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Abstract

One of the primary approaches used to construct lattice-based sig-
nature schemes is through the “Fiat-Shamir with aborts” methodology.
Such a scheme may abort and restart during signing which corresponds
to rejection sampling produced signatures to ensure that they follow a
distribution that is independent of the secret key. This rejection sampling
is only feasible when the output distribution is sufficiently wide, limiting
how compact this type of signature schemes can be.

In this work, we develop a new method to construct signatures in-
fluenced by the rejection condition. This allows our rejection sampling
to target significantly narrower output distributions than previous ap-
proaches, allowing much more compact signatures. The combined size of
a signature and a verification key for the resulting scheme is less than half
of that for ML-DSA and comparable to that of compact hash-and-sign
lattice signature schemes, such as Falcon.

1 Introduction

As a part of their post-quantum standardization process, NIST has al-
ready standardized the signature scheme CRYSTALS-Dilithium [25] as
ML-DSA and is in the process of standardizing Falcon. Both Dilithium
and Falcon are lattice-based signature schemes but they are constructed
using two different approaches, corresponding to the two main approaches
for constructing lattice-based signature schemes. The first of these is the
hash-and-sign approach of Gentry, Peikert and Vaikuntanathan [21] on
which Falcon is based. The second of these, on which Dilithium is based,
is the one of Lyubashevsky [23, 24], which consists of an aborting variant
of the Fiat-Shamir transform.

One of the primary reasons for why NIST decided to standardize Fal-
con in addition to Dilithium is that Falcon has significantly smaller sig-
natures and verification keys. In fact, to the best of our knowledge, there
has not previously been any lattice-based Fiat-Shamir signatures with
signature and verification key sizes comparable to those for Falcon.

A limiting factor in constructing a compact Fiat-Shamir lattice-based
signature scheme is that it must produce signatures that follow some dis-
tribution that is independent of the scheme’s secret. To accomplish this
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using the Fiat-Shamir with aborts approach, the scheme initially produce
candidate signatures from a distribution that depends on the secret of
the scheme. Only some of these signatures are actually emitted, with
the scheme otherwise aborting the signing attempt and retrying. This
corresponds to rejection sampling from a secret-dependent distribution to
produce signatures that follow a secret-independent distribution. How-
ever, unless the output distribution is sufficiently wide in relation to the
size of the secret, this rejection sampling is too inefficient for it to be
useable.

Better rejection sampling can allow for a narrower output distribution,
and thus smaller signatures, while keeping the rejection probability the
same. Furthermore, smaller signatures are harder to forge, meaning that,
for a comparable security level, many other parameters of the scheme may
be selected differently. As such, a better rejection sampling method can
influence many different aspects of the scheme.

An example of the impact of improved rejection sampling is with
BLISS [16], where rejection sampling from a bimodal Gaussian distribu-
tion allows for a significantly more compact scheme than Lyubashevsky’s
original approach. A more recent example is HAETAE [10, 11] which relies
on bimodal rejection sampling from uniform distributions over hyperballs
to allow for a more compact signature scheme than Dilithium. It has even
been shown in [13] that the approaches of BLISS and HAETAE are essen-
tially optimal for schemes that rely on rejection sampling from bimodal
distributions, and that rejection sampling from bimodal distributions is
superior to similar sampling from unimodal distributions.

Works have also explored the possibility of removing the rejection con-
dition [7]. A concrete example of this is Raccoon [12], which was a sub-
mission to the first round of NIST’s standardization process for additional
post-quantum secure signatures. The Raccoon parameters are selected to
ensure that rejection conditions can be securely ignored. This does, how-
ever, come at the cost of signatures that are about five times larger than
those of Dilithium.

An alternative approach for constructing signatures without aborts
was developed for the G+G signature scheme [14]. Signatures from this
scheme follow a discrete Gaussian distribution which is constructed as a
convolution of two different discrete Gaussian distributions, both of which
have covariance that depend on the secret key of the scheme. By carefully
selecting parameters, the signatures follow a centered spherical discrete
Gaussian distribution, and the signatures thus do not leak anything about
the secret.

The G+G scheme is thus constructed without relying on aborts, and
the resulting scheme is relatively compact. The G+G scheme is, however,
still far from as compact as Falcon, and it also seems like implementing
G+G securely would be non-trivial.

1.1 Our Contribution

In this work we present an alternative method for constructing lattice-
based signatures with the Fiat-Shamir with aborts paradigm. By con-
structing signatures in a way that is influenced by the rejection condition,
our new method has a rejection probability that is significantly smaller
than that of previous methods. A lower rejection probability allows for
greater freedom when parametrizing the scheme, allowing us to construct a
signature scheme that is significantly more compact than previous lattice-
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based Fiat-Shamir signature schemes.
We propose concrete parametrization of a signature scheme that makes

use of our new method. The resulting scheme has signature size around
one third of that for ML-DSA, and verification key size somewhat smaller
than that for ML-DSA. Additionally, the combined size of a signature and
a verification key is less than half of what it is for ML-DSA and within
10% to that of Falcon.

We also consider alternative parametrization of our scheme where the
rejection condition can be safely ignored. In a similar manner as for
Raccoon [12], this is accomplished by using a wider output distribution.
However, the penalty that we pay, in the form of increased size, is sig-
nificantly smaller than for Raccoon, and our resulting scheme without
rejection sampling is still more compact than previous lattice-based Fiat-
Shamir signature schemes. In particular, the combined size of a signature
and a verification key for the resulting scheme is less than 60% to that of
ML-DSA.

1.2 Technical overview

The idea behind Lyubashevsky’s signature scheme [23, 24] is similar to
the idea behind Schnorr signatures [28]. To sign a message with Lyuba-
shevsky’s scheme, a vector y is sampled from some relatively narrow dis-
tribution. Then, a commitment w = Ay mod q is computed, where A is
a matrix that is part of the verification key and q is a parameter for the
scheme.

Using the commitment w and the message to be signed, a challenge c
is derived, with this challenge guaranteed to be a short vector. A signature
is given by (z, c,w), where z = y + Sc mod q with S the secret key of
the signer. The secret key S is sampled to have short columns, and thus
Sc is relatively short, ensuring that z also is a relatively short vector.

In contrast to the analogous case for typical Schnorr signatures, in the
lattice setting, the vector y does not perfectly mask the contribution of
Sc to z. This is the case as z, and therefore also y, must be relatively
short vectors in order to ensure that signatures are hard to forge. As such,
the distribution of signatures produced in this manner depend on S and
may therefore leak information about the secret key of the scheme.

To ensure that the distribution of signatures do not depend on secret
information, Lyubashevsky [23, 24] does not output all constructed sig-
natures. Instead, signatures are only emitted with some probability that
depends on z, and otherwise the signing attempt is aborted and retried
with a different y. By aborting with a suitable probability, it is ensured
that the z vector in emitted signatures follow some secret-independent
distribution. As such, emitted signatures do not leak any information
about S.

A variant of Lyubashevsky’s scheme was later considered for the sig-
nature scheme BLISS [16]. In BLISS, valid signatures can be constructed
with z either as y + Sc or as y − Sc, with each of these two construc-
tions for z selected with probability 1/2. As with Lyubashevsky’s original
scheme, BLISS occasionally aborts and does not output the constructed z.

As y is sampled from a discrete Gaussian distribution in BLISS, with-
out rejection sampling, the distribution of BLISS signatures follows a bi-
modal discrete Gaussian distribution, with the two centers ±Sc. This is
in contrast to the scheme of Lyubashevsky [24] where the distribution of
signatures would be a unimodal Gaussian distribution with center Sc if
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no rejection sampling was used.
In both the unimodal and bimodal cases, a suitable rejection condi-

tion allows the output signatures to follow a centered discrete Gaussian
distribution. However, the bimodal discrete Gaussian distribution is sig-
nificantly more similar to the desired output distribution than a unimodal
discrete Gaussian distribution centered on Sc. This gives the bimodal
approach of BLISS a significant advantage over the original unimodal ap-
proach of Lyubashevsky.

1.2.1 Our Improved Signature Construction

The rejection sampling in BLISS can be described through a rejection
function R(z), with each constructed z accepted with probability R(z)
and otherwise rejected. For a sampled vector y, the signature is given by
z = y + Sc with probability R(y + Sc)/2 = fSc(y) and by z = y − Sc
with probability R(y − Sc)/2 = gSc(y), while it otherwise rejects the sig-
nature and tries again with a different y.

With the rejection sampling formulated in this way, it is natural to
consider which other choices for fSc and gSc are possible. More gen-
eral functions fSc and gSc can determine both the choice of y ± Sc and
whether or not to reject. In particular, this allows how frequently z is
constructed to be influenced by the rejection condition for z. Note how-
ever that this requires quite a bit of care, as changing how often z is
constructed must also alter the rejection condition for z if the output is
to follow the desired distribution.

In this work, we consider such more general functions fv and gv, with a
focus on the case where the input distribution for y is a discrete Gaussian
distribution while ensuring that, conditioned on z 6= ⊥ the output z follow
the same distribution. By carefully crafting fv and gv, this allows for
rejection sampling with significantly smaller rejection probability than for
BLISS.

The rejection failure probability of both our new approach and the
approach of BLISS depends on the norm of vectors v used to construct
z = y ± v. In particular, it depends on the quotient α = r/‖v‖ between
the Gaussian parameter r and the norm of the vector v of maximal norm
that the rejection sampling can handle. As the rejection sampling handles
vectors v = Sc, the rejection probability depends on the maximal norm of
Sc. The signature size of the scheme essentially scales linearly with log(r)
and thus also with log(α). As such, if the rejection sampling allows for
a smaller α to be used, it would also allow for a more compact signature
scheme.

When targeting the same rejection probability, our new approach can
use a smaller α than previous approaches, and thus allows for smaller
signatures. One could hope that our new approach allows us to use a
significantly smaller α, and therefore enables a scheme with significantly
smaller signatures. However, decreasing α quickly results in unacceptably
large rejection probabilities for our new approach, even though it still does
have an advantage over previous rejection sampling methods.

Although our new method has a slight advantage for small α, its ad-
vantage is much more pronounced for larger α. For instance, with α such
that the old approach has a rejection probability of a bit more than 10%
our new approach has to reject less than one in a million signatures. Al-
though this is a large difference in rejection probability, in practice there
is only a small performance difference between rejecting 10% of the time
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and rejecting only very rarely. However, by iteratively constructing z, we
can exploit this significant advantage for larger α to allow for much more
compact signatures.

1.2.2 Iterative Rejection Sampling

Our new signature scheme is quite similar to BLISS, with an analogous
relation between public and private keys, and with both y and z following
a discrete Gaussian distribution. Furthermore, the space C of possible
challenges c consist of vectors where all elements are either zero or one
and which often are quite sparse. As noted by Ducas [15], and more
recently used for the G+G signature scheme [14], this allows signatures
from the scheme to be constructed as y + Sc′ for any c′ ≡ c mod 2.

For our work, we make use of this flexibility in how c′ can be selected
to iteratively rejection sample over the coefficients of c. This consists of
selecting the sign of each coefficient of c independently, corresponding to
either producing y + vi or y − vi where vi is a column of S.

To construct z, the iterative process starts with z0 = y, performs rejec-
tion sampling with an input v1 to get z1 such that, conditioned on z1 6= ⊥,
it follows the same distribution as z0. Repeating this leads to a sequence
of vectors y = z0, . . . , zκ = z such that, for every i ∈ {1, . . . , κ} and con-
ditioned on zi 6= ⊥, zi follows the same distribution as y. Thus, the
output z follows the desired distribution and there are ai ∈ {0, 1} such
that

z = y +

κ∑
i=1

(−1)aivi = y + Sc′

for some c′ ≡ c mod 2.
Each vector vi added in the iterative steps is a column of S and is

therefore expected to be significantly shorter than Sc. Each rejection
sampling step thus use a larger α than would be used for a single-step
construction of z. Although this requires multiple steps succeeding, the
larger α from the iterative construction combined with our new rejec-
tion sampling allows targeting a significantly narrower output distribution
than previous approaches.

1.3 Concrete Signature Scheme

For efficiency and compactness, we base our signature scheme on struc-
tured lattice problems. In particular, we work with elements in the ring
R = Z[x]/(xn + 1). We additionally limit ourself to n that are powers
of two to enable efficient computations through the Number Theoretic
Transform (NTT), with a particular focus on n = 256.

For our scheme, we let the challenge space C be a subset of R and the
secret S be a vector s ∈ Rk, where k is a relatively small integer typically
not larger than 10. Similar to BLISS [16] and G+G [14], we generate
keys such that As = qj mod 2q where A ∈ Rm×k is the verification key
with m ≈ k and j = [1, 0, . . . , 0]T the first unit vector.

A signature from the scheme consist of (z, c) for z a relatively short
vector such that

H(Az − qcj mod 2q, µ) = c

where µ is the signed message and H is a cryptographic hash function.
To construct such a signature, the signer samples y from some relatively
narrow distribution. From this y, the signer computes w = Ay mod 2q
and derives c via H(w, µ).
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Since As = qj mod 2q, constructing z as y + sc leads to a valid
signature, as Az ≡ w + qcj mod 2q. Furthermore, it follows that for
any c′ ≡ c mod 2, then z′ = y + sc′ also gives a valid signature as long
as z′ is short enough.

The challenge space C is selected to only contain ring elements with at
most κ non-zero coefficients, with all non-zero elements equal to 1. Thus,
sc is equal to the sum of at most κ terms of the form xjs, and where we
are allowed to select the sign for each of these terms when constructing
our signature. Each of these terms xjs have the same length, namely ‖s‖,
and our rejection probability depends on this norm.

For simplicity we ensure that all secret keys of our scheme have the
same rejection probability, which is determined by the maximal value
of ‖s‖ over all possible secrets. The secret keys for our scheme are there-
fore sampled with a length bound B, guaranteeing that ‖s‖ ≤ B. In
practice, this is accomplished by sampling s from some other distribution
and retrying if ‖s‖ > B.

The bound B on the length of the secret key indirectly impacts the
size of signatures from the scheme. With the distributions that y and z
follow left unchanged, increasing the bound B results in a larger rejection
probability. To increase B without altering the rejection probability, y
and z must follow wider distributions, leading to larger signatures.

1.3.1 Security Against Forgeries

To argue for our scheme’s security against forgeries, we assume that the
A matrix is constructed from elements that are computationally hard to
distinguish from uniformly random. In the random oracle model, it can
then be proven that an efficient algorithm for forging signatures implies
that the Module Short Integer Solutions (MSIS) problem is easy. Thus,
our scheme’s security against forgeries relies upon the assumed hardness
of the MSIS problem.

For the MSIS problem, a matrix A is sampled uniformly at ran-
dom modulo q and the task is to recover a non-zero vector x such that
Ax ≡ 0 mod q with ‖x‖ ≤ B for some length bound B. The concrete
hardness of the MSIS problem is in large part determined by this length
bound B. Furthermore, for certain parameter choices, the MSIS problem
can be proven to be at least as hard as standard lattice problems restricted
to module lattices [22].

Given an efficient algorithm for forging signatures, the security reduc-
tion for the signature scheme can be used to produce short vectors x such
that Ax ≡ 0 mod q. The length of the produced x vector is directly
related to the length of the z vector in the forged signatures. Thus, if z
follows a narrower distribution, the reduction produce shorter vectors and
thus solve the MSIS problem with a smaller length bound. As such, z fol-
lowing a narrower distribution allows the security of the signature scheme
to be based on a harder version of the MSIS problem.

Besides the width of the distribution of z, the hardness of the under-
lying MSIS problem also depends on the dimension of A ∈ Rm×k, with
a larger m leading to a harder problem. The value of k can also have
some effect on the hardness of the SIS problem, with a larger k sometimes
making the problem easier. However, a more significant reason to prefer
a smaller k is that z is a k-dimensional vector, and the size of signatures
therefore directly depend on k.
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1.3.2 Secure Key Generation

As described above, for the analysis of the scheme’s security against forg-
eries, it is assumed that the public key is constructed from elements that
are computationally hard to distinguish from uniformly random. There
are multiple alternatives for how to sample the secret vector s and the
verification key A to achieve this.

A natural choice is to base the scheme on the Module Learning With
Errors (MLWE) problem, as done in for instance HAETAE [10, 11] and
G+G [14]. In such a scheme, small s0 ∈ R` and e ∈ Rm are sampled
as the secret of the scheme and A0 ∈ Rm×` is sampled uniformly at
random modulo q. The verification key is then given by A0, b where
b = A0s0 + e mod q, and the public matrix A and secret vector s are
given as

A = [qj − 2b, 2A0, 2Im] and s = [1, sT0 , e
T ]T .

This results in the z part of the signatures being an (`+m+1)-dimensional
vector over R. As such, z has a total of (` + m + 1)n coefficients, all of
which are relatively small integers.

For a more compact scheme, we could instead base the scheme on
NTRU lattices, similar to how it is done for BLISS [16]. To target a

similar security level, the ring R′ = Z[x]/(xn
′

+ 1), with n′ = `n would
have to be used. The key generation would then sample small f, g ∈ R′
as the private key and compute h = (2g+ 1)f−1 mod q as the public key.
The public matrix A and secret vector s are then given by

A = [2h, q − 2] and s = [f, 2g + 1]T

and as detailed in [16], this leads to As = q mod 2q.
For such an NTRU-based scheme, z has 2n′ = 2`n coefficients. Mean-

while, parametrizing an MLWE-based version of the scheme with m = `
results in z having (2` + 1)n coefficients. When targeting similar rejec-
tion probability, the coefficients of z for the NTRU-based scheme have
similar size as those for an MLWE-based version. As such, signatures of
an NTRU-based version of the scheme are somewhat smaller than those
of a comparable MLWE-based scheme. However, the NTRU structure
limits the flexibility of parameter selection as, in contrast to an MLWE-
based scheme, it is not directly possible to select ` and m independently
from each other. Additionally, for the most efficient NTT calculations n′

is limited to powers of two, further limiting the flexibility of parameter
selection.

To get the compact signatures of an NTRU based scheme with the flex-
ibility of an MLWE based scheme, we instead rely on the NTWE problem
introduced by Gärtner [20]1. The secret key of such an NTWE-based

scheme consists of s0 ∈ R`
′
, e ∈ Rm and f ∈ R, where f = 2f0 + 1 with

the elements of s0, e and f0 sampled from some narrow distribution. The
verification key of such a scheme consists of (A0, b) where A0 ∈ Rm×`

′
is

sampled with elements uniformly at random modulo q and

b = (A0s0 + e)f−1 mod q.

The public matrix and private vector are then given by

A = [qj − 2b, 2A0, 2Im] mod 2q and s = [f, sT , eT ]T

1This same problem was actually first implicitly used for the signature scheme of [2],
although without being formally defined. Followup work from this led to a later independent
reintroduction of the NTWE problem under the name v-MNTRU in [4]
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which ensures that As = qj mod 2q, as desired.
To target a comparable security level, this NTWE-based version can be

parametrized with `′ = `− 1 with the coefficients of z still having similar
sizes as the ones in the MLWE and NTRU-based versions. Thus, z can
be represented by n(`′ +m+ 1) = n`+ nm relatively small integers and,
with m = `, the size of z for this NTWE-based version is on par with the
NTRU-based version. Furthermore, as with the MLWE based scheme, we
can keep n fixed to some power of two and freely change `′ and m in order
to alter the targeted security level. As such, this NTWE-based scheme
provides the flexibility of an MLWE-based scheme with the compactness
of an NTRU-based scheme.

2 Preliminaries

2.1 Notation

We denote matrices by bold upper case letters and vectors by bold lower
case letters. We use j = [1, 0, . . . , 0]T to denote the first unit vector, with
its dimension implicit from the context. The uniform distribution over a
set S we denote by U(S) and taking a sample x from a distribution D we
denote by x← D.

We primarily make use of the Euclidean `2 norm, which we denote
by ‖·‖. We additionally use the infinity norm which we denote by ‖·‖∞.

Our signature scheme works in the ring R = Z[x]/(xn + 1) where n
is a power of two. To each element in R we associate an n-dimensional
coefficient vector. Vectors in Rk can thus be associated with an nk-
dimensional vector consisting of the coefficients of the k ring elements.
We let the norm ‖v‖ of a vector v ∈ Rk be the norm of this coefficient
vector.

We make use both of standard modular reduction y = x mod p such
that y is the unique value in [0, p) that satisfies y = x+kp for some integer
k. Additionally we use the centered modular reduction y = x mod±p with
y the unique value in [−p/2, p/2) such that y = x + kp for some integer
k. We also denote by LSB(x) the least significant bit of x. All of these
functions are naturally extended to vectors, to elements of R through
their coefficient vectors, and to vectors over R.

For a function f and a set S, we let

f(S) =
∑
x∈S

f(x).

2.2 Signature Schemes

A signature scheme consist of three algorithms (KeyGen,Sign,Verify).
The KeyGen algorithm outputs a verification key vk and a signing key sk.
The signing key sk can be used to sign a message µ via sig← Sign(sk, µ)
and the verification key can then verify the signature via Verify(sig, vk, µ).
With the signature scheme we consider, for valid keys (vk, sk)← KeyGen,
every signature produced via sig← Sign(sk, µ) is such that the verification
Verify(sig, vk, µ) succeeds by outputting 1.

The security of the scheme relies on it being hard to forge a signature
that passes verification. Three different security notions are relevant for
our signature scheme and the proof of its security.
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The weakest of the security notions we consider, which is only used
in proving the stronger security properties, is unforgeability under no
message attacks (UF-NMA). The advantage of an adversary A in the
UF-NMA security game is given by

Pr [Verify(sig, vk, µ) = 1 | (sig, µ)← A(vk)]

where vk is a verification key given by KeyGen.
A stronger security notion is unforgeability under chosen message at-

tacks (UF-CMA). The advantage of an adversary in this security game is
similar to that of the UF-NMA game, but the adversary is additionally
given access to an oracle that signs any message chosen by the adversary.
However, the adversary is required to provide a forgery for a message for
which the oracle has not provided a signature.

The strongest security notion we consider is strong unforgeability un-
der chosen message attacks (sUF-CMA). The advantage of an adversary
in this security game is defined almost the same as for the UF-CMA game,
but the adversary is now successful as long as it provides a valid signa-
ture which it has not received from the oracle, even if the forgery is for a
message which the oracle has provided a different signature for.

2.3 Lattice Assumptions

The security of our scheme can be based on the assumed hardness of the
decision NTWE problem and the MSIS problem. The decision NTWE
problem and normal form MSIS problem that we rely upon are given by
the following definitions.

Definition 1 (NTWE distribution). Let q be a prime, m and ` be positive
integers and D be some distribution over R. Furthermore, let s be a
vector in R` and f be an invertible element of Rq. Then, a sample from
the NTWE distribution Wm

s,f,D is given by (A, b) for A← U(Rm×`q ) and
b = (As + e)f−1 mod q where e← Dm.

Definition 2 (Decision NTWE problem). The advantage of an adversary
A against the NTWEq,m,`,D problem is given by∣∣∣∣ Pr

[
A(A, b) = 1 | A←Rm×`q , b←Rmq

]
−

Pr
[
A(A, b) = 1 | (A, b)←Wm

s,f,D
] ∣∣∣∣

where s is sampled from D` and f = 2f0 + 1 with f0 sampled from D
conditioned on f being invertible in Rq.
Definition 3 (Normal form MSIS problem). Let q be a prime, m and
k be positive integers and B > 0 be some bound. The advantage of an
adversary A against the MSISq,m,k,B problem is given by

Pr
[
‖y‖ ≤ B ∧ [A, Im] · y ≡ 0 mod q | A←Rm×kq ,y ← A(A)

]
.

The UF-NMA security of our scheme in the random oracle model
(ROM) can be based on the assumed hardness of the MSIS problem by
making use of the forking lemma. However, to construct a more efficient
scheme, we instead rely on a special self-target variant of the MSIS prob-
lem. This same approach is taken by most other similar lattice-based
signature schemes that are constructed using the Fiat-Shamir paradigm.

Such a self-target variant of the MSIS problem could potentially be
easier than the ordinary MSIS problem with the same parameters. How-
ever, as in previous works, we assume that the self-target MSIS problem
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actually is as hard as the corresponding MSIS problem. This is motivated
by the fact that the only known way to solve this self-target MSIS problem
is through solving the corresponding MSIS problem. More specifically, we
rely on a bimodal self target MSIS problem defined below, which is the
same problem that HAETAE [10, 11] relies on.

This BimodalSelfTargetMSIS problem is parametrized by a size bound
B > 0 and integers q,m, ` > 0. Furthermore, it depends on a hash func-
tion H from Rm2q ×M to C where M ⊂ {0, 1}∗ is a message space and
C ⊆ R2 is a challenge space.

Definition 4 (BimodalSelfTargetMSISH,q,m,`,B problem). An adversary

A against the BimodalSelfTargetMSISH,q,m,`,B problem is given A ∈ Rm×`
and b ∈ Rm with elements sampled uniformly at random in Rq. The ad-
versary is to produce (z, c, µ) ∈ (Rm+`+1, C,M) such that z 6= 0, ‖z‖ < B
and

H(Az − qcj mod 2q, µ) = c

where A = [qj − 2b, 2A0, 2I] mod 2q.

2.4 Fiat-Shamir Transform

The Fiat-Shamir transform allows transforming an identification scheme
into a signature scheme. The security of the resulting signature scheme
requires that the underlying identification scheme has the following zero-
knowledge property.

Definition 5 (paHVZK). Let ID be a canonical identification scheme with
the scheme producing some output distribution of (w, c, z). The scheme
is Perfect Accepting Honest Verifier Zero-Knowledge (paHVZK) if there
exist a probabilistic polynomial time simulator that, when given only the
verification key of the identification scheme, outputs (w′, c′,z′) following
the same distribution as the output (w, c, z) conditioned on z 6= ⊥.

If the identification scheme is paHVZK, the UF-CMA security of the
transformed signature scheme directly follows from its UF-NMA security,
via Theorem 1 below. This same theorem also proves the sUF-CMA secu-
rity of our scheme assuming that no adversary has a noticeable advantage
against the computationally unique response (CUR) property, as defined
below, of the underlying identification scheme.

Definition 6 (Computationally Unique Response (CUR)). Let ID be
a canonical identification scheme with instance generator Gen and let
(x, y)← Gen, with x the public part of the key for the prover. The advan-
tage of an adversary A against the CUR property of the scheme is given
by the probability that A(x) outputs a commitment w, a challenge c and
two separate responses z and z′ such that the verifier accepts both (w, c, z)
and (w, c, z′) as valid transcripts.

The theorem we use to prove the UF-CMA and sUF-CMA security of
our scheme is an adaptation of Theorem 2 of [6]. Our adaptation of the
original theorem is similar to that of HAETAE [10].

Theorem 1 (Adapted from Theorem 2 of [6]). Let ID be a identifica-
tion scheme with commitment min-entropy γ that satisfies paHVZK with
probability of aborting β. Let A be a quantum UF-CMA attacker against
the Fiat-Shamir transform of ID with random oracle H. Furthermore, let
qS and qH be the number of queries A makes to the signing oracle and
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to the random oracle H respectively. Then, there exists a quantum NMA
attacker B such that

AdvUF-CMA(A) ≤ AdvUF-NMA(B) +
2qS2−γ/2

1− β

√
qH + 1 +

qS
1− β

+ 2−γ/2+1(qH + 1)

√
qS

1− β .

Furthermore, if A is an adversary against the sUF-CMA security, there
exist an adversary B′ against the CUR property of ID such that the pre-
vious bound holds by adding AdvCUR

ID (B′) on the right hand side. The
running time of B and B′ is approximately that of A plus qS times the
running time of the paHVZK simulator.

2.5 Discrete Gaussian Distributions

We use ρr(v) to denote the Gaussian function exp(−‖v‖2/(2r2)), and let
ρ(v) = ρ1(v). The discrete Gaussian distribution DL,r with parameter r
over a lattice L is the distribution where the probability of a vector v ∈ L
is given by

ρr(v)∑
w∈L ρr(w)

=
ρr(v)

ρr(L)

and the probability of v 6∈ L is 0. We also consider discrete Gaussian
distributions over the ring R = Z[x]/(xn + 1), where we sample the coef-
ficient vector of an element in R. This also naturally extends to sampling
vectors over R.

To argue that the signatures produced do not have too large norm,
we make use of the following lemma of Banaszczyk to bound the norm of
vectors sampled from discrete Gaussian distributions.

Lemma 2 (Lemma 1.5 from [5]). Let C ≥ 1, r > 0 be reals and n ≥ 1 be
an integer. Then

Pr
[
‖z‖ > Cr

√
n | z ← DZn,r

]
≤
(
C · exp

(
1− C2

2

))n

3 Our New Rejection Sampling Method

In this section we describe our new rejection sampling method and its
advantages over previous methods. Given a sample y from some distribu-
tion and some vector v with limited norm, the rejection sampling should
either abort and output ⊥ or output a vector z such that z = y + kv for
arbitrary odd integer k. Additionally, conditioned on z 6= ⊥, the out-
put from the rejection sampling should follow some distribution that is
independent of v. Quite similar to bimodal rejection sampling, unless it
aborts, our sampling outputs either y + v or y − v.

The novelty of our new method is that the rejection sampling is given
more freedom in selecting whether to output y + v or y − v. Previous
methods for rejection sampling from bimodal distributions first randomly
selects y + v or y − v with equal probability and then either rejects or
outputs the result. We instead select the output via the procedure Rv(y)
in Figure 1 for more general functions fv and gv.

For the output of our new rejection sampling to be independent of the
vector v, the functions fv and gv must satisfy certain properties. The
following lemma details conditions on these functions under which the
output of Rv(y) follows some given distribution Z.

11



Rv(y)

1 : (a, b) = (fv(y), gv(y))

2 : r ← U([0, 1))

3 : if r < a

4 : return y − v

5 : if r < a+ b

6 : return y + v

7 : return ⊥

Figure 1: New method for rejection sampling, dependent on functions fv and gv.

Lemma 3. Let Y,Z be some distributions with py(y) the probability of
y ← Y and pz(z) the probability of z ← Z and let v be some fixed non-
zero vector. Furthermore, let fv(z) and gv(z) be functions and M ≥ 1 be
a parameter such that

fv(z) + gv(z) ≤ 1 (1)

fv(z) ≥ 0, gv(z) ≥ 0 (2)

py(z + v)fv(z + v) + py(z − v)gv(z − v) =
pz(z)

M
(3)

for all z. Then, the distribution of z ← Rv(y) conditioned on z 6= ⊥ is
Z and the probability that z = ⊥ is 1− 1/M .

Proof. Based on the properties of fv and gv we are guaranteed that Rv(y)
returns y − v with probability fv(y) and y + v with probability gv(y).
The probability of an input y is py(y), and the probability of an output z
is therefore

py(z + v)fv(z + v) + py(z − v)gv(z − v),

which via (3) is equal to pz(z)/M . As this is a scaling of the desired
output probability distribution, this gives that conditioned on z 6= ⊥, the
output is distributed as if from Z.

The probability that the procedure does not output ⊥ is given by the
sum of pz(z)/M over all z 6= ⊥. As pz is a probability distribution and
thus sums to 1, the probability over y that Rv(y) outputs something other
than ⊥ is 1/M and the probability of z = ⊥ is thus 1− 1/M .

In the following subsections we detail how we construct functions fv
and gv that fulfill the properties of Lemma 3.

First, in Section 3.1, we consider requirements of such functions when
the input and output distributions are the same distribution. In this
relatively general setting, we are unable to construct fv and gv that are
guaranteed to fulfill the properties of Lemma 3.

In Section 3.2, we consider a more specialized setting where we can
adapt the construction of fv and gv from Section 3.1 to get functions
that are guaranteed to fulfill all the properties of Lemma 3. In this more
specialized setting, an outcome x of the relevant distribution only depends
on ‖x‖, with the probability of x decreasing as ‖x‖ increases.

For our signature scheme, we rely on these functions fv and gv for
the specific case when the relevant distribution is a discrete Gaussian
distribution. In Section 3.3, we further analyze the resulting functions
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fv and gv in this setting. In particular, for this setting we somewhat
simplify the definition of these functions fv and gv and show that they
can be efficiently computed to sufficient precision.

Finally, in Section 3.4 we detail the concrete advantage our new re-
jection sampling compared to previous rejection sampling methods. In
particular, we focus on a comparison to rejection sampling from bimodal
Gaussian distributions, as used with BLISS, since this seems like the most
relevant comparison.

3.1 Same Input and Output Distributions

For our analysis, we limit ourself to the case where Z = Y, and thus
py(x) = pz(x) = p(x) for every x. Functions fv and gv that satisfy the
requirements of Lemma 3 must thus satisfy that

p(z)

M
= p(z + v)fv(z + v) + p(z − v)gv(z − v). (4)

This can be seen as fv and gv redistributing part of the input probability
on the points z + v and z − v to ensure the correct probability for the
output z.

The functions fv and gv also influence the probability of other outputs.
In particular, the function gv also distribute part of the probability of
the input z + v to ensure that the probability for the output z + 2v is
correct. Similarly, the function fv distribute part of the probability of the
input z − v to ensure the correct probability for the output z − 2v. The
dependence on other inputs cascade, and the functions fv and gv thus
redistribute the probability of inputs that are an odd multiple of v away
from z to ensure the correct probability of outputs that are even multiples
of v away from z.

For the procedure Rv to never reject, the functions fv and gv must
satisfy the properties of Lemma 3 with M = 1. For this to be possible
for all points related to any given z, the probability weight on inputs
must equal the probability weight on outputs. This corresponds to the
requirement that ∑

k∈Z

p(z + 2kv) =
∑
k∈Z

p(z + (2k + 1)v)

which is equivalent to ∑
k∈Z

(−1)kp(z + kv) = 0. (5)

However, note that although this requirement is necessary, it is not suf-
ficient for M = 1 to be possible. For instance, no version of fv and gv
would work if p(z) = t 6= 0 and p(z + 3v) = t while p(z + kv) = 0 for all
other k.

If (5) holds, there is a natural description of fv and gv that may
satisfy the properties of Lemma 3 with M = 1. This pair of functions
is determined by considering the consequences of (4) being satisfied for
z′ = z + 2kv for every integer k 6= 0. With (4) satisfied for every other
related output, the probability weight left for fv(z+v) and gv(z−v) can
be determined, and this gives our definition for these functions.

In order for (4) to be satisfied for every output of the form z + 2kv
with k > 0, the remaining probability weight on input z + v is

p(z + v)−
∞∑
k=2

(−1)kp(z + kv).
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Letting fv distribute the remaining probability weight to the output z
gives that

fv(z + v) =

∞∑
k=0

(−1)k
p(z + (k + 1)v)

p(z + v)

or equivalently

fv(y) =

∞∑
k=0

(−1)k
p(y + kv)

p(y)
.

Similarly, letting the remaining probability weight on the input z − v be
distributed by gv to p(z) gives that

gv(y) =

∞∑
k=0

(−1)k
p(y − kv)

p(y)
.

These functions fulfill

fv(z + v)p(z + v) + gv(z − v)p(z − v)

=
∞∑
k=0

(−1)k(p(z + (k + 1)v) + (p(z − (k + 1)v))

= p(z)−
∑
k∈Z

(−1)k(p(z + kv) = p(z)

with final equality as (5) holds.
For our signature scheme, we can not directly apply this approach

as (5) does not hold for every z. Furthermore, even with (5) satisfied, these
definitions do not guarantee that fv(z) ≥ 0 and gv(z) ≥ 0 for every z. In
the next section, we add some additional requirements on p(z) and allow
for M > 1. This allows us to alter the definitions of fv and gv so that
they do fulfill all the properties of Lemma 3. As we consider M > 1, these
altered definitions work even if (5) does not hold.

3.2 Norm-Dependent Distribution

In this section, we limit ourself to p(z) that depend only on the norm of
z and decrease with increasing norm. This is for instance the case for
Gaussian distributions, which is the distribution we use for our signature
scheme. With such a limitation on p(z), we can find a suitable definition
for fv and gv that satisfy all requirements of Lemma 3.

For this analysis, we define the function

Sv(y) =
∑
k≥0

(−1)k
p(y + kv)

p(y)

which is the definition of fv(y) from the previous section. Furthermore,
as p(y) is only determined by the norm of y, we have that

Sv(−y) =
∑
k≥0

(−1)k
p(−y + kv)

p(−y)
=
∑
k≥0

(−1)k
p(y − kv)

p(y)

which is the definition of gv(y) from the previous section.
We are guaranteed that either

‖y + (k + 1)v‖2 ≥ ‖y + kv‖2 or ‖y − (k + 1)v‖2 ≥ ‖y − kv‖2
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for every k ≥ 0 and we know that p(x) is decreasing with increasing ‖x‖
From this it follows that either Sv(y) ≥ 0 or Sv(−y) ≥ 0, since for at
least one of these functions, the absolute values of terms in the sum are
strictly decreasing. The idea is to define both fv(y) and gv(y) based on
the one of Sv(y) and Sv(−y) that is guaranteed to be positive. As such,
we decide whether to sum up positive or negative multiples of v based on
which choice moves the sum away from 0.

In particular, if 〈y,v〉 ≥ ‖v‖2, then we let fv(y) = Sv(y)/M ≥ 0 for
some M > 1. In order for (4) to be fulfilled for z = y+v, we then require
that

gv(y − 2v) =
p(y − v)− Sv(y)p(y)

Mp(y − 2v)
=

1− Sv(y − 2v)

M
.

Similarly, if 〈y,v〉 < ‖v‖2, we instead let fv(y) = (1−Sv(−y))/M which
leads to the requirement that

gv(y − 2v) =
p(−y + v) + (Sv(−y)− 1)p(y)

Mp(−y + 2v)
=
Sv(−y + 2v)

M
.

in order for (4) to be fulfilled for z = y − v.
These definitions for fv and gv are detailed in the theorem below,

where we prove that, for a suitable M , these functions fulfill all require-
ments of Lemma 3. Note that if (5) is fulfilled for all relevant y, then
these functions satisfy the requirements of Lemma 3 with M = 1 and we
recover the same functions considered in the previous section.

Theorem 4. Let Kv be the set of y such that |〈y,v〉| ≤ ‖v‖2 and let
M ≥ 1 be such that

M ≥ max
y∈Kv

1−
∑
k∈Z

(−1)k
p(y + kv)

p(y)
.

Then, the functions

fv(y) =


Sv(y)

M
If 〈y,v〉 ≥ ‖v‖2

1− Sv(−y)

M
If 〈y,v〉 < ‖v‖2

and

gv(y) =


1− Sv(y)

M
If 〈y,v〉 ≥ −‖v‖2

Sv(−y)

M
If 〈y,v〉 < −‖v‖2

fulfill all the requirements of Lemma 3.

Proof. We begin by showing that (3) holds for these definitions of fv
and gv. For z such that 〈z,v〉 ≥ 0, we have 〈z − v,v〉 ≥ −

∥∥v2
∥∥ and

〈z + v,v〉 ≥
∥∥v2

∥∥. As such, we have

p(z + v)fv(z + v) + p(z − v)gv(z − v)

=
Sv(z + v)p(z + v) + (1− Sv(z − v))p(z − v)

M

=
p(z − v)

M
+

∞∑
k=0

(−1)k
p(z + (k + 1)v)− p(z + (k − 1)v)

M

=
p(z)

M
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as expected. Furthermore, when 〈z,v〉 < 0, we have 〈z − v,v〉 < −
∥∥v2

∥∥
and 〈z + v,v〉 <

∥∥v2
∥∥ and thus

p(z + v)fv(z + v) + p(z − v)gv(z − v)

=
(1− Sv(−z − v))p(z + v) + Sv(−z + v)p(z − v)

M

=
p(z + v)

M
+

∞∑
k=0

(−1)k
p(z − (k − 1)v)− p(z − (k + 1)v)

M

=
p(z)

M

as expected.
Next, we show that fv(y) ≥ 0 and gv(y) ≥ 0 for every y. This

follows from showing that, when 〈y,v〉 ≥ −‖v‖2 then Sv(y) ≤ 1 and
when 〈y,v〉 ≥ ‖v‖2 then Sv(y) ≥ 0. To this end, we first note that

‖y + kv‖2 = ‖y‖2 + 2k〈y,v〉+ k2‖v‖2

and see that if 〈y,v〉 ≥ 0, then ‖y + kv‖ is greater than ‖y + (k − 1)v‖
for every k ≥ 1.

When 〈y,v〉 ≥ 0, and thus also when 〈y,v〉 ≥ ‖v‖2, we have

Sv(y) =

∞∑
k=0

(−1)k
p(y + kv)

p(y)
=

∞∑
k=0

p(y + 2kv)− p(y + (2k + 1)v)

p(y)
≥ 0

as every term in the second sum is non-negative. Furthermore, when
〈y,v〉 ≥ −‖v‖2, we have

Sv(y) =

∞∑
k=0

(−1)k
p(y + kv)

p(y)
= 1−

∞∑
k=1

(−1)k+1 p(y + kv)

p(y)
= 1−Sv(y+v)

and this is upper bounded by 1 as Sv(y + v) ≥ 0 since 〈y + v,v〉 ≥ 0.
Finally, left to show is only that fv(y) + gv(y) ≤ 1 for every y. To

this end, we note that when |〈y,v〉| > ‖v‖2 this is trivially true as

fv(y) + gv(y) =


Sv(y) + 1− Sv(y)

M
If 〈y,v〉 > ‖v‖2

Sv(−y) + 1− Sv(−y)

M
If 〈y,v〉 < −‖v‖2

=
1

M
.

Meanwhile, when |〈y,v〉| ≤ ‖v‖2, we have that

fv(y) + gv(y) =
2− Sv(y)− Sv(−y)

M

=
1

M

(
1−

∑
k∈Z

(−1)k
p(y + kv)

p(y)

)
≤ 1.

with final inequality due to the definition of M in the theorem statement.

3.3 Discrete Gaussian Distributions

To actually make use of the definitions of fv(y) and gv(y) in Theorem 4 we
must be able to efficiently compute Sv(y) with sufficiently high precision.
In this section, we show that this is possible when we work with a discrete
Gaussian distribution, which is the case we focus on in this work.
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When considering a discrete Gaussian distribution, p(y) is propor-
tional to ρr(y) for some Gaussian parameter r. As such, we have that

Sv(y) =
∑
k≥0

(−1)k
ρr(y + kv)

ρr(y)

and we want to efficiently compute a sufficiently good approximation of
this Sv(y). The following lemma bounds the error incurred by only in-
cluding the t first terms of the sum in the infinite sum in the expression
for Sv(y). This shows that only accounting for a few terms of this sum
provides a sufficiently good approximation of Sv(y). In particular, this
lemma gives that the first 20 terms of the sum differ significantly less
than 2−256 from the true value of the infinite sum, even for the worst case
where ‖v‖ = 1.2 Since the lemma follows from simple calculations, we
omit the proof from here and instead include it in Appendix A.

Lemma 5. The function Sv(y) only depends on 〈y,v〉 and ‖v‖2. Fur-
thermore, for arbitrary t ≥ 1, fixed v and with 〈y,v〉 ≥ −‖v‖2 then∣∣∣∣∣Sv(y)−

t∑
k=0

(−1)k
ρr(y + kv)

ρr(y)

∣∣∣∣∣ ≤ ρr(tv)

ρr(v)− ρr(2v)

To actually compute fv and gv, we must also have an efficient way
to compute a value for M . The value of M must be no smaller than
the infinite sum in Theorem 4 and we determine a simple expression that
satisfy this in Lemma 6 below. This bound is very tight for relevant
parameters, and there is therefore no significant downside to using this
expression for M . However, note that the main purpose of this is to
simplify the expression for M , and we therefore do not include the proof
here, instead including it in Appendix A where it is proven using the
Poisson summation formula.

Lemma 6. Let Kv be the set of y such that |〈y,v〉| ≤ ‖v‖2 and let
α = r/‖v‖. Then

max
y∈Kv

1−
∑
k∈Z

(−1)k
ρr(y + kv)

ρr(y)
≤ 1 +

2α
√

2πρ(πα)

ρα(1) · (1− ρ1(2πα))
= Mα

and Mα is strictly decreasing with α.

This finally gives the expression for the functions fv and gv that we
use for the rejection sampling via Rv for our signature scheme. These
definitions for fv and gv are given in Corollary 7 below, which follows
from combining Theorem 4 with Lemma 6.

Corollary 7. Let w be a vector of maximal norm in some set V and
let M = Mr/‖w‖ where

Mα = 1 +
2α
√

2πρ(πα)

ρα(1) · (1− ρ(2πα))

Then, the functions fv and gv defined via

fv(y) =


Sv(y)

M
If 〈y,v〉 ≥ ‖v‖2

1− Sv(−y)

M
If 〈y,v〉 < ‖v‖2

2The special case v = 0 is never relevant for our rejection sampling.
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and

gv(y) =


1− Sv(y)

M
If 〈y,v〉 ≥ −‖v‖2

Sv(−y)

M
If 〈y,v〉 < −‖v‖2

fulfills all the requirements of Lemma 3 for every v ∈ V.

3.4 Benefit of Our Method

Using the functions fv and gv, as given by Corollary 7 to rejection sample
with Rv leads to a repetition rate of M . We want to compare this M with
the repetition rate of previous works for lattice-based signatures relying on
Fiat-Shamir with aborts, in particular those based on rejection sampling
from bimodal Gaussian distributions.

For this comparison, we define the set V to contain all possible vec-
tors v that we want the functions fv and gv given by Corollary 7 to handle.
The rejection rate of both our approach and previous ones is dependent
on α = r/‖w‖, where w is the element of V of maximal norm. In this
setting, bimodal Gaussian schemes such as BLISS [16], have a repetition
rate of exp(1/(2α2)) = 1/ρα(1), and the expected number of rejections is
thus 1/ρα(1)− 1.

In order to illustrate the benefit of our new method, we provide a plot
in Figure 2 with the logarithm of the expected number of rejections for our
new method compared to the same value for BLISS. For the parametriza-
tions in BLISS, a value of α between 0.5 and 1 is used. As can be seen
from the plot in Figure 2, our new method has a noticeable advantage in
the rejection rate for the values of α used for BLISS. From this it also
follows that, with the same rejection rate, our new method allows for a
parametrization with somewhat smaller α, leading to somewhat smaller
signatures.

Note that the advantage in terms of rejection rate of our method in-
crease as α increase. For somewhat large α the ordinary bimodal Gaussian
rejection sampling method still has to reject relatively frequently, whereas
the rejection rate for our new method quickly approaches 0 with larger α.
By itself, this does not provide a significant advantage as, from a perfor-
mance perspective, there is not that big of a difference between rejecting
one out of ten signatures compared only rejecting signatures very rarely.

The low rejection rate for larger α can, however, be used to ensure that
even if the sampling is repeated multiple times, there is still a high prob-
ability that all repetitions succeed. This allows our new method to gain
a significant advantage over previous methods, as it enables an iterative
construction of z. As described in Section 1.2.2, this is accomplished by
performing rejection sampling for each coefficient of c sequentially. This
iterative process starts with z0 = y and then constructs zi = zi−1 ±Sci,
where ci has at most one non-zero coefficient for i ∈ {1, . . . , κ} with
c =

∑
i ci and where the final output of the rejection sampling is z = zκ.

Similar to without the iterative approach, the functions fv and gv used
for the iterative rejection sampling are defined via Corollary 7. Compared
to the non-iterative approach, the set V that the functions has to handle
vectors v from is however different. With the iterative rejection sampling
V consists of all possible columns of S, whereas without it, the set consists
of all possible values of Sc. As the longest column of S is significantly
shorter than the longest vector of the form Sc, this allows the functions
fv and gv to be defined with M = Mα for a significantly larger α.
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Figure 2: The expected number of rejections for each signature with normal
bimodal Gaussian rejection sampling and with our new method. Note that it is
the base 2 logarithm of the expected number of rejections that is plotted, where
the number of rejections is the number of repetitions minus one.

Another benefit of our new method for rejection sampling is that the
rejection probability decrease exponentially with increasing α. As such,
it is easy to select parameters that target a negligible rejection probabil-
ity and therefore allow the rejection condition to be safely ignored. To
quantify this, we note that the rejection probability is given by

1− 1

M
=

2α
√

2πρ(πα)

ρα(1) · (1− ρ(2πα)) + 2α
√

2πρ(πα)

≤ 2α
√

2πρ(πα)

ρα(1) · (1− ρ(2πα))
< 4α

√
2πρ(πα) (6)

with the final inequality holding when α ≥ 1. In particular, this bound
gives that α ≥ 4 leads to a rejection probability that is smaller than 2−108.

A signature scheme parametrized with α ≥ 4 could thus quite likely be
used to sign on the order of 2100 messages without ever triggering the re-
jection condition. Furthermore, only a little information about the secret
is leaked if a single signature that should have been rejected is emitted
by the signature scheme. As such, a scheme parametrized with α ≥ 4
can be implemented while ignoring the rejection condition, without this
significantly impacting the security of the scheme.

4 Signature Scheme

The high-level construction of our signature scheme is the same as that of
BLISS. However, our scheme differ from BLISS by using our new method
for rejection sampling in an iterative manner to construct the signatures.
Additionally, our scheme constructs the public key while relying on the
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assumed hardness of the NTWE problem whereas BLISS relied upon the
NTRU problem.

The iterative construction for our signature scheme results in κ sep-
arate chances for rejection, once for each non-zero coefficient of c. The
same iterative construction is possible also with previous rejection sam-
pling methods. However, with previous rejection sampling methods, using
the iterative construction of z would require parameters to be increased
to ensure that there is a sufficiently high probability that all κ iterative
steps succeed. With our new rejection sampling, the iterative construction
instead allows us to use smaller parameters, as the low rejection proba-
bility we have for larger α more than makes up for having to repeat the
sampling κ times.

The signature scheme makes use of the functions fv and gv from Corol-
lary 7 to implement the rejection sampling procedure Rv(y) described in
Figure 1. For the definition of these functions, we let V be the set of all
possible secret vectors s, ensuring that the scheme has the same rejection
probability for all possible secrets. We furthermore ensure that only keys
with ‖s‖ ≤ Bk are generated, and thus α = r/Bk is used to determine
the value of M = Mα.

To illustrate the high level structure of the scheme, we begin by pre-
senting an uncompressed version of our scheme in the next section. Signif-
icantly more compact signatures are possible through utilizing compres-
sion techniques similar to ones that have been are used in many previously
proposed schemes [3, 11, 14, 25]. As usage of this compression technique
somewhat complicates the description of the scheme, we present the com-
pressed version separately in Section 4.2.

4.1 Uncompressed Signature Scheme

An uncompressed version of our scheme is presented in Figure 3. For the
key-generation A0 and b are generated as an NTWE instance, and, assum-
ing the hardness of the decision NTWE problem, the pair (A0, b) are com-
putationally indistinguishable from uniformly random. Then, the verifica-
tion key A and secret key s are constructed such that As ≡ qj mod 2q,
with A constructed from A0 and b whereas s is constructed from the
secret of the NTWE instance.

For signing a message, a relatively short vector y is sampled and a
commitment w = Ay mod 2q is computed. From this, and the message to
be signed, a challenge c is derived using a random oracleH : Rmq ×M→ C
whereM is the message space and C is some challenge space. In practice
this random oracle is instantiated from a secure hash function combined
with a way to sample from the challenge space, in the same way as for
HAETAE.

A signature consist of this challenge, and a short vector z such that

Az ≡ w + qcj mod 2q. (7)

To construct this z, the rejection sampling procedure Rv is used with
the functions fv and gv from Corollary 7. This rejection sampling is
performed for v = sxj , for each monomial xj in c. The end result is
z = y + sc′ for some ternary c′ ≡ c mod 2 which ensures that (7) holds.

Verification verifies that z is sufficiently short, and implicitly verifies
that (7) holds by checking that

H(Az − qcj mod 2q, µ) = H(w, µ) = c.
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KeyGen

1 : A0 ← U(Rq)m×`

2 : s0 ← D`R,σ
3 : e← DmR,σ
4 : f0 ← DR,σ
5 : f = 2f0 + 1

6 : if f is not invertible in Rq
7 : Goto line 4

8 : b = (A0s + e)/f mod q

9 : A = [qj − 2b, 2A0, 2Im]

10 : s = [f, s0, e]

11 : if ‖s‖ ≥ Bk

12 : Goto line 2

13 : return vk = A, sk = s

Verify((z, c),A, µ)

1 : Reject if ‖z‖ > Bs

2 : Accept if H(Az − qcj mod 2q, µ) = c

Sign(A, s, µ)

1 : y ← D`+m+1
R,r

2 : w = Ay mod 2q

3 : c = H(w, µ)

4 : z = RejectSample(y, c)

5 : if z = ⊥ or ‖z‖ > Bs

6 : Goto line 1

7 : return (z, c)

RejectSample(z0, c)

1 : k = 0

2 : for Each monomial xj in c

3 : k = k + 1

4 : zk = Rsxj (zk−1)

5 : if zk = ⊥
6 : return ⊥
7 : r ← U([0, 1))

8 : if r > Mk−κ

9 : return ⊥
10 : return zk

Figure 3: Key-generation, signing and verification for an uncompressed version
of our new scheme with an auxiliary function for rejection sampling.
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4.1.1 Challenge Space

The challenge space C of our signature scheme contains elements in R
with at most κ non-zero coefficients. The challenge space C is selected
such that the number of possible challenges is sufficiently large. For most
parametrizations, this is accomplished by letting C consist of elements
with exactly κ coefficients equal to one and the remaining coefficients
equal to zero.

For the parametrizations which target the highest security level, the
challenge space C is selected somewhat differently in order to increase
its size. As with HAETAE [10, 11], for these parametrizations C instead
consist of exactly half of all possible degree n polynomials with only 0
and 1 coefficients. Furthermore, the challenge polynomials all contain
at most n/2 non-zero coefficients. In this case, the challenge space thus
contains 2n−1 different elements. For details on exactly which polynomials
are included, and how to sample from this challenge space, we refer to
Section 3.3 of [10].

In order to ensure that the rejection sampling does not influence the
distribution of challenges c in signatures that are output, we ensure that
every challenge c has the same rejection probability. Over a random y,
the function Rv(y) has the same rejection rate for every v, and thus the
rejection rate for a challenge c is influenced only by the number of non-zero
coefficients in c.

As mentioned above, for the highest security level, the number of non-
zero coefficients vary and challenges with fewer non-zero coefficients re-
quire fewer iterative steps for the rejection sampling. As each iterative
step has the same rejection rate, if not handled separately, challenges with
fewer non-zero coefficients would be more likely in output signatures. To
ensure that every challenge c is equally likely, we therefore reject signa-
tures with challenges that have fewer than κ non-zero coefficients with a
suitable probability.

4.1.2 Bounds

For our scheme, the secret distribution DR,σ is a discrete Gaussian distri-
bution with parameter σ. To bound the rejection probability, we ensure
that the norm of the secret vector is no larger than Bk by rejecting se-
cret keys with norm larger than this. We select Bk as σ

√
n(m+ `+ 4),

resulting in approximately half of the secret keys being rejected.
Limiting the norm of the secret key by Bk results in secrets sampled

from a narrower distribution than otherwise, and should result in the secu-
rity of the scheme relying on a somewhat easier lattice problem. However,
as around half of the secret keys are still accepted, the security against
lattice attacks should not decrease by significantly more than 1 bit. For
simplicity, we do not account for this small loss in the hardness of the
underlying lattice problem for our security estimates.

As z follow a discrete Gaussian distribution, there is no upper bound
on‖z‖. However, in order to ensure that signature forgery is hard, only
sufficiently short z can be accepted as valid signatures. As such, only
signatures that satisfy ‖z‖ ≤ Bs are emitted. If a z with larger norm
is generated during a signing attempt, the signature is rejected and the
signing of the message is retried.

The bound Bs must be set to not result in too many signature rejec-
tions, while still only accepting relatively short z. We therefore set Bs =
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CSign(A, s, µ)

1 : y ← D`+m+1
R,r

2 : w = Ay mod 2q

3 : w0 = LSB(w)

4 : c = H(HighBits(w),w0, µ)

5 : z = RejectSample(y, c)

6 : if z = ⊥ or ‖z‖ > Bs

7 : Goto line 1

8 : (z1,z2) = Split(z)

9 : w̃ = w − 2z2 mod 2q

10 : h = HighBits(w)−HighBits(w̃) mod 2(q − 1)

11 : return (z1,h, c)

HighBits(w)

1 : return bw/τe · τ mod 2(q − 1)

LowBits(w)

1 : return w −HighBits(w) mod±2q

CVerify((z1,h, c),A, µ)

1 : w̃′ = A1z1 − qcj mod 2q

2 : w′ = HighBits(w̃′) + h mod 2(q − 1)

3 : Let z0 be the first element of z1

4 : w0 = LSB(z0 − c)j
5 : c′ = H(w′,w0, µ)

6 : z′2 = (w′ − w̃′ + w0)/2 mod±q

7 : z′ = [zT1 ,z
′T
2 ]T

8 : Accept if c = c′ and
∥∥z′∥∥ ≤ Bv

Figure 4: Compressed variant of signing algorithm and corresponding verifica-
tion algorithm for our new scheme.

⌈
1.02r

√
n(`+m+ 1)

⌉
, which from testing results in rejecting around 20%

of constructed signatures. For the parametrizations targeting higher se-
curity levels, this rejection probability is somewhat lower. Note that this
rejection of z with too large norm only applies to the final signature, and
not to the intermediate zi during the iterative rejection sampling.

4.2 More Compact Signatures

Compressing the signatures and encoding them in a compact way leads
to significantly smaller signatures. We present the compressed variant
of our signature scheme in Figure 4. The compression and encoding we
use is very similar to that used for HAETAE, which in turn is similar to
what many other lattice-based signature schemes use. In Section 4.2.1
we describe the signature compression used for this scheme, and in Sec-
tion 4.2.2 we describe how the resulting signatures can be encoded in a
compact way.

The technique we use for signature compression somewhat alters the
security assumptions for the scheme and results in the security of the
scheme relying on a somewhat easier MSIS problem. Meanwhile, the
choice of signature encoding has no security implications and besides de-
creasing signature sizes, only impacts details in how the scheme is imple-
mented.

An additional size optimization that is almost always used for lattice-
based cryptosystems is to pseudorandomly derive uniformly random val-
ues from a short seed. In our case, this allows the verification key to be
represented by b and a short seed from which A0 is derived. For the con-
crete verification key sizes we present, we therefore account for the size of
A0 only as a 32-byte seed.
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4.2.1 Signature Compression

For our scheme, we make use of A = [qj−2b, 2A0, 2Im]. This is a similar
situation as the one in for instance HAETAE [10, 11], with the last m
coordinates of z only having a small impact on the value of Az. This
leads to the idea of compressing the signature by not including these last
m coordinates of z in the signature. To this end, we define the function
Split(z) which splits z ∈ Rm+`+1 into z1 ∈ R`+1 and z2 ∈ Rm, with
z = [zT1 ,z

T
2 ]T .

With z2 not included in the signature, the verifier can no longer re-
compute w. However, as these last coordinates only have a small impact,
the verifier is still able to recompute a good approximation of the com-
mitted vector w. To ensure that a signature without z2 actually is useful,
the signer therefore does not commit to the full vector w = Ay mod 2q.
Instead, the signer commits only to the parts of w which are not heavily
influenced by z2.

To ensure that the committed value can be correctly recomputed by
the verifier, the signer also includes a small hint h with the signature. This
hint describes the behaviour that z2 should have on the parts of w that
the signer committed to, enabling the verifier to correctly recompute this
part of w. This is quite similar to the approach in Dilithium [25], and even
more similar to the approach of a preliminary version of Dilithium [17]
which made use of discrete Gaussian distributions.3

As with Dilitihum, we want to commit to high order bits of w. To
this end, we consider some integer τ that divides 2(q− 1) and round each
coefficient of w to the nearest multiple of τ . Even without knowledge
of z2, the verifier can compute a good approximation w̃′ of w. Even
though w̃′ is a good approximation of w, rounding the coefficients of w̃′

to the nearest multiple of τ is not guaranteed to give the same result as
doing the same with w. This is handled by the hint vector that consist
of the number of multiples of τ that differ between the rounded values of
corresponding coefficients in w and w̃′.

In a similar manner as with Dilithium, we note that the difference
modulo 2q between 0 and 2(q−1) is only 2. To somewhat decrease the size
of the hint vectors at a minimal cost, we therefore consider 0 and 2(q−1) to
be the same multiple of τ . This corresponds to first rounding coefficients
to the nearest multiple of τ and then taking the result modulo 2(q − 1).

For the security proof of the scheme, we must also commit to the least
significant bits of w. This is without extra cost, as the least significant bit
of Az mod 2q is unaffected by z2 since the last m columns of A consist
of 2Im.

4.2.2 Signature Encoding

To encode our signatures, we follow [19] and use the entropy coding called
range asymmetric numeral systems (rANS) by Duda [18]. We apply this
coding method to the hint h and to z1. The size of the encoding of h
and z1 is close to the entropy of the distributions that h and z1 follow.
To encode c, we simply include an n-bit string with non-zero bits in the
string corresponding to non-zero coefficients of c.

For the coding of z1, we follow the same approach as [19] and split each
coefficient of z1 into two parts. The tails, consisting of the k = 2blog(r)c

3This preliminary version is available via https://eprint.iacr.org/archive/2017/633/

20170627:201152
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least significant bits of the coefficients, are included as is without use
of rANS encoding. Encoding the tail would not significantly benefit the
scheme as the coefficient bits included in the tail are close to distributed
uniformly at random. Meanwhile, the head part of z1, consisting of the
coefficient bits not included in the tail, is encoded using rANS. Further-
more, the entire hint vector h is encoded using rANS.

The encoding of h and z1 does not result in a fixed output size. The
size of the output is, however, quite close to the entropy of the distribu-
tions that these parts of the signature follow, and the variance of the size
is not that large.

To encode the signatures, we determine a maximal acceptable size of
the encoding of h and the head part of z1. With rANS, the combination
of these are encoded into a single integer, and assuming this integer is
not too large, it is padded to have exactly the maximal acceptable size.
This leads to a constant size for the signatures, but also results in an
additional rejection condition for the signature scheme, with the scheme
retrying with a different y if the compressed signature is too large.

To determine the maximal size of signatures, the entropy of the distri-
bution of h and z1 must be estimated. The entropy of z1 is determined
by using that the entropy of DZ,r is close to log(2πer2)/2 when r is larger
than the smoothing parameter for the integers. To estimate the entropy
of h, we assume that it follows a discrete Gaussian distribution with pa-
rameter 2r/τ , which is a good approximation when r is sufficiently large
in relation to τ . Total entropy is thus estimated as

n(`+ 1) log(2πer2) + nm log(8πe(r/τ)2)

2
(8)

bits and we round up this value to an integer number of bytes.
We have not analyzed in detail how likely it is that signatures are

larger than our selected fixed maximal size. However, for all parameters
we propose we have verified that, at least a significant majority of the
times, the signature can be encoded into the maximal accepted size.

For more details regarding how the signatures are encoded, and how
rANS works, see Appendix B

4.2.3 Correctness

For the compressed variant of our signature scheme in Figure 4, it is not
directly obvious that correctly generated signatures always pass verifica-
tion. That this is the case follows from the lemma below. This lemma and
its proof are very similar to the analogous statements for the HAETAE
signature scheme [10, 11], and we therefore include the proof separately
in Appendix A.

Lemma 8. Let (A, s) ← KeyGen() and let Bv ≥ Bs +
√
nm(τ/4 + 1).

Then, for every message µ ∈M the verification

CVerify(CSign(A, s, µ),A, µ)

always succeeds.

4.3 Variant Without Rejection

Our signature scheme can be instantiated in such a way that the rejec-
tion conditions during signing can be safely ignored. The two different
reasons for signatures being rejected are that the RejectSample procedure
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outputs z = ⊥ or that the produced vector z 6= ⊥ has too large norm.
With sufficiently large r and Bs, the probability to trigger these rejection
conditions is negligible.

The probability that RejectSample outputs z 6= ⊥ is M−κ, and M can
be bounded by using (6). In particular, this bound shows that if r ≥ 4Bk,
then 1/M ≥ 1− 2−108. As κ ≤ 128 = 27 for all parametrizations that we
consider, with r ≥ 4Bk the probability that RejectSample outputs ⊥ is
upper bounded by 2−100.

Meanwhile, to ensure that the probability of ‖z‖ > Bs is sufficiently

small, we set Bs =
⌈
Cr
√
n(`+m+ 1)

⌉
for a sufficiently large constant C.

The probability that ‖z‖ > Bs is then bounded by (Ce(1−C
2)/2)(n(`+m+1))

via Lemma 2. This leads to us requiring C ∈ [1.2, 1.3] for our different
parametrizations to ensure that the probability of z > Bs is at most 2−128.

An additional reason for rejections when using rANS encoding of sig-
natures is due to requiring that the signatures can be padded to a fixed
size. Because of this, if a produced signature can not be encoded into at
most this fixed size, it has to be rejected. This rejection condition can
easily be fixed by allowing variable size signatures, and this also results
in most signatures being shorter than our determined fixed size.

4.4 Theoretical Security

To prove the security of our signature scheme, we take the same approach
as HAETAE [10, 11] and use Theorem 1. We thus consider a canoni-
cal identification (CID) scheme from which our signature scheme can be
constructed by using the Fiat-Shamir transform. The UF-CMA and sUF-
CMA security of our signature scheme then follows from the UF-NMA
security of the scheme and properties of the CID scheme.

The UF-NMA security of our scheme is proven in Lemma 10 and
in Lemma 11 we prove that the scheme is paHVZK. Combining these
lemmas with Theorem 1 proves the UF-CMA security of our signature
scheme. Additionally, Lemma 12 proves the CUR property for our signa-
ture scheme, and thus allows proving the sUF-CMA security of the scheme
via Theorem 1.

The provable security of our scheme is detailed in the following theo-
rem, which also relies upon the commitment min-entropy of the scheme.
We briefly discuss the min-entropy of our scheme in Section 4.4.2.

Theorem 9. Let γ be the commitment min-entropy of our signature
scheme and β the probability that it restarts during signing. Furthermore,
let A be a UF-CMA attacker against our signature scheme that makes qS
queries to the signing oracle and qH queries to the random oracle H. Then
there are adversaries B and B′ with essentially the same running time as
A such that

AdvUF-CMA(A) ≤ AdvNTWE
q,m,`,DR,σ (B) + AdvBimodalSelfTargetMSIS

H,q,m,`,Bv
(B′)

+
2qS2−γ/2

1− β

√
qH + 1 +

qS
1− β + 2−γ/2+1(qH + 1)

√
qS

1− β .

Additionally, let A′ be an adversary against the sUF-CMA security of
our signature scheme that makes q′S queries to the signing oracle and q′H
queries to the random oracle H. Then there are adversaries F ,F ′,F ′′
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with essentially the same running time as A such that

AdvsUF-CMA(A′) ≤ 2AdvNTWE
q,m,`,DR,σ (F) + AdvBimodalSelfTargetMSIS

H,q,m,`,Bv
(F ′)

+ AdvMSIS
q,m,`,2Bv

(F ′′) +
2q′S2−γ/2

1− β

√
q′H + 1 +

q′S
1− β

+ 2−γ/2+1(q′H + 1)

√
q′S

1− β .

4.4.1 UF-NMA Security

The UF-NMA security of the uncompressed version of our scheme is al-
most directly given by the assumed hardnesses of the decision NTWE
problem and the BimodalSelfTargetMSIS problem. For the compressed
version of our scheme, the UF-NMA security similarly relies on the as-
sumed hardness of these problems, but not quite as obviously. For both
versions of our scheme, we argue for their UF-NMA security by the fol-
lowing lemma.

Lemma 10. Let A be an adversary against the UF-NMA security of our
signature scheme. Then, there exist two adversaries B and B′, each using
A once and performing negligible additional work, such that

AdvUF-NMA(A) ≤ AdvNTWE
q,m,`,DR,σ (B) + AdvBimodalSelfTargetMSIS

H,q,m,`,Bv
(B′).

Proof. For the proof, we consider a variant U of our scheme for which
the A0 and b in the public key are uniformly random instead of given
by an NTWE instance. If A behaves differently against U than against
our actual scheme, this can be used to solve the decision NTWE prob-
lem. The adversary B is defined to exploit this potential difference in the
behaviour of A by using an input decision NTWE instance to construct
the verification key for A. If a forgery is created, it determines the input
to be an NTWE instances and otherwise it determines it to be uniformly
random.

The algorithm B′ instead relies on whatever advantage A has against
the variant U of our scheme. To achieve this, the input to the target
BimodalSelfTargetMSIS problem is used to construct the verification key
that is provided to A. This verification key is thus constructed from uni-
formly random A0 and b. For the uncompressed version of our signature
scheme, a forgery produced by A directly corresponds to a solution for
the BimodalSelfTargetMSIS problem of B′, which proves the statement
for the uncompressed version.

For the compressed version of our signature scheme, the random oracle
that B′ provides when simulating A is given by

H′(w′, w0, µ) = H(w′ + w0, µ)

where H is the random oracle for the BimodalSelfTargetMSIS instance.
A forgery from the signature scheme consists of a signature (z1,h, c) and
a message µ such that

H′(w′,w0, µ) = H(w′ + w0, µ) = c

for w′ and w0 defined as in CVerify((z1,h, c),A, µ).
A valid forgery additionally corresponds to a vector z′ = [zT1 ,z

′T
2 ]T

such that ‖z′‖ ≤ Bv, where z′2 = (w′+w0− w̃′)/2. Given such a forgery,
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CID scheme

P(A, s) V(A)

y ← D`+m+1
R,r

w = Ay mod 2q
w−−−−−−−→c← U(C)

z0 = y
c←−−−−−−

for Each non-zero coefficient ci of c

zi = Rsci(zi−1)

if zi = ⊥
Abort CID scheme

k = ‖c‖1
Abort with probability 1−Mk−κ

z = zk
z−−−−−−→ Reject if ‖z‖ > B

Accept if Az − qc mod 2q = w

CID simulator

1 : z ← D`+m+1
R,r

2 : c← U(C)
3 : w = Az − qc
4 : return (z, c,w)

Figure 5: Canonical identification scheme and simulator for the scheme.

we claim that (z′, c, µ) solves the target BimodalSelfTargetMSIS instance.
This is the case as

Az′ = A1z1 + 2z′2 = w′ + w0 + qcj

and thus
H(Az′ − qcj, µ) = H(w′ + w0, µ) = c

as claimed. Furthermore, valid signatures satisfy that ‖z‖′ ≤ Bv and
therefore the norm bound for the BimodalSelfTargetMSIS instance is sat-
isfied.

4.4.2 CID Properties

The CID scheme corresponding to the uncompressed version of our scheme
is illustrated in Figure 5, together with a simulator for the scheme. For
simplicity, we do not provide an explicit definition of the CID scheme
corresponding to the compressed variant of our signature scheme, but we
still prove properties about both variants. We do this by detailing how the
proofs can be adapted from the uncompressed setting to the compressed
setting.

Zero knowledge First, in the following lemma we show that the CID
scheme is paHVZK. For the scheme to be paHVZK, it must be possible
to simulate the output from the scheme conditioned on z 6= ⊥ without
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knowledge of the secret key. To simulate the CID scheme, Lemma 3 is
used to show that the output of Rv(y) is independent of v, and thus the
distribution of z 6= ⊥ is independent of the secret key.

Lemma 11. The CID schemes that corresponds to the compressed and
uncompressed variants of our signature scheme are paHVZK. Further-
more, the prover produces a z 6= ⊥ with probability M−κ.

Proof. The CID scheme for the uncompressed variant of our signature
scheme is given in figure 5 together with a simulator for the CID scheme.
Lemma 3 combined with Corollary 7 give that, conditioned on not be-
ing ⊥, zi is distributed as if from D`+m+1

R,r for every i ∈ {1, . . . , k}. As
such, conditioned on the prover producing an output, the distribution of
z is the same in the simulator and the CID scheme.

As Rv(y) has a probability 1/M of producing a valid output, the prob-
ability that it successfully produces an output all k times it is executed
is M−k. After zk has been produced, the scheme aborts with probability
1 − Mk−κ, ensuring that the probability of an output z 6= ⊥ is M−κ

for every possible challenge c. Therefore, the rejection sampling does not
impact the distribution of challenges in transcripts where z 6= ⊥.

Conditioned on z 6= ⊥, for both the simulator and the CID scheme,
the distribution of c is as if sampled from U(C). This also implies that
w = Az − qcj is distributed identically in the simulator and the CID
scheme. As such, the distribution of z, c,w from the simulator is the
same as the one from the CID scheme conditioned on z 6= ⊥.

In the CID scheme corresponding to the compressed signature scheme,
the verifier would first send wh = HighBits(w) and w0 = LSB(w). The
challenge c would still be the same, but the final response of the verifier
would only contain parts of z together with a hint derived from z and
w. As such, the transcript from a compressed variant of the CID scheme
is given directly by a deterministic transform of the transcript of the un-
compressed version. The same transform can be applied to the simulated
transcript, and thus this version of the CID scheme is also paHVZK.

Commitment min-entropy Next, we note that the commitment
min-entropy of the scheme is easily lower-bounded by close to n bits for
the compressed scheme. This is the case as w0 = LSB(y0)j is part of
the commitment with y0 sampled from a discrete Gaussian distribution
with relatively large standard deviation. As such, the coefficients of the
first element of w0 are statistically close to uniformly random, and w0

therefore has a min-entropy that is not significantly smaller than n.
Note, however, that this should significantly underestimate the com-

mitment min-entropy of the scheme, as it only accounts for the min-
entropy in w0. Although we do not prove this, similarly to in HAETAE [10],
we feel that it is safe to assume that the actual commitment min-entropy
is significantly larger than this. We therefore ignore terms which depend
on the min-entropy when we use Theorem 9. Furthermore note that the
uncompressed variant of the scheme obviously has at least as high min-
entropy as the compressed variant.

Computational Unique Response To prove the sUF-CMA secu-
rity of the signature scheme, we must also bound the advantage an ad-
versary may have against the CUR property of the CID scheme. Such a
bound is presented in the following lemma.
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Lemma 12. If A is an adversary against the CUR property of the CID
scheme, then there exist adversaries B and B′, each using A once and
performing negligible additional work, such that

AdvCUR(A) ≤ AdvNTWE
q,m,`,DR,σ (B) + AdvMSIS

q,m,`,2Bv
(B′).

Proof. A successful adversary A against the CUR property of the CID
scheme produces w, c, za,zb with za 6= zb mod 2q such that w, c, za and
w, c, zb both are accepting transcripts for the CID scheme. Thus,

Aza − qcj mod 2q = Azb − qcj mod 2q = w

and therefore A(za − zb) = 0 mod 2q. We can reduce this modulo q and
multiply by the inverse of 2 modulo q, which gives

[−b,A0, Im](za − zb) = 0 mod q

as A = [qcj − 2b, 2A0, 2Im]. As such, if b was uniformly random, then
za − zb would correspond to a solution to an MSIS problem.

In the scheme b is generated as an NTWE instance and is not uniformly
random. However, if A works when b is given by an NTWE instance and
not when it is uniformly random, then A provides a distinguisher for
the decision NTWE problem. Thus, B is constructed by using its input
decision NTWE instance as verification key for A whereas B′ constructs
a verification key for A by sampling both b and A0 uniformly at random.
With ‖za‖ and ‖zb‖ both at most Bv, this proves the lemma for the
uncompressed variant of our scheme.

For a compressed variant of the CID scheme, the adversary A would
instead produce w′, c, za,1,ha,zb,1,hb, with (za,1,ha) 6= (zb,1,hb). As-
suming that this guarantees that the reconstructed z′a and z′b differ, the
same argument as for the uncompressed variant holds. As the recon-
structed z′ is given by [zT1 ,z

′T
2 ]T , that z′a = z′b implies that za,1 = zb,1.

Additionally, with za,1 = zb,1, for za,2 = zb,2 it is required that
w′a ≡ w′b mod 2(q − 1) and this is only possible if ha ≡ hb mod 2(q− 1).
To ensure that there is a computationally unique response it should thus
be verified that h is the expected representative modulo 2(q − 1). With
such a verification, it is guaranteed that two different verifying transcripts
for the compressed CID scheme imply two different reconstructed z′a and
z′b, both of which have norm at most Bv. In the same way as for the un-
compressed variant, this directly provides a solution to the MSIS variant
with size bound 2Bv.

5 Concrete Parameters

In Table 1 we present some suggested parametrizations of our scheme
which have a noticeable, but acceptable, rejection probability. Addition-
ally, in Table 2 we present some parametrizations where the rejection
conditions can be securely ignored, as described in Section 4.3. We also
provide a comparison of the verification key and signature sizes of our
scheme to that of alternative schemes in Table 3.

The public key size presented in the tables is⌈
nmdlog(q)e

8

⌉
+ 32

bytes. This corresponds to representing each coefficient of b as a log(q) bit
integer, while A0 is represented by a 32-byte seed. The concrete signature
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size we provide for our scheme is an approximation of the entropy for the
distributions of z1 and h plus 64 bytes. This includes 32 bytes for the
representation of c and 32 additional bytes as leeway for our fixed signature
size.

We have not extensively investigated the probability that constructed
signatures can be encoded into the size we present in the tables. However,
from testing we have determined that at least a large majority of all
signatures can be encoded to the presented size for all parametrizations
we consider here.

Note that we do not include BLISS in our comparison of schemes.
This is due to the parametrizations of BLISS predating much of the work
on estimating the concrete hardness of lattice problems, and the claimed
security in the BLISS paper is significantly higher than it would be in the
core-SVP metric. Due to this difference in how the security is estimated,
even the highest security level proposed for BLISS has less than 120 bits
of security in the core-SVP metric.

To fairly compare a BLISS type signature scheme to more modern
lattice-based signature schemes would require new parametrizations of
BLISS, which is out of scope for this work. However, it has been noted that
such a scheme would be approximately as compact as HAETAE [10, 11].

5.1 Selecting Parameters

The security estimates of our proposed parametrizations presented in Ta-
bles 1 and 2 are computed with the lattice estimator [1]. For repro-
ducibility, in Appendix C we present the concrete parameters used with
the lattice estimator to get our security estimates. The security estimates
are given via the

*.estimate.rough

functions in order to get an approximation of the security in the core-SVP
metric.

In Sections 5.1.1 and 5.1.2 we detail how the security of the scheme is
related to the hardness of the standard lattice problems that we estimate
with the lattice estimator. Both for the MSIS security and the NTWE
security, we make the assumption that the structure present in R can not
be efficiently exploited, and that the structured lattice problems are as
hard as unstructured counterparts.

The concrete parameters proposed in Tables 1 and 2 have been selected
to provide the desired security levels while having an acceptable rejection
probability. Furthermore, the parameters are selected so as to attempt to
minimize the combined size of a verification key and a signature.

5.1.1 MSIS Security

A classical reduction in the ROM shows that an efficient algorithm for
solving the BimodalSelfTargetMSISH,q,m,`,Bv

can be used to efficiently
solve the MSISq,m,`,2Bv problem. However, this reduction is not tight and
as it makes use of rewinding and the forking lemma it can not easily be
translated to a reduction in the quantum random oracle model.

Instead of using this reduction to argue for the security of our scheme,
we heuristically assume that the BimodalSelfTargetMSISH,q,m,`,Bv

prob-
lem is as hard as the MSISq,m,`,Bv problem. Motivation for this approach
is that the only way to solve this BimodalSelfTargetMSIS problem seems
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Security 120 180 260
q 12289 50177 50177
` 1 3 4
m 2 2 3
σ 2.60 1.00 1.50
r 128 55 95
κ 58 58 128
τ 256 128 128
Bk 110.07 48.00 79.60
Bs 4178 2199 4386
Bv 5649 2946 5300

Rejection rate 0.460 0.525 0.617
Rejection rate per coefficient 0.0106 0.0127 0.0075
Verification Key Size (bytes) 928 1056 1568

Signature Size (bytes) 775 1184 1694
Combined (bytes) 1703 2240 3262

BKZ block size to break SIS (Strong UF) 420 (332) 629 (500) 899 (730)
Core-SVP cost 122 (96) 183 (146) 262 (213)

BKZ block size to break NTWE 414 618 881
Core-SVP cost 120 180 257

Table 1: Proposed parametrizations of our signature scheme. The reported
rejection rates only accounts for the probability that z = ⊥ is produced by
RejectSample(y, c) and not the probability that ‖z‖ > Bs.

Security 120 180 260
q 50177 50177 50177
` 2 3 4
m 2 3 4
σ 0.90 1.00 1.45
r 165 205 325
κ 58 80 128
τ 512 512 256
Bk 40.73 50.60 80.37
Bs 7541 10679 18769
Bv 10460 14254 20849

Rejection rate 2−111 2−112 2−111

Verification Key Size (bytes) 1056 1568 2080
Signature Size (bytes) 1059 1475 2161

Combined (bytes) 2115 3043 4241
BKZ block size to break SIS (Strong UF) 416 (337) 670 (552) 889 (742)

Core-SVP cost 121 (98) 195 (161) 259 (216)
BKZ block size to break NTWE 422 618 874

Core-SVP cost 123 180 255

Table 2: Alternative parametrizations of our signature scheme which have a
negligible rejection probability, allowing producing signatures without rejection.
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to be to to solve this corresponding MSIS problem. This same approach is
used in many previous works, such as Dilithium [25] and HAETAE [10, 11].

5.1.2 NTWE Security

We estimate the hardness of the NTWE problem in the same way as
in [20]. This estimate assumes that the NTWE problem with A ∈ Rm×`
is essentially as hard as the rank `+ 1 module-LWE problem.

More specifically, the NTWEq,m,`,DR,σ problem is estimated to be as

hard to solve as the unstructured LWE problem with A ∈ Zm
′×`′

q where
m′ = mn and `′ = (`+ 1)n− 1. Furthermore, for the unstructured LWE
problem, it is assumed that all elements of the secret are sampled from
DZ,σ. With this estimate, as f = 2f0 + 1 is deterministically constructed
from f0 ← DR,σ, we do not account for the fact that f is larger than if
directly sampled from DR,σ. The NTWE security estimate presented for
our proposed parameters are the estimated core-SVP hardness of solving
such a search LWE problem.

Our security estimate assumes that solving the decision NTWE prob-
lem is not significantly easier than the search version of the problem. It
can be proven that the decision LWE problem is essentially as hard as the
search version of the problem, but such a reduction is not available for the
NTWE problem. This is similar to the situation for the NTRU problem,
where it is quite common to simply assume that the decision and search
versions of the problem are equally hard.

5.2 Comparison to Other Schemes

5.2.1 Compactness

The verification key and signature sizes of our scheme and that of other
lattice-based signature schemes are presented in Table 3. Out of the pre-
sented signature schemes, only Falcon [27] and HAWK [8] have compara-
ble sizes to our new system. Both HAWK and Falcon are based on the
hash-and-sign paradigm using NTRU lattices, with the other schemes in
the comparison based on some variant of the Fiat-Shamir transform.

As can be seen in Table 3, our scheme is significantly more compact
than all other Fiat-Shamir-based schemes in our comparison. Further-
more, even when parametrized to have negligible rejection probability, our
scheme is still more compact than previous Fiat-Shamir-based schemes.
The smaller verification keys and signatures are the main advantage of
our new signature scheme compared to other Fiat-Shamir-based schemes.

5.2.2 Secure Implementation

The more compact hash-and-sign-based schemes Falcon and HAWK have
some downsides compared to the Fiat-Shamir-based schemes, and our
scheme also has similar downsides. Compared to ML-DSA, Falcon has the
downside of implementations requiring floating point operations, which
can be hard to implement in a side-channel secure manner.

Our scheme may also be hard to implement in a side-channel secure
manner, as it has previously been observed that implementations of re-
jection sampling from Gaussian distributions may be vulnerable to side-
channel attacks [9, 26]. Furthermore, our new more advanced rejection
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sampling may be even harder to protect from side-channel attacks. Al-
though developing a secure implementation for our scheme almost cer-
tainly is harder than for schemes such as Dilithium and HAETAE, it is
not directly clear how this aspect of our scheme compares to Falcon.

5.2.3 Hardness Assumptions

Compared to other lattice-based schemes, HAWK has the downside of
relying on the assumed hardness of a problem that is not as well studied
as other lattice problems. Our scheme has the similar downside on relying
on the relatively new NTWE problem. However, as the NTWE problem
can be seen as a natural combination of the NTRU and LWE problems,
it can be argued to be better understood than the lattice isomorphism
problem upon which HAWK is based.

Furthermore, as explained in Section 1.3.2, our scheme could also have
been based on NTRU or MLWE lattices. An NTRU-based variant of our
scheme would have similar sizes as the one we propose, but with less
flexibility in how parameters can be selected. Meanwhile, an MLWE-
based variant of our scheme would have the same flexibility in parameter
choices, but with somewhat larger sizes. Directly transferring our NTWE-
based parametrization to a MLWE-based scheme leads to a scheme with
the same verification key sizes but with signatures that are 250–300 bytes
larger for all targeted security levels. Thus, an MLWE-based variant of
our scheme would still be significantly more compact than previous lattice-
based Fiat-Shamir signature schemes.

5.2.4 Efficiency

Another point of comparison is how long it takes to sign a message. Due
to the more advanced rejection sampling of our scheme, signing may be
somewhat slower with our scheme than with previous Fiat-Shamir-based
signature schemes. Additionally, our signing must repeat the rejection
sampling multiple times in an iterative manner in order to actually pro-
duce a signature, increasing the runtime of signing.

We do, however, believe that each iterative step of the rejection sam-
pling should not be that much more costly than previous approaches.
Although the functions that should be computed are expressed as an in-
finite sum, Lemma 5 shows that only accounting for a few terms of the
sum is sufficient. The same lemma also shows that computing the sum
only requires knowledge of the two integers 〈y,v〉 and ‖v‖2. As such, only
minimal computations that handle high dimensional vectors are required
to compute the sum.

As we do not have an optimized implementation of our scheme, we can
not fairly compare the execution time of our scheme to that of previous
schemes. However, we believe that in many applications, the smaller
signatures and verification keys of our scheme more than make up for the
somewhat longer signing time.

6 Conclusion

Thanks to our new rejection sampling, we are able to construct a signa-
ture scheme that is significantly more compact than previous lattice-based
Fiat-Shamir signature schemes. There are, however, downsides to our new
scheme and still potential for it to be further improved.
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Security Level Scheme VK Size Signature Size Total
120 Falcon-512 897 666 1563
120 HAWK-512 1024 555 1579
120 HAETAE-120 992 1474 2466
120 G+G-120 1472 1677 3149
120 Dilithium-2 1312 2420 3732
120 Ours with rejection 928 775 1703
120 Ours without rejection 1056 1059 2115
180 HAETAE-180 1472 2349 3821
180 G+G-180 1952 2143 4095
180 NTRU G+G-180 2080 1769 3849
180 Dilithium-3 1952 3293 5245
180 Ours with rejection 1056 1184 2240
180 Ours without rejection 1568 1475 3043
260 Falcon-1024 1793 1280 3073
260 HAWK-1024 2440 1221 3661
260 HAETAE-260 2080 2948 5028
260 G+G-260 2336 2804 5140
260 Dilithium-5 2592 4595 7187
260 Ours with rejection 1568 1694 3262
260 Ours without rejection 2080 2161 4241

Table 3: Signature sizes in bytes for different lattice-based signature schemes.

A notable downside with our new sampling is its reliance on discrete
Gaussian distributions which may be hard to implement in a side-channel
secure manner. Meanwhile, uniformly random distributions over hyper-
cubes and hyperballs can be sampled from relatively easily, and this is
a large part of the reason why these distributions are used for Dilithium
and HAETAE respectively. It would therefore be interesting if a variant of
our new approach to rejection sampling could be applied to, and provide
a significant advantage for, distributions that are easier to sample from.

Improvements of our rejection sampling may also be possible by further
using the available flexibility in how the z vector in signatures can be
constructed. In the same way as for the G+G signature scheme, z can be
constructed as y+sc+2sk for arbitrary k ∈ R. We only use this flexibility
to iteratively select the sign of coefficients of c, but further improvements
may be possible by not imposing this limitation in how k is selected.
However, selecting k more freely would complicate the analysis needed to
guarantee that the sampling produces the correct output distribution.
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Stehlé, and MinJune Yi. HAETAE: Shorter lattice-based fiat-shamir
signatures. Cryptology ePrint Archive, Report 2023/624, 2023.

[11] Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim
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A Missing Proofs

A.1 Proof of Lemma 5

Here, we prove Lemma 5. For reference, we begin by restating the lemma.

Lemma 5. The function Sv(y) only depends on 〈y,v〉 and ‖v‖2. Fur-
thermore, for arbitrary t ≥ 1, fixed v and with 〈y,v〉 ≥ −‖v‖2 then∣∣∣∣∣Sv(y)−

t∑
k=0

(−1)k
ρr(y + kv)

ρr(y)

∣∣∣∣∣ ≤ ρr(tv)

ρr(v)− ρr(2v)
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Proof. To see that Sv(y) only depends on 〈y,v〉 and ‖v‖2, note that

ρr(y + kv) = exp

(
−‖y‖

2 + k2‖v‖2 + 2k〈y,v〉
2r2

)
.

As such, we have

Sv(y) =

∞∑
k=0

(−1)k
ρr(y + kv)

ρr(y)
=

∞∑
k=0

(−1)k exp

(
−k

2‖v‖2 + 2k〈y,v〉
2r2

)
which is a function that depends only on ‖v‖2 and 〈y,v〉.

Next, we note that∣∣∣∣∣Sv(y)−
t∑

k=0

(−1)k
ρr(y + kv)

ρr(y)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=t+1

(−1)k
ρr(y + kv)

ρr(y)

∣∣∣∣∣
≤

∞∑
k=t+1

ρr(y + kv)

ρr(y)
=

∞∑
k=t+1

exp

(
−k

2‖v‖2 + 2k〈y,v〉
2r2

)

and when 〈y,v〉 ≥ −‖v‖2 this is upper bounded by

∞∑
k=t+1

exp

(
− (k2 − 2k)‖v‖2

2r2

)
=

∞∑
k=t+1

exp

(
− ((k − 1)2 − 1)‖v‖2

2r2

)

= exp

(
‖v‖2

2r

) ∞∑
k=t

exp

(
−k

2‖v‖2

2r2

)

≤ exp

(
− (t2 − 1)‖v‖2

2r2

) ∞∑
k=0

exp

(
−k

2‖v‖2

2r

)

≤ exp

(
− (t2 − 1)‖v‖2

2r2

) ∞∑
k=0

exp

(
−k‖v‖

2

2r2

)

≤
exp

(
− (t2 − 1)‖v‖2

2r2

)
1− exp

(
−‖v‖

2

2r2

) =
ρr(tv)

ρr(v)− ρr(2v)

as claimed.

A.2 Proof of Lemma 6

Here, we prove Lemma 6. For reference, we begin by restating the lemma.

Lemma 6. Let Kv be the set of y such that |〈y,v〉| ≤ ‖v‖2 and let
α = r/‖v‖. Then

max
y∈Kv

1−
∑
k∈Z

(−1)k
ρr(y + kv)

ρr(y)
≤ 1 +

2α
√

2πρ(πα)

ρα(1) · (1− ρ1(2πα))
= Mα

and Mα is strictly decreasing with α.

Proof of Lemma 6. To begin with, we observe that∑
k∈Z

(−1)k
ρr(y + kv)

ρr(y)
=
∑
k∈Z

ρr(y + 2kv)− ρr(y − (2k + 1)v)

ρr(y)

= 2F (2Z)− F (Z)
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where we define

F (j) =
ρr(y + jv)

ρr(y)

= exp

(
− j

2‖v‖2 + 2j〈y,v〉
2r2

)
=
ρr/‖v‖(j + 〈y,v〉/‖v‖2)

ρr‖v‖(〈y,v〉)
.

With this definition of F (j), we thus want to bound 1 + F (Z)− 2F (2Z).
By the Poisson summation formula we have that

F (Z) = F̂ (Z) and 2F (2Z) = F̂ (Z/2)

where F̂ is the Fourier transform of F . As

f(y) = ρr(y) = exp(−‖y‖2/(2r2))

has the Fourier transform f̂(w) = r
√

2πρ1/r(2πw), we have that

F̂ (k) =
r
√

2π

‖v‖ρr‖v‖ (〈y,v〉) · exp

(
2πi

k〈y,v〉
‖v‖2

)
· ρ‖v‖/r (2πk)

This gives that

F̂ (Z) =

√
2π · r

‖v‖ρr‖v‖ (〈y,v〉)
∑
k∈Z

exp

(
2πi

k〈y,v〉
‖v‖2

)
· ρ‖v‖/r (2πk)

=

√
2π · r

‖v‖ρr‖v‖ (〈y,v〉)

(
1 +

∞∑
k=1

2 cos

(
2πk
〈y,v〉
‖v‖2

)
· ρ‖v‖/r (2πk)

)

while

2F (2Z) =

√
2π · r

‖v‖ρr‖v‖ (〈y,v〉)

(
1 +

∞∑
k=1

2 cos

(
πk
〈y,v〉
‖v‖2

)
· ρ‖v‖/r (πk)

)
.

As such, we have that F (Z)− 2F (2Z) equals

−
√

2π · r
‖v‖ρr‖v‖ (〈y,v〉)

∞∑
k=1

2 cos

(
(2k − 1)π

〈y,v〉
‖v‖2

)
· ρ‖v‖/r ((2k − 1)π)

which in the relevant regime is maximized when |〈y,v〉| = ‖v‖2 and we
thus have

1−
∑
k∈Z

(−1)k
p(y + kv)

p(y)
≤ 1 +

2
√

2π · r
‖v‖ρr(‖v‖)

∞∑
k=1

ρ‖v‖/r ((2k − 1)π) (9)
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Finally, by introducing α = r/‖v‖ we get

1−
∑
k∈Z

(−1)k
p(y + kv)

p(y)
≤ 1 +

2
√

2π · α
ρα(1)

∞∑
k=1

ρ1/α((2k − 1)π)

= 1 +
2
√

2π · α
ρα(1)

∞∑
k=1

exp(−π2α2(4k2 − 4k + 1)/2)

= 1 +
2
√

2π · αρ(πα)

ρα(1)

∞∑
k=1

exp(−2π2α2(k2 − k))

≤ 1 +
2
√

2π · αρ(πα)

ρα(1)

∞∑
k=0

exp(−2π2α2k)

= 1 +
2
√

2π · αρ(πα)

ρα(1)

1

1− exp(−2π2α2)

= 1 +
2α
√

2πρ(πα)

ρα(1) · (1− ρ1(2πα))
= Mα.

which gives our expression for Mα

To see that Mα is strictly decreasing with α, we note that all factors in
the second term, besides α, are decreasing with α. Furthermore, we note
that α/ρα(1) = α exp(1/(2α2)) is decreasing with α when α ≤ 1 while,
when α > 1 the product

α · ρ1(πα) = α exp(−π2α2/2)

is decreasing with α. As such, the second term is decreasing with α for
all α > 0, and the whole expression is thus also decreasing with α.

A.3 Proof of Lemma 8

To prove Lemma 8, we first prove the following property of the LowBits
function.

Lemma 13. Let k > 0 be an integer, q be a prime and τ an integer that
divides 2(q − 1). Then, it holds that

‖LowBits(w mod 2q)‖∞ ≤ τ/2 + 2

for arbitrary w ∈ Rk.

Proof. Without loss of generality, we assume that w = w mod 2q and
thus ‖w‖∞ < 2q. By the triangle inequality, we can then upper bound
‖LowBits(w)‖∞ =

∥∥w −HighBits(w) mod±2q
∥∥
∞ by

‖w − bw/τe · τ‖∞ +
∥∥bw/τe · τ −HighBits(w) mod±2q

∥∥
∞.

In this expression, the first term ‖w − bw/τe · τ‖∞ is at most τ/2.
For the second term, we note that, as ‖w‖∞ < 2q, HighBits(w) and

bw/τe · τ mod±2q differ only for coefficients c of an element of w such
that bc/τe · τ = 2(q − 1). For coordinates that do differ, the difference
is between −2 = 2(q − 1) mod±2q and 0 = 2q mod±2q, which is thus a
difference of 2 modulo 2q. As such, ‖LowBits(w)‖∞ ≤ τ/2 + 2.

Next, we prove Lemma 8, and thus that all generated signatures verify
as expected. For reference, we begin by restating the lemma.
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Lemma 8. Let (A, s) ← KeyGen() and let Bv ≥ Bs +
√
nm(τ/4 + 1).

Then, for every message µ ∈M the verification

CVerify(CSign(A, s, µ),A, µ)

always succeeds.

Proof. For the signature (z1,h, c) to be accepted, it is required that the
recomputed c′ equals c and that the norm of the recomputed z′ vector is
sufficiently short.

The recomputed challenge c′ and the original challenge c match if

HighBits(w̃′) + h mod 2q = HighBits(Ay mod 2q) (10)

and LSB(Ay mod 2q) = LSB(z0 − c)j. To see that (10) holds, note that

A1z1 mod 2q = Az −A2z2 mod 2q = Ay + Asc− 2z2 mod 2q

and we thus have

w̃′ = A1z1 − qcj mod 2q = w − 2z2 mod 2q = w̃

as As = qj. With

w′ = HighBits(w̃′) + h mod 2(q − 1) = HighBits(w̃) + h mod 2(q − 1)

the definition of h directly gives us that HighBits(w) = w′.
Next, note that A mod 2 = [j,0,0] and thus, for every vector x,

LSB(Ax mod 2q) = LSB(Ax) = x0j mod 2,

where x0 is the first element of x. Furthermore, z ≡ y + sc mod 2, and
thus LSB(z0) = y0 + s0c mod 2, where z0, y0 and s0 are the first elements
of z,y and s respectively. As s0 = f = 2f + 1 ≡ 1 mod 2, this gives that

LSB(z0 − c)j = LSB(y0)j = LSB(Ay mod 2q) = LSB(w)

as desired.
Finally we show that, for correctly generated signatures, the recom-

puted z′ = [zT1 ,z
′T
2 ]T vector always has norm at most Bv. During sign-

ing, the size of z = [zT1 ,z
T
2 ]T is bounded by ‖z‖ ≤ Bs. We want to bound

‖z2 − z′2‖ and to this end make use of the fact that

w − w̃′ = w − w̃ ≡ 2z2 mod 2q.

Since z′2 = (w′ − w̃′ + w0)/2 mod±q, we thus have that

z′2 = z2 + (LowBits(w)−w0)/2 mod±q (11)

by using that w′ = HighBits(w) and the definition of LowBits.
To bound ‖z2‖′ we first note that,

∥∥x mod±q
∥∥ ≤ ‖x‖ for every vec-

tor x. This gives that∥∥z′2∥∥ ≤ ‖z2‖+ ‖LowBits(w) + w0‖/2

and it follows that ∥∥z′∥∥ ≤ ‖z‖+
√
nm(τ/4 + 2) ≤ Bv

by using ‖LowBits(w) + w0‖2 ≤ nm‖LowBits(w) + w0‖2∞ which is then
bounded by the triangle inequality with Lemma 13 and by using that
‖w0‖∞ ≤ 1 < 2. As such, all correctly generated signatures satisfy that
the recomputed z′ has norm at most Bv and are thus accepted by the
verification procedure.
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B rANS Encoding

To encode our signatures, we make use of the rANS encoding of Duda [18].
This leads to signature sizes that are close to the entropy of the distri-
bution that the signatures follow. As described in Section 4.2.2, rANS is
used to encode the high order bits of z and the full hint vector h. The
procedure in both cases is almost the same, but with the coding function
parametrized differently, due to h and the high order bits of z following
different distributions.

The encoding is parametrized by a precision 2k, where we select k = 16
in our test implementation that we use to test sizes of signatures in prac-
tice. We then define f(s) as an integer approximately equal to 2k · p(s)
where p(s) is an estimate for the probability that an entry of the data to
encode is given by the symbol s.

For the encoding of the higher order bits of z, we determine p(s) by
summing over the different outcomes of a discrete Gaussian distribution
that correspond to the rounded coefficient s. For the encoding of h we
determine f(s) similarly, but account for the coefficients of LowBits(w)
by assuming that they are uniformly random. It is only the difference
in p(s) that differs between the encoding of the high bits of z1 and the
encoding of h.

Although not defined as such, we can think of the symbols to encode,
corresponding to the coefficients of h and the high bits of z1, as sequential
integers. This allows us to define CDF(s) =

∑
v<s f(s) and s = symbol(y)

as the unique symbol s such that CDF(s) ≤ y < CDF(s+ 1).
The coding function C(x, s) is defined via

C(x, s) = 2k ·
⌊

x

f(s)

⌋
+ (x mod (f(s))) + CDF(s)

Meanwhile, the decoding function D(x) first determines the symbol to
decode as s = symbol(x& (2k−1)) where & is the bitwise AND operation.
The decoding function is then defined via

D(x) =
(
f(s) ·

⌊
x · 2−k

⌋
+ (x& (2k − 1))− CDF(s), s

)
.

To encode a vector over R, we begin with x = x0 for arbitrary positive
integer x0 as initial value. A coefficient s of an entry in the vector is
encoded via x = C(x, s), thus updating the integer x. This continues
for every coefficient of every entry of the vector, resulting in some large
integer x = xe as the final output of the encoding.

Decoding begins with a large integer x = xe, applies the decoding
function to get (x, s) for a new x and a decoded symbol s. This continues
until the expected number of symbols have been decoded, which results
in x = x0. This gives the same sequence of symbols that were encoded
into xe, although returned in reverse.

As the encoding can start from an arbitrary initial value x0, we can en-
code both h and the high bits of z into a single value. This is accomplished
by first encoding the high bits of z with x0 = 0 to get some value x = xz.
Then, the hint is similarly encoded, but starting with x = xz resulting in
the final state x = xzh. To decode, the hint vector is first recovered via
the decoding function starting from xzh, with the final decoding function
call resulting in x = xz. The high bits of z can then be decoded from this
value xz, thus recovering all the encoded data.
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C Parameters for Lattice Estimator

Normal Parametrs

For 120 bits of security

Unforgeability

SISParameters(n=512, q=3329, length_bound=3195, m=1024, norm=2, tag=None)

Strong unforgeability

SISParameters(n=512, q=3329, length_bound=6390, m=1024, norm=2, tag=None)

NTWE security

LWEParameters(n=511, q=3329, Xs=D(σ=1.50), Xe=D(σ=1.50), m=+Infinity, tag=None)

For 180 bits of security

Unforgeability

SISParameters(n=512, q=50177, length_bound=2946, m=1536, norm=2, tag=None)

Strong unforgeability

SISParameters(n=512, q=50177, length_bound=5892, m=1536, norm=2, tag=None)

NTWE security

LWEParameters(n=1023, q=50177, Xs=D(σ=1.00), Xe=D(σ=1.00), m=+Infinity, tag=None)

For 260 bits of security

Unforgeability

SISParameters(n=768, q=50177, length_bound=5300, m=2048, norm=2, tag=None)

Strong unforgeability

SISParameters(n=768, q=50177, length_bound=10600, m=2048, norm=2, tag=None)

NTWE security

LWEParameters(n=1279, q=50177, Xs=D(σ=1.50), Xe=D(σ=1.50), m=+Infinity, tag=None)

Parametrs Without Rejection

For 120 bits of security

Unforgeability

SISParameters(n=512, q=12289, length_bound=5850, m=1280, norm=2, tag=None)

Strong unforgeability

SISParameters(n=512, q=12289, length_bound=11700, m=1280, norm=2, tag=None)

NTWE security

LWEParameters(n=767, q=12289, Xs=D(σ=0.65), Xe=D(σ=0.65), m=+Infinity, tag=None)
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For 180 bits of security

Unforgeability

SISParameters(n=768, q=50177, length_bound=18349, m=1792, norm=2, tag=None)

Strong unforgeability

SISParameters(n=768, q=50177, length_bound=36698, m=1792, norm=2, tag=None)

NTWE security

LWEParameters(n=1023, q=50177, Xs=D(σ=1.00), Xe=D(σ=1.00), m=+Infinity, tag=None)

For 260 bits of security

Unforgeability

SISParameters(n=1024, q=50177, length_bound=20685, m=2304, norm=2, tag=None)

Strong unforgeability

SISParameters(n=1024, q=50177, length_bound=41370, m=2304, norm=2, tag=None)

NTWE security

LWEParameters(n=1279, q=50177, Xs=D(σ=1.45), Xe=D(σ=1.45), m=+Infinity, tag=None)
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