follows.

βCov[s, s]βT =

n∑
i=1

n∑
j=1

βiβjCov[si, sj]

= V ar

[
n∑

i=1

βisi

]
= V ar[⟨β, s⟩],

where βi and si are the ith coordinate of β and s, respectively. Since s is dis-
tributed according to an n-dimensional discrete Gaussian distribution over lat-
tice, V ar[⟨β, s⟩] ̸= 0 for all β ∈ Rn \ {0}. Therefore, Cov[s, s] is invertible and,
by Theorem 2, the equality (9) holds.

Since A−1 is fixed as constant for any m and plimm→∞(Â−1−A−1) = 0, it
follows that

plim
m→∞

Â−1 = A−1. - - - - - - - - (10)

Let g : GLn(R)→ GLn(R) be a function of calculating inverse matrix. Then

g is continuous for every GLn(R) [35]. We now show the convergence of Â to A
as follows:

plim
m→∞

Â = plim
m→∞

(
Â−1

)−1

(by Eq. (8))

= plim
m→∞

g
(
Â−1

)
= g

(
plim
m→∞

Â−1

)
(by Theorem 3)

= g (g(A)) (by Eq. (10))

= A.

Since A is either B or B̃, all rows of A are linearly independent, and hence
P (g(A) /∈ GLn(R)) = 0. Since g is continuous on GLn(R), by Theorem 3, the
last equality holds. □

Therefore, the more samples (s,u) are collected, the more accurately A is
estimated. If A is the secret basis B, the secret key of any GPV signature is
directly recovered by the proposed OLS attack in Algorithm 4. Otherwise, one
more step is required to recover the secret basis B from the orthogonal basis B̃.
In [10], a scheme is proposed to recover the NTRU secret basis B using ∥b̃i∥,
i ∈ {1, 2, . . . , n}, where b̃i is the ith row of B̃. In addition, the NTRU secret
basis B can be more easily recovered from B̃ by the scheme proposed in Section
4.1. However, it is still an interesting open problem to recover the secret basis
B from the orthogonal basis B̃ for arbitrary lattice.

15

4 An Efficient Practical Implementation of OLS Attack
on Falcon

In this section, we introduce an efficient implementation scheme for recover-
ing the secret basis B of Falcon based on the OLS attack in Algorithm 4. The
proposed implementation scheme reduces the number of samples necessary for
attack on SamplerZ by 1

2n times compared to the general OLS attack in Algo-
rithm 4. In addition, an error-tolerant power analysis attack on BaseSampler is
proposed to further improve the attack efficiency by correcting the erroneous
samples z0 obtained from BaseSampler.

4.1 Partial Information of Falcon and OLS Attack on Falcon

To perform the OLS attack on Falcon, it is necessary to determine r, u, and
A in Eq. (3) corresponding to Falcon. Let B ∈ GL2n(Z) be the secret basis of
Falcon. We have set that the partial information u and the secret key A in Eq.
(3) for Falcon are z̄ = (z̄1, z̄2, . . . , z̄2n) and the orthogonal basis B̃, respectively,
where z̄i is used to compute zi = z̄i + ⌊ci⌋ in Algorithm 2 for the output z =
(z1, z2, . . . , z2n) of FFO sampler. The vector z̄ satisfies the following relation,
which will be shown in Corollary 1.

s = (r− z̄)B̃ for ri ∼ χζi,λi
and z̄i ∼ DZ,σi,ri , (11)

where r ∈ [0, 1)2n is an unknown random vector and χζi,λi is the distribution of
ri for i ∈ {1, 2, . . . , 2n}. It should be noted that z̄ can be estimated by using a
power analysis attack as described in Section 5.1. Before proving Corollary 1, we
will first examine the following Lemma 3 for the output z of the FFO sampler
with the signature s.

Lemma 3 (Informal, see Lemma 4.4 in [12] for a formal statement).
Let T be the LDL∗ tree of Falcon, c ∈ R be the output of HashToPoint, and
t ∈ R2n be (c, 0)B−1 in Algorithm 1. Then, for any input (t, T) and any output
z of FFO sampler ffsamplingn(t, T), we have

s = (t̃− z)B̃,

where t̃ = tL − zL + z and L ∈ R2n×2n is a lower triangular matrix in LDL∗

decomposition of Gram matrix BB∗. The ith coordinate zi of z is distributed
according to DZ,σi,t̃i

and t̃i is the ith coordinate of t̃ for i ∈ {1, 2, . . . , 2n}.

Lemma 4.4 in [12] addresses the relationship between the output of the Klein-
GPV algorithm and the signature. Since the FFO sampler is a variant of the
Klein-GPV algorithm, which employs a quotient ring to efficiently run the near-
est plane algorithm [7], the relationship between the signature s and the output
z of the FFO sampler in Falcon is the same as the relationship in Lemma 4.4 in
[12]. Lemma 3 shows the relationship between s and z in Falcon, which leads to
Corollary 1 implying that z̄ of SamplerZ can be used as partial information for
recovering the orthogonal basis B̃ of Falcon.

16

Corollary 1. Let z = (z1, z2, . . . , z2n) ∈ Z2n be the output of FFO sampler
ffsamplingn, and let z̄ = (z̄1, z̄2, . . . , z̄2n) ∈ Z2n be the vector such that z̄i is
calculated from zi = z̄i + ⌊ci⌋ in Algorithm 2. Here, ci, serving as an input
to SamplerZ for producing the output zi, is equal to t̃i of t̃ = (t̃1, t̃2, . . . , t̃2n)
in Lemma 3. Then for any signature s ∈ Z2n of Falcon and z̄, there exists
r = (r1, r2, . . . , r2n) ∈ [0, 1)2n such that

s = (r− z̄)B̃,

where z̄i is distributed according to DZ,σi,ri for i ∈ {1, 2, . . . , 2n}.

The complete proof of Corollary 1 is provided in Supplementary Material A.
If you look at Problem 1 from the viewpoint of Falcon, Corollary 1 implies that
the outputs (s, z̄) of the probabilistic algorithm Wχ,D(B̃) satisfy the relation in
Eq. (11). Since various attack schemes assume that r is sampled from [0, 1)2n

uniformly at random [15], [25], [38], we assume that the expected vector λ in
Algorithm 4 is

(
1
2 ,

1
2 , . . . ,

1
2

)
. Let m independent samples (s, z̄) ← Wχ,D(B̃)

be collected, where the support of χζi,λi
is [0, 1). In practice, these m vectors

z̄ are independently collected by applying power analysis attack to m Falcon
signatures made by the same secret basis B. As in Theorem 4, the estimator Â
in Eq. (8) converges to the orthogonal basis B̃ of Falcon in probability.

In Falcon, the secret basis B can be easily recovered from the orthogonal
basis B̃ by using the properties of NTRU lattice and GSO. The secret basis B
is constructed by the secret polynomials f, g, F,G ∈ Z[x]/⟨xn + 1⟩ as follows:

B =

(
g −f
G −F

)
.

Note that these secret polynomials satisfy the NTRU equation, f ·G−F · g = q
mod (xn + 1). In Falcon, F and G are obtained by solving this NTRU equation
given f and g [29], [31]. Thus, the secret basis B of Falcon can be recovered by
finding f and g. The first row b1 of B contains all the coefficient information of
secret polynomials f(x) =

∑n−1
i=0 fix

i and g(x) =
∑n−1

i=0 gix
i such that

b1 = (g0, g1, . . . , gn−1,−f0,−f1, . . . ,−fn−1).

Since the first row b1 ofB is the same as the first row b̃1 of B̃ due to the property
of GSO, f and g can be recovered only from b̃1, which is obtained by estimating
B̃ using the OLS attack in Algorithm 4 with samples and λ. Therefore, we only
need the first row b̃1 of B̃. Given Falcon-n (in general, n = 512, 1024) and m

samples, the time complexity for computing Â = ̂̃B in Eq. (8) is given as

O(mn2 + n3).

It is because computing XTY, XTX, and (XTY)−1 take O(mn2), O(mn), and
O(n3) operations, respectively.

17

4.2 Efficient OLS Attack on Falcon

Based on the analysis in Section 4.1, an efficient OLS attack on Falcon to recover
the secret basis B is performed only using z̄1 of the partial information z̄ because
B (equivalently, the secret polynomials f and g) can be recovered by estimating
the first row b̃1 of the orthogonal basis B̃. Note that b̃1 is a scaled transpose of

the first column vector v1 ∈ R2n of B̃
−1

such that

b̃1 =
vT
1

∥v1∥2
. (12)

It is clear that b̃1 = vT
1 /∥v1∥2 is the first row of B̃ because the rows of B̃ are

mutually orthogonal. In practice, since v1 is a real coefficient vector, we need to
round each coordinate of vT

1 /∥v1∥2 in Eq. (12) to obtain an integer vector b̃1.

Since the estimator Â−1 in Eq. (7) estimates B̃
−1

in Falcon, the first column

v1 of B̃
−1

is estimated only using the first column y′
1 of Y in Eq. (7) as follows.

v̂1 = (XTX)−1XTy′
1, (13)

where v̂1 is the estimation of v1. Note that the first column y′
1 of Y consists

of m elements λ1 − ui,1 = 1
2 − z̄i,1 where ui,1 and z̄i,1 are the first coordinate

of ui and z̄i, respectively, for i ∈ {1, 2, . . . ,m}, and z̄i,1’s are obtained by power
analysis attack to the SamplerZ. The first row b1 of B is recovered by scaling
v̂1 as in Eq. (12) such that

b̂1 =
v̂1

T

∥v̂1∥2
, (14)

where b̂1 represents the estimation of the first row b1 of B. Note that Y in
Algorithm 4 is constructed by 2nm traces obtained by power analysis attack,
but the proposed OLS attack only needs y′

1 to recover b1 and hence the number
of power analysis attacks (or power traces) is reduced from 2nm to m.

Theorem 5 proves that b̂1 in Eq. (14) is a consistent estimator.

Theorem 5 (Consistent Estimator b̂1 in Eq. (14)). Let B be the secret ba-
sis of Falcon, and Wχ,D(B̃) be the probabilistic algorithm whose outputs (s, z̄) sat-
isfy Eq. (11). Here, χ and D are distribution of ri and discrete Gaussian distri-
bution, respectively. From m independently measured samples (s, z̄)←Wχ,D(B̃),
the MLR model in Eq. (6) for Falcon is constructed using X and Y consisting
of m row vectors xi = si and yi = λi− z̄i, respectively. As m goes to infinity, the

estimator b̂1 = 1
k ((X

TX)−1XTy′
1)

T converges to the first row b1 of the secret
basis B in probability, where y′

1 ∈ Qm is the first column of Y consisting of m

elements λ1 − z̄i,1 and k = ∥(XTX)−1XTy′
1∥2, i.e., plimm→∞ b̂1 = b1.

The complete proof of Theorem 5 is provided in Supplementary Material
A. Theorem 5 implies that a sufficient number of samples (s, z̄1) accurately

18

recover b1 = (g,−f). Therefore, the secret basis B of Falcon can be efficiently
and accurately recovered using z̄1. Given Falcon-n and m samples, the time

complexity for computing b̂1 in Eq. (14) is

O(mn+ n3).

It is because computing XTy′
1, X

TX, and (XTX)−1 take O(mn), O(mn), and
O(n3) operations, respectively. Also, scaling by L2 norm takes O(n) and hence

the total time complexity for computing b̂1 is O(mn + n3). Note that, in Eq.
(13), X consists of m row vectors x = s and y′

1 consists of m elements 1
2 − z̄1.

4.3 Error-tolerant Power Analysis Attack on BaseSampler

This section proposes an error-tolerant power analysis attack on BaseSampler
when z0 is estimated by using a binary classifier for z+ ∈ {0, 1}. The BaseSam-
pler in Algorithm 3 performs 18 iterations of calculating z0 ← z0+z+ using sam-
ple z0 ∼ DZ+,σmax

. Let z+ = (z+1 , z
+
2 , . . . , z

+
18) be the vector where z+i ∈ {0, 1}

is obtained from the ith loop. Note that the output z0 of BaseSampler is equal
to ∥z+∥1. The set C of all possible 19 vectors z+ is as follows:

C = {z+ = (z+1 , z
+
2 , . . . , z

+
18) ∈ {0, 1}18 | z

+
i ∈ {0, 1} and z+i ≥ z+j for i < j}.

An underflow, which results in at least 8 bits to flip in the 32-bit register, occurs
in each loop when z+i = 1 in the BaseSampler. Such underflow allows binary

classification for z+i ∈ {0, 1} by observing power trace [15]. Let A(i)
binary be a

binary classifier that takes the power trace of the ith loop as input and classifies

z+i . Then, A
(i)
binary estimates z+ = (z+1 , z

+
2 , . . . , z

+
18) as follows:

ĉ = (ĉ1, ĉ2, . . . , ĉ18), ĉi ← A(i)
binary(Tri) ∈ {0, 1},

where ĉ ∈ {0, 1}18 is the estimated z+ and Tri is the power trace of the ith loop.
If Abinary fails to correctly classify the value of z+i , then ĉ may not belong to C
such that

ĉ = z+ + e+ mod 2,

where z+ ∈ C and e+ = (e+1 , e
+
2 , . . . , e

+
18) ∈ {0, 1}18 is an error vector. Assume

that the errors e+i , i ∈ {1, 2, . . . , 18}, are statistically independent. For given
ĉ ∈ {0, 1}18, for each c ∈ C, define Ic,ĉ := {i ∈ {1, 2, . . . , 18} | e+i = 1 for e+ =
c + ĉ mod 2} and Jc,ĉ := {1, 2, . . . , 18} \ Ic,ĉ. Then, the following maximum a
posteriori (MAP) decoding is proposed to correct the errors in ĉ as follows:

c∗ = argmax
c∈C

P (c | ĉ)

= argmax
c∈C

P(c)P (ĉ | c)

= argmax
c∈C

P(c)P(e+)

= argmax
c∈C

P(c)
∏

i∈Ic,ĉ

P(e+i = 1)
∏

j∈Jc,ĉ

P(e+j = 0), - - - - - - - - (15)

19

where c∗ ∈ C is the corrected ĉ by using MAP decoding. Since the probability
of selecting z0 in BaseSampler is predetermined by the RCDT table [31] and z0
is uniquely determined by the codewords c of the set C such that z0 = ∥c∥1,
the probability of selecting c from C is the same as the probability of selecting
z0 ∈ {0, 1, . . . , 18}, i.e., P(c) = P(z0). Therefore, after performing MAP decoding
in Eq. (15) the output z0 of BaseSampler is estimated uniquely as follows:

ẑ0 = ∥c∗∥1.

Even for the case that the errors are not statistically independent, the MAP
decoding approach in Eq. (15) can be taken to correct the errors in ĉ.

5 Experimental Evaluation

This section performs the experimental evaluation of deep-learning-based power
analysis attack for collecting power traces and the proposed OLS attack us-
ing samples, discussed in Section 4. All experiments were conducted on Ubuntu
20.04.6 LTS with an Intel i7-7700k (4.2GHz), 16GB DDR4 RAM, and an NVIDIA
GeForce GTX 970. The operation for secret key recovery in the experiment was
not optimized and hence the processing time could be further reduced through
enhanced CPUs, single instruction multiple data (SIMD), and so on.

5.1 Power Analysis Attacks on SamplerZ of Falcon with Noise

Note that z̄ in Algorithm 2 is z̄ = b + (2b − 1) · z0 for the BaseSampler output
z0 and the sign value b. The value of z̄ is estimated by z0 and b, obtained
through power analysis attack. Many previous works sufficiently studied the
power analysis attack aimed at estimating z0 and b [15], [19], [21], [36], [38].
However, most of them have not estimated z0 and b for various noise conditions.
Therefore, we will focus on the realistic power analysis attack for estimating z0
and b from noisy power traces. Moreover, we evaluate the attack capability when
the errors in z0 are corrected by the MAP decoding proposed in Section 4.3.

The power traces were collected using the ELMO simulator, which emulates
noise-free power traces targeting the ARM Cortex M0/M4 model [23]. Noisy
power traces were generated by adding white Gaussian noise to the collected
traces by ELMO. A measure of signal quality is determined by the signal-to-
noise ratio (SNR) defined as

SNRdB := 10 log

(
Psignal

Pnoise

)
,

where Psignal is the signal power and Pnoise is the noise power.
A multi-layer perceptron (MLP) is used as a binary classifier for estimating

z0 and b using noisy power traces as input. The MLP can distinguish the un-
derflow feature in the power traces and detect power differences at the assembly
instruction level [36], which enables efficient classification of z0 and b. The struc-
ture and hyperparameters of the MLP used in the experiment are presented in
Supplementary Material B.

20

Half Gaussian Leakage with Noise. The MLP serves as a binary classifier

A(i)
binary described in Section 4.3, which takes the power trace Tri as input and

classifies z+i as 0 or 1 for i ∈ {1, 2, . . . , 18}, where i is the iteration number of
the for-loop in the BaseSampler. Note that the training data consists of noisy
power traces labeled with z+i and is categorized according to the SNR levels
[45dB, 40dB, 35dB, 30dB, 25dB]. A total of 10,000 training data were used to
train the MLP for each loop iteration and each SNR level. When training an
MLP with noise-free (SNR ∞ dB) training data, around 1,000 training samples
per iteration are enough to achieve 100% classification accuracy. However, in the

experiment, we trained A(i)
binary with 10,000 data per iteration to correctly verify

the MLP’s performance with a sufficient amount of training data. Table 1 shows

the accuracy of the MLP A(i)
binary for the ith loop for various SNR.

Table 1. Accuracy of the MLP A(i)
binary for estimating z+i for various SNR

SNR
(dB)

Accuracy of A(i)
binary

i = 1 i = 2 i = 3 i = 4 i = 5 i ≥ 6

45 0.9988 0.9988 0.9932 0.9944 0.9932 0.9999

40 0.9916 0.9956 0.9796 0.9964 0.9912 0.9998

35 0.9716 0.9936 0.9428 0.9876 0.9912 0.9998

30 0.8952 0.9676 0.8964 0.982 0.9912 0.9998

25 0.7632 0.9000 0.8432 0.9632 0.9892 0.9998

As shown in Table 1, the first iteration is most affected by the noise, leading to
a sharp decline in accuracy as SNR decreases, followed by the third iteration. The
remaining iterations are progressively less affected by the noise as the number of
iterations increases. These experimental results show that the underflow feature
varies for each loop due to the noise.

Fig. 1 shows the accuracy of estimating z0 by the MLP A(i)
binary. It shows

that MAP decoding consistently provides better accuracy compared to non-
MAP decoding. Specifically, the proposed MAP decoding showed about 12.5%
improvement in accuracy over non-MAP decoding at SNR 25dB. The reason for
such relatively modest performance improvement is that the set C is not a good
error-correcting code, which has a minimum Hamming distance of 1, and the
accuracy of the MLP model deteriorates mostly due to the noise in the first loop
as in Table 1. However, such minor improvements can significantly enhance the
performance of OLS attack, as discussed in Section 5.2.

Sign Leakage with Noise. As demonstrated in [38], the sign b was estimated
using the power traces generated during the execution of two instruction codes
in SamplerZ. The first instruction code generates b ∈ {0, 1} uniformly at random
and the second instruction code performs b+(2·b−1)·z0. The power traces gener-

21

25 30 35 40 45

SNR (dB)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

a
rc

y

MAP decoding

Non-Map decoding

Fig. 1. Accuracy of estimating z0 by A(i)
binary for various SNR (circle: accuracy

with MAP decoding, cross: accuracy without MAP decoding).

ated during the execution of b+(2·b−1)·z0 show significant difference depending
on b. Because the register for b changes from 0x00000000 to 0xFFFFFFFF by an
underflow occurred when b = 0, this significant power difference makes it easy to
distinguish even with the noise. Specifically, even at SNR 0 dB, the MLP trained
with 300 samples can perfectly classify the sign value b. Therefore, estimating
the sign b from noisy power traces does not require noise reduction scheme.

5.2 Experimental Results of the OLS Attack on Falcon

Performance of the OLS Attack on Falcon. The experiment focuses on the
performance of the proposed OLS attack on Falcon using samples z̄ estimated
without noise. Twenty instances of secret key b1 for each of Falcon-256, 512, and
1024 are used for the experiment. We measured the error size and computation
CPU time of the OLS attack using up to 60,000 (s, z̄) samples per instance.

Note that the secret basis B of Falcon can be recovered by estimating the
first row b1 of B, as described in Section 4.1. In the experiment, the similari-

ties between each of two secret key estimators b̂1 and â1, and the real b1 are

evaluated for various number of samples, where b̂1 is the estimator in Eq. (14)

and â1 is the first row vector of Â in Eq. (8). The error size of an estimator x̂ is
defined as ∥b1 − ⌊x̂⌉∥1, where ⌊x̂⌉ represents the rounding of all coefficients of
x̂.

Fig. 2 shows the average error size of 20 instances for â1 and b̂1 with various
number of samples. As the number of samples increases, both â1 and b̂1 converge
to b1 as proven in Theorems 4 and 5. The estimators â1 and b̂1 require 33,700
and 46,200 samples, respectively, to directly recover b1 of Falcon-512 with 25%

success rate. For the same number of samples, b̂1 shows larger estimation error

22

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Number of samples 104

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 e

rr
o
r

s
iz

e

Fig. 2. The average error size of 20 instances for the estimators â1 and b̂1 on
Falcon-256, 512, 1024.

compared to â1. It is because the estimator Â is the inverse of the OLS estimator

Â−1, which can be precisely computed in a single step using (XTY)−1XTX but

the computation of b̂1 requires two steps of OLS regression and scaling by the L2
norm, which leads to bigger errors. The number of samples required to directly
recover the secret basis B for various n is presented in Table 2. As shown in

Table 2, â1 and b̂1 exhibit a trade-off between the required number of samples
(or execution time) and the success rate.

Fig. 3 shows the average CPU time of computing â1 and b̂1 for estimating
20 instances with various number of samples. Since the time complexities of two

estimators â1 and b̂1 are O(mn2 + n3) and O(mn + n3), we can see that b̂1 is
more efficient. However, as shown in Fig. 3, for Falcon-256 and 512, the average

CPU time for computing b̂1 is similar to that for â1. For Falcon-1024, the average

computation time of b̂1 is smaller than that of â1 by about 1.5 seconds. Also the
computation time of two proposed estimators increases linearly with the number
of samples and exponentially with n. The time required to directly recover b1

from â1 and b̂1 for various n is presented in Table 2.

Approximation Scheme. For a small number of samples, the OLS attack on
Falcon can provide an estimator x̂ for approximating b1, even if it is not very
close to b1. Since b1 can be recovered from x̂ using lattice reduction when a
sufficiently close vector x̂ is available, the OLS attack combined with the lattice
reduction provides a trade-off between the number of samples for OLS attack
and the computational time for lattice reduction. Fig. 4 shows the BKZ block
size estimated by the leaky-LWE estimator [5] for recovering b1 of Falcon-512

23

1.5 2 2.5 3 3.5 4 4.5

Number of samples 104

0

5

10

15

20

25

30

35

T
im

e
 (

s
e
c
)

Fig. 3. The average CPU time of 20 instances over the number of samples for

computing â1 and b̂1.

Table 2. The average number of samples and time required for achieving par-
ticular success rate (SR) to recover the secret key b1 of Falcon-256, 512, and
1024 by the OLS attack.

SR (%)
â1 b̂1

#Samples Time (sec) #Samples Time (sec)

Falcon-256
25 30,000 1.73 37,500 2.63
60 31,200 1.75 43,700 3.06
90 35,000 2.48 49,500 3.64

Falcon-512
25 33,700 8.27 46,200 11.25
60 35,000 8.44 48,900 12.02
90 40,000 9.72 51,800 12.81

Falcon-1024
25 36,000 25.12 46,800 29.03
60 37,000 26.09 49,000 30.14
90 42,500 28.85 53,600 32.45

using each coefficient of â1 as an approximate hint. The BKZ block size initially
required to recover b1 in Falcon-512 is around 480 and drops below 200 when
over 15,000 samples are used to estimate â1 by the OLS attack.

An attack scheme in [22] is based on the DDGR attack [5], which easily
integrates perfect hints, modulus hints, and approximate hints. For 10 instances
of Falcon-512 by using â1 as a hint, which is provided by the OLS attack using
25,000 samples, the lattice-reduction scheme in [22] can successfully recover the
secret key with 100% success rate within 2.5 hours. Specifically, the coefficients

24

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Number of samples 104

0

50

100

150

200

250

B
K

Z
 b

lo
c
k
 s

iz
e

Fig. 4. The BKZ block size of Falcon-512 estimated by the leaky-LWE estimator
given the coefficients of â1 as hints based on the number of samples.

of â1 with a decimal value between -0.3 and 0.3 are used as perfect hints, and
other coefficients are used as approximate hints.

Comparison with State-of-the-art Attacks. For Falcon-512, the number of
samples and the computational time required to recover the secret basis B are
compared for the OLS attack and the state-of-the-art attacks in [15] and [38]. The
scheme in [15] solves the hidden parallelepiped problem for recovering b1 using
the samples (s, z0 = 0), where z0 ∈ {0, 1, . . . , 18} is the output of BaseSampler
in Algorithm 3. It was shown that this scheme can recover b1 by combining
DDGR attack with 1 million samples and 25 hours of CPU time, whereas 10
million samples are needed for direct recovery of b1 only by this scheme. The
secret key recovery attack in [38] solves the learning slice problem to recover b1

using the samples (s, z̄1 = 0), where z̄1 ∈ {−17,−16, . . . , 18} is calculated in
SamplerZ. This scheme with an exhaustive search takes 30 minutes of CPU time
and 45,000 samples to recover the secret key with 25 % success rate. These two
schemes recover b1 from a conditional signature distribution, implying that only
a portion of measured samples are used to recover b1. Unlike the state-of-the-art
attacks, the proposed OLS attack recover b1 using all measured samples (s, z̄)
and (s, z̄1).

Table 3 shows the required sample size and time to recover the secret key of
Falcon-512 using the estimated z̄ without noise for various attacks. As shown in
Table 3, the OLS attack requires fewer samples and a significantly short compu-
tation time compared to the other schemes. Furthermore, if the DDGR attack is
combined, the OLS attack recovers b1 of Falcon-512 using 25,000 samples with
100 % success rate for ten instances.

25

Table 3. Performance comparison of various attack schemes on Falcon-512. ‘SR’
denotes success rates. ‘HP’ and ‘LS’ denote the hidden parallelepiped scheme and
the learning slice scheme, respectively. ‘Approximation’ refers to the scheme to
recover the secret key from the approximated secret key.

Approximation #Samples (×104) Time SR (%)

HP [15]
Rounding 1000 - -
DDGR [5] 100 25 hours -

LS [38]
Rounding 7 - 25

Exhaustive Search 4.5 30 min 25

OLS
Rounding 3.5 8.4 sec 60
DDGR [22] 2.5 2.5 hours 100

Performance of the OLS Attack on Falcon using Noisy Samples. Ex-
perimental results are provided when noisy z0’s are used, where the noise is
generated by reflecting the MLP accuracy in Table 1 as the error probability
of each iteration in BaseSampler. Specifically, each error ei of the ith loop in
BaseSampler is independently generated, and the error probability is assumed
to be P(ei = 1) = P(ĉi = 1 | ci = 0) = P(ĉi = 0 | ci = 1). The accuracy of the
MLP classifier of z+ for the ith loop is 1− P(ei = 0) and hence the error vector
e+ = (e1, e2, . . . , e18) can be generated based on the MLP accuracy for given
SNR. As described in Section 4.3, if we measure ĉ = z+ + e+ by power analysis
attack for z+ ∈ C and the MAP decoding is used, ĉ is decoded into c∗ ∈ C, and
ẑ0 is estimated as ∥c∗∥1. For non-MAP decoding, c∗ = ĉ, which may not be in
C, and ẑ0 is estimated as ∥c∗∥1. Fig. 5 shows the error size in â1 obtained by the
OLS attack for a single instance of Falcon-512 using the estimated ẑ0. As shown
in Fig. 5, as SNR increases, the number of samples required for recovering the
secret key decreases, and all the estimated â1 eventually converge to b1. Also, if
MAP decoding is used, the error size is consistently lower than that of non-MAP
decoding case. Specifically, MAP decoding and non-MAP decoding exhibit an
error difference of about 50 at 30,000 samples and SNR 30 dB.

6 Conclusion

We first derived vulnerable partial information in the GPV framework as in
Eq. (3) and proposed an efficient secret key recovery attack, called the OLS
attack, which effectively leverages partial information to recover the secret key
of GPV signatures without filtering. Interestingly, the OLS attack is shown to be
a consistent estimator, which implies that it can successfully recover the secret
key given a sufficient number of samples.

If we apply the OLS attack to Falcon, it becomes more powerful and prac-
tical such that it requires fewer samples and significantly less time compared to
the state-of-the-art attacks using Gaussian leakage [15], [38]. Unlike the previ-
ous works, which use only a part of the samples, the OLS attack utilizes all the

26

Fig. 5. The error size of the OLS estimator â1 for Falcon-512 using the noisy z0.
‘No noise’ refers to the case when the power trace of z0 does not contain noise.

samples. In addition, we proposed more efficient OLS attack by using the prop-
erty of NTRU lattice, which further reduces the number of side-channel attacks
(or power traces or samples). We also proposed an error-tolerant power analysis
attack based on MAP decoding to improve the quality of samples obtained by
side-channel attack.

While the OLS attack can recover the secret key of GPV signatures, if mask-
ing is applied to the signature such as Raccoon [28], the OLS attack may become
ineffective. However, masking of integers or trapdoor samplers used in GPV sig-
natures such as Falcon is particularly hard and challenging. Therefore, a study of
effective countermeasures against the OLS attack for various signature schemes
is quite an interesting subject.

References

1. Alagic, G., Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J.,
Lichtinger, J., Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson,
A., Smith-Tone, D.: Status report on the third round of the nist post-quantum
cryptography standardization process (2022)

2. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: Sphincs:
practical stateless hash-based signatures. In: EUROCRYPT 2015. pp. 368–397.
Springer (2015). https://doi.org/10.1007/978-3-662-46800-5 15

3. Billingsley, P.: Convergence of probability measures. John Wiley & Sons (2013)
4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:

Random oracles in a quantum world. In: ASIACRYPT 2011. pp. 41–69. Springer
(2011). https://doi.org/10.1007/978-3-642-25385-0 3

27

5. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: Lwe with side information:
Attacks and concrete security estimation. In: CRYPTO 2020. pp. 329–358. Springer
(2020). https://doi.org/10.1007/978-3-030-56880-1 12

6. Ducas, L., Prest, T.: A hybrid gaussian sampler for lattices over rings. IACR Cryp-
tology ePrint Archive p. 660 (2015), https://ia.cr/2015/660

7. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation. pp. 191–198
(2016). https://doi.org/10.1145/2930889.2930923

8. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: a simpler, parallelizable, maskable variant of falcon. In:
EUROCRYPT 2022. pp. 222–253. Springer (2022). https://doi.org/10.1007/978-
3-031-07082-2 9

9. Ferguson, T.: A course in large sample theory. Routledge (2017)

10. Fouque, P.A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key recovery from
gram–schmidt norm leakage in hash-and-sign signatures over ntru lattices. In: EU-
ROCRYPT 2020. pp. 34–63. Springer (2020). https://doi.org/10.1007/978-3-030-
45727-3 2

11. Galambos, J.: Advanced probability theory, vol. 10. CRC Press (1995)

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing (STOC). pp. 197–206 (2008).
https://doi.org/10.1145/1374376.1374407

13. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems
from lattice reduction problems. In: CRYPTO ’97. Springer (1997).
https://doi.org/10.1007/BFb0052231

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996). https://doi.org/10.1145/237814.237866

15. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden paral-
lelepiped is back again: Power analysis attacks on falcon. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2022(3), 141–164 (2022).
https://doi.org/10.46586/tches.v2022.i3.141-164

16. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J., Whyte, W.:
Ntrusign: Digital signatures using the ntru lattice. In: Cryptographers’ track at
the RSA conference. pp. 122–140. Springer (2003). https://doi.org/10.1007/3-540-
36563-x 9

17. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryp-
tosystem. In: International Algorithmic Number Theory Symposium. pp. 267–288.
Springer (1998). https://doi.org/10.1007/BFb0054868

18. Karabulut, E., Aysu, A.: Falcon down: Breaking falcon post-quantum sig-
nature scheme through side-channel attacks. In: 2021 58th ACM/IEEE
Design Automation Conference (DAC). pp. 691–696. IEEE (2021).
https://doi.org/10.1109/DAC18074.2021.9586131

19. Kim, S., Hong, S.: Single trace analysis on constant time cdt sam-
pler and its countermeasure. Applied Sciences 8(10), 1809 (2018).
https://doi.org/10.3390/app8101809

20. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: Crystals-dilithium. Algorithm Specifications and Supporting Documen-
tation (2020)

28

21. Marzougui, S., Wisiol, N., Gersch, P., Krämer, J., Seifert, J.P.: Machine-learning
side-channel attacks on the galactics constant-time implementation of bliss. In:
Proceedings of the 17th International Conference on Availability, Reliability and
Security. pp. 1–11 (2022). https://doi.org/10.1145/3538969.3538980

22. May, A., Nowakowski, J.: Too many hints – when lll breaks lwe. In: ASIACRYPT
2023. pp. 106–137. Springer (2023). https://doi.org/10.1007/978-981-99-8730-6 4

23. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ’grey box’ modelling for instruction leakages. In:
26th USENIX Security Symposium (USENIX Security 17). pp. 199–216 (2017).
https://doi.org/10.5555/3241189.3241207

24. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking dilithium: Ef-
ficient implementation and side-channel evaluation. In: Applied Cryptogra-
phy and Network Security: 17th International Conference, ACNS 2019, Bo-
gota, Colombia, June 5–7, 2019, Proceedings 17. pp. 344–362. Springer (2019).
https://doi.org/10.1007/978-3-030-21568-2 17

25. Nguyen, P., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh
and ntru signatures. In: EUROCRYPT 2006. pp. 271–288. Springer (2006).
https://doi.org/10.1007/11761679 17

26. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: CRYPTO
2010. pp. 80–97. Springer (2010). https://doi.org/10.1007/978-3-642-14623-7 5

27. Pellet-Mary, A., Stehlé, D.: On the hardness of the ntru problem. In: ASIACRYPT
2021. pp. 3–35. Springer (2021). https://doi.org/10.1007/978-3-030-92062-3 1

28. del Pino, R., Katsumata, S., Prest, T., Rossi, M.: Raccoon: A masking-friendly
signature proven in the probing model. In: CRYPTO 2024. pp. 409–444. Springer
(2024). https://doi.org/10.1007/978-3-031-68376-3 13

29. Pornin, T., Prest, T.: More efficient algorithms for the ntru key genera-
tion using the field norm. In: PKC 2019. pp. 504–533. Springer (2019).
https://doi.org/10.1007/978-3-030-17259-6 17

30. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, Ecole
normale supérieure-ENS PARIS (2015)

31. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptogra-
phy Project of NIST (2020)

32. Rossi, T., Prest, T., Ricosset, M.: Simple, fast and constant-time gaussian sampling
over the integers for falcon. Post-Quantum Cryptography Project of NIST (2019)

33. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994). https://doi.org/10.1109/SFCS.1994.365700

34. Stehlé, D., Steinfeld, R.: Making ntru as secure as worst-case problems
over ideal lattices. In: EUROCRYPT 2011. pp. 27–47. Springer (2011).
https://doi.org/10.1007/978-3-642-20465-4 4

35. Stewart, G.W.: On the continuity of the generalized inverse. SIAM Journal on
Applied Mathematics 17(1), 33–45 (1969). https://doi.org/10.1137/0117004

36. Wisiol, N., Gersch, P., Seifert, J.P.: Cycle-accurate power side-channel analysis us-
ing the chipwhisperer: A case study on gaussian sampling. In: International Confer-
ence on Smart Card Research and Advanced Applications. pp. 205–224. Springer
(2022). https://doi.org/10.1007/978-3-031-25319-5 11

37. Yu, Y., Jia, H., Li, L., Ran, D., Qiu, Z., Zhang, S., Lin, X., Wang, X.: Hufu: Hash-
and-sign signatures from powerful gadgets. Algorithm Specifications and Support-
ing Documentation (2023)

29

38. Zhang, S., Lin, X., Yu, Y., Wang, W.: Improved power analysis at-
tacks on falcon. In: EUROCRYPT 2023. pp. 565–595. Springer (2023).
https://doi.org/10.1007/978-3-031-30634-1 19

Supplementary Material

A Proofs of Lemmas and Theorem

The proof of Lemma 1 in Section 3.2 is given below.

Lemma 1 (Uncorrelatedness). Let x = s ∈ Zn and e = λ − r ∈ Rn be the
independent input and noise vectors, respectively, in Eq. (5). Then, x and e are
uncorrelated, i.e., Kxe = Cov[x, e] = 0.

Proof. In the proposed MLR model y = xA−1 + e, for any x, we have

Ex[x] = Es[s] (by the definition of x)

= Er,u[(r− u)A] (by Eq. (3))

= Er[Eu|r[(r− u)A | r]] (law of total expectation)

= Er[(r− Eu|r[u | r])A] (constant matrix A)

= Er[(r− r)A] (Eu|r[u|r] = r)

= 0,

where Eu|r[u |r] = r holds because ui in Eq. (3) is distributed according to Qσi,ri

for all i ∈ {1, 2, . . . , n}. It follows that

Kxe = Cov[x, e] = Ex,e[x
Te] (Ex[x] = Ee[e] = 0)

= Ee[Ex|e[x | e]Te] (law of total expectation)

= Ee[Ey|e[(y− e)A | e]Te] (by the definition of x)

= Ee[((e− e)A)
T
e] (Ey|e[yA | e] = eA)

= 0,

where Ey|e[yA | e] = Ey|e[y | e]A = eA holds because λ and A are constant,
and hence Ey|e[y | e] = Eu|r[λ− u | λ− r] = Eu|r[λ− u | r] = λ− r = e. □

The following proof is of Lemma 2 in Section 3.2.

Lemma 2. Let Sm = {(si,ui) | i ∈ {1, 2, . . . ,m}} be a set of m independent
samples (si,ui) ← WΥ,Q(A). Let X ∈ Zm×n and E ∈ Rm×n be the input and

noise matrices, respectively, in Eq. (6). As m goes to infinity, 1
mXTE converges

to 0 in probability, and 1
mXTX converges to Cov[s, s] in probability. In other

words,

plim
m→∞

(
1

m
XTE

)
= 0 and plim

m→∞

(
1

m
XTX

)
= Cov[s, s].

30

Proof. For any X ∈ Zm×n and E ∈ Rm×n, we have

plim
m→∞

(
1

m
XTE

)
= plim

m→∞

(
1

m

m∑
i=1

xT
i ei

)
= Ex,e[x

Te] (Theorem 1)

= Cov[x, e]− Ex[x]
TEe[e]

= Cov[x, e] (Ex[x] = 0)

= 0. (Lemma 1)

Since xi = si, for any X ∈ Zm×n, we have

plim
m→∞

(
1

m
XTX

)
= plim

m→∞

(
1

m

m∑
i=1

sTi si

)
= Es[s

T s] (Theorem 1)

= Cov[s, s]− Es[s]
TEs[s]

= Cov[s, s]. (Es[s] = 0) □

The following proof is of Corollary 1 in Section 4.1.

Corollary 1. Let z = (z1, z2, . . . , z2n) ∈ Z2n be the output of FFO sampler
ffsamplingn, and let z̄ = (z̄1, z̄2, . . . , z̄2n) ∈ Z2n be the vector such that z̄i is
calculated from zi = z̄i + ⌊ci⌋ in Algorithm 2. Here, ci, serving as an input
to SamplerZ for producing the output zi, is equal to t̃i of t̃ = (t̃1, t̃2, . . . , t̃2n)
in Lemma 3. Then for any signature s ∈ Z2n of Falcon and z̄, there exists
r = (r1, r2, . . . , r2n) ∈ [0, 1)2n such that

s = (r− z̄)B̃,

where z̄i is distributed according to DZ,σi,ri for i ∈ {1, 2, . . . , 2n}.

Proof. Let l = (l1, l2, . . . , l2n) where li = ⌊t̃i⌋, and let r = (r1, r2, . . . , r2n) where
ri = t̃i − li. Since t̃ = l+ r and z = z̄+ l, by Lemma 3, we obtain that

s = (t̃− z)B̃ = (l+ r− (l+ z̄))B̃ = (r− z̄)B̃.

We now derive the distribution of z̄. Since DZ,σi,c−a(x) is the same as DZ,σi,c(x+
a) for any x, a ∈ Z and c ∈ R, we have

DZ,σi,t̃i
(zi) = DZ,σi,t̃i

(z̄i + li) = DZ,σi,t̃i−li=ri
(z̄i),

for all i ∈ {1, 2, . . . , 2n} given li. Therefore, the distribution of z̄i is DZ,σi,ri . □

The following proof is of Theorem 5 in Section 4.2.

31

Theorem 5 (Consistent Estimator b̂1 in Eq. (14)). Let B be the secret ba-
sis of Falcon, and Wχ,D(B̃) be the probabilistic algorithm whose outputs (s, z̄) sat-
isfy Eq. (11). Here, χ and D are distribution of ri and discrete Gaussian distri-
bution, respectively. From m independently measured samples (s, z̄)←Wχ,D(B̃),
the MLR model in Eq. (6) for Falcon is constructed using X and Y consisting
of m row vectors xi = si and yi = λi− z̄i, respectively. As m goes to infinity, the

estimator b̂1 = 1
k ((X

TX)−1XTy′
1)

T converges to the first row b1 of the secret
basis B in probability, where y′

1 ∈ Qm is the first column of Y consisting of m

elements λ1 − z̄i,1 and k = ∥(XTX)−1XTy′
1∥2, i.e., plimm→∞ b̂1 = b1.

Proof. Let zi ∈ Zn be the ith column of Z ∈ Zn×n. Then, the matrix norm of Z
is defined as

∥Z∥ := max
1≤i≤n

∥zi∥.

It follows that, for any ε > 0, we have

0 ≤ P(∥v̂1 − v1∥ > ε) ≤ P(∥Â−1 −A−1∥ > ε),

where v̂1 = (XTX)−1XTy′
1 is the first column of Â−1 in Eq (7) and v1 is the

first column of A−1. Since limm→∞ P(∥Â−1 −A−1∥ > ε) = 0 by Theorem 4,
it is clear that limm→∞ P(∥v̂1 − v1∥ > ε) = 0 by squeeze theorem (sandwich
theorem). In other words, the estimator v̂1 converges to v1 in probability.

Let f : Rn → Rn be the function defined as follows:

f(x) :=
1

∥x∥2
xT .

The function f is continuous for Rn\{0} because L2 norm and the transpose
mapping are continuous for Rn\{0}. Since P(v1 = 0) = 0, by Theorem 3, it
follows that

plim
m→∞

f (v̂1) = f

(
plim
m→∞

v̂1

)
= f(v1) = b1. □

B Hyperparameters of MLP

In Table 4, “FC” denotes a fully connected layer, and the following number
represents the layer depth. The MLP adjusts its input size to match the number
of power traces corresponding to z0 and b.

32

Table 4. Hyperparameters of MLP model for binary classification

Input
Size

Output
Size

Activation
function

Dropout
Negative
slope

FC1 Input size 91 LeakyReLU 0.2 0.01

FC2 91 400 LeakyReLU 0.2 0.01

FC3 400 128 LeakyReLU 0.2 0.01

FC4 128 32 LeakyReLU 0.2 0.01

FC5 32 1 LeakyReLU 0.2 0.01

FC6 1 1 Sigmoid - -

33

