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Abstract. RSA is widely used in modern cryptographic practice, with
certain RSA-based protocols relying on the secrecy of p and q. A common
approach is to use secure multiparty computation to address the privacy
concerns of p and q. Specifically constrained to distributed RSA modu-
lus generation protocols, the biprimality test for Blum integers N = pq,
where p ≡ q ≡ 3 (mod 4) are two primes, proposed by Boneh and
Franklin (2001) is the most commonly used. Over the past 20 years, the
worst-case acceptance rate of this test has been consistently assumed to
be 1/2 under the condition gcd(pq, p + q − 1) = 1. This paper demon-
strates that the acceptance probability for the Boneh-Franklin test is at
most 1/4, rather than 1/2, except in the specific case where p = q = 3.
Notably, 1/4 is shown to be the tightest upper bound. This result sub-
stantially improves the practical effectiveness of the Boneh-Franklin test:
achieving the same level of soundness for the RSA modulus now requires
only half the iterations previously considered necessary. Furthermore,
we propose a generalized biprimality test based on the Lucas sequence.
In the worst case, the acceptance rate of the proposed test is at most
1/4 + 1.25/(pmin − 3), where pmin is the smallest prime factors of N . To
validate our approach, we implemented the variant Miller-Rabin test, the
Boneh-Franklin test, and our proposed test, performing pairwise compar-
isons of their effectiveness. Simulations indicate that the proposed test is
generally more efficient than the Boneh-Franklin test in detecting cases
where N is not an RSA modulus. Additionally, this test is applicable
to generating RSA moduli for arbitrary odd primes p, q. A correspond-
ing protocol is developed for this test, validated for resilience against
semi-honest adversaries, and shown to be applicable to most known dis-
tributed RSA modulus generation protocols. After thoroughly analyz-
ing and comparing well-known protocols for Blum integers, including
Burkhardt et al.’s protocol (CCS 2023), and the Boneh-Franklin proto-
col, our protocol is competitive for generating distributed RSA moduli.

1 Introduction

The RSA cryptosystem [35] is one of the pioneering and widely used public key
cryptosystems. In classical scenarios, two large distinct primes, p and q, are ini-
tially generated as secret keys, and the public key, N = pq, is derived as the
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product of these two distinct primes. However, this method may introduce a
vulnerability due to a single point of attack. To mitigate this concern, multi-
party computation (MPC) becomes crucial, allowing participants to collectively
compute a function using inputs from all parties while preserving the confiden-
tiality of each party’s input. This feature is essential for various cryptographic
protocols and primitives, including threshold homomorphic encryption [22, 25],
time-lock puzzles [1, 30, 36], accumulators [4, 7, 28], and verifiable delay func-
tions [6, 15,20,26,33,38].

The goal is that, provided with n parties, of which any t < n can potentially
be compromised by an adversary, we seek a secure protocol that generates a
random and valid RSA modulus N = pq, where p and q are two distinct
primes of a specified size. The objective is to ensure that the adversary gains no
knowledge except for N from the protocol while maintaining the privacy of p and
q. The concept of such a protocol consists of two parts: (a) Prime Candidate
Sieving: participants generate a potential RSA modulus N that does not divide
by a prime less than a predetermined integer B; and (b) Biprimality test: the
candidate N is repeatedly tested by a biprimality test. If N is rejected by the
biprimality test, then the process starts over.

The current fastest approach for part (a) fundamentally involves generating
candidates N using the Chinese Remainder Theorem (CRT) [13,37] such that N
is coprime to all small primes. For part (b), two primality tests, Miller-Rabin
(primality) test (cf. [12, Section 3.2]) and Boneh-Franklin’s (biprimality)
tests (cf, Theorem 1), were commonly employed.

Currently, both methods are specifically restricted to the scenario where p ≡
q ≡ 3 (mod 4). In the worst case, the Miller-Rabin test may accept a composite
with a probability of 1/4 [11,34]. Regarding Boneh-Franklin test, in their original
findings [8], they proved that the acceptance with a probability in the worst
scenes is at most 1/2. In addition, based on the average estimation results [16,17],
Miller-Rabin can achieve soundness error no greater than 2−67 with only two
executions, when the public key N = pq is 2048-bit. The similar results for
the Boneh-Franklin test are still an open question to date [14, 17]. Therefore,
to reach the same soundness error, the Boneh-Franklin test requires 67 checks,
significantly increasing the verification cost. In the paper by Burkhardt et al.
[12], owing to the superior discriminative power of variant Miller-Rabin test3, it
demonstrates enhanced efficiency, although the expense of running a single MPC
version of the variant Miller-Rabin test exceeds that of the Boneh-Franklin test.

However, in practical applications, we observe two key obstacles when apply-
ing Burkhardt et al.’s approach using the Miller-Rabin test. First, they assume
that p and q are of equal length (cf. [12, Input assumptions]). Second, the aver-
aged results of Miller-Rabin test rely on the assumption that p and q are selected
from a uniform distribution. However, all known algorithms for distributed RSA
modulus generation [8, 13, 14, 17, 21, 37] do not produce p and q from a uniform
distribution, which is a distribution of a sum of uniform variables actually. As a

3 The variant Miller-Rabin test they used is a special case of the original Miller-Rabin
test. See Subsection 5.1
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result, directly applying the average results of the Miller-Rabin test in practical
scenarios remains constrained and requires further investigation.

For current distributed RSA-moduli protocols, extensive research has focused
on Prime Candidate Sieving, but research on biprimality tests remains limited.
In this paper, we focus on the following questions.

Which of the Boneh-Franklin or Miller-Rabin tests offers greater advantages
for determining RSA moduli? Are there more efficient or general alternatives

to biprimality tests?

1.1 Our contribution

Our paper aims to develop an optimal biprimality test that improves efficiency
and relaxes existing limitations. The first finding is that, in the worst-case sce-
nario, the probability of the commonly used Boneh-Franklin test accepting a
non-RSA modulus is 1/4 instead of 1/2, thereby refining the previously estab-
lished upper bound. The reasoning behind this result is outlined in the Technical
Overview subsection. Furthermore, we identify the necessary and sufficient con-
ditions for the types of p and q that result in the worst acceptance rate (cf.
Corollary 1). Notably, there exist infinitely many pairs of p and q that produce
this worst-case scenario.

Secondly, a novel Lucas (biprimality) test is proposed to improve the effi-
ciency in detecting cases where N is not an RSA modulus. Inspired by classical
Lucas primality tests, we naturally consider, for an integer D with gcd(N, 2D) =
1,

Z(D,N) :=

{
(P,Q)

P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, 0 ≤ P,Q < N

}
,

and

LPBP(D,N, e4) :=

{
(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, (αβ−1)e4 = ±1 (mod NOD)

}
.

Here α, β are the two distinct roots of the quadratic polynomial x2 − Px + Q,
the ring of integer OD of the quadratic field extension Q(

√
D), and e4 := (p +

[−1
p ])(q + [−1

q ])/4. In particular, if p ≡ q ≡ 3 (mod 4), e4 = (p − 1)(q − 1)/4 is

introduced by Boneh-Franklin. Our findings indicate that |LPBP(D,N, e4)| <
|Z(D,N)|, when N is an RSA modulus. Therefore, Z(D,N) cannot serve as the
set considered in the biprimality test. Fortunately, the set LPBP(D,N, e4) and

the set Z+1(D,N) := Z(D,N) ∩ {(P,Q) |
[
Q
N

]
= 1} exhibit features similar to

those considered in the Boneh-Franklin test (cf. Theorem 1 and 2). This enables
us to use the proposed Lucas test to determine whether N is an RSA modulus.
From this point forward, we will refer to the proposed Lucas test as the Lucas
test for convenience.

Our study indicate that the Lucas test is more efficient than the Boneh-
Franklin test. Firstly, in the protocol for p ≡ q ≡ 3 (mod 4), the complexity of
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both tests is nearly identical (cf. Table 3). Next, both tests consider a set G and
its subset H, satisfying the condition that if N is an RSA modulus, then |G| =
|H|, and otherwise |H| < |G|. Let N = pq =

∏
i p

ri
i . According to the counting

formula of non-perfect-square N (cf. Theorem 1, Proposition 1), the sizes of |G|
in the Lucas test and the Boneh test are nearly identical when pi are sufficiently
large for all i. However, for |H|, the Boneh-Franklin test (resp. Lucas test) results
in a count 2

∏
i gcd(e4, pi−1) (resp.

∏
i

(
gcd(e4, pi−1)−1

)
+
∏

i gcd(e4, pi−1)).
This observation shows that in most cases, it is likely to find a pi such that
gcd(e4, pi − 1) = 1. Consequently, the size of |H| in the Boneh-Franklin test is
twice that of the Lucas test. As a result, the Lucas test often achieves nearly
twice the probability of detecting that N is not an RSA modulus when randomly
selecting elements from G, and pi sufficiently large for all i.

Practically, ensuring that N has no small prime factors pi is straightforward
via trial division, a necessary step in any efficient distributed RSA modulus
generation protocol. Additionally, Table 2 indirectly suggests that when p and q
are randomly selected from a specific distribution, performing the same number
of biprimality tests makes it highly likely that the Lucas test will achieve a better
security level compared to the variant Miller-Rabin test (cf. [16]).

The improvement involves of proposed Lucas biprimality test relaxing the
restrictions imposed by current distributed RSA protocols, which require the
primes p and q to satisfy p ≡ q ≡ 3 (mod 4). In practical cryptography, the
assumption that p ≡ q ≡ 3 (mod 4) is common. To the best of our knowl-
edge, only the work by Boudabra et al. [9], which proposes a variant of KMOV
cryptosystems [18, 29] for signature and encryption, requires the condition p ≡
q ≡ 1 (mod 4). Consequently, this aspect of our research leans more toward
theoretical completeness compared to other protocols.

Compared to the Boneh-Franklin’s protocol, our proposed protocol requires

sampling an integer D to satisfy a special condition
[−D

N

]
= 1, and

[
−D
p

]
= −1.

Specifically, when considering p ≡ q ≡ 3 (mod 4), D can be directly chosen
as 1 (i.e. no additional leakage, as in the case of the Boneh-Franklin protocol).
However, in the other cases, although we can find an integer D such that

[−D
N

]
=

1 without leaking information about p and q, the probability that
[
−D
p

]
= −1

is only 1
2 because p (mod D) is almost uniformly distributed in ZD. The failed

D might leak some information about p and q (i.e., for a given D, the Jacobi
symbols of the secret p and q can be learned). Nonetheless, since we only need to
select one D that satisfies the required condition and p, q have large bit-lengths,
the leaked information is nearly negligible.

We summarize the comparison of the three tests in Table 1. The proposed
protocol for cases where p ≡ q ≡ 3 (mod 4) is highly competitive when compared
to both the Boneh-Franklin test and the variant Miller-Rabin test. For other
scenarios, our proposed test is advised for generating RSA moduli. In addition, a
performance assessment was conducted using real experimental data, comparing
the Boneh-Franklin test with our proposed tests on a standard laptop, as detailed
in Subsection 5.3. We have implemented and rigorously validated the proposed
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Table 1: Ranking Features of Three Tests: A Comparative Overview

Method Boneh-Franklin Variant
Miller-Rabin

Proposed test

The worst case excluding special
conditions

1/2→ 1/4 1/4 1/4 + 1.25/(pmin − 3)

Exceptional p = q = 3 p, q ≤ 9 pmin < 11

Extra assumption gcd(pq, e4) = 1 equal-length1 gcd(pq, e4) = 1

Detecting of non-RSA moduli 3 2 1

MPC Protocol efficiency 1 3 1

Local computation efficiency 1 3 2

Leakage No No Blum:No;
Non-Blum: Negligible.

RSA Moduli Type Blum Blum Arbitrary

The numbers in the table represent rankings. The worst case excluding special conditions is derived from
Theorem 1, 2, and Lemma 5. Exceptional means that the exclusion of the worst-case scenario. Extra assumption
means the additional conditions required by each test. The ranking for Detecting of non-RSA moduli comes from
the Table 2. The ranking for MPC protocol efficiency comes from the Subsection 5.2. Finally, the ranking for
Local computation efficiency is based on the comparison of local computations in Subsection 5.2, and Protocol 4,
5, and 6.
The Blum moduli in the RSA Moduli Type require the condition p ≡ q ≡ 3 (mod 4). pmin is the smallest prime
factor of N = pq.
1 The condition of equal-length for primes p, q implies that gcd(pq, e4) = gcd(pq, p + q − 1) = 1.

test through empirical analysis, benchmarking it against competing methods.
The corresponding codes can be found here4.

1.2 Technical Overview

First, let us explain why the worst-case acceptance rate can be improved. In
the original Boneh-Franklin’s proof, the condition gcd

(
pq, (p − 1)(q − 1)

)
=

1 was not assumed. However, this omission allowed for the existence of non-
RSA moduli N , (i.e. p = pd1

1 , q = pd2
2 , d1 > 0, and q ≡ 1 (mod pd1−1

1 ), where
p1, p2 are distinct primes) which would still pass the test. To address this issue,
the assumption gcd

(
pq, (p − 1)(q − 1)

)
= 1 was introduced to exclude these

pathological cases5. However, in the original proof (i.e. they proved BF(N, e4) ⊊
G(N)), the condition gcd

(
pq, (p− 1)(q− 1)

)
= 1 was not easy to apply directly.

Here

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
⊂ G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
,

and
[ ·
·
]
is the Jacobi symbol.

4 https://github.com/lukakusilk/Three-biprimality-test-
comparison/blob/main/README.md

5 Another method involves multiple verifications of an exponential operation in(
ZN [x]/(x2 + 1)

)×
/Z×

N .

https://github.com/lukakusilk/Three-biprimality-test-comparison/blob/main/README.md
https://github.com/lukakusilk/Three-biprimality-test-comparison/blob/main/README.md
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To effectively leverage the conditions gcd
(
pq, (p−1)(q−1)

)
= 1, we adopted

an alternative approach based on two key insights. This enabled us to derive an
accurate counting formula for BF(N, e4) successfully.

– The oddness of e4 (i.e. p ≡ q ≡ 3 (mod 4)) gives that the mapping g 7→ −g
being bijective allows us∣∣{g ∈ Z×

N | g
e4 ≡ ±1 (mod N)}

∣∣ = 2
∣∣{g ∈ Z×

N | g
e4 ≡ 1 (mod N)}

∣∣ .
– By applying CRT (Chinese Remainder Theorem), we convert the count-

ing problems of {g ∈ Z×
N | ge4 ≡ 1 (mod N)}, into the finite product of

BF(prii , e4) ⊂ (Z/prii Z)×. Moreover, the number of e4-roots of 1 in a cyclic
group (i.e. (Z/prii Z)×) can be easily derived (cf. Lemma 1).

When N is not square-free, analyzing the the quotient |BF(N, e4)|/|G(N)|
is relatively straightforward. However, when N is square-free, a more careful
analysis is required to understand how the ratio changes. In the worst-case sce-
narios, such as N = p1p2p3 and N = p1p2p3p4, we found that the worst-case
acceptance rate is 1/4 instead of 1/2. For example, consider the case p = p1 and
q = p2p3. We can assume that p1 ≡ p2 ≡ 3 (mod 4), and p3 ≡ 1 (mod 4), and
pi − 1 = 2kidi, where di is odd for all 1 ≤ i ≤ 3, and k1 = k2 = 1, k3 ≥ 2. Then
Lemma 3 gives us

|BF(N, e4)|
|G(N)|

=
2
∏3

i=1 gcd(e4, di)

2−1
∏3

i=1(pi − 1)
≤ 4d1d2d3

2k1+k2+k3d1d2d3
≤ 1

4
.

In conclusion, the main difference between this approach and the original proof
is that the original method only demonstrated that BF(N, e4) is a subgroup
of G(N), without providing any insight into the relative size. In contrast, our
method accurately computes their exact counts. The same proof of the strategy
can also be applied to the proposed Lucas test, which is more complex in proving
LPBP(D,N, e4) ⊂ Z+1(D,N), as well as counting the two sets.

In the proposed Lucas test, one of the key points is proving that, regardless
of the form of p, q the set LPBP(D,N, e4) is always a subset Z+1(D,N) for any
odd integers N and an integer D with [−D

N ] = 1, and [−D
p ] = −1. In the original

Boneh-Franklin paper, this was straightforward because p ≡ q ≡ 3 (mod 4), and
e4 is odd. This allowed the result BF(N, e4) ⊂ G(N) to be easily derived from
the following observation:[ g

N

]e4
=

[
ge4

N

]
=

[
±1
N

]
= 1.

However, in our case, αβ−1 does not belong to ZN , so this trick must be ap-
plied with caution. Recall that α, β are the two distinct roots of the quadratic
polynomial x2 − Px+Q. In our study (cf. Proposition 2), we found that when(
αβ−1

)e4 ≡ ±1 (mod NOD), β2e4 will belong to ZN . We can then express (αβ)e4

as
(
αβ−1

)e4 · β2e4 , where all three elements belong to ZN , and apply the same
method to complete the proof.
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In terms of security proof, to successfully simulate the transcript of proposed
Lucas protocol, we must carefully construct a method to generate a uniform

distribution over L = {P ∈ ZN | [P
2−D
N ] = 1}. In the scenario considered by

Boneh-Franklin, they use a2(−1)b to simulate g, where a ∈ Z×
N . They utilize

b = 0 or 1 to control (a2(−1)b)e4 . However, in our case, due to the more complex
situation (i.e., not just p ≡ q ≡ 3 (mod 4)), we change the selection range of a to(

v+w
√
D

v−w
√
D

)
with v2 − w2D ∈ Z×

N for all v, w ∈ ZN . Furthermore, we prove that

this construction can produce the desired uniform distribution of the set L (cf.
Proposition 5).

Overall, the proposed protocol for the Lucas test closely resembles the Boneh-
Franklin protocol, with the key distinction being that, for cases where p ̸≡
3 (mod 4) or q ̸≡ 3 (mod 4), it is essential to select a D that satisfies the
condition [−D

N ] = 1, and [−D
p ] = −1. In the next step, participants use their

respective secrets concerning p and q to jointly compute (αβ−1)e4 . Next, for the
GCD test, we verify gcd(N, e4) = gcd

(
N, p[−1

q ] + q[−1
p ] + [−1

N ]
)
= 1. The parties

Pi then jointly generate a random number r, which is used in an MPC multipli-
cation to compute r

(
p[−1

q ] + q[−1
p ] + [−1

N ]
)
. We also need to compute the value

of [−D
p ]. As proposed in [24], although not proven in detail, this can be done by

first jointly generating s, then jointly computing and publishing s2p (mod D)
thus obtaining [ pD ]. This can be computed using the basic rules of the Legendre
symbol (cf. πLeg).

1.3 Related work

Boneh and Franklin [8] first proposed the distributed RSA moduli generation.
They provided an efficient distributed RSA moduli test protocol which can test
if N = pq is an RSA modulus without needing to know information about p
and q and is secure in semi-honest adversary model against an honest majority.
They prove their test has the property that it always accepts when N is an RSA
modulus, and otherwise accepts with probability at most 1/2. In their paper, they
offered two types of biprimality test. Excluding identical verification steps, one
involves multiple checks for gcd(pq, (p− 1)(q − 1)) = 1, while the other involves

multiple verifications of an exponential operation in
(
ZN [x]/(x2 + 1)

)×
/Z×

N .
The current mainstream approach mostly involves checking the version where
gcd(pq, p+q−1) = 1. Algesheimer et al. [2] proposed a distributed Miller–Rabin
test that achieves semi-honest security against a dishonest majority. Following
that, there are several related papers [12, 17] that utilize the Miller-Rabin test
to design biprimality tests. Regarding the estimation of the average error in
primality tests, Damg̊ard et al. [16] obtained an upper bound for the Miller-Rabin
case. Einsele et al. [19] provided an upper bound for the case of Lucas strong
primes. For articles addressing the optimization of RSA moduli candidates and
proposing a more secure security model, Burkhardt et al.’s paper [12] underwent
a comprehensive review.
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2 Preliminaries

Basic notations. Let P be the set of all primes, N be the nature numbers, and
Z be the ring of integers. For a finite set S, |S| means the cardinality of S. Let
ZN be the additive group of order N , and Z×

N be the multiplicative group in ZN .
Moreover, |Z×

N | = ϕ(N), where ϕ is the Euler’s totient function. For an interval
I, we set P(I) := {p ∈ P | p ∈ I}. The greatest common divisor of two positive
integers x and y ∈ N is denoted by gcd(x, y). Let [a]m(resp. [a]Z) be the secure
additive sharing of value a in the integer domain Zm (resp. Z). That is each of
the participants, {Pi}ni=1, has their own secret ai ∈ Zm(resp. ai ∈ Z) such that∑n

i=1 ai ≡ a (mod m) (resp.
∑n

i=1 ai = a).

For ease of reference, we present some symbols that have already appeared
elsewhere. Given two odd positive integers p, q and a positive integer n, set

e4(= e4(p, q)) := 1
4

(
p +

[
−1
p

] )(
q +

[
−1
q

] )
. Here

[ ·
·
]
is the Jacobi symbol. For

odd integers p, q, we set

MR(p) := {g ∈ Z×
p | g(p−1)/2 ≡ ±1 (mod p)},

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
, G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
,

Zϵ(D,N) :=

{
(P,Q)

P 2 − 4Q = D (mod N),
[
Q
N

]
= ϵ,

gcd(Q,N) = 1, 0 ≤ P,Q < N

}
, for ϵ ∈ {±1},

Z(D,N) = ∪ϵ∈{±1}Zϵ(D,N), and

LPBP(D,N, e4) :=

{
(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, (αβ−1)e4 = ±1 (mod N)

}
.

If p ≡ q ≡ 3 (mod 4), the set BF(N, e4) (resp. LPBP(D,N, e4)) is a subgroup
(resp. subset) of G(N) (resp. Z+1(D,N)) (cf. Proposition 2).

Given that p ≡ q ≡ 3 (mod 4) and a perfect square D, we are interested

in studying the following two quantities: βLucas(D,N, e4) :=
|LPBP(D,N,e4)|

|Z+1(D,N)| , and

βBF(N, e4) :=
|BF(N,e4)|

|G(N)| , where two quantities are used to evaluate the propor-

tion of randomly selected elements in the set of denominators that pass the
test when N = pq is not an RSA modulus. These values always belong to the
range [0, 1], and the smaller the value, the easier it is to determine that p and q
are not an RSA modulus. In fact, Proposition 1 and Proposition 2 implies that
βLucas(D,N, e4) is independent of the chosen of perfect squares D, if p ≡ q ≡
3 (mod 4). For simplicity, when we write βLucas(N, e4) = βLucas(1, N, e4).

2.1 Two Mathematical Results

Lemma 1. [3, Lemma 2.1 ] Let G be a cyclic group and d an integer. There
are exactly gcd(d, |G|) dth-root of 1 in G.
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Lemma 2 (Hensel’s Lemma). [32, Theorem 2.23 or 2.24] Let f(x) be a poly-
nomial with integer coefficients. If p is a prime number and a is an integer such
that f(a) ≡ 0 (mod pj), and f ′(a) ̸≡ 0 (mod p) then, there exists an integer
t (mod p) such that f(a+ tpj) ≡ 0 (mod pj+1).

2.2 Lucas Pseudo-primes

We recall Lucas sequence and some results [3]. Let P and Q be integers and D :=
P 2 − 4Q. The Lucas sequence (Uk, Vk) that is associated with the parameters
P,Q are defined as, for k ≥ 0,{

Uk+2 = PUk+1 −QUk;

Vk+2 = PVk+1 −QVk,
with

{
U0 = 0, U1 = 1;

V0 = 2, V1 = P.

It is well known that Up−[Dp ]
≡ 0 (mod p) for any prime p ∤ 2QD. For the

Lucas sequence [3, Section 3], (Uk, Vk) associated with P,Q and P 2 − 4Q ̸= 0,
we have the general formula: for all k ∈ N,

Uk =
αk − βk

α− β
, Vk = αk + βk,

where α, β are two distinct roots of the polynomial x2−Px+Q. Let OD be the
ring of integers of a quadratic field Q(

√
D), and τ := αβ−1. If N ∤ 2QD, then

we have, for k ∈ N,

N | Uk if and only if τk ≡ 1 (mod NOD). (1)

Given an element u + v
√
D ∈ Q(

√
D), the norm map is given by N(u +

v
√
D) = u2 − v2D ∈ Q. When x ∈ OD, the norm N(x) ∈ Z. Consider the

multiplicative group of norm 1 elements denoted by ̂(OD/N
)
in a free Z/NZ-

algebra of rank 2. This group is the image of the set

{x ∈ OD | N(x) ≡ 1 (mod N)}

by the canonical map OD → OD/N.

2.3 The Security Model

Our focus is on static semi-honest adversaries. ”Static” implies that the ad-
versary is limited to selecting a set of parties to corrupt before the protocol
execution starts and is not allowed to change this set afterward. Semi-honest
adversaries participate in the protocol honestly but attempt to glean as much
information as possible from the messages received from other parties. Here, we
adopt the definition provided in [36, Definition 7.5.1], as follows.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n−ary functionality, where fi(x1, . . . , xn)
denotes the i-th element of f(x1, . . . , xn). For I = {i1, . . . it} ⊂ {1, . . . , n}, we let
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fI(x1, . . . , xn) denote the subsequence fi1(x1, . . . , xn), . . . , fit(x1, . . . , xn). Let Π
be an n-party protocol for computing f . The view of the i−th party during an
execution ofΠ on x = (x1, . . . , xn), denoted VIEWΠ

i (x), is (xi, ri,mi1 , . . . ,miℓ),
where ri represents the outcome of the i−th party’s internal coin tosses, and
mij represents the j−th message it has received. For I = {i1, . . . , it}, we let

VIEWΠ
I (x) := (I,VIEWΠ

i1 (x), . . . , VIEWΠ
it (x)).

Definition 1. We say that Π privately computes f if there exists a probabilistic
polynomial-time algorithm, denoted S, such that for every I ⊆ {1, . . . , n}, it holds
that

{(S(I, (xi1 , . . . , xit), fI(x)), f(x))}x∈({0,1}∗)n

c≡{( VIEWΠ
I (x), OUTPUTΠ(x))}x∈({0,1}∗)n .

Here OUTPUTΠ(x) denotes the output sequence of all parties during the execu-

tion represented in VIEWΠ
I (x), and

c≡ is computationally indistinguishable of
two distribution ensembles.

3 Refine Boneh-Franklin Biprimality Testing

We show that in the worst-case scenario, the value 1/4 is the tightest upper
bound of the Boneh-Franklin test, and provide the sufficient and necessary con-
ditions for the worst-case scenario of p and q. The counting formula of BF(N, e4)
is given as below.

Lemma 3. Let p ≡ q ≡ 3 (mod 4), and gcd
(
pq, e4

)
= 1. Assume that N =∏s

i=1 p
ri
i , where pi is prime for all i, then we have

|BF(N, e4)| = 2 ·
s∏

i=1

gcd(e4, di).

Here pi − 1 = 2kidi with 2 ∤ di for all 1 ≤ i ≤ s.

Proof. Since e4 is odd, we have

|{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}| = |{g ∈ Z×
N | g

e4 ≡ −1 (mod N)}|

by the bijective map g 7→ −g, which implies that

|BF(N, e4)| = 2 · |{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}|.

According to CRT, we reduce the problem to count the cardinality of e4-th roots
of 1 in (Z/prii Z)× which are cyclic groups for all i [27, Theorem 3, Chapter 4],
since N is odd. Combining this fact, gcd(pq, e4) = 1, and Lemma 1, one has the
number of e4-th roots of 1 in the group (Z/prii Z)× is

gcd(e4, p
ri−1
i (pi − 1)) = gcd(e4, di).

The above discussion implies the desired result.
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Before diving into the proof of the main theorem, we recall that if p ≡ q ≡
3 (mod 4) and N = pq, then BF(N, e4) is a subgroup of G(N).

Theorem 1 (Boneh-Franklin biprimality test). Let p ≡ q ≡ 3 (mod 4),
and gcd

(
pq, e4

)
= 1, where e4 = (p− 1)(q − 1)/4. Assume that N := pq. If p, q

are both distinct primes, then we have BF(N, e4) = G(N). For the other cases,
we have |BF(N, e4)| ≤ |G(N)|/4, except for the case p = q = 3.

Proof. Recall that pi − 1 = 2kidi with odd di for all i as the same notations in
the Lemma 3. At first, consider the case p, q are distinct primes, which implies
e4 = d1d2 and k1 = k2 = 1. Note that if N is not perfect square, then |G(N)| =
ϕ(N)/2; Otherwise, |G(N)| = ϕ(N). The proof of this case is completed by the
following equality:

|BF(N, e4)| = 2gcd(e4, d1) · gcd(e4, d2) = 2d1d2 = ϕ(N)/2.

Now, assume that the number of prime factors of N is greater than 2. Con-
sider the case perfect square N . Lemma (3) implies that

βBF(N, e4) =
|BF(N, e4)|
|G(N)|

=
2
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤
2
∏s

i=1 di∏s
i=1 p

ri−1
i (pi − 1)

=
2
∏s

i=1 2
−ki∏s

i=1 p
ri−1
i

< 21−1 · 5−1 =
1

5
,

except for the case p = q = 3.
Consider the case N is non square-free (i.e. there exists i such that ri ≥ 2)

and non-perfect-square. The condition non-perfect-square means that s ≥ 2.
If not, s = 1, then N = pr11 . Since p ≡ q ≡ 3 (mod 4), which implies that
N ≡ 1 (mod 4) and p1 ≡ 3 (mod 4), and r1 is even, which gives a contradiction.
Now, one has

βBF(N, e4) =
4
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤ 2−k1−...−ks+2

(
s∏

i=1

pri−1
i

)−1

.

If there exists pi ≥ 5 with ri ≥ 2 then

βBF(N, e4) ≤ 22−1−1 · 5−1 = 1/5.

Additionally, if s ≥ 3, then

βBF(N, e4) ≤ 22−1−1−1 · 3−1 = 1/6.

Therefore, we only consider the case N = 3r1
∏s

i=2 pi with r1 = 2 due to

βBF(N, e4) ≤ 22−1−1 · 3−2 = 1/9 as r1 ≥ 3.

As for the case s = 2, then p2 ≡ 1 (mod 4) since N ≡ 1 (mod 4). This case also
implies that

βBF(N, e4) ≤ 22−1−2 · 3−1 = 1/6.
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In conclusion, when N is non-square-free with s ≥ 2, βBF(N, e4) ≤ 1/6. When
N is square-free, we consider the case s = 3. Because p ≡ q ≡ 3 (mod 4), two
elements of the set {p1, p2, p3} are 3 module 4 and one of it is 1 module 4, which
gives the bound

βBF(N, e4) ≤ 2−k1−...−ks+2 = 22−1−1−2 = 1/4.

For all s ≥ 4, we have βBF(N, e4) ≤ 2−k1−...−ks+2 ≤ 2−2, since ki ≥ 1 for all i.

Based on the proof of Theorem 1, we can establish the following sufficient
and necessary conditions for the worst-case scenario to occur.

Corollary 1. Assume that the assumption of Theorem 1 holds. |BF(N, e4)| =
|G(N)|/4 if and only if one of the two situations occurred without considering
the symmetry of p and q. 1). s = 3, gcd(e4, di) = di, p = p1p2, and q = p3,
where p1 ≡ 5 (mod 8), and p2 ≡ p3 ≡ 3 (mod 4); 2). s = 4, gcd(e4, di) = di,
p = p1p2p3, and q = p4, where pi ≡ 3 (mod 4) for all 1 ≤ i ≤ s.

The bound in the result of Theorem 1 is tight. Taking p1 = 3, p2 = 5, and
p3 ≡ 23 (mod 420), Dirichlet Theorem6 says that there are infinitely many
N = (p)q = (p1p2)p3 such that |BF(N, e4)| = |G(N)|/4, since gcd(N, e4) =
gcd (15q, 7(q − 1)) = 1 and gcd(420, 23) = 1.

4 The Lucas Biprimality Test

In this section, we introduce another test for identifying RSA moduli for odd
integers p, q with gcd

(
pq, (p+ [−1

p ])(q + [−1
q ])
)
= 1, and subsequently provide a

distributed protocol that is resilient to semi-honest adversaries.

4.1 A Lucas Biprimality Testing

The proof of the Lucas biprimality testing is similar to the proof process in the
Boneh-Franklin test. First, we derive the formulas for the number of elements
in LPBP(D,N, e4) and Z+1(D,N). Next, we also analyze the upper bound of
their quotient (i.e., the acceptance rate) in the worst-case scenario. To begin, we
examine the special case where N = pr.

Lemma 4. Let p be an odd prime, and D be an element of Z×
p , then for ϵ ∈

{±1},

|Zϵ(D, pr)| =


(
1+ϵ
2

)
pr−1

(
p−

[
D
p

]
− 1
)
, if 2 | r;

pr−1

[
(p−[Dp ]−1)−ϵ

2

]
, if 2 ∤ r.

6 If gcd(a, n) = 1, then there exists infinite prime x with x ≡ a (mod n) [31, Corollary
13.8].
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Proof. In the case where 2 | r, the condition
[
Q
pr

]
= 1 always holds. Therefore,

|Z+1(D, pr)| = |Z(D, pr)|. In the special case r = 1, it is sufficient to consider the
cardinality of the set {P ∈ Zp|P 2 = D+4Q, 0 < Q < p}. Note that the equation

x2 = D has two (resp. zero) solutions in Zp if
[
D
p

]
= 1(resp.

[
D
p

]
= −1),

there are p−1
2 −

1+[Dp ]
2 values of Q such that x2 = D + 4Q has two distinct

solutions. Additionally, there is one value of Q (specifically Q = −D
4 ) for which

x2 = D + 4Q has a single solution. Thus, the total number of solutions is given

by (p−1
2 −

1+[Dp ]
2 ) · 2 + 1 = p −

[
D
p

]
− 1. For r > 1, the desired result can be

obtained using Hensel’s lemma (cf. Lemma 2). The detail proof can be found in
Proposition 4.

As for the case 2 ∤ r, we first consider the case r = 1 and ϵ = 1. Then we can
assume that Q = Q′2. It implies that Z+1(D, p), which is equal to{

(P,Q′)
(P/2)2 = (Q′)2 +D/4 (mod p), gcd(Q′, p) = 1,
0 ≤ P < p, 1 ≤ Q′ ≤ (p− 1)/2.

}
.

Now, for counting the above set, we study the following sum

(p−1)/2∑
i=1

[
i2 +D/4

p

]
=
−1−

[
D
p

]
2

(by Lemma 7),

which gives us the relation

|S−1| = |S+1|+
1 +

[
D
p

]
2

, (2)

where Sϵ =
{
1 ≤ i ≤ (p− 1)/2

∣∣ [ i2+D/4
p

]
= ϵ, i2 ̸≡ −D/4 (mod p)

}
(i.e. if there

exists i such that i2 ≡ −D/4 (mod p), then
[
i2+D/4

p

]
= 0).

Note that |S+1|+|S−1| depends on whether exist i such that i2 ≡ −D
4 (mod p).

Specifically,

|S+1|+ |S−1| = p− 1

2
−

1 +
[
−D
p

]
2

. (3)

Moreover, for each i ∈ S+1, we can find two distinct solutions for (x/2)2 ≡
i2 +D/4 (mod p). If

[
−(D/4)

p

]
=
[
−D
p

]
= 1, then an additional solution can be

found (i.e. (0, −D
4 ) ∈ Z+1(D, p)). Therefore,

|Z+1(D, p)| = 2 · |S+1|+
1 +

[
−D
p

]
2

. (4)
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Combining (2), (3), and (4) gives that

∣∣Z+1(D, p)
∣∣ = p−

[
D
p

]
− 2

2
.

Furthermore, combining Proposition 4, one has

∣∣Z−1(D, p)
∣∣ = |Z(D, p)| −

∣∣Z+1(D, p)
∣∣ = p−

[
D

p

]
− 1−

p−
[
D
p

]
− 2

2

 =
p−

[
D
p

]
2

.

The proof is complete by Hensel’s Lemma for the general case r ≥ 2 (cf. Lemma
6)..

The counting formula of general N is given as below.

Proposition 1. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Write S = S0∪S1, where Sj := {i | ri ≡ j (mod 2), 1 ≤ i ≤ s}.
Then, one has, if N is not a perfect square in Z,

|Z+1(D,N)| =

[∏
i∈S pri−1

i

2

][∏
i∈S0

(
pi −

[
D

pi

]
− 1

)]

·

[∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]
.

Otherwise, if N is a perfect square,

|Z+1(D,N)| =
∏
i∈S

pri−1
i

(
pi −

[
D

pi

]
− 1

)
.

Proof. If N is a perfect square, we obtain the desired result from Lemma 4 and
CRT. If N is not a square, from CRT we have

|Z+1(D,N)| =

[∏
i∈S0

|Z+1(D, prii )|

] ∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )|

 .

Using Lemma 4 and CRT, we only need to prove

∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )| =

[∏
i∈S1

pri−1
i

][∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]/
2.

This proof can be concluded through mathematical induction on the cardinality
of |S1|. When |S1| = 1, it follows that ϵ must equal 1, leading to the desired



Enhanced Biprimality Tests 15

result. Assuming that |S1| = k, the equality is satisfied. Let Ai = pi −
[
D
pi

]
− 1.

Then, when |S1| = k+1, applying |Z−1(D,N)| = |Z(D,N)|−|Z+1(D,N)|, and
Proposition 4, we have∑

ϵ1·...·ϵk+1=1

∏
i∈S1

|Zϵi(D, prii )|

=|Z−1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=−1

k∏
i=1

|Zϵi(D, prii )|+ |Z+1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=1

k∏
i=1

|Zϵi(D, prii )|

=

[∏k+1
i=1 pri−1

i

][
Ak+1 + 1

][
2
∏k

i=1 Ai − (
∏k

i=1 Ai + (−1)k)
]

4

+

[∏k+1
i=1 pri−1

i

][
Ak+1 − 1

][∏k
i=1 Ai + (−1)k

]
4

=

[∏
i∈S1

pri−1
i

][∏
i∈S1

Ai + (−1)|S1|

]/
2 =

[∏
i∈S1

pri−1
i

][∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]/
2.

Next, we study the cardinality of the set LPBP and prove that it is a subset
of Z+1.

Proposition 2. Let p, q be positive odd integers, N = pq =
∏s

i=1 p
ri
i , and D

be an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. Then we

have the set LPBP(D,N, e4) is a subset of Z+1(D,N). Furthermore assuming
gcd(N, e4) = 1, its cardinality is given by

|LPBP(D,N, e4)| =
s∏

i=1

(
gcd(e4, di)− 1

)
+

s∏
i=1

gcd(e4, di).

Here pi −
[
D
pi

]
= 2kidi with 2 ∤ di for all 1 ≤ i ≤ s .

Proof. For sake of proving LPBP(D,N, e4) ⊆ Z+1(D,N), we need to prove that
taking any pair (P,Q) ∈ LPBP(D,N, e4) then one has (αβ−1)e4 ≡ ±1 (modNOD),
where α, β are two distinct roots of the polynomial x2 − Px+Q, which implies

that
[
Q
N

]
= 1. Note that (αβ−1)e4 ≡ ±1 (mod NOD) can be viewed as an

element in Z×
N , and Q = αβ ∈ Z×

N imply that β2e4 ∈ Z×
N . Because e4 is odd, we

have [
Q

N

]
=

[
Q

N

]e4
=

[
(αβ)e4

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
.

Recall that (αβ−1)e4 ≡ ±1 (mod N), then αe4 = ±βe4 , which implies that
(P +

√
D)e4 = ±(P −

√
D)e4 (mod NOD). Now, consider the case (P +

√
D)e4 =

−(P −
√
D)e4 (mod NOD). Write (P +

√
D)e4 = A + B

√
D (mod NOD),

where A =

e4∑
i=0:
2∤i

(
e4
i

)
P iD(e4−i)/2 and B =

e4∑
i=0:
2|i

(
e4
i

)
P iD(e4−1−i)/2. Then −(P −
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√
D)e4 = −A+ B

√
D (mod NOD). Therefore, the equality A+ B

√
D ≡ −A+

B
√
D (mod NOD) gives us A ≡ 0 (mod NOD), since N is odd. Now, we have

βe4 =

(
P +

√
D

2

)e4

≡ B(
√
D)

2e4
(mod NOD),

which implies that β2e4 ≡ 2−2e4B2D (mod N). In conclusion, when (αβ−1)e4 ≡
−1 (mod NOD), we have[

Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
D

N

] [
−1
N

]
=

[
D

p

] [
D

q

] [
−1
p

] [
−1
q

]
= 1.

Similarly, when αe4 = βe4 , we have βe4 ≡ 2−e4A (mod N), which gives us[
Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
2−2e4A2

N

] [
1

N

]
= 1.

The proof of the cardinality of LPBP(D,N, e4) can be found in [3, Section
1.4].

Finally, the acceptance rate, βLucas, in this test is estimated as follows.

Theorem 2. Let p, q be odd integers, gcd
(
pq, e4

)
= 1. Set N = pq. Assume

that D is an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. If p, q

are both distinct primes, then we have LPBP(D,N, e4) = Z+1(D,N). For the
remainder cases, set pmin be the minimal prime factor of N . Assume pmin ≥ 11,
then we have

βLucas(D,N, e4) =
|LPBP(D,N, e4)|
|Z+1(D,N)|

<
1

4
+

1.25

pmin − 3
.

Proof. Consider the case p, q are distinct primes. Set p1 = p and p2 = q. Recall

that pi−
[
D
pi

]
= 2di for all i. Thus, one has e4 =

(p−[Dp ])(q−[
D
q ])

4 = d1d2. Now, we

only need to prove that |Z+1(D,N)| = |LPBP(D,N, e4)|, because Proposition 2
says that LPBP(D,N, e4) is a subset of Z+1(D,N). The proof can be completed
by the following equality:

|LPBP(D,N, e4)| =
(
gcd(e4, d1)− 1

)
·
(
gcd(e4, d2)− 1

)
+ gcd(e4, d1) · gcd(e4, d2)

=(d1 − 1)(d2 − 1) + d1d2 =
(2d1 − 1)(2d2 − 1) + 1

2
= |Z+1(D,N)|.

Consider the case perfect square N . Proposition 1, and Proposition 2 imply
that, for all pi ≥ 7,

βLucas(D,N, e4) ≤

(
2∏s

i=1 p
ri−1
i

)(∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)

)

≤

(
2∏s

i=1 p
ri−1
i

)(
s∏

i=1

(
1

2
+

1

2(pi − 2)

))
≤
(
2

7

)(
1

2
+

1

10

)
=

6

35
.
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Note that∏
i∈S0

(
pi −

[
D

pi

]
− 1

)(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)
≥
∏
i∈S0

(pi − 2)

(∏
i∈S1

(pi − 2)− 1

)
.

Similarly for the case non-square-free (i.e. there exists an i such that ri ≥ 2) and
non-perfect-square N (i.e. |S1| ≥ 1), Proposition 1, and Proposition 2 say that,
for all pi ≥ 11,

βLucas(D,N, e4) ≤

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)−

∏
i∈S0

(pi − 2)

)

≤

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1

(
1
2 + 1

2(pi−2)

)
1−

(∏
i∈S1

(pi − 2)
)−1

)
≤
(

4

11

)( 1
2 + 1

18

1− 9−1

)
=

5

22
.

When N is square-free. Consider the case s = 3. Then there exists one of

{p1, p2, p3} is 4 | pi −
[
D
pi

]
. If not, for all 1 ≤ i ≤ 3, pi −

[
D
pi

]
= 2di with

odd di hold, which is equivalent to pi ≡ −
[
D
pi

]
(mod 4). Since s = 3, we can

assume without loss of generality that p = p1 and q = p2p3. For such q and the

assumption
[
−D
q

]
= −1, we have

q ≡
[

D

p2p3

]
≡
[
D

q

]
= −

[
−1
q

]
(mod 4) =

{
1, if q ≡ 3 (mod 4);

3, if q ≡ 1 (mod 4).

It gives a contradiction. Therefore, applying Lemma 8, we obtain that

βLucas(D,N, e4) <
1

4

( ∏3
i=1(pi − 1)∏3

i=1(pi − 2)− 1

)
<

1

4

(
(pmin − 1)3

(pmin − 2)3 − 1

)
.

Similarly, as s = 4, we have

βLucas(D,N, e4) <
1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.

When s ≥ 5, applying the following fact∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

( ∏4
i=1(pi − 1)∏4

i=1(pi − 2)− 1

)( ∏s
i=5(pi − 1)∏s

i=5(pi − 2)− 1

)
,

and Lemma 9 with j = 5, we arrive that, for s ≥ 5,

βLucas(D,N, e4) ≤22−k1−...−ks

∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.

Lastly, we have

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
=

1

4
+

1

4

(
(pmin − 1)4 − (pmin − 2)4 + 1

(pmin − 2)4 − 1

)
=
1

4
+

1

4

(
4

(pmin − 2)− 1
+

2

(pmin − 2)2 + 1

)
<

1

4
+

1.25

pmin − 3
.
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The condition
[
−D
p

]
= −1 cannot be satisfied when p is a square integer.

However, the probability of selecting square integers is quite low, and in such
cases, N = pq would not be RSA moduli.

4.2 The Proposed Protocol

We propose a protocol based on Theorem 2 and provide its security proof under
the semi-honest adversary model. First, we consider the following functionality
and then propose its realization πLucas(n, κ).

Functionality 1 FBiprime(n)

Inputs: Each party Pi has a public number N = pq, p (mod 4), q (mod 4),
shares [p]Z and [q]Z, where each share satisfies p1 ≡ p (mod 4), q1 ≡
q (mod 4), and pi ≡ qi ≡ 0 (mod 4) for all 2 ≤ i ≤ n.

Outputs:
If p ≡ q ≡ 3 (mod 4):

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives
(1, ϕ).
• Otherwise, each party receives (0, {pi, qi}ni=1).

Else:

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives(
1,

{[
Dk

p

]}
Dk∈Smin

)
, where

Smin :=

{
Dk ∈ P([3, Dmin])

∣∣∣∣ [−Dk

N

]
= 1

}
,

and Dmin is the minimal odd prime such that
[
−Dmin

p

]
= −1 and[−Dmin

N

]
= 1.

• Otherwise, each party receives (0, {pi, qi}ni=1).

In order to design a protocol to securely compute FBiprime, we need function-

ality FLeg to compute the quadratic symbol
[
−D
p

]
.

Functionality 2 FLeg(n)

Inputs: Each party Pi has a share [p]Z, p (mod 4), and a prime D with
gcd(D, p) = 1.
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Outputs: Each party Pi receives the value
[
−D
p

]
.

Lucas biptimality test πLucas protocol consists of two parts: verifying that
gcd(e4, N) = 1, and performing the exponential test from Theorem 2. The prob-
ability of N being an RSA modulus increases with the number of successful
exponential tests.

Protocol 1 Lucas Biprimality Test πLucas(n, κ)

Inputs: Each party Pi has p (mod 4), q (mod 4), N and [p]Z, [q]Z, where each
share satisfies p1 ≡ p (mod 4), q1 ≡ q (mod 4), and pi ≡ qi ≡ 0 (mod 4) for all
2 ≤ i ≤ n.

Outputs:

(
1,
{[

Dk

p

]}
Dk∈Smin

)
or (0, {pi, qi}ni=1).

Select an appropriate positive integer D:

1. If p ≡ q ≡ 3 (mod 4), parties set D = 1, Smin := ϕ, and go to the step 5.
2. Else, parties find the minimal k such that

[−Dk

N

]
= 1, where D1 = 3, D2 =

5, D3 = 7, . . . is the odd prime number sequence.

3. The party Pi sends ([p]Z, p (mod 4), Dk) to FLeg to obtain
[
Dk

p

]
and adds

Dk to Smin.

4. If
[
−Dk

p

]
= −1 then parties set D = Dk. Else parties find next k such that[−Dk

N

]
= 1 and restart from step 3.

Exponential verification: For 1 ≤ j ≤ κ:

5. Parties agree on a random Pj ∈ ZN and letQj := (P 2
j −D)/4. If gcd(N,Qj) ̸=

1, then broadcast pi, qi and output (0, {pi, qi}ni=1).

6. If
[
Qj

N

]
̸= 1, then restart from the previous step.

7. The party P1 sets

y1,j := (αjβ
−1
j )(N+p1[−1

q ]+q1[−1
p ]+[−1

N ])/4 ∈ Z×
N and the other parties set

yi,j := (αjβ
−1
j )(pi[−1

q ]+qi[−1
p ])/4 ∈ Z×

N for all 2 ≤ i ≤ n, where αj and βj are

two roots of the polynomial x2 − Pjx + Qj . Party Pi sends yi,j to FShuffle

and then obtain uj .
8. All parties check uj ≡ ±1 (mod NOD). If the check fails then they broadcast

pi, qi and return (0, {pi, qi}ni=1).

GCD Test

9. Each party randomly generates shares [r]N . They send ([r]N , (p[−1
q ]+q[−1

p ]+

[−1
N ])) to FModMul to obtain [z]N .

10. Each party broadcasts his share zi of [z]N , then they check if gcd(N, z) = 1.
If the check fails they broadcast pi, qi and return (0, {pi, qi}ni=1).
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If all verification pass, then output

(
1,
{[

Dk

p

]}
Dk∈Smin

)
.

A security proof of πLucas under the semi-honest adversary model is provided
below.

Theorem 3. Let p and q be odd integers, N = pq, and D be an integer with[
−D
p

]
=
[
−D
q

]
= −1, and gcd(D,N) = 1. The inputs to Pi are given as

(N, [p]Z, [q]Z),

where each share satisfies p1 ≡ p (mod 4), q1 ≡ q (mod 4), and pi ≡ qi ≡
0 (mod 4) for all 2 ≤ i ≤ n. If pmin ≥ 11, then the Protocol πLucas securely
computes the functionality FBiprime in the FShuffle, FModMul-hybrid model and in
the presence of a static semi-honest adversary corrupting up to n− 1 parties.

Proof. Correctness. Assuming p > q are both primes(i.e. the case p < q is simi-
lar) with gcd(N, e4) = 1, we show that such p and q do not output (0, {pi, qi}ni=1)
with overwhelming probability. Note that for any 1 ≤ j ≤ κ,

P[gcd(Qj , N) = 1]

=P[(P 2
j −D)/4 ∈ Z×

N ] ≥ 1− N − ϕ(N)

ϕ(N)/4
≥ 1− 4(p+ q − 1)

ϕ(N)
≥ 1− 4

2p− 1

q2 − 1

≥1− 16p

q2
≥ 1− 2− log2 q+| log2 p−log2 q|+4, (5)

which implies that such p, q will pass all tests in step 5 with overwhelming
probability(cf. Remark 1). For the check of step 8, by Theorem 2, we have
uj = (αβ−1)e4 ≡ ±1 (mod NOD) for all 1 ≤ j ≤ κ. Using the similar argument
as in (5), we may assume r ∈ Z×

N which implies

gcd(N, z) = gcd(N, e4) = 1.

The output of πLucas is

(
1,
{[

Di

p

]}
Di∈Smin

)
. In the case where gcd(N, e4) ̸= 1,

we have gcd(N, z) > 1, and both πLucas and FBiprime output (0, {pi, qi}ni=1).
When p and q are not distinct primes but gcd(N, e4) = 1, the probability of
exponential test pass is not greater than 1

4 + 1.25
pmin−3 , according to Theorem 2.

Hence the probability of πLucas outputting

(
1,
{[

Di

p

]}
Di∈Smin

)
is bounded by

( 14 + 1.25
pmin−3 )

κ.
Privacy. Let P∗ be the set of corrupt parties. We show that a simulator S can
be constructed to simulate the transcript of πLucas. If the input of S is

(P∗, N, {pi, qi}i∈P∗ , 0, {pi, qi}ni=1),

then S only needs to follow the honest parties’ strategy to simulate the view of
the protocol. Therefore, we consider the case S is given the input
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(
P∗, N, {pi, qi}i∈P∗ , 1,

{[
Di

p

]}
Di∈Smin

)
.

1: For all 1 ≤ j ≤ κ, S randomly samples vj , wj ∈ ZN with gcd(v2j−w2
jD,N) =

1, bj ∈ {0, 1}, and sets aj =
vj+wj

√
D

vj−wj

√
D
, P ′

j ∈ ZN such that the two roots of

polynomial x2 − P ′
jx+Q′

j are β′
j :=

√
D

a2
j ·(−1)bj−1

and α′
j := β′

j +
√
D.

2: The simulator S randomly generates z′ ∈ Z×
N , and it’s additive shares [z′]N .

3: The adversary S outputs(
P∗, N, {pi, qi}i∈P∗ , {P ′

j , (−1)bj}κi=1, [z
′]N , {z′i}ni=1

)
.

First, we argue that P ′
j ∈ ZN with overwhelming probability. Note that

P ′
j =α′

j + β′
j

=
2
√
D(vj − wj

√
D)2

(vj + wj

√
D)2 · (−1)bj − (vj − wj

√
D)2

+
√
D

=

(
v2j + w2

jD

2vjwj

)1−2bj

Dbj ∈ ZN .

Secondly, we show that the distribution of (P ′
j , (−1)bj ) generated by the

simulator is indistinguishable from the distribution of the real-world transcript
(Pj , uj) = (Pj , (αjβ

−1
j )e4). Note that (α′

jβ
′−1
j )e4 = ((β′

j+
√
D)β′−1

j )e4 = (a2j (−1)bj )e4 .
Due to the symmetry between p and q, we only need to consider proving

(a2j )
e4 ≡ 1 (mod pOD).

Since p, q are odd primes and e4 is odd, we have

1. If
[
D
p

]
= −1, we have

(
vj + wj

√
D

vj − wj

√
D

)2e4

≡

(
N

(
vj + wj

√
D

vj − wj

√
D

))(q+[−1
q ])/2

≡ 1 (mod pOD).

2. If
[
D
p

]
= 1 (i.e.

√
D ∈ Z×

p ), Euler theorem says that

(
vj + wj

√
D

vj − wj

√
D

)(p+[−1
p ])(q+[−1

q ])/2

≡ 1 (mod p).

Therefore, (α′
jβ

′−1
j )e4 ≡ (−1)bj (mod NOD) by CRT. Note that the distribution

of P ′
j produced by the simulator S at the step 1. Proposition 5 says that the

distributions of Pj and P ′
j are identical. Lastly, gcd(N, e4) = 1 implies that
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(p[−1
q ] + q[−1

p ] + [−1
N ]) ∈ Z×

N , and z ≡ r(p[−1
q ] + q[−1

p ] + [−1
N ]) (mod N) is

uniformly distributed in ZN . The statistical distance between the distributions
of z and z′ is

1

2

 ∑
x∈ϕ(N)

( 1

ϕ(N)
− 1

N

)
+

∑
x∈N\ϕ(N)

1

N

 =
N − ϕ(N)

N
,

which is negligible using a similar argument as in (5). We conclude that the joint
distribution of the outputs generated by S and FBiprime, and of the view and
output of an execution πLucas are indistinguishable.

Remark 1. In the practical scenario (e.g. [13]), distributed RSA moduli protocols

generate p =

n∑
i=1

pi and q =

n∑
i=1

qi, where pi and qi are uniformly sampled from

[0, 2ℓ−log2 n], with ℓ being the security parameter. This implies max{p, q} is at
most ℓ-bits and

P[min{p, q} is larger than (ℓ− log2 n− 80)-bits ] ≥ 1− 2−80n.

Therefore, | log2 p−log2 q| ≤ 80+log2 n (i.e. 2− log2 q+| log2 p−log2 q|+4 is negligible)
with overwhelming probability.

For completeness, we provide πLeg which is a protocol that securely realizes
Functionality FLeg. A similar protocol for computing the Legendre symbol was
proposed in [24] but was not proven in detail.

Protocol 2 Legendre symbol πLeg(n)

Inputs: Each party Pi has [p]Z, p (mod 4), and a prime D with gcd(D, p) = 1.

Outputs:
[
−D
p

]
.

1. Each party randomly sample si ∈ ZD sends (si, si, D) to FModMul to obtain
[s2]D.

2. Each party sends ([s2]D, pi (mod D), D) to FModMul to obtain [s2p]D.
3. Each party opens [s2p]D. If gcd(s2p,D) ̸= 1, then restarts to the step 1.

Otherwise, output

−
[
s2p
D

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

s2p
D

]
, otherwise.

Proposition 3. Protocol πLeg securely computes the functionality FLeg in FModMul-
hybrid model in the presence of a static semi-honest adversary corrupting up to
n− 1 parties.

Proof. We construct the simulator S to simulate the transcript of πLeg. Suppose
S is given input (

P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
.
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1: S uniformly samples s ∈ Z×
D and si ∈ ZD for i ∈ {1, . . . , n} such that∑n

i=1 si ≡ s (mod D).

2: S uniformly samples s′i ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 s
′
i ≡

s2 (mod D).

3: S uniformly samples r ∈ Z×
D such that

[ r
D

]
=

−
[
−D
p

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

−D
p

]
, otherwise.

4: S uniformly samples ri ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 ri ≡
r (mod D).

5: S outputs

({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

Because FLeg is a deterministic function, we only need to prove{
S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[−D
p

])}
c≡ {viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}

for any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n − 1, {pi}ni=1 and prime D. In the beginning,
fixed any {pi}ni=1 and D, we claim that the output of

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
and the view

view
πLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)

are identical. Observe that[ p
D

]
=

[
D

p

]
· (−1)

p−1
2

D−1
2 =

[
−D
p

]
·
[
−1
p

]
· (−1)

p−1
2

D−1
2

=

[
−D
p

]
· (−1)

p−1
2 · (−1)

p−1
2

D−1
2

implies that
[
p
D

]
=
[
r
D

]
. The facts thatD is a prime, and s is uniformly randomly

chosen from Z×
D, which gives us the identical distribution between {s2p | s ∈ Z×

D}
with

{
r ∈ Z×

D |
[
r
D

]
= (−1)

(p−1)(D−3)
4

[
−D
p

] }
. Due to |P∗| < n, si, s

′
i in the

view
πLeg

P∗ (P∗, N, {pi}i∈P∗ , p (mod 4), D) and

S
(
P∗, N, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
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are both independently and uniformly distributed in ZD. We conclude that for
any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n− 1, {pi}ni=1, and prime D{

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])}
≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {s2pi}i∈P∗ , {s2pi}i∈{1,...,n}\P∗)

≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}.

5 Implementation, Benchmarks, and Evaluation

In this section, we first experimentally evaluate the effectiveness of the Boneh-
Franklin, the Miller-Rabin test, and the proposed test. In subsection 5.2, we
compare the widely used protocols based on the variant Miller-Rabin test by
Burkhardt et al. [12, FIGURE 6.1], the Boneh-Franklin test [21], and the pro-
posed protocol. In subsection 5.3, we implement both the Boneh-Franklin test
and our protocol independently and present runtime data from executions per-
formed on a laptop.

5.1 Comparing the effectives of Three Tests

We begin by recalling the variant Miller-Rabin test [12] and determine which of
the three tests, Boneh-Franklin, the variant Miller-Rabin test or our proposed
Lucas test, is more effective at identifying when N is not an RSA modulus.
Consider N = pq with p ≡ q ≡ 3 (mod 4) and f ∈ {p, q}. The algorithm of the
variant Miller-Rabin test is as follows:

1. Uniformly sample an element v ∈ Z×
N

7 (i.e. in [12], v is chosen in ZN ).

2. Compute γ = v
f−1
2 (mod N).

3. If γ ≡ ±1 (mod f), then output probably prime. Otherwise output com-
posite.

The biprimality test proposed in [12, 17] applies the variant Miller-Rabin test
separately to f ∈ {p, q}. Therefore, for any N = pq with p ≡ q ≡ 3 (mod 4) and
gcd(N, e4) = 1 the probability that N passes the process is (cf. Lemma 5)

βMR(p) :=
|MR(p)|
ϕ(p)

= 2

∏
pi|p

gcd(di,
p−1
2 )

pri−1
i (pi − 1)

 .

In particular, when p = q is prime, such an RSA modulus candidate p, q will
always pass this algorithm’s test with 100% certainty. Therefore, we recommend

7 We narrow the selection range of v from ZN to Z×
N because an element v ∈ ZN\Z×

N

will let the test output composite even when f is prime.
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Table 2: Pairwise comparison charts among the three tests.

Method β = βBF(N,e4)
βMR(p)βMR(q)

β = βBF(N,e4)
βLucas(N,e4)

β = βLucas(N,e4)
βMR(p)βMR(q)

β < 1 0.08% < 0.01% 54.26%

β = 1 54.18% 0% 0%

β > 1 45.74% > 99.99% 45.74%

Count how many non-RSA moduli N = pq with p ≡ q ≡ 3 (mod 4), gcd(N, e4) = 1, and gcd(pq, p′) = 1 for all

primes p′ ≤ 541 satisfy β > 1, β = 1 or β < 1, which run over all 3 ≤ p < q ≤ 1440003.

incorporating a check to verify whether N is a perfect square to exclude this
case. Notably, the papers [12,17] do not include this check.

We simplify the formula comparing any two of these tests and analyze the
resulting ratios under three different scenarios. Let 1P(·) be the indicator function
of positive integers (i.e. 1P(0) = 0).

– Variant Miller-Rabin VS Boneh-Franklin Test:

βBF(N, e4)

βMR(p)βMR(q)
=

(
1

1P(
√
N) + 1

)∏
pi|p
pi∤q

gcd(e4, di)

gcd(di,
p−1
2

)

∏

pi|q
pi∤p

gcd(e4, di)

gcd(di,
q−1
2

)


·

 ∏
pi|gcd(p,q)

(pi − 1) gcd(e4, di
)

pi gcd(di,
p−1
2

)
gcd

(
di,

q−1
2

)
 .

– Lucas Test VS Boneh-Franklin Test

βLucas(N, e4)

βBF(N, e4)
=

[∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏s

i=1 gcd(e4, di)

]
·

[ ∏s
i=1(pi − 1)∏

i∈S0
(pi − 2)

(∏
i∈S1

(pi − 2) + 1P(|S1|)(−1)|S1|
)] .

– Lucas Test VS Variant Miller-Rabin Test

βLucas(N, e4)

βMR(p)βMR(q)
=

[∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏

pi|p gcd(
p−1
2 , di)

∏
pi|q gcd(

q−1
2 , di)

]

·

[ (∏s
i=1(pi − 1)

)(∏
pi|gcd(p,q)(1− p−1

i )
)∏

i∈S0
(pi − 2)

(∏
i∈S1

(pi − 2) + 1P(|S1|)(−1)|S1|
)] .

Table 2 demonstrates that, among the three tests, the ability to identify
non-RSA moduli shows a slight advantage for the Lucas test over the variant
Miller-Rabin test, and a significant advantage for the Lucas test over the Boneh-
Franklin test.
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Table 3: Computation Procedures for Three Tests

Method Boneh-Franklin Variant
Miller-Rabin

Proposed test

Basis selection (local) g ← ZN ,
[

g
N

]
= 1 v ← ZN P ← ZN ,

[
P2−1

N

]
= 1

Exponential calcula-
tion

P1 : g(N−(pi+qi)+1)/4 P1 : v(fi−1)/2 P1 :
(αβ−1)(N−(pi+qi)+1)/4

(local) Pi : g
(−pi−qi)/4 Pi : v

fi/2 Pi : (αβ
−1)(−pi−qi)/4

Other computations ge4 ←Shuffle Mul-to-Add (αβ−1)e4 ← Shuffle

(MPC)
[
v(f−1)/2

]
←

[r]←RandomSample Divisible [r]←RandomSample
[y+1] , [y−1]←

[r · (p+ q − 1)]←Mult [y+1 · y−1]←Mult [r · (p+ q − 1)]←Mult

All computations of the Variant Miller-Rabin test need to be executed twice, for f ∈ {p, q}. Basis selection refers
to the conditions of the basis for exponential calculations. We consider the semi-honest model; hence, the basis
is determined by P1. In Exponential calculation, Pi represents P2, . . .Pn, and α, β are the two roots of the

polynomial x2 + Px + (P2 − 1)/4. In Other computations, the Shuffle protocol outputs the product of shares.
Mul-to-Add refers to the conversion of multiplicative shares to additive shares. RandomSample outputs a random

element from a specified set. The output of Divisible y±1 indicates whether v(f±1)/2 ≡ 0 (mod f). Mult denotes
the MPC multiplication between additive shares.

5.2 Comparison of Computational Cost for Three Tests

Burkhardt et al. [12] demonstrated that their protocol exhibits superior effi-
ciency compared to the Boneh-Franklin test presented by Frederiksen et al. [21]
at the same security level. In their comparisons between the Boneh-Franklin and
Miller-Rabin tests, the Boneh-Franklin test required more iterations to achieve
equivalent soundness due to its original acceptance rate of 1/2 in the worst case.
To evaluate the effectiveness of the three protocols, including the Lucas test,
we adopt the terminology introduced in Burkhardt et al.’s paper (cf. Subsection
6.5) and summarize it in Table 3. It is evident that in terms of overall compu-
tational efficiency, the Boneh-Franklin test is the most optimal. However, the
Lucas test type is not far behind, with the difference mainly arising from local
computations. Given the current computational power, the gap between the two
is nearly negligible.

5.3 Implementation

Our experiment is mainly composed of three parts (cf. Section 6.5):

1. Generate an RSA modulus candidate: Utilizing the CRT-Sampling pro-
tocol [13, Protocol 4.4] generates N , pi, qi, and {pi (mod 4), qi (mod 4)}ni=1

satisfying p =
∑

i pi ≡ 3 (mod 4) and q =
∑

i qi ≡ 3 (mod 4). Meanwhile,
set a parameter B to check that no prime smaller than B dividing N = pq.
In our case, B = 62017. For N = 2048 (resp. 3072) bits, passing this check
implies approximately a 0.0767% (resp. 0.0341%) probability that both p
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and q are prime. This is based on DeBruijn’s formula [10]: for a k bit integer
p,

Pr(p ∈ P| trial division up to B) ∼ 2.57 · lnB · k−1.

Like most experiments, our MPC multiplication with secret-sharing is pro-
posed by Gennaro et al. [23, Figure 2], assuming an honest majority.

2. A biprimality test: We continue checking the exponential conditions re-
quired by both biprimality tests until the soundness error is reduced to 2−80.

3. Verify gcd
(
pq, (p +

[
−1
p

] )(
q +

[
−1
p

]
)
)
= 1 : Sample an r ∈ Z×

N , calculate

z = r
(
p
[
−1
q

]
+q
[
−1
p

]
+
[−1
N

] )
, and check gcd(pq, z) = 1. If the check failure,

then return to step 1.

The scheme is implemented by the Golang programming language and its
provided ”math/big” library. In order to achieve a probability of accepting a non-
RSA modulus at least 2−80, we set 40 iteration for the two biprimality tests. The
experiments were conducted with N set to 2048 bits and 3072 bits, and involved
2, 3, to 4 parties. All programs were executed in a single-threaded manner on an
Apple M2 with 16GB LPDDR5 RAM in the 13-inch (2022) MacBook Pro. The
running times are presented in Table 4.

Table 4: The mean ± standard deviation of execution time (in seconds) for our
methods and the competing method.

Proposed test Boheh-Franklin

N = 2048

n = 2 18.84± 18.50 20.47± 19.64
n = 3 33.01± 35.36 43.46± 42.68
n = 4 59.67± 60.12 64.16± 61.07

N = 3072

n = 2 117.59± 119.24 109.66± 119.97
n = 3 174.59± 200.88 169.81± 161.44
n = 4 232.81± 249.38 274.67± 273.64

In our experiments, both the Lucas test and the Boneh-Franklin test demon-
strated distinct advantages in average execution time. We observed that when
N is not an RSA modulus, both tests effectively identified this in a single run.
Thus, performance variations are likely due to the probability of generating an
RSA modulus during the selection of p and q, rather than significant differences
between the tests themselves.

Regarding computational complexity within the MPC protocol (cf. Subsec-
tion 5.2), the Lucas test and Boneh-Franklin test are comparable, both out-
performing the variant Miller-Rabin test. Importantly, the most efficient Prime
Candidate Sampling methods [13, 37] cannot be directly applied to Burkhardt
et al.’s approach, as they cannot guarantee equal length for p and q. Specifically,
Chen et al. [13] restrict pi and qi to the interval [0, 2ℓ−log2 n], while Guilhem et
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al. [37] use [2ℓ−1, 2ℓ−1+80], where ℓ is the security parameter related to the bit
lengths of p and q. Thus, in generating p and q, the variant Miller-Rabin test
incurs additional time overhead compared to the Boneh-Franklin test and Lucas
test.

At the same time, exhaustive experiments Table 2 indicate that, ”on aver-
age,” the Lucas test achieves the best average soundness error. In other words,
if the Miller-Rabin test requires only two iterations to reach a certain error rate,
then our proposed test should require no more than two iterations.

In conclusion, assuming the local computation overhead difference between
the Boneh-Franklin test and the Lucas test is negligible, the proposed Lucas test
is highly competitive.
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Appendix 6 Appendix

We detail the number of elements in the set related to MR(p) for the Miller-Rabin
test when p ≡ 3 (mod 4) in Subsection 6.1. Subsection 6.2 includes missing proofs
related to the Lucas test. Subsection 6.3 examines the distribution consistency
required in Theorem 3, while Subsection 6.4 covers missing protocols utilized
within the main protocol. For ease of comparison, we summarize the three RSA
modulus protocols in Subsection 6.5.

6.1 Variant Miller-Rabin Test

For completeness, we provide the formula for the number of variants of the
Miller-Rabin test, which proof is similar to Theorem 1.

Lemma 5. Let p =

s∏
i=1

prii ≡ 3 (mod 4). Then

|MR
(
p
)
| = 2

s∏
i

gcd
(
(p− 1)/2, di

)
.

Proof. Since (p− 1)/2 is odd, we have

|{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}| = |{g ∈ Z×

p | g(p−1)/2 ≡ −1 (mod p)}|

and

|MR(p)| = 2 · |{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}|.

Similar to Lemma 3, we consider the problem of counting the cardinality of
(p−1)

2 -th roots of 1 in (Z/prii Z)× using CRT. Combining the fact (Z/prii Z)× is

cyclic, gcd(p, (p−1)/2) = 1, and Lemma 1, one has the number of (p−1)
2 -th roots

of 1 in the group (Z/prii Z)× is

gcd((p− 1)/2, pri−1
i (pi − 1)) = gcd((p− 1)/2, di).

The above discussion implies the desired result.

6.2 Missing Proofs of Section 4

When D is not a square, the result have already been provided in [3, Section 5].
Here, we extend this result to general integers D.

Proposition 4. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Then we have |Z(D,N)| =
s∏

i=1

pri−1
i

(
pi −

[
D

pi

]
− 1

)
.
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Proof. Similarly, applying CRT, we only consider the case Z(D, pr).When r = 1,

in the beginning proof of Lemma 4 gives us |Z(D, p)| = pi −
[
D
pi

]
− 1. When

r ≥ 2, we first the case where Q ≡ −D/4 (mod p), and need to compute the
cardinality of the set{

(P,Q)
P 2 ≡ 0 (mod p),
gcd(Q, pr) = 1, 0 ≤ P,Q < pr

}
. (6)

The number of solution (P,Q) is pr−1, which form is (P,Q) =
(
tp, ((tp)2−D)/4

)
,

where t ∈ Zpr−1 .
For the case Q ̸≡ −D/4 (mod p), we consider Q = a + tp, where t ∈ Zpr−1

and

a ∈ T :=

{
Q ̸≡ −D/4 ∈ Z×

p

∣∣∣∣ x2 ≡ D + 4Q mod p is solvable

}
.

For each Q ∈ Zpr with Q ̸≡ −D/4 (mod p), if fQ(x) := x2−4Q−D ≡ 0 (mod p)
hasm solutions in Zp, and f ′

Q(a) ̸≡ 0 (mod p) for all a ∈ T . Therefore, by Lemma
2, fQ(x) ≡ 0 (mod pr) also has m solutions in Zpr . Since t ∈ Zpr−1 is arbitrary,
then the number of solutions for this case is pr−1(|Z(D, p)| − 1). Therefore, the
total number of solutions is pr−1(|Z(D, p)| − 1) + pr = pr−1(|Z(D, p)|).

This part completes the proof of the Lemma 4.

Lemma 6. Let p be an odd prime, and D be an element of Z×
p . Then we have,

for any r ≥ 1 and ϵ ∈ {±1},

|Zϵ(D, pr)| = pr−1 · |Zϵ(D, p)|.

Proof. When r = 1, the desired result have been proved in the proof of Lemma
4. Here, we only consider the case 2 ∤ r, because Z+1(D,N) = Z(D,N) as
2 | r, which result can be obtain by Proposition 4. Assume ϵ = 1, since we have
|Z(D, pr)| = pr−1 · |Z(D, p)| by Proposition 4 and |Z−1(D, pr)| = |Z(D, pr)| −
|Z+1(D, pr)|. When

[
−D/4

p

]
= 1 holds, one has

(
tp, ((tp)2−D)/4

)
∈ Z+1(D, pr)

for t ∈ Zpr−1 , which implies that the cardinality of the set (6) is pr−1. Using the
same trick as in the Proposition 4, express Q as a+ tb, where t ∈ Zpr−1 , and

a ∈
{
Q ̸≡ −D/4 ∈ Z×

p

∣∣∣∣ x2 ≡ D + 4Q mod p is solvable ,

[
Q

p

]
= 1

}
.

Notice that
[
Q
pr

]
=
[
Q
p

]
= 1, since r is odd. Therefore, For each Q ∈ Zpr ,

if x2 ≡ D + 4Q mod p and
[
Q
p

]
= 1 has m solutions, then x2 ≡ D + 4Q

mod pr and
[
Q
pr

]
= 1 also has m solutions by Lemma 2. Since t ∈ Zpr−1 is

arbitrary, then the number of solutions of Z+1(D, pr) is pr−1
(
|Z+1(D, p)| − 1

)
.

For the case where
[
−D/4

p

]
= −1, there are no (P,Q) ∈ Z+1(D, pr) with Q ≡

−D/4 (mod p). Consequently, the number of solutions of |Z+1(D, pr)| is given
by pr−1|Z+1(D, p)| following the same reasoning as above.
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Some lemmas are used in Theorem 4.

Lemma 7. Let p be an odd prime and D ̸≡ 0 (mod p). Then

(p−1)/2∑
i=1

[
i2 +D

p

]
=
−1−

[
D
p

]
2

.

Proof. First, we prove that

p∑
i=1

[
i2 +D

p

]
= −1.

According to Euler’s criterion (cf. [32, Theorem 3.1]), the above considering sum
can be written as

p∑
i=1

(i2 +D)
p−1
2 .

Since Z×
p is a cyclic group, there exists a generator g, which induces that

p−1∑
i=1

ik (mod p) =

p−2∑
i=0

gik (mod p) =

{
0, if p− 1 ∤ k;
−1, if p− 1 | k.

Therefore, applying this fact and expending (i2 +D)
p−1
2 , one has

p∑
i=1

[
i2 +D

p

]
≡

p−1
2∑

ℓ=0

(p−1
2

ℓ

)
Dℓ

p∑
i=1

ip−1−2ℓ ≡ D(p−1)/2

p∑
i=1

1+

p∑
i=1

ip−1 ≡ −1 (mod p).

Notice that ∣∣∣∣∣
p∑

i=1

[
i2 +D

p

]∣∣∣∣∣ ≤ p,

which implies that

p∑
i=1

[
i2 +D

p

]
= −1 or p−1. However, if

p∑
i=1

[
i2 +D

p

]
= p−1,

then we must have p−1 terms equal to 1 and exactly 1 term a2+D ≡ 0 (mod p)
with a ≡ −a (mod p), which implies that a ≡ 0 (mod p), since p is odd. Therefore,
one has D ≡ 0 (mod p), which gives us a contradiction.

The proof is completed by the above fact and the following observation.

2

p−1
2∑

i=1

[
i2 +D

p

]
=

p−1∑
i=1

[
i2 +D

p

]
= −1−

[
D

p

]
.

Lemma 8. Let pi > 3 be distinct primes and s ≥ 1. Then∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
≤ (pmin − 1)s

(pmin − 2)s − 1
.

Here pmin := min
1≤i≤s

{pi}.
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Proof. Observe that∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
=

(∏s
i=1(pi − 1)∏s
i=1(pi − 2)

)( ∏s
i=1(pi − 2)∏s

i=1(pi − 2)− 1

)
.

Since (pi − 1)/(pi − 2) is a decreasing function for pi, we have

s∏
i=1

(
pi − 1

pi − 2

)
≤ (pmin − 1)s

(pmin − 2)s
.

The proof is completed by the facts that x/(x− 1) is decreasing and
∏s

i=1(pi −
2) ≥ (pmin − 2)s.

Lemma 9. Let pi > 5 be distinct primes and s ≥ 1. Then for any 1 ≤ j ≤ s,

s∏
i=j

(pi − 1) <

s∏
i=j

2(pi − 2)− 2s−j+1.

Proof. For all pi ≥ 5, we have

s∏
i=j

(pi − 1) + 2s−j+1 ≤
s∏

i=j

(
(pi − 1) + 2

)
=

s∏
i=j

(pi + 1) ≤
s∏

i=j

2(pi − 2).

6.3 The Identical Distributions of Pj and P ′
j in Theorem 3

In this subsection, for an integer m, if
√
D ∈ Z×

m, then (mod m) refers to the
module mZ; otherwise, if

√
D ̸∈ Z×

m, (mod m) refers to the module mOD.
To investigate the distribution of Pj and P ′

j , we will examine the relationship
between Sreal(m,b) and Sideal(m,b) given an odd integer m and b ∈ {0, 1}. Here

Sreal(m,b) :=

{
P ∈ Zm

∣∣∣∣ [ (P 2 −D)/4

m

]
= (−1)b

}
, and

Sideal(m,b) :=

{
2
√
D

a2(−1)b − 1
+
√
D

∣∣∣∣ a =
v + w

√
D

v − w
√
D
, v,w ∈ Zm, v2 − w2D ∈ Z×

m,

a2(−1)b ̸≡ 1 (mod m)

}
.

Then we have

Lemma 10. If p is an odd prime, and D is an integer with
[
−D
p

]
= −1, then

we have Sreal(p,b) = Sideal(p,b) for b ∈ {0, 1}.
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Proof. For any P ′ ∈ Sideal(p,b), we have

(P ′2 −D)/4 =

(( √
D

a2(−1)b − 1

)( √
D

a2(−1)b − 1
+
√
D

))

=D

[
(v2 − w2D)2(−1)b(

(v + w
√
D)2(−1)b − (v − w

√
D)2

)2
]

Therefore,

[
(P ′2 −D)/4

p

]
=


[
1/(v2w2)

p

]
= 1 , if b = 0;

[
−D/(v2+w2D)2

p

]
= −1 , if b = 1.

We derive
[
(P ′2−D)/4

p

]
= (−1)b and Sreal(p,b) ⊇ Sideal(p,b). On the other hand,

let P be an element in Sreal(p,b). We assume that there exists a belonging the set{
v + w

√
D

v − w
√
D

∣∣∣∣ v, w ∈ Zp, v
2−w2D ∈ Zp× , (v+w

√
D)2 ≡ (−1)b(v−w

√
D)2 (mod p)

}
such that a2(−1)b = P+

√
D

P−
√
D
̸≡ 1 (mod p). Then we have

P ≡ 2
√
D

P+
√
D

P−
√
D
− 1

+
√
D ≡ 2

√
D

a2(−1)b − 1
+
√
D (mod p),

which implies Sreal(p,b) ⊆ Sideal(p,b). To prove the assumption, we split it into
two cases.
Case1:

[
D
p

]
= 1 (i.e.

√
D ∈ Z×

p ).

Since the condition in Lemma gives
[
−D
p

]
= −1, we have

[
−1
p

]
= −1. Then one

has [
(−1)b · (P +

√
D)/(P −

√
D)

p

]
=

[
(−1)b · (P +

√
D)2/(P 2 −D)

p

]

=

[
(−1)b(P 2 −D)

p

]
=

[
(−1)b

p

]
(−1)b = 1.

There exists t ∈ Z×
p such that t2 ≡ (−1)b P+

√
D

P−
√
D

(mod p). Assume t ̸≡ 1 (mod p),

we take (v, w) = ( t+1
t−1

√
D, 1) and then a2 ≡

(
v+w

√
D

v−w
√
D

)2
≡ (−1)b P+

√
D

P−
√
D

(mod p).

If t = 1, we set (v, w) = (1, 0), then a2 = 1.

Case2:
[
D
p

]
= −1.

If b = 0 (resp. b = 1), then we take (v, w) = (
P+
√

4(P 2−D)

2 , 1) ∈ Zp × Zp (resp.
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(v, w) = (
D+
√

D(D−P 2)

P , 1) ∈ Zp × Zp). Racall that a = v+w
√
D

v−w
√
D
. Then, one has

a2 ≡ (−1)b P+
√
D

P−
√
D

(mod p).

Assume p is an odd prime and D ∈ Z×
p . Let

G :=

{
(a, b)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
.

Given g1 = (a1, b1), g2 = (a2, b2) ∈ G, define g1 ∗ g2 = (a1a2 + b1b2D, a1b2 +
b1a2). Then G is a group with the identity (1, 0), and its inverse of g = (a, b) is(
a/(a2 − b2D),−b/(a2 − b2D)

)
. Let

H :=

{
a+ b

√
D

a− b
√
D
∈ Zp(

√
D)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
,

which is also a group under the field multiplication. Here Zp(
√
D) is the fractional

field of the ring {a + b
√
D | a, b ∈ Zp}. The inverse of any h = a+b

√
D

a−b
√
D
∈ H is

a−b
√
D

a+b
√
D
, and the identity is 1.

Lemma 11. Let p be an odd prime, and D ∈ Z×
p . Consider a group homomor-

phism f : G→ H defined by

g = (a, b) ∈ G 7→

(
a+ b

√
D

a− b
√
D

)2

∈ H.

Then the set of f(g) forms a subgroup of H, and | ker(f)| = 2p− 2.

Proof. It is a subgroup can be verified directly using the definition. We omit this
step. The map f is a group homomorphism, which can be verified by showing
that for any (a1, b1), (a2, b2) ∈ G:

f(a1, b1)f(a2, b2) =
a1a2 + b1b2D + (a1b2 + a2b1)

√
D

a1a2 + b1b2D − (a1b2 + a2b1)
√
D

= f((a1, b1) ∗ (a2, b2)).

Let g = (a, b) ∈ G with f(g) = 1. Then
(

a+b
√
D

a−b
√
D

)2
= 1, which implies that

ab
√
D = 0. Therefore a = 0 or b = 0. If a = 0 and b ∈ Z×

p , then f(g) = 1.
Similarly, if b = 0, then a ∈ Z×

p , then f(g) = 1. In conclusion, the cardinality of
kernel of f is 2p− 2.

Proposition 5. If N = pq is an odd RSA modulus, and D is an integer with[
−D
p

]
=
[
−D
q

]
= −1, then we have Sreal(N,0) = Sideal(N,0) ∪ Sideal(N,1). Fur-

thermore, uniformly sampling u, v ∈ ZN , b ∈ {0, 1} with u2 − v2D ∈ Z×
N and

a2(−1)b ̸≡ 1 (mod N) is equivalent to randomly selecting from the set Sreal(N,0).
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Proof. According to the CRT, we have

Sreal(N,0) =
(
Sreal(p,0) × Sreal(q,0)

)
∪
(
Sreal(p,1) × Sreal(q,1)

)
.

Similarly, one has

Sideal(N,0) = Sideal(p,0) × Sideal(q,0), and Sideal(N,1) = Sideal(p,1) × Sideal(q,1).

Thus, according to Lemma 10, there exists a bijective map from Sideal(N,0) ∪
Sideal(N,1) to Sreal(N,0).

Notice that to ensure Sideal(N,b) is well-defined, we need to assume a2(−1)b ̸≡
1 (mod N). Specifically, for any odd prime p satisfying

[
−D
p

]
= −1, then this

condition is equivalent to a2 ≡ 1 mod p and b = 0, which is also equivalent to
u = 0, w ∈ Z×

p or u ∈ Z×
p , v = 0. Let TN := {(u,w) : u2 − w2D ∈ Z×

N}. Lemma
11 says that there is a surjective map f from Tp to the set Sideal(p,b) for any
b ∈ {0, 1} such that |f−1(x)| = 2p− 2 for all x ∈ Sideal(p,b). This map induces a
bijective map

Tp − {u, v | uv = 0, (u, v) ̸= (0, 0)} × Tp → Sideal(p,0) × Sideal(p,1).

In fact, the set {u, v | uv = 0, (u, v) ̸= (0, 0)} is f−1(1).
Lastly, the CRT says that TN = Tp×Tq. Therefore, there exists a map g such

that |g−1(x)| = (2p− 2)(2q − 2) for all x ∈ Sideal(N,0) ∪ Sideal(N,1). The proof is
complete.

6.4 Missing Functionalities and Protocols

The functionality describes that each party Pi has two shares, xi and yi, the
functionality outputs zi where [z]N = [xy]N and assigns to Pi.

Functionality 3 Modular Multiplication FModMul(n)

Inputs: Each party Pi has shares [x]N , [y]N and N .

Outputs: Each party has shares of [z]N = [x · y]N , with uniformly random
zi ∈ ZN for all 1 ≤ i ≤ n.

The functionality below is to ensure that participants can learn
∏

i yi without
revealing their own yi.

Functionality 4 FShuffle(n)

Inputs: Each party Pi has yi in a finite group G.

Outputs: Each party Pi receives y :=

n∏
i=1

yi ∈ G.
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In the following protocol [5], each party splits their own input yi into n − 1
partitions and randomly send one share to other parties to avoid revealing their
own input yi. Every party will calculate the product of all obtained shares

∏
i zi

and publish it. Eventually, we have
∏n

i=1 zi =
∏n

i=1 yi.

Protocol 3 Shuffle πShuffle(n)

Inputs: Each party Pi has yi ∈ (OD/N)×.

Outputs:

n∏
i=1

yi ∈ (OD/N)×.

1. Each party Pi randomly chooses xi,j ∈ (OD/N)× for all 1 ≤ j ≤ n such

that

n∏
j=1

xi,j = 1 (i.e. randomly chooses xi,j for 1 ≤ j ≤ n − 1 and x−1
i,n :=∏n−1

j=1 xi,j). Set yi,1 := xi,1 · yi and yi,j := xi,j for all 2 ≤ j ≤ n. Send yi,j to
the party Pj for all 1 ≤ j ̸= i ≤ n.

2. Each party Pi computes zi :=

n∏
j=1

yj,i. Broadcast zi to the other party Pj .

3. Outputs z :=

n∏
i=1

zi.

6.5 Three RSA Moduli Protocols

In this section, we rewrite the Lucas test using macros from [12] to facilitate
comparison with the Boneh-Franklin test [8] and Burkhardt’s et al.’s [12] proto-
cols. Here, we always assum p ≡ q ≡ 3 (mod 4). Finally, we note that an RSA
modulus refers to N , which is the product of two distinct prime numbers. In
contrast, a biprime refers to N being the product of any two prime numbers.

Protocol 4 Lucas Biprimality test type (n)

Inputs: Each party Pi has odd integers [p]Z, [q]Z, D = 1, and N .

Outputs:

1. Party P1 randomly chooses 0 ≤ P < N such that Q = (P 2 − D)/4 and[
Q
N

]
= 1. Send this P to the other parties.

2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N), where g := P−
√
D

P+
√
D
. The

other parties compute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to
compute v :=

∏n
i=1 vi (mod N). They then check if

v =

n∏
i=1

vi ≡ 1 (mod N).
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If the test fails, return Non-RSA Modulus.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and

[q]N ← Int-to-mod(ZN , [q]Z).
3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).
3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output Non-RSA Mod-

ulus. Otherwise, output RSA Modulus.

Below is Boneh-Franklin protocol [8], as cited from the version in [12, FIG-
URE 7.1].

Protocol 5 Boneh-Franklin biprimality protocol(n)

Inputs: Each party has [p]Z, [q]Z and N .

Outputs:

1. Party P1 randomly chooses g ∈ Z×
N and

[
g
N

]
= 1. Send this g to the other

parties.
2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N). The other parties com-

pute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to compute v :=∏n
i=1 vi (mod N). They then check if

v =

n∏
i=1

vi ≡ ±1 (mod N).

If the test fails, return Non-RSA Modulus.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and

[q]N ← Int-to-mod(ZN , [q]Z).
3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).
3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output Non-RSA Mod-

ulus. Otherwise, output RSA Modulus.

Herein lies Burkhardt’s protocol. For further details, please consult [12].

Protocol 6 Miller-Rabin biprimality protocol(κlenP, s, n)

Inputs: Each party has [p]Z, [q]Z, P , Q and N . Here P and Q are primes
satisfying n222κP < nP < Q.

Outputs:

1. Let G = ∅, for f ∈ {p, q} :
1.1 Pn uniformly samples v ∈ ZN and broadcasts v.
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1.2 Compute <γ>N as follows: Party P1 sets γ1 := v
f1−1

2 (mod N). For

2 ≤ i ≤ n, Pi sets γi := v
fi
2 (mod N).

1.3 Obtain [γ]N ← Mul-to-Add(ZN , <γ>N ).
1.4 Compute [γ + 1]N and [γ − 1]N .
1.5 For δ ∈ {γ + 1, γ − 1}, compute

[yδ]Q ← Divisible(κlenP, s,ZP ,ZQ, [δ]N , [f ]Z).

1.6 Compute [y]Q ← Mult(ZQ, [yγ+1]Q, [yγ−1]Q).
1.7 Reveal y ← OpenAll(ZQ, [y]Q).
1.8 If y = 0, set G = G ∪ {f}.

2. If G = {p, q} output Biprime, otherwise output Non-Biprime.

The number of macros used in each test are summarized below.

Table 5: The number of macros in biprimality tests.

# Random ♯ Int-to ♯ Mult ♯ OpenAll ♯ Mult-to

-sample -mod -add

Boneh-Franklin [21] 1 2 1 1 0
Millier-Rabin [12] ≥ 2 4 ≥ 6 ≥ 4 2
Type-(I) 1 2 1 1 0

In addition to the aforementioned, Burkhardt’s protocol includes other macros
such as Invert and Larger-domain.
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