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Abstract—Local Differential Privacy (LDP) mechanisms con-
sist of (locally) adding controlled noise to data in order to
protect the privacy of their owner. In this paper, we introduce
a new cryptographic primitive called LDP commitment.
Usually, a commitment ensures that the committed value
cannot be modified before it is revealed. In the case of an
LDP commitment, however, the value is revealed after being
perturbed by an LDP mechanism. Opening an LDP com-
mitment therefore requires a proof that the mechanism has
been correctly applied to the value, to ensure that the value is
still usable for statistical purposes. We also present a security
model for this primitive, in which we define the hiding and
binding properties. Finally, we present a concrete scheme for
an LDP staircase mechanism (generalizing the randomized
response technique), based on classical cryptographic tools
and standard assumptions. We provide an implementation in
Rust that demonstrates its practical efficiency (the generation
of a commitment requires just a few milliseconds).

On the application side, we show how our primitive
can be used to ensure simultaneously privacy, usability and
traceability of medical data when it is used for statistical
studies in an open science context. We consider a scenario
where a hospital provides sensitive patients data signed by
doctors to a research center after it has been anonymized,
so that the research center can verify both the provenance
of the data (i.e. verify the doctors’ signatures even though
the data has been noised) and that the data has been
correctly anonymized (i.e. is usable even though it has been
anonymized).

1. Introduction

Individual’s medical data presents the specific charac-
teristic of being both used (i) by practitionners to help
diagnose and propose treatments to patients (primary use)
and (ii) by researchers as input data for clinical studies
or statistical studies (secondary use). When data is used
for treatment purposes, it must obviously be as precise as
possible. However, in the context of large scale statistical
studies, this data may benefit from additional privacy pro-
tection, such as (local) differential privacy (LDP) [1], [2],
which is a standard model that provides formal statistical
guarantees on the privacy of the data shared (described
formally in Section 2). Indeed, there are currently many
works where the use of such privacy preserving techniques
are applied before performing data analysis (see [3] for
a survey), quite often in the context of federated learn-
ing [4].

Our context is illustrated in Figure 1. In the following,
the numbers in brackets refer to the different steps shown
in this figure. Diana, a medical practitioner, is Alice and
Bob’s doctor. Bob is visiting her for a medical consulta-
tion, while Alice is monitored by various medical devices,
configured by Diana. After a discussion, Diana and Alice
on the one hand (1b), and Diana and Bob on the other (1a),
agree on the value of the privacy parameters to apply, for
the secondary use of their medical data [5]. Bob’s data
is produced by Diana through manual examination of her
patient and can be signed. Alice’s data is automatically
extracted by the medical devices, and its authenticity can
also be automatically signed. Both Alice and Bob’s data,
information on the anonymization process and parameters
chosen are then sent to the datacenter of the hospital
(managed by Helen) that Diana works for (2a-b). As
expected, medical practitioners in the hospital use this
data to give the correct treatments to Alice and Bob.
At a later point in time (potentially when neither Diana,
Bob nor Alice are available), Robin, a researcher from
a different institution, interested in performing a large
scale medical study, contacts Helen in order to obtain
the hospital data. Helen transmits this authenticated data
with local differential privacy constraints to Robin (3).
Helen also provides Robin with a proof that she has
correctly applied the differential privacy mechanism to the
data signed by Diana, so that Robin and all those who
will consult Robin’s research results in an open science
context are convinced that the data is usable and was
produced legitimately. Depending on local privacy legis-
lation (such as the European GDPR [6]), in the event of
privacy violations, such as a data leak of Alice and Bob’s
exact medical information, an audit of Robin’s research
center may be performed by the relevant Data Protection
Authority (Arthur). In this scenario, Robin must be able
to prove his honesty and show that the data he owns was
properly anonymized by presenting this proof (4). Robin
can thus prove to Arthur that he is not responsible for the
leak of Alice and Bob’s exact data.

Therefore, we consider the following threat model,
which is summarized in Fig 2. First, the doctor (Diana)
and her patients (whom we will all consider as a single
entity under the name Diana) trust Helen (the hospital
manager) because they agree to provide her with their
exact (non-anonymized) data in order to ensure optimal
treatment for the patients. Robin (the researcher) and He-
len trust Diana to sign the patient’s real data, assuming that
it is not in the patient’s interest to give false information
to the hospital. Data Protection Authority auditor (Arthur)
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Figure 1. Medical research example
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Figure 2. Threat model.

also trusts Diana, since Arthur’s role is essentially to
protect Diana’s privacy. On the other hand, Diana and
Helen do not trust Robin, and do not want him to be able
to view the unanonymized patient data. Robin does not
trust Helen and wants guarantees that the data he receives
from her has been correctly perturbed according to the
chosen LDP mechanism. Finally, Arthur trusts neither
Helen nor Robin, and must be able to verify that the data
sent by the hospital and used by Robin in his research
has been correctly anonymized, in accordance with the
anonymization mechanism and the parameters chosen by
Alice and Bob. As an audit authority, Arthur is obviously
seen as a trusted entity.

Thus, in this article, we propose a new cryptographic
setting in which sensitive medical data produced and
signed by Diana, can both be used for medical treatment
by Helen, and simultaneously be provided to Robin un-
der differential privacy guarantees to perform statistical
studies. The originality of the protocol is to support re-
producible medical research by being able to prove that an
anonymization protocol (with some given parameters) has
correctly been executed on the real original data and to
empower the patients through informed consent by letting
them choose (after a discussion e.g. with Diana) what
privacy parameters they wish to see applied to their data
to be shared.

1.1. Our contributions

On a technical level, the first contribution of this paper
is the formalization and security modelling of a new

primitive called LDP Commitment, which allows a user to
commit a value in such a way that this value can be opened
(potentially by another user) after the application of a
local differential privacy mechanism. The verifier must be
convinced that this mechanism has been applied correctly.
Of course, only the anonymized data, and not the original
data, is required to verify the correct opening of the
commitment. Note that the LDP mechanism is inherently
probabilistic and requires the use of a random seed. This
seed cannot be fully chosen by the user committing the
value and/or opening the commitment, as this would allow
them to control the data after anonymization. Nor can the
seed be fully chosen by the verifier, who could at best
choose a seed that minimizes noise and at worst reverse
the anonymization mechanism. It is therefore necessary
that the choice of this seed should be shared between the
data committer (at the time of commitment, it must not
be possible for the opener to change it afterwards) and
the verifier. Thus, if at least one of them chooses their
nonce at random, the result is a perfectly random seed.
In practice, in this setting the data owner has no interest
whatsoever in not choosing a truly random nonce, since
this guarantees the protection of their data.

First, we extend the classic hiding property for com-
mitments (which guarantees that the committed data is
kept private until the commitment is opened) to our
primitive. We then define the LDP-hiding property, which
ensures that the verifier obtains no more information
about the committed value than the anonymized value.
We give two formalisms for this property (real/simulation
based and indistinguishability based): the first considers
an adversary who must guess whether they received a
real commitment or whether the commitment was simu-
lated without using the value, and the second considers
an adversary who chooses two values and must guess
which of the two was committed and then opened. Unlike
other indistinguishability games where the probability of
success is compared to 1/2 (the probability of guessing
the hidden value among two), indistinguishability based
LDP-hiding requires specifying the probability of success



of an adversary who would only exploit the anonymized
message to find the original value. We give a simple
formula to express this probability. We also show that
classical hiding coupled with the real/simulation version
implies the indistinguishability version.

We also extend the binding property (which ensures
that a commitment can be open to unique value) to our
primitive. We define the notion of LDP-binding, which
catches an adversary trying not to apply the LDP mech-
anism correctly when they open the commitment. We
model an adversary who commits a value and has to
open it using a randomly generated seed. The scheme
is considered to have the LDP-binding property if the
distribution produced by this opening is the same as that
produced by the application of the LDP mechanism on
the value committed by the adversary.

Our second technical contribution is to propose a
scheme for an LDP staircase mechanism (generalization
of randomized response) and to prove its security in our
model. Remarkably, our scheme uses only simple and
efficient well-established standard cryptographic tools: it
is based on the decisional Diffie–Hellman (DDH) as-
sumption in a group of prime order and uses Schnorr-
based zero-knowledge proofs. The complexity in terms
of commitment size and computation time increases only
logarithmically with the size of the set on which the data
is chosen and the inverse of the probability of obtaining
the real answer in the staircase. This makes the scheme
very efficient in practice, as we show by analyzing the
performance of a Rust implementation. In particular, the
opening check is very efficient because it requires a
constant number of exponentiations in the group, which
is the most expensive operation of our algorithms by a
huge margin. The commitment correction check takes a
little longer but can be pre-computed before opening. In
a nutshell, all our algorithms take a few milliseconds for
standard parameters (when considering sets of a hundred
responses) and less than 30 milliseconds in extreme cases
(when considering sets of more than a billion responses)
on a regular personal computer.

This new primitive allows us to address our problem:
doctor Diana can sign the description of some medical
value together with the commitment of this value (for
example, “Self-assessment of pain, Commit(7)”, where
Commit is an LDP commitment algorithm). Note that
the commitment, which is signed, gives no information
about the committed value (in our example 7). Moreover,
this value is not needed to verify the signature. The
value, the description, the signature, the commitment,
and corresponding opening key are sent to Helen, the
hospital manager, who stores them. If Helen wishes to
transmit this value after applying the LDP mechanism, she
sends the signature to a verifier with the opening of the
commitment on the anonymized value. By verifying that
the commitment has been opened correctly, verifier Robin
is convinced that the LDP mechanism has indeed been
applied to the anonymized value transmitted by Helen,
and by verifying the signature on the commitment, Robin
is convinced that the original committed value (before
anonymization) does indeed come from Diana. However,
Robin learns nothing about this original value. Thus, He-
len cannot cheat on the application of the LDP mechanism
to the value signed by Diana. Furthermore, in the event

of an audit by Arthur due to the leakage of a patient’s
personal data, Arthur can consult the proof of opening of
the commitment and the signature on the commitment to
ensure that the data sent by Helen is correctly anonymized.
Note that our implementation efficiency analysis takes into
account the signature of the commitment.

1.2. Related work

In 2008, Ambainis, Jakobsson and Lipmaa first pro-
posed the use of cryptographic tools to secure LDP
mechanisms in [7]. Their work focuses on a random-
ized response mechanism where the response is a bit
and the probability of giving that response depends on
a parameter. They propose interactive protocols between
a responder and a verifier where the verifier can check that
the responder has correctly applied the LDP mechanisn on
their response, without learning any additional information
about the exact response. Our work can be seen as an
extension of this first work, where the response set is not
limited to one bit and where the data can be committed
before being revealed, potentially by an untrusted dele-
gate. Note also that our protocol does not require any
interaction between the parties.

In recent years, the growing interest in differencial
privacy and recent studies showing its critical weakness in
the front of manipulation attacks [8], where respondents
attempt to bias the results of statistics by manipulating
their answers, have led to renewed interest in this ap-
proach. In [9], Kato et. al. extends the work of Ambainis
et. al. [7] to other randomization mechanisms (still in an
interactive setting where the data owner randomizes their
data themselves). In [10], Biswas and Cormode extend
the concept of verifiable differential privacy to the non-
local case, where multiple entities commit their data, and
a server computes a function on that data, reveals the
anonymized result, and proves that it has correctly applied
the differential privacy mechanism using an interactive
zero-knowledge proof. They experiment their proposal by
designing and implementing proofs for counting queries
with the binomial DP mechanism [1]. Our work is aimed
at a different application than in [10], since we are fo-
cusing on local differential privacy using a generalized
randomized response mechanism. While it is therefore
difficult to compare this work with ours, it can be noted
that our protocol does not require interaction between the
parties and is more efficient (their zero-knowledge proofs
are interactive and take several minutes, whereas our
commitment opening proofs take around ten milliseconds
for the largest parameters). Moreover, we propose a more
general and complete security model than in [10] that can
be applied to solutions that are not unique zero-knowledge
proof protocols.

Another line of work consists in using generic tools
such as multiparty computation [11] or homomorphic
encryption [12] to compute statistical functions from the
private data of several users with differential privacy,
either in a setting where some users are honest [13], or in
a model where the curator is honest but curious [11], [14].
Our work differs from these works in that we focus on
local differential privacy where data is committed by users
and revealed (with differential privacy) later by another
user, we propose specific efficient and non-interactive



protocols rather than using generic tools, and we only
consider dishonest users.

In [15], the authors use generic zero-knowledge proofs
for arithmetic circuits (zkSNARKs) to verify that a data
item has been correctly anonymized using a local dif-
ferential privacy mechanism. They use Circome [16] to
implement the circuit corresponding to the randomized
response mechanism (non-generalized, on a single bit)
and the exponential mechanism on a set of 128 val-
ues. They use the Groth-16 [17] zkSNARKs (based on
pairings in the generic group model) to experiment with
their construction. The execution time for generating and
verifying each proof takes around a second in a setting
comparable to ours. Moreover, the authors mention that
their proof could be used on data signed in an anonymous
credential, resulting in a scheme similar to ours, however,
this would require the use of a much more complex circuit
than the one actually presented in their paper, making it
possible to prove knowledge of a valid (hidden) signature
on the (hidden) data used by the DP mechanism. Note
that the efficiency of the Groth-16 proof [17] depends
on the complexity of the circuit used: the number of
exponentiations required for the proof grows linearly with
the number of wires and multiplication gates in the proven
arithmetic circuit. Adding the verification of a signature to
the data used in the anonymization mechanism, and prov-
ing that this data is indeed the one that was committed,
should therefore make the circuit much more complex, and
therefore degrade the performance of this approach for our
application. Our work offers a more efficient alternative
(The execution time for generating and verifying each
proof takes a few milliseconds), by designing a specific
protocol rather than using generic tools. Moreover, [15]
does not model and prove the security of their construc-
tion. We believe that our model could be used for this
purpose.

Finally, several signature primitives allow delegating
the power to modify/sign messages. Sanitizable signa-
tures [18], [19] allow a delegate to modify certain parts
of a signed message, but the restrictions on these modi-
fications are either too specific [20] or too weak [18] to
be used for differential privacy mechanisms. Functional
signatures [21] and delegatable functional signatures [22]
allow a user to sign messages that verify certain func-
tions or predicates, policy-based signatures [23] allow a
user to sign a message if it satisfies a certain policy,
and homomorphic signatures [24] allow computations to
be performed on signed data. These primitives could be
considered for our problem, but their genericity implies a
significant loss of efficiency (due to the use of heavy tools,
such as proofs for circuits), whereas the aim of this work
is to provide a simple and optimized solution, tailored for
local differential privacy.

2. Background

In this section, we introduce our notations as well as
the tools that we need, both from cryptography and (local)
differential privacy.

We denote by JnK the set {1, · · · , n} where n is an
integer. By x ← y we mean that the variable x takes a
value y, by x← Algo(y) that the variable x takes a value
outputted by algorithm Algo on input y, and by r

$← S that

r is chosen from the uniform distribution on S. Finally
r1, · · · , rn

$← S means that ∀i ∈ JnK, ri
$← S. We use

the acronym PPT for probabilistic polynomial time, s.t.
for such that and λ denotes the security parameter.

Cryptographic tools. We recall the Decisional Diffie-
Hellman (DDH) assumptions in a group G = ⟨g⟩ of prime
order p. The DDH assumption states that given a random
(x, y, z) ∈ (Z∗

p)
3, it is difficult for a PPT algorithm D to

distinguish between (gx, gy, gx·y) and (gx, gy, gz).

Definition 1 (Decisional Diffie-Hellman (DDH) assump-
tion). Let G = ⟨g⟩ be a multiplicative group of prime
order p. The decisional Diffie-Hellman (DDH) assumption
states that there exists a negligible function ϵDDH such that
for any PPT algorithm D,

|Pr[(x, y) $← (Z∗
p)

2 : 1← D(gx, gy, gx·y)]−
Pr[(x, y, z)

$← (Z∗
p)

3 : 1← D(gx, gy, gz)]| ≤ ϵDDH(λ).

We recall the concept of Non-Interactive Zero Knowl-
edge Proofs (NIZKP), that allows a prover to prove the
knowledge of a witness matching a statement to a verifier.

Definition 2 (Non-Interactive Proofs (NIP) [25]). Let R
be a binary relation and let L be a language such that s ∈
L ⇔ (∃w, (s, w) ∈ R). A Non-Interactive Proof (NIP) for
L is a couple of algorithms (NIP,NIPVerify) such that:

NIP{w : (s, w) ∈ R}. This algorithm outputs a proof π.
NIPVerify(s, π). This algorithm outputs a bit b.
A Non-Interactive Zero Knowledge Proof (NIZKP) is a
NIP having the following properties:

Correctness. For any s, w,R such that (s, w) ∈ R and
π ← NIP{w : (s, w) ∈ R}, NIPVerify(s, π) returns
1.

Extractability. There exists a PPT knowledge extractor
Ext and a negligible function ϵext such that for any
algorithm ASim(·)(λ) having access to a simulator
that forges signatures for chosen statement and that
outputs a fresh pair (s, π) with NIPVerify(s, π) = 1,
the extractor ExtA(λ) outputs w such that (s, w) ∈
R having access to A(λ) with probability at least
1− ϵ(λ).

Zero-knowledge. A proof π leaks no information, i.e.,
there exists a polynomial time algorithm Sim (called
the simulator) such that NIP{w : (s, w) ∈ R} and
Sim(s) follow the same probability distribution.

Local Differential Privacy (LDP). Local differential pri-
vacy [2] (LDP) is a well accepted standard definition to
measure the security (privacy) of randomized algorithms
in the privacy domain. Intuitively, local differential privacy
is a constraint on the distribution of the outcomes of the
algorithm, when an attacker observes the output of a single
execution of the algorithm. It is well adapted in the context
of independant devices or individuals producing results
that must present formal privacy guarantees. LDP can be
seen as a non-centralized version of the differential privacy
model [1]. Formally,

Definition 3 (Local Differential Privacy [2]). A ran-
domized algorithm A satisfies ϵ-local differential privacy



(LDP) where ϵ ∈ R+∗, if for any pair of input val-
ues (x1, x2) ∈ Domain(A) and any possible output
y ∈ Codomain(A) :

Pr[A(x1) = y] ≤ exp(ϵ) · Pr[A(x2) = y].

Note that the greater the value of ϵ (called privacy bud-
get in differential privacy models), the lesser the privacy of
the mechanism. Another important characteristic of LDP
is the utility of the mechanism, which is often measured
by the difference between two distributions (called f -
divergence) [26]. Indeed, the authors of [26] have shown
that there exists a class of optimal mechanisms (i.e. which
maximize utility for a given ϵ value) called staircase
mechanisms. These mechanisms satisfy the following con-
straints:

• the output domain size (noted |Y|) is at most the
input domain size (noted |X |); and

• for all y ∈ Y , and x, x′ ∈ X ,
∣∣∣ln Pr(A(x=y))

Pr(A(x′=y))

∣∣∣ ∈
{0, ϵ} with ϵ > 0.

This means that an optimal mechanism A can only output
values with two different probabilities p1 and p2 with
p1 ≥ p2 such that p1 = exp(ϵ)·p2. Thus, for a mechanism
with a bounded input domain and output domain as in our
case, the simple optimal mechanism that we consider is
the following (noted LDP in the rest of the article):

Definition 4 (Optimal mechanism LDP). For all x ∈ X ,
y ∈ Y , and for a given ϵ ∈ R+∗,

• LDP(x) outputs y with probability p1 if x = y
• LDP(x) outputs y with probability p2 if x ̸= y
• p1 = exp(ϵ) · p2
We show in Section 4.1 how to compute probabilities

p1 and p2 given the size of the domain |X |.

3. Formal Model for LDP Commitment

In this section we give a formal definition and security
model for LDP commitments.

3.1. Formal Definition

As with standard cryptographic commitments, an LDP
commitment allows a user to commit a secret value in
such a way that this value can be opened (i.e. revealed)
using a key. The user consulting the opened value can
use an algorithm to check that the commitment has been
correctly opened, i.e. that the opened value is indeed the
one that was committed. In addition, an LDP commitment
also depends on a public LDP mechanism. A user with the
key can, from a random seed, use an alternative opening
algorithm that reveals the anonymized value (to which
the LDP mechanism was applied). In this case, the user
also produces a proof that they have correctly applied
the opening algorithm, without revealing anything more
about the actual commited value. Finally, the commitment
algorithm also produces a proof that the commitment was
indeed generated by the LDP mechanism, ensuring that
the released value is indeed the value that was committed
to by applying the given LDP mechanism. This random
seed must be chosen by someone other than the user
opening the commitment (either by a trusted third party or

directly by the verifier), otherwise the user could choose
the seed that reveals the value they chose instead of
following the LDP mechanism distribution.

Definition 5 (LDP Commitment). A LDP Commitment
(LDP-C) is a tuple of polynomial time algorithms (Setup,
Commit,Open,OpenLDP,VerOpen,VerOpenLDP,
VerCommit) such that:
Setup(λ, LDP) : takes as input the security parameter λ,

and a LDP mechanism LDP; returns a setup set.
Commit(m, θ) : takes as input a message m and a ran-

dom seed θ; returns a secret key k, a commitment c
and a proof π∗.

VerCommit(c, π∗) : takes as input a commitment c and a
proof π∗; returns an acceptance bit b.

Open(k, c) : takes as input a secret key k and a commit-
ment c; returns a message m and a proof π.

VerOpen(c,m, π) : takes as input a commitment c, a
message m, and a proof π; returns an acceptance
bit b.

OpenLDP(k, c, θ̂) : takes as input a secret key k, a com-
mitment c, and a random seed θ̂; returns a mes-
sage m̂ and a proof π̂.

VerOpenLDP(c, m̂, π̂, θ̂) : takes as input a commitment c,
a message m̂, a proof π̂, and a seed θ̂; returns an
acceptance bit b.

3.2. Security Model

The natural properties of cryptographic commitments
are hiding, which guarantees that the commitment does
not reveal any information about the committed value
before being opened, and binding, which guarantees that
the commitment can only be opened in one way (by
revealing the actual committed value). In our case, since
there are several ways to open LDP commitments (with
or without the LDP mechanism), we need to adapt these
properties accordingly. Figure 3 shows the experiments
corresponding to the different variations of these proper-
ties we define.

3.2.1. Hiding. First of all, we define Hiding in the clas-
sical way: an adversary who chooses two messages and
receives a commitment for one of the two messages is
unable to distinguish which message is being used (its
probability of distinguishing is close to 1/2).

Definition 6 (Hiding). Let λ be a security parameter, LDP
be a LDP mechanism, and P be a LDP-C. P is said to be
hiding if for any PPT two-party algorithm A, there exists
a negligible function ϵ s.t.:∣∣∣Pr [0← ExpHidingP,LDP,A,0(λ)

]
−

Pr
[
1← ExpHidingP,LDP,A,1(λ)

]∣∣∣ ≤ ϵ(λ),

where the Hiding experiment is given in Figure 3.

Note: As we use the standard notations from the secu-
rity and differential privacy worlds, ϵ and ϵ(λ) represent
different concepts. However, as we feel that their meaning
is obvious from the context, we have kept these notations.

We then consider an adversary for whom we open a
commitment with the algorithm OpenLDP. In this case,



the adversary is not expected to learn any more infor-
mation about the original value than they learn from the
anonymized value returned by the commitment opening
algorithm OpenLDP. To model this, we first propose an
experiment (ROS-LDP-Hiding) where the adversary has to
guess whether they have received the biased value returned
by OpenLDP (real case with b = 0), or whether they have
received the biased value by the true LDP mechanism
(simulated case with b = 1, in which case the proof
of correction of the opening must be simulatable to the
adversary). To do this, the adversary can choose the value
committed, and can also choose the random seed used for
the opening.

Definition 7 (Real Or Simulated (ROS) LDP-Hiding). Let
λ be a security parameter, LDP be a LDP mechanism, and
P be a LDP-C. P is said to be ROS-LDP-hiding if for
any three-party PPT algorithm A, there exists a negligible
function ϵ and a PPT simulator Sim that takes as input
a message m and a commitment C, and that returns a
simulated proof π̂ s.t.:∣∣∣Pr [0← ExpROS-LDP-Hiding

P,LDP,A,0 (λ)
]
−

Pr
[
1← ExpROS-LDP-Hiding

P,LDP,A,1 (λ)
]∣∣∣ ≤ ϵ(λ),

(the ROS-LDP-Hiding experiment is given in Figure 3).

Another way of formalizing this property, which is
closer to standard Hiding, is to commit a message drawn
from two messages chosen by the adversary, open it with
OpenLDP, and verify whether the adversary can distin-
guish which message has been committed. We define the
corresponding security experiment as IND-LDP-Hiding.
However, the opened message, although anonymized, can
leak significant information about the actual committed
message. This security property cannot therefore be de-
fined as the fact that the difference between the probability
that the adversary answers correctly and the probability
that it is wrong is negligible, as is usually the case in
indistinguishability experiments. For the same reasons,
it is not possible to compare the probability of the ad-
versary distinguishing the message to 1/2. We therefore
need to evaluate the probability that an adversary, acting
optimally, would have of recovering the original message
from a message anonymized by the given LDP mechanism
only (without knowing the commitment). To do this, we
define the algorithm OptiGuess, which takes as input two
original messages (m0,m1) and an anonymized message
m̂ computed by applying the LDP mechanism to one of
these messages, then returns b when mb is the most likely
original message knowing only the anonymized message
m̂. From a technical point of view, the IND-LDP-Hiding
experiment is parameterized by a bit b. When b = 0, we
observe the probability of the adversary correctly distin-
guishing the original message, otherwise, when b = 1, we
observe the optimal probability (given by OptiGuess) of
finding the original message among the messages chosen
by the adversary using only the anonymized value. The
IND-LDP-hiding security is satisfied when the probability
of success of A when b = 0 is significantly higher than
in the case b = 1.

Definition 8 (Indistinguishability (IND) LDP-Hiding). Let
λ be a security parameter, LDP be a LDP mechanism, and

P be a LDP-C. P is said to be IND-LDP-hiding if for any
three-party PPT algorithm A such that if the following
value is positive:

ϵ(λ) =Pr
[
1← ExpIND-LDP-Hiding

P,LDP,A,0 (λ)
]
−

Pr
[
1← ExpIND-LDP-Hiding

P,LDP,A,1 (λ)
]

then ϵ(λ) is negligible, where the IND-LDP-Hiding exper-
iment is given in Figure 3.

While this definition provides an intuitive way to
understand the IND-LDP-hiding, it does not provide a
precise way to evaluate Pr

[
1← ExpIND-LDP-Hiding

P,LDP,A,1 (λ)
]
. To

overcome this issue, we evaluate the winning probability
of the algorithm OptiGuess in Theorem 1 (proven in
Appendix A) in a more precise and usable way. Interest-
ingly, it depends only on the distribution induced by LDP.
Since the adversary’s response is replaced by OptiGuess in
ExpIND-LDP-Hiding

P,LDP,A,0 (λ), the probability that the experiment
returns 1 is the winning probability of OptiGuess (Fig-
ure 3), weighted by the probabilities of the adversary’s
choices for the (m0,m1).

Theorem 1. For any tuple (λ, LDP,m0,m1) where the
set of messages of the LDP mechanism is denoted by M
and (m0,m1) ∈M, we have:

Pr

[
b

$← {0, 1}; m̂← LDP(mb);
b∗ ← OptiGuess(λ, LDP, m̂,m0,m1)

: b = b∗

]
=

1

2

∑
m̂∈M

max

(
Pr[m̂← LDP(m0)],
Pr[m̂← LDP(m1)]

)
.

The following theorem shows a relation between our
hiding properties.

Theorem 2. A LDP-C that is both hiding and ROS-LDP-
hiding is IND-LDP-hiding.

Intuitively, the ROS-LDP-hiding property ensures that
observing an anonymized message from the real LDP
mechanism with a simulated proof is similar, from the
adversary’s point of view, to observing a message and
a proof returned by the algorithm OpenLDP. The only
additional information on mb′ that the adversary knows is
therefore the commitment c, however the hiding property
ensures that c gives no information on mb′ that can be
significantly exploited by a PPT adversary. Finally, the
best strategy left to the adversary is to try to guess mb′

using only the anonymized message m̂, as in the case of
b = 1.

In the following, we provide a sketch of this proof,
giving the sequence of games [27], but omitting the re-
ductions between the games. The full proof is available
in the appendix this paper.

Proof sketch. We use the following sequence of games:
Game G0: This game is the same as the IND-LDP-Hiding
experiment in the case where b = 0.
Game G1: This game is the same as the game G0

except that the challenger replaces the zero-knowledge
proof π̂ by a simulated proof, we have Pr [G0 returns 1] =
Pr [G1 returns 1].
Game G2: This game is the same as the game G1 except



that m̂0 is obtained by computing LDP(mb′). By reduction
we can show that:

|Pr [G1 returns 1]− Pr [G2 returns 1]|
≤ ϵROS-LDP-Hiding(λ),

where ϵROS-LDP-Hiding is the advantage on the
ROS-LDP-Hiding experiment.
Game G3: This game is the same as the game G2

except that (k, c, π∗) is obtained by picking a random
m

$← M and by computing (k, c, π∗) ← Commit(m, θ).
By reduction we can show that:

|Pr [G2 returns 1]− Pr [G3 returns 1]| ≤ ϵHiding(λ),

where ϵHiding is the advantage on the Hiding experiment.
In G3, the only information the adversary knows about
mb′ is LDP(mb′), so their best strategy for guessing b′ is
to apply the algorithm OptiGuess(λ, LDP, m̂1,m0,m1),
and in this case, the probability that G3 returns 1 is
the same as the probability that the IND-LDP-Hiding
experiment returns 1 in the case b = 1. It follows
that the adversary’s advantage ϵ(λ) over the experi-
ment IND-LDP-Hiding is bounded by ϵROS-LDP-Hiding(λ)+
ϵHiding(λ).

The IND-LDP-hiding property matches better the se-
curity concept we want to formalize, however, the ROS-
LDP-hiding property appears to be easier to prove and
simplifies the proofs for the IND-LDP-hiding property. It
is also stronger under the hypothesis that the scheme is
hiding.

3.2.2. Binding. First of all, we define Binding in the clas-
sical way: an adversary is unable to open a commitment
in two different ways (revealing two different messages)
using the algorithm Open.

Definition 9 (Binding). Let λ be a security parameter,
LDP be a LDP mechanism, and P be a LDP-C. P is said
to be binding if for any PPT algorithm A, there exists a
negligible function ϵ s.t.:

Pr
[
1← ExpBindingP,LDP,A(λ)

]
≤ ϵ(λ),

where the Binding experiment is given in Figure 3.

In the same way, we define the LDP-Binding experi-
ment for the OpenLDP algorithm. LDP-Binding security
is achieved when no PPT adversary is able to open a
commitment on two different messages using the same
seed on the algorithm OpenLDP.

Definition 10 (LDP-Binding). Let λ be a security param-
eter, LDP be a LDP mechanism, and P be a LDP-C. P
is said to be LDP-binding if for any PPT algorithm A,
there exists a negligible function ϵ s.t.:

Pr
[
1← ExpLDP-Binding

P,LDP,A (λ)
]
≤ ϵ(λ),

where the LDP-Binding experiment is given in Figure 3.

When the seed for algorithm OpenLDP is chosen
randomly, the message opened should follow the same
distribution as if it had been generated honestly using the
LDP mechanism on the original committed message. We
stress that in this case the same commitment must open

with different values depending on the seed, since the
LDP mechanism is probabilistic by nature. We model this
property by the experiment Prob-LDP-Binding, where an
adversary commits a message m, receives a random seed
θ̂, and opens the commitment with θ̂ using the OpenLDP
algorithm. Their aim is to return an opened message m̂
chosen in a distribution which differs significantly from
the distribution generated by the use of the LDP mecha-
nism on m, while guaranteeing that the commitment is
correct (i.e. the proof π∗ is correct), that m is indeed
the committed message (i.e. the proof π is correct), and
that m̂ is indeed the message opened by the OpenLDP
algorithm using θ̂ as seed (i.e. the proof π̂ is correct). The
experiment is parameterized by a bit b. When b = 0 and
the commitment has been correctly generated and opened
by the adversary, the experiment returns the anonymized
value opened by the adversary. Otherwise, the experiment
itself anonymizes the adversary’s message and returns it.
Probabilistic-LDP-binding security is achieved when, for
any adversary, the message returned follows the same
probability distribution, whether b = 0 or 1. In other
words, the adversary cannot bias the LDP mechanism
when it opens the commitment with OpenLDP on a
random seed.

Definition 11 (Probabilistic-LDP-Binding). Let λ be a
security parameter, LDP be a LDP mechanism, and P be
a LDP-C. P is said to be probabilistic-LDP-binding if for
any PPT algorithm A and any message m̂, there exists a
negligible function ϵ s.t.:∣∣∣Pr [m̂← ExpProb-LDP-Binding

P,LDP,A,0 (λ)
]
−

Pr
[
m̂← ExpProb-LDP-Binding

P,LDP,A,1 (λ)
]∣∣∣ ≤ ϵ(λ),

the Prob-LDP-Binding experiment being given in Fig-
ure 3.

4. LDP Commitment Schemes

In this section, we present an efficient LDP-C scheme
for the generalized randomized response mechanism.

4.1. Privacy Parameter for the LDP Mechanism

This LDP mechanism is parameterized by a pair
(n1, n2). Given a message m ∈ M, the mechanism
returns m̂ = m with probability 1/n1, otherwise it draws
m̂

$← Zn2 and returns m̂.

Definition 12 (Generalized Randomized Response Mech-
anism). The generalized randomized response mechanism
parameterized by (n1, n2) is the following locally differ-
entially private algorithm:

LDP(m) : Picks x
$← Zn1

, if x = 0, then sets m̂ ← m,
else picks m̂

$← Zn2
, finally returns m̂.

We now want to determine how to set the values of n1

and n2 given the privacy parameter ϵ and the probabilities



ExpHidingP,LDP,A,b(λ):
set← Setup(λ, LDP)
(m0,m1)← A1(set)
θ

$← Θ
(k, c, π∗)← Commit(mb, θ)
b∗ ← A2(c, π∗)
return b∗ = b

ExpROS-LDP-Hiding
P,LDP,A,b (λ):

set← Setup(λ, LDP)
m← A1(set)
θ

$← Θ
(k, c, π∗)← Commit(m, θ)
θ̂ ← A2(c, π∗)
(m̂0, π̂0)← OpenLDP(k, c, θ̂)
m̂1 ← LDP(m)
π̂1 ← Sim(m̂1, c)
b∗ ← A3(m̂b, π̂b)
return b∗ = b

ExpIND-LDP-Hiding
P,LDP,A,b (λ):

set← Setup(λ, LDP)
(m0,m1)← A1(set)
b′

$← {0, 1}
θ

$← Θ
(k, c, π∗)← Commit(mb′ , θ)
θ̂ ← A2(c, π∗)
(m̂0, π̂)← OpenLDP(k, c, θ̂)
m̂1 ← LDP(mb′)
if b = 0, then b∗ ← A3(m̂0, π̂)
else b∗ ← OptiGuess(λ, LDP, m̂1,m0,m1)
return b∗ = b′

ExpBindingP,LDP,A(λ):
set← Setup(λ, LDP)
(m0,m1, π0, π1, c)← A(set)
return (m0 ̸= m1 ∧ VerOpen(c,m0, π0)
∧ VerOpen(c,m1, π1))

ExpLDP-Binding
P,LDP,A (λ):

set← Setup(λ, LDP)
(m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂)← A(set)
return (m̂0 ̸= m̂1 ∧ VerOpenLDP(c, m̂0, π̂0, θ̂)
∧ VerOpenLDP(c, m̂1, π̂1, θ̂) ∧ VerCommit(c, π∗))

ExpProb-LDP-Binding
P,LDP,A,b (λ):

set
$← Setup(λ, LDP)

(c, π∗,m, π)← A1(set)
θ̂

$← Θ
(m̂0, π̂)← A2(θ̂)
m̂1 ← LDP(m)
if (VerCommit(c, π∗) ∧ VerOpen(c,m, π) ∧

VerOpenLDP(c, m̂0, π̂, θ̂) = 1) ∧ (b = 0),
then return m̂0, else return m̂1

OptiGuess(λ, LDP, m̂,m0,m1):
b∗

$← {0, 1}
if Pr[m̂← LDP(m0)] > Pr[m̂← LDP(m1)] then return 0
if Pr[m̂← LDP(m0)] < Pr[m̂← LDP(m1)] then return 1
if Pr[m̂ ← LDP(m0)] = Pr[m̂ ← LDP(m1)] then return
b∗

Figure 3. Security experiments for LDP-C.

of obtaining the correct (resp. an erroneous) value. We
have, for any m̂ ̸= m in Zn2

:

Pr[m← LDP(m)] =
1

n1
+

n1 − 1

n1
· 1

n2

=
n1 + n2 − 1

n1 · n2
(Eq.1)

Pr[m̂← LDP(m)] =
n1 − 1

n1
· 1

n2
=

n1 − 1

n1 · n2

As LDP implements an optimal staircase mechanism (Sec-
tion 2), we have the following constraint on the ratio:∣∣∣∣ln Pr[m← LDP(m)]

Pr[m̂← LDP(m)]

∣∣∣∣ = ϵ

so that we can express a relationship between n1, n2 and ϵ:

n1 =
n2 + exp(ϵ)− 1

exp(ϵ)− 1
.

The parameters are chosen in the following manner. First
of all, ϵ is fixed by the user, medical practitioner or
medical device producing the value. Recall that the greater

the value of ϵ, the lesser the privacy of the mechanism,
since the probability of yielding the same outcome as
the input value will be higher. In principle, what a user
is interested in fixing next, is the actual probability of
outputting the correct value, i.e. Pr[m← LDP(m)]. With
this parameter fixed, using Eq.1 we can compute:

n1 =
1

Pr[m← LDP(m)]
· exp(ϵ)

exp(ϵ)− 1

and deduce n2. If n1 is an integer, we can choose to take
the floor or ceiling value, depending if we want Pr[m←
LDP(m)] to be a target lower or upper bound.
Example. If we choose ϵ = ln 3 and Pr[m← LDP(m)] =
3
4 , this leads us to find n1 = n2 = 2 which is the classical
Randomized Response algorithm [28].

4.2. Naive Solution

We start by giving a naive solution, which is intuitive
and correct, but which quickly becomes ineffective when
the settings grow larger. This solution uses a standard



cryptographic commitment scheme (Com,Ope), where
Com(m) returns a key k and a committed c, and Ope(k, c)
returns the committed message m. The general idea is
to commit a vector containing the repetition of elements
of Zn2

in such a way that the choice in the uniform
distribution over the elements of this vector coincides with
the distribution of values returned by the LDP mechanism
on a given message. More precisely, given the message m,
we define the following vector:

v = (vi)
n1·n2
i=0

= (0, · · · , 0︸ ︷︷ ︸
n1 − 1

, · · · ,m− 1, · · · ,m− 1︸ ︷︷ ︸
n1 − 1

,m, · · · ,m︸ ︷︷ ︸
n1 + n2 − 1

,

m+ 1, · · · ,m+ 1︸ ︷︷ ︸
n1 − 1

· · · , n2 − 1, · · · , n2 − 1︸ ︷︷ ︸
n1 − 1

).

To commit the message m with the algorithm
Commit(m, θ) of our naive LDP-C, the user runs
(k∗c∗) ← Com(m), parses θ as a bijective function
θ : Zn1·n2

→ Zn1·n2
, runs (ki, ci) ← Com(vθ(i)) for all

i ∈ Zn1·n2
, and returns the key k = (k∗, (ki)i∈Zn1·n2

)
and the commitment c = (c∗, (ci)i∈Zn1·n2

). The user
also proves using zero-knowledge proofs that each m is
committed at least n1 − 1 times in c and that the value
committed in c∗ is committed at least n1 + n2 − 1 times
in c to generate the proof π∗. For instance, this proof can
easily be built using Schnorr based proofs for discret log-
arithm relations [29] with the proofs of partial knowledge
transformation [30] on Pedersen’s commitments [31].

To open the commitment c with the algorithm
Open(k, c) (i.e., without LDP), the user returns m together
with a zero-knowledge proof π that m = Ope(k∗, c∗)
without revealing k∗. This proof can easily be built using
Schnorr based proofs for discret logarithm relations on
Pedersen’s commitments.

Given a random seed θ̂ chosen from Zn1·n2
, the user

can also open the commitment c by applying the LDP
mechanism with the algorithm OpenLDP(k, c, θ̂). To do
this, the user returns the committed message m̂ in cθ̂ and a
proof π̂ that m̂ = Ope(kθ̂, cθ̂) without revealing kθ̂ (using,
once again, Schnorr based proofs for discret logarithm
relations on Pedersen’s commitments).

The hiding and LDP-hiding properties derive from
the hiding property of the commitment scheme used and
from the fact that the proofs are zero-knowledge. The
use of permutation ensures that the verifier cannot use
the choice of θ̂ to determine whether the value m̂ is
the original message or another message; m̂ provides as
much information as a randomly chosen value vi in v,
and therefore as much information as a message that is
actually anonymized with the generalized randomized re-
sponse LDP mechanism. Binding and LDP-binding result
directly from the binding property of the cryptographic
commitment scheme used. The probabilistic-LDP-binding
is ensured by the soundness of the zero-knowledge proofs,
which guarantee that if θ̂ is indeed random, then the
opening of the commitment cθ̂ will follow the distribution
of the LDP mechanism, since the ci are commitments of
the values of the permuted vector v.

The size of the signatures and the computational com-
plexity of the commitments and verifications are linear in

n1 · n2, which seems unsatisfactory, especially when we
want to use large parameters.

4.3. Efficient Scheme with Logarithmic Commit-
ments

We will now present a more efficient LDP-C scheme
called Optimized Randomized Response Commitment
(ORRC) whose complexity in computation time and in
the size of commitments, proofs, and openings is at most
O(max(log2(n1), log2(n2)). Our scheme uses parameters
n1 and n2 which are powers of 2, so n1 = 2ℓ1 and
n2 = 2ℓ2 . In practical terms, this means that the mes-
sages are chosen from vectors of ℓ2 bits. Moreover, for
fixed ℓ2 and ϵ, we will choose the smallest ℓ1 such that
ℓ1 ≥ log2

(
2ℓ2+exp(ϵ)−1

exp(ϵ)−1

)
.

Definition 13 (ORRC scheme). Let (ℓ1, ℓ2) be two
integers. The optimized randomized response commitment
scheme ORRC is a LDP-C scheme depending on the
generalized randomized response LDP mechanism pa-
rameterized by (2ℓ1 , 2ℓ2) consisting of algorithms (Setup,
Commit,Open,OpenLDP,VerOpen,VerOpenLDP,
VerCommit) described in the rest of this section.

The setup algorithm generates a group of prime or-
der and several elements of this group. More precisely,
we generate pairs (fi,0, fi,1), (gi,0, gi,1), and (hi,0, hi,1),
which will be used to commit bit strings. To do this,
given an integer ℓ and a bit string s ∈ {0, 1}ℓ, and using
the pairs (gi,0, gi,1), we choose a random element x, set
y = gx, and compute Si = gi,s[i] for all i in JℓK. The
opening of the commitment consists in revealing x. In
this way, we can simply prove, using proofs of equality of
discrete logarithms, that the committed message is indeed
an element of {0, 1}ℓ; it suffices to show, for all i, that
Si = gi,0 or Si = gi,1.

Note that it is also possible to check the com-
mitment quite efficiently by checking

∏
i∈JℓK S

x
i =(∏

i∈JℓK gi,s[i]

)x
and y = gx, rather than by checking

each of the Si independently. This is because exponenti-
ation in a group of prime order is much more expensive
than mulitiplication, so it is much more efficient to have
a constant number of exponentiations that do not depend
on ℓ, even with a linear number of multiplications.
Setup(λ, LDP): generates a group G = ⟨g⟩ of prime

order p, for each i ∈ Jℓ1K and j ∈ {0, 1}, picks
fi,j

$← G, then for each i ∈ Jℓ2K and each j ∈ {0, 1},
picks gi,j , hi,j

$← G. It sets M ← {0, 1}ℓ2 and
Θ ← {0, 1}ℓ1 × {0, 1}ℓ2 , and returns set ←
(λ,G, p, (gi,j) i∈Jℓ1K

j∈{0,1}
, (fi,j , hi,j) i∈Jℓ2K

j∈{0,1}
,M,Θ).

The idea behind our scheme is as follows: given a θ
token, we parse θ into (s, t). To commit m with ORRC,
we commit s, m, and t in the respective commitments
A1, A2 and B (using the method described above). To
open without LDP, we simply open A2. To open with the
LDP mechanism, given a seed θ̂ ∈ Θ parsed as (ŝ, t̂)
chosen by the verifier, we test whether s = ŝ (which
happens with a probability of 1/2ℓ1). If so, we open
the actual message m from A2, otherwise we return the
message m̂ = t⊕ t̂ with proof that m̂ has been computed



correctly with the value t committed to B (we stress that
if t or t̂ was indeed chosen randomly, the message m̂
will follow a uniform distribution over M). In addition,
we use a zero-knowledge proof to prove that the correct
operation between the two possible has been performed,
depending on whether s = ŝ has been performed, and
without revealing s.

Commit(m, θ): picks x ∈ Z∗
p, sets y = gx, and parses θ

as (s, t). For all i ∈ Jℓ1K, it sets A(i,1) ← gxi,s[i].
For all i ∈ Jℓ2K, it sets (A(i,2), B(i,0), B(i,1)) ←
(fx

i,m[i], h
x
i,t[i], h

x
i,1⊕t[i]). It then computes:

πA1
← NIP

{
x :

ℓ1∧
i=1

(
y = gx

∧
(∨1

j=0 A(i,1) = gxi,j

) )}

πA2 ← NIP

{
x :

ℓ2∧
i=1

(
y = gx

∧
(∨1

j=0 A(i,2) = fx
i,j

) )}

πB ← NIP


x :

ℓ2∧
i=1


y = gx

∧

(
1∧

j=0

B(i,j) = hx
i,j

∨
1∧

j=0

B(i,j) = hx
i,1−j

)



.

It sets k ← x, c ← (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0),
B(i,1))i∈Jℓ2K), π∗ ← (πA1

, πA2
, πB). Finally, it

returns (k, c, π∗).
VerCommit(c, π∗) : parses c as (y, (A(i,1))i∈Jℓ1K,

(A(i,2), B(i,0), B(i,1))i∈Jℓ2K) and π∗ as
(πA1

, πA2
, πB), verifies the proofs in π∗, and

returns 1 if the proof is valid, 0 otherwise.

Note that the B(i,1) commit t̄, we will see later that these
elements will be useful for showing that in the case s ̸= ŝ,
m̂ = t⊕ t̂. The opening algorithm with no LDP consists
of opening the A(i,2) in which m is committed, using the
method given above.

Open(k, c) : parses k as x and c as
(y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K).
For each i ∈ Jℓ2K, it sets m[i] = b iff A(i,2) = fx

i,b

where b ∈ {0, 1}. It computes A2 =
∏ℓ2

i=1 A(i,2)

and α2 =
∏ℓ2

i=1 fi,m[i]. It computes the proof
π ← NIP {x : y = gx ∧A2 = αx

2}. Finally, it returns
m and π.

VerOpen(c,m, π) : parses c as (y, (A(i,1))i∈Jℓ1K,
(A(i,2), B(i,0), B(i,1))i∈Jℓ2K), computes A2 and α2

as in the algorithm Open and verifies the proof π.

As we already mentioned, to open the commitment with
the LDP mechanism on the message m̂ and the seed θ̂ =
(ŝ, t̂), we show that if s, the value committed to A(i,1),
is equal to ŝ, then the value committed to A(i,2) is m̂,
otherwise we show that m̂ = t ⊕ t̂ where t is the value
committed to B(i,0). We will now focus on the second
case. Recall that for all i, B(i,0) commits t[i] and B(i,1)

commits 1⊕ t[i]. We remark that:

hx
i,t̂[i]

=

{
hx
i,t[i] if t[i] = t̂[i],

hx
i,1⊕t[i] else (t[i] ̸= t̂[i]).

=

{
B(i,0) if t[i] = t̂[i],
B(i,1) else .

= B(i,(t⊕t̂)[i]) = B(i,m̂[i]).

Therefore, to show that m = t⊕ t̂, it is sufficient to prove
that

(∏
i∈Jℓ2K hi,t̂[i]

)x
=
∏

i∈Jℓ2K B(i,m̂[i]) and y = gx.
This results in the following opening algorithm.
OpenLDP(k, c, θ̂) : parse k as x, c as (y, (A(i,1))i∈Jℓ1K,

(A(i,2), B(i,0), B(i,1))i∈Jℓ2K) and θ̂ as (ŝ, t̂). It sets:

A1 =

ℓ1∏
i=1

A(i,1); A2 =

ℓ2∏
i=1

A(i,2); α1 =

ℓ1∏
i=1

gi,ŝ[i];

If A1 = αx
1 it sets m̂← m, else m̂← t⊕ t̂. It sets:

α2 =

ℓ2∏
i=1

fi,m̂[i]; β =

ℓ2∏
i=1

B(i,m̂[i]); γ =

ℓ2∏
i=1

hi,t̂[i],

then it generates the following proof:

π̂ ← NIP

{
x :

(y = gx ∧A1 = αx
1 ∧A2 = αx

2)
∨ (y = gx ∧A1 ̸= αx

1 ∧ β = γx)

}
.

Finally, it returns (m̂, π̂).
VerOpenLDP(c, m̂, π̂, θ̂) : parses θ̂ as (ŝ, t̂) and c as

(y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K), then
computes A1, A2, α1, α2, β, and γ as in the algo-
rithm OpenLDP. It verifies the proof π̂, and returns
1 if the proof is valid, 0 otherwise.

4.4. Security Analysis

Theorem 3. The ORRC scheme instantiated with ex-
tractable and zero-nowledge proofs and a group where the
DDH assumption holds is hiding, LDP-hiding, binding,
LDP-binding and probabilistic-LDP-binding.

In the following, we provide sketches of the security
proofs, giving the sequence of games [27] used for the
proof, but omitting the reductions between the games. The
full proofs are available in the appendix of this paper.

The hiding proofs requires the two following assump-
tions in the chosen group G = ⟨g⟩ of prime order p:
Left-or-Right-DDH (LOR-DDH) the advantage of any

PPT algorithm A that receives random elements
gx, gy0 , gy1 , and gxyb for a random bit b and that
tries to guess b is bounded by a negligible function
ϵLOR-DDH(λ).

Left-or-Right-DDH-2 (LOR-DDH− 2) the advantage of
any PPT algorithm A that receives random elements
gx, gy0 , gy1 , and gxyb and gxy1−b for a random bit b
and that tries to guess b is bounded by a negligible
function ϵLOR-DDH−2(λ).

We prove in Appendix B that these two assumptions
reduce to DDH (Lemmas 2 and 3).

Proof sketch that ORRC is hiding. We use the following
sequence of games:
Game G0: This game is the same as the Hiding experi-
ment in the case where b = 0.
Game G1: This game is the same as the game G0 except
that the challenger replaces the zero-knowledge proof π∗
by a simulated proof, we have:

Pr [A returns 1 in G0] = Pr [A returns 1 in G1] .

Game G2: This game is the same as the Hiding experi-
ment in the case where b = 1.



In the game G1 (resp. G2), the challenger commits
the message m0 (resp. m1), so the i-th bit of m0 (resp.
m1) is contained in the part A(i,2) of c. To prove in-
distinguishability between G1 and G2, we consider the
following hybrid argument [32]:
Game G1,k (for all k ∈ Jℓ2K): We define G1,0 as G1 and
G1,ℓ2 as G2. This game is the same as the game G1,k−1

except that the challenger replaces A(k,2) = fx
k,m0[k]

by
fx
k,m1[k]

in the commitment. By reduction we can show
that for all k ∈ Jℓ2K:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
≤ ϵLOR-DDH(λ).

This leads to the advantage ϵ(λ) = ℓ2 · ϵLOR-DDH(λ) for
the hiding property, which concludes the proof.

Proof sketch that ORRC is ROS-LDP-hiding. We define
the algorithm LDP for some value ŝ ∈ Jℓ1K and the
simulator as follows:

LDP(m) : picks (s, t)
$← {0, 1}ℓ1 × {0, 1}ℓ2 , if s = 0,

then sets m̂ = m, else, sets m̂ = t and returns m̂.
Sim(m̂) : uses the zero-knowledge proof simulator to pro-

duce π̂.

We use the following sequence of games:
Game G0: This game is the same as the ROS-LDP-Hiding
experiment in the case b = 0.
Game G1: This game is the same as the game G0 except
that the challenger replaces the proofs π̂ and π∗ by simu-
lated proofs. The loss of advantage between the games is
the same as between G0 and G1 in the previous proof.

From the game G1, we parse the θ used to produce c
as (s0, t0). We note that if s0 = ŝ, then m̂ = m, else m̂ =
t0⊕ t̂. In what follows, we will gradually replace (s0, t0)
(bit by bit) by other values (s1, t1) chosen at random in
the commitment c, but will continue to compute m̂ with
(s0, t0). This leads us to the ROS-LDP-Hiding experiment
in the case b = 1.
Game G2: This game is the same as the game G1 except
that for all i ∈ Jℓ1K, the challenger replaces Ai,1 = gxi,s0[i]
by gxi,s1[i]. To prove indistinguishability between G1 and
G2, we consider the following hybrid argument [32]:
Game G1,k(for all k ∈ Jℓ1K): We define G1,0 as G1 and
G1,ℓ1 as G2. This game is the same as the game G1,k−1

except that the challenger replaces A(k,1) = gxk,s0[k] by
gxk,s1[k]. By reduction we can show that for all k ∈ Jℓ1K:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
≤ ϵLOR-DDH(λ).

Game G3: This game is the same as the game
G2 except that for all i ∈ Jℓ2K, the challenger
replaces

(
B(i,0), B(i,1)

)
=

(
hx
i,t0[i]

, hx
i,1⊕t0[i]

)
by(

hx
i,t1[i]

, hx
i,1⊕t1[i]

)
. To prove indistinguishability between

G2 and G3, we consider the following hybrid argu-
ment [32]:
Game G2,k(for all k ∈ Jℓ2K): We define G2,0 as G2 and
G2,ℓ2 as G3. This game is the same as the game G2,k−1

except that the challenger replaces (B(k,0), B(k,1)) =

(hx
k,t0[k]

, hx
k,1⊕t0[k]

) by (hx
k,t1[k]

, hx
k,1⊕t1[k]

). By reduction
we can show that for all k ∈ Jℓ2K:

|Pr [A returns 1 in G2,k−1]− Pr [A returns 1 in G2,k]|
≤ ϵLOR-DDH−2(λ).

This leads to the advantage ϵ(λ) = ℓ1 · ϵLOR-DDH(λ)+ ℓ2 ·
ϵLOR-DDH−2(λ) for the hiding property, which concludes
the proof.

According to Theorem 2, ORRC is IND-LDP-hiding
because it is hiding and ROS-LDP-hiding.

The hiding proofs requires the following assumptions
in the chosen group G = ⟨g⟩ of prime order p:
ℓ-product-collision-resistance (ℓ-col) the probability of

any PPT algorithm A that receives random elements(
g(i,j)

)
i∈JℓK;j∈{0,1} to find some (x1, x2) such that

x1 ̸= x2 and
∏ℓ

i=1 g(i,x1[i]) =
∏ℓ

i=1 g(i,x2[i]) is
bounded by a negligible function ϵℓ-col(λ).

We prove in Appendix B that this assumption reduces to
the discrete logarithm assumption (Lemma 4).

Proof sketch that ORRC is binding. We use the follow-
ing sequence of games:
Game G0: This game is the same as the Binding experi-
ment.
Game G1: This game is the same as the game G0 ex-
cept that the challenger uses the extractors on the zero-
knowledge proofs π0, π1 outputted by the adversary, and
aborts and returns 0 on the event F1 = “An extractor fails
on at least one proof”. The loss of advantage between the
games is the same as between G0 and G1 in the previous
proof. We emphasize that if A wins its game, then the
witnesses x of all proofs are correctly extracted and are
the same according to the proofs structure. We have:

|Pr [A wins the game G0]− Pr [A wins the game G1]|
≤ Pr[F1] ≤ 2 · ϵext(λ).

Game G2: This game is the same as the game G0

except that aborts and returns 0 on the event F2 =
“A outputs (m0,m1, π0, π1, c) such that

∏ℓ2
i=1 fi,m0[i] =∏ℓ2

i=1 fi,m1[i] and m0 ̸= m1”, we have:

|Pr [A wins the game G1] = Pr [A wins the game G2]|
≤ Pr[F2].

By reduction we can show that Pr[F2] ≤ ϵℓ2−col(λ). If F1

and F2 does not happen, then the values A(i,2) are correct
and there is no product collision for two different mes-
sages, so m0 = m1 and so Pr [A wins the game G2] = 0.
This leads to the advantage ϵ(λ) = 2 · ϵext(λ)+ ϵℓ2−col(λ)
for the binding property, which concludes the proof.

Proof sketch that ORRC is LDP-binding. We use the
following sequence of games:
Game G0: This game is the same as the LDP-Binding
experiment.
Game G1: This game hop is similar to the hop between
G0 and G1 in the previous proof except that we use the
extractor on the proofs π̂0, π̂1 and π∗ = (πA1

, πA2
, πB).

Game G2: This game is the same as the game G1 except
that aborts and returns 0 on the event F2 = “A returns



(m̂0, m̂1) such that
∏ℓ2

i=1 fi,m̂0[i] =
∏ℓ2

i=1 fi,m̂1[i] and
m̂0 ̸= m̂1”. we have:

|Pr [A wins the game G1] = Pr [A wins the game G2]|
≤ Pr[F2].

By reduction we can show that Pr[F2] ≤ ϵℓ2-col(λ).
Note that in the case where ŝ ̸= s, we have hx

i,t̂[i]
=

hx
i,m̂[i]⊕t[i].

Game G3: This game is the same as the game G2 except
that aborts and returns 0 on the event F3 = “A returns
(m̂0, m̂1) such that

∏ℓ2
i=1 hi,m̂0[i]⊕t[i] =

∏ℓ2
i=1 hi,m̂1[i]⊕t[i]

and m̂0 ̸= m̂1 and s ̸= ŝ”, we have:

|Pr [A wins the game G2] = Pr [A wins the game G3]|
≤ Pr[F3].

By reduction we can show that Pr[F3] ≤ ϵℓ2-col(λ).
Game G4: This game is the same as the game
G3 except that aborts and returns 0 on the event
F4 = “A returns (m̂0, m̂1) such that

∏ℓ2
i=1 B(i,m̂0[i]) =∏ℓ2

i=1 B(i,m̂1[i]) and m̂0 ̸= m̂1 and s ̸= ŝ”, we have:

|Pr [A wins the game G3] = Pr [A wins the game G4]|
≤ Pr[F4].

By reduction we can show that Pr[F4] ≤ ϵℓ2-col(λ).
If F1, F2, F3, and F4 does not happen, then the commit-
ment is well formed and there is no product collision for
two different messages on the α2, β, and γ, which implies
the uniqueness of the open message for (ŝ, t̂), so m0 = m1

and so Pr [A wins the game G4] = 0. This leads to the
advantage ϵ(λ) = 5 · ϵext(λ) + 3 · ϵℓ2−col(λ) for the LDP-
binding property, which concludes the proof.

Proof sketch that ORRC is probabilistic-LDP-binding.
We use the following sequence of games:
Game G0: This game is the same as the
Prob-LDP-Binding experiment in the case where
b = 0.
Game G1: This game hop is similar to the hop between
G0 and G1 in the previous proof.
Game G2: This game is the same as the game G1

except that the challenger aborts and returns m̂
$← M

on the event F2 = “A1 returns (c, π∗,m, π) and A2

returns (m̂0, π̂) such that
∏ℓ2

i=1 fi,m̂0[i] =
∏ℓ2

i=1 fi,m[i]

and m̂0 ̸= m”, we have that ∀m̂ ∈M:

|Pr [m̂← G1]− Pr [m̂← G2]| ≤ Pr[F2].

By reduction we can show that Pr[F2] ≤ ϵℓ2-col(λ).
Note that in the case where ŝ ̸= s, we have m̂ = t ⊕ t̂,
which implies hx

i,t̂[i]
= hx

i,m̂[i]⊕t[i] and B(i,m̂[i]) = hx
i,t̂[i]

.
Game G3: This game is the same as the game G3 except
that aborts and returns m̂

$← M on the event F3 =
“A1 returns (c, π∗,m, π) and A2 returns (m̂0, π̂) such
that

∏ℓ2
i=1 hi,m̂0[i]⊕t[i] =

∏ℓ2
i=1 hi,t̂[i] and m̂0 ⊕ t ̸= t̂ and

s ̸= ŝ”, we have that, ∀m̂ ∈M:

|Pr [m̂← G3]− Pr [m̂← G4]| ≤ Pr[F3].

By reduction we can show that Pr[F3] ≤ ϵℓ2-col(λ).
Game G4: This game is the same as the game G3 except
that aborts and returns m̂

$←M on the event F4 = “A1

returns (c, π∗,m, π) such that
∏ℓ1

i=1 gi,s[i] =
∏ℓ1

i=1 gi,ŝ[i]
and s ̸= ŝ”, we have that, ∀m̂ ∈M:

|Pr [m̂← G3]− Pr [m̂← G4]| ≤ Pr[F4].

By reduction we can show that Pr[F4] ≤ ϵℓ1-col(λ).
If F1, F2, F3, and F4 does not happen, then the commit-
ment is well formed and the only way to open the commit-
ment is to return m if s = ŝ, and to return t⊕ t̂ otherwise.
We deduce that G4 is the same as the Prob-LDP-Binding
experiment in the case where b = 1. This leads to the
advantage ϵ(λ) = 5 ·ϵext(λ)+ϵℓ1−col(λ)+2 ·ϵℓ2−col(λ) for
the probabilistic-LDP-binding property, which concludes
the proof.

5. Extensions

In this section, we propose three extensions to our
scheme. The first concerns the case where the same
commitment can be opened several times using the LDP
mechanism with different seeds. The second shows that it
is possible to open the commitment with a LDP parameter
ϵ larger (i.e. less privacy, more utility) than the one chosen
at the time of the commitment without interacting with the
user having committed the data. Finally, the last extension
shows how to adapt our scheme to choose a parameter n1

that is not a power of 2.

Extension for Multiple Openings. Our scheme supports
only one opening using LDP (or several openings to non-
colluding users). For instance, given two openings for the
commitment of m giving the messages m̂ and m̂′ for the
seeds θ̂ = (ŝ, t̂) and θ̂′ = (ŝ′, t̂′) such that θ̂ ̸= θ̂′, if
m̂ = m̂′, we can deduce that m̂ = m̂′ = m, otherwise, if
m̂⊕ m̂′ = t̂⊕ t̂′, we can deduce with a high probability
that m̂ ̸= m and m̂′ ̸= m. Note that, although it may
be possible to limit the leakage of information about
the message, the problem is inherent in the primitive:
an attacker that could try each of the seeds will always
find the original message with certainty. The number of
openings with LDP cannot therefore be variable and must
be fixed at the time of signing.

We propose here a simple solution to allow a fixed
number N of openings, at the cost of a linear factor in N
on the size of the commitment and its generation time
(note that it is in any case undesirable to open the same
data several times with LDP because of the composition
theorem [1] which shows that opening N times the same
data with an ϵ-differentially private mechanism amounts
to applying a (Nϵ)-differentially private mechanism).

The solution is simply to commit to the same
message N times with ORRC, and to open a dif-
ferent commitment for each opening query. We de-
note c = (ci)i∈JNK the commitment constructed
in this way, with for each i ∈ JNK, ci =
(yi, (A(i,j,1))j∈Jℓ1K, (A(i,j,2), B(i,j,0), B(i,j,1))j∈Jℓ2K), and
k = (ki)i∈JNK the corresponding opening secret key. In the
case where the user having committed to the message is
not considered to be honest, it is also necessary to ensure
that it is indeed the same message that has been committed
in each of the N ORRC commitments. This can easily
be shown using the following proofs of knowledge of a



discrete logarithm for each (i, j) in (JNK\{1})× j ∈ Jℓ2K
where k∗i = ki/k1:

π(i,j) ← NIP
{
k∗i : y

k∗i
1 = yi ∧A

k∗i
(1,j,2) = A(i,j,2)

}
.

Combined with the other proofs generated during the
commitment, this proof proves that y1 = gk1 and
A(1,j,2) = fk1

(j,0) and yi = gki and fki
(j,0), or y1 = gk1 and

A(1,j,2) = fk1
(j,1) and yi = gki and fki

(j,1), which proves that
the j-th bit of the committed message is the same in the
first and i-th commitments. Combining all these proofs,
we have that all the committed messages are actually the
same. We leave as an open problem the question of finding
a way to allow multiple openings without a linear factor
in time and size complexity for the generation of the
commitment.

Opening with Larger ϵ. In the context of our application,
where the user who commits the data and the user who
reveals it are two different entities, it may be useful to
decide at the time of opening which ϵ will be used. This
would make it possible to decide on the ϵ according to the
intended use of the data, which is not necessarily known
in advance. We note that this is possible with our scheme
by reducing the parameter n1 = 2ℓ1 . Remember that the
commitment uses a binary string s of ℓ1 bits, so that each
of its bits is committed to the (Ai,1)i∈Jℓ1K, and which is
used to decide whether the opening with the LDP will
return the value actually committed or a randomly chosen
value (depending on whether s = ŝ or not, where ŝ is also
a string of ℓ1 bits chosen by the verifier). If we need to
use an LDP mechanism parameterized by n′

1 = 2ℓ
′
1 with

l′1 < ℓ1, we simply choose a ŝ of ℓ′1 bits and compare it
with the binary string s′ made up of the first ℓ′1 bits of s,
using the elements (Ai,1)i∈Jℓ′1K.

Fine-grained choice of n1. As it stands, our scheme
requires n1 to be a power of 2, which does not allow
us to precisely choose the probability 1/n1 for the opener
to open on the original value. To do this, we should set s
to be the ℓ1-bit coding of a number chosen at random
between 0 and n1 − 1 where n1 < 2ℓ1 , and ask the
verifier that ŝ also be the ℓ1-bit coding of a number less
than n1. On the other hand, it would be necessary to
prove that the committed s has been chosen correctly,
i.e. that s < n1. Such a proof is constructed in [33]
for another application. Note that this proof concerns
commitments constructed in the same way as in our case
and can be used without adaptation (for each bit, the
two possible values correspond to two group generators,
and the generator corresponding to the actual bit value
is used to compute the exponentiation of a secret), and
that the complexity in time and size of this proof is in
O(ℓ1), so its use does not affect the overall complexity in
O(max(log2(n1), log2(n2)) of our construction.

6. Instantiation and Implementation

Instantiation of the NIP. All the NIP languages used
in our scheme correspond to boolean relations of equality
and inequality of discrete logarithms. These proofs can be
instantiated as sigma protocols, where the prover sends a
commitment, receives a challenge, and returns a response.

By using the hash (produced by a random oracle) of
the statement and the commitment as a challenge, these
proofs become non-interactive [34]. Such a proof for the
equality of discrete logarithms is given in [29], and a proof
for the inequality is given in [35]. To prove that several
statements are true at the same time, it is sufficient to
use the same challenge for all the proofs. To prove that
a single statement is true among several, we can use the
transformation given in [30]. The proofs produced in this
way are linear in the number of statements (in size and
time). These proofs are zero-knowledge and extractable,
so we can use them to instantiate our construction.

Instantiation of the signature. Remember that in our
application, the LDP commitment needs to be signed. The
data is committed to by a user, and will be opened (with
LDP) by a delegate, who must be able to convince a ver-
ifier that the data it receives is indeed the data committed
by the user after the LDP mechanism has been applied.
From a formal point of view, a signature is a triplet of
algorithms (Gen,Sign,Ver) such that Gen(λ) returns a
private/public key pair(pk, sk), Sign(sk,m) returns a sig-
nature σ for message m, and Ver(pk,m) decides whether
a signature is valid or not. A signature is EUF-CMA if no
polynomial adversary is able, given the public key pk and
an oracle that produces signatures σ ← Sign(sk,m) for
chosen messages m, to forge a valid and fresh signature
(i.e. one that has not been produced by the oracle). In
our implementation, we use the well-known Schnorr’s
signature [36].

Implementation. In order to evaluate the efficiency of our
LDP commitment scheme, we implemented the algorithm
Setup, Commit, VerCommit, Open, VerOpen, OpenLDP
and VerOpenLDP in Rust on a processor 11th Gen Intel®
Core™ i7-1185G7 @ 3.00GHz × 8. The source code is
available at [37].

We employed the prime order group Ristretto and
we used the curve25519 dalek [38] library, with 255
bits secret keys. Additionally, we implemented a Schnorr
Signature scheme constituted of the algorithms Gen, Sign
and Ver allowing to sign the commitment produced. We
measured the execution time of each algorithm over 1000
runs. The results are summarized in Table 1; They depend
on the length of the parameters ℓ1 and ℓ2 thus for message
space sizes n2 = 2ℓ2 ranging from 16 to 109 and ϵ
around 0.70 (between 0.69 and 0.72). To improve our
performance results, we evaluated the elapsed time with
optimized features. We emphasize that our solution is
particularly efficient for the verifier of openings, as we
had suspected. The commitment correction verification
takes a little longer, but it can be pre-computed before
the commitment is opened, since it only concerns the
commitment and not its opening.

7. Conclusion

In this paper, we proposed a security model and a
proven scheme for a new primitive called LDP commit-
ment. Our scheme uses standard cryptographic tools and is
very efficient. We have implemented it in Rust to analyse
its performance and show that it can be used in practice.
By signing an LDP commitment, a user allows a delegate



Table 1. RUNNING TIME IN MILLISECONDS OF OUR ALGORITHMS.
THE RESULTS ARE AN AVERAGE OVER 1000 RUNS.

(ℓ1, ℓ2) (4, 4) (7, 7) (20, 20) (30, 30)
Setup 0.30 0.54 1.54 2.25
Commit 3.26 5.80 15.32 25.10

VerCommit 2.76 4.93 13.32 21.24
Open 0.30 0.51 1.10 1.71

VerOpen 0.13 0.14 0.14 0.15
OpenLDP 0.75 0.85 1.14 1.50

VerOpenLDP 0.51 0.52 0.51 0.56
Gen 0.03 0.03 0.03 0.03
Sign 0.12 0.18 0.39 0.61
Ver 0.15 0.20 0.44 0.62

to add noise before revealing their data to a recipient who
will be convinced that they indeed received the data signed
by the user with the correct LDP mechanism applied to
it. This enables, for example, the protection of patient
data used in a study to be guaranteed at the same time as
the publication of the anonymized (signed) data to verify
the statistical calculations made in the study. A natural
extension of our work would be to instantiate our model
with schemes allowing the use of other LDP mechanisms,
such as the exponential mechanism. Another extension
would be to find a way of adapting our primitive for use
on non-discrete sets.
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Appendix A.
Proof of Theorem 1

Proof. By abuse of notation, we simply note Pr[b = b∗]
the probability:

Pr

[
b

$← {0, 1}; m̂← LDP(mb);
b∗ ← OptiGuess(λ, LDP, m̂,m0,m1)

: b = b∗

]
.

When b is set to a value x ∈ {0, 1} (resp. m̂ to a value
x̂ ∈ M), we will note Pr[b = b∗|b = x] (resp. Pr[b =
b∗|m̂ = x̂]). Since Pr[b = 0] = Pr[b = 1] = 1

2 , we have:

Pr [b = b∗] = Pr[b = 0] · Pr [b = b∗|b = 0]+

Pr[b = 1] · Pr [b = b∗|b = 1]

=
1

2
(Pr [b = b∗|b = 0] + Pr [b = b∗|b = 1]) .

We first evaluate the first probability:

Pr [b = b∗|b = 0]

=
∑
x̂∈M

Pr[m̂ = x̂|b = 0] · Pr[b = b∗|b = 0 ∧ m̂ = x̂]

=
∑
x̂∈M

Pr[x̂← LDP(m0)] · Pr[b = b∗|b = 0 ∧ m̂ = x̂]

For all comparison operators □ ∈ {=, <,>}, we define
the set M□ as follows:

x̂ ∈M□ ⇔ Pr[x̂← LDP(m0)]□Pr[x̂← LDP(m1)].

Let P = {M=,M<,M>} be a set, we have that P is
a partition of M. We recall that by definition, OptiGuess
returns 0 with probability:

• 1 if Pr[x̂← LDP(m0)] > Pr[x̂← LDP(m1)],
• 1

2 if Pr[x̂← LDP(m0)] = Pr[x̂← LDP(m1)], and
• 0 if Pr[x̂← LDP(m0)] < Pr[x̂← LDP(m1)].
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We deduce that:

Pr [b = b∗|b = 0]

=
∑
x̂∈M

Pr[x̂← LDP(m0)] · Pr[b = b∗|b = 0 ∧ m̂ = x̂]

=
∑
S∈P

∑
x̂∈S

Pr[x̂← LDP(m0)] · Pr
[
b = b∗|

b = 0∧
m̂ = x̂

]
=

∑
x̂∈M>

Pr[x̂← LDP(m0)]+

1

2
·
∑

x̂∈M=

Pr[x̂← LDP(m0)]+

0 ·
∑

x̂∈M<

Pr[x̂← LDP(m0)]

=
∑

x̂∈M>

Pr[x̂← LDP(m0)]+

1

2

∑
x̂∈M=

Pr[x̂← LDP(m0)].

In a similar way, we have:

Pr [b = b∗|b = 1] =
∑

x̂∈M<

Pr[x̂← LDP(m1)]+

1

2

∑
x̂∈M=

Pr[x̂← LDP(m1)].

Furthermore:
• for all x̂ ∈M>,

max(Pr[x̂← LDP(m0)],Pr[x̂← LDP(m1)])

= Pr[x̂← LDP(m0)].

• for all x̂ ∈M=,

max(Pr[x̂← LDP(m0)],Pr[x̂← LDP(m1)])

= Pr[x̂← LDP(m0)] = Pr[x̂← LDP(m1)].

• for all x̂ ∈M<,

max(Pr[x̂← LDP(m0)],Pr[x̂← LDP(m1)])

= Pr[x̂← LDP(m1)].

We deduce:

Pr [b = b∗|b = 0] + Pr [b = b∗|b = 1]

=
∑

x̂∈M>

Pr[x̂← LDP(m0)]+

1

2

∑
x̂∈M=

Pr[x̂← LDP(m0)]+∑
x̂∈M<

Pr[x̂← LDP(m1)]+

1

2

∑
x̂∈M=

Pr[x̂← LDP(m1)]

=
∑
x̂∈M

max(Pr[x̂← LDP(m0)],Pr[x̂← LDP(m1)]).

This leads to the result of the theorem:

Pr[b = b∗]

=
1

2

∑
x̂∈M

max(Pr[x̂← LDP(m0)],Pr[x̂← LDP(m1)]).

This concludes the proof.

Appendix B.
Useful Lemmas

We first give a technical lemma, which will be useful
to simplify the winning probabilities for the adversary.

Lemma 1. Let ExpA,b(λ) be an experiment depending
on a bit b and a security parameter λ for an adversary
A ∈ POLY(λ) that returns a bit. we have:

∣∣∣∣Pr [b $← {0, 1} : 1← ExpA,b(λ)
]
− 1

2

∣∣∣∣
=

1

2

∣∣(Pr [1← ExpA,1(λ)
]
− Pr

[
0← ExpA,0(λ)

])∣∣ .
Proof.∣∣∣∣Pr [b $← {0, 1} : 1← ExpA,b(λ)

]
− 1

2

∣∣∣∣
=
∣∣∣Pr [b $← {0, 1} : b = 0

]
· Pr

[
1← ExpA,0(λ)

]
+

Pr
[
b

$← {0, 1} : b = 1
]
· Pr

[
1← ExpA,1(λ)

]
− 1

2

∣∣∣∣
=

∣∣∣∣12 (1− Pr
[
0← ExpA,0(λ)

]
+

Pr
[
1← ExpA,1(λ)

])
− 1

2

∣∣∣∣
=

1

2

∣∣(Pr [1← ExpA,1(λ)
]
− Pr

[
0← ExpA,0(λ)

])∣∣ .
We now give some results needed in the security

analysis of our efficient LDP commitment scheme (Sec-
tion 4.4).

Lemma 2. Let G = ⟨g⟩ be multiplicative group of
prime order p. Let A be a PPT algorithm, consider the
LOR-DDH experiment ExpLOR-DDH

A,b (λ) as follows:

ExpLOR-DDH
A,b (λ):

(x, y0, y1)
$← (Z∗

p)
3

z ← x · yb
b′ ← A(gx, gy0 , gy1 , gz)
return b = b′

Under the DDH assumption, there exists a negligible
function ϵLOR-DDH s.t. for any PPT algorithm A:∣∣∣Pr [0← ExpLOR-DDH

A,0 (λ)
]
− Pr

[
1← ExpLOR-DDH

A,1 (λ)
]∣∣∣

≤ ϵLOR-DDH(λ).

Proof. Game G0: This game is the same as the
LOR-DDH experiment in the case where b

$← {0, 1}.

Pr[A wins the game G0]

= Pr
[
b

$← {0, 1} : 1← ExpLOR-DDH
A,b (λ)

]
.

Game G1: This game is the same as the game G0 except
that the challenger replaces gz by a random element.



Let ϵDDH(λ) be the maximum DDH advantage of all
PPT algorithm D, we claim that:

|Pr[A wins the game G0]− Pr[A wins the game G1]|
≤ 2 · ϵDDH(λ).

We prove this claim by reduction.
Assume there exists a PPT algorithm A such that

ϵLOR-DDH is non negligible, we build a PPT distinguishing
algorithm D against the DDH assumption as follows:
Algorithm D(gx, gy, gγ): Parses gx as X , gy as Y0 and
gγ as Γ, picks r

$← Z∗
p and sets Y1 ← gr. D picks b∗

$←
{0, 1}, and runs b′ ← A(X,Yb∗ , Y1−b∗ ,Γ).

• If b∗ = b′, then returns 1.
• Else, then returns 0.

We have:

Pr[A wins the game G0]

= Pr[(x, y)
$← (Z∗

p)
2 : 1← D(gx, gy, gx·y)],

and

Pr[A wins the game G1]

= Pr[(x, y, z)
$← (Z∗

p)
3 : 1← D(gx, gy, gz)].

Thus, we deduce that:

|Pr[A wins the game G0]− Pr[A wins the game G1]|
≤ ϵDDH(λ).

We claim that:

Pr[A wins the game G1] =
1

2
.

We note that in the game G0, the algorithm A receives
the tuple (gx, gy0 , gy1 , gx·yb) and it has to guess the bit b
randomly picked by the challenger. The proof of the claim
derives from the fact that in the game G1, the algorithm A
receives the tuple (gx, gy0 , gy1 , gz) where gz is a random
group element, so A can not deduce any information on
the bit b and it returns a random bit b′ ∈ {0, 1}, we have:

Pr[A wins the game G1] =
1

2
.

We have:∣∣∣∣Pr [b $← {0, 1} : 1← ExpLOR-DDH
A,b (λ)

]
− 1

2

∣∣∣∣
= |Pr [A wins the game G0]−

Pr [A wins the game G1]|
≤ ϵDDH(λ).

From Lemma 1, we obtain:∣∣∣∣Pr [b $← {0, 1} : 1← ExpLOR-DDH
A,b (λ)

]
− 1

2

∣∣∣∣
=

1

2

∣∣∣Pr [1← ExpLOR-DDH
A,1 (λ)

]
−

Pr
[
0← ExpLOR-DDH

A,0 (λ)
]∣∣∣ .

Finally, we have:∣∣∣Pr [1← ExpLOR-DDH
A,1 (λ)

]
−

Pr
[
0← ExpLOR-DDH

A,0 (λ)
]∣∣∣

= 2 ·
∣∣∣∣Pr [b $← {0, 1} : 1← ExpLOR-DDH

A,b (λ)
]
− 1

2

∣∣∣∣
≤ 2 · ϵDDH(λ),

which concludes the proof of Lemma 3.

Lemma 3. Let G = ⟨g⟩ be multiplicative group of
prime order p. Let A be a PPT algorithm, consider the
LOR-DDH− 2 experiment ExpLOR-DDH−2

A,b (λ) as follows:

ExpLOR-DDH−2
A,b (λ):

(x, y0, y1)
$← (Z∗

p)
3

z0 ← x · yb
z1 ← x · y1−b

b′ ← A(gx, gy0 , gy1 , gz0 , gz1)
return b = b′

Under the DDH assumption, there exists a negligible
function ϵLOR-DDH−2 s.t. for any PPT algorithm A:∣∣∣Pr [0← ExpLOR-DDH−2

A,0 (λ)
]
−

Pr
[
1← ExpLOR-DDH−2

A,1 (λ)
]∣∣∣ ≤ ϵLOR-DDH−2(λ).

Proof. Game G0: This game is the same as the
LOR-DDH− 2 experiment in the case where b

$← {0, 1}.

Pr[A wins the game G0]

= Pr
[
b

$← {0, 1} : 1← ExpLOR-DDH−2
A,b (λ)

]
.

Game G1: This game is the same as the game G0 except
that the challenger replaces gz0 by a random element. We
claim that:

|Pr[A wins the game G0]− Pr[A wins the game G1]|
≤ ϵDDH(λ).

We prove this claim by reduction.
Assume there exists a PPT algorithm A such

that ϵLOR-DDH−2 is non negligible, we build a
PPT distinguishing algorithm D against the DDH
assumption as follows:
Algorithm D(gx, gy, gγ): picks r

$← Z∗
p, Parses gx as

X , gy as Y0 and gγ as Z0, and sets Y1 ← gr and
Z1 ← Xr. D picks b∗

$← {0, 1} and runs b′ ←
A(X,Yb∗ , Y1−b∗ , Z0, Z1).

• If b∗ = b′, returns 1.
• Else, returns 0.

We have:

Pr[A wins the game G0]

= Pr[(x, y)
$← (Z∗

p)
2 : 1← D(gx, gy, gx·y)],

and

Pr[A wins the game G1]

= Pr[(x, y, z)
$← (Z∗

p)
3 : 1← D(gx, gy, gz)].



Thus, we deduce that:

|Pr[A wins the game G0]− Pr[A wins the game G1]|
≤ ϵDDH(λ),

Game G2: This game is the same as the game G1 except
that the challenger replaces gz1 by a random element.
Let ϵDDH(λ) be the maximum DDH advantage of all
PPT algorithm D, we claim that:

|Pr[A wins the game G1]− Pr[A wins the game G2]|
≤ ϵDDH(λ).

We prove this claim by reduction.
Assume there exists a PPT algorithm A such

that ϵLOR-DDH−2 is non negligible, we build a
PPT distinguishing algorithm D against the DDH
assumption as follows:
Algorithm D(gx, gy, gγ): picks r, w

$← Z∗
p
2, parses gx

as X , gy as Y0 and gγ as Z1 and sets Y1 ← gr and
Z0 ← Xw. D picks b∗

$← {0, 1} and runs b′ ← A(X,Yb∗ ,
Y1−b∗ , Z0, Z1).

• If b∗ = b′, returns 1.
• Else, returns 0.

We have:

Pr[A wins the game G1]

= Pr[(x, y)
$← (Z∗

p)
2 : 1← D(gx, gy, gx·y)],

and

Pr[A wins the game G2]

= Pr[(x, y, z)
$← (Z∗

p)
3 : 1← D(gx, gy, gz)].

Thus, we deduce that:

|Pr[A wins the game G1]− Pr[A wins the game G2]|
≤ ϵDDH(λ),

We claim that:

Pr[A wins the game G2] =
1

2
.

We note that in the game G0, the algorithm A receives
the tuple (gx, gy0 , gy1 , gx·yb , gx·y1−b) and it has to guess
the bit b randomly picked by the challenger. The proof
of the claim derives from the fact that in the game G2,
the algorithm A receives the tuple (gx, gy0 , gy1 , gz0 , gz1)
where gz0 and gz1 are random group elements, so A can
not deduce any information on the bit b and it returns a
random bit b′ ∈ {0, 1}, we have:

Pr[A wins the game G2] =
1

2
.

We obtain that:∣∣∣∣Pr [b $← {0, 1} : 1← ExpLOR-DDH
A,b (λ)

]
− 1

2

∣∣∣∣
= |Pr [A wins the game G0]−

Pr [A wins the game G2]|
≤ 2 · ϵDDH(λ).

Finally, we have:∣∣∣Pr [1← ExpLOR-DDH−2
A,1 (λ)

]
−

Pr
[
0← ExpLOR-DDH−2

A,0 (λ)
]∣∣∣

= 2 ·
∣∣∣∣Pr [b $← {0, 1} : 1← ExpLOR-DDH−2

A,b (λ)
]
− 1

2

∣∣∣∣
≤ 4 · ϵDDH(λ),

which concludes the proof of the lemma.

We recall the Discrete Logarithm (DL) assumptions in
a group G = ⟨g⟩ of prime order p. The DL assumption
states that given a random x ∈ Z∗

p, the probability that
any PPT algorithm guesses x on input gx is negligible.

Definition 14 (Discrete Logarithm (DL) assump-
tion). Let G = ⟨g⟩ be a multiplicative group of
prime order p. The Discrete Logarithm (DL) as-
sumption states that there exists a negligible func-
tion ϵDL such that for any PPT algorithm A, we have
Pr
[
h

$← G;x← A(h) : gx = h
]
≤ ϵDL(λ).

Lemma 4. Let λ be a security parameter, G be a group
of prime order p, and g ∈ G be a generator. If the DL
assumption holds, there exists a negligible function ϵℓ-col
such that for all PPT algorithm A ∈ POLY(λ) and all
integer ℓ:

Pr


(
g(i,j)

)
i∈JℓK

j∈{0,1}

$←
(
Gℓ
)2

;

(x1, x2)← A
((

g(i,j)
)

i∈JℓK
j∈{0,1}

)
;

:

(
ℓ∏

i=1

g(i,x1[i])

=
ℓ∏

i=1

g(i,x2[i])

)
∧(x1 ̸= x2)


≤ ϵℓ-col(λ).

Proof. We define the games G0 and G1 as follows:
Game G0:(
g(i,j)

)
i∈JℓK

j∈{0,1}

$←
(
Gℓ
)2

;

(x1, x2)← A
((

g(i,j)
)

i∈JℓK
j∈{0,1}

)
;

If
(∏ℓ

i=1 g(i,x1[i]) =
∏ℓ

i=1 g(i,x2[i])

)
∧ (x1 ̸= x2), then

return 1, else return 0.

Game G1:
k

$← JℓK;
(
g(i,j)

)
i∈JℓK

j∈{0,1}

$← G2ℓ;

(x1, x2)← A
((

g(i,j)
)

i∈JℓK
j∈{0,1}

)
;

If x1[k] = x2[k] then abort the game and return 0;
If
(∏ℓ

i=1 g(i,x1[i]) =
∏ℓ

i=1 g(i,x2[i])

)
, then return 1, else

return 0.

We claim that, for all PPT algorithm A ∈ POLY(k):
1) Pr [A wins G0] ≤ ℓ · Pr [A wins G1]
2) Pr [A wins G1] ≤ ϵDL(λ)

Proof of Claim 1: G1 is defined as G0 except that
the challenger picks k at random in JℓK and aborts if
x1[k] = x2[k]. First remark that if there is no index
k′ such that x1[k

′] ̸= x2[k
′], then A does not win the

game G0 because x1 = x2. In other words, if A wants
to have a chance of winning, they choses x1 and x2



in such a way that there is at least an index k′ such
that x1[k

′] ̸= x2[k
′]. The game G1 does not abort if the

challenger guesses this index by picking k. Finally, The
adversary increases its winning advantage by a factor
equalling the probability of guessing correctly k, i.e., at
least 1/ℓ.

Proof of Claim 2: We prove this claim by reduction. We
build an algorithm B ∈ POLY(λ) that tries to return the
discrete logarithm of a random group element by using A
as a black box.
Algorithm B(h): Pick

(
α(i,j)

)
i∈JℓK

j∈{0,1}

$← (Z∗
p)

2ℓ and

k
$← JℓK, then set g(k,0) ← h. For all (i, j)

in (JℓK× {0, 1}) \{(h, 0)}, set gi,j ← gα(i,j) . Run

(x1, x2) ← A
((

g(i,j)
)

i∈JℓK
j∈{0,1}

)
. If x1[k] = x2[k], then

abort and return 0. If x1[k] = 0 then set (x, x̄)← (x1, x2),
else set (x, x̄) ← (x2, x1). We remark that x[k] = 0 and
x̄[k] = 1, so α(k,x̄[k]) is defined but α(k,x[k]) is not defined.
Set then return:

x∗ ←

 ℓ∑
i=1

α(i,x̄[i]) −
ℓ∑

i=1
i̸=k

α(i,x[i])


We first remark that if h is chosen at random in

the uniform distribution on G, then the game G1 is
perfectly simulated for A. If A wins the simulated game
G1, it holds that

(∏ℓ
i=1 g(i,x1[i]) =

∏ℓ
i=1 g(i,x2[i])

)
and x1[k] ̸= x2[k], which implies that(∏ℓ

i=1 g(i,x̄[i]) = g(k,x[k]) ·
∏ℓ

i=1
i̸=k

g(i,x[i])

)
. Moreover,

we have x[k] = 0, so g(k,x[k]) = g(k,0) = h. We deduce
that:

gx∗ = g

 ℓ∑
i=1

α(i,x̄[i])−
ℓ∑

i=1
i̸=k

α(i,x[i])



=
g

ℓ∑
i=1

α(i,x̄[i])

g

ℓ∑
i=1
i̸=k

α(i,x[i])

=

ℓ∏
i=1

g(i,x̄[i])

ℓ∏
i=1
i̸=k

g(i,x[i])

= h

Conclusion: From the two claims, we deduce
Pr [A wins G0] ≤ ℓ · ϵDL(λ), which conclude the
proof since ℓ · ϵDL(λ) is negligible.

Appendix C.
Proof of Theorem 2

We show that the if a LDP-C scheme P is Hiding and
ROS-LDP-Hiding, then P is IND-LDP-Hiding.

Proof. We define the games G0, G1, G2 and G3 as
follows:
Game G0:
set← Setup(λ, LDP)
(m0,m1)← A1(set)
b′

$← {0, 1}
θ

$← Θ
(k, c, π∗)← Commit(mb′ , θ)

θ̂ ← A2(c, π∗)
(m̂, π̂)← OpenLDP(k, c, θ̂)
b∗ ← A3(m̂, π̂)
return b∗ = b′

Game G1:
set← Setup(λ, LDP)
(m0,m1)← A1(set)
b′

$← {0, 1}
θ

$← Θ
(k, c, π∗)← Commit(mb′ , θ)
θ̂ ← A2(c, π∗)
(m̂0, π̂0)← OpenLDP(k, c, θ̂)
π̂1 ← Sim(m̂0)
b∗ ← A3(m̂0, π̂1) return b∗ = b′

Game G2:
set← Setup(λ, LDP)
(m0,m1)← A1(set)
b′

$← {0, 1}
θ

$← Θ
(k, c, π∗)← Commit(mb′ , θ)
θ̂ ← A2(c, π∗)
m̂1 ← LDP(mb′)
π̂1 ← Sim(m̂1)
b∗ ← A3(m̂1, π̂1)
return b∗ = b′

Game G3:
set← Setup(λ, LDP)
(m0,m1)← A1(set)
b′

$← {0, 1}
θ

$← Θ
m

$←M
(k, c, π∗)← Commit(m, θ)
θ̂ ← A2(c, π∗)
m̂1 ← LDP(mb′)
π̂1 ← Sim(m̂1)
b∗ ← A3(m̂1, π̂1)
return b∗ = b′

We claim that, for all PPT algorithm A ∈ POLY(k):
1) Pr [A wins the game G0]

= Pr [A wins the game G1] .

2) |Pr [A wins the game G1]− Pr [A wins the game G2]|
≤ ϵROS-LDP-Hiding(λ).

3) |Pr [A wins the game G2]− Pr [A wins the game G3]|
≤ 1

2 · ϵHiding(λ).
Proof of Claim C: Since the proof π̂ is zero-knowledge,
we have:

Pr [A wins the game G0] = Pr [A wins the game G1] .

Proof of Claim C: We prove this claim by reduction.
B1(set):

(m0,m1)← A1(set)
b′ ← {0, 1}
return mb′

B2(c, π∗):
θ̂ ← A2(c, π∗)



return θ̂

Let b be the bit that B has to guess.
B3(m̂b, π̂b):

b∗ ← A3(m̂b, π̂b).
if b∗ = b′, return b∗∗ = 1
else, return b∗∗ = 0

We have:

Pr [A wins the game G1]

= Pr[b∗∗ = 1|b = 0]

= Pr
[
B returns 1 in ExpROS-LDP-Hiding

P,LDP,B,0 (λ)
]

= Pr
[
0← ExpROS-LDP-Hiding

P,LDP,B,0 (λ)
]
,

and

Pr [A wins the game G2]

= Pr[b∗∗ = 1|b = 1]

= Pr
[
B returns 1 in ExpROS-LDP-Hiding

P,LDP,B,1 (λ)
]

= Pr
[
1← ExpROS-LDP-Hiding

P,LDP,B,1 (λ)
]
.

Thus, we have:

|Pr [A wins the game G1]− Pr [A wins the game G2]|

=
∣∣∣Pr [1← ExpROS-LDP-Hiding

P,LDP,B,0 (λ)
]
−

Pr
[
1← ExpROS-LDP-Hiding

P,LDP,B,1 (λ)
]∣∣∣

≤ ϵROS-LDP-Hiding(λ).

Proof of Claim C: We prove this claim by reduction.
B1(set):

(m0,m1)← A1(set)
b′

$← {0, 1}
m̃0 ← mb′

m̃1
$←M

return (m̃0, m̃1)

Let b be the bit that B has to guess.
B2(c, π∗):

θ̂ ← A2(c, π∗)
m̂← LDP(m̃b)
π̂ ← Sim(m̂)
b∗ ← A3(m̂, π̂)
if b∗ = b′ return b∗∗ = 1
else, return b∗∗ = 0

We have:

Pr [A wins the game G2]

= Pr[b∗∗ = 1|b = 0]

= Pr
[
B returns 1 in ExpHidingP,LDP,B,0(λ)

]
= Pr

[
0← ExpHidingP,LDP,B,0(λ)

]
,

and

Pr [A wins the game G3]

= Pr[b∗∗ = 1|b = 1]

= Pr
[
B returns 1 in ExpHidingP,LDP,B,1(λ)

]
= Pr

[
1← ExpHidingP,LDP,B,1(λ)

]
.

Thus, we have:

|Pr [A wins the game G2]−
Pr [A wins the game G3]|

=
∣∣∣Pr [0← ExpHidingP,LDP,B,0(λ)

]
−

Pr
[
1← ExpHidingP,LDP,B,1(λ)

]∣∣∣
≤ ϵHiding(λ).

We remark that the game G0 is the same as the
IND-LDP-Hiding experiment in the case where b = 0,
we have:

Pr
[
1← ExpIND-LDP-Hiding

P,LDP,A,0 (λ)
]

= Pr [A wins the game G0] .

In the game G3, the algorithm A can not deduce any
information on the bit b′ knowing the commitment c which
is the commitment of a random message, so the optimal
strategy for A to win is to use the algorithm OptiGuess,
then we have:

Pr [A wins the game G3]

≤ Pr
[
1← ExpIND-LDP-Hiding

P,LDP,A,1 (λ)
]
.

Finally, we get:∣∣∣Pr [1← ExpIND-LDP-Hiding
P,LDP,A,0 (λ)

]
−

Pr
[
1← ExpIND-LDP-Hiding

P,LDP,A,1 (λ)
]∣∣∣

= |Pr [A wins the game G0]−
Pr [A wins the game G3]|

≤ ϵROS-LDP-Hiding(λ) + ϵHiding(λ).

Appendix D.
Proof of Theorem 3 (Security Proofs for
ORRC)

The proof of Theorem 3 for the scheme ORRC fol-
lows from the following lemmas.

Lemma 5. The ORRC scheme instantiated with zero-
nowledge proofs and a group where the DDH assumption
holds is hiding.

Lemma 6. The ORRC scheme instantiated with zero-
nowledge proofs and a group where the DDH assumption
holds is ROS-LDP-hiding.

Lemmas 5 and 6 implies that the ORRC scheme is
IND-LDP-hiding.



Lemma 7. The ORRC scheme instantiated with ex-
tractable proofs and a group where the DDH assumption
holds is binding.

Lemma 8. The ORRC scheme instantiated with ex-
tractable proofs and a group where the DDH assumption
holds is LDP-binding.

Lemma 9. The ORRC scheme instantiated with ex-
tractable proofs and a group where the DDH assumption
holds is probabilistic-LDP-binding.

D.1. Proof of Lemma 5 for ORRC

An adversary A wins the Hiding experiment by dis-
tinguishing between two messages which one has been
committed. In other words, since our scheme, we use an
encoding based on the discrete logarithm assumption for
the commitment, that means the adversary wins the experi-
ment by deducing the original message from the encoding.
To prove the lemma, we use the following sequence of
games [27] based on indistinguishability, where the first
game is the Hiding experiment given in the case where
b = 0 and the last game is the Hiding experiment in the
case where b = 1.

Proof. Game G0: This game is the same as the Hiding
experiment in the case where b = 0, we have:

Pr [A returns 1 in G0] = Pr
[
0← ExpHidingORRC,LDP,A,0(λ)

]
.

Game G1: This game is the same as the game G0 except
that the challenger replaces the zero-knowledge proof π∗
by a simulated proof, we have:

Pr [A returns 1 in G0] = Pr [A returns 1 in G1] .

In the game G1, the challenger commits the mes-
sage m0, we parse the input of the adversary c
as (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K. We note
that the information of the i-th bit of the message m0 is
contained in A(i,2).
Game G2: This game is the same as the Hiding experi-
ment in the case where b = 1, we have:

Pr [A returns 1 in G2] = Pr
[
1← ExpHidingORRC,LDP,A,1(λ)

]
.

To prove indistinguishability between G1 and G2, we
consider a sequence of games where we use the hybrid
argument [32] and in which we replace for each i ∈ Jℓ2K,
A(i,2) = fx

i,m0[i]
by fx

i,m1[i]
.

Game G1,k (for all k ∈ Jℓ2K): We define G1,0 as G1 and
G1,ℓ2 as G2. This game is the same as the game G1,k−1

except that the challenger replaces A(k,2) = fx
k,m0[k]

by
fx
k,m1[k]

in the commitment, we claim that:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
≤ 1

2ϵLOR-DDH(λ).

We prove this claim by reduction, we build the following
algorithm B against the LOR-DDH experiment:
Algorithm B(gx, gy0 , gy1 , gz): generates a multiplicative
group G = ⟨g⟩ of prime order p, M ← {0, 1}ℓ2
and Θ ← {0, 1}ℓ1 × {0, 1}ℓ2 , picks (ui,j) i∈Jℓ1K

j∈{0,1}

$←

(Z∗
p)

ℓ1 and (vi,j , wi,j) i∈Jℓ2K
j∈{0,1}

$← ((Z∗
p)

ℓ2)2. It sets

set = (G, p, (gui,j ) i∈Jℓ1K
j∈{0,1}

, (gvi,j , gwi,j ) i∈Jℓ2K
j∈{0,1}

,M,Θ) ex-
cept that it replaces gvk,0 by gy0 and gvk,1 by gy1 . B
generates θ $← Θ, parses θ as (s, t), and runs (m0,m1)←
A1(set). B sets c = (gx, ((gx)ui,s[i]))i∈Jℓ1K, ((g

x)vi,m0[i] ,
(gx)wi,t[i] , (gx)wi,1−t[i])i∈Jℓ2K) except that for any i <
k, replaces (gx)vi,m0[i] by (gx)vi,m1[i] , and replaces
(gx)vk,m0[k] by gz . B generates a simulated zero-
knowledge proof π∗ and runs b′ ← A(set, c, π∗).

• If m0[k] = 0 and m1[k] = 1:

– If b′ = 0, then gz = gx·ym0[k] = gx·y0 .
– If b′ = 1, then gz = gx·ym1[k] = gx·y1 .
B returns b′.

• Else, (m0[k] = 1 and m1[k] = 0):

– If b′ = 0, then gz = gx·ym0[k] = gx·y1 .
– If b′ = 1, then gz = gx·ym1[k] = gx·y0 .
B returns 1− b′.

We have:

1) Pr [A returns 1 in G1,k−1|m0[k] = m1[k]]
= Pr [A returns 1 in G1,k|m0[k] = m1[k]] .

2) Pr [A returns 1 in G1,k−1|m0[k] = 0 ∧m1[k] = 1]

= Pr
[
0← ExpLOR-DDH

B,0 (λ)
]
,

and
Pr [A returns 1 in G1,k|m0[k] = 0 ∧m1[k] = 1]

= Pr
[
1← ExpLOR-DDH

B,1 (λ)
]
.

This leads to:

|Pr [A returns 1 in G1,k−1|m0[k] = 0 ∧m1[k] = 1]−
Pr [A returns 1 in G1,k|m0[k] = 0 ∧m1[k] = 1]|

=
∣∣∣Pr [0← ExpLOR-DDH

B,0 (λ)
]
−

Pr
[
1← ExpLOR-DDH

B,1 (λ)
]∣∣∣

≤ ϵLOR-DDH(λ).

3) Pr [A returns 1 in G1,k−1|m0[k] = 1 ∧m1[k] = 0]

= Pr
[
1← ExpLOR-DDH

B,0 (λ)
]

= 1− Pr
[
0← ExpLOR-DDH

B,0 (λ)
]
,

and
Pr [A returns 1 in G1,k|m0[k] = 1 ∧m1[k] = 0]

= Pr
[
0← ExpLOR-DDH

B,1 (λ)
]

= 1− Pr
[
1← ExpLOR-DDH

B,1 (λ)
]
.

This leads to:

|Pr [A returns 1 in G1,k−1|m0[k] = 1 ∧m1[k] = 0]−
Pr [A returns 1 in G1,k|m0[k] = 1 ∧m1[k] = 0]|

=
∣∣∣Pr [1← ExpLOR-DDH

B,1 (λ)
]
−

Pr
[
0← ExpLOR-DDH

B,0 (λ)
]∣∣∣

≤ ϵLOR-DDH(λ).



We obtain:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
= |Pr [m0[k] = m1[k]]

· Pr [A returns 1 in G1,k−1|m0[k] = m1[k]] +

Pr [m0[k] ̸= m1[k]]

· Pr [A returns 1 in G1,k−1|m0[k] ̸= m1[k]]−
(Pr [m0[k] = m1[k]]

· Pr [A returns 1 in G1,k|m0[k] = m1[k]] +

Pr [m0[k] ̸= m1[k]]

· Pr [A returns 1 in G1,k|m0[k] ̸= m1[k])|
= 1

2 · |Pr [A returns 1 in G1,k−1|m0[k] ̸= m1[k]]−
Pr [A returns 1 in G1,k|m0[k] ̸= m1[k]]|

≤ 1
2 · ϵLOR-DDH(λ).

Thus, we get:

|Pr [A returns 1 in G1]− Pr [A returns 1 in G2]|
≤ ℓ2

2 · ϵLOR-DDH(λ).

Finally, we have:∣∣∣Pr [0← ExpHidingORRC,LDP,A,0(λ)
]
−

Pr
[
1← ExpHidingORRC,LDP,A,1(λ)

]∣∣∣
= |Pr [A returns 1 in G0]− Pr [A returns 1 in G2]|
≤ ℓ2

2 · ϵLOR-DDH(λ),

which concludes the proof of the lemma since ℓ2
2 ·

ϵLOR-DDH(λ) is negligible.

D.2. Proof of Lemma 6 for ORRC

An adversary A wins the ROS-LDP-Hiding experi-
ment by distinguishing between a message ouputted by
opening the commitment and a message from the distri-
bution D (the same distribution as the distribution given
by LDP mechanism in Section 3). In this case, we set
n1 = 2ℓ1 and n2 = 2ℓ2 , the LDP mechanism defines that
the probability of having the same message is 2ℓ1+2ℓ2−1

2ℓ1+ℓ2

and the probability of having other messages is 2ℓ1−1
2ℓ1+ℓ2

.
We define the algorithm LDP which output a value picks
in the distribution D as follows:
LDP(m) : picks s, t

$← {0, 1}ℓ1 × {0, 1}ℓ2 , if s = 0, sets
m̂ = m, else, sets m̂ = t and returns m̂.

Sim(m̂) : simulates the proof π̂ and returns π̂.
To prove the lemma, we set the first game as the
ROS-LDP-Hiding experiment in the case where b = 0
and the last game as the ROS-LDP-Hiding experiment in
the case where b = 1.

Proof. Game G0: This game is the same as the
ROS-LDP-Hiding experiment in the case b = 0, we have:

Pr [A returns 1 in G0] = Pr
[
0← ExpROS-LDP-Hiding

ORRC,LDP,A,0 (λ)
]
.

Game G1: This game is the same as the game G0 ex-
cept that the challenger replaces the proofs π̂ and π∗ by
simulated proofs, we have:

Pr [A returns 1 in G1] = Pr [A returns 1 in G0] .

From the game G1, we parse θ as
(s0, t0), the input of the adversary c as(
y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K

)
and θ̂

as (ŝ, t̂). We note that if s0 = ŝ, then m̂ = m, else
m̂ = t0 ⊕ t̂. (s0, t0) being unknown to the adversary,
the information of the i-th bit of the message m̂0 in the
commitment c is contained in the i-th bit of the secrets
s0 and t0 which is hidden in A(i,1) and, respectively
B(i,0) and B(i,1).
Game G2: This game is the same as the game G1 except
that the challenger replaces for all i ∈ Jℓ1K, Ai,1 = gxi,s0[i]
by gxi,s1[i].

To prove indistinguishability, we pick (s1, t1)
$← Θ

and between G1 and G2, we consider a sequence of games
where we use the hybrid argument [32] and in which we
replace for each i ∈ Jℓ1K, A(i,1) = gxi,s0[i] by gxi,s1[i] in the
commitment.
Game G1,k(for all k ∈ Jℓ1K): We define G1,0 as G1 and
G1,ℓ1 as G2. This game is the same as the game G1,k−1

except that the challenger replaces A(k,1) = gxk,s0[k] by
gxk,s1[k], we claim that:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
≤ 1

2ϵLOR-DDH(λ).

We prove this claim by reduction. We build the fol-
lowing PPT algorithm against the LOR-DDH experiment:
Algorithm B (gx, gy0 , gy1 , gx·yb): generates a multiplica-
tive group G = ⟨g⟩ of prime order p, M ← {0, 1}ℓ2 ,
Θ← {0, 1}ℓ1 × {0, 1}ℓ2 and θ

$← Θ, parses θ as (s0, t0),
picks (ui,j) i∈Jℓ1K

j∈{0,1}
and (vi,j , wi,j) i∈Jℓ2K

j∈{0,1}

$← ((Z∗
p)

2)ℓ2 . It

sets set = (G, p, (gui,j ) i∈Jℓ1K
j∈{0,1}

, (gvi,j , gwi,j ) i∈Jℓ2K
j∈{0,1}

,

M,Θ) except that it replaces guk,0 by gy0

and guk,1 by gy1 . Runs r ← A1(set) and
generates a tuple c = (gx, ((gx)ui,s0[i])i∈Jℓ1K,
((gx)vi,m[i] , (gx)wi,t0[i] , (gx)wi,1−t0[i])i∈Jℓ2K) (as in
the game G0). Picks (s1, t1)

$← θ, for any i < k, replaces
(gx)ui,s0[i] by (gx)ui,s1[i] and it replaces (gx)uk,s0[k]

by gx·yb . B generates a simulated proof π∗ and runs
θ̂ ← A2(set,m, c, π∗). Parses θ̂ as (ŝ, t̂). If ŝ = s0, sets
m̂ = m, else, sets m̂ = t0 ⊕ t̂. B generates a simulated
proof π̂ and runs b′ ← A3(set,m, c, π∗, θ̂, m̂, π̂).

• If s0[k] = 0:
– If b′ = 0, then gx·yb = gx·ys0[k] = gx·y0 .
– Else, (b′ = 1) , then gx·yb = gx·ys1[k] = gx·y1 .
B returns b′.

• Else, (s0[k] = 1):
– If b′ = 0, then gx·yb = gx·ys0[k] = gx·y1 .
– Else, (b′ = 1), then gx·yb = gx·ys1[k] = gx·y0 .
B returns 1− b′.

We have:

1) Pr [A returns 1 in G1,k−1|s0[k] = s1[k]]
= Pr [A returns 1 in G1,k|s0[k] = s1[k]] .

2) Pr [A returns 1 in G1,k−1|s0[k] = 0 ∧ s1[k] = 1]

= Pr
[
0← ExpLOR-DDH

B,0 (λ)
]
,

and



Pr [A returns 1 in G1,k|s0[k] = 0 ∧ s1[k] = 1]

= Pr
[
1← ExpLOR-DDH

B,1 (λ)
]
.

This leads to:

|Pr [A returns 1 in G1,k−1|s0[k] = 0 ∧ s1[k] = 1]−
Pr [A returns 1 in G1,k|s0[k] = 0 ∧ s1[k] = 1]|

=
∣∣∣Pr [0← ExpLOR-DDH

B,0 (λ)
]
−

Pr
[
1← ExpLOR-DDH

B,1 (λ)
]∣∣∣

≤ ϵLOR-DDH(λ).

3) Pr [A returns 1 in G1,k−1|s0[k] = 1 ∧ s1[k] = 0]

= Pr
[
1← ExpLOR-DDH

B,0 (λ)
]

= 1− Pr
[
0← ExpLOR-DDH

B,0 (λ)
]
,

and
Pr [A returns 1 in G1,k|s0[k] = 1 ∧ s1[k] = 0]

= Pr
[
0← ExpLOR-DDH

B,1 (λ)
]

= 1− Pr
[
1← ExpLOR-DDH

B,1 (λ)
]
.

This leads to:

|Pr [A returns 1 in G1,k−1|s0[k] = 1 ∧ s1[k] = 0]−
Pr [A returns 1 in G1,k|s0[k] = 1 ∧ s1[k] = 0]|

=
∣∣∣Pr [1← ExpLOR-DDH

B,1 (λ)
]
−

Pr
[
0← ExpLOR-DDH

B,0 (λ)
]∣∣∣

≤ ϵLOR-DDH(λ).

We obtain:

|Pr [A returns 1 in G1,k−1]− Pr [A returns 1 in G1,k]|
= |Pr [s0[k] = s1[k]]

· Pr [A returns 1 in G1,k−1|s0[k] = s1[k]] +

Pr [s0[k] ̸= s1[k]]

· Pr [A returns 1 in G1,k−1|s0[k] ̸= s1[k]]−
(Pr [s0[k] = s1[k]]

· Pr [A returns 1 in G1,k|s0[k] = s1[k]] +

Pr [s0[k] ̸= s1[k]]

· Pr [A returns 1 in G1,k|s0[k] ̸= s1[k])|
= 1

2 |Pr [A returns 1 in G1,k−1|s0[k] ̸= s1[k]]−
Pr [A returns 1 in G1,k|s0[k] ̸= s1[k]]|

≤ 1
2ϵLOR-DDH(λ).

Thus, we deduce that:

|Pr [A returns 1 in G1]− Pr [A returns 1 in G2]|
≤ ℓ1

2 · ϵLOR-DDH(λ).

Game G3: This game is the same as the game
G2 except that the challenger replaces for all
i ∈ Jℓ2K,

(
B(i,0), B(i,1)

)
=

(
hx
i,t0[i]

, hx
i,1⊕t0[i]

)
by(

hx
i,t1[i]

, hx
i,1⊕t1[i]

)
, we have:

Pr [A returns 1 in G3] = Pr
[
1← ExpROS-LDP-Hiding

ORRC,LDP,A,1 (λ)
]
.

To prove indistinguishability between G2 and G3,
we consider a sequence of games where we use the

hybrid argument [32] and in which we replace for
each i ∈ Jℓ2K,

(
B(i,0), B(i,1)

)
=
(
hx
i,t0[i]

, hx
i,1⊕t0[i]

)
by(

hx
i,t1[i]

, hx
i,1⊕t1[i]

)
.

Game G2,k(for all k ∈ Jℓ2K): We define G2,0 as G2 and
G2,ℓ2 as G3. This game is the same as the game G2,k−1

except that the challenger replaces (B(k,0), B(k,1)) =
(hx

k,t0[k]
, hx

k,1⊕t0[k]
) by (hx

k,t1[k]
, hx

k,1⊕t1[k]
), we claim

that:

|Pr [A returns 1 in G2,k−1]− Pr [A returns 1 in G2,k]|
≤ 1

2ϵLOR-DDH−2(λ).

We prove this claim by reduction. We build the following
PPT algorithm against the LOR-DDH− 2 experiment:
Algorithm B (gx, gy0 , gy1 , gx·yb , gx·y1−b): generates
a multiplicative group G = ⟨g⟩ of prime order
p, M ← {0, 1}ℓ2, Θ ← {0, 1}ℓ1 × {0, 1}ℓ2 and
θ

$← Θ. Parses θ as (s0, t0), picks (ui,j) i∈Jℓ1K
j∈{0,1}

and (vi,j , wi,j) i∈Jℓ2K
j∈{0,1}

$← ((Z∗
p)

2)l. It sets

set = (G, p, (gui,j ) i∈Jℓ1K
j∈{0,1}

, (gvi,j , gwi,j ) i∈Jℓ2K
j∈{0,1}

,M,Θ)

except that it replaces gwk,0 by gy0 and gwk,1 by gy1 .
Runs m ← A1(set), picks (s1, t1)

$← θ, and generates a
tuple c = (gx, ((gx)ui,s1[i])i∈Jℓ1K, ((g

x)vi,m[i] , (gx)wi,t0[i] ,
(gx)wi,1−t0[i])i∈Jℓ2K) (as in the game G1). For any i < k,
replaces (gx)wi,t0[i] by (gx)wi,t1[i] , (gx)wi,1⊕t0[i] by
(gx)wi,1⊕t1[i] and it replaces (gx)wk,t0[k] by gx·yb and
(gx)wk,1⊕t0[k] by gx·y1−b . B generates a simulated proof
π∗ and runs θ̂ ← A2(set,m, c, π∗). Parses θ̂ as (ŝ, t̂).

• If ŝ = s0, sets m̂ = m.
• Else, sets m̂ = t0 ⊕ t̂.

B generates a simulated proof π̂ and runs b′ ←
A3(set,m, c, π∗, θ̂, m̂, π̂).

• If t0[k] = 0:
– If b′ = 0, then gx·yb = gx·yt0[k] = gx·y0 .
– If b′ = 1, then gx·yb = g

x·y1⊕t
0[k] = gx·y1 .

B returns b′.
• Else (t0[k] = 1):

– If b′ = 0, then gx·yb = gx·yt0[k] = gx·y1 .
– If b′ = 1, then = gx·y1⊕t0[k] = gx·y0 .
B returns 1− b′.

We have:
1) Pr [A returns 1 in G2,k−1|t0[k] = t1[k]]

= Pr [A returns 1 in G2,k|t0[k] = t1[k]] .

2) Pr [A returns 1 in G2,k−1|t0[k] = 0 ∧ t1[k] = 1]

= Pr
[
0← ExpLOR-DDH−2

B,0 (λ)
]
,

and
Pr [A returns 1 in G2,k|t0[k] = 0 ∧ t1[k] = 1]

= Pr
[
1← ExpLOR-DDH−2

B,1 (λ)
]
.

This lead to:

|Pr [A returns 1 in G2,k−1|t0[k] = 0 ∧ t1[k] = 1]−
Pr [A returns 1 in G2,k|t0[k] = 0 ∧ t1[k] = 1]|

=
∣∣∣Pr [0← ExpLOR-DDH−2

B,0 (λ)
]
−

Pr
[
1← ExpLOR-DDH−2

B,1 (λ)
]∣∣∣

≤ ϵLOR-DDH−2(λ).



3) Pr [A returns 1 in G2,k−1|t0[k] = 1 ∧ t1[k] = 0]

= Pr
[
1← ExpLOR-DDH−2

B,0 (λ)
]

= 1− Pr
[
0← ExpLOR-DDH−2

B,0 (λ)
]
,

and
Pr [A returns 1 in G2,k|t0[k] = 1 ∧ t1[k] = 0]

= Pr
[
0← ExpLOR-DDH−2

B,1 (λ)
]

= 1− Pr
[
1← ExpLOR-DDH−2

B,1 (λ)
]
.

This leads to:

|Pr [A returns 1 in G2,k−1|t0[k] = 1 ∧ t1[k] = 0]−
Pr [A returns 1 in G2,k|t0[k] = 1 ∧ t1[k] = 0]|

=
∣∣∣Pr [1← ExpLOR-DDH−2

B,1 (λ)
]
−

Pr
[
0← ExpLOR-DDH−2

B,0 (λ)
]∣∣∣

≤ ϵLOR-DDH−2(λ).

We obtain:

|Pr [A returns 1 in G2,k−1]− Pr [A returns 1 in G2,k]|
= |Pr [t0[k] = t1[k]]

· Pr [A returns 1 in G2,k−1|t0[k] = t1[k]] +

Pr [t0[k] ̸= t1[k]]

· Pr [A returns 1 in G2,k−1|t0[k] ̸= t1[k]]−
(Pr [t0[k] = t1[k]]

· Pr [A returns 1 in G2,k−1|t0[k] = t1[k]] +

Pr [t0[k] ̸= t1[k]]

· Pr [A returns 1 in G2,k−1|t0[k] ̸= t1[k])|
= 1

2 · |Pr [A returns 1 in G2,k−1|t0[k] ̸= t1[k]]−
Pr [A returns 1 in G2,k|t0[k] ̸= t1[k]]|

≤ 1
2 · ϵLOR-DDH−2(λ).

Thus, we deduce that:

|Pr [A returns 1 in G2]− Pr [A returns 1 in G3]|
≤ ℓ2

2 · ϵLOR-DDH−2(λ).

Finally, we have:∣∣∣Pr [0← ExpROS-LDP-Hiding
ORRC,LDP,A,0 (λ)

]
−

Pr
[
1← ExpROS-LDP-Hiding

ORRC,LDP,A,1 (λ)
]∣∣∣

= |Pr [A returns 1 in G0]− Pr [A returns 1 in G3]|
≤ ℓ1

2 · ϵLOR-DDH(λ) +
ℓ2
2 · ϵLOR-DDH−2(λ),

which concludes the proof of the lemma since ℓ1
2 ·

ϵLOR-DDH(λ) and ℓ2
2 · ϵLOR-DDH−2(λ) are negligible.

D.3. Proof of Lemma 7 for ORRC

An adversary A wins the Binding experiment when
it can open the commitment in two different ways by
using the Open algorithm. To prove the lemma, we use the
following sequence of games [27] based on failure events,
where the first game is the Binding experiment and the
last game is the experiment in which the adversary has
no chance of winning.

Proof. Game G0: This game is the same as the Binding
experiment, we have:

Pr [A wins the game G0] = Pr
[
1← ExpBindingORRC,LDP,A(λ)

]
.

Game G1: This game is the same as the game G0 ex-
cept that the challenger uses the extractors on the zero-
knowledge proofs π0 and π1 outputted by the adversary
and aborts and returns 0 on the event F1 = “An extractor
fails on at least one proof”.

We note C the challenger in the game G1. C extracts
the witness x from the proofs π0 and π1. We empha-
size that if A wins its game, then the two witnesses
are correctly extracted and these witnesses are the same
because the proofs implicitly use the same y = gx. C
parses c as (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K)

and computes A2 =
ℓ2∏
i=1

A(i,2), α2,0 =
ℓ2∏
i=1

fi,m0[i] and

α2,1 =
ℓ2∏
i=1

fi,m1[i].

If the proofs are correctly extracted, we have:
y = gx ∧A2 = αx

2,0 and y = gx ∧A2 = αx
2,1.

Let ϵext(λ) be the maximum of failure probability of
the extractors, we have:

|Pr [A wins the game G0]− Pr [A wins the game G1]|
≤ Pr[F1] ≤ 2 · ϵext(λ).

From the game G1, an adversary can win the experi-
ment by returning (m0,m1, π0, π1, c) such that m0 ̸= m1

and
ℓ2∏
i=1

fi,m0[i] =
ℓ2∏
i=1

fi,m1[i].

Game G2: This game is the same as the game G1 except
that aborts and returns 0 on the event F2 = “A outputs

(m0,m1, π0, π1, c) such that
ℓ2∏
i=1

fi,m0[i] =
ℓ2∏
i=1

fi,m1[i] and

m0 ̸= m1”, we have:

|Pr [A wins the game G1] = Pr [A wins the game G2]|
≤ Pr[F2].

If the event F2 occurs, then the adversary A build
(m0,m1, π0, π1, c) such that π0 and π1 are valid proofs
and the adversary wins the experiment.

We claim that:

Pr[F2] ≤ ϵℓ2-col(λ).

We prove this claim by reduction. Assume the event F2

occurs with non negligible probability. We build the fol-
lowing PPT algorithm B that play the experiment defined
in the lemma 4:
Algorithm B

(
(
∼
g(i,j)) i∈Jℓ2K

j∈{0,1}

)
: simulates the game G1

to A except that during the setup generation, for each
i ∈ Jℓ2K, it replaces fi,0 by

∼
g(i,0), and fi,1 by

∼
g(i,1). Runs

(m0,m1, π0, π1, c) ← A(set). B computes
ℓ2∏
i=1

fi,m0[i]

and
ℓ2∏
i=1

fi,m1[i], if the event F2 does not happen i.e.

if
ℓ2∏
i=1

fi,m0[i] ̸=
ℓ2∏
i=1

fi,m1[i] or m0 = m1, aborts the

experiment, else it returns (m0,m1).



If A wins the game G1 and F2 occurs, then B returns

(x1, x2) ∈
(
{0, 1}ℓ2

)2
s.t. x1 ̸= x2 and

ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with negligible probability

ϵℓ2-col according to the lemma 4.
Thus, we deduce that:

|Pr [A wins the game G1]− Pr [A wins the game G2]|
≤ Pr[F2] ≤ ϵℓ2-col(λ).

If F1 and F2 does not happen, then the values A(i,2)

are correct and there is no product collision for two
different messages, so in the game G2, the adversary has
no possibility to win, finally, we have:

Pr
[
1← ExpBindingORRC,LDP,A(λ)

]
= |Pr [A wins the game G0]− Pr [A wins the game G2]|
≤ 2 · ϵext(λ) + ϵℓ2-col(λ).

which concludes the proof of the lemma since 2 ·
ϵext(λ) and 2 · ϵℓ2-col(λ) are negligible.

D.4. Proof of Lemma 8 for ORRC

An adversary A wins the LDP-Binding experiment by
opening the commitment in two different ways using the
same seed on OpenLDP algorithm. To prove the lemma,
we use the following sequence of games [27] based on
failure events, where the first game is the LDP-Binding
experiment and the last game is the experiment in which
the adversary has no chance of winning.

Proof. Game G0: This game is the same as the
LDP-Binding experiment, we have:

Pr [A wins the game G0] = Pr
[
1← ExpLDP-Binding

ORRC,LDP,A(λ)
]
.

Game G1: This game is the same as the game G0 ex-
cept that the challenger uses the extractors on the zero-
knowledge proofs π̂0, π̂1 and π∗ outputted by the adver-
sary, and aborts and returns 0 on the event F1 = “An
extractor fails on at least one proof”.

We note C the challenger in the game G1. Parses
π∗ as (πA1

, πA2
, πB), C extracts the witnesses from the

proofs π̂0, π̂1, πA1
, πA2

and πB . We emphasize that if
A wins its game, then the five witnesses are correctly
extracted and these witnesses are the same because the
proofs implicitly use the same y = gx. C parses c
as (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K) and θ̂ as
(ŝ, t̂).

C computes A2 =
ℓ2∏
i=1

A(i,2), α2,0 =
ℓ2∏
i=1

fi,m̂0[i],

α2,1 =
ℓ2∏
i=1

fi,m̂1[i], A1 =
ℓ1∏
i=1

A(i,1), α1 =
ℓ1∏
i=1

gi,ŝ[i],

β0 =
ℓ2∏
i=1

B(i,m̂0[i]), β1 =
ℓ2∏
i=1

B(i,m̂1[i]) and γ =
ℓ2∏
i=1

hi,t̂[i].

If the proofs are correctly extracted,
• From the proof π̂0, we have:(

y = gx ∧A1 = αx
1 ∧A2 = αx

2,0

)
∨ (y = gx ∧A1 ̸= αx

1 ∧ β0 = γx) ,

• From the proof π̂1, we have:(
y = gx ∧A1 = αx

1 ∧A2 = αx
2,1

)
∨ (y = gx ∧A1 ̸= αx

1 ∧ β1 = γx) .

• From the proof πA1
, we have:

ℓ1∧
i=1

(
y = gx ∧

1∨
j=0

A(i,1) = gxi,j

)
,

• From the proof πA2
, we have:

ℓ2∧
i=1

(
y = gx ∧

1∨
j=0

A(i,2) = fx
i,j

)
,

• And from the proof πB , we have:
ℓ2∧
i=1

(
y = gx ∧

(
1∧

j=0

B(i,j) = hx
i,j∨

1∧
j=0

B(i,j) = hx
i,1−j

))
.

Let ϵext(λ) be the maximum of failure probability of
the extractors, we have:

|Pr [A wins the game G0]− Pr [A wins the game G1]|
≤ Pr[F1] ≤ 5 · ϵext(λ).

ŝ and (A(i,1))i∈Jℓ1K being given and fixed by the
adversary, either we have A1 = αx

1 , ortherwise we have
A1 ̸= αx

1 .
We remark that in the case where we have A1 = αx

1 ,
an adversary wins the experiment by returning m̂0 and m̂1

such that π∗, π̂0 and π̂1 are valid proofs and
ℓ2∏
i=1

fi,m̂0[i] =

ℓ2∏
i=1

fi,m̂1[i] and m̂0 ̸= m̂1.

In the case where we have A1 ̸= αx
1 , an adversary

wins the experiment by returning:
• m̂0 and m̂1 such that π∗, π̂0, and π̂1 are valid proofs

and
ℓ2∏
i=1

B(i,m̂0[i]) =
ℓ2∏
i=1

B(i,m̂1[i])

(
=

ℓ2∏
i=1

hx
i,t̂[i]

)
and

m̂0 ̸= m̂1.
• m̂0 and m̂1 such that π∗, π̂0, and π̂1 are valid proofs

and
ℓ2∏
i=1

h(i,m̂0[i]⊕t[i]) =
ℓ2∏
i=1

h(i,m̂1[i]⊕t[i]) and m̂0 ̸=
m̂1.

Game G2: This game is the same as the game G1 ex-
cept that aborts and returns 0 on the event F2 = “A

returns (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) such that
ℓ2∏
i=1

fi,m̂0[i] =

ℓ2∏
i=1

fi,m̂1[i] and m̂0 ̸= m̂1”, we have:

|Pr [A wins the game G1] = Pr [A wins the game G2]|
≤ Pr[F2] ≤ ϵℓ2-col(λ).

If the event F2 occurs, then the adversary A returns
(m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) such that π̂0, π̂1 and π∗ are valid
proofs, then the adversary wins the experiment.



We claim that:

Pr[F2] ≤ ϵℓ2-col(λ).

We prove this claim by reduction. Assume the event F2

occurs with non negligible probability, we build the fol-
lowing PPT algorithm B that play the experiment defined
in the lemma 4:
Algorithm B

(
(
∼
g(i,j))i∈Jℓ2K,j∈{0,1}

)
: simulates the game

G1 to A except that during the setup generation, for each
i ∈ Jℓ2K, it replaces fi,0 by

∼
g(i,0), and fi,1 by

∼
g(i,1).

Runs (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) ← A(set). B computes
ℓ2∏
i=1

fi,m̂0[i] and
ℓ2∏
i=1

fi,m̂1[i], if the event F2 does not hap-

pen i.e. if
ℓ2∏
i=1

fi,m̂0[i] ̸=
ℓ2∏
i=1

fi,m̂1[i] or m̂0 = m̂1, aborts

the experiment, else it returns (m̂0, m̂1).
If A wins the game G1 and F2 occurs, then B returns

x1, x2 ∈ {0, 1}ℓ2 s.t. x1 ̸= x2 and
ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with non negligible proba-

bility ϵℓ2-col according to the lemma 4.
Thus, we have:

|Pr [A wins the game G1]− Pr [A wins the game G2]|
≤ Pr[F2] ≤ ϵℓ2-col(λ).

Game G3: This game is the same as the game G2 except
that aborts and returns 0 on the event F3 = “A re-

turns (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) such that
ℓ2∏
i=1

hi,t[i]⊕m̂0[i] =

ℓ2∏
i=1

hi,t[i]⊕m̂1[i] and m̂0 ̸= m̂1 and s ̸= ŝ”, we have:

|Pr [A wins the game G2] = Pr [A wins the game G3]|
≤ Pr[F3] ≤ ϵℓ2-col(λ).

If the event F3 occurs, then the adversary A returns
(m̂0, m̂1) such that π̂0, π̂1 and π∗ are valid proofs and
the adversary wins the experiment.

We claim that:

Pr[F3] ≤ ϵℓ2-col(λ).

The reduction from the game G2 to game G3 is similar
as the reduction from the game G1 to the game G2:

Algorithm B
(
(
∼
g(i,j)) i∈Jℓ2K

j∈{0,1}

)
: simulates the game G2

to A except that during the setup generation, for each
i ∈ Jℓ2K, it replaces h(i,0) by

∼
g(i,0), and h(i,1) by

∼
g(i,1).

Runs (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) ← A(set). B uses the
extractor on the proof π∗, we note x the witness extracted.

For each i ∈ Jℓ1K,
• If A(i,1) = gxi,0, sets s[i] = 0,
• Else sets s[i] = 1.
For each i ∈ Jℓ2K,

• If B(i,0) = hx
i,0, sets t[i] = 0,

• Else sets t[i] = 1.

B computes
ℓ2∏
i=1

hi,t[i]⊕m̂0[i] and
ℓ2∏
i=1

hi,t[i]⊕m̂1[i]. If the

event F3 does not happen, aborts the experiment, else it

returns (t⊕ m̂0, t⊕ m̂1).

If A wins the game G2 and F3 occurs, then B returns

x1, x2 ∈ {0, 1}ℓ2 s.t. x1 ̸= x2 and
ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with non negligible proba-

bility ϵℓ2-col according to the lemma 4.
Thus, we have:

|Pr [A wins the game G2] = Pr [A wins the game G3]|
≤ Pr[F3] ≤ ϵℓ2-col(λ).

Game G4: This game is the same as the game
G3 except that aborts and returns 0 on the event

F4 = “A returns (m̂0, m̂1) such that
ℓ2∏
i=1

B(i,m̂0[i]) =

ℓ2∏
i=1

B(i,m̂1[i]) and m̂0 ̸= m̂1 and s ̸= ŝ”.

If the event F4 occurs, then the adversary A re-
turns (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) such that (π̂0, π̂1) are valid
proofs, then the adversary wins the experiment.

We claim that:

Pr[F4] ≤ ϵℓ2-col(λ).

The reduction from the game G3 to game G4 is similar
as the reduction from the game G1 to the game G2:

Algorithm B
(
(
∼
g(i,j)) i∈Jℓ2K

j∈{0,1}

)
: simulates the game G3

to A except that during the setup generation, for each
i ∈ Jℓ2K, it replaces hi,0 by

∼
g(i,0), and hi,1 by

∼
g(i,1).

Runs (m̂0, m̂1, π̂0, π̂1, π∗, c, θ̂) ← A(set). B computes
ℓ2∏
i=1

B(i,m̂0[i]) and
ℓ2∏
i=1

B(i,m̂1[i]). B uses the extractor on

the proof π∗, we note x the witness extracted.
For each i ∈ Jℓ1K,

• If A(i,1) = gxi,0, sets s[i] = 0,
• Else sets s[i] = 1.
For each i ∈ Jℓ2K,

• If B(i,0) = hx
i,0, sets t[i] = 0,

• Else sets t[i] = 1.
If the event F4 does not happen, aborts the experiment,
else it returns (m̂0 ⊕ t, m̂1 ⊕ t).

If A wins the game G3 and F4 occurs, then B returns

x1, x2 ∈ {0, 1}ℓ2 s.t. x1 ̸= x2 and
ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with non negligible proba-

bility ϵℓ2-col according to the lemma 4.
Thus, we have:

|Pr [A wins the game G3]− Pr [A wins the game G4]|
≤ Pr[F4] ≤ ϵℓ2-col(λ).

If F1, F2, F3 and F4 does not happen, then the com-
mitment is well-formed and there is no product collision
for two different messages on the α2, β and γ, which
implies the uniqueness of the open message for (ŝ, t̂),



so in the game G4, the adversary has no possibility of
winning, finally, we have:

Pr
[
1← ExpLDP-Binding

ORRC,LDP,A(λ)
]

= |Pr [A wins the game G0]− Pr [A wins the game G4]|
≤ 5 · ϵext(λ) + 3 · ϵℓ2-col(λ).

which concludes the proof of the lemma since 5 ·
ϵext(λ) and 3 · ϵℓ2-col(λ) are negligible.

D.5. Proof of lemma 9 for ORRC

The Probabilistic-LDP-binding security is unachieved
when the adversary returns an opened message which does
not follow the LDP mechanism distribution according to
the seed and the original message.To prove the lemma, we
use the following sequence of games [27] based on failure
events, where the first game is the Prob-LDP-Binding
experiment and the last game is the experiment in which
the adversary cannot returning a message that does not
follow the same distribution as the distribution of the LDP
mechanism.

Proof. Game G0: This game is the same as the
Prob-LDP-Binding experiment in the case where b = 0,
we have:

∀m̂ ∈M,

Pr [m̂← G0] = Pr
[
m̂← ExpProb-LDP-Binding

ORRC,LDP,A,0 (λ)
]
.

Game G1: From the game G0, parses the output of A1

as (c, π∗,m, π), and the output of A2 as (m̂0, π̂). Parses
π∗ as (πA1

, πA2
, πB). This game is the same as the game

G0 except that the challenger uses the extractors on the
zero-knowledge proofs πA1

, πA2
, πB , π and π̂, and aborts

and returns 0 on the event F1 = “An extractor fails on at
least one proof”, we have:
∀m̂ ∈M,

|Pr [m̂← G0]− Pr [m̂← G1]| ≤ Pr[F1].

We note C the challenger in the game G1. C extracts
the witnesses from the proofs πA1

, πA2
, πB , π and π̂.

We emphasize that if the proofs are verified, then the
witnesses are correctly extracted and these witnesses are
the same because the proofs implicitly used the same
y = gx.
C parses c as (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0),

B(i,1))i∈Jℓ2K) and θ̂ as (ŝ, t̂). C computes A2 =
ℓ2∏
i=1

A(i,2),

α2 =
ℓ2∏
i=1

fi,m[i], α′
2 =

ℓ2∏
i=1

fi,m̂0[i], A1 =
ℓ1∏
i=1

A(i,1),

α1 =
ℓ1∏
i=1

gi,ŝ[i], β =
ℓ2∏
i=1

B(i,m̂0[i]) and γ =
ℓ2∏
i=1

hi,t̂[i].

The challenger C finds the tuple (s, t) used by the
adversary A in the commitment c as follows:

For each i ∈ Jℓ1K, and k ∈ Jℓ2K
• If A(i,1) = gxi,0, sets s[i] = 0, else sets s[i] = 1.
• If B(k,0) = hx

k,0, sets t[k] = 0, else sets t[k] = 1.
If the proofs are correctly extracted,

• From the proof πA1
, we have:

ℓ1∧
i=1

(
y = gx ∧

ℓ1∨
j=0

A(i,1) = gxi,j

)
,

• From the proof πA2
, we have:

ℓ2∧
i=1

(
y = gx ∧

ℓ2∨
j=0

A(i,2) = fx
i,j

)
,

• From the proof πB , we have:

ℓ2∧
i=1

(
y = gx ∧

(
ℓ2∧
j=0

B(i,j) = hx
i,j∨

ℓ2∧
j=0

B(i,j) = hx
i,1−j

))
,

• From the proof π, we have:

y = gx ∧A2 = αx
2

• And from the proof π̂, we have:

(y = gx ∧A1 = αx
1 ∧A2 = α′x

2 )

∨ (y = gx ∧A1 ̸= αx
1 ∧ β = γx) .

Let ϵext be the maximum on the failure probability of
the extractors, we have:
∀m̂ ∈M,

|Pr [m̂← G0]− Pr [m̂← G1]| ≤ Pr[F1] ≤ 5 · ϵext(λ).

An adversary may attempt to biases the
LDP mechanism by returning a commitment
c = (y, (A(i,1))i∈Jℓ1K, (A(i,2), B(i,0), B(i,1))i∈Jℓ2K),
zero-knowledge proofs π∗ and π̂, and the messages m
and m̂0 such that:

•
ℓ1∏
i=1

A(i,1) =
ℓ1∏
i=1

gxi,s[i] =
ℓ1∏
i=1

gxi,ŝ[i] and s ̸= ŝ.

•
ℓ2∏
i=1

fi,m[i] =
ℓ2∏
i=1

fi,m̂0[i] and m̂0 ̸= m .

•
ℓ2∏
i=1

hi,m̂0[i]⊕t[i] =
ℓ2∏
i=1

hi,t̂[i] and m̂0 ⊕ t ̸= t̂.

Game G2: This game is the same as the game G1 except
that the challenger aborts and returns 0 on the event F2 =
“The algorithm A1 returns (c, π∗,m, π) and A2 returns

(m̂0, π̂) such that
ℓ2∏
i=1

fi,m̂0[i] =
ℓ2∏
i=1

fi,m[i] and m̂0 ̸= m”,

we have:
∀m̂ ∈M,

|Pr [m̂← G1]− Pr [m̂← G2]| ≤ Pr[F2].

We claim that:

Pr[F2] ≤ ϵℓ2-col(λ).

We prove this claim by reduction.
Assume the event F2 occurs with non negligible prob-

ability, we build the following PPT algorithm B that play
the experiment defined in the lemma 4:



Algorithm B
(
(
∼
g(i,j))i∈Jℓ2K,j∈{0,1}

)
: simulates the game

G2 to A except that during the setup generation, for
each i ∈ Jℓ2K, it replaces fi,0 by

∼
g(i,0), and fi,1 by

∼
g(i,1). Runs (c, π∗,m, π) ← A1(set), picks θ̂

$← Θ

and runs (m̂0, π̂) ← A2(θ̂). B computes
ℓ2∏
i=1

fi,m̂0[i]

and
ℓ2∏
i=1

fi,m[i], if the event F2 does not happen i.e.

if
ℓ2∏
i=1

fi,m̂0[i] ̸=
ℓ2∏
i=1

fi,m[i] or m̂0 = m, aborts the

experiment, else it returns (m̂0,m).

If the experiment returns m̂0 in G1 and F2 happens,
then B returns x1, x2 ∈ {0, 1}ℓ2 s.t. x1 ̸= x2 and
ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with non

negligible probability ϵℓ2-col according to the lemma 4.
Thus, the following holds:
∀m̂ ∈M,

|Pr [m̂← G1]− Pr [m̂← G2]| ≤ Pr[F2] ≤ ϵℓ2-col(λ).

Game G3: Note that in the case where ŝ ̸= s, we have
m̂ = t ⊕ t̂, which implies hx

i,t̂[i]
= hx

i,m̂[i]⊕t[i] and
B(i,m̂[i]) = hx

i,t̂[i]
. This game is the same as the game G3

except that aborts and returns 0 on the event F3 = “The
algorithm A1 returns (c, π∗,m, π) and A2 returns (m̂0, π̂)

such that
ℓ2∏
i=1

hi,m̂0[i]⊕t[i] =
ℓ2∏
i=1

hi,t̂[i] and m̂0 ⊕ t ̸= t̂ and

s ̸= ŝ”, we have:
∀m̂ ∈M,

|Pr [m̂← G2]− Pr [m̂← G3]| ≤ Pr[F3].

We claim that:

Pr[F3] ≤ ϵℓ2-col(λ).

We prove this claim by reduction.
Assume the event F3 occurs with non negligible prob-

ability, we build the following PPT algorithm B that play
the experiment defined in the lemma 4:
Algorithm B

(
(
∼
g(i,j))i∈Jℓ2K,j∈{0,1}

)
: simulates the game

G2 to A except that during the setup generation, for each
i ∈ Jℓ2K, it replaces hi,0 by

∼
g(i,0), and hi,1 by

∼
g(i,1).

Runs (c, π∗,m, π) ← A1(set), picks θ̂
$← Θ and runs

(m̂0, π̂) ← A2(θ̂). B uses the extractor on the proof π∗,
we note x the witness extracted.

For each i ∈ Jℓ2K,
• If B(i,0) = hx

i,0, sets t[i] = 0.
• Else sets t[i] = 1.

B computes
ℓ2∏
i=1

hi,m̂0[i]⊕t[i] and
ℓ2∏
i=1

hi,t̂[i], if the event

F3 does not happen i.e. if
ℓ2∏
i=1

hi,m̂0[i]⊕t[i] ̸=
ℓ2∏
i=1

hi,t̂[i]

or m̂0 ⊕ t = t̂ or s = ŝ, aborts the experiment, else it
returns (m̂0 ⊕ t, t̂).

If the experiment returns m̂0 in G2 and F3 occurs,
then B returns x1, x2 ∈ {0, 1}ℓ2 s.t. x1 ̸= x2 and

ℓ2∏
i=1

∼
g(i,x1[i]) =

ℓ2∏
i=1

∼
g(i,x2[i]), which happens with non

negligible probability ϵℓ2-col according to the lemma 4.
Thus, we have:
∀m̂ ∈M,

|Pr [m̂← G2]− Pr [m̂← G3]| ≤ Pr[F3] ≤ ϵℓ2-col(λ).

Game G4: This game is the same as the game G3 except
that aborts and returns 0 on the event F4 = “ The algo-
rithm A1 returns (c, π∗,m, π) and the algorithm A2 re-

turns (m̂0, π̂) such that
ℓ1∏
i=1

gi,s[i] =
ℓ1∏
i=1

gi,ŝ[i] and s ̸= ŝ”,

we have:
∀m̂ ∈M,

|Pr [m̂← G3]− Pr [m̂← G4]| ≤ Pr[F4].

We claim that:

Pr[F4] ≤ ϵℓ1-col(λ).

We prove this claim by reduction.
Assume the event F4 happens with non negligible

probability, we build the following PPT algorithm B that
play the experiment defined in the lemma 4:
Algorithm B

(
(
∼
g(i,j))i∈Jℓ1K,j∈{0,1}

)
: simulates the game

G3 to A except that during the setup generation, for each
i ∈ Jℓ1K, it replaces gi,0 by

∼
g(i,0), and gi,1 by

∼
g(i,1).

Runs (c, π∗,m, π) ← A1(set), picks θ̂
$← Θ and runs

(m̂0, π̂) ← A2(θ̂). B uses the extractor on the proof π∗,
we note x the witness extracted.

For each i ∈ Jℓ1K,
• If A(i,1) = gxi,0, sets s[i] = 0.
• Else sets s[i] = 1.

B computes
ℓ1∏
i=1

gi,s[i] and
ℓ1∏
i=1

gi,ŝ[i], If the event F4

does not happen, aborts the experiment, else it returns
(s, ŝ).

Thus, we have:
∀m̂ ∈M,

|Pr [m̂← G3]− Pr [m̂← G4]| ≤ Pr[F4] ≤ ϵℓ1-col(λ).

If F1, F2, F3, and F4 does not happen, then the
commitment is well formed and the only way to open the
commitment is to return m̂ = m if s = ŝ, and to return
t⊕ t̂ otherwise. We deduce that the game G4 is the same
as the Prob-LDP-Binding experiment in the case where
b = 1.

Finally, we deduce that:

∀m̂ ∈M,∣∣∣Pr [m̂← ExpProb-LDP-Binding
ORRC,LDP,A,0 (λ)

]
−

Pr
[
m̂← ExpProb-LDP-Binding

ORRC,LDP,A,1 (λ)
]∣∣∣

= |Pr [m̂← G0]− Pr [m̂← G4]|
≤ 5 · ϵext(λ) + ϵℓ1-col(λ) + 2 · ϵℓ2-col(λ).

which concludes the proof of the lemma since 5 ·
ϵext(λ), 2 · ϵℓ2-col(λ) and ϵℓ1-col(λ) are negligible.


	Introduction
	Our contributions
	Related work

	Background
	Formal Model for LDP Commitment
	Formal Definition
	Security Model
	Hiding
	Binding


	LDP Commitment Schemes
	Privacy Parameter for the LDP Mechanism
	Naive Solution
	Efficient Scheme with Logarithmic Commitments
	Security Analysis

	Extensions
	Instantiation and Implementation
	Conclusion
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Useful Lemmas
	Appendix C: Proof of Theorem 2
	Appendix D: Proof of Theorem 3 (Security Proofs for ORRC)
	Proof of Lemma 5 for ORRC
	Proof of Lemma 6 for ORRC
	Proof of Lemma 7 for ORRC
	Proof of Lemma 8 for ORRC
	Proof of lemma 9 for ORRC


