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Abstract. A garbling scheme transforms a program (e.g., circuit) C into a garbled program Ĉ,
along with a pair of short keys (ki,0, ki,1) for each input bit xi, such that (C, Ĉ, {ki,xi}) can be used
to recover the output z = C(x) while revealing nothing else about the input x. This can be naturally
generalized to partial garbling, where part of the input is public, and a computation z = C(x, y) is
decomposed into a public part Cpub(x), depending only on the public input x, and a private part
z = Cpriv(Cpub(x), y) that also involves a private input y.
A key challenge in garbling is to achieve succinctness, where the size of the garbled program may
grow only with the security parameter and (possibly) the output length, but not with the size of C.
Prior work achieved this strong notion of succinctness using heavy tools such as indistinguishability
obfuscation (iO) or a combination of fully homomorphic encryption and attribute-based encryption.
In this work, we introduce new succinct garbling schemes based on variants of standard group-based
assumptions. Our approach, being different from prior methods, offers a promising pathway towards
practical succinct garbling. Specifically, we construct:
– A succinct partial garbling scheme for general circuits, where the garbled circuit size scales

linearly with the private computation |Cpriv| and is independent of the public computation
|Cpub|. This implies fully succinct conditional disclosure of secrets (CDS) protocols for circuits.

– Succinct (fully hiding) garbling schemes for simple types of programs, including truth tables,
bounded-length branching programs (capturing decision trees and DFAs as special cases) and
degree-2 polynomials, where the garbled program size is independent of the program size. This
implies succinct private simultaneous messages (PSM) protocols for the same programs.

Our succinct partial garbling scheme can be based on a circular-security variant of the power-DDH
assumption, which holds in the generic group model, or alternatively on the key-dependent message
security of the Damg̊ard-Jurik encryption. For bounded-depth circuits or the aforementioned simple
programs, we avoid circular-security assumptions entirely.
At the heart of our technical approach is a new computational flavor of algebraic homomorphic
MAC (aHMAC), for which we obtain group-based constructions building on techniques from the
literature on homomorphic secret sharing. Beyond succinct garbling, we demonstrate the utility
of aHMAC by constructing constrained pseudorandom functions (CPRFs) for general constraint
circuits from group-based assumptions. Previous CPRF constructions were limited to NC1 circuits
or alternatively relied on lattices or iO.
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1 Introduction

Garbling schemes [94] play a critical role in modern cryptography, enabling non-interactive secure
computation in a variety of applications. A garbling scheme can be viewed as a simple form of
functional encryption, allowing a one-time computation on encrypted data while maintaining
the strongest possible privacy guarantee.

More concretely, a garbling scheme is a randomized algorithm transforming a “program”
C : {0, 1}n → {0, 1}m, such as a circuit or a branching program, into a garbled program Ĉ along
with a pair of short keys (ki,0, ki,1) for each input bit xi. Given the program C, the garbled
program Ĉ and the input keys kx = (ki,xi)i∈[n] for a private input x, anyone can compute

C(x) while learning nothing else about x, in the sense that (Ĉ, kx) can be simulated (up to
computational indistinguishability) given C and C(x) alone.

Motivated by potential efficiency benefits in applications, Ishai and Wee [63] extended this
notion to partial garbling, where part of the input is public. In partial garbling, the program is
decomposed into a public part Cpub(x), which depends only on a public input x, and a private
part Cpriv(Cpub(x), y), which also involves a private input y. Partial garbling generalizes standard
garbling, privacy-free garbling [47], and conditional disclosure of secrets (CDS) [52, 5].

Yao’s original garbling scheme for circuits [94] has been the subject of substantial optimiza-
tion efforts [12, 80, 69, 85, 68, 58, 95, 89]. These works have reduced the size of garbled circuits to
1.5 ciphertexts per AND gate [89], while maintaining practical computational efficiency using
only symmetric-key cryptography. However, these garbled circuits still grow linearly with the
size of the original circuits, creating a communication bottleneck for large-scale computations.

Succinct Garbling. This bottleneck motivates the notion of succinct garbling, where the size
of the garbled program Ĉ does not grow with the size of the original program C. Instead,
|Ĉ| can depend (polynomially) only on the security parameter, and possibly also on second-
order parameters such as the input and output length. Despite their promise, existing succinct
garbling schemes rely on “high-end” primitives, such as indistinguishability obfuscation (iO) [72,
16] or combinations of fully homomorphic encryption (FHE) and attribute-based encryption
(ABE) [54, 18, 61]. These approaches not only incur a high computational overhead but also
are limited to specific cryptographic assumptions, such as (circular-secure) LWE [49, 29, 51] or
combinations of multiple assumptions (e.g., LPN over large fields, local PRG, and DLin over
bilinear groups) [64, 65, 88]. Even for the weaker notion of partial garbling with a constant-size
private program, corresponding to CDS, succinct schemes without iO or lattices are only known
for highly restricted program classes, such as truth tables [60, 59, 6] (see Section 1.2).

This raises a natural and compelling question:

Can we construct succinct garbling schemes for expressive classes of programs,
without relying on iO or lattices?

Our Results in a Nutshell. In this work, we present a very different approach to succinct gar-
bling, relying on group-based assumptions such as (circular-security variants of) the power-DDH
assumption [55, 31, 7] or Paillier/Damg̊ard-Jurik encryption [83, 41]. While not yet practical, our
approach offers a new pathway toward concretely efficient succinct garbling by avoiding the re-
liance on iO or lattices. Instead, it builds on techniques from the rich literature on homomorphic
secret sharing (HSS) (e.g., [23, 24, 1, 79]), which were based on a broader set of assumptions and
were demonstrated to have a potential for concrete efficiency [24, 22, 27]. Our technical approach
is inspired by the recent work of Meyer, Orlandi, Roy, and Scholl [79], which was the first to
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apply HSS techniques in the context of garbling, but extends their ideas significantly. While [79]
showed that HSS can be used to garble arithmetic circuits with a linear dependence on the circuit
size, improving the hidden constant to 1, we demonstrate how to break this linear dependence
and achieve full succinctness.

Specifically, we obtain the following group-based succinct garbling schemes:

– A succinct partial garbling scheme for general circuits, where the garbled size scales linearly
with the private computation |Cpriv| and independently of the public computation |Cpub|.
This implies succinct (computationally secure) multiparty CDS protocols for general circuits,
where the message size does not grow with the circuit size.3

– Succinct (fully hiding) garbling schemes for simple but useful classes of programs, including
truth tables, bounded-length branching programs (capturing DFAs and decision trees) and
degree-two polynomials, where the garbled size is independent of the program size. This
implies succinct private simultaneous messages (PSM) protocols [46] for the same classes.

All of the above schemes achieve an exponential improvement in succinctness compared to the
state-of-the-art schemes based on group-related assumptions, without iO or lattices.

Our fully succinct garbling schemes are obtained by combining (group-based) somewhat
homomorphic encryption with our partial garbling scheme. This replaces the ABE component
in the previous approach from [54, 18] by the simpler partial garbling primitive.

At the heart of our partial garbling scheme is an algebraic homomorphic MAC (aHMAC)
scheme, a refinement of fully homomorphic MACs [48] with the feature that a MAC of a message
x has the commonly used algebraic form ∆ · x+K. We believe that aHMAC is a versatile tool
that can be of independent interest. In particular, we demonstrate its utility beyond succinct
garbling by constructing constrained pseudorandom functions (CPRFs) for general constraint
circuits. This result, which follows as a byproduct of our techniques, significantly extends the
reach of group-based assumptions. Previously, CPRFs for general circuits were only achievable
using iO or lattices, whereas group-based CPRFs were limited to NC1 circuits [53, 9, 42, 40].

1.1 Our Results in More Detail

Our Assumptions. All of our results can be based on natural flavors of the Power Decisional
Diffie Hellman (P-DDH) assumption (Definition 7), introduced in [55, 31, 7] and further used
in [57, 70, 9, 11]. P-DDH postulates that for appropriately sampled group element g and expo-
nents s and a, b sampled randomly from a range [ℓ], the triple (g, gs, gs

2
) is indistinguishable

from (g, ga, gb). This simple varaint of P-DDH is sufficient for most of our results, including
succinct partial garbling and aHMAC for bounded depth circuits, CPRFs for general circuits,
and succinct garbling for simple programs (additionally relying on other standard group-based
assumptions).

To support circuits of an arbitrary depth (in succinct partial garbling and aHMAC), we
need the following circular-security variant of this assumption. The Circular Power Decisional
Diffie Hellman (CP-DDH) assumption (Definition 8) asserts that a circular encryption of bits
of the secret key s using powers of the secret key is pseudorandom. More precisely, for appro-
priately sampled group elements g, f and random exponents s and {ai, bi, ci}i, the following

3 A multiparty CDS protocol [52] for predicate circuit C, where each party holds a public input bit xi and the
secret y is a single bit, can be viewed as a partial garbling of C(x) ∧ y. Here Cpub = C and Cpriv = ∧. A
succinct partial garbling can be obtained generically from any succinct multiparty CDS protocol and standard
garbling, see Section 2.2.
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computational indistinguishability holds:

g, gs, (gai , gsai , gs
2ai · fs[i])i∈[log s] ≈c g, gs, (gai , gbi , gci)i∈[log s].

The P-DDH and CP-DDH assumptions can be postulated over prime-order groups, as well as
the Paillier/Damg̊ard-Jurik and class groups, and our constructions can be instantiated using
any of these groups. For prime-order groups, P-DDH and CP-DDH hold in the standard generic
group model (GGM) [91]; see Section 3.3. In particular, our succinct partial garbling scheme is
unconditionally secure in the GGM.

Alternatively, we can replace CP-DDH in the Paillier/Damg̊ard-Jurik groups by assuming
key-dependent message (KDM) security of the Damg̊ard-Jurik cryptosystem (Definition 10) [17,
20]. The semantic security of this cryptosystem relies on the Decisional Composite Residuosity
(DCR) assumption [41]. KDM variants of this assumption are commonly used in prior Paillier-
group based HSS works, for example [45, 81, 79].4 We write KDM-DCR as a shorthand.

Note that the reliance of some of our results on circular-security assumptions aligns with the
literature on FHE and lattice-based succinct garbling. For supporting arbitrary depth circuits,
these constructions also rely on the circular-security variant of LWE, while standard LWE only
enables HE and succinct garbling for bounded-depth circuits.

Succinct Partial Garbling. Based on the assumptions discussed above, we first obtain a
succinct partial garbling scheme for general circuits.

Theorem 1 (Succinct Partial Garbling for Circuits, Informal; see Theorems 7, 8).
Assume both P-DDH and DDH5 over either prime-order groups, Paillier/Damg̊ard-Jurik groups,
or class groups. Let C be the class of two-input circuits of the form C(x, y) = Cpriv(Cpub(x), y).
Then, there is a succinct partial garbling scheme for C with garbled circuit of size (|Cpriv| +
Dpub) ·poly(λ), where Dpub is the depth of the public circuit Cpub. Under the stronger CP-DDH
assumption, or alternatively KDM-DCR, the garbled circuit size is reduced to |Cpriv| · poly(λ).

From Partial to Full Garbling. We present a generic transformation that combines a succinct
partial garbling scheme and an HE scheme for a program class P to obtain a succinct (fully
hiding) garbling scheme for the same program class. The transformation is extremely simple,
and follows the blueprint of constructing succinct garbled circuits from FHE and ABE [54,
18], replacing the ABE ingredient by partial garbling. To garble a program P , use the partial
garbling scheme to garble the circuit C(x̂, sk) = Dec(sk,Eval(pk, P, x̂)) = P (x) that performs
homomorphic evaluation of P over a public HE ciphertext x̂ of the actual input x, followed
by HE decryption using the secret key sk. The succinctness of partial garbling ensures that
the garbled circuit Ĉ grows only with the complexity of HE decryption (i.e., Cpriv(⋆, ⋆) =
Dec(⋆, ⋆)) which in turn depends only on the output length and the security parameter, if
assuming circular security. Without circular security, the size additionally depends on the depth
of the homomorphic evaluation of P (i.e., Cpub(⋆) = Eval(pk, P, ⋆)). For the types of simple
programs we consider here, the homomorphic evaluation depth is bounded by a fixed polynomial
in the security parameter, eliminating the need for circular security.

4 More concretely, our notion of KDM security assumes that encryptions (under sk) of sk−1 are secure. This is
strictly weaker than [79], which assumes encryptions of any affine function of sk, sk−1 are secure, and incom-
parable with [45, 81], which assume encryptions of bits of sk are secure.

5 P-DDH implies DDH in prime-order groups, but this is not known in Damg̊ard-Jurik groups or class groups.
On the other hand, CP-DDH implies DDH in all groups.
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We note that while using HE to ensure the privacy of the input x is a standard technique,
our key observation here is that partial garbling suffices for ensuring the correctness / integrity
of the homomorphic evaluation, replacing the stronger ABE techniques (with succinct secret
keys) used in [54, 18, 86]. This approach, though simple in retrospect, is crucial for moving away
from lattice-based assumptions and iO.

Lemma 1 (From Partial to Full Garbling, Informal). Assume the same assumptions as in
Theorem 1. Any homomorphic encryption scheme for a class of programs P can be transformed
into a succinct garbling scheme for P. The size of the garbled program is poly(λ) ·m if assuming
circular security, or poly(λ) · (m+DEval) without circular security, where m is the output length
and DEval is the maximal circuit depth of the homomorphic evaluation of programs in P.

Succinct Garbling for Simple Programs and Implications for General Circuits.
General-purpose FHE schemes are currently only known lattice assumptions or iO/FE, which
this work tries to avoid. However, for several simple but useful classes of programs, there are
HE schemes relying on group-based assumptions. For instance, private information retrieval
(PIR) schemes with polylogarithmic communication, which can be based on a variety of as-
sumptions [73, 92, 82, 74, 50, 44], can be viewed as a (compact) HE scheme for truth-table pro-
grams. This was generalized in [62, 44] to yield, under similar assumptions, an HE scheme for
bounded-length branching programs of unbounded size, where only the length bound impacts
the encryption size.6 As special cases, this enables the compact evaluation of decision trees and
DFAs of an arbitrary size on an encrypted input. In a different direction, the Boneh-Goh-Nissim
cryptosystem [19] implies an HE scheme for quadratic polynomials over a finite field under an
assumption on bilinear groups. Here the program size is at most quadratic in the input size.

Combining the above HE schemes with our succinct partial garbling, we obtain the following.

Corollary 1 (Succinct Garbling for Simple Programs). Assuming P-DDH and DDH over
any of the groups in Theorem 1, there are succinct garbling schemes for the following classes:

– bounded-length (unbounded size) branching programs, assuming additionally the DDH as-
sumption over prime order groups, or the DCR assumption over Paillier groups. This implies
succinct garbling for truth tables, deterministic finite automata (DFAs), and decision trees
of an arbitrary size.

– quadratic polynomials, assuming additionally the hardness of the subgroup decision problem
in composite-order bilinear groups.

We further show a generic composition theorem that leverages succinct garbling for simple
programs, to garble circuits consisting of general gates computing these simple programs. The
cost of garbling scales with the number of wires in circuits over general gates, without growing
with the number of Boolean gates (such as AND gates) required to implement a general gate.

Corollary 2 (Implication for Garbling General Circuits). Under the same assumptions
as in Corollary 1, there is a garbling scheme for circuits over general gates, each computing one
of the simple programs in Corollary 1, where the garbling size is poly(λ) ·#wires, where #wires
is the number of wires in the circuit.

6 This is analogous to LWE-based HE for circuits, where the ciphertext size depends on the circuit depth but
not on its size.
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Implication for PSM protocols. Succinct garbling can be directly applied to improve the
state of the art on (computationally secure) private simultaneous messages (PSM) protocols [46].
In a PSM protocol, two or more parties who share common randomness wish to securely evaluate
a function of their inputs by simultaneously sending messages to a referee. Our succinct garbling
schemes for truth tables imply the first group-based succinct PSM protocols for simple programs.
In the case of truth tables, we get PSM protocols for arbitrary functions with polylogarithmic
communication and polynomial computation in the input domain size.

Corollary 3 (Computationally Secure PSM for Truth Tables). Under the assumptions
in the first bullet of Corollary 1, any k-party function f : [N ]k → {0, 1} has a computationally
secure PSM protocol with poly(λ, k, logN) communication and poly(λ,Nk) computation.

This yields exponential improvement in communication compared to previous information-
theoretic PSM protocols whose complexity grows polynomially with N : O(N1/2) for k = 2 [14]
and Ok(N

(k−1)/2) for infinitely many k [15, 8]. No better PSM protocols were known under
group-based assumptions.

PSM vs. CDS vs. generalized secret sharing. It is instructive to put the above PSM result in the
context of related primitives. A k-party CDS protocol [52] is defined similarly to PSM, except
that there is only one input bit hidden from the referee. Viewing CDS as an instance of partial
garbling (see Footnote 3), our partial garbling result implies a stronger version of Corollary 3 for
CDS that applies to general circuits (with computation that scales polynomially with the circuit
size) rather than just applying to truth tables or other kinds of simple programs. Using the
known relation between CDS and generalized secret sharing [52, 76], this implies fully succinct
computational secret sharing for k-slice access structures7 represented by circuits.

Finally, it is interesting to compare our succinct computational PSM result for truth tables
from Corollary 3 with a recent succinct computational secret sharing (SCSS) scheme from [6],
which applies to general access structures represented by a truth table. One might a-priori
expect the SCSS question to be easier because of its one-sided hiding requirement and the
relation with partial garbling and CDS, for which we have strong positive results for truth
tables even in the information-theoretic setting. However, the current state of the art on the two
problems is incomparable. The group-based construction of SCSS from [6] specifically relies on
the RSA assumption, and it is open whether the same conclusion holds from other group-based
assumptions, such as the ones we use in this work. On the other hand, using LWE-based succinct
garbling [18], succinct PSM can be based on LWE, which is still open for SCSS. The known
group-based PSM and SCSS solutions are also incomparable in terms of the class of programs
they efficiently support beyond truth tables: branching programs with bounded length in the
PSM case and monotone CNF formulas of unbounded size in the SCSS case.

Tool: Algebraic Homomorphic MACs. Our key technical tool is a new notion of an alge-
braic homomorphic MAC (aHMAC). A standard homomorphic MAC, introduced by Gennaro
and Wichs [48] (following Agrawal and Boneh [3]), enables users to authenticate their data
using a (shared) secret key. After receiving data (m1, · · · ,mn) together with their MAC tags
(σ1, · · · , σn), anyone can homomorphically execute a program P over the tags to generate a

7 In a k-slice access structure, coalitions of size k are either authorized or not, larger coalitions are authorized
and smaller are unauthorized. For the simplest case of a truth-table representation of the access structure, fully
succinct computational secret sharing can be based on one-way functions [6], and partially succinct schemes
are known to exist even in the information-theoretic setting (see [76, 13] and references therein).
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succinct tag that authenticates the output of P (m1, · · · ,mn); verification of the output tag can
be done without even knowing the original inputs. The key feature of homomorphic MAC is
that the output tags are short, of size poly(λ), independent of the computation complexity or
even the input length. As such, they enable verifying computations over outsourced data in a
communication-succinct way (though verification may take as long as the verified computation).
It has been shown that homomorphic MAC can be constructed from a variety of assumptions,
including LWE and various group-based assumptions [33, 10, 34, 56, 4, 2]. See Section 1.2 for a
survey of this line of work.

Our notion of aHMAC enhances traditional homomorphic MAC by requiring the output tags
to have the most widely used algebraic form ∆m + K, as in a standard information-theoretic
MAC, where ∆ is a λ-bit global authentication key and K is a pseudorandom blinding term.
In particular, in our scheme, given input tags {∆ · xi +Ki}i and the inputs {xi}, homomorphic
evaluation of a function f yields output tag ∆ · y + Kf , where y = f({xi}), and the key Kf

can be computed from the original keys {Ki} according to the function f , independent of the
inputs {xi}. We construct an algebraic homomorphic MAC for circuits, under the group-based
assumptions stated in Theorem 1.

Theorem 2 (Algebraic Homomorphic MAC, Informal; see Theorem 5, 6). Assume
P-DDH and DDH over any of the groups from Theorem 1. Then there is an aHMAC (with
output tags of the form ∆ · y + K) for bounded-depth circuits, where the evaluation key size
scales linearly with the circuit depth. Under the stronger CP-DDH assumption, or alternatively
KDM-DCR, the aHMAC can support general circuits with fixed poly(λ)-size evaluation key.

Application: Constrained Pseudorandom Functions. Thanks to the algebraic form of the
tags, our aHMAC scheme can be easily combined with other tools such as standard garbling and
HSS. This is what we leverage in our construction of succinct partial garbling (combining with
standard garbling). As another application, we show the usefulness of the aHMAC primitive for
constructing a general constrained pseudorandom function (CPRF) [21, 67, 26]. Concretely, by
combining an aHMAC with HSS schemes, and following the HSS-based blueprint of Couteau,
Meyer, Passelègue and Riahinia [40], we obtain the first CPRF for general constraint circuits
from group-based assumptions. Note that the “bounded-depth” variant of aHMAC suffices for
this application, and hence no circular security assumption is needed.

Theorem 3 (CPRFs for Circuits, Informal; see Theorem 11). There is a 1-key, selectively-
secure CPRF supporting general constraint circuits based on P-DDH, DDH, and small-exponent
assumptions over Paillier/Damg̊ard-Jurik groups or class groups.

Previously, CPRF for general constraint circuits were only known under LWE [30, 32, 28, 36,
84] or iO, and constructions based on other assumptions were restricted to (low-depth) NC1

constraints [53, 9, 42, 40].

On Our aHMAC Construction. Being our key technical tool, we provide here a brief
overview of our aHMAC construction. See Section 2.1 for a detailed technical overview. Recall
that a homomorphic secret sharing (HSS) scheme [23] is a 2-party analogue of FHE, allowing
a local mapping from shares of an input x to additive shares of an output f(x). Our construc-
tion builds heavily on techniques from the HSS literature. However, group-based HSS cannot be
applied directly to construct an aHMAC for two reasons: i) known group-based HSS schemes
only support limited classes of circuits captured by so-called “RMS programs” and ii) in stan-
dard group-based HSS schemes, both shares depend on the input. In aHMAC, and similarly in
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garbling, there is an “asymmetry of information”: The homomorphic evaluation over tags can
depend on inputs to compute the output tag ∆ · y+Kf , but not the derivation of Kf from the
original keys {Ki} (which only depends on the computation f). Similarly, in partial garbling,
the evaluator’s computation can depend on public inputs, but not the garbler’s.

The HSS limitation to RMS programs stems from the fact that if two parties hold only
additive shares of two values x and y, it is not clear how to “multiply” these shares to obtain
shares of the product xy. A key idea in HSS is that if x is an input and the two parties
additionally have an appropriate encryption Encs(x ·s) of x multiplied by the secret key s, x can
be “multiplied” with shares of (y · s) to obtain shares of (xy · s). As a result, the computation
of both parties depends on x.

The difficulty with handling general circuits is that there is no encryption for intermediate
computation values, only shares of (x · s) and (y · s). A key technical contribution of this work
is a method for “multiplying” these shares, when x and y are known to just one party (e.g., the
evaluator) while the computation of the other party (e.g., the garbler) is independent of x, y.

Our technique is inspired by the recent work of Meyer, Orlandi, Roy, and Scholl [79], which
obtained an improved garbling scheme for arithmetic circuits over bounded integers assuming
the KDM security of the Damg̊ard-Jurik cryptosystem. To compare this with our aHMAC and
partial garbling constructions, their garbled circuits hide the inputs, but have size |C| logB where
B is an upper bound on the wire values. In contrast, our constructions reveal a public input, but
have size independent of the public computation. The work of [79] already needs to overcome
the RMS limitation of HSS. Essentially, they do so by designing a way of “multiplying” shares of
(x ·s) and (y ·s), without knowledge of x, y, by revealing to one party auxiliary information that
depends on the other party’s shares. For each multiplication, logB bits of auxiliary information
are needed, leading to the large size of the garbled circuit.

1.2 Related Works

Partial Garbling. The concept of partial garbling was first introduced by Ishai and Wee [63],
extending traditional garbling schemes to settings where part of the input is public. Partial
garbling enables computations to be decomposed into a public part, Cpub(x), and a private
part, Cpriv(Cpub(x), y).

In their work, Ishai and Wee demonstrated information-theoretic constructions for branching
programs and formulas. This line of work was further explored in the context of privacy-free
garbled circuits [66, 47, 71], which improve both computational efficiency and size compared
to fully hiding garbling. However, these constructions still exhibit linear dependency on the
circuit/program size, thus not meeting the strong succinctness goal targeted in this work.

Fully succinct partial garbling schemes for truth tables based on one-way functions are implied
by [60, 59, 6]. However, these techniques do not generalize to more expressive program classes,
nor to fully hiding garbling for truth tables.

In contrast, fully hiding succinct garbling schemes have relied on heavy cryptographic tools
such as iO or combinations of FHE and ABE [18]. Prior to the current work, succinct partial
garbling for general circuits, without resorting to such tools, remained open. Our work addresses
this gap by presenting a succinct partial garbling scheme for general circuits from group-based
assumptions.

Homomorphic MACs. Gennaro and Wichs [48] constructed fully homomorphic MACs sup-
porting general circuits using FHE. Subsequent works further give practical constructions based
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on generic assumptions like the existence of one-way functions, or group assumptions, e.g., [33,
10, 34]. However, the latter constructions support only restricted functions, such as low-degree
polynomials. Gorbunov, Vaikuntanathan, and Wichs [56] constructed the stronger homomor-
phic signature primitive from LWE, for bounded-depth circuits. Subsequent constructions from
group-based assumptions, such as subexponential DDH or DLin over prime order groups, or
k-Lin assumption over bilinear groups were given in [4, 2], where the signature size grows with
the depth of computation. There is also a folklore construction that avoids the size dependency
on the depth using existing SNARK for P schemes and digital signatures, which can in turn
be based on (for example) subexponential DDH, or LWE, or SXDH in asymmetric bilinear
groups [38, 39, 37, 93]. The folklore construction is restricted to a one-hop evaluation.

Our algebraic HMAC focuses on an orthogonal dimension, requiring the MAC to have the
specific algebraic structure of ∆ · x +K. As a result, it can be naturally combined with other
cryptographic primitives, such as garbling, HSS, and potentially others. We strongly rely on this
feature for obtaining our applications of aHMAC.

Concurrent Work. In an independent and concurrent work [75], Liu, Wang, Yang, and Yu
constructed a garbling scheme for Boolean circuits that uses 1 bit per gate, based on RLWE or
NTRU. There are several major differences between their work and ours. First, we achieve full
succinctness, i.e., garbling size independent of the number of gates, whereas their garbled circuits
still have linear size dependency. However, they achieve standard input privacy guarantees for
general circuits, whereas our schemes either ensure only partial hiding, or only support simple
classes of programs. Since succinct garbling was already known under LWE, a major focus of their
work is improving concrete efficiency. In contrast, our schemes are based on group assumptions,
diversifying the assumptions underlying succinct garbling.

2 Technical Overview

2.1 Algebraic Homomorphic MACs

In an algebraic homomorphic MAC (aHMAC) scheme, a KeyGen algorithm generates a secret
key sk and an evaluation key evk. They are distributed to an authenticator and an evaluator
respectively. The authenticator can use the secret key sk to compute tags σx for inputs x (with an
arbitrary unique id). An evaluator can use the evaluation key evk to homomorphically evaluate
any Boolean circuit C over the tags σx.

Authenticator(sk) :

σx ← Auth(sk, x, id),

Evaluator(evk) :

σz ← EvalTag(evk, C,x, {σ(i)
x }).

Correctness requires the evaluated tag σz to have an algebraic form (hence the name) σz =
∆ · z+ kC over Z, where z = C(x), ∆ is a global secret specified at key generation time, and kC
is a MAC key that can be derived without knowing the authenticated inputs x:

kC ← EvalKey(sk, C, {id(i)}), // s.t. σz = ∆ · C(x) + kC over Z.

Security requires the global secret ∆ remains hidden to the evaluator. Succinctness requires the
tags, including the evaluated ones, have bit-lengths independent of the evaluation circuit C.
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Constructing aHMACs from DDLog. The authentication algorithm σx ← Auth(sk, x, id)
is simple. It evaluates a PRF on the id to produce a one-time pad kx ← F(key, id), and outputs
σx := ∆ · x+ kx over Z. The PRF key key and the global secret ∆ are included in sk.

The core of our construction is an evaluation procedure to derive from two algebraic tags
σx, σy to another σz while maintaining their algebraic forms:

Authenticator(sk) :

from kx, ky

to kz,

Evaluator(evk) :

from σx = ∆ · x+ kx, σy = ∆ · y + ky,

to σz = ∆ · z + kz,

for the cases z = x + y and z = x · y over Z. This would give us the algorithms EvalTag and
EvalKey respectively for evaluating circuits consisting of Add and Mult gates. As we will see,
our evaluation procedure requires the input values x, y to be polynomially bounded. But this
still suffices for evaluating any Boolean circuit, which can be implemented via Add, Mult gates
while keeping intermediate values bounded by 1.

We first note the easy case, z = x+y: setting σz := σx+σy, and kz := kx+ky over Z suffices.
We focus on the case of z = x · y. Our starting point is the following identity

σx · σy −∆(x · σy + y · σx) + (∆2 +∆)z = ∆ · z + kx · ky,

where the RHS would be a tag for z of the desired form, with kz = kx · ky. While the terms
σx · σy, (x · σy + y · σx), and z are computable by the evaluator, the apparent challenge is to
allow the evaluator to multiply ∆, and (∆2 +∆) with those terms without leaking ∆. For this,
we apply the natural idea of putting ∆ in the exponents of a random group (with a generator
g) element h, and compute the identity in the exponents:

r ← $, h = gr, h1 = h∆, h2 = h∆
2
g∆,

=⇒ hσx·σy/h
x·σy+y·σx

1 · hz2 = g∆·z · hkx·ky .
(1)

The evaluation key evk consists exactly of those group elements h, h1, h2. By a DDH-like as-
sumption, which we call circular-power-DDH (CP-DDH), the terms h, h1, h2 together don’t leak
∆.

It remains to recover the exponents into an integer satisfying the desired algebraic from. The
rich literature of HSS constructions provides two methods. (a) The work of [23, 43] present an
algorithm, DDLog that works for any cyclic group (of order p) and small exponents m < poly,
but fails with 1/poly probability over the choice of a common public randomness R:

∀a ∈ ⟨g⟩, Pr
R
[DDLogg(a · gm;R) = m+ DDLogg(a;R) mod p] ≥ 1− 1/poly. (2)

This will lead to an aHMAC scheme with overall 1/poly correctness error. (b) The work of [1]
introduces a framework of groups (including the Damg̊ard-Jurik groups and class groups) with
efficient and perfectly correct DDLog algorithms for certain “easy” subgroups. This will lead to
an aHMAC scheme with perfect correctness.

For simplicity, we assume method (a) in this overview. We obtain the following almost correct
evaluation procedures:

Authenticator(sk ∋ (h,R), kx, ky) :

k∗z ← DDLogg(h
kx·ky ;R),

Evaluator(evk = (h, h1, h2, R), σx, σy) :

a := hσx·σy/h
x·σy+y·σx

1 · hz2,
σ∗
z ← DDLogg(a;R).
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Assuming the term ∆ · z is small, we can apply the DDLog guarantee (although with 1/poly
failure probability):

σ∗ = DDLogg(a;R)

(Eq 1) = DDLogg(g
∆·z · hkx·ky ;R)

(Eq 2) ≡ ∆ · z + DDLogg(h
kx·ky ;R) ≡ ∆ · z + k∗z mod p.

The procedure as described has two more challenges to resolve:

– The DDLog algorithm from (a) requires ∆ · z to be polynomially bounded, while the global
secret ∆ needs to be exponentially large in CP-DDH. We resolve this by decomposing the
large secret ∆ into a bit-vector, so that each entry is small. (See Section 4 for details.)

– The DDLog algorithm only ensures σ∗
z = ∆ · z + k∗z mod p, while we need the equality to

hold over Z. A standard trick is to add a common random shift to both σ∗
z and k∗z mod p.

If p is sufficiently larger than ∆ · z, then the equality holds over Z except with negligible
probability. The common random shifts and the randomness R for DDLog can be derived
from a public PRF seed included in both sk and evk.

What we obtain now is an aHMAC scheme with 1/poly correctness, and where the global
secret ∆ is sampled as a secret group exponent. In our applications, it will be convenient if
the final evaluated tags σz can have a user-supplied global secret ∆′ instead. Furthermore, for
evaluating a multi-output circuit C : {0, 1}ℓx → {0, 1}ℓz , we would like the user-supplied secrets
to be different for each output bit of z = C(x). 8 We implement those features in our final
constructions in Section 4, which also contains a construction with negl correctness error based
on method (b), a construction based on the KDM security of Damg̊ard-Jurik encryption, and
leveled variants of the constructions.

We summarize the syntax of our final constructions.

(sk, evk)← KeyGen(1λ,∆)

Authenticator(sk) :

σx ← Auth(sk, x, id),

kC ← EvalKey(sk, C, {id(i)}),

Evaluator(evk) :

σz ← EvalTag(evk, C,x, {σ(i)
x }),

// s.t. σz = ∆⊙ z+ kC over Z,

where z = C(x), and ⊙ denotes component-wise multiplication between vectors.

Comparing aHMAC with HSS. At first glance, our aHMAC scheme may appear similar
to a homomorphic secret sharing (HSS) scheme: both schemes consider a pair of parties that
initially hold a form input shares of x, and then locally evaluate over those to obtain additive
shares of y = f(x). However, a key difference is that in HSS, both parties’ computation depend
on the inputs, while in aHMAC, only the evaluator’s computation depends on the input, but not
the authenticator’s. As we show below, this difference is what enables the application of aHMAC
to garbling schemes, where only the evaluator’s computation may depend on the input, but not
the garbler’s, as well as to constrained PRF schemes, where only the “constrained” evaluation
may depend on the input, but not the “unconstrained” evaluation.

In more detail, in HSS the dependency of both parties’ computation on the inputs stems
from how they evaluate multiplications over shares of two values x and y. When the two parties

8 This can be trivially achieved by running the single-output scheme ℓz times. But in the multi-output version,
we require the tags sizes to be independent of ℓz.
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hold additive shares of x and y, it is not clear how to “multiply” them to obtain shares of xy. A
key idea in HSS is that if x is an input, and both parties hold (circular) encryptions of (x · sk),
these encryptions can be “multiplied” with additive shares of (y · sk) to yield an additive share
of (xy · sk).

To avoid the dependency of both parties’ computation on the inputs, it is therefore neccessary
to come up with a new evaluation method for multiplication. A key technical contribution of this
work is a method for “multiplying” additive shares of x, y (without encryptions of x), when x and
y are known to just one party (i.e., the evaluator) while the other party (i.e., the authenticator)’s
computation is independent of x, y.

2.2 Application: Succinct Partial Garbling for Circuits

As a first step, we compose an aHMAC scheme with any symmetric encryption E to succinctly
implement a simple case of partial garbling CDS(x, y) = f(x) · y.

At high level, the garbler use aHMAC tags for x as their labels, and prepares an encryption
of y under the global secret ∆. To help decryption by the evaluator, the garbler also releases an
evaluated MAC key kf .

CDSGb(f, y) :

∆← $, (sk, evk)← KeyGen(1λ, ∆)

σ
(i)
b ← Auth(sk, b, id(i)),

kf ← EvalKey(sk, f, {id(i)}),
cty ← E.Enc(∆, y),

Output {L(i)
x,b = σ

(i)
b },

and gb = (evk, kf , cty).

CDSEv(f, gb,x, {L(i)
x = σ

(i)
x[i]}) :

Output 0 if f(x) = 0. O/w:

σz ← EvalTag(evk, f,x, {σ(i)
x[i]}),

∆ = σz − kf ,

y = E.Dec(∆, cty),

Output y.

The evaluator, given aHMAC tags for x can evaluate f on them to obtain a tag σz = ∆·f(x)+kf .
(For simplicity, we assume the aHMAC scheme has negl correctness errors in this overview. See
Section 5.2 for how to handle 1/poly correctness errors.) When f(x) = 1, the evaluators use
kf to recover ∆, and decrypts y correctly. When f(x) = 0, kf = σz is completely redundant.
The aHMAC security then guarantees that ∆ remains hidden to the evaluator, and hence the
ciphertext cty under ∆ securely hides y.

We can extend the above construction to a slightly more general case, where CDS(x,y) =
f(x)⊙y. Here f : {0, 1}ℓx → {0, 1}ℓy is a multi-output function, and ⊙ denotes component-wise
multiplication. An evaluator can learn the j-th components of the secret input y if and only if
f(x)[j] = 1.

Finally, we compose the simple-case succinct partial garbling CDSGb,CSDEv with any stan-
dard Boolean garbling BG.Garb,BG.Eval to handle general cases, C(x,y) = Cpriv(Cpub(x),y),
where the public computation Ppub outputs intermediate values w = Cpub(x), and the private
computation Cpriv outputs final results z = Cpriv(w,y).

At a high level, the construction runs BG to garble the private computation Cpriv, produc-
ing labels for possible values of w and y, and runs CDSGb,CDSEv to release only the labels
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corresponding to w = Cpub(x).

Garb(C = (Cpub, Cpriv)) :

(Ĉpriv, {L(i)
w,b}, {L

(i)
y,b})← BG.Garb(Cpriv),

({L(i)
x,b}, gb)← CDSGb(Cpub, {L

(j)
w,1})),

({L(i)
x,b}, gb)← CDSGb(Cpub, {L

(i)
w,0})),

Output {L(i)
x,b, L

(i)
x,b}, {L

(i)
y,b},

and Ĉ = (Ĉpriv, gb, gb).

Eval(C, Ĉ,x, {L(i)
x , L

(i)
x }, {L(i)

y }) :
w = Cpub(x),

{L(j)
w }w[j]=1 ← CDSEv(Cpub, gb,x, {L(i)

x }),

{L(j)
w }w[j]=0 ← CDSEv(Cpub, gb,x, {L

(i)
x }),

z← BG.Eval(Cpriv, Ĉpriv, {L(j)
w }, {L(i)

y }),
Output z.

2.3 Application: Constrained PRF for Circuits

In a constrained PRF (CPRF), there are two evaluation algorithms Eval,CEval, one with a nor-
mal key msk, and one with a constrained key skC with respect to a circuit C. Correctness requires
evaluations (on x) using both keys should equal if C(x) = 0. Security requires evaluations using
msk remain pseudorandom if C(x) = 1, even given the constrained key skC .

msk← KeyGen(1λ), evk← Constrain(msk, C).

Correctness: Eval(msk,x) = CEval(skC ,x), if C(x) = 0,

Security: Eval(msk,x) pseudorandom given skC o/w.

(3)

The Blueprint of [40]. The observation of [40] is that common homomorphic secret shar-
ing schemes (HSS) for evaluating restricted multiplication straight-line programs (RMS) allows
for an extended evaluation algorithm. Normally, an HSS evaluation for a function f locally
transforms a pair of input shares I0, I1 for x into additive shares z0, z1 of f(x):

I0, I1 ← HSS.Input(x), (evk0, evk1)← HSS.Setup(1λ),

zb ← HSS.Eval(b, evkb, Ib, f), s.t. z1 = z0 + f(x).

The extended evaluation takes an additional pair of shares ∆0, ∆1 of the form ∆1 = ∆ ·w+∆0

for some secret value ∆, and output additive shares z0, z1 of w · f(x). (See Section 6 for details
of this extension.)

I0, I1 ← HSS.Input(x), (evk0, evk1, ∆)← HSS.Setup(1λ),

any ∆0, ∆1 s.t. ∆1 = ∆0 +∆ · w
zb ← HSS.ExtEval(b, evkb, Ib, ∆b, f), s.t. z1 = z0 + w · f(x).

In order to construct a CPRF scheme, it now suffices to design a mechanism that let Eval
and CEval respectively derive shares ∆0, ∆1 such that ∆1 = ∆ · C(x) + ∆0, and then run an
extended HSS evaluation of the function Fx(·) = F(·,x), on input shares I0, I1 of a secret key
key for a PRF F.

Blueprint:

msk = (evk0, I0, . . . , ), skC = (evk1, I1, . . . , ),

Eval : derive ∆0, z0 ← HSS.ExtEval(0, evk0, I0, ∆0,Fx),

CEval : derive ∆1 z1 ← HSS.ExtEval(1, evk1, I1, ∆1,Fx).
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By the extended evaluation correctness of HSS, we have z1 = z0+C(x) ·F(key,x), which satisfy
both CPRF correctness and security (Equation 3). The work of [40] uses another special HSS
to let Eval, CEval derive the desired shares ∆0, ∆1. We instead use an aHMAC scheme for this.

CPRF for Circuits from aHMACs and HSS. In our construction, we generate a secret
key aHMAC.sk and evaluation key aHMAC.evk with respect to a user-supplied global secret ∆,
which is exactly the secret for extended HSS evaluations. We view the constrained circuit C as

a bit string, and compute tags {σ(i)
C } authenticating the bits of C.

KeyGen(1λ) :(evk0, evk1, ∆)← HSS.Setup(1λ),

key← $, (I0, I1)← HSS.Input(key),

(aHMAC.sk, aHMAC.evk)← aHMAC.KeyGen(1λ, ∆).

Outputs msk = (I0, evk0, I1, evk1, aHMAC.sk, aHMAC.evk).

Constrain(msk, C) :σ
(i)
C ← aHMAC.Auth(aHMAC.sk, C[i], id(i)).

Outputs skC = (I1, evk1, C, {σ(i)
C }, aHMAC.evk).

Then, following the blueprint Eval and CEval can respectively run aHMAC.EvalKey and aHMAC.EvalTag
with a universal function Ux(C) = C(x) to derive kw and σw as the shares ∆0 and ∆1.

Eval(msk,x) :∆0 = kU ← aHMAC.EvalKey(aHMAC.sk, Ux, {id(i)}),
z0 ← HSS.ExtEval(0, evk0, I0, ∆0,Fx),

CEval(evk,x) :∆1 = σU ← aHMAC.EvalTag(aHMAC.evk, Ux, C, {σ(i)
C }),

z1 ← HSS.ExtEval(1, evk1, I1, ∆1,Fx).

By the correctness of aHMAC, we indeed have ∆1 = ∆ · C(x) +∆0.

3 Preliminaries

3.1 Garbling Schemes

In a garbling scheme, a program P and Boolean inputs x are encoded respectively into a garbled

program P̂ and input labels {L(i)
x }. The standard notion of garbling requires that P̂ , {L(i)

x }
together reveals nothing about the input x beyond P (x). The notion of partial garbling, first
proposed in [63], relaxes the security requirement to allow part of the input x to be leaked. We
refer to this part as the public input.

The program can then be decomposed into two parts: P (x,y) = Ppriv(Ppub(x),y), where
Ppub represents the computation that depends on the public input x alone, and Ppriv represents
the rest that also depends on the private input y. We call Ppub, Ppriv the public and private
computations of P , respectively. We give two useful examples suitable for partial garbling:

– P (x, s) = f(x) · s implements a conditional disclosure of secret (CDS) functionality. The
output of P reveals the secret input s if and only if the public input satisfy f(x) = 1.

– P (ct, sk) = HE.Dec(HE.Eval(f, ct), sk) implements a homomorphic evaluation of HE cipher-
texts ct, followed by decryption using a secret key sk. Assuming the ciphertexts correctly
encrypts some input x, then a partial garbling of P implements a (fully private) standard
garbling of f .
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In exchange for the relaxed security, we expect more efficient constructions. In this work, we
consider the strong efficiency requirement, succinctness with respect to public computation, that
the garbled program size |P̂ | should be independent of the complexity of the public computation.
More precisely, we consider garbling families of programs P = {Pλ} indexed by a security
parameter λ. Each family Pλ satisfies some restrictions on its parameters, e.g. computation
depth, but importantly has no polynomial bound on the size of the program. In this work, we
obtain succinct partial garbling schemes for two classes:

– General Boolean circuits: C = {Cλ}, where Cλ consists of all two-input Boolean circuits,
of form C(x,y) = Cpriv(Cpub(x),y), based on circular-security assumptions, CP-DDH or
KDM-DCR (Definition 8, 10);

– Bounded-depth Boolean circuits: Cd = {Cdλ}, where Cdλ consists of all two-input Boolean
circuits with depth bounded by some fixed polynomial d(λ), based on P-DDH and DDH
(Definition 7, 6).

As applications of our succinct partial garbling for bounded-depth circuits, we also obtain (fully
private) succinct standard garbling schemes for two classes. Here succinctness requires the gar-
bled program size |P̂ | to be independent of the complexity of the entire computation.

– Bounded-length branching programs: P = {Pℓ
λ}, where Pℓ

λ consists of branching programs
with length bounded by some fixed polynomial ℓ(λ) and size below 2poly(λ).

– Quadratic polynomials (mod 2): Q = {Qλ}, where Qλ consists of quadratic polynomials
with below 2poly(λ) number of monomials.

Besides succinctness, we also impose composability of garbled circuits at the syntax level:

the garbled program evaluation should output arbitrary target key functions K
(i)
z (specified at

garbling time) applied to the output bits z = P (x,y).

Definition 1 (Partial Garbling). Let P = {Pλ} be a class of programs P , with Boolean
inputs, of the form P (x,y) = Ppriv(Ppub(x),y), and L = {Lλ}λ be a label space of sizes |Lλ| ≤
2poly(λ). A partial garbling scheme for P with label space L consists of two efficient algorithms:

– Garb(1λ, P ∈ Pλ, {K
(i)
z }i∈[ℓz ]) takes a program P : {0, 1}ℓx × {0, 1}ℓy → {0, 1}ℓz , and target

key functions {K(i)
z } (mapping output bits to labels in Lλ). It outputs a garbling P̂ , and input

key functions {K(i)
x }i∈[ℓx], and {K

(i)
y }i∈[ℓy ].

– Eval(P, P̂ , {x(i), L(i)
x }i∈[ℓx], {L

(i)
y }i∈[ℓy ]) takes a program, a garbling P̂ , public inputs x(i), their

labels L
(i)
x , and labels for private inputs L

(i)
y . It outputs labels L

(i)
z for i ∈ [ℓz].

Correctness: For every polynomial p(λ), there exists a negligible function negl(λ) such that for

all λ ∈ N, programs P ∈ Pλ with size |P | ≤ p(λ), inputs x, y, and target key functions {K(i)
z }

the following holds:

Pr

Eval(P, P̂ , {x(i), L(i)
x }, {L(i)

y })

= {L(i)
z }

∣∣∣∣∣∣∣∣
(P̂ , {K(i)

x }, {K(i)
y })← Garb(1λ, P, {K(i)

z }),

L(i)
x = K(i)

x (x(i)), L(i)
y = K(i)

y (y(i)),

z = P (x,y), L(i)
z = K(i)

y (z(i)).


≥ 1− negl(λ).

16



(Computational) Security: There exists an efficient simulator Sim such that for every polyno-
mial p(λ), sequence of programs {Pλ} from P such that |Pλ| < p(λ), sequence of inputs {xλ,yλ},
and sequence of target key functions {K(i)

z,λ}i,λ, the following holds (suppressing the subscript λ
for brevity): {

Sim(1λ, P,x, {L(i)
z }) | z = P (x,y), L(i)

z = K(i)
z (z(i))

}
λ

≈c

{
P̂ , {L(i)

x }, {L(i)
y }

∣∣∣∣∣ (P̂ , {K(i)
x }, {K(i)

y })← Garb(1λ, P ),

L(i)
x = K(i)

x (x(i)), L(i)
y = K(i)

y (y(i)),

}
λ

We now define the default succinctness requirement for partial garbling.

Definition 2 (Succinctness w.r.t. Public Computation). We say a partial garbling scheme
for a class P is succinct w.r.t. public computation if for every λ ∈ N and P ∈ Pλ, the gar-
bling size P̂ is bounded by poly(λ, |Ppriv|), where |Ppriv| denotes the complexity of the private
computation Ppriv.

Note that a standard Boolean garbling scheme, e.g. Yao’s garbling, can be viewed as a special
case of our definition of partial garbling, where the public input is ∅. For standard garbling
schemes, we define succinctness with respect to the entire (private) computation.

Definition 3 (Succinctness (w.r.t. Entire Computation)). We say a (standard) garbling
scheme for a class P is succinct if for all λ ∈ N and P ∈ Pλ, the garbling size P̂ is bounded by
poly(λ, ℓz).

3.2 Cryptographic Assumptions

In this work, we will use two types of groups: (1) groups satisfying the non-interactive distributed
log sharing (NIDLS) framework [1], which have distributed discrete log (DDLog) algorithms with
perfect correctness, and (2) prime-order groups, which have DDLog algorithms with a 1/poly
correctness error [23, 43].

Definition 4 (NIDLS Framework [1]). Let G = {Gλ} be a sequence of families of groups
(with efficient group operations). We say G is an instantiation of the NIDLS framework if the
following three efficient algorithms exist:

– Gen(1λ) outputs public parameters pp = (G,F,H, f, t, ℓ) where

• G ∈ Gλ is a finite Abelian group with subgroups F,H s.t. G = F ×H;

• F is a cyclic group of order t > 2λ, and f is a generator of F ;

• ℓ is an upper-bound on the order of H.

– Samp(pp) samples an element g ∈ G with the guarantee that f ∈ ⟨g⟩, and that the following
statistical indistinguishability holds:{

pp, ρ, gs

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s← [ℓ].

}

≈

{
pp, ρ, g′

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), g′ ← ⟨g⟩.

}
.

It outputs g and the sampling randomness ρ.
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– DDLog(pp, a ∈ G) takes an element a and outputs a value α ∈ Zt with the guarantee that for
all a ∈ G, m ∈ Zt:

DDLog(pp, a · fm) = DDLog(pp, a) +m mod t.

Remark 1. Compared to the description in [1], we additionally require the subgroups F have
large orders t > 2λ. This is needed in our application to (non-interactively) convert additive
shares mod t of 0, 1 values into shares over Z.

Known instantiations of the framework, with large subgroups F , include (the ciphertext
spaces of) Damg̊ard-Jurik encryption, a variant of Joye-Libert encryption described in [1], and
class groups.

Definition 5 (Prime-order Groups). We consider prime-order groups G = {Gλ} that have
efficient instance generation algorithms Gen:

– Gen(1λ) outputs a group G ∈ Gλ with order p > 2λ, and and a generator g. The group order
p is included in the description of G.

Lemma 2 (Distributed Discrete Log with Error [23, 43]). For any cyclic group G with
order p and a generator g, there exists an algorithm DDLogG,g:

– DDLogG,g(δ ∈ (0, 1], B ∈ [p], ϕ : G → {0, 1}⌈log(2B/δ)⌉, a ∈ G) takes an error bound δ, a
message bound B, a function ϕ mapping group elements to bit strings, and an element a. It
outputs a value α ∈ Zp.

The algorithm requires O(
√

B/δ) group operations, and has the guarantee that for all 0 < δ ≤ 1,
B < p, a ∈ G, and m ≤ B:

Pr

[
DDLogG,g(δ,B, ϕ, a · gm)

=DDLogG,g(δ,B, ϕ, a) +m mod p

∣∣∣∣∣ ϕ← $

]
≥ 1− δ,

where ϕ← $ means sampling at random from all possible mappings.

We state the standard DDH and power-DDH assumptions below, followed by our new
circular-power-DDH and a proof that it holds in GGM.

Definition 6 (DDH Assumption). We say the DDH assumption holds in the NIDLS frame-
work if the following holds:{

pp, (ρ, g), ga, gb, gab

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a, b← [ℓ].

}

≈c

{
pp, (ρ, g), ga, gb, gc

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a, b, c← [ℓ].

}
.

We say the DDH assumption holds in prime-order groups if the following holds:{
G, g, ga, gb, gab

∣∣∣∣∣ (G, g)← Gen(1λ),

a, b← Zp.

}
≈c

{
G, g, ga, gb, gc

∣∣∣∣∣ (G, g)← Gen(1λ),

a, b, c← Zp.

}
.

Via a standard hybrid argument, we obtain DDH in matrix form:
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Lemma 3 (DDH in Matrix Form). Assuming DDH in the NIDLS framework, for any poly-
nomials m(λ), n(λ), the following holds:{

pp, (ρ, g), ga, gb, ga·b
T

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a← [ℓ]m, b← [ℓ]n.

}

≈c

{
pp, (ρ, g), ga, gb, gC

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp),a← [ℓ]m,b← [ℓ]n,C← [ℓ]m×n.

}
.

Similarly, assuming DDH in prime-order groups, for any polynomials m(λ), n(λ), the following
holds: {

G, g, ga, gb, ga·b
T

∣∣∣∣∣ (G, g)← Gen(1λ),

a← Zm
p , b← Zn

p .

}

≈c

{
G, g, ga, gb, gC

∣∣∣∣∣ (G, g)← Gen(1λ),

a← Zm
p , b← Zn

p ,C← Zm×n
p .

}
.

Definition 7 (Power-DDH Assumption [31, 7]). We say the power-DDH assumption holds
in the NIDLS framework if the following holds:{

pp, (ρ, g), gs, gs
2

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s← [ℓ].

}

≈c

{
pp, (ρ, g), ga, gb

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), a, b← [ℓ].

}
.

We say the power-DDH assumption holds in prime-order groups if the following holds:{
G, g, gs, gs

2

∣∣∣∣∣ (G, g)← Gen(1λ),

s← Zp.

}
≈c

{
G, g, ga, gb

∣∣∣∣∣ (G, g)← Gen(1λ),

a, b← Zp.

}
.

Remark 2. In prime-order groups, power-DDH implies DDH: the reduction given a power-DDH
tuple (g, gs, gs

2
) samples a, b ← Zp to re-randomize the tuple as (g, gs·a, gs·b, gs

2·ab), which be-
comes a valid DDH tuple. If the reduction is given a random tuple (g, gs, gr), the re-randomized
is also random. However, in the NIDLS framework there is no clear way to perform this re-
randomization.

Definition 8 (Circular-Power-DDH Assumption). We say the circular-power-DDH as-
sumption holds in the NIDLS framework if the following holds:{

pp, (ρ, g), gs, gai , gsai , gs
2ai · fs[i]

(for i ∈ ⌈log ℓ⌉)

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s, {ai} ← [ℓ].

}

≈c

{
pp, (ρ, g), gs, gai , gbi , gci

(for i ∈ ⌈log ℓ⌉)

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s, {ai, bi, ci} ← [ℓ].

}
.

We say the circular-power-DDH assumption holds in prime-order groups if the following holds:{
G, g, gs, gai , gsai , gs

2ai+s[i]

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ (G, g)← Gen(1λ),

s, {ai} ← Zp.

}

≈c

{
G, g, gs, gai , gbi , gci

(for i ∈ ⌈log p⌉)

∣∣∣∣∣ (G, g)← Gen(1λ),

s, {ai,bi, ci} ← Zp.

}
.
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Remark 3. CP-DDH implies DDH, which just requires indistinguishability of the first 3 terms in
the above. We also show in Theorem 4 that CP-DDH in prime-order groups holds in the generic
group model (GGM) as formulated in [91].

The following small-exponent assumption is commonly assumed in the NIDLS framework,
and is requires for obtaining HSS (for NC1 circuits) in prior work [1]. We don’t rely on this
assumption except when using existing HSS schemes as a black box.

Definition 9 (Small Exponent Assumption). We say the small exponent assumption holds
in the NIDLS framework if the following holds:{

pp, ρ, gs

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s← [ℓ].

}

≈c

{
pp, ρ, gs

′

∣∣∣∣∣ pp = (G,F,H, f, t, ℓ)← Gen(1λ),

(ρ, g)← Samp(pp), s′ ← [2λ].

}
.

While the Damg̊ard-Jurik encryption scheme [83, 41] satisfy the NIDLS framework, our appli-
cations can alternatively rely directly on the KDM security of this scheme, rather than CP-DDH
defined generically for the NIDLS framework. We give preliminaries for Damg̊ard-Jurik below.

Construction 1 (Damg̊ard-Jurik Encryption [83, 41]). Let B′ = B′(λ) ≤ 2poly(λ) be a
bound on message magnitude. The Damg̊ard-Jurik encryption scheme for integer messages con-
sists of the following algorithms.

– KeyGen(1λ) : sample two λ-bit primes p, q, set N = p · q, and choose the smallest integer ζ
such that N ζ > B′. Output pk = (N, ζ) and sk = φ(N), where φ(·) is the Euler’s totient
function.

– Enc(pk,m ∈ Z) : sample r ← Z∗
Nζ+1 , and output a ciphertext

c = rN
ζ · (1 +N)m mod N ζ+1.

– Dec(pk, sk, c) : compute and output

m = DLog(1+N)(c
sk)/sk mod N ζ+1,

where DLog(1+N) efficiently recovers x from (1 +N)x mod N ζ+1.

Definition 10 (KDM Security [17, 20]). A public key encryption scheme is KDM secure
w.r.t. a class of functions F if for every efficient adversary A there exists a negligible function
negl(λ) such that for all λ ∈ N:∣∣∣Pr [ExpA,F ,0

KDM (λ) = 1
]
− Pr

[
ExpA,F ,1

KDM (λ) = 1
]∣∣∣ ≤ negl(λ),

where the experiment ExpA,F ,b
KDM (λ) is as follows:

1. Sample public and secret keys (pk, sk)← KeyGen(1λ) and launch A(1λ, pk).
2. Answer arbitrary number of queries f ∈ F from A with

cf = Enc(pk, f(sk)) if b = 0

cf = Enc(pk, 0|f(sk)|) if b = 1.
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3. In the end, A outputs a bit b′ as the experiment result.

Remark 4. We will need the class F to contain constant functions fC(sk) = C, and inverse
functions f ′

M (sk) = sk−1 mod M for all C,M ∈ N.
Note that standard semantic security can be viewed as a special case of KDM security where

F contains only constant functions. The semantic security of Damg̊ard-Jurik encryption is also
known as the DCR assumption.

Lemma 4 (DDLog algorithm for Damg̊ard-Jurik [90]). Let p, q be any distinct primes,
ζ ≥ 1 be any positive integer, N = p · q, pk = (N, ζ), and sk = φ(N). There exists an efficient
algorithm DDLogN,ζ(·), such that for all x, y, z ∈ Z and c ∈ Supp(Enc(pk, y)), the following
holds:

DDLogN,ζ(c
sk·x+z) ≡ sk · x · y + DDLogN,ζ(c

z) mod N ζ .

3.3 CP-DDH in Generic Group Model

We first recall the definition of (Shoup’s) generic group model [91] as formulated in [96], and
then prove that our new assumption, CP-DDH in prime order groups, holds in this model
(Theorem 4).

Definition 11 (GGM [91, 96]). Let p ∈ Z be a positive integer and S ⊆ {0, 1}∗ be a set of
strings of length bounded by some B, and cardinality at least p. In the generic group model for a
cyclic group of order p, a random injective labeling function L : Zp → S is chosen, whose outputs
L(x) represents group elements gx with respect to a fixed generator g. All parties – including the
adversary and the challenger – are allowed the following queries (incurring unit cost) to a group
oracle:

– Labeling queries: The party submits x ∈ Zp, and receives L(x).

– Group operations: The party submits (l1, l2, a1, a2) ∈ S2 × Z2
p. If l1, l2 are valid labels for

x1, x2 ∈ Zp, i.e. L(x1) = l1, L(x2) = l2 , then the party receives the label L(a1x1 + a2x2).
Otherwise, the party receives ⊥.

Theorem 4 (CP-DDH in GGM). For every sequence of prime orders {pλ}λ where pλ > 2λ,
and every adversary A with polynomial number of queries in GGM (for groups of orders {pλ}),
the following holds:

|Pr[A(Labelsλ,CPDDH) = 1]− Pr[A(Labelsλ,Rand) = 1]| ≤ negl(λ),

where the labels provided to A are sampled as follows:

Labelsλ,CPDDH =

{
L(1), L(s), L(ai), L(sai), L(s

2ai + s[i])

(for i ∈ ⌈log pλ⌉)

∣∣∣∣∣ s, {ai} ← Zpλ

}
,

Labelsλ,Rand =

{
L(1), L(s), L(ai), L(bi), L(ci)

(for i ∈ ⌈log pλ⌉)

∣∣∣∣∣ s, {ai, bi, ci} ← Zpλ

}
.

Proof. We show a series of hybrid experiments whose output distribution transition fromA(Labelsλ,CPDDH)
to A(Labelsλ,Rand).
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Hyb0 : In this experiment, the challenger uniformly samples exponents s, {ai}, queries the group
oracle to obtain Labelsλ,CPDDH, and provides them to A. The queries of A to the group
oracle are answered by the oracle. The output of A is also the output of this experiment, i.e.
Hyb0 ≡ A(Labelsλ,CPDDH).

Hyb1 : Instead of relying on the actual group oracle, the challenger simulates all its answers (to
queries of both the challenger and the adversary) by lazily sampling a random label table L:

– Upon a labeling query of x ∈ Zpλ : If it’s not answered before, sample a random label
L(x)← S and remember it. Otherwise, return L(x).

– Upon a group operation query of (l1, l2, a1, a2): If either l1 or l2 is not in S, then return
⊥. Otherwise, for an unqueried label, say l1, randomly sample a previously un-queried
x1 ∈ Zp and set L(x1) = l1. Finally, compute x3 = a1x1 + a2x2 mod p and return L(x3).

As the challenger perfectly simulates the group oracle, we have Hyb1 ≡ Hyb0.

Hyb2 : Instead of simulating the group oracle as in Hyb1, the challenger first translates every
query into an affine function α over the values s, {ai, sai, s2ai + s[i]}, and then answers the
query as L′(α) with a random table L′ mapping distinct translated affine functions to random
labels in S.

The challenger’s own labeling queries of exponents among s, {ai, sai, s2ai+s[i]} are translated
to the affine functions that “select” the correct input variables. A’s queries are handled as
follows.

– Upon a labeling query of x: Translate it to the constant function α(·) = x.

– Upon a group operation query of (l1, l2, a1, a2): If either l1 or l2 is not in S, then return
⊥. Otherwise, for an unqueried label, say l1, randomly sample a previously un-queried
constant function α1, and set L′(α1) = l1. Finally, translate the query to α3 := a1 · α1 +
a2 · α2, which is another affine function.

We observe that the simulated answers in Hyb2 and Hyb1 are equivalent, unless there exists
queried affine functions α ̸= α′ such that α(s, {ai, sai, s2ai+s[i]}) = α′(s, {ai, sai, s2ai+s[i]}).
We claim (and prove in the end) that this “bad event” happens with negligiable probability,
because it implies a non-zero affine function α∗ = α−α′ satisfying α∗(s, {ai, sai, s2ai+s[i]}) ≡
0 mod p:

Claim. For every prime p, every non-zero affine function α over 3⌈log p⌉ + 1 inputs the
following holds:

Pr[α(s, {ai, sai, s2ai + s[i]}) ≡ 0 mod p | s, {ai} ← Zp] ≤ 3/p.

Therefore, we have Hyb2 ≈ Hyb3. We also note that in Hyb2 the labels provided to A, both
as inputs Labelsλ,CPDDH and as answers to its queries, are computed independent of the
exponents s, {ai} sampled by the challenger.

Hyb3 In this experiment, the challenger uniformly samples exponents s, {ai, bi, ci}, queries the
group oracle to obtain Labelsλ,Rand, and provides them to A. The queries of A are answered
by the oracle.

By exactly the same arguments as used to argue Hyb0 ≈ Hyb2 above, we haveA(Labelsλ,Rand) ≡
Hyb3 ≈ Hyb2.

By a hybrid argument, we conclude that Hyb0 ≈ Hyb3, which proves the theorem. We prove the
claim now.
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Proof (of Claim). Denote the coefficients of α as c, d, ei, fi, gi ∈ Zp for i ∈ ⌈log p⌉:

α(s, {ai, sai, s2ai + s[i]})

:=c+ d · s+
∑
i

ei · ai +
∑
i

fi · sai +
∑
i

gi · (s2ai + s[i])

= c+ sd+
∑
i

s[i]gi︸ ︷︷ ︸
γ

+
∑
i

ai (ei + sfi + s2gi)︸ ︷︷ ︸
βi

.

Let “Target” denote the event α(s, {ai, sai, s2ai + s[i]}) ≡ 0 mod p. We analyze two possible
cases:

Case A: γ, {βi} don’t all evaluate to zero (mod p). By Schwartz-Zippel lemma, viewing {ai}
as variables, we have

Pr[Target |Case A] ≤ 1/p

Case B: γ, {βi} all evaluate to zero (mod p). As we assume α is a non-zero function, at least
one of the following are true:
– Exists i∗ such ei∗ , fi∗ , gi∗ are not all zero. By Schwartz-Zippel lemma, viewing s as the

variable, we have Pr[Case B] ≤ Pr[βi∗ = 0] ≤ 2/p.
– {ei, fi, gi} are zero for all i, but c, d are not all zero. By Schwartz-Zipple lemma, viewing

s as the variable, we have Pr[Case B] ≤ Pr[γ = 0] ≤ 1/p.
In both cases, we have

Pr[Case B] ≤ 2/p.

We conclude the proof by the following identity:

Pr[Target] =Pr[Case A]Pr[Target |Case A] + Pr[Case B] Pr[Target |Case B]

≤1 · Pr[Target |Case A] + Pr[Case B] · 1 ≤ 3/p.

⊓⊔
⊓⊔

4 Algebraic Homomorphic MACs

Our notion of algebraic homomorphic MACs (aHMACs) can be roughly viewed as a refinement of
existing homomorphic MACs (HMACs [3, 48, 33]). In both notions, there are Auth, and EvalTag
algorithms that respectively produce authentication tags σx for some input x, and homomor-
phically evaluate some circuit C over the them. The resulting tags σz should be verifiable with
respect to the circuit C and unforgeable.

The main difference in our definition is the requirement that evaluated tags have the the
form σz = ∆ ·C(x)+kC (over Z), where ∆ is a global secret specified at key generation time, and
kC is computable from only the secret key and the circuit C, without knowing x. This format
is known as information-theoretic MACs.

In Section 4.5, we show that our requirement on the algebraic form of the evaluated tags,
together with our simulation-based security definition (Definition 12) implies verifiability and
(a weaker variant of) unforgeability as commonly required for HMAC schemes. However, as our
applications in this work doesn’t require explicitely verifying the evaluated tags, we omit the
Verify algorithm, verifiability, and unforgeability from our Definition 12.
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Definition 12 (Algebraic Homomorphic MACs). An algebraic homomorphic MAC scheme
consists of four efficient algorithms:

– KeyGen(1λ,∆ ∈ [2λ]ℓz) takes a vector of global secrets ∆, (one for each evaluation output
bit,) and outputs a secret key sk and evaluation key evk.

– Auth(sk, x ∈ {0, 1}, id ∈ {0, 1}λ) takes as inputs the secret key sk, a bit x to be authenticated,

and an id associated with the bit. It outputs a tag σx. We will write σx = (. . . , σ
(i)
x , . . .) to

mean a vector of such tags.
– EvalTag(evk, C,x, σx) takes as inputs the evaluation key evk, a Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz , input bits x, and their associated tags σx. It outputs tags σz ∈ Zℓz authenticating
the outputs of C(x).

– EvalKey(sk, C, id) takes as inputs the secret key sk, a Boolean circuit C : {0, 1}ℓx → {0, 1}ℓz
and the ids associated with its inputs. It outputs MAC keys kC ∈ Zℓz for the outputs of C.

δ-Correctness: Let δ = δ(λ) be an error bound. For every polynomial p(λ), there exists a
negligible function negl(λ) such that for all λ ∈ N, Boolean circuits C : {0, 1}ℓx → {0, 1}ℓz where
|C| ≤ p(λ), global secrets ∆ ∈ [2λ]ℓz , inputs x ∈ {0, 1}ℓx, and ids id ∈ {0, 1}ℓx×λ, the following
holds:

Pr


σz = ∆⊙ C(x) + kC

(over Zℓz ,⊙ means

component-wise mult)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk,evk)← KeyGen(1λ,∆)

σ(i) ← Auth(sk,x[i], id[i])

σx := (σ(0), . . . , σ(ℓx−1))

σz ← EvalTag(evk, C,x, σx)

kC ← EvalKey(sk, C, id)


≥ 1− δ(λ)− negl(λ).

Security: There exists an efficient simulator Sim such that for every sequence of global MAC
keys {∆λ}λ and inputs {xλ}λ (of polynomial lengths ℓz(λ) and ℓx(λ)), and distinct ids {idλ}λ,
the following holds (suppressing the subscript λ for brevity):

{
Sim(1λ, 1ℓz)

}
λ
≈c

{
evk, σx := (σ(i), . . . , σ(ℓx−1))

∣∣∣∣∣ (sk,evk)← KeyGen(1λ,∆)

σ(i) ← Auth(sk,x[i], id[i])

}
λ

Succinctness: The bit-lengths of tags produced by Auth and EvalTag are bounded by some fixed
poly(λ).

A leveled aHMAC scheme has the following differences compared to a fully homomorphic scheme
(Definition 12):

– KeyGen additionally takes a parameter 1D where D is a bound on the depth of evaluation
circuits.

– EvalTag and EvalKey take circuits of depth less than D, and correctness only holds w.r.t.
those circuits. (We don’t require the circuits to be leveled.)

We omit spelling out the formal definition for the leveled case.
In Section 4.1 and 4.2, we show constructions of aHMACs in the NIDLS framework and

in prime-order groups, based on CP-DDH. In Section 4.3, we show leveled variants of these
constructions based on P-DDH and DDH. In Section 4.4, we separately describe a (non-leveled)
construction based on the KDM security of Damg̊ard-Jurik encryption. While Damg̊ard-Jurik
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instantiates NIDLS, the assumption of KDM security is technically different from CP-DDH. In
Section 4.5 we show that our aHMAC definition implies verifiability and (a weaker variant of)
unforgeability as commonly required for HMAC schemes.

Theorem 5 (aHMACs). We have the following constructions:

1. Assuming CP-DDH in the NIDLS framework (e.g. Damg̊ard-Jurik groups and class groups)
(Definition 4, 8), there exists an aHMAC scheme achieving negl-correctness.

2. Assuming CP-DDH in prime-order groups, there exists an aHMAC scheme achieving 1/p-
correctness for any polynomial p.

3. Assuming the KDM security (Definition 10) of Damg̊ard-Jurik encryption (Construction 1),
there exists an aHMAC scheme achieving negl-correctness.

In the above, evk costs ℓz · poly(λ) bits.

Theorem 6 (Leveled aHMACs). We have the following constructions (besides those from
Theorem 5):

1. Assuming P-DDH and DDH in the NIDLS framework (Definition 7, 6), there exists a leveled
aHMAC scheme achieving negl-correctness.

2. Assuming P-DDH in prime-order groups, there exists a leveled aHMAC scheme achieving
1/p-correctness for any polynomial p.

In the above, evk costs (ℓz +D) · poly(λ) bits.

4.1 aHMACs from the NIDLS Framework

Construction 2 (aHMACs from the NIDLS Framework). Ingredients:

– An instance G = {Gλ} of the NIDLS framework with large order F , i.e., the subgroup F of
each G ∈ Gλ has order at least t > 2λ.

– Two PRFs F1 : K1 × {0, 1}∗ → [t] and F2 : K2 × {0, 1}∗ → [2λ].

Note that every Boolean circuit C can be implemented via an arithmetic circuit C ′ over Z as
follows:

∀x, y ∈ {0, 1}, xAND y = x · y, xOR y = x+ y − x · y, Notx = 1− x.

The wire values in C ′ are 0 or 1. In the following construction of EvalTag and EvalKey, we will
evaluate C ′ instead of C.

For vectorized operations, for an integer vector r, we write gr = (. . . , gr[i], . . .), denote
component-wise multiplication by ⊙, and define BC(r) =

∑
i r[i] · 2i over Z. When using a

PRF to generate n values from a single input, we write Fn(s, x) = (. . . ,F(s, x∥i), . . .)i∈[n].

(sk, evk)← KeyGen(1λ,∆) :
Generate public parameters pp = (G,F,H, f, t, ℓ) ← Gen(1λ), a group element (g, ρ) ←
Samp(pp), and a secret exponent s← [ℓ]. Then compute ciphertexts cts, ct∆ encrypting the
bits of s (as a bit vector s := bits(s) of length ℓs := ⌈log ℓ⌉, such that BC(s) = s) and of ∆
(as a bit matrix in {0, 1}ℓz×λ):

h = gr, r← [ℓ]ℓs , H = gR,R← [ℓ]ℓz×λ,

cts = (h,hs,hs2 · f s), ct∆ = (H,H−s · f∆).

Finally, sample PRF keys key1 ← K1, key2 ← K2. Output sk = (pp,h,H, s, key1, key2), and
evk = (pp, cts, ct∆, key1).
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σx ← Auth(sk, x, id) :
Parse the secret exponent s and the (secret) PRF key key2 from sk. Then compute an
authentication tag

σx = s · x+ Fℓs2 (key2, id) over Zℓs .

σz ← EvalTag(evk, C,x, σx) :
Parse pp, ciphertexts cts = {h,h1,h2}, ct∆ = {H,H1}, and a PRF key s1 from evk.
1. Assign the tags σx to corresponding input wires of C ′, and then a tag σ(w) to every

output wire w of some gate in C ′ (with input wires w1, w2 and values x1, x2) following
the topological order:
– For Add gates, set σ(w) := σ(w1) + σ(w2) over Zℓs .
– For Mult gates, compute the output tag σ(w) as follows:

a(w) := hBC(σ(w1))·BC(σ(w2)) ⊙ h
−BC(σ(w1))·x2−BC(σ(w2))·x1

1 ⊙ hx1·x2
2 ,

σ(w) := DDLog(pp,a(w)) + Fℓs1 (key1, w) mod t.

We note the following invariant: if the input tags have the form σ(w1) = s ·x1+k(w1), and
σ(w2) = s · x2 +k(w2), over Z, then the computed tag also has the form σ(w) = s · z+k(w)

over Z. For Add gates, the invariant is immediate, with k(w) := k(w1)+k(w2) over Z. For
Mult gates, we note the following core identity:

BC(σ(w1))BC(σ(w2))− s ·
(
BC(σ(w1))x2 + BC(σ(w2))x1

)
+ s2z

=BC(k(w1))BC(k(w2)) over Z.

Plugging in the fact that h1 = hs, h2 = hs2 · f s, we obtain

a(w) = f s·z · hBC(k(w1))BC(kw2 )

⇒DDLog(pp,a(w)) = s · z + DDLog(pp,hBC(k(w1))BC(k(w2))) mod t.

⇒σ(w) = s · z + k(w) mod t,

w/ k(w) := DDLog(pp,hBC(k(w1))BC(k(w2))) + Fℓs1 (key1, w) mod t.

We have obtained the desired invariant mod t, and now argue it also holds over Z. For
each coordinate i, there are at most ∥s · z∥∞ ≤ 1 possible values of k(w)[i] to break the
invariant over Z. Since k(w) is distributed pseudorandomly mod t, due to the offset by
F1, the probability of it breaking the invariant is ≤ (1/t)ℓs = negl(λ).

2. Compute the final output tags σz = (. . . ,BC(σ′(oj)), . . .)j∈[ℓz ], where {oj} are the output
wires of C ′ (with values {zj}):

a′
(oj) := H[j]BC(σ

(oj)) ⊙H1[j]
zj ,

σ′(oj) = DDLog(pp,a′(oj)) + Fℓs1 (key1, oj) mod t.

Similarly, we can verify that if the tags σ(oj) have the form σ(oj) = s · zj + k(oj), then we
have

σ′(oj) = ∆[j] · zj + k′(oj) over Z,

w/ k′(oj) := DDLog(pp,H[j]BC(k
(oj))) + Fℓs1 (key1, oj) mod t.

⇒σz = ∆⊙ zj + kC over Z w/ kC := BC(k′(oj)),

where in the last line we abuse notations to write ∆ as a vector in Zℓz .
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kC ← EvalKey(sk, C, id) :
Parse the PRF keys key1, key2 and group elements h,H from sk. Then compute MAC keys
k(wj) associated with each input wire wj of C ′:

k(wj) = Fℓs2 (key2, id[j]).

1. Assign a MAC key to every output wire w of some gate in C ′ (with input wires w1, w2)
following the topological order:
– For Add gates, set k(w) := k(w1) + k(w2) over Zℓs .
– For Mult gates, compute the output MAC key k(w) as follows:

b(w) := hBC(k(w1))·BC(k(w2)),

k(w) := DDLog(pp,b(w)) + Fℓs1 (key1, w) mod t.

As noted before, we have σ(w) = s · z + k(w) over Z.
2. Compute the final output MAC keys kC = (. . . ,BC(k′(oj)), . . .)j∈ℓz , where {oj} are the

output wires of C ′:

b′(oj) := H[j]BC(k
(oj)),

k′(oj) = DDLog(pp,b′(oj)) + Fℓs1 (key1, oj) mod t.

As noted before, we have σz = ∆⊙ z+ kC over Z as desired.

Correctness: To help digest the construction, we have broken up and embedded correctness
analysis as notes in the above.

Efficiency: We note that the tags output by Auth and the EvalTag all have bounded magnitude
by O(t) ≤ O(2λ). Hence they have bit-lengths bounded by O(λ · ℓs) = poly(λ), and satisfy
succinctness.

The evaluation key evk contains mainly the ciphertexts cts, ct∆, which are O(ℓs + ℓz × λ)
group elements. In total, evk has bit-length ℓz · poly(λ).

Security: We state and prove the following security lemma.

Lemma 5. Under CP-DDH in the NIDLS framework, Construction 2 is a secure aHMAC
scheme.

Proof (of Lemma 5). The security of an aHMAC scheme (Definition 12) requires a simula-

tor Sim to simulate authentication tags σx = (. . . , σ
(i)
x , . . .) and an evaluation key evk =

(pp, cts, ct∆, key1). It simply samples all of the components at random:

– Sample random authentication tags σ̃x ← [2λ]ℓs .
– Sample a random PRF key key1 ← K1.
– Sample public parameters of a NIDLS group pp ← Gen(1λ), and a random group element

(g, ρ)← Samp(pp). Then sample random ciphertexts cts = (h̃, h̃1, h̃2), and ct∆ = (H̃, H̃1):

h̃ = gr, r← [ℓ]ℓs , h̃1 = gr1 , r1 ← [ℓ]ℓs , h̃2 = gr2 , r2 ← [ℓ]ℓs ,

H̃ = gR,R← [ℓ]ℓz×λ, H̃1 = gR1 ,R1 ← [ℓ]ℓz×λ.
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We show a series of hybrids that transitions from the real-world distribution in Definition 12
(Hyb0) to the above simulated distribution (Hyb5).

Hyb0 : We summarize the real-world distribution of σx = (. . . , σ
(i)
x , . . .), and evk = (pp, cts, ct∆, key1),

where cts = (h,h1,h2), and ct∆ = (H,H1).

key1 ← K1, pp← Gen(1λ),

h = gr, h1 = gs·r, h2 = gs
2·r · f s,

H = gR, H1 = gs·R · f∆,

∣∣∣∣∣(ρ, g)← Samp(pp), r← [ℓ]ℓs ,

R← [ℓ]ℓz×λ, s← [ℓ].
(4)

σ(i)
x = s · x[i] + Fℓs2 (key2, id[i]) over Z |key2 ← K2. (5)

Hyb1 : Instead of computing each tag σ
(i)
x as in Equation 5, Hyb1 simulates it as σ̃

(i)
x ← [2λ]ℓs .

The PRF security of F2 ensures that Hyb1 ≈c Hyb0.

Hyb2 : Instead of sampling the random exponents R← [ℓ]ℓz×λ as in Equation 4, Hyb2 simulate
it as R̃ = r′ · rT , where r′ ← [ℓ]ℓz . 9 The matrix form of DDH (Lemma 3) in the NIDLS
framework ensures that Hyb2 ≈c Hyb1.

To summarize, in Hyb2 the terms h, h1, h2, H, H1 are computed as:

h = gr, h1 = gs·r, h2 = gs
2·r · f s,

H = gr
′·rT , H1 = gr

′·(s·r)T · f∆,

∣∣∣∣∣(ρ, g)← Samp(pp), r← [ℓ]ℓs ,

r′ ← [ℓ]ℓz , s← [ℓ].

In particular, H and H1 can be derived from h, h1, r
′ and ∆.

Hyb3 : Instead of computing h, h1, h2 as above, Hyb3 simulates:

h̃ = ga, h̃1 = gb, h̃2 = gc, | (ρ, g)← Samp(pp), a,b, c← [ℓ]ℓs .

CP-DDH in the NIDLS framework ensures that Hyb3 ≈c Hyb2.

In Hyb3, the terms H, H1 (derived from h̃ and h̃1) becomes

H = gr
′·aT

, H1 = gr
′·bT · f∆, | r′ ← [ℓ]ℓz .

Hyb4 : Instead of computing H, H1 as above, Hyb4 simulates them as

H̃ = gR, H̃1 = gR1 · f∆ |R,R1 ← [ℓ]ℓz×λ.

The matrix form of DDH in the NIDLS framework ensures Hyb4 ≈c Hyb3.

Hyb5 : Instead of computing H̃1 as above, Hyb5 simulates H̃1 = gR1 , i.e., independent of ∆.
The Samp algorithm (Definition 4) ensures

gR1 · f∆ ≈ Uniform(⟨g⟩) · f∆ ≡ Uniform(⟨g⟩) ≈ gR1 ,

where the first and last indistinguishabilities are statistical. Hence we have Hyb5 ≈ Hyb4.

By a hybrid argument, we conclude that Hyb0 ≈c Hyb5, which proves the lemma.

9 An omitted detail (for brevity) here is the mismatch of dimensions: R̃ should have dimension ℓz ×λ, but r′ · rT
has dimension ℓz × ℓs, where ℓs = ⌈log ℓ⌉ ≥ λ. We simply take R to be the first λ columns of r′ · rT .
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4.2 aHMACs from Prime-Order Groups

Construction 3 (aHMACs from Prime-Order Groups). Ingredients:

– Prime-order groups G = {Gλ} with an algorithm Gen and orders p > 2λ.
– A compatible PRF F3 : K3 ×G→ {0, 1}λ used for the DDLog algorithm.
– Two PRFs F1 : K1 × {0, 1}∗ → [p] and F2 : K2 × {0, 1}∗ → [2λ].

Compared to Construction 2, the Auth, EvalTag, EvalKey algorithms are the same except
DDLog now requires three additional parameters δ′, B, ϕ (Lemma 2). We set δ′ = δ/O(|C|) so
that running DDLog O(|C|) times has an overall error probability bounded by δ, and B = 1
which equals the wire value bound when implementing C as an arithmetic circuit (as explained
in Construction 2). We sample a public PRF key key3 during KeyGen which specifies the function
ϕ(·) := F3(key3, ·). 10

The remaining differences are in KeyGen, where we compute cts, ct∆ as part of evk differently:

(sk, evk)← KeyGen(1λ, ∆) :
Generate public parameters pp = (G, g) ← Gen(1λ) and a secret exponent s ← Zp. Then
compute ciphertexts cts, ct∆ encrypting the bits of s (as a bit vector s ∈ {0, 1}ℓs) and ∆ (as
a bit matrix in {0, 1}ℓz×λ):

h = gr, r← Zℓs
p , H, = gR,R← Zℓz×λ

p

cts = (h,hs,hs2 · gs), ct∆ = (H,H−s · g∆).

Finally, sample PRF keys key1 ← K1, key2 ← K2, key3 ← K3. Output sk = (pp,h,H, s, key1, key2, key3),
and evk = (pp, cts, ct∆, key1, key3).

The proof of the following lemma is completely analogous to that of Lemma 5. We omit
writing it out again.

Lemma 6. Under CP-DDH in prime-order groups, Construction 3 is a secure aHMAC scheme.

4.3 Leveled HAEs without Circular Security Assumptions

In this section, we sketch modifications to Construction 2 and 3, based on the NIDLS framework
and prime-order groups respectively, to avoid the circular security assumption, CP-DDH at the
cost of a larger evaluation key evk with size growing linearly with the depth boundD of evaluation
circuits: |evk| = (ℓz +D) · poly(λ). The modified construction in the NIDLS framework assumes
P-DDH and DDH, and the modified construction in prime-order groups assumes P-DDH.

We focus on explaining the modification to Construction 2. (The modification to Construc-
tion 3 is analogous.) Recall that we rely on CP-DDH assumption to argue security of the ci-
phertext cts in the evaluation key evk:

cts = (h = gr, h1 = gs·r, h2 = gs
2·r · f s), where r, s← $.

In particular, we need the circular assumption because the exponents s in the easy group ⟨f⟩
are bit representations of the secret exponent s. The modification is to use a independent secret
s′ instead:

ct′s = (h = gr, h1 = gs·r, h′
2 = gs

2·r · f s′), where r, s, s′ ← $.

10 The output length of F3 is truncated to ⌈log(2B/δ′)⌉ as required by ϕ.
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P-DDH suffifces for proving the security of ct′s, but our evaluation procedure (for Mult) now
turns two tags σx, σy under the secret s into a new tag σz under the secret s′:

If σx = s · x+ kx, σy = s · y + ky, then σz = s′ · z + kz.

In order to continue evaluting tags under the secret s′, we need to provide another ciphertext
ct′′s in evk, using the same secret s′ as ct′s and another fresh secret s′′.

ct′′s = (h = gr, h1 = gs
′·r, h′

2 = gs
′2·r · f s′′), where r, s′′ ← $.

Generalizing this idea, we can put D such ciphertexts in evk to support evaluations of circuits
C with Depth(C) ≤ D.

We omit writing out details for the leveled constructions in the NIDLS framework and prime-
order groups, as they are mostly analogous to Construction 2 and 3.

4.4 aHMACs From Damg̊ard-Jurik

While the Damg̊ard-Jurik encryption scheme (Construction 1) can be viewed as an instantiation
of the NIDLS framework, we note that its particular structure allows a more convenient DDLog
algorithm (Lemma 4):

DDLogN,ζ(c
sk·x+z) ≡ sk · x · y + DDLogN,ζ(c

z) mod N ζ ,

where c is any ciphertext that decrypts to some value y, and sk is not a random exponent, but a
fixed secret value sk = φ(N). We use this DDLog variant on ciphertexts encrypting the inverse
of the secret key sk−1 mod N ζ , which can effectively remove a factor of sk from any tag of the
form σ = sk · x+ k over Z: 11

cts ← DJ.Enc(pk, 1/s mod N ζ),

=⇒ DDLogN,ζ(ct
sk·x+k
s ) ≡ sk · x · sk−1 + DDLogN,ζ(ct

k
s) mod N ζ ,

≡ x+ DDLogN,ζ(ct
k
s) mod N ζ .

This leads to the following evaluation procedures for a Mult gate in EvalTag and EvalKey re-
spectively:

EvalTag given σx, σy computes:

a = ct
σx·σy
x , σ∗

z := −DDLogN,ζ(a) + σx · y + σy · x mod N ζ

EvalKey given kx, ky computes:

b = ct
kx·ky
x , k∗z := DDLogN,ζ(b) mod N ζ

The DDLog algorithm ensures σ∗
z = sk · x · y+ kz mod N ζ . The EvalTag and EvalKey algorithms

then apply a common random shift to σ∗
z and k∗z respectively to make the equality holds also

over Z.
Security of this construction relies on the KDM security of Damg̊ard-Jurik encryption, which

ensures cts does not leak anything about sk. We omit writing out details for this construction,
as it’s mostly analogous to Construction 2.

11 This usage of DDLog is inspired by the technique from [78].
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4.5 Verifiability and Unforgeability of aHMAC

In this section, we describe a simple Verify algorithm using our aHMAC definition (Definition 12)
as a black-box, and show that our definition implies verifiability and unforgeability properties.

Compared to the usual unforgeability notion in homomorphic MAC literatures [3, 48, 33], ours
is weaker in two aspects: (1) we restrict the adversary to submit authentication and verification
queries in one-shot, before seeing the evaluation key evk; (2) we only consider so called “type II”
forgeries, where an adversary queries some authenticated data x, and forges authentications of
false computation results z ̸= C(x). (The usual notion considers forgeries also of computations
results from un-authenticated inputs.)

While our techniques are likely to yield HMAC schemes satisfying the usual, stronger, un-
forgeability notion, as well as other desired properties like composability, we leave exploring
them to future works.

The Verify algorithm. We define the syntax of a Verify algorithm compatible with our aHMAC
(Definition 12).

– Verify(∆, sk, C, id, z, σz) : takes as inputs the global secret ∆, the secret key sk, a Boolean
circuit C : {0, 1}ℓx → {0, 1}ℓz , the ids associated with the inputs, output bits z ∈ {0, 1}ℓz ,
and evaluated tags σz ∈ Zℓz authenticating z. It outputs either ⊤, indicating accept, or ⊥,
indicating reject.

We implement Verify as follows. As a degenerate case, if C is a constant function, i.e. C(·) = z∗,

then directly check whether z∗
?
= z. For non-constant C, first compute the evaluated MAC

key kC ← EvalKey(sk, C, id). Then check whether the evaluated tags satisfy the correct form:

σz
?
= ∆⊙ z+ kC (over Z). If yes, output ⊤. Otherwise, output ⊥.

Verifiability. We adapt the formulation from [33] (named authentication and evaluation cor-
rectness there) as follows.

Definition 13 (δ-Verifiability). Let δ = δ(λ) be an error bound. For every polynomial p(λ),
there exists a negligible function negl(λ) such that for every Boolean circuit C : {0, 1}ℓx →
{0, 1}ℓz where |C| ≤ p(λ), global secrets ∆ ∈ [2λ]ℓz , inputs x ∈ {0, 1}ℓx, and ids id ∈ {0, 1}ℓx×λ,
the following holds

Pr

Verify(∆, sk, C, id,

C(x), σz) = ⊤

∣∣∣∣∣∣∣∣∣∣
(evk, sk)← KeyGen(1λ,∆)

σ(i) ← Auth(sk,x[i], id[i])

σx := (. . . , σ(i), . . .)

σz ← EvalTag(evk, C,x, σx)

 ≥ 1− δ(λ)− negl(λ).

It’s clear (hence we omit the proof) that any aHMAC scheme with δ correctness error, and
extended with the Verify algorithm described above, satisfies δ-verifiability.

Proposition 1. An aHMAC scheme with δ-correctness per Definition 12, satisfies δ-verifiability
per Definition 13.
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Unforgeability. We adapt the formulation of type-II unforgeability from [33], and restrict the
adversary to submit all its authentication and verification queries in one shot, as opposed to
adaptively, before seeing the evaluation key evk.

Definition 14 (Non-adaptive Type-II Unforgeability). For every efficient adversary A,
there exists a negligible function negl(λ) such that for all λ ∈ N, the following holds

Pr[ExpAHMAC(λ) = Win] ≤ negl(λ),

where the experiment ExpHMAC is as follows:

1. Launch A(1λ). Receive from A an output length 1ℓz and the following:

– authentication queries {x(i), id(i)} with distinct ids, and

– verification queries {C(i), id(i), z(i), σ
(i)
z }.

2. Sample a global secret ∆ ← [2λ]ℓz , and run (evk, sk) ← KeyGen(1λ,∆). Send to A the
evaluation key evk, as well as answers to the queries using sk,∆ and running Auth,Verify.

3. Receive from A a forgery (C, id, z, σz), and output Win only if both of the following holds.

– It verifies, i.e., Verify(∆, sk, C, id, z, σz) = ⊤.
– All id(i) ∈ id are queried in Step 2. Let x be the queried inputs corresponding to id. We

have C(x) ̸= z.

We show that any aHMAC scheme with negl correctness error also satisfy non-adaptive type-II
unforgeability.

Proposition 2. An aHMAC scheme with negl(λ)-correctness per Definition 12 satisfy non-
adaptive type-II unforgeability per Definition 14.

Proof. We show a series of hybrids that transitions from Hyb0 := ExpAHMAC(λ) to Hyb3, where
the the queries of A are all answered without depending on the global secret ∆. We then argue
that a forgery is impossible in Hyb2 due to the randomness of ∆.

Hyb0: This is the experiment ExpAHMAC(λ).

Hyb1: Instead of answering the verification queries using sk,∆ and running Verify, the exper-
iment Hyb1 directly checks constant functions C(i) against z(i), and answers ⊥ for non-
constant C(i). We claim (and prove in the end) that these answers are correct except with
negligible probability, which implies Hyb1 ≈c Hyb0.

Claim. For every efficient adversaryA, given no inputs, its probability of forging an evaluated
tag w.r.t. a non-constant circuit is negligible:

Pr

Verify(∆, sk, C, id, z, σz)

= ⊤ AND C non-const.

∣∣∣∣∣∣∣
∆← [2λ]ℓz

(sk, evk)← KeyGen(1λ,∆)

(z, id, C, σz)← A(1λ)

 < negl(λ).

Hyb2: Instead of checking the forgery (C, id, z, σz) by running Verify, the experiment Hyb2 pro-
ceed as follows:

– If exists an id ∈ id not queried in Step 2, directly output “Loss”.

– Otherwise, let x be the queried inputs corresponding to id, and σx be the answers to
those queries. If C(x) = z, directly output “Loss”.
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– Otherwise, compute σ∗
z ← EvalTag(evk, C,x, σx), and check

σ∗
z + (z− C(x))⊙∆

?
= σz.

If not, output “Loss”. Otherwise, output “Win”.

By negl(λ)-correctness, σ∗
z satisfy σ∗

z = ∆⊙C(x) + kC . By construction, the forgery passes
verification only if σz = ∆⊙ z+ kC = σ∗

z + (z− C(x))⊙∆. Hence we have Hyb2 ≈ Hyb1.

Note that in Hyb2, the global secret ∆ and the secret key sk are only used for answering
authentication queries, and not for verification.

Hyb3: Instead of answering authentication queries using ∆, sk and running Auth, the experiment
Hyb3 runs Sim(1λ, 1ℓz) as guaranteed by Definition 12 to simulate the answers, as well as the
evaluation key evk. The aHMAC security guarantees Hyb3 ≈c Hyb2.

Note that in Hyb3, the global secret ∆ and the secret key sk are not used for answering
queries or computing evk.

By a hybrid argument, we conclude that ExpAHMAC(λ) ≡ Hyb0 ≈c Hyb3. In Hyb3, the adversary
A wins only if it outputs a forgery (C, id, z, σz) such that σz = σ∗

z + (C(x) − z) ⊙ ∆, and
C(x)− z ̸= 0. As noted, the adversary A’s view is entirely independent of ∆, hence the forgery
has negligible chance of passing the checks due to the randomness of ∆. It remains to prove the
claim.

Proof (of Claim). Suppose there exists an adversary A that creates a successful forgery with
non-negligible probability, we construct a reduction B for aHMAC security (Definition 12) as
follows:

– Launch A(1λ) and obtain a forgery (z, id, C, σz).
– Let ℓz = Len(z), and sample a global secret ∆← [2λ]ℓz . Choose an arbitrary input vector x,

such that C(x) ̸= z.

– Receive from the challenger, w.r.t. ∆,x, id, an evaluation key evk and authentication tags
σx. Compute σ∗

z ← EvalTag(evk, C,x, σx), and check

σ∗
z + (C(x)− z)⊙∆

?
= σz.

If yes, output 1. Otherwise, output 0.

Note that when the challenger sends correctly computed authentication tags w.r.t. ∆,x, id, the
check passes if A has created a successful forgery. On the otherhand, when the challenger sends
simulated tags independent of ∆, x, or id, the check passes with negligible probability due to
the randomness of ∆. ⊓⊔

⊓⊔

5 Succinct Partial Garbling

In this section, we show how to construct succinct partial garbling schemes for circuits from
aHMACs. In Section 5.1, we show the simpler case using an aHMAC with negl correctness
errors. In Section 5.2, we show the more general case using an aHMAC with 1/poly correctness
errors, and a robust secret sharing scheme, e.g., Shamir’s scheme.
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Theorem 7 (Succinct Partial Garbling for Circuits). Let C = {Cλ} be the class of two-
input Boolean circuits, i.e.

Cλ := {all Boolean circuits of form C(x,y) = Cpriv(Cpub(x),y)}.

There exists a succinct partial garbling scheme for C where the garbling size is |Ĉ| = |Cpriv| ·
poly(λ) bits under any of the assumptions from Theorem 5:

1. CP-DDH in either the NIDLS framework or prime-order groups;

2. the KDM security of Damg̊ard-Jurik encryption.

When replacing the aHMAC with a leveled aHMAC in the above constructions, we obtain a
partial garbling whose size scales linearly with both the private computation complexity |Cpriv|
and the public computation depth Dpub. This scheme satisfies our succinctness definition (Def-
inition 2) when restricted to the class of bounded-depth circuits. As the constructions remain
unchanged otherwise, we omit writing them out again.

Theorem 8 (Succinct Partial Garbling for Bounded-Depth Circuits). Let C be the class
of two-input Boolean circuits as in Theorem 7. There exists a partial garbling scheme for C with
garbling size |Ĉ| = (|Cpriv|+Dpub) · poly(λ) bits, where Dpub denotes the depth of Cpub, under
any of the assumptions from Theorem 6:

1. P-DDH and DDH in the NIDLS framework;

2. P-DDH in prime-order groups.

As a directly implication, for any polynomial d(λ), let Cd := {Cdλ} be the class of bounded-depth
two-input Boolean circuits, i.e.

Cdλ := {all Boolean circuits of form C(x,y) = Cpriv(Cpub(x),y), and with depth ≤ d(λ)}.

There exists a succinct partial garbling scheme for Cd with garbling size |Ĉ| = (|Cpriv|+ d(λ)) ·
poly(λ) bits, under the above assumptions.

5.1 Construction from negl-Correct aHMACs

Construction 4 (Succinct Partial Garbling). Ingredients:

– An aHMAC scheme aHMAC with negl-correctness error.

– Any Boolean garbling scheme BG with λ-bit labels.

– A secret-key encryption scheme E with λ-bit keys encrypting λ-bit messages.

We construct a succinct partial garbling scheme for the class of Boolean circuits of unbounded
size: C = {Cλ}, where every Cλ contains all Boolean circuits of the form C(x,y) = Cpriv(Cpub(x),y).
We refer to Cpub : {0, 1}ℓx → {0, 1}ℓw as the public sub-circuit, and Cpriv : {0, 1}ℓw ×{0, 1}ℓy →
{0, 1}ℓz , the private sub-circuit.

(Ĉ, {K(i)
x }, {K(i)

y })← Garb(1λ, C, {K(i)
z }) :

1. Generate the garbling Ĉpriv of the private sub-circuit:

(Ĉpriv, {K(i)
w }, {K(i)

y })← BG.Garb(Cpriv, {K(i)
z }).
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2. Sample ℓw pairs of secret keys {∆j , ∆j} to encrypt output labels of Cpub:

for j ∈ [ℓw], ctj ← E.Enc(∆j ,K
(j)
w (1))

ctj ← E.Enc(∆j ,K
(j)
w (0)).

3. Generate aHMAC tags for public inputs as their labels (using deterministically derived
distinct id, id):

(sk, evk)← aHMAC.KeyGen(1λ,∆), ∆ := (. . . , ∆j , . . .),

(sk, evk)← aHMAC.KeyGen(1λ,∆), ∆ := (. . . ,∆j , . . .),

σ
(i)
b ← aHMAC.Auth(sk, b, id[i]), // for i ∈ [ℓx], b ∈ {0, 1},

σ
(i)
b ← aHMAC.Auth(sk, b, id[i]).

Define K
(i)
x such that K

(i)
x (b) = (σ

(i)
b , σ

(i)
b ).

4. Evaluate aHMAC keys kpub,kpub which will be used as “decryption helpers”:

kpub ← aHMAC.EvalKey(sk, Cpub, id), kpub ← aHMAC.EvalKey(sk, Cpub, id),

where Cpub computes the complement of Cpub.

Output Ĉ := (Ĉpriv, {ctj , ctj}, evk, evk,kpub,kpub), {K
(i)
x } and {K(i)

y }.
z← Eval(C, Ĉ, {x(i), L(i)

x }, {L(i)
y }) :

Parse Ĉpriv, {ctj , ctj}, and evk, evk,kpub,kpub from Ĉ. Let x := (. . . , xi, . . .). Parse {σ(i), σ(i)}
from {L(i)

x }, and let

σx := (. . . , σ(i), . . .)i∈[ℓx], σx := (. . . , σ(i), . . .)i∈[ℓx].

1. Evaluate aHMAC tags according to Cpub:

σw ← aHMAC.EvalTag(evk, Cpub,x, σx), σw ← aHMAC.EvalTag(evk, Cpub,x, σx).

Note that the aHMAC correctness should ensure σw = ∆ ⊙ w + kpub, and σw = ∆ ⊙
w + kpub over Z, where w = Cpub(x), and w = 1−w = Cpub(x).

2. Recover one of the decryption keys ∆j , ∆j for each bit of w = Cpub(x).

If w[j] = 1 ∆j ← σw[j]− kpub[j] (over Z),
o/w ∆j ← σw[j]− kpub[j] (over Z).

3. Decrypt input labels {L(i)
w } to the private sub-circuit Cpriv:

If w[j] = 1 L(j)
w ← E.Dec(∆j , ctj),

o/w L(j)
w ← E.Dec(∆j , ctj).

Then evaluate the garbling {L(i)
z } ← BG.Eval(Cpriv, Ĉpriv, {L(i)

w }, {L(i)
y }).

Correctness: As noted in the construction, correctness follows straightforwardly from that of
the aHMAC scheme and Boolean garbling.
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Efficiency: We summarize bit-lengths of the components, assuming the Boolean garbling
scheme BG has label size O(λ) bits and garbling size |Cpriv| ·poly(λ) bits, the encryption scheme
E has O(1)-rate ciphertexts, and the aHMAC scheme aHMAC has evaluation keys of ℓz ·poly(λ)
bits. They all exist under any of the assumptions from which we construct aHMACs in Theo-
rem 5.

– {L(i)
x } each consists of two aHMAC tags, which has poly(λ) bits.

– {L(i)
y } are standard Boolean garbling labels, and each has O(λ) bits.

– Ĉ consists of the following, and has |Cpriv| · poly(λ) bits overall.
• A Boolean garbling Ĉpriv, which has |Cpriv| ·O(λ) bits;
• 2ℓz ciphertexts {ctj , ctj}, each having O(λ) bits;
• 2 aHMAC evaluation keys evk, evk, each having ℓz · poly(λ);
• 2 aHMAC evaluated keys kpub,kpub, each having ℓz · poly(λ).

Security: We will next show a more general construction from aHMACs with 1/poly correctness
error. We omit proving security of the current simpler case, and refer readers to the more general
proof (of Lemma 8).

Lemma 7. Construction 4 is a secure partial garbling scheme.

5.2 Construction from 1/poly-Correct aHMACs

Definition 15 (t-out-of-n Robust Secret Sharing). A t-out-of-n robust secret sharing scheme
with message spaceM consists of two efficient algorithms:

– Share(s ∈M) takes a secret s, and outputs n shares {si}[n] where si ∈M.
– Recon({si}[n]) takes n shares, and recovers a secret s ∈M.

Robust Reconstruction. For all messages s ∈ M, all subsets T ⊂ [n] with |T | ≤ t, and any
adversary A, the following holds:

Pr

Recon({s∗i }[n]) = s

∣∣∣∣∣∣∣
{si} ← Share(s),

{s∗i }T ← A({si}[n]),
s∗i = s for i ̸∈ T.

 = 1

Privacy. For any two messages s, s′ ∈M, all subsets T ⊂ [n] with |T | ≤ t, the following holds:

Share(s)T ≡ Share(s′)T

Remark 5. For t < n/3, the standard Shamir’s secret sharing is also a robust secret sharing.
This suffices for our application. For n/3 ≤ t < n/2, there also exists robust secret sharing
schemes with a negligible correctness error and larger share size, e.g. [87, 35].

Construction 5 (Correctness and Privacy Amplification). Ingredients:

– An aHMAC scheme aHMAC with 1/(2λ)-correctness error.
– A (λ− 1)-out-of-3λ RSS scheme RSS with message spaceM = {0, 1}λ.
– Any Boolean garbling scheme BG with λ-bit labels.
– A secret-key encryption scheme E with λ-bit keys encrypting λ-bit messages.
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Compared to Construction 4, the new construction for Garb differs in Step 3, 4, and for Eval
differs in Step 1, 2. In the following, we focus on the differences.

(Ĉ, {K(i)
x }, {K(i)

y })← Garb(1λ, C) :
3’. Generate 3λ shares {∆j,t, ∆j,t}t∈[3λ] from each pairs of secret keys:

for j ∈ [ℓw], {∆j,t}t∈[3λ] ← Share(∆j),

{∆j,t}t∈[3λ] ← Share(∆j).

Write Keyst = {∆j,t, ∆j,t}j∈[ℓw] to denote the t-th share of the key pairs.
4’. Apply Step 3, 4 from Construction 4 independently on each share Keyst to generate

evkt, evkt,kpub,t,kpub,t, and for i ∈ [ℓx], K
(i)
x,t.

Define K
(i)
x such that K

(i)
x (b) = (. . . ,K

(i)
x,t(b), . . .)t∈[3λ], and as shorthands write Tablest =

(evkt, evkt,kpub,t,kpub,t).

Output Ĉ := (Ĉpriv, {ctj , ctj}, {Tablest}), {K(i)
x } and {K(i)

y }).
z← Eval(C, Ĉ, {x(i), L(i)

x }, {L(i)
y }) :

Parse Ĉpriv, {ctj , ctj}, and {Tablest} from Ĉ. Let x := (. . . , xi, . . .). Parse {σ(i)
t , σ

(i)
t } from

{L(i)
x }, and let

σx,t := (. . . , σ
(i)
t , . . .)i∈[ℓx], σx,t := (. . . , σ

(i)
t , . . .)i∈[ℓx].

1’. For each t ∈ [3λ], apply Step 1, 2 from Construction 4 independently on each Tablest to
recover (half of) the t-th share Keyst = {∆j,t,∆j,t} for each bit of w = Cpub(x).

If w[j] = 1, {∆j,t}t∈[3λ], o/w, {∆j,t}t∈[3λ].

Note that due to the 1/(2λ)-correctness error from aHMAC, some of the recovered shares
(but less than λ of them) may be incorrect. But this suffices for (robust) reconstruction
of the secret sharing scheme.

2’. Apply robust secret share reconstruction to recover the decryption keys:

If w[j] = 1, ∆j ← Recon({∆j,t}), o/w, ∆j ← Recon({∆j,t}).

Then continue as in Construction 4 using the recovered decryption keys.

Correctness: As noted, correctness follows from the robust reconstruction property of the
secret sharing scheme, which is able to tolerate up to λ− 1 incorrect shares.

Efficiency: Compared to Construction 4, the label sizes remain poly(λ) bits each, while the
garbled circuit size is increased by at most 3λ times. We still have |Ĉ| = |Cpriv| · poly(λ).

Security: We state and prove the following security lemma.

Lemma 8. Construction 5 is a secure partial garbling scheme.

Proof (of Lemma 8). The security of a partial garbling scheme (Definition 1) requires a simulator

Sim, given a two-input circiut C, a public input x, and output labels {L(i)
z }, to simulate a garbled

circuit Ĉ and input labels {L(i)
x }, {L(i)

y }. It simulates them as follows:
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– Run the (standard) Boolean garbling simulator BG.Sim to compute

C̃priv, {L̃(i)
w }, {L̃(i)

y } ← BG.Sim(1λ, Cpriv, {L(i)
z }).

– Sample random encryptions keys ∆ = (. . . , ∆j , . . .)j , ∆ = (. . . ,∆j , . . .)j∈[ℓw], and simulate

ciphertexts {ctj , ctj}j∈[ℓw] of labels L
(j)
w according to w = Cpub(x).

ctj ←

{
E.Enc(∆j , L

(j)
w )

E.Enc(∆j , 0)
ctj ←

{
E.Enc(∆j , 0) if w[j] = 1

E.Enc(∆j , L
(j)
w ) o/w .

(6)

– Secret share the encryption keys according to w:

{∆j,t}t ←

{
Share(∆j),

Share(0),
{∆j,t}t ←

{
Share(0) if w[j] = 1,

Share(∆j) o/w.
. (7)

– Proceed as in Construction 5 to compute Tablest = (evkt, evkt,kpub,t,kpub,t) and labels

{L(i)
x,t}i from the t-th shares denoted as Keyst = {∆j,t,∆j,t}j . As a shorthand, we write

(Tablest, {L(i)
x,t}i)← Compsx,Cpub

(Keyst)

to mean the computations in this step, summarized here for reference.

Compsx,Cpub
(Keys = {∆j , ∆j}j) : (8)

Denote ∆ = (. . . , ∆j , . . .)j , ∆ = (. . . ,∆j , . . .)j ,

Compute

(sk, evk)← KeyGen(1λ,∆), (sk, evk),← KeyGen(1λ,∆),

kpub ← EvalKey(sk, Cpub, id), kpub ← EvalKey(sk, Cpub, id)

σ(i)
x ← Auth(sk,x[i], id[i]), σ(i)

x ← Auth(sk,x[i], id[i]),

Output Tables = (evk, evk,kpub,kpub), and {L(i)
x = (σ(i)

x , σ(i)
x )}i.

We further use the notation Keyst[w] to mean the subset:

Keyst[w] = {∆j,t : w[j] = 1} ∪ {∆j,t : w[j] = 0}.

– Output the simulated garbled circuit C̃ = (C̃priv, {ctj , ctj}, {Tablest}), and input labels

{L̃(i)
x = (. . . , L

(i)
x,t, . . .)t} and {L̃

(i)
y }.

We first argue that the function Compsx,Cpub
is a 1/(2λ)-leaking computation with respect to

the subset Keyst[w].

Claim. For every polynomial p(λ), and every efficient distinguisher A, there exists a negligiable
function negl such that for every λ ∈ N, sequence of Boolean circuits {fλ} with |fλ| ≤ p(λ),
inputs {xλ}, and inputs {Keysλ}, the following holds.∣∣Pr[A(Compsx,f (Keys)) = 1]− Pr[A(Compsx,f (Keys

′))) = 1]
∣∣

< 1/λ+ negl(λ),

where Keys′[w] = Keys[w], and Keys′[w] = 0, for w = f(x).
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Proof (of Claim). We show a series of hybrids that transition from Hyb′0 = Compsx,f (Keys) to
Hyb′3 = Compsx,f (Keys

′).

Hyb′0 : The output of this hybrid is summarized in Equation 8.

Hyb′1 : Instead of computing kf , kf as in Equation 8, Hyb′1 simulates them as

σx := (. . . , σ(i)
x , . . .)i, σx := (. . . , σ(i)

x , . . .)i,

σw ← aHMAC.EvalTag(evk, f,x, σx), σw ← aHMAC.EvalTag(evk, f ,x, σx),

kf [j]←

{
σw[j]−∆j ,

σw[j],
kf [j]←

{
σw[j], if w[j] = 1,

σw[j]−∆j , o/w,
(9)

where w = f(x). The 1/(2λ)-correctness of HAE (Definition 12) ensures that the simulation
is correct except with probability ≤ 1/(2λ). Hence

|Pr[A(Hyb′1) = 1]− Pr[A(Hyb′0) = 1| ≤ 1/(2λ).

Hyb′2 : Instead of computing evk, evk, σx, and σx as in Equation 8, Hyb′2 simulates them using
the simulator aHMAC.Sim

(evk, σx)← aHMAC.Sim(1λ), (evk, σx)← aHMAC.Sim(1λ).

The security of HAE ensures

|Pr[A(Hyb′2) = 1]− Pr[A(Hyb′1) = 1| ≤ negl(λ).

Note that in Hyb′2, the input keys {∆j ,∆j} are only used for deriving kf , kf from the
evaluated tags σw, σw, as in Equation 9. In particular, Hyb′2 is independent of Keys[w].

Hyb′3 : The output of this hybrid is Compsx,f (Keys
′), where Keys′[w] = Keys[w], and Keys′[w] =

0.

The same arguments from Hyb′1, Hyb
′
2, in reverse order, shows

|Pr[A(Hyb′3) = 1]− Pr[A(Hyb′2) = 1| ≤ 1/(2λ) + negl(λ).

By a hybrid argument, we conclude that |Pr[A(Hyb′3) = 1]− Pr[A(Hyb′0) = 1| ≤ 1/λ+ negl(λ),
which proves the claim. ⊓⊔

We will then use the following lemma from [25], which is further based on a computational
hardcore lemma from [77]. The lemma intuitively says that a δ-leaking distribution with re-
spect to some secret m can be simulated by another distribution that completely leaks m with
probability δ, and perfectly hides m with probability 1− δ.

Lemma 9 (Simulating Leaky Functions [25]). Let Leaky be an efficiently computable ran-
domized function with domain M(λ), and δ = δ(λ) be a bound such that for every sequence of
inputs {mλ}, {m′

λ}, every polynomial distinguisher A, it holds for sufficiently large λ that∣∣∣Pr[A(1λ, Leaky(mλ)) = 1]− Pr[A(1λ, Leaky(m′
λ)) = 1]

∣∣∣ < δ(λ).

Then, there exists randomized functions:
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– Eraseδ :M→M∪ {⊥} such that for every m ∈M,

Pr[Eraseδ(m) = m] ≤ δ, Pr[Eraseδ(m) = ⊥] = 1− Pr[Eraseδ(m) = m].

– SimLeaky such that for every sequence {mλ},

{Leaky(mλ)} ≈c {SimLeaky(Eraseδ(mλ))},

where Eraseδ and SimLeaky depend on the same random coins.

Let Leaky(Keys[w]) := Comps(Keys), it follows that there exists Erase1/λ, SimLeaky such that
Leaky(Keys[w]) ≈c SimLeaky(Erase1/λ(Keys[w])).

We now show a series of hybrids that transitions from the real-world distribution in Defini-
tion 1 (Hyb0) to the above simulated distribution (Hyb6).

Hyb0 : We summarize the real-world distribution of the garbled circuit Ĉ = (Ĉpriv, {ctj , ctj},
{Tablest}) and labels {L(i)

x = (. . . , L
(i)
x,t, . . .)}, {L

(i)
y }.

L(i)
y = K(i)

y (y[i]), Ĉpriv,

ctj ← E.Enc(∆j ,K
(j)
w (1)),

ctj ← E.Enc(∆j ,K
(j)
w (0)),

∣∣∣∣∣∣∣∣
Ĉpriv, {K(j)

w }, {K(i)
y } ← BG.Garb(h, {Ki

z}),
∆j , ∆j ← {0, 1}λ

(10)

({L(i)
x,t},Tablest)
← Compsx,f (Keyst).

∣∣∣∣∣ {∆j,t} ← Share(∆j), {∆j,t} ← Share(∆j)

Keyst = {∆j,t, ∆j,t}j
(11)

Hyb1 : Instead of computing {L(i)
x,t},Tablest as in Equation 8, Hyb1 simulates them using the

Erase1/λ and SimLeaky algorithms from Lemma 9:

({L̃(i)
x,t}, T̃ablest)← SimLeaky(Erase1/λ(Keyst[w])).

Lemma 9 ensures that Hyb1 ≈c Hyb0.

Hyb2 : Proceeds as in Hyb1, but aborts if there are ≥ λ instances (among 3λ) of Erase1/λ that
doesn’t erase its input.

Since each instance of Erase1/λ independently erases with probability > 1−1/λ, by Chernoff
bound, abort happens with negligiable probability. Hence Hyb2 ≈ Hyb1.

Hyb3 : Instead of computing the shares in as in Equation 8, Hyb3 simulates them according to
w as in Equation 7.

Note that the changed shares are exactly those in Keyst[w], which are erased except for
≤ λ− 1 indices t. The (λ− 1)-privacy of secret sharing (Definition 15) ensures Hyb3 ≡ Hyb2.

Hyb4 : Change back to computing ({L(i)
x,t},Tablest) from Compsx,Cpub

as in Equation 8, instead of
using Eraseλ and SimLeaky, as they are potentially inefficient. (The shares are still simulated
as in Equation 7.)

Lemma 9 again ensures that Hyb4 ≈c Hyb3.

We draw attention to the keys ∆j for w[j] = 0, and ∆j for w[j] = 1. Hyb3 has changed from
computing secret shares of those keys to secret shares of zeros. Hence they are not used in
the current experiment except for encrypting the corresponding ciphertexts in {ctj , ctj}.
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Hyb5 : Instead of computing the ciphertexts {ctj , ctj} as in Equation 10, simulate them as in

Equation 6 (re-created here), where L
(j)
w := K

(j)
w [w[j]].

ctj ←

{
E.Enc(∆j , L

(j)
w )

E.Enc(∆j , 0)
ctj ←

{
E.Enc(∆j , 0) if w[j] = 1

E.Enc(∆j , L
(j)
w ) o/w ,

The semantic security of the encryption scheme E ensures that Hyb5 ≈c Hyb4.

Hyb6 : Instead of computing Ĉpriv, {L(i)
y } and {Lj

w = K
(j)
w [w[j]]} as in Equation 10, simulate

them using the simulator BG.Sim guaranteed by the security of Boolean garbling:

(C̃priv, {L̃(j)
w }, {L̃(i)

y })← BG.Sim(1λ, Cpriv, {L(i)
z }).

The security of Boolean garbling ensures Hyb6 ≈ Hyb5.

By a hybrid argument, we conclude that Hyb0 ≈ Hyb5, which proves the lemma. ⊓⊔

5.3 Implications: Succinct Secret Sharing, Garbling, and PSM

We first point out an immediate implication to succinct secret sharing for partite functions
(See [6] for a formal definition). Such a secret sharing scheme has n pairs of shareholders (i.e.,
2n in total), and an access structure define by a function f : {0, 1}n → {0, 1} in the following
way:

1. For all x ∈ {0, 1}n such that f(x) = 1, the subset of n share holders, one from each i-th pair
“selected” by x[i], can recover the secret.

2. A subset that contains two shareholders from any pair can recover the secret.

3. Subsets other than the above learn nothing about the secret.

Such a secret sharing scheme can be implemented by a partial garbling of the circuit C(x, s) =
f(x) · s, where s is the secret. Each of the n pairs of shareholders is assigned the two possi-
ble partial garbling input labels for x[i], and the garbled circuit Ĉ can be released as public
information or sent to all shareholders. 12

Corollary 4 (Succinct Secret Sharing for Partite Functions). There exists a succinct
secret sharing for partite functions specified as Boolean circuits (of unbounded size), where the
share sizes are poly(λ) bits, assuming any for the assumptions from Theorem 7:

1. CP-DDH in either the NIDLS framework or prime-order groups;

2. the KDM security of Damg̊ard-Jurik encryption.

There also exists a scheme for partite functions specified as bounded-depth (and unbounded size)
Boolean circuits, where the share sizes are poly(λ) bits, assuming any for the assumptions from
Theorem 8:

1. P-DDH and DDH in the NIDLS framework;

2. P-DDH in prime-order groups.

12 Technically we have only ensured condition 1, 3 of the access structure. We can additionally send an additive
share of the secret to each pair of shareholders to ensure they can always jointly recover the secret.
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Next, we sketch how to “upgrade” a partial garbling to a (fully private) standard garbling
using a homomorphic encryption (HE) scheme, following the blueprint of [54]. To garble a
program P , we define

P ′(x,y) := HE.Dec(y,HE.Eval(P,x)),

which is supposed to take HE ciphertexts as the public input x, and a HE decryption key as the
private input y. A partial garbling of P ′ then implements a standard garbling of P . Intuitively,
the partial garbling security ensures the HE decryption key (as the private input y) is hidden,
while the HE security ensures the actual input encrypted in HE ciphertexts (as the public input
x) are hidden.

Assuming a succinct partial garbling for circuits and a compact HE in the above construction,
the resulting garbling scheme is also succinct (Definition 3). We further note that if the HE
evaluation algorithm HE.Eval has bounded computation depth, then a succinct partial garbling
for bounded-depth circuits suffices.

Definition 16 (Homomorphic Encryption Schemes (HE)). A (secret-key) homomorphic
encryption scheme for the class of programs P = {Pλ} with Boolean inputs consists of four
efficient algorithms.

– KeyGen(1λ) outputs public parameters pp and a secret key sk.

– Enc(pp, sk, x ∈ {0, 1}) takes a secret key sk and a message x. It outputs a ciphertext ct.

– Eval(pp, P ∈ Pλ, {cti}) takes a program P : {0, 1}ℓx → {0, 1}ℓy and ℓx ciphertexts. It outputs
a evaluated ciphertext ct∗.

– Dec(sk, ct∗) takes a (evaluated) ciphertext and outputs messages y ∈ {0, 1}ℓy .

Correctness. For every λ ∈ N, program P ∈ Pλ with ℓx inputs, and input x ∈ {0, 1}ℓx, the
following holds:

Pr

P (x) = Dec(sk, ct∗)

∣∣∣∣∣∣∣
(sk, pp)← KeyGen(1λ)

cti ← Enc(sk,x[i])

ct∗ ← Eval(pp, P, {cti})

 = 1.

Security. The standard semantic security for secret-key encryption schemes should hold. (We
omit writing it out here.)

Compactness. An evaluated ciphertext ct∗ by Eval has bit-length poly(λ, ℓy) independent of the
program size, except the output length ℓy.

Lemma 10 (HE Schemes). There exist the following constructions:

1. [62, 44] Assuming the DCR assumption or DDH in prime-order groups, for any polynomial
ℓ(λ), there exists a compact homomorphic encryption scheme for the class of branching pro-
grams with bounded length by ℓ(λ) and unbounded size, i.e., Pℓ = {Pℓ

λ} where Pℓ
λ consits of

branching programs with length below ℓ(λ) and size below 2poly(λ).

2. [19] Assuming the subgroup decision problem in bilinear groups of composite order, there
exists a compact somewhat homomorphic encryption scheme for the class of quadratic poly-
nomials (mod 2) of unbounded size, i.e., Q = {Qλ} where Qλ consits of quadratic polynomials
with below 2poly(λ) number of monomials.
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Furthermore, the computation depth of the Eval algorithms in the above schemes are bounded by
fixed polynomials poly(λ), independent of program sizes.

Theorem 9 (Succinct Garbling for Bounded-Length BPs). There exists a succinct gar-
bling for bounded-length (and unbounded size) branching programs assuming (1) a succinct partial
garbling scheme for bounded-depth circuits and (2) a compact homomorphic encryption scheme
for bounded-length branching programs.

Theorem 10 (Succinct Garbling for Quadratic Poly). There exists a succinct garbling
for quadratic polynomials (mod 2, and unbounded size) assuming (1) a succinct partial gar-
bling scheme for bounded-depth circuits and (2) a compact homomorphic encryption scheme for
quadratic polynomials.

We point out truth tables as special cases of bounded-length branching programs: a truth table
for ℓx inputs can be represented by a decision tree of depth ℓx, which is also a branching program
of length ℓx. We therefore obtain succinct garbling for truth tables where the garbling size only
depends polynomially on the input length.

As outlined in [46], a garbling scheme implements a multi-party private simultaneous mes-
sages (PSM) protocol. we obtain the following corollary.

Corollary 5 (k-party Computational PSM for Truth Tables). For any constant k, 13 any
k-party function f : [N ]k → [N ] has a computationally secure PSM protocol with poly(λ, logN)
communication and poly(λ,N) computation.

Note that we have imposed composability of garbled circuits at the syntax level (Definition 1).
So we can use the succinct garbling schemes for a program class P = {Pλ} from Theorem 9
and 10 in an outer Boolean garbling scheme to handle general P -gates for any P ∈ Pλ.
Corollary 6. There exists a garbling scheme for circuits composed of general gates P that
each implements any bounded-length (and unbounded size) branching program or any quadratic
polynomial (mod 2, of unbounded size), where the garbling size is #wires · poly(λ), under the
union of following assumptions:

– Any of the assumptions from Theorem 8;
– The DCR assumption, or DDH in prime-order groups;
– The subgroup decision problem in bilinear groups of composite order.

6 Application: 1-Key Selective CPRF for Circuits

The notion of constrained PRFs (CPRF) is first proposed (concurrently) in [21, 67, 26], where
besides the usual pair of algorithms KeyGen and Eval for PRFs, there exists another pair Constrain
and CEval. Constrain produces a constrained key skC with respect to a Boolean circuit C. CEval
can use skC to evaluate the PRF on any point x such that C(x) = 0.

The original definitions consider the setting where an adversary may adaptively obtain mul-
tiple constrained keys with respect to different circuits. This is referred to as multi-key CPRF.
However, for circuit constraints (even low depth ones), multi-key CPRF is only known from
heavy tools like indistinguishability obfuscation (iO) and functional encryption. Known non-iO
based constructions [30, 32, 28, 9, 36, 84, 40] only achieve the weaker definition, where the adver-
sary obtains only a single selectively chosen constrained key. This is referred to as 1-key selective
CPRF, and is also what we achieve in this work.

13 For super-constant k, the protocol will have communication poly(λ, log(Nk)), and computation poly(λ,Nk).
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Definition 17 (Constrained Pseudorandom Functions). Let C = {Cλ}λ be classes of
Boolean circuits where circuits in Cλ have domain Xλ and range {0, 1}. A constrained pseudo-
random function (CPRF) with domain X = {Xλ}λ, key space K = {Kλ}λ, and range Z = {Zλ}λ
supporting circuit constraints C consists of four efficient algorithms:

– KeyGen(1λ) outputs public parameters pp and a master secret key msk.
– Eval(pp,msk, x ∈ X ) takes as inputs the master secret key msk and an input x. It outputs an

evaluation result z0 ∈ Z.
– Constrain(pp,msk, C ∈ C) takes as inputs the master secret key msk and a constraint circuit

C. It outputs a constrained key skC .
– CEval(pp, skC , x) takes as inputs the constrained key skC and an input x. It outputs an eval-

uation result z1 ∈ Z.

Correctness: There exists a negligible function negl(λ) such that for all λ ∈ N, any circuit
C ∈ Cλ, and input x ∈ Xλ such that C(x) = 0, the following holds:

Pr

[
Eval(pp,msk, x)

= CEval(pp, skC , x)

∣∣∣∣∣ (pp,msk)← KeyGen(1λ)

skC ← Constrain(pp,msk, C)

]
≥ 1− negl(λ).

1-Key Selective Security: For any efficient adversary A, there exists a negligible function
negl(λ) such that for all λ ∈ N:∣∣∣Pr[ExpA,0

CPRF(λ) = 1]− Pr[ExpA,1
CPRF(λ) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExpA,b
CPRF is as follows:

1. Launch A(1λ) and receives a selective challenge constraint C ∈ Cλ.
2. Run (pp,msk) ← KeyGen(1λ), skC ← Constrain(msk, C), and send pp, skC to the adversary
A.

3. Answer queries x from A with evaluations z ← Eval(pp,msk, x).
4. Receive from A a challenge x∗ that’s never queried before and such that C(x∗) ̸= 0. Sends

z∗ to A computed as follows:

z∗ ← Eval(pp,msk, x∗) if b = 0

z∗ ← Zλ if b = 1.

5. Answer queries x ̸= x∗ from A as in step 3.
6. In the end, A outputs a bit b′ as the experiment result.

As explained in the technical overview, our construction relies on an extended syntax of ho-
momorphic secret sharing schemes (HSS), formalized in Definition 18. We recap the observation
of [40] that common HSS schemes for restricted multiplication straight-line programs (RMS)
satisfy this syntax.

In an RMS program P , all inputs x are first converted into memory (i.e. intermediate) wires.
Additions are allowed between two memory wires, but multiplications are restricted to between
a memory wire and an input. Note that the initial conversion can be implemented by multiplying
input wires with a constant memory wire of 1.

The observation is that if one change the initial conversion to using a constant memory wire
of some value w instead of 1, while keeping the rest of the evaluation unchanged, then the final
result becomes w · P (x).

44



The observation becomes useful in the context of evaluating RMS programs using HSS,
because in common schemes the share format of memory wires are much simpler than the share
format of inputs. In particular, any subtractive share (over Z) of ∆ ·w is a valid memory share
of w, where ∆ is a secret vector in the HSS scheme.

Definition 18 (Extended Homomorphic Secret Sharing). An extended homomorphic se-
cret sharing scheme for a class of programs P (defined over a ring R) with input space I ⊆ R
consists of three efficient algorithms:

– Setup(1λ) outputs a public key pk, a pair of evaluation keys evk0, evk1, and an “extension
secret” as an integer vector ∆ ∈ [2λ]ℓd.

– Input(pk, x ∈ I) takes as inputs the public key pk and an input x. It outputs a pair of input
shares I0, I1.

– ExtEval(β ∈ {0, 1}, evkβ, Iβ,∆β, P ∈ P) takes as inputs a party identity β, its evaluation key
evkβ and input shares Iβ, its share of the extension secret ∆β, and a program P . It outputs
its share of the evaluation result zβ ∈ R.

Extended Evaluation Correctness: For all polynomial p(λ), there exists a negligible function
negl(λ) such that for all λ ∈ N, any program P ∈ P with n inputs and 1 output, and with size
|P | ≤ p(λ), any inputs x ∈ In, any extension bit w ∈ {0, 1}, and any share vector ∆0 ∈ Zℓd,
the following holds:

Pr


z1 − z0 = w · P (x)

(over R)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, evk0,evk1,∆)← Setup(1λ)

(I
(i)
0 , I

(i)
1 )← Input(pk,x[i])

Iβ := (I
(0)
β , . . . , I

(ℓx−1)
β )

∆1 := ∆0 +∆ · w (over Z)
zβ ← ExtEval(b, evkβ, Iβ,∆β, P )


≥ 1− negl(λ).

Security: For any efficient adversary A, there exists a negligible function negl(λ) such that for
all λ ∈ N and for all β ∈ {0, 1}:∣∣∣Pr[ExpA,β,0

HSS (λ) = 1]− Pr[ExpA,β,1
HSS (λ) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExpA,β
HSS is as follows:

1. Launch A(1λ) and receive challenge inputs x0, x1 ∈ I.
2. Run (pk, evk0, evk1,∆)← Setup(1λ) and (I0, I1)← Input(pk, xb). Then send (pk, evkβ, Iβ) to
A.

3. In the end, A outputs a bit b′ as the experiment result.

Remark 6. From an extended HSS we can obtain a “normal” HSS by viewing each party’s
evaluation key evkβ together with a subtractive share of ∆ as its overall evaluation key: evk∗β :=
(evkβ,∆β). This corresponds to setting the extension bit w = 1. Hence the evaluated shares
satisfy z1 − z0 = w · P (x) = P (x).

Lemma 11 (Extended HSS). There exists an extended HSS scheme for NC1 assuming either
of the following:
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1. [81] The DCR assumption.
2. [1] DDH and the small exponent assumption (Definition 9) in the NIDLS framework.

In this section, we construct a CPRF by composing a leveled aHMAC and an HSS with extended
evaluations.

Theorem 11 (CPRF for Circuits). For any polynomial ℓ(λ), let C = {Cλ}λ be the class of
Boolean circuits with sizes bounded by ℓ(λ):

Cλ :=
{
C : {0, 1}λ → {0, 1} : |C| < ℓ(λ)

}
.

There exists a 1-key selective CPRF for C assuming either of the following:

1. P-DDH, DDH and the small exponent assumption in the NIDLS framework.
2. the KDM security of Damg̊ard-Jurik encryption.

Construction 6 (1-Key Selective CPRF for Circuits). Ingredients:

– A leveled aHMAC scheme aHMAC with negl-correctness error.
– An extended HSS scheme HSS for a class P (defined over a ring R) with input space I ⊆ R.
– A PRF F : K×{0, 1}λ → R with evaluation in P, and with a compatible key space K = Iℓk .

We construct a CPRF for the class of polynomial-sized circuits C = {Cλ}λ where

Cλ :=
{
C : {0, 1}λ → {0, 1} : |C| < poly(λ)

}
.

As shorthands, in the following we write Ux(·) = U(·,x), and Fx(·) = F(·,x), where U is a
universal circuit such that Ux(C) = C(x) for all circuits C ∈ Cλ.

(pp,msk)← KeyGen(1λ) :

Sample a PRF key s ← Iℓk , and generate HSS input shares I0 = (. . . , I
(i)
0 , . . .), and I1 =

(. . . , I
(i)
1 , . . .) of this key:

(pk,HSS.evk0,HSS.evk1,∆)← HSS.Setup(1λ),

for i ∈ [ℓk] : (I
(i)
0 , I

(i)
1 )← HSS.Input(pk, s[i]).

Next generate aHMAC keys sk, aHMAC.evk w.r.t. the extension secret ∆:

(sk, aHMAC.evk)← aHMAC.KeyGen(1λ, 1Depth(U),∆).

Output pp = pk and msk = ({Iβ,HSS.evkβ}, sk, aHMAC.evk).
z0 ← Eval(pp,msk,x) :

Parse I0, HSS.evk0, and {skj} from msk.
Deterministically derive distinct id associated with inputs to Ux, (i.e. the constraint circuit
C,) and derive the zero-share ∆0 of the extension secret:

∆0 := kU ← aHMAC.EvalKey(sk, Ux, id), 14

Next run extended HSS evaluation on the zero-shares of the input I0 and the extension secret
∆0:

z0 ← HSS.ExtEval(0, evk0, I0,∆0,Fx).
14 The syntax of aHMAC requires an ℓd output circuit. We implicitly duplicate the one-bit output of Ux to ℓd

bits here, and also in the construction of CEval.
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skC ← Constrain(pp,msk, C) :
Parse I1, HSS.evk1, and sk, aHMAC.evk from msk.
Deterministically derive distinct id associated to the inputs to Ux, and derive tags σC :=

(. . . , σ
(i)
C , . . .) for C (viewed as a string):

for i ∈ bitLen(C) σ(i) ← aHMAC.Auth(sk, C[i], id[i]),

Output skC = (C, I1,HSS.evk1, σC , aHMAC.evk).
z1 ← CEval(pp, skC ,x) :

Parse C, I1, HSS.evk1, σC , and aHMAC.evk from skC .
Derive the one-share ∆1 of the extension secret:

∆1 := σw ← aHMAC.EvalTag(evk, Ux, C, σC).

Note that aHMAC correctness ensures ∆1 = ∆ · C(x) +∆0 over Z.
Next run extended HSS evaluation on the one-shares of the input I1 and the extension secret
∆1:

z1 ← HSS.ExtEval(1, evk1, I1,∆1,Fx).

Note that extended HSS correctness ensures z1 = z0 + C(x) · F(s,x).

Correctness: As noted in the construction, the evaluation results z0, z1 from Eval and CEval
satisfy z1 = z0 + C(x) · F(s,x), where C is the constraint circuit. When C(x) = 0, we have
z1 = z0 as desired.

Security: We state and prove the following security lemma.

Lemma 12. Construction 6 is a 1-key selectively secure CPRF scheme.

Proof. We show a series of hybrid experiments that transitions from the experiment Hyb0 =
ExpA,0

CPRF to Hyb5 = ExpA,1
CPRF as defined in Definition 17.

Hyb0 : For reference, we summarize the adversary A’s view, w.r.t a challenge circuit C in this
experiment:
– In the beginning, A receives public parameters pp = HSS.pk and a constrained key skC

the boxed terms in the following:

( HSS.pk ,HSS.evk0, HSS.evk1 ,∆)← HSS.Setup(1λ),

s← Iℓk , (I
(i)
0 , I

(i)
1 )← HSS.Input(HSS.pk, s[i]),

(12)

(aHMAC.sk, aHMAC.evk )← aHMAC.KeyGen(1λ,∆),

σ(i) ← aHMAC.Auth(aHMAC.sk, C[i], id[i]),
(13)

– For any number of (adaptively chosen) queries x ∈ {0, 1}λ, A receives evaluations

I0 = (. . . , I
(i)
0 , . . .),

∆0 = kU ← aHMAC.EvalKey(aHMAC.sk, Ux, id),

z0 ← HSS.ExtEval(0,HSS.evk0, I0,∆0,Fx).

(14)

One of the query, x∗ (with evaluation z∗0) satisfying C(x) ̸= 0 is called the challenge
query.
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Hyb1 : Instead of computing the evaluations to queries x, including the challenge query, as in
Equation 14, Hyb1 simulate them as

I1 := (. . . , I
(i)
1 , . . .), σC := (. . . , σ(i), . . .),

∆1 = σw ← aHMAC.EvalTag(aHMAC.evk, Ux, C, σC),

z1 ← HSS.ExtEval(1,HSS.evk1, I1,∆1,Fx),

z0 ← z1 − C(x) · F(s,x).

The correctness of our Construction ensures that the above is an equivalent way of computing
z0, except with a negligible error probability. Hence |Pr[A(Hyb1) = 1]− Pr[A(Hyb0) = 1| ≤
negl(λ).

Note that in Hyb1, the evaluations are derived from the aHMAC tags σC and aHMAC.evk,
without depending on aHMAC.sk anymore.

Hyb2 : Instead of computing σC and aHMAC.evk as in Equation 13, Hyb2 simulates them using
the simulator aHMAC.Sim

( evk, σC )← aHMAC.Sim(1λ, 1Depth(U)).

aHMAC security ensures |Pr[A(Hyb2) = 1]− Pr[A(Hyb1) = 1| ≤ negl(λ).

Note that in Hyb2, the share of extension secret ∆1 is derived from the simulated aHMAC
tags σC and evk, without depending on the actual secret ∆ anymore.

Hyb3 : Instead of computing the HSS shares I
(i)
1 according to the PRF secret key s as in Equa-

tion 12, Hyb3 simulate them as

(I
(i)
0 , I

(i)
1 )← HSS.Input(HSS.pk, 0).

The security of HSS ensures |Pr[A(Hyb3) = 1]− Pr[A(Hyb2) = 1| ≤ negl(λ).

Note that in Hyb3, the PRF secret key s is only used for evaluating F (s,x), and nowhere
else.

Hyb4 : Instead of answering the challenge query x∗, satisfying C(x) = 1, as z∗0 ← z1− 1 ·F(s,x),
Hyb4 simulates it as

z∗0 ← z1 − Uniform(Zλ) ≡ Uniform(Zλ),

where Zλ is the output space of the CPRF and F.

PRF security (of F) ensures |Pr[A(Hyb4) = 1]− Pr[A(Hyb3) = 1| ≤ negl(λ).

Hyb5 : This is the experiment Exp1,λCPRF. The same arguments from Hyb1 to Hyb4, in reverse
order, shows |Pr[A(Hyb5) = 1]− Pr[A(Hyb4) = 1| ≤ negl(λ).

By a hybrid argument, we conclude that |Pr[A(Hyb5) = 1]− Pr[A(Hyb0) = 1| ≤ negl(λ)| which
proves the lemma. ⊓⊔
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