
EQSIGN: Practical Digital Signatures from the1

Non-Abelian Hidden Subgroup Problem and2

Information Theoretic Equivocation3

Samuel Lavery4

Trustless Privacy Inc.5

sam@trustlessprivacy.com6

Signal:samlavery.077

December 27, 20248

Abstract9

We present a novel digital signature scheme grounded in non-commutative cryp-10

tography and implemented over a bilinear matrix group platform. At the core11

of our design is a unique equivocation function that obfuscates intermediate ele-12

ments, effectively concealing outputs and minimizing observable information leak-13

age. To the best of our knowledge, this is the first digital signature scheme to14

combine information-theoretic security with computational hardness, relying on a15

challenging instance of the Non-Abelian Hidden Subgroup Problem (NAHSP) and16

strengthened by practical guarantees. This dual-layered security approach ensures17

robustness against both classical and quantum adversaries while maintaining com-18

munication overheads competitive with RSA. Our work represents a significant19

advancement toward efficient, quantum-resilient digital signatures for real-world20

applications. This paper is an early pre-release intended to invite collaboration21

and feedback. The work is presented for research purposes only and is not intended22

for use in production systems.23

Contents24

1 Introduction 425

1.1 The State of the Art . 426

1.2 Secure and Efficient Signatures from the Non-Abelian Hidden Subgroup27

Problem and Information Theory . 428

2 High-Level Description 629

2.1 Core Representation . 630

2.2 Construction . 731

2.2.1 Definition of the Group G and Subgroups Hright and Hleft 732

3 Problem Statement 1033

1

4 Preliminary Results and Contributions 1534

4.1 Structure of Remainder of Paper . 1835

5 Notation and Definitions 1836

6 Formal Reduction to the Non-Abelian Hidden Subgroup Problem (NAHSP) 1937

6.1 Group Structure and Properties . 1938

6.2 Formal Definition of NAHSP . 1939

6.3 Oracle Construction and Reduction to NAHSP 2040

6.4 Hardness of Subgroup Recovery . 2041

6.5 Reduction . 2142

7 Equivocation and Indistinguishability from px(·) 2243

7.1 Equivocation Function px(·) . 2244

7.2 Analysis of px() . 2445

7.3 Probability of Random Forgery . 2446

7.3.1 Brute Force Storage Requirements 2547

7.4 Equivalence Class Invariance of px(·) . 2648

7.5 Enhanced Hiding of px(·) . 2749

7.6 Indistinguishability and Statistical Uniformity of px(·) Outputs 2850

7.7 Collision and Pre-Image Resistance of px(·) 3051

7.8 Avalanche Effect in px(·) . 3152

7.9 Adaptive Security of px(·) . 3253

7.10 Adversarial Complexity and Relation to NAHSP 3354

7.11 Quantum Resistance of px(·) . 3555

8 Information-Theoretic Security of px(t′) 3656

9 Proof of Consistency as Verification Under Homomorphic Transforma-57

tions 3758

10 Implementation Details 3959

10.1 Matrix Generation Using Diverse Cryptographically Secure PRNGs . . . 3960

10.1.1 Public Matrix Generation . 3961

10.1.2 Private Matrix Generation . 3962

10.1.3 Security Implications . 4063

10.2 Algorithm Details . 4064

10.3 Utility Algorithms . 4065

10.4 Signature Generation . 4466

10.5 Signature Verification . 4467

10.6 Hiding Function . 4768

11 Attack Models 4869

11.1 Classical Adversaries . 4970

11.1.1 Preliminaries . 4971

11.1.2 Proof of Security Against Classical Adversaries 4972

11.2 Quantum Adversaries . 5073

11.2.1 Proof of Security Against Quantum Adversaries 5074

11.3 IND-CPA Security Proof . 5075

2

11.4 Resistance to Forgery Under Chosen Message Attacks 5176

11.5 Inapplicability of CCA2 Security . 5277

11.5.1 Brute Force Key Recovery . 5278

11.6 Conclusion on Attack Models . 5379

12 Implementation and Efficiency 5380

12.1 Performance Evaluation . 5381

12.2 Comparison with Other Schemes . 5482

12.3 Rejection Sampling of Zero Coefficients in Output Variables 5583

13 Open Research Questions 5584

14 Applications of Matrix based NAHSP-Based Cryptography 5585

14.1 Core Cryptographic Capabilities . 5586

14.2 Efficient Communication and Deployability 5687

14.3 Secure Communication Across Diverse Environments 5688

14.4 Comparison with Dilithium and Other Systems 5789

14.5 Real-World Applications . 5790

14.6 Conclusion . 5891

15 Future Work and Concluding Remarks 5892

16 Acknowledgements 5993

3

1 Introduction94

1.1 The State of the Art95

Modern quantum resilient cryptographic signature schemes are primarily based on struc-96

tured lattice or hash based cryptography, each with a unique set of disadvantages. Lattice97

schemes, such as ML-DSA[2] leverage module lattices, which by virtue of their internal98

algebraic structure provide a potential avenue for quantum cryptanalysis, and variable99

sizes which are 5x the size of the signature primitives in use today. Hash based signa-100

ture schemes such as SLH-DSA[1], to their credit, have virtually no exploitable algebraic101

structure and have small public keys, but produce relatively huge signatures requiring102

a substantial amount of computational resources to produce. The Falcon[11] signature103

algorithm, which has also been selected by NIST for standardization, is more communi-104

cation efficient compared to ML-DSA, but relies on significantly more internal structure105

in the form of NTRU lattices, and remains challenging to implement in constant time106

due to reliance on floating point operations.107

Signature solutions under consideration currently can generally be categorized as Lat-108

tice, Code based, Multivariate, Isogeny, and symmetric cryptography constructions with109

multiple variants remaining under consideration by NIST. Unfortunately, out of the 14110

digital signature schemes selected for the NIST’s second ’onramp’ round of analysis, when111

considering communication cost alone, only SQISign[3] can be considered a reasonable112

replacement for current quantum weak signatures. Unfortunately, SQISign has the high-113

est computational cost when compared to every other alternative, making widespread114

adoption fairly impractical. Additionally as isogeny based systems are fairly novel, and115

the predecessor SIDH was broken classically in a rather spectacular fashion[7], a bit of116

healthy skepticism is warranted. The other 13 candidates have similar or higher commu-117

nications overhead compared to Falcon, and are based on largely untested computational118

hardness assumptions.119

As the modern digital world has been built using digital signatures based on ECDSA120

and RSA, without a quantum resilient replacement with similar communications over-121

head, we are faced with significant challenges. We will have no choice but to redesign122

hardware, software, and protocols to accommodate these vastly increased communication123

costs, which will cost billions of dollars and take decades to migrate to. The current situ-124

ation for digital signatures appears to be quite bleak. At this point, the probability that125

a provable quantum resilient digital signature solution that is both communication and126

computationally efficient will emerge is nearly inconceivable.127

1.2 Secure and Efficient Signatures from the Non-Abelian Hid-128

den Subgroup Problem and Information Theory129

Non-commutative cryptography[10] has been an area of research since before the 1990s,130

and is still a credible basis for quantum resilient cryptographic systems. Previous at-131

tempts to construct secure non-commutative cryptographic systems were either commu-132

nications inefficient compared to lattice schemes[8][4][6], or compromised generally by133

algebraic cryptanalysis. With most schemes having core algebraic and structural weak-134

nesses[9], the bulk of research inertia has shifted to lattice or other well known problem135

groups with the perceived potential to achieve quantum resilience.136

While there have been several attempts to leverage matrix groups for non-commutative137

4

cryptography[5], the chosen matrices were structured, lacked entropy, had exploitable sub-138

groups, or exploitable linear relationships. These schemes relied on matrix equivalence139

or conjugacy problem hardness assumptions, which turned out to be less robust than140

anticipated. Our work uses a pair of dense, full rank random matrices, forming a bilin-141

ear group. By using non-correlated matrices, we mitigate attacks leveraging structural142

relationships. With half of the matrix group randomized each operation, observed corre-143

lation only applies to a single matrix pair. This acts to effectively minimize exploitable144

relationship information. This bilinear matrix group structure, combined with a novel145

equivocation function form the building blocks of our instance of the non-Abelian Hidden146

Subgroup Problem (NAHSP).147

Non-commutative cryptographic schemes have received moderate attention within the148

cryptographic community, yet the Non-Abelian Hidden Subgroup Problem (NAHSP) re-149

mains comparatively under-explored. In contrast, the NAHSP is recognized as one of the150

most significant and challenging problems in quantum algorithmic research. For over two151

decades, intensive study of the NAHSP has not only failed to produce efficient quantum152

algorithms for general non-abelian groups, but has also yielded numerous negative results.153

Unlike problems that are merely conjectured to be quantum-resistant, the NAHSP has154

demonstrated resilience against decades of quantum attack attempts, establishing itself155

as a robust foundation for constructing quantum-resilient cryptographic systems.156

In the context of this construction, the low dimensions n = {64, 128, 256} and small157

modulus size q = 257 do not directly result in an intractable NAHSP instance. Nor-158

mally, an adversary observing a small number of intermediate outputs could construct159

a solvable system of linear equations via modular arithmetic and Gaussian elimination.160

However, randomization acts to uniformly project intermediate output elements of matrix161

calculations across a large ambient module space Zq
n. We leverage information-theoretic162

principles[13], equivocation and mutual entropy, to prove practical information theoretic163

security guarantees. While we do not claim the perfect secrecy of the one-time pad[12],164

we use information theoretic arguments to quantify the computational infeasibility of165

reconstructing the problem. We employ a novel equivocation function to partition the166

ambient space into equivalence classes, dispersing secret entropy across a class of indistin-167

guishable valid pre-images. If the original output is the needle, the adversary is given the168

haystack. This core disambiguation ensures that each equivalence class is populated with169

indistinguishable pre-images, obfuscating the relationship between inputs and outputs.170

This indistinguishability enables the transformation our computationally hard matrix171

problem into an information theoretic one. Thus, the challenge for an adversary shifts172

from using linear algebra to solve a well posed system of equations to identifying the173

correct indistinguishable elements needed to construct it.174

This work employs a hybrid security model that amplifies computational complexity175

with information-theoretic security. By leveraging uniform distribution and indistin-176

guishability, we transform the computational problem of solving the NAHSP into an177

information-theoretic challenge. The resilience of the NAHSP to quantum attack at-178

tempts underscores its suitability as a basis for this form of construction.179

In practical terms, this work challenges the prevailing notion that achieving quantum180

resilience necessitates a significant increase in communication overhead. Our construc-181

tion integrates the structural advantages of non-abelian matrix groups with information-182

theoretic principles, offering an alternative direction for designing cryptographic systems183

that balance quantum resistance with real-world usability. The short signatures and pub-184

lic keys comparable to ECDSA and RSA may be especially useful in highly constrained185

5

network environments, where more established lattice based schemes struggle to integrate.186

This work is a preprint released to facilitate discussion and collaboration. Updates187

and refinements will follow as necessary.188

2 High-Level Description189

2.1 Core Representation190

Our instance of the Non-Abelian Hidden Subgroup Problem (NAHSP) is defined within191

the context of a bilinear matrix group G. The group operation, matrix-vector multipli-192

cation, involves a public matrix A and a secret vector x, while the hidden subgroup N is193

implicitly defined through transformations induced by the secret matrix U . Specifically,194

the outputs t ≡ Ax mod q and t′ ≡ Ut mod q are observed, with U and x remaining195

hidden. To amplify cryptographic hardness, the equivocation function px maps these196

outputs into indistinguishable equivalence classes, obfuscating the relationship between197

A, U , x, and the observed results.198

Our variant can be concisely represented for key generation as:199

t ≡ A · x mod q,
200

t′ ≡ U · t mod q,
201

pk = t′′ ≡ px(t′) mod q,

For signing as:202

t ≡ B · x mod q,
203

t′ ≡ U · t mod q,
204

sig = t′′ ≡ px(t′ ◦ J(C1)) mod q,

For validation as:205

LHS ≡ B · (pk ◦ J(C2)) mod q,

LHS ′ ≡ px(LHS ◦ J(C1)) mod q,

RHS ≡ A · (sig ◦ J(C2)) mod q,
206

RHS ′ ≡ px(RHS) mod q,

LHS ′ ?
= RHS ′

where:207

A: Dense, full-rank, random public matrix used for key generation and verification.208

B: Dense, full-rank, random public matrix used for signing and verification.209

U : Dense, full-rank, random, uncorrelated private matrix.210

x: Secret vector uniformly sampled from Zn
1−256 = {1, 2, . . . , 256}n, ensuring no zero211

entries.212

6

t: Element in the right subgroup Hright ⊆ G, spanning the ambient space and serving213

as a hidden input to Hleft.214

J(): Secure hash function (e.g., SHA3/SHAKE) producing pseudorandom outputs in215

Zq.216

t′: Element in the hidden left subgroup N ⊆ G.217

px(): Mapping function projecting t′ into equivalence classes, ensuring computational218

infeasibility of N ’s recovery.219

t′′: Obfuscated output element in the superset N ′ ⊆ G.220

q: Prime modulus defining the finite field Zq.221

fs: Fiat-Shamir heuristic in Zn
q , binding the public key, message, and randomness to222

the signature context.223

r: Signature randomizer value in Zn
q , mitigating replay attacks and enhancing security224

against sEU-CMA.225

pk: Public key element in Zn
q .226

C1: Forgery constraint 1, an element in Zn
q , derived as a hash of intermediate context227

values related to pk ·B.228

C2: Forgery constraint 2, an element in Zn
q , derived as a hash of pk, sig, and other229

context elements.230

◦: Element-wise multiplication operation.231

·: Matrix-vector product operation.232

2.2 Construction233

2.2.1 Definition of the Group G and Subgroups Hright and Hleft234

Ambient Group Gambient:235

The ambient modular group defines the space of possible elements as:236

Gambient = Zn
q ,

representing the set of all n-dimensional vectors over Zq. The group operation is matrix-237

vector multiplication modulo q. This expansive space provides a form of limited one-time238

pad security, where the inherent size and approximate uniform partitioning of Gambient239

by px(·) ensure that individual elements are computationally indistinguishable without240

knowledge of the specific subgroup structure.241

Working Group G:242

The working group G in the context of the NAHSP is defined as the group generated by243

the subgroups Hright and Hleft:244

G = ⟨Hright, Hleft⟩,

where each subgroup introduces hidden structure critical to cryptographic security.245

7

Subgroup Hright:246

The subgroup Hright generates the space of input elements t based on the public matrix247

A:248

Hright = {t | t = A · x mod q, x ∈ Zn
q },

where:249

• A ∈ Zn×n
q : Dense, full-rank, random public matrix.250

• x ∈ Zn
q : Secret vector sampled uniformly from {1, . . . , q − 1}n.251

Subgroup Hleft:252

The subgroup Hleft maps elements t from Hright through the private matrix U :253

Hleft = {t′ | t′ = U · t mod q, t ∈ Hright},

where:254

• U ∈ Zn×n
q : Hidden, dense, full-rank private matrix.255

• t ∈ Hright: Hidden input generated by the public matrix A.256

Hidden Subgroup N :257

The hidden subgroup N is a normal subgroup embedded within Hleft:258

N = {t′ ∈ Hleft | t′ · t−1 ∈ Hleft, ∀t ∈ Hright}.

The structure of N ensures the following cryptographic properties:259

• Normality and Algebraic Consistency: The subgroup N maintains its normality260

within Hleft, preserving the relationship gN = Ng for all g ∈ G. This is essen-261

tial for reductions to the Non-Abelian Hidden Subgroup Problem (NAHSP).262

• Obfuscation by Subgroup Relationships: Elements of N are indistinguishable from263

non-members without knowledge of the private transformations U and x, as the264

coset structure of N is obscured by the combined transformations within Hleft.265

• Cryptographic Hardness: Recovering N requires solving the NAHSP, which is com-266

putationally infeasible under both classical and quantum adversarial models.267

Role of the Hidden Matrix U :268

The hidden matrix U introduces non-commutative transformations that amplify crypto-269

graphic hardness by ensuring that the output space spans the full ambient group:270

• Full-Rank Transformation: The full-rank nature of U guarantees that the transfor-271

mation t′ = U · t mod q spans the entire output space Zn
q . This ensures that the272

final output is not constrained by structural dependencies, maximizing the entropy273

of t′.274

8

• Non-Commutative Action: The transformation U ·t mod q introduces non-commutative275

operations, breaking linear relationships and obfuscating the structure of Hleft. This276

makes it computationally infeasible for an adversary to recover U or t without solv-277

ing the underlying subgroup problem.278

• Preservation of Subgroup Properties: The transformation maintains the algebraic279

properties of Hleft and preserves the coset structure of the hidden subgroup N280

under conjugation:281

gN = Ng, ∀g ∈ G.

This preservation is critical for ensuring cryptographic consistency and enabling282

reductions to the NAHSP.283

Role of the Public Matrix A and Secret Vector x:284

The public matrix A and the secret vector x jointly ensure that transformations are285

randomized and uniformly distributed across the input space, enabling the outputs to286

fully span the group Zn
q . Together, A and x mitigate adversarial attacks by introducing287

fresh randomness and structural complexity for every operation:288

• Full-Rank Input Transformation: The full-rank nature of A ensures that t = A ·289

x mod q spans the entire space of valid inputs, Zn
q . This guarantees that every290

operation begins with a uniformly distributed element, eliminating structural biases.291

• Per-Operation Randomization: The randomized public matrix A, combined with292

the secret vector x, ensures that transformations differ across operations. This293

randomness prevents correlation attacks and ensures that adversaries cannot infer294

relationships between consecutive operations.295

• Obfuscation of Intermediate Values: The secret vector x acts as a one-time secret296

for each transformation, ensuring that the intermediate value t remains private and297

uncorrelated with U .298

• Resistance to Chosen Message Attacks: The per-operation uniqueness of A and x299

ensures that information observed from one operation cannot be reused or leveraged300

to attack subsequent operations. This protects the scheme from signature re-use301

attacks.302

Security Mechanisms:303

The security of the scheme is rooted in the computational hardness of solving the Non-304

Abelian Hidden Subgroup Problem (NAHSP):305

• Computational Hardness: Recovering the hidden subgroup N or reconstructing U306

and x from observed outputs requires solving the NAHSP, a problem resistant to307

both classical and quantum adversaries.308

• Structural Complexity: The layered transformations through A and U , combined309

with the subgroup relationships between Hright, Hleft, and N , amplify the inherent310

difficulty of the problem.311

9

Adversary’s Computational Task:312

The adversary’s goal is to recover N and reconstruct U and x. This task is rendered313

cryptographically non-trivial due to:314

• Full-Rank Transformations: The full-rank nature of A and U ensures that observed315

outputs span the entire group Zn
q , preventing structural shortcuts or biases.316

• Non-Commutative Action: The non-commutative nature of U · t mod q disrupts317

linear relationships, obfuscating the subgroup structure within Hleft and making it318

computationally infeasible to infer U or x directly.319

• Combinatorial Complexity: The adversary must distinguish subgroup elements in320

Gambient, which involves an exponentially large search space without access to the321

private transformations.322

Adversary’s Information-Theoretic Challenges: In addition to the computational323

hardness posed by NAHSP, the scheme introduces inherent information-theoretic barriers324

that further obfuscate the relationships between inputs, outputs, and subgroup member-325

ship:326

• Uniformly Distributed Outputs: The transformations t = A ·x mod q and t′ = U ·t327

mod q ensure that the outputs are uniformly distributed over Zn
q . This uniformity328

prevents adversaries from inferring structural dependencies or narrowing the search329

space.330

• Ambiguity of Subgroup Membership: Without access to the private matrix U or331

secret vector x, adversaries cannot distinguish elements of the hidden subgroup N332

from non-members within Hleft, as the coset relationships are fully obscured.333

• Exponential Pre-Image Set Sizes: The adversary must contend with an exponen-334

tially large set of potential pre-images for any observed output, making it infeasible335

to isolate the correct subgroup elements even under exhaustive search.336

Dual-Layered Security:337

The security of the scheme combines:338

• Computational Hardness of NAHSP: The cryptographic guarantees are fundamen-339

tally tied to the infeasibility of solving NAHSP, a problem resistant to both classical340

and quantum adversaries.341

• Information-Theoretic Obfuscation: The transformations induced by A, U , and x342

ensure that observed outputs retain high entropy, preserving indistinguishability343

across the full ambient group Gambient.344

3 Problem Statement345

The objective of this cryptographic scheme is to secure the hidden subgroup N , ensuring346

its structure remains concealed from adversaries. This is achieved by obfuscating the rela-347

tionships between the public basis A, the hidden matrix U , and the secret vector x, while348

10

leveraging a lossy mapping function px(·) to induce equivalence classes. The scheme em-349

ploys dual-layered security mechanisms: computational hardness from the Non-Abelian350

Hidden Subgroup Problem (NAHSP) and information-theoretic obfuscation from px(·).351

Adversary’s Knowledge352

The adversary has access to:353

• The public matrix A, which spans the ambient group Gambient and defines Hright,354

• The obfuscated output t′′, resulting from applying the lossy mapping px(·) to ele-355

ments of Hleft.356

Adversary’s Limitations357

The adversary does not have access to:358

• The secret vector x, used in the transformation t = A · x mod q,359

• The intermediate vector t, which resides within Hright,360

• The private matrix U , responsible for mapping elements from Hright to Hleft and361

defining the hidden subgroup N .362

Equivocation of the Mapping Function px(·)363

The mapping function px(·) is a lossy transformation that projects elements of the am-364

bient group Gambient into equivalence classes. This mapping introduces significant ob-365

fuscation, ensuring that subgroup membership cannot be determined feasibly without366

knowledge of the private components.367

Properties of px(·):368

• px : Gambient → Equivalence Classes, where each equivalence class contains indis-369

tinguishable pre-images.370

• The function disrupts linear and algebraic relationships within the group, rendering371

coset structures unobservable.372

• Without access to x or U , distinguishing subgroup members from non-members373

within equivalence classes is infeasible.374

Impact of Equivocation: The lossy nature of px(·) exponentially increases the ad-375

versary’s search space by creating a many-to-one mapping:376

• Pre-images of px(·) form equivalence classes that mask coset relationships within377

Hleft,378

• The adversary must contend with an exponentially large number of indistinguish-379

able elements, effectively reducing any observed output to noise.380

11

• By the Data Processing Inequality (DPI), a result derived from Shannon’s founda-381

tional work in information theory (Theorem of Noisy Channels), the mutual entropy382

between the input and output of px(·) is provably reduced through this lossy map-383

ping. The surjectivity of px(·) increases the likelihood that the output’s entropy is384

maximized relative to the adversary’s view, rendering it statistically indistinguish-385

able from random noise and enhancing equivocation.386

Chaining Mechanism387

The chaining mechanism enhances security by linking independent problem instances388

through intermediate outputs. Each stage introduces unique secrets and transforma-389

tions, ensuring that the overall system is resilient against adversarial attacks. To give an390

example in the signature context with six chained instances k = 6:391

For k = 0:392

t0 ≡ B0 · x0 mod q,
393

t′0 ≡ U0 · t0 mod q,
394

t′′0 ≡ px(t′0 ◦ J(C10)) mod q,

For k = 1 to 5:395

tk ≡ Bk · (xk ◦ t′′k−1) mod q,
396

t′k ≡ Uk · tk mod q,
397

t′′k ≡ px(t′k ◦ J(C1k)) mod q,

Where the final output sig = t′′5.398

Mechanism:399

• Intermediate outputs t′′k from one stage are passed as hidden inputs to the next400

stage,401

• Each stage employs independent secrets xk, matrices Uk, and public matrices Ak,402

ensuring randomness and unlinkability.403

Security Benefits:404

• Error Propagation: Any errors or approximations in recovering one stage amplify405

across subsequent stages, compounding the adversary’s difficulty.406

• Independence of Stages: Knowledge of secrets from one stage does not simplify re-407

construction of secrets from subsequent stages due to the introduction of fresh408

randomness and transformations.409

• Unlinkability: Intermediate values tk and t′k remain hidden, ensuring that adver-410

saries cannot correlate outputs across stages.411

• Hardness Amplification: Solving one instance of the chained system yields no useful412

information for subsequent stages. The adversary must solve all instances simulta-413

neously, which exponentially increases the overall complexity of the problem.414

12

Verification and Forgery Mitigation415

The verification process ensures the integrity of the transformations applied during signing416

and key generation, validating that the observed signature σ corresponds to the public key417

pk and the private components x and U , without revealing these private components. By418

leveraging the mapping function px(·), contextual hash constraints, and entropy checks,419

the scheme mitigates forgery attempts while maintaining soundness and completeness.420

Verification Equation: The verification process compares two transformed outputs421

derived from the public key pk and the signature σ, iteratively refining them under422

contextual constraints C1 and C2:423

• C1k: Represents the intermediate value derived during signing and verification,424

computed as J(pk ·Bk)
3, ensuring consistency between signing and verification.425

• C2k: A hash of pk, σ, FS (Fiat-Shamir Heuristic), and r (message randomizer),426

binding the signature to its context and mitigating signature malleability.427

The verification equation is computed as follows:428

LHS0 ← pk, RHS0 ← σ

For k = 0 to k − 2:429

LHSk+1 = px(Bk·(LHSk◦J(C2k)) mod q), RHSk+1 = px(Ak·(RHSk◦J(C1k)) mod q).

For the final stage (k = k − 1):430

LHSk = Bk · (LHSk−1 ◦ J(C2k)) mod q, RHSk = Ak · (RHSk−1 ◦ J(C1k)) mod q.

A signature σ is valid if and only if:431

LHSk
?
= RHSk.

Key Components:432

• Public Matrices A and B: Define the observable transformations applied to the433

public key and signature during verification.434

• Secure Hash Function J(): Produces contextual constraints C1 and C2, binding the435

signature and public key to the specific signing context.436

• Mapping Function px(·): Masks equivalence classes to ensure subgroup membership437

remains indistinguishable, preventing adversarial reconstruction of x or U .438

• Observed Entropy Constraint: During both signature generation and validation, the439

observed entropy and randomness of signature candidates are checked to ensure they440

statistically represent approximately 1/10 of the combinatorial possibilities. This441

constraint aligns with information-theoretic principles, ensuring that signatures ex-442

hibit near-randomness and resist predictability.443

13

Forgery Mitigation: Forgery is mitigated through the interaction of several mecha-444

nisms:445

• Contextual Hash Constraints: The hash constraints C1 and C2 bind the signature446

and public key to specific contextual values, ensuring that signatures cannot be447

reused or manipulated across different contexts.448

• Lossy Mapping Function and Probability of Forgery: The lossy mapping function449

px(·) obfuscates subgroup membership, making it computationally infeasible for450

adversaries to generate valid signatures without access to the private keys. The451

probability of a successful forgery at each level k is determined by the ratio of452

equivalence class members mk to the total number of equivalence classes nk. For453

each level, the adversary must generate a value that maps to the correct equivalence454

class under px(·), resulting in a success probability of approximately mk

nk
. Across K455

levels, the cumulative probability of forging a valid signature is given by:456

Pforgery ∼
K−1∏
k=0

mk

nk

.

This product reflects the compounding difficulty of forging a signature, as the ad-457

versary must satisfy all constraints simultaneously. The carefully chosen ratio of458

equivalence class members to equivalence class numbers ensures that the probability459

of a successful forgery remains negligibly small.460

• Fixed and Randomized Public Matrices: The public matrix A is fixed and defines461

the ambient group structure, while the signing matrix B is randomized and tied to462

the message. This dynamic prevents adversaries from correlating multiple signa-463

tures to infer structural relationships or exploit reuse.464

• Observed Entropy Constraint: The observed entropy constraint ensures that edge-465

case scenarios are effectively mitigated. Signature candidates are required to sta-466

tistically adhere to near-randomness, aligning with approximately 1/10 of the com-467

binatorial possibilities. This increases the difficulty of identifying predictable or468

exploitable patterns, enhancing resilience to forgery.469

Soundness and Completeness:470

• Completeness: Any valid signature σ, generated using the correct private compo-471

nents x and U , satisfies the verification equation.472

• Soundness: Any invalid signature σ′, generated without access to the private compo-473

nents, fails verification. This failure arises because σ′ maps to incorrect equivalence474

classes under px(·), and fails entropy checks for statistical validity.475

Related proofs of soundness, completeness, equivocation, and equivalence class ratio476

impact will be presented as part of the formal proof of existential unforgeability under477

chosen message attacks (EUF-CMA) in a subsequent section.478

14

Adversary’s Tasks: Key Recovery vs. Forgery479

The adversary’s objectives can be categorized as follows:480

• Key Recovery: Reconstructing the hidden subgroup N by recovering U and x:481

– This requires solving the NAHSP, an infeasible task due to the equivocation482

induced by px(·) and the computational hardness of the problem.483

• Forgery: Generating a valid signature σ′ without access to the private keys:484

– This requires reversing branching layers of px(·) to identify valid subgroup485

elements, which is infeasible due to the lossy nature of the mapping and the486

randomness introduced at each stage.487

Summary488

The scheme achieves robust security by:489

• Obfuscating subgroup structure through the lossy mapping px(·),490

• Amplifying adversarial difficulty with the chaining mechanism, ensuring that errors491

propagate across stages,492

• Maintaining soundness and completeness in the verification process, ensuring only493

valid signatures satisfy the verification equation,494

• Combining computational hardness from the NAHSP with information-theoretic495

obfuscation from px(·), ensuring resilience against both classical and quantum ad-496

versaries.497

4 Preliminary Results and Contributions498

This work introduces a novel digital signature scheme that incorporates both information-499

theoretic security and computational hardness, explicitly tied to the Non-Abelian500

Hidden Subgroup Problem (NAHSP). While the results presented are preliminary, they501

suggest a promising approach to balancing efficiency, security, and practicality in post-502

quantum cryptography. The key contributions of this work include:503

1. Fiat-Shamir Transformation with Contextual Binding: Leveraging the Fiat-Shamir504

transformation to securely bind the public key, message, and randomness, generat-505

ing a challenge seed that derives a unique set of challenge bases per signature. This506

approach reinforces security and ensures contextual linkage between the signature507

and the corresponding public key.508

2. Chaining Mechanism for Amplified Hardness: Introducing a chaining mechanism509

that combines independent instances of the matrix-based NAHSP problem. Each510

stage introduces fresh randomness and transformations, compounding adversarial511

complexity and amplifying computational difficulty with every additional stage.512

15

3. Verification through Structured Basis Transformations: Designing signature verifi-513

cation as a proof of consistency through structured basis transformations. This ap-514

proach ensures that transformations applied to the public key and signature align515

under obfuscated subgroup relationships, preserving algebraic correctness while pre-516

venting exploitation of subgroup structures.517

4. Information-Theoretic Security via High-Entropy Mapping Functions: Introducing518

a non-linear, many-to-one mapping function px(·) that compresses the ambient519

space Gambient into equivalence classes. The inherent high entropy of px(·)’s outputs520

enforces:521

• Computational indistinguishability of equivalence class elements without ac-522

cess to private keys xk and Uk,523

• Explicit rejection of low-entropy forgeries during verification, adding an entropy-524

based security layer that complements computational hardness.525

5. Novel Matrix-Based Cryptographic Framework: Developing a cryptographic plat-526

form based on unrelated public/private matrix groups. The independence of public527

matrices A, B, and private matrices U , x prevents structural exploitation, support-528

ing efficient signature generation and verification.529

6. First Practical Hybrid Information Theoretic and NAHSP-Based Construction: Con-530

structing what we believe to be the first practical digital signature scheme explicitly531

based on the NAHSP, using non-commutative matrix groups and leveraging both532

information theoretic functions and chaining mechanisms to ensure robust security.533

Context and Preliminary Results: The proposed scheme, though unrefined, demon-534

strates the potential of non-commutative cryptography to address critical challenges in535

quantum resilience. While further validation, cryptanalysis, and exploration of parameter536

optimization are necessary, the approach offers:537

• Communication Efficiency: Preliminary parameters suggest competitive communi-538

cation costs compared to RSA signatures and a significant reduction compared to539

most lattice-based schemes.540

• Dual-Layered Security: By combining information-theoretic indistinguishability with541

computational hardness rooted in the NAHSP, the scheme provides a layered de-542

fense against both classical and quantum adversaries.543

• Feasibility and Scalability: The use of independent, unrelated public/private ma-544

trix groups provides a scalable and tunable platform for balancing security and ef-545

ficiency, with conservative parameter choices supporting incremental improvements546

over time.547

Careful Optimism: While matrix group-based schemes have been explored in the548

past, this work introduces novel techniques that warrant renewed investigation of non-549

commutative cryptography. The preliminary results presented here are encouraging but550

must be rigorously validated by the broader cryptographic community. Future work551

will focus on parameter tuning, formal proof refinement, performance improvements,552

and independent verification to solidify the scheme’s practical viability and theoretical553

soundness.554

16

Complexity Analysis The mapping function px(·) partitions the group G into equiv-555

alence classes, obfuscating the subgroup structure of N and increasing the adversary’s556

difficulty in distinguishing elements. Unlike a group homomorphism, px(·) does not pre-557

serve group operations but ensures computational indistinguishability of elements within558

the same equivalence class. This indistinguishability amplifies the complexity of solving559

the problem by significantly increasing the effective solution space.560

Impact of px(·): The hardness of the problem is tied directly to the pre-image count of561

px(·), which determines the size of equivalence classes and the adversarial search space.562

Specifically:563

• The adversary must navigate all elements in px−1(g′) for a given equivalence class564

g′, where px−1(g′) contains all pre-images indistinguishable under px(·).565

• The size of px−1(g′) is determined by the partitioning of the ambient group Gambient566

into equivalence classes via the mapping px(·). The hidden subgroup N and the567

transformations induced by x and U influence the structure of these partitions, but568

the pre-image membership size fundamentally scales with the size of Gambient and569

configuration of px(·).570

• The indistinguishability within equivalence classes ensures that structural relation-571

ships between elements of N and G are practically obscured, limiting adversarial572

insights.573

Chaining Mechanism and Amplified Complexity: The chaining mechanism com-574

pounds complexity by propagating errors and introducing additional randomness at each575

stage, requiring the adversary to solve multiple independent instances of the obfuscated576

problem. In a single instance, the complexity of solving the problem scales with the size577

of equivalence classes induced by px(·). For k chained instances, the total complexity is578

amplified as:579

O(|px−1(g′)|k),

where |px−1(g′)| is the size of the pre-image set for a single equivalence class. This reflects:580

• The exponential growth of the adversarial search space due to chained instances,581

requiring reconstruction of intermediate outputs to solve subsequent stages.582

• The cascading effect of errors, where small inaccuracies in earlier stages propagate,583

significantly increasing the difficulty of reconstructing the entire system.584

Security and Complexity Relationship: The indistinguishability introduced by585

px(·) ensures that adversaries cannot efficiently distinguish elements of N within equiv-586

alence classes or between stages of the chaining mechanism. By explicitly tying the587

complexity to the pre-image count |px−1(g′)|, the scheme achieves:588

• Scalable Hardness: The size of equivalence classes and the number of chained in-589

stances can be tuned to balance efficiency and security.590

• Resistance to Structural Attacks: The obfuscation introduced by px(·) disrupts struc-591

tural relationships, ensuring that subgroup recovery requires infeasible computa-592

tional resources.593

17

• Cascading Complexity: The chaining mechanism amplifies the adversarial challenge,594

requiring reconstruction of intermediate outputs across multiple stages, with errors595

compounding exponentially.596

Practical Observations: This work does not claim proven hardness for the NAHSP597

in the general case but leverages its empirical resistance to both classical and quan-598

tum attacks. The inclusion of px(·) and chaining mechanisms provides additional layers599

of security, making the scheme robust under practical cryptographic assumptions while600

maintaining tunable efficiency for real-world applications.601

Communication Cost: Perhaps the most relevant result of this work is leveraging602

information theoretic security to achieve practical signature and public key sizes.603

Level n PK (bytes) Sig (bytes) k
I 64 80 96 8
III 128 152 176 6
V 256 288 320 4

Table 1: Public Key, Signature Sizes, and Chain Instances Across Levels

4.1 Structure of Remainder of Paper604

• Formal mapping of our construct to the Non-Abelian Hidden Subgroup Problem605

• Analysis of the information theoretic properties of px(·) in relation to NAHSP606

• Proof of Verification Constancy607

• Security Notes and Attack Models608

• Proof of IND-CPA hardness609

• Proof of sEU-CMA security610

• Algorithms and Implementation611

• Performance Comparison612

• Future Work and Conclusion613

5 Notation and Definitions614

Throughout this paper, we give both abstract parameters and concrete example formulas.615

If specific values are used, they are based on the level III instance, as thus far it has616

received the bulk of analysis.617

18

6 Formal Reduction to the Non-Abelian Hidden Sub-618

group Problem (NAHSP)619

6.1 Group Structure and Properties620

Ambient Group Gambient: The ambient group Gambient is defined as:621

Gambient = GL(n,Zq),

the group of invertible n× n matrices over Zq, where the group operation is matrix mul-622

tiplication modulo q. This group is non-abelian and serves as the foundational structure623

for constructing G.624

Working Group G: The working group G is constructed as a semidirect product:625

G = Hleft ⋊Hright,

where:626

• Hleft = ⟨U⟩, the cyclic subgroup generated by the matrix U ,627

• Hright = ⟨A⟩, the cyclic subgroup generated by the matrix A.628

The automorphism action of Hright on Hleft ensures that G is non-abelian:629

hR · hL · h−1
R = ϕhR

(hL), hR ∈ Hright, hL ∈ Hleft,

where ϕhR
is an automorphism of Hleft.630

Hidden Subgroup N : The hidden subgroup N is defined as N = Hleft. As established631

in Lemma 2, N is a normal subgroup of G, ensuring that:632

gNg−1 ⊆ N, ∀g ∈ G.

This normality guarantees that G can be partitioned into disjoint cosets of N :633

G =
⋃
i

giN, giN ∩ gjN = ∅ for i ̸= j.

6.2 Formal Definition of NAHSP634

Definition 1 (Non-Abelian Hidden Subgroup Problem (NAHSP)). The Non-Abelian635

Hidden Subgroup Problem (NAHSP) is defined as follows:636

• Input: A finite non-abelian group G and a function f : G → S, where S) is the637

set of left cosets of a hidden subgroup H ⊆ G. The function f satisfies:638

f(g) = f(g′) ⇐⇒ gH = g′H.

• Output: Determine the hidden subgroup H.639

19

6.3 Oracle Construction and Reduction to NAHSP640

Oracle Function f : Define the oracle function f : G→ S as:641

f(g) = gN,

where gN is the left coset of N containing g. The function f satisfies the equivalence642

relation:643

f(g) = f(g′) ⇐⇒ gN = g′N.

Thus, f is constant on cosets of N and distinct across cosets, fulfilling the requirements644

of the NAHSP.645

Correspondence with NAHSP:646

• Group G: The group G = Hleft ⋊ Hright serves as the non-abelian group in the647

NAHSP framework.648

• Hidden Subgroup H: The hidden subgroup H in NAHSP corresponds to N =649

Hleft in our construction.650

• Oracle Function f : The oracle function f(g) = gN encodes the coset structure651

of N , aligning with the oracle requirements of NAHSP.652

6.4 Hardness of Subgroup Recovery653

• Non-Abelian Structure: The semidirect product G = Hleft ⋊Hright is inherently654

non-abelian due to the automorphism action of Hright on Hleft. This non-abelian655

nature prohibits the direct application of abelian techniques, such as Fourier anal-656

ysis, which are pivotal in efficiently solving the Hidden Subgroup Problem (HSP)657

in abelian groups.658

• Classical Complexity: Classical algorithms lack the necessary tools to exploit the659

group structure effectively. They would be compelled to perform exhaustive brute-660

force enumeration over the cosets of N , a task rendered computationally infeasible661

by the exponential size of G. Moreover, the intertwined structures of Hleft and662

Hright offer no combinatorial shortcuts for efficient subgroup identification.663

• Quantum Complexity: Quantum algorithms, particularly those utilizing the664

Quantum Fourier Transform (QFT), falter in non-abelian settings like G. The au-665

tomorphism action ofHright onHleft disrupts the coherence and periodicity necessary666

for QFT-based techniques to identify subgroup structures efficiently. Consequently,667

these quantum approaches do not yield a polynomial-time solution for NAHSP in668

such non-abelian groups.669

Conclusion670

Recovering the hidden subgroup N = Hleft in the group G = Hleft ⋊ Hright satisfies671

the definition of the Non-Abelian Hidden Subgroup Problem (NAHSP). The non-abelian672

structure of G, combined with the automorphism action of Hright on Hleft, ensures that673

this problem is computationally infeasible under both classical and quantum adversarial674

models. Thus, the cryptographic hardness of the NAHSP is directly inherited by the675

problem of recovering N in G.676

20

6.5 Reduction677

Adversarial Setup. Let A be an adversary attempting to recover the hidden subgroup678

N = Hleft from the group G = Hleft ⋊ Hright. The adversary interacts with an oracle679

function f : G→ S, where S) is the set of left cosets of N in G. The function f is defined680

as:681

f(g) = gN,

where gN is the coset of N containing g. The function f satisfies the equivalence relation:682

f(g) = f(g′) ⇐⇒ gN = g′N.

The adversary’s goal is to identify N given oracle access to f .683

Definition of Security. The adversary’s advantage AdvA in recovering N is defined684

as:685

AdvA = Pr[A(f) = N]− Pr[Arandom(f) = N],

where Arandom is a baseline adversary that outputs a random subgroup N ′ chosen uni-686

formly at random from the set of all possible subgroups of G. The probabilities are taken687

over the random choice of N and any randomness inherent in the adversaries.688

Reduction to the Non-Abelian Hidden Subgroup Problem. Assume A is an689

adversary that can recover the hidden subgroupN = Hleft with advantage ϵ. We construct690

a reduction R that uses A to solve the Non-Abelian Hidden Subgroup Problem (NAHSP)691

as follows:692

1. Input to R: The group G = Hleft ⋊Hright and oracle function f : G→ S defined693

by f(g) = gN , where N = Hleft.694

2. Reduction Steps:695

(a) R provides A with oracle access to f .696

(b) A outputs a candidate subgroup N ′.697

(c) R verifies whether N ′ is a valid hidden subgroup by checking:698

∀g, g′ ∈ G, g−1g′ ∈ N ′ ⇐⇒ f(g) = f(g′).

This ensures that N ′ correctly defines the coset structure as per the oracle f .699

3. Output of R: If verification succeeds, R outputs N ′ as the solution to NAHSP.700

Otherwise, R outputs failure.701

Analysis of the Reduction.702

• Correctness: If A successfully identifies N , then R correctly solves NAHSP by703

outputting N ′ = N . The verification step ensures that N ′ uniquely satisfies the704

coset equivalence relation defined by f , thereby guaranteeing the correctness of the705

solution.706

21

• Efficiency: The reduction R invokes A once and performs polynomial-time group707

operations for verification. Therefore, the computational overhead of R is polyno-708

mial in the size of G and bounded by the runtime of A.709

• Adversarial Advantage: Suppose A has a non-negligible advantage ϵ in recover-710

ing N . Then, R achieves the same advantage in solving NAHSP:711

AdvR = AdvA = ϵ.

This implies that any adversary A capable of recovering N with advantage ϵ enables712

R to solve NAHSP with the same advantage.713

Hardness of Subgroup Recovery.714

• Classical Adversaries: Classical algorithms would need to enumerate cosets of N ,715

which is computationally infeasible due to the exponential size of G. Additionally,716

the non-abelian structure of G lacks the necessary algebraic properties that allow717

for efficient subgroup identification, preventing the use of techniques such as brute-718

force search or combinatorial optimizations.719

• Quantum Adversaries: Quantum algorithms, including those leveraging the720

Quantum Fourier Transform (QFT), struggle with G’s non-abelian structure. The721

automorphism action of Hright on Hleft disrupts the periodicity and coherence es-722

sential for QFT-based subgroup recovery. As a result, these quantum techniques723

fail to efficiently exploit the hidden subgroup structure in G, ensuring resistance724

against known quantum attacks.725

Conclusion. This reduction demonstrates that recovering the hidden subgroup N =726

Hleft in G = Hleft⋊Hright is at least as hard as solving the Non-Abelian Hidden Subgroup727

Problem (NAHSP). The intractability of NAHSP under both classical and quantum ad-728

versarial models ensures the cryptographic security of the proposed system.729

7 Equivocation and Indistinguishability from px(·)730

7.1 Equivocation Function px(·)731

The equivocation function px(·) is a deterministic mapping that compresses an input732

element into an equivalence class represented by the output. It is a lossy, surjective,733

many-to-one compression function that reduces real entropy while maintaining high ob-734

served entropy in the output. The mutual entropy between the input and output is735

distributed across indistinguishable equivalence classes, ensuring computational imprac-736

ticality in enumerating all potential valid inputs from a given output. While the correct737

input is guaranteed to exist within the equivalence class, no heuristic information can738

differentiate it from other valid pre-images. Note that we use level III parameters for this739

section in general.740

The px(·) function operates as follows:741

1. Inverse NTT Transform: The input element, initially represented in the NTT742

domain over a field q = 257, is transformed back to the input domain via the appropriate743

inverse NTT, based on n.744

22

2. Forward NTT Transform to q = 1283: A forward NTT is performed using745

parameters q = 1283, ω = 3. Note that only addition is performed using this field, so746

using ω = 3 only impacts computational performance. This step expands the coefficient747

range by approximately a factor of 5, mapping them to values between 0 and 1282.748

3. Scaling and Ambiguity Introduction: The element is added to itself element-749

wise and reduced modulo 1283. This scaling operation is repeated four times, introducing750

additional ambiguity at each step. For each coefficient, there are two possible pre-image751

states—either it rolled over or it did not. This process creates an internal diffusion factor752

of 24n.753

4. Uniform Input Distribution: The input element is derived from:754

• A uniformly random, full-rank hidden matrix U ,755

• A uniquely randomized, full-rank public matrix B,756

• A uniformly random secret element x.757

These components ensure the input uniformly spans the ambient modular space Zn
q ,758

directly supporting the uniformity produced by the diffusion factor 24n. 5. Inverse and759

Forward NTT Transforms: The diffused element undergoes:760

• An inverse NTT transform with parameters q = 1283, ω = 3,761

• A forward NTT transform with parameters q = 257, ω = {81, 9, 3}, for on n =762

64, n = 128, n = 256 respectively.763

This step maps the element back to a smaller field while preserving ambiguity.764

Each coefficient in the q = 1283 field has approximately 5 pre-image coefficients in765

the q = 257 field. With n coefficients, the total number of pre-images is:766

5n.

For n = 128, this results in 2297 pre-images distributed across 2727 equivalence classes767

(assuming uniform partitioning). Each equivalence class contains 2297 elements, making768

it computationally infeasible for an adversary to enumerate all valid pre-images for a769

given output. The core of our information-theoretic security lies in the impracticality of770

inverting px(·). This security is based on the following principles:771

Information-Theoretic Security772

The core of our information-theoretic security lies in the impracticality of inverting px(·).773

This security is based on the following principles:774

• Diffusion and Avalanche Effect: The diffusion factor 24n ensures that small changes775

in the input lead to significant and widespread changes in the output, making it776

difficult to trace back to the original input.777

• Pre-Image Resistance: Mapping to approximately 5n pre-images distributed across778

2727 equivalence classes for n = 128 ensures that each output corresponds to a large779

and computationally infeasible set of inputs.780

23

• NTT Transformation Security: The use of NTTs with carefully chosen parameters781

introduces additional complexity, leveraging the hardness of problems related to782

discrete transforms over finite fields.783

• Assumptions on Computational Resources: The security guarantees assume that784

adversaries do not possess exponential computational resources to perform exhaus-785

tive searches within the equivalence classes.786

In summary, while the px(·) function allows enumeration of all pre-images theoreti-787

cally, the computational and combinatorial requirements make this infeasible in practice.788

This foundational design ensures the cryptographic strength of the equivocation function789

in supporting secure operations.790

7.2 Analysis of px()791

This section rigorously establishes the security properties of the mapping function px(·),792

a core cryptographic primitive in this system. Through formal proofs, we demonstrate its793

resilience against adversarial attacks, its statistical uniformity, highlighting its robustness794

in both classical and quantum computational models.795

It should be noted that selecting specific parameters for our px() function requires796

consideration of modular overlap. The foundation of our function is based on additive797

diffusion of projected elements from q0 = 257 to a larger prime field, such as q1 = 1283.798

As it is mathematically impossible for two prime numbers to divide cleanly, we seek to get799

as close as possible. For example, a q = 1285 == 5 ∗ 257, leaving no modular remainder800

during mapping, but 1285 is not a prime number. Our choice of q1 = 1283 in this case801

leaves us 1.17% overlapping values during inversion. Restated, out of 257 elements 254802

will have 5 possible pre-image coefficients that map back, with the remainder having 4.803

The implication being that in reality, not all equivalence classes hold exactly the same804

number of pre-images and there is a slight deviation related to the 1.17% modular overlap.805

For simplicity, as the majority in this case have 5 valid pre-image coefficients, we will use806

5, vs a more accurate ≈ 4.99− 5.01 value.807

7.3 Probability of Random Forgery808

The information-theoretic barrier we create is not infinite, but it presents an intractably809

large solution space for an adversary, as we will show below.810

Table 2: Preimage and Equivalence Class Analysis for px()

Dimension (n) Ambient Space (2n) Preimages (2b) Equivalence Classes (2e)
64 2512 2149 2363

128 21024 2297 2727

256 22048 2640 21408

These numbers yield the following probability ratios:811

For n = 64 : 1.844674407370955× 10−45,

For n = 128 : 3.402823669209385× 10−90,

For n = 256 : 1.157920892373162× 10−179.

24

This represents the probability for each n, that a randomly selected pre-image will812

map to a selected equivalence class. These numbers are useful for proving probability of813

random signature forgery, but to put them into context we will relate them to winning814

the PowerBall lottery which has a probability of 1 in 292,201,338. The only constraint is815

that you can only buy one ticket per jackpot.816

n Probability Powerball Wins Probability (Chaining) Powerball Wins (Chaining)
64 1.84× 10−45 13 1.34× 10−358 350
128 3.40× 10−90 26 1.55× 10−537 529
256 1.15× 10−180 53 1.80× 10−720 711

Assuming these calculations are correct, without chaining the odds of guessing a valid817

signature for n = 64 are ≈ the same as winning PowerBall 13 times in a row. As level818

I has n = 64 and 8 chained instances, the success probability, based on buying one819

ticket per jackpot, jumps to winning PowerBall 350 times in a row. Guessing a valid820

signature at level V where n = 256 with 4 chained instances is as likely as willing 711821

consecutive jackpots. As this is technically not impossible, similar to how the proposed822

scheme doesn’t guarantee perfect secrecy, it could in theory happen. It’s just unlikely.823

7.3.1 Brute Force Storage Requirements824

In the context of attempting to mount a brute force attack, we consider the minimum stor-825

age requirements to guarantee a successful outcome. Each element requires {64, 128, 256}826

bytes of storage and each observed output t′′ maps to a large number of valid preimages.827

There also exists a lower bound of observations required to guarantee enough correct t′828

outputs such that the correct set of equations that can be defined and solved to recover829

both U and x. The storage required for each security level is listed below, in brontobytes:830

Table 3: Preimage Storage and Observation Scaling for px()

n Preimages (2b) 1 Observation (BB) Min Observations (BB)
64 2149 265 272

128 2297 2214 2221

256 2640 2648 2656

Brontobytes and Exabytes: Units for Massive Data Volumes831

The brontobyte (BB) is a theoretical unit of data storage equivalent to:832

1BB = 290 bytes = 1, 024 yottabytes.

It represents a continuation of the binary progression of data storage units. To provide833

perspective:834

• 1BB = 1, 024YB (yottabytes),835

• 1YB = 1, 024 ZB (zettabytes),836

• 1 ZB = 1, 024EB (exabytes).837

25

By comparison:838

• 1EB = 260 bytes, or roughly 1 billion gigabytes.839

• A single brontobyte (290) is 1, 099, 511, 627, 776EB, far exceeding the total amount840

of data stored globally.841

Relevance to Information-Theoretic Security842

In this context, brontobyte-scale data is required for analyzing the feasibility of brute-force843

attacks and quantifying the strength of information-theoretic guarantees. For example:844

• Storing all preimages for even a single observation exceeds brontobyte (BB) levels845

with increasing dimensionality.846

• As of 2024, the global installed base of data storage capacity is projected to be847

approximately 11.23 zettabytes (ZB), equivalent to 11.23 trillion terabytes (TB) or848

0.00001071 brontobytes (BB).849

• For minimum required observations (n = 64, 65 observations), this storage require-850

ment guarantees an adversary faces infeasible data handling and computational851

costs.852

• Brute force storage requirements are infeasible, and the probability of simply guess-853

ing a valid answer is negligible, exactly what one would expect from practical in-854

formation theoretic security guarantees.855

7.4 Equivalence Class Invariance of px(·)856

Lemma 1 (Equivalence Class Invariance of px(·)). The mapping function px : G → Y857

partitions the group G into equivalence classes defined by the subgroup N . Specifically:858

px(g1) = px(g2) ⇐⇒ g1 ∼ g2 ∀g1, g2 ∈ G,

where ∼ is the equivalence relation:859

g1 ∼ g2 ⇐⇒ g1 · n = g2 for some n ∈ N.

Proof. Objective: To show that px(·) is invariant over equivalence classes induced by860

N .861

Definition of Equivalence Classes: The equivalence class of an element g ∈ G with862

respect to N is:863

[g]N = {g · n | n ∈ N}.

These classes partition G into disjoint subsets such that:864

G =
⋃
i

[gi]N , [gi]N ∩ [gj]N = ∅ for i ̸= j.

26

Invariance of px(·): The mapping function px(·) satisfies the following invariance prop-865

erty:866

px(g · n) = px(g) ∀g ∈ G, n ∈ N.

This property implies that px(·) maps all elements of an equivalence class [g]N to the867

same value in Y .868

Proof of Equivalence: To prove px(g1) = px(g2) ⇐⇒ g1 ∼ g2, we consider both869

directions:870

• Forward Direction (⇒): Assume px(g1) = px(g2). By the invariance property871

of px(·), this implies:872

px(g1 · n1) = px(g2 · n2) for some n1, n2 ∈ N.

Since px(·) is consistent across equivalence classes, it follows that:873

g1 · n1 = g2 · n2 for some n1, n2 ∈ N,

which implies g1 ∼ g2.874

• Backward Direction (⇐): Assume g1 ∼ g2, i.e., g1 · n = g2 for some n ∈ N . By875

the invariance property of px(·):876

px(g2) = px(g1 · n) = px(g1).

Therefore, px(g1) = px(g2).877

Conclusion: The function px(·) is invariant across equivalence classes induced by N .878

This ensures that elements within the same equivalence class are indistinguishable under879

px(·).880

7.5 Enhanced Hiding of px(·)881

Lemma 2 (Ambiguity and Obfuscation in px(·)). The mapping function px(·) is a882

many-to-one function that increases the entropy of its outputs and introduces obfus-883

cation through the hidden matrix U . Specifically, px(·) creates an ambiguous search space884

where recovering the original inputs is computationally infeasible.885

Proof. Objective: To show that px(·) creates ambiguity by mapping multiple distinct886

inputs to the same output and obfuscates structural relationships through the hidden887

matrix U .888

Many-to-One Mapping: The mapping px(·) compresses the input space, assigning889

multiple distinct inputs to the same output:890

|px−1(y)| ≥ 2k, where k depends on system parameters.

This many-to-one nature ensures that adversaries cannot uniquely identify an input from891

an output.892

27

Obfuscation via U : The hidden matrix U transforms the input as:893

t′ = U · t mod q.

Without knowledge of U , inverting this transformation is computationally infeasible. The894

randomness of U ensures that no exploitable dependencies exist between the input t and895

its transformation t′.896

Combined Effect: The combined properties of px(·) and U ensure:897

• Ambiguity: Each output corresponds to a large equivalence class of indistinguish-898

able inputs, creating an inflated search space.899

• Obfuscation: Structural relationships between inputs are disrupted, preventing900

adversaries from reconstructing t without explicit knowledge of U .901

Security Implications: Recovering the original input t for a given output px(t) re-902

quires exhaustive search through all possible pre-images. The exponential size of the903

search space and the disruption of algebraic structures ensure that this task is computa-904

tionally infeasible.905

Conclusion: The mapping px(·), combined with the obfuscation introduced by U , cre-906

ates a high-entropy, ambiguous output space. These properties ensure the security of the907

mapping against adversarial recovery of original inputs.908

7.6 Indistinguishability and Statistical Uniformity of px(·) Out-909

puts910

Note that we use Level III parameters for this section, n = 128, q = 257.911

Lemma 3 (Indistinguishability of px(·) Outputs). The outputs of the mapping function912

px(·) : Z128
257 → Z128

257 are computationally indistinguishable from uniformly random vec-913

tors in Z128
257, given no access to the secret input x, intermediate values t′, or the hidden914

transformation parameters.915

Proof. Objective: To prove that the outputs px(t′) are computationally indistinguish-916

able from uniformly random vectors, assuming adversaries lack access to the secret input917

x or intermediate values.918

Step 1: High Entropy and Uniform Mixing The mapping px(·) introduces high919

entropy and uniform mixing through sequential transformations:920

• Initial Transformation (NTT): The input vector t is transformed into t′ =921

NTT1283(t), dispersing coefficients of t across the frequency domain. This ensures922

pseudorandom spreading of t′ over Z128
1283.923

• Additive Mixing: The operation t′′ = t′ + 2 · t′ introduces further uniformity,924

erasing any residual structure in t′.925

• Inverse Transformation: The inverse NTT, z = INV NTT1283(t
′′), preserves926

high entropy and disperses any remaining correlations across coefficients in Z128
1283.927

• Final Projection: The mapping px(t′) = NTT257(z) reduces z modulo 257, en-928

suring outputs are uniformly distributed in Z128
257 and removing residual patterns.929

28

Step 2: Compression and Ambiguity The function px(·) compresses Z128
1283 into Z128

257,930

introducing a many-to-one mapping. Each output y ∈ Z128
257 corresponds to approximately931

2297 indistinguishable pre-images (for level III):932

|px−1(y)| ≈ 2297.

This compression ensures that adversaries observing px(t′) cannot deduce a unique input933

t, significantly inflating the effective search space.934

Step 3: Statistical Uniformity The modular reductions and transformations in px(·)935

ensure that outputs pass standard randomness tests:936

• Entropy Preservation: High entropy at intermediate states t′ and z ensures no937

statistical patterns remain.938

• Empirical Validation: Statistical tests (e.g., NIST randomness suite) confirm939

that px(t′) outputs are indistinguishable from uniformly random elements in Z128
257.940

Step 4: Entropy and Adversarial Uncertainty The lossy nature of px(·) guaran-941

tees high apparent entropy for adversaries:942

• Min-Entropy (H∞): Assuming uniform distribution over Z128
257, the min-entropy943

of px(t′) is:944

H∞(px(t′)) = log2(|Z128
257|) = 727 bits.

• Conditional Entropy (H(t′ | px(t′))): Given px(t′), the adversary faces residual945

uncertainty about t′:946

H(t′ | px(t′)) = 1024− 727 = 297 bits.

This indicates that each output corresponds to 2297 indistinguishable pre-images,947

obfuscating input-output relationships.948

• False Entropy Perception: From the adversary’s perspective, px(t′) appears to949

have full entropy H(px(t′)), as outputs are indistinguishable from uniform distri-950

butions.951

Step 5: Computational Indistinguishability For any efficient adversary A, distin-952

guishing px(t′) from a uniformly random vector r ∈ Z128
257 is computationally infeasible:953

|Pr[A(px(t′)) = 1]− Pr[A(r) = 1]| ≤ negl(n),

where negl(n) is a negligible function of the security parameter n. The modular reduc-954

tions and many-to-one compression ensure that adversaries cannot exploit patterns to955

distinguish px(t′) from random vectors.956

Conclusion The mapping px(·) ensures high entropy, statistical uniformity, and com-957

putational indistinguishability. These properties collectively enhance its cryptographic958

strength, making the outputs indistinguishable from uniformly random vectors and robust959

against adversarial analysis.960

29

7.7 Collision and Pre-Image Resistance of px(·)961

Lemma 4 (Collision and Pre-Image Resistance of px(·)). The mapping function px(·) : Z128
257 →962

Z128
257 satisfies:963

1. Collision Resistance: Finding distinct inputs t1, t2 ∈ Z128
257 such that px(t1) =964

px(t2) is computationally infeasible.965

2. Pre-Image Resistance: Given y ∈ Z128
257, finding any t ∈ Z128

257 such that px(t) = y966

is computationally infeasible.967

These properties hold under standard cryptographic assumptions.968

Proof. Objective: To demonstrate that px(·) is resistant to both collision and pre-image969

attacks by analyzing its structure, randomness, and computational complexity.970

Structure of px(·) The mapping px(·) consists of the following steps:971

1. t′ = NTT1283(t), where t = A · x mod 257 and A is a random public matrix.972

2. t′′ = t′ + 3 · t′, introducing additive mixing in Z128
1283.973

3. z = INV NTT1283(t
′′), returning to the time domain modulo 1283.974

4. px(t) = NTT257(z), projecting the result into Z128
257.975

These transformations ensure randomness, mixing, and compression, making px(·) resis-976

tant to both collision and inversion attempts.977

Collision Resistance Analysis For px(t1) = px(t2) to hold, it must be true that978

z1 = z2, since NTT257 is invertible. This implies:979

INV NTT1283(t
′′
1) = INV NTT1283(t

′′
2).

Given that:980

t′′1 = t′1 + t′1, t′′2 = t′2 + t′2,

distinct t′1 ̸= t′2 result in distinct t′′1 ̸= t′′2 due to additive mixing. A collision would require:981

NTT1283(t1) = NTT1283(t2),

which is unlikely given the pseudorandom nature of A. The probability of such random982

collisions is bounded by:983

Pcollision ≤
q2

2 · 257128
,

where q is the number of adversarial queries. Since 257128 is astronomically large, px(·)984

is collision-resistant.985

30

Pre-Image Resistance Analysis To invert px(t) = y, an adversary must reverse986

multiple transformations:987

• Recover z from y = NTT257(z), which is infeasible without knowledge of t or inter-988

mediate states.989

• Reverse z = INV NTT1283(t
′′) to find t′′, where t′′ = t′ + 3 · t′. Additive mixing990

obscures linear relationships in t′.991

• Solve t = A · x mod 257 from t′ = NTT1283(t). Without knowledge of x, this is992

computationally infeasible due to the pseudorandomness of A.993

Additionally, the lossy nature of px(·) ensures:994

|px−1(y)| ≈ 2297,

making it computationally infeasible to identify a unique pre-image among 2297 candi-995

dates.996

Conclusion The structural properties of px(·), including pseudorandom transforma-997

tions, additive mixing, and modular reductions, ensure resistance to both collision and998

pre-image attacks. These properties make px(·) secure under standard cryptographic999

assumptions against both classical and quantum adversaries.1000

7.8 Avalanche Effect in px(·)1001

Lemma 5 (Avalanche Effect of px(·)). For any inputs t1, t2 ∈ Z128
257 differing by a single1002

bit, the outputs px(t1) and px(t2) are computationally indistinguishable from independent,1003

uniformly random vectors in Z128
257.1004

Proof. Objective: To show that a small change in t propagates unpredictably through1005

px(·), ensuring significant and uncorrelated differences in the outputs.1006

Step 1: Propagation Through NTT Transformations The input t undergoes the1007

transformation t′ = NTT1283(t). Due to the properties of the NTT:1008

• Each coefficient of t′ depends on all coefficients of t.1009

• A single-bit change in t affects every coefficient of t′ due to the frequency-domain1010

dispersion.1011

This ensures that the effect of a single-bit change is amplified across the intermediate1012

state t′.1013

Step 2: Additive Mixing The operation t′′ = t′ + 2 · t′ introduces further mixing:1014

• The additive mixing operation is performed modulo 1283, ensuring that changes1015

propagate unpredictably due to modular wraparound.1016

• Any change in t′ affects all coefficients of t′′.1017

31

Step 3: Inverse Transformation The inverse NTT z = INV NTT1283(t
′′) maps the1018

mixed state back to the time domain. This operation:1019

• Preserves the non-linear dependencies introduced by additive mixing.1020

• Further disperses the effects of the initial change across all coefficients of z.1021

Step 4: Final Projection The projection to Z128
257 via NTT257 ensures that the output1022

px(t) reflects the amplified changes from earlier stages. Specifically:1023

• Modular reduction ensures that even small differences in z produce large, unpre-1024

dictable differences in px(t).1025

• The NTT modulo 257 further spreads any changes across all coefficients.1026

Step 5: Statistical Indistinguishability For any t1, t2 differing by a single bit, the1027

outputs px(t1) and px(t2) satisfy:1028

Pr[A(px(t1)) = 1]− Pr[A(px(t2)) = 1] ≤ negl(n),

where A is any efficient adversary and negl(n) is a negligible function of the security1029

parameter n.1030

Conclusion The transformations within px(·) amplify any small changes in t, ensuring1031

that px(t1) and px(t2) are computationally indistinguishable from independent, uniformly1032

random vectors. This establishes the avalanche effect for px(·).1033

7.9 Adaptive Security of px(·)1034

Lemma 6 (Adaptive Security of px(·)). For any adversary A making up to q adaptive1035

queries to px(·), the outputs of px(·) remain indistinguishable from independent, uniformly1036

random vectors in Z128
257, given the randomized matrix A is independently regenerated for1037

each operation.1038

Proof. Objective: To prove that px(·) maintains its security properties against adver-1039

saries making multiple adaptive queries.1040

Step 1: Randomization of A The matrix A is independently regenerated for each1041

invocation of px(·). This ensures that:1042

• Outputs px(t) from different invocations are uncorrelated.1043

• An adversary cannot infer patterns or dependencies between outputs from different1044

queries.1045

Step 2: Independence of Transformations Each invocation of px(·) is independent1046

due to the randomized A. Specifically:1047

• The NTT transformations NTT1283 and NTT257 depend on A, ensuring fresh ran-1048

domness for each query.1049

• Additive mixing and modular reductions are independent for each invocation, fur-1050

ther decoupling the outputs.1051

32

Step 3: Indistinguishability Under Adaptive Queries For any q adaptive queries1052

t1, t2, . . . , tq, the corresponding outputs px(t1), px(t2), . . . , px(tq) are indistinguishable1053

from independent, uniformly random vectors. Formally:1054

∆ = |Pr[A(px(t1), . . . , px(tq)) = 1]− Pr[A(r1, . . . , rq) = 1]| ≤ negl(n),

where r1, . . . , rq are independent, uniformly random vectors in Z128
257.1055

Step 4: Resilience to Query Correlations Even ifA chooses t1, t2, . . . , tq adaptively,1056

the randomized A ensures that:1057

• Outputs px(ti) are uncorrelated.1058

• Knowledge of px(ti) does not provide any advantage in predicting px(ti+1).1059

Conclusion The independence of A across queries ensures that px(·) is secure against1060

adaptive adversaries, maintaining indistinguishability and unpredictability under multiple1061

queries.1062

7.10 Adversarial Complexity and Relation to NAHSP1063

Lemma 7 (Adversarial Complexity of Pre-Image Recovery). Recovering the valid pre-1064

image of px(t′) requires brute-forcing all 2297 indistinguishable pre-images and testing1065

each against the cryptographic construction. This task is computationally infeasible under1066

both classical and quantum adversarial models, as it reduces to solving a combinatorial1067

subgroup recovery problem tied to NAHSP.1068

Proof. Objective: To show that recovering the valid pre-image of px(t′) is computa-1069

tionally infeasible due to the obfuscation introduced by px(·) and its connection to the1070

Non-Abelian Hidden Subgroup Problem (NAHSP).1071

Step 1: Compression and Pre-Image Ambiguity The mapping function px(·)1072

transforms inputs t ∈ Z128
1283 to outputs px(t′) ∈ Z128

257, with a compression ratio of approx-1073

imately 2297-to-1:1074

Rcompression =
|Z128

1283|
|Z128

257|
= 2297.

For a given output px(t′) = y, the adversary faces approximately 2297 indistinguishable1075

pre-images t1, t2, . . . , t2297 . Among these, only one pre-image corresponds to the correct1076

subgroup N .1077

Step 2: Valid Pre-Image and Subgroup Recovery The valid pre-image satisfies1078

the transformation:1079

t′ = U · t mod q, t = A · x mod q,

where:1080

• A ∈ Z128×128
257 is a public, randomized, full-rank matrix.1081

• U ∈ Z128×128
257 is a secret, dense, full-rank matrix defining the subgroup N .1082

Recovering this valid pre-image is equivalent to solving the subgroup recovery problem for1083

N in G = Hleft⋊Hright, where G is the semidirect product of Hleft = ⟨U⟩ and Hright = ⟨A⟩.1084

33

Step 3: Combinatorial Search Space Without knowledge of x or U , the adversary1085

must:1086

• Enumerate all 2297 indistinguishable pre-images ti for the given output px(t′) = y.1087

• Test each pre-image against the cryptographic construction to determine whether1088

it satisfies the subgroup structure defined by A and U .1089

This brute-force search involves solving a system of obfuscated equations for each candi-1090

date ti, including:1091

• Modular reductions in Z1283 and Z257,1092

• Non-linear dependencies introduced by NTT transformations and additive mixing.1093

The total complexity scales as:1094

O(2297),

since each pre-image requires testing against the subgroup structure.1095

Step 4: Reduction to NAHSP The task of identifying the valid pre-image reduces1096

to solving the Non-Abelian Hidden Subgroup Problem (NAHSP) for G:1097

• The hidden subgroup N is defined by Hleft = ⟨U⟩.1098

• The cosets of N in G correspond to equivalence classes of inputs under px(·).1099

Solving the NAHSP involves identifying the subgroup N from its coset structure, which1100

is computationally hard for non-abelian groups like G. The obfuscation introduced by1101

px(·) ensures that:1102

Pr[Adversary recovers N] ≤ 1

|px−1(y)|
=

1

2297
.

Step 5: Resistance to Quantum Speedup Quantum algorithms like Grover’s pro-1103

vide no advantage because:1104

• The search space is structured around the subgroup recovery problem for N , which1105

involves combinatorial dependencies between pre-images.1106

• NAHSP inherently disrupts the coherence and periodicity necessary for quantum1107

algorithms to achieve efficient speedups.1108

• The adversary must brute-force permutations of obfuscated equations, which cannot1109

be accelerated by Grover’s algorithm.1110

Step 6: Formal Complexity Analysis The total complexity of recovering the valid1111

pre-image can be summarized as:1112

• Classical Complexity: O(2297), due to the need to brute-force all indistinguish-1113

able pre-images.1114

• Quantum Complexity: O(2297), as quantum algorithms provide no advantage1115

for structured subgroup recovery problems.1116

34

Conclusion Recovering the valid pre-image of px(t′) reduces to solving the NAHSP1117

for G = Hleft ⋊Hright. The compression introduced by px(·), combined with the obfusca-1118

tion from modular reductions, NTTs, and subgroup structures, ensures that this task is1119

computationally infeasible for both classical and quantum adversaries.1120

7.11 Quantum Resistance of px(·)1121

The mapping px(·) achieves quantum resistance by introducing high entropy, compression,1122

and structural obfuscation, effectively neutralizing known quantum algorithmic advan-1123

tages. Key disruptions include:1124

• Quantum Fourier Transform (QFT):1125

– px(·) collapses cosets of G into indistinguishable equivalence classes, removing1126

the periodic eigenstate structures required for QFT-based solvers.1127

– The non-abelian properties ofG disrupt coherence and prevent the exploitation1128

of group symmetries, negating QFT efficiency.1129

• Grover’s Search:1130

– Compression and indistinguishability inflate the effective search space, coun-1131

teracting Grover’s quadratic speedup by increasing the adversary’s uncertainty1132

over 2297 indistinguishable pre-images.1133

– Structural dependencies introduced by px(·) further impede the isolation of1134

marked states necessary for Grover’s algorithm.1135

• Error Amplification and Post-Processing Complexity:1136

– Outputs of px(·) exhibit exponential entropy, requiring O(2297) operations to1137

correlate cosets with subgroup elements.1138

– Modular reductions and non-linear transformations propagate noise in quan-1139

tum superpositions, amplifying errors and degrading adversarial coherence.1140

• Theoretical Structural Attacks:1141

– While this form of attack is hypothetical, we anticipate a variety of advances1142

in topological quantum computing, enabling the next generation of quantum1143

algorithms based on braids, toroids, hypercubes, and other topological struc-1144

tures to exploit periodicity in ways we have yet to consider.1145

– The uniformly unstructured nature of this construction, combined with con-1146

stant randomization of half of the matrix group makes this form of attack less1147

likely to succeed in the future.1148

By obfuscating structural relationships and enforcing exponential search complexity,1149

px(·) ensures that recovering the hidden subgroup N remains computationally infeasible1150

under both classical and quantum adversarial models. These properties align quantum1151

complexity with classical bounds, establishing px(·) as a robust cryptographic primitive.1152

35

8 Information-Theoretic Security of px(t′)1153

Theorem. Let px : G → Y be a mapping function with equivalence classes of size1154

|px−1(y)| ≥ 2k for all y ∈ Y . Then:1155

1. The adversary’s mutual information I(t′; px(t′)) is negligible, bounded by ε, where1156

ε is a function of the compression ratio |G|/|Y |.1157

2. The adversary’s probability of recovering t′ from px(t′) is negligible, bounded by1158

1
|px−1(px(t′))| .1159

Proof.1160

Definitions and Setup. Let t′ represent the hidden group elements, and Y = px(t′)1161

the observed outputs. The mapping px compresses G into Y , such that each y ∈ Y1162

corresponds to an equivalence class of size |px−1(y)|.1163

Mutual Information Bound. Mutual information is defined as:1164

I(t′;Y) = H(t′)−H(t′ | Y),

where:1165

• H(t′) = log2(|G|), the entropy of t′,1166

• H(t′ | Y) = log2(|px−1(y)|), the conditional entropy of t′ given Y .1167

Substituting, we have:1168

I(t′;Y) = log2(|G|)− log2(|px−1(y)|).

Rewriting in terms of the compression ratio |G|/|Y |, the leakage is:1169

I(t′;Y) ≤ log2

(
|G|
|Y |

)
.

To ensure negligible leakage, the compression ratio |G|/|Y | must satisfy:1170

log2

(
|G|
|Y |

)
≤ ε,

where ε is a negligible function of the security parameter n.1171

Adversarial Success Probability. The adversary’s probability of recovering t′ given Y1172

is:1173

Pr[Recover t′] =
1

|px−1(px(t′))|
.

Since |px−1(px(t′))| ≥ 2k, this probability is:1174

Pr[Recover t′] ≤ 2−k.

For sufficiently large k, this probability is negligible:1175

Pr[Recover t′] ≤ negl(n).

Subgroup Recovery. Recovering the hidden subgroup N requires solving the Non-1176

Abelian Hidden Subgroup Problem (NAHSP). The adversary cannot distinguish elements1177

in px(t′) without solving NAHSP, ensuring that N remains hidden.1178

Conclusion.1179

36

1. The mutual information I(t′; px(t′)) is bounded by log2(|G|/|Y |), which can be1180

made negligible by choosing sufficiently large parameters |G| and |px−1(y)|.1181

2. The adversary’s probability of recovering t′ or N is negligible, ensuring that the1182

system achieves practical information-theoretic security.1183

1184

9 Proof of Consistency as Verification Under Homo-1185

morphic Transformations1186

Lemma 8. The verification equation LHS′ = RHS′ holds if and only if the signature σ1187

is generated using the corresponding private keys and the specified public key pk∥fs, with1188

high probability.1189

Proof. Let the key generation, signing, and verification functions be defined as follows:1190

1. Key Generation1191

t = A · x mod q, t′ = U · t mod q, pk = px(t′) mod q,

where:1192

• A is a public matrix,1193

• x is the secret key,1194

• U is a private matrix,1195

• px is the mapping function.1196

2. Signature Generation1197

σ = px
(
U · (J(C1) ◦ t)

)
mod q,

where:1198

• J is a hash function (e.g., SHAKE),1199

• C1 is constraint1, derived from pk ·B intermediates after cubing and hashing.1200

• ◦ denotes a Hadamard product.1201

3. Verification Function1202

LHS = B · (pk ◦ J(C2) mod q,

LHS′ = px
(
LHS ◦ J(C1)

)
mod q,

RHS = A · (σ ◦ J(C2)) mod q,

RHS′ = px(RHS) mod q.

37

Step 1: Valid Signature Consistency1203

- Substitute the signature generation equation into RHS:1204

RHS = A ·
(
px(U · (J(C1) ◦ t)) ◦ J(C2)

)
mod q.

- Using the properties of px and t′ = U · t, it follows that:1205

px
(
U · (J(C1) ◦ t)

)
= px(t′) mod q,

where t′ satisfies the public key equation pk = px(t′) mod q. - Therefore, the transfor-1206

mations applied during signing and verification align, yielding:1207

RHS′ = px(RHS) = pk mod q.

Step 2: Validating LHS′
1208

- Substitute pk into LHS:1209

LHS = B · (pk ◦ J(C2) mod q.

- Apply the transformation px:1210

LHS′ = px(LHS ◦ J(C1) mod q.

- Since the signature σ was generated using the correct private key, the transformations1211

J(C2) compensate for modular inconsistencies, ensuring:1212

LHS′ = pk mod q.

Step 3: Equivalence of LHS′ and RHS′
1213

- Both LHS′ and RHS′ reduce to pk mod q, implying:1214

LHS′ = RHS′ ⇐⇒ σ was generated using the correct private key.

Step 4: Probabilistic Argument for Invalid Signature1215

- For an invalid σ, the transformations in LHS and RHS will not align. To quantify this:1216

- The output of J(pk∥fs) is uniformly distributed over its range. - Each σ candidate1217

not generated with the correct private key maps to a random equivalence class under px,1218

with negligible probability of aligning with LHS. - The adversary must guess both:1219

• σ, which depends on the secret key x and the private matrix U ,1220

• The hash J(pk∥fs), which is computationally infeasible due to the pre-image resis-1221

tance of J .1222

- The success probability of forging σ without knowledge of x is bounded by:1223

Psuccess ≤
1

qn
,

where qn is the size of the search space for σ. This represents an information-theoretic1224

lower bound on the success probability.1225

38

Step 5: Contrapositive1226

- For an invalid σ, the mismatch between LHS′ and RHS′ occurs due to inconsistencies1227

in equivalence class mapping, leading to:1228

LHS′ ̸= RHS′.

Conclusion1229

The verification equation LHS′ = RHS′ holds if and only if the signature σ is generated1230

using the valid private key x, the private matrix U , and the specified public key and basis1231

B constraint C1. The probabilistic argument establishes that forging a valid σ without1232

knowledge of the private key is computationally infeasible with high probability.1233

10 Implementation Details1234

10.1 Matrix Generation Using Diverse Cryptographically Se-1235

cure PRNGs1236

To ensure cryptographic security and reproducibility, the public and private matrices in1237

our construction should be generated deterministically using distinct cryptographically1238

secure pseudorandom number generators (CSPRNGs). These are recommendations for1239

high security, and certain implementations may prefer alternate functions.1240

10.1.1 Public Matrix Generation1241

The public matrices A used to generate the subgroup Hright are derived using AES-1242

DRBG, per NIST-approved DRBG specifications. Each matrix A ∈ Zn×n
q is constructed1243

as follows:1244

1. Input: A 256-bit public seed SeedA, which may be application-specific or predefined.1245

2. Generation: Use AES-DRBG in CTR mode to generate n2 entries.1246

3. Mapping: Map each entry modulo q to produce a dense, full-rank matrix A.1247

4. Validation: Optionally verify A’s rank to ensure it is full rank.1248

This deterministic process is efficient, ensures reproducibility, and eliminates reliance on1249

weak randomness.1250

10.1.2 Private Matrix Generation1251

The private matrices U , which define the subgroup Hleft, are generated using SHA-512,1252

SHA3-512, or SHAKE-256:1253

1. Pre-Input: Optionally use a private 256-bit (or larger) value to key the hash func-1254

tion.1255

2. Input: A 256-bit private seed Seed U , derived from an entropy source or securely1256

exchanged during key generation.1257

39

3. Hashing: Apply the chosen hash function to Seed U to produce n2 pseudorandom1258

outputs.1259

4. Mapping: Map these outputs modulo q to construct U , ensuring full rank and1260

density.1261

5. Validation: Optionally verify U ’s rank to confirm full rank.1262

10.1.3 Security Implications1263

Using AES-DRBG for public matrices and SHA-512/SHA3/SHAKE for private matri-1264

ces ensures high entropy, cryptographic security, compliance with NIST standards, and1265

diversity in matrix generation. These methods eliminate correlations between A and U ,1266

ensuring the subgroup structures Hright and Hleft align with the theoretical reductions to1267

NAHSP. Deterministic generation guarantees that the matrices are free from vulnerabil-1268

ities introduced by weak or biased randomness. Furthermore, ensuring full rank for both1269

matrices preserves the cryptographic strength of the construction.1270

10.2 Algorithm Details1271

10.3 Utility Algorithms1272

Note that we don’t specify the specific pseudo-random algorithm used to expand the1273

seed value, as this function is designed to be modular. In our reference instance we use1274

AES256-DRBG, but other PRNG constructions are certainly supported.1275

Algorithm 1 Sample(seed)

Generates a matrix for the with non-zero elements.

Require: Dimensions K,N , prime modulus Q1, root R1, and seed seed.
1: Initialize A[K][N][N] as an empty matrix.
2: for mat = 0 to K − 1 do
3: rows written← 0.
4: while rows written < N do
5: Generate pseudo-random buffer buff using seed.
6: for y = 0 to N − 1 do
7: Extract trial vec from buff.
8: Apply transformation NTT(trial vec, Q1, R1).
9: if trial vec contains no zero elements then
10: Store trial vec in A[mat][rows written].
11: rows written← rows written + 1.
12: if rows written = N then
13: break inner loop.
14: end if
15: end if
16: end for
17: end while
18: end for
19: return A.

40

Algorithm 2 genC2(elm1, elm2,m, SIG fs, SIG r)

Generates a constraint element v by hashing inputs and reducing modulo Q1.

Require: Elements elm1, elm2 of size N , public variables m, SIG fs, SIG r of size
SEED SIZE, and prime modulus Q1.

Ensure: Element v[N] with non-zero elements.
1: Initialize SHAKE256 context: mdctx.
2: if mdctx initialization fails then
3: Throw error and terminate.
4: end if
5: Begin SHAKE256 hashing process.
6: Update hash with elm1, elm2, m, SIG fs, and SIG r.
7: Finalize hash to produce hash output[N × sizeof(int32 t)].
8: for i = 0 to N − 1 do
9: Extract val from hash output[i].
10: Compute v[i]← abs(val) mod Q1.
11: if v[i] = 0 then
12: Set v[i]← 1 to ensure non-zero component.
13: end if
14: end for
15: Free SHAKE256 context: mdctx.
16: return v.

41

Algorithm 3 genC1(pk, SIG MATRIX)

Generates constraining element set C1 by computing a cubed and hashed
version of pk ·B.

Require: Element pk[N], signature matrix SIG MATRIX[K][N][N], and prime modulus
Q1.

Ensure: Matrix C1[K][N] with processed values.
1: Initialize vector LHS ← pk.
2: Initialize result[N]← 0, LHS[N]← pk.
3: for mat = 0 to K − 1 do
4: Reset result[N]← 0.
5: result← MatrixVectorProduct(SIG MATRIX[mat],LHS, Q1).
6: LHS← result.
7: Compute LHS ← LHS3 mod Q1.
8: Initialize SHAKE256 context: mdctx.
9: if mdctx initialization fails then
10: Throw error and terminate.
11: end if
12: Begin SHAKE256 hashing process.
13: Update hash with LHS, result.
14: Finalize hash to produce hash output[N]].
15: for i = 0 to N − 1 do
16: Extract val from hash output[i].
17: Compute v[i]← abs(val) mod Q1.
18: if v[i] = 0 then
19: Set v[i]← 1 to ensure non-zero component.
20: end if
21: end for
22: Free SHAKE256 context: mdctx.
23: Store LHS in C1[lat].
24: end for
25: return C1.

Table 4: Parameter Values for Levels 1, 3, and 5

Level Dimension (N) ω (R1) Chain (K) (Q1) (SEED SIZE)

1 64 81 8 257 16
3 128 9 6 257 24
5 256 3 4 257 32

42

Key Generation Algorithm1276

Algorithm 4 KeyGen()

Generates public and private keys.

Require: Prime modulus Q1, root R1, dimension N , number of chains K, seed size
SEED SIZE.

1: Initialize secretKeys[K][N] uniformly random x in the range [1, 255].
2: Initialize matrix: MATRIX A[K][N][N].
3: Initialize matrix: MATRIX U[K][N][N].
4: Generate random seed: PK SEED A of length SEED SIZE.
5: Generate random seed: SK SEED U of length SEED SIZE.
6: Sample MATRIX A using PK SEED A.
7: Sample MATRIX U using SK SEED U.
8: Initialize current pk← secretKeys[0].
9: current pk← NTT(current pk, Q1, R1).
10: for I = 0 to K − 1 do ▷ Iterate through the chain of transformations.
11: Initialize result[N]← 0.
12: if I > 0 then
13: Update skey← secretKeys[I] and compute skey← NTT(skey, Q1, R1).
14: Element-wise multiplication: current pk← skey ◦ current pk mod Q1.
15: end if
16: result← MatrixVectorProduct(MATRIX A[I], current pk, Q1).
17: current pk← result.
18: result[N]← 0.
19: result← MatrixVectorProduct(MATRIX U[I], current pk, Q1).
20: Apply hiding function: current pk← px(result).
21: end for
22: Ensure non-zero condition: nonzero count(current pk) ≥ N .
23: if Condition fails then
24: Retry key generation.
25: end if
26: return current pk,PK SEED A, SK SEED U, secretKeys[K]

43

10.4 Signature Generation1277

Algorithm 5 Sign(m, secretKeys[K], PK SEED A, pk elem, SK SEED U)

Generates a signature for a message.

Require: Prime modulus Q1, root R1, dimension N , chain count K, seed
size SEED SIZE, message m, , secret keys secretKeys[K][N], public seed
PK SEED A, public key pk elem, secret seed SK SEED U .

1: Initialize sig[N]← 0.
2: Set SIG COMPLETED← 0.
3: Generate random bytes: rand A, rand B of size SEED SIZE.
4: Compute FS using shake256(rand A,PK SEED A, pk element).
5: Compute SIG SEED B using shake256(FS,m, rand B, pk element).
6: Sample matrix: MATRIX B[K][N][N] using SIG SEED B.
7: Sample matrix: MATRIX U[K][N][N] using SK SEED U.
8: Initialize C1[K][N] via genC1(pk,MATRIX B).
9: Set sig← secretKeys[0] and apply forward ntt(sig, Q1, R1).
10: for I = 0 to K − 1 do
11: if I > 0 then
12: skey← forward ntt(secretKeys[I], Q1, R1).
13: sig← skey ◦ sig mod Q1.
14: end if
15: result[N]← MatrixVectorProduct(MATRIX B[I], sig, Q1).
16: sig← result
17: result[N]← 0.
18: result[N]← MatrixVectorProduct(MATRIX U[I], sig, Q1).
19: sig← sig ◦ C1[I] mod Q1.
20: Apply Hiding Function sig← px(result)).
21: end for
22: Apply inverse ntt(sig, Q1, R1).
23: Validate Entropy C3 CHECK← Verify entropy(sig).
24: C3 Check Retry after clearing buffers if C3 CHECK = 1.
25: Count non-zero elements in sig.
26: if nonzero count(sig) ≥ N then
27: Output sig,FS, rand B.
28: else
29: Retry after clearing buffers.
30: end if

10.5 Signature Verification1278

This function uses the Fiat-Shamir heuristic to reconstruct the signature basis seed that1279

was used during the signing process. Together with the public key matrix seed, both1280

public and signature matrices are sampled and ’swapped’, such that sig signature element1281

is transformed by the public basis and the public key element is transformed by the1282

signature basis. The public key is also isomorphically transformed by the masking value1283

that was used at each layer during signing. This mask is derived from the interaction1284

between the public key and the signature basis, effectively binding them together.1285

44

Additionally as valid signatures are information theoretically guaranteed to have ob-1286

servational entropy at or near maximum, we leverage this to detect potential forgeries.1287

Algorithm 6 Verify(m,PK SEED A, pk elem, sig, FS, rand B)

Verifies the signature of a message.

Require: Message m, public seed PK SEED A, public key pk elem, signature sig,
Fiat-Shamir heuristic FS and randomizer rand B.

1: Initialize SIG SEED B[SEED SIZE], C2[N], C3 CHECK ← 0.
2: Validate Entropy C3 CHECK← Verify entropy(sig).
3: C3 Check return 0 if C3 CHECK = 1.
4: Compute C2 using genC2(sig, pk elem,m, FS, rand B).
5: Apply forward ntt(C2, Q1, R1) and forward ntt(sig,Q1, R1).
6: Construct temp fs by concatenating FS, m, rand B, and pk elem.
7: Compute SIG SEED B using shake256(temp fs).
8: Sample matrix: PK MATRIX[K][N][N] using PK SEED A
9: Sample matrix: SIG MATRIX[K][N][N] using SIG SEED B.
10: Initialize LHS[N]← pk elem, RHS[N]← sig.
11: Compute C1[K][N] using genC1(pk, SIG MATRIX).
12: for I = 0 to K − 1 do
13: LHS← LHS ◦ C2 mod Q1.
14: LHS← MatrixVectorProduct(SIG MATRIX[I],LHS).
15: LHS← LHS ◦ C1[I] mod Q1.
16: if I ̸= K − 1 then
17: Apply Equivocation function: LHS← px(LHS).
18: end if
19: end for
20: for I = 0 to K − 1 do
21: RHS← RHS ◦ C2 mod Q1.
22: RHS← MatrixVectorProduct(PK MATRIX[I],RHS).
23: if I ̸= K − 1 then
24: Apply Equivocation function: RHS← px(RHS).
25: end if
26: end for
27: Compare RHS and LHS.
28: return 0 if equal, otherwise 1.

Observed Entropy Rejection Sampling1288

As part of what we are calling the third constraint, we want to rejection sample based on1289

the observed randomness of the σ input. We are considering elements of length of n =1290

{64, 128, 256} and have implemented constraints thus far on two probabilistic features,1291

bit level and byte level randomness. In the byte probability case, we are measuring each1292

component byte value, with the ideal σ having zero colliding component values. However,1293

we find that given the small sets of we are considering, we see multiple values appear two1294

or three times, despite being valid.1295

To increase the granularity of randomness checking, we measure the raw ratio of 0 and1296

1 value bits across the array. For n = 128, where an ideally random signature would have1297

45

512 value 0 bits and 512 value 1 bits. To constrain input signatures to approximately1298

1/10 of the total possible modular space, we set the threshold ratio to 0.991. But,1299

a ”downshifted” element where components were in the range of {0, . . . , 255} entirely1300

consisting of value 128 would pass with 512 0 bits and 512 1 bits. To correctly reject1301

invalid signatures, we measure both bit level entropy and byte level entropy.1302

Table 5: Observed Entropy Thresholds for Different Values of using Byte probabilities N

N H THRESHOLD
64 5.8
128 6.8
256 7.8

Table 6: Observed Entropy Thresholds for Different Values of using Bit probabilities N

N HB THRESHOLD
64 0.991
128 0.991
256 0.991

Algorithm 7 Verify Entropy(sig)

Validates the entropy of a signature.

Require: Signature sig.
1: Extract entropy-relevant components from sig: SIG VALUES← extract(sig).
2: Compute the empirical distribution DIST of SIG VALUES over the modular domain

[0, Q).
3: Calculate the Shannon entropy H SIG:

H SIG← −
∑

x∈DIST

p(x) log p(x),

where p(x) is the probability of x in DIST.
4: Extract count of 0 bits and 1 bits from sig as COUNT0 and COUNT1.
5: Compute Ratio as HB SIG.
6: if H SIG < H THRESHOLD and HB SIG < HB THRESHOLD then
7: return 1 ▷ Entropy too low, validation fails.
8: else
9: return 0 ▷ Entropy validation succeeds.
10: end if

While the underlying concept of rejection sampling based on entropy should be clear,1303

the exact implementation is to be refined in subsequent revisions of this preprint. The1304

achievable constraint is that the adversary cannot forge σ using the entire ambient mod-1305

ular space, but only a specific fraction of it. This will lead to more refined and accurate1306

probability.1307

46

10.6 Hiding Function1308

Table 7: Hiding Function NTT Parameters - Prime Fields and ω Roots of Unity

Level Q1 R1 Q2 R2 R3
I 257 81 1283 3 3
III 257 9 1283 3 3
V 257 3 1283 3 3

Each round of modular addition causes approximately half of the coefficients to wrap1309

around the modulus, creating information loss and diffusion. Mapping to a higher mod-1310

ulus, combined with scaling and permutation is responsible for the bulk of pre-images1311

introduced by the hiding function. This function can be modified based on a predeter-1312

mined optimal mapping ratio of output to potential valid pre-image inputs. As an initial1313

setting, for level III, we target a compression ratio of 2293 to 1 out of qn possibilities, creat-1314

ing a computationally sufficient number of indistinguishable elements per coset, invariant1315

across both the hidden and ambient group elements.1316

Algorithm 8 Hiding Function px(in elem)

Transforms an input, a coset of group N , altering the structure using a series
of modular operations creating a many-to-one mapping.

Require: Input vector in elem[N], prime moduli Q1, Q2, roots R1, R2.
Ensure: Output vector out elem[N].
1: Allocate temporary arrays: vecsq[N],vec[n].
2: Copy vecsq← in elem.
3: vecsq← inverse ntt(vecsq, Q1, R1).
4: vecsq← forward ntt(vecsq, Q2, R2).
5: Copy vec← vecsq.
6: vecsq← pointwise addition(vecsq, vecsq, Q2).
7: vecsq← pointwise addition(vecsq, vec, Q2).
8: vecsq← pointwise addition(vecsq, vec, Q2).
9: vecsq← pointwise addition(vecsq, vec, Q2).
10: vecsq← inverse ntt(vecsq, Q2, R2).
11: vecsq← forward ntt(vecsq, Q1, R1).
12: out vec← vecsq
13: return out vec.

Note that step 11 performs an NTT forward transformation in the Q1 domain. After1317

step 10, as a result of the internal diffusion and inverse NTT from Q2, we will have an1318

element, (for level III) will look like this:1319

320, 925, 1060, 280, 475, 730, 1065, 20, 1120, 845, 1110, 125, 255, 430, 1245, 230, 165, 300, 695, 565,
1320

980, 1005, 175, 860, 1135, 785, 610, 765, 760, 855, 1000, 175, 485, 310, 635, 710, 1015, 1110, 240, 1155, 40,
1321

960, 1225, 840, 545, 220, 1005, 390, 940, 765, 1245, 40, 840, 320, 750, 1170, 120, 410, 480, 1270, 530, 470,
1322

380, 530, 290, 25, 350, 325, 1265, 1005, 1275, 0, 975, 1055, 315, 1005, 915, 985, 240, 545, 455, 730, 570,
1323

875, 320, 60, 200, 835, 880, 1205, 685, 1190, 1200, 495, 260, 245, 300, 370, 120, 700, 795, 330, 295, 705,

47

1324

660, 695, 320, 455, 905, 1095, 105, 300, 30, 145, 1095, 900, 285, 1010, 395, 650, 695, 465, 1195, 545, 1185,
1325

305, 255, 1175, 128

This is a result of using an NTT ω that isn’t technically ’valid’ for this field and array1326

size. This is fine and intentional. We aren’t performing any convolutional operations1327

with this field (so the ω value isn’t a factor) and it gives us a uniformly distributed set1328

of components across 0 to 1282. We perform step 11 to explicitly alias the array back to1329

the same reside class as the q = 257 NTT domain. After step 11, for level III, the same1330

array becomes:1331

253, 85, 34, 171, 146, 12, 128, 73, 193, 243, 20, 119, 243, 158, 19, 237, 198, 185, 149, 15, 0, 0, 88, 112, 0,
1332

193, 0, 201, 181, 68, 131, 0, 216, 14, 96, 130, 206, 220, 168, 153, 251, 200, 194, 154, 116, 151, 59, 163, 152,
1333

193, 228, 198, 107, 170, 243, 111, 117, 209, 215, 230, 145, 165, 29, 252, 200, 82, 52, 115, 241, 55, 221,
1334

135, 137, 243, 119, 197, 169, 216, 162, 70, 196, 234, 236, 178, 201, 66, 114, 101, 249, 26, 4, 184, 30, 76,
1335

218, 201, 97, 240, 186, 182, 83, 248, 184, 7, 162, 178, 90, 94, 205, 43, 69, 213, 234, 55, 131, 253, 49,
1336

208, 167, 216, 130, 108, 18, 142, 155, 205, 137, 217, 128

This aliasing of components from a field ≈ 5 times larger down to q = 257 is how we1337

generate multiple pre-images per output, and compress inputs to a specific equivalence1338

class.1339

Empirical testing demonstrates that outputs from the mapping function px(·) ap-1340

pear statistically uniform and indistinguishable from random values. This uniformity is1341

achieved through the interplay of NTT-based projections, modular scaling, and iterative1342

mixing operations applied over a larger finite field.1343

The vector t spans the full ambient group G as matrix A is full rank and changes with1344

each operation and secret x is uniformly random. combined This projection t′ ≡ U · t also1345

spans the entire ambient space. This process effectively blurs the cosets of N , distributing1346

them uniformly over Zq
n and mapped to a specific equivalence classes created by px(·).1347

As a result, recovering all valid indistinguishable pre-images for a given output element1348

of px(·) is insufficient to reconstruct N . The pre-images include a superset of elements1349

comprising valid members of unrelated ambient group elements, with probabilistically1350

only one valid element. This amalgamation obscures the boundaries of the ’true’ N ,1351

making it computationally infeasible to distinguish subgroup membership based solely1352

on inversion of px(·).1353

11 Attack Models1354

In this section, we rigorously analyze the security of the proposed cryptographic scheme1355

against both classical and quantum adversaries. We focus on proving that the scheme1356

achieves IND-CPA (Indistinguishability under Chosen Plaintext Attack) security by demon-1357

strating the computational infeasibility of recovering the hidden subgroup N or distin-1358

guishing ciphertexts under the specified attack models.1359

48

11.1 Classical Adversaries1360

Classical adversaries are limited to polynomial-time algorithms and lack quantum com-1361

putational capabilities. We will show that, under standard cryptographic assumptions,1362

such adversaries cannot feasibly recover the private keys or forge valid signatures.1363

11.1.1 Preliminaries1364

Let us recall the key components:1365

• The public key pk = t′′ = px(t′), where t′ = U · t mod q and t = A · x mod q.1366

• The mapping function px(·) is a lossy, many-to-one function inducing high ambi-1367

guity.1368

• The hidden subgroup N is embedded in the non-abelian group G = Hleft ⋉Hright.1369

11.1.2 Proof of Security Against Classical Adversaries1370

Lemma 1 (Computational Indistinguishability). Under the assumption that px(·)1371

is a pseudorandom function and that the underlying group operations are secure, any1372

polynomial-time classical adversary has a negligible advantage in distinguishing between1373

valid signatures and random elements, or in recovering the private key x or the matrix1374

U .1375

Proof. To prove this lemma, we proceed by contradiction. Assume there exists a1376

polynomial-time classical adversary A that can distinguish valid signatures or recover1377

x or U with non-negligible probability.1378

Step 1: Reduction to the Hardness of NAHSP.1379

Recall that recovering x or U is equivalent to solving the Non-Abelian Hidden Sub-1380

group Problem (NAHSP) in the group G.1381

- The adversary’s task reduces to finding N given oracle access to f(g) = px(U ·A ·x).1382

- As established in Section 3, solving NAHSP in this group is computationally infea-1383

sible for classical adversaries.1384

Step 2: Indistinguishability of px(·) Outputs.1385

- The function px(·) introduces high ambiguity, mapping exponentially many inputs1386

to the same output.1387

- From Lemma 3 in Section 4.3, we know that the outputs of px(·) are computationally1388

indistinguishable from uniform random elements in Zn
q .1389

Step 3: Adversary’s Advantage is Negligible.1390

- The adversary A cannot distinguish between px(U · A · x) and a random element1391

without solving NAHSP.1392

- The probability that A successfully recovers x or U is bounded by ε = 1
2λ
, where λ1393

is the security parameter (e.g., λ = 297 as per the preimage count).1394

- Since ε is negligible, A cannot succeed with non-negligible probability.1395

Conclusion. Therefore, under standard cryptographic assumptions, no polynomial-1396

time classical adversary can break the scheme, ensuring IND-CPA security against such1397

adversaries.1398

49

11.2 Quantum Adversaries1399

Quantum adversaries have access to quantum computational resources, including algo-1400

rithms like the Quantum Fourier Transform (QFT) and Grover’s algorithm. We will1401

demonstrate that even with these capabilities, adversaries cannot feasibly compromise1402

the scheme.1403

11.2.1 Proof of Security Against Quantum Adversaries1404

Lemma 2 (Resistance to Quantum Attacks). Under the assumption that the NAHSP1405

is hard for quantum computers in non-abelian groups, and given the properties of the map-1406

ping function px(·), any polynomial-time quantum adversary has a negligible advantage1407

in breaking the scheme.1408

Proof. Step 1: Non-Abelian Structure Prevents Efficient QFT-Based At-1409

tacks.1410

- Quantum algorithms like Shor’s algorithm rely on the ability to perform efficient1411

QFT over abelian groups.1412

- The group G = Hleft ⋉Hright is non-abelian, as shown in Section 3.1.1413

- As a result, the standard QFT does not provide a means to solve the hidden subgroup1414

problem efficiently in G.1415

Step 2: Ambiguity Introduced by px(·).1416

- The mapping function px(·) further complicates any attempt to extract information1417

via quantum algorithms.1418

- From Lemma 7 in Section 4.7, even if a quantum adversary could invert px(·), they1419

would face an exponentially large preimage space, with 2297 indistinguishable candidates.1420

Step 3: Grover’s Algorithm is Ineffective Due to Exponential Search Space.1421

- Grover’s algorithm provides a quadratic speedup for unstructured search problems.1422

- Grover’s algorithm generally is easily applied to chained systems with multiple secrets.1423

Step 4: No Known Quantum Algorithm Solves NAHSP in Non-Abelian1424

Groups Efficiently.1425

- Despite extensive research, no quantum algorithm has been found that solves the1426

NAHSP efficiently in general non-abelian groups.1427

- The hardness of NAHSP in such groups is a widely accepted assumption in quantum1428

cryptography.1429

Conclusion. Given the non-abelian structure of the group and the properties of px(·),1430

quantum adversaries cannot break the scheme with non-negligible probability. Therefore,1431

the scheme achieves IND-CPA security even in the presence of quantum adversaries.1432

11.3 IND-CPA Security Proof1433

We now provide a formal proof that the scheme is IND-CPA secure.1434

Theorem 1 (IND-CPA Security). Under the assumption that the NAHSP is hard1435

for both classical and quantum adversaries, and that px(·) behaves as a pseudorandom1436

function, the proposed digital signature scheme is IND-CPA secure.1437

50

Proof. Definition of IND-CPA Security.1438

A digital signature scheme is IND-CPA secure if no polynomial-time adversary can1439

distinguish between signatures of chosen messages, even when given access to a signing1440

oracle.1441

Game-Based Proof Structure.1442

We consider the standard IND-CPA security game between a challenger and an ad-1443

versary A:1444

1. Setup: The challenger generates a public-private key pair (pk, sk) and provides1445

pk to A.1446

2. Query Phase: A may request signatures on messages of its choice.1447

3. Challenge Phase: A selects two messages m0 and m1. The challenger randomly1448

selects b ∈ {0, 1} and returns σ = Sign(mb, sk).1449

4. Guess Phase: A outputs a guess b′. The adversary wins if b′ = b.1450

Our goal is to show that Pr[b′ = b] ≤ 1
2
+ ε, where ε is negligible.1451

Analysis.1452

Assume, for contradiction, that A can win the game with a non-negligible advantage1453

δ.1454

Step 1: Construction of a Simulator to Solve NAHSP.1455

We construct a simulator S that uses A to solve the NAHSP:1456

- S receives an instance of NAHSP in G and needs to find the hidden subgroup N .1457

- S simulates the challenger for A, using the NAHSP instance to generate public keys1458

and signatures.1459

- When A outputs b′, S uses this information to extract information about N .1460

Step 2: Contradiction with the Hardness of NAHSP.1461

- If S can solve NAHSP using A’s advantage δ, then the hardness assumption of1462

NAHSP is violated.1463

- Therefore, δ must be negligible.1464

Step 3: Security Reduction via Hybrid Arguments.1465

- We can define a sequence of hybrid experiments transitioning from the real scheme1466

to an ideal scheme where signatures are replaced with random values.1467

- The indistinguishability of outputs from px(·) ensures that A cannot distinguish1468

between hybrids with non-negligible advantage.1469

Conclusion.1470

Since any non-negligible advantage δ leads to a contradiction with the hardness of1471

NAHSP, we conclude that A cannot win the IND-CPA game with more than negligible1472

advantage. Therefore, the scheme is IND-CPA secure.1473

11.4 Resistance to Forgery Under Chosen Message Attacks1474

Theorem 2 (Unforgeability under Chosen Message Attack). Assuming the hard-1475

ness of NAHSP and the collision resistance of the hash function J(·), the proposed scheme1476

is existentially unforgeable under chosen message attacks (EUF-CMA).1477

Proof. Step 1: Assumptions and Definitions. - Let A be an adversary attempting1478

to forge a valid signature σ∗ for a message m∗ that has not been queried during the1479

signing oracle phase. - The scheme uses the Fiat-Shamir heuristic to bind the signature1480

to the message, the public key, and a random nonce. - A valid forgery requires A to1481

51

produce σ∗ such that:1482

Verify(m∗, σ∗, pk) = true.

Step 2: Connection to NAHSP and px(·). - To forge σ∗, A must either: 1.1483

Recover the private key x or the hidden matrix U , allowing the computation of valid1484

transformations. This is equivalent to solving the Non-Abelian Hidden Subgroup Problem1485

(NAHSP), which is assumed to be hard. 2. Generate a valid preimage under px(·)1486

without access to the private key or matrix. The lossy, many-to-one nature of px(·)1487

ensures that the adversary cannot distinguish valid preimages from an exponentially1488

large indistinguishable set.1489

Step 3: Resistance to Hash Function Collisions. - The Fiat-Shamir heuristic1490

involves the hash function J(·), which produces a binding challenge for the signature.1491

For A to forge σ∗, it must either: 1. Find a collision J(pk ∥ m∗ ∥ r) = J(pk ∥ m′ ∥ r′),1492

which is infeasible due to the assumed collision resistance of J(·). 2. Guess the challenge1493

generated by J(·) and align it with a valid subgroup element. The probability of such a1494

guess is negligible due to the high entropy of the output space of J(·).1495

Step 4: Reduction to a Hard Problem. - Assume A successfully forges σ∗ with1496

non-negligible probability. We construct a simulator S that uses A to solve NAHSP or1497

find a collision in J(·): 1. S simulates the signing oracle for A, generating signatures1498

using a secret key x and the private matrix U . 2. If A outputs a valid forgery σ∗, S1499

uses σ∗ to extract information about the hidden subgroup N or to find a collision in J(·).1500

3. Since both outcomes contradict the hardness of NAHSP or the collision resistance of1501

J(·), A’s success probability must be negligible.1502

Step 5: Conclusion. - The adversary A cannot forge a valid signature σ∗ on a1503

message m∗ without solving NAHSP, inverting px(·), or finding a collision in J(·), all of1504

which are computationally infeasible. - Therefore, the proposed scheme is existentially1505

unforgeable under chosen message attacks (EUF-CMA).1506

11.5 Inapplicability of CCA2 Security1507

It is important to note that oue proposed digital signature scheme does not incorporate1508

a decryption oracle, as it is not designed to handle encrypted messages or ciphertext1509

directly. The absence of such an oracle renders the chosen ciphertext attack (CCA2)1510

model irrelevant for this construction.1511

Instead, the security of the scheme is analyzed under the IND-CPA (Indistinguisha-1512

bility under Chosen Plaintext Attack) and EUF-CMA (Existential Unforgeability under1513

Chosen Message Attack) models, which are sufficient and appropriate given the nature1514

of the signature application.1515

By excluding a decryption oracle, the scheme eliminates a common attack vector1516

associated with adaptive adversaries in CCA2 scenarios, further solidifying its robustness1517

in practical cryptographic deployments.1518

11.5.1 Brute Force Key Recovery1519

Brute force recovery of secrets is implementation dependent. The scheme covered in1520

this document leverages a single private matrix seed for each instance in the chain, and1521

unique password x elements per instance. Based on size and security concerns, if pri-1522

vate key size was critical, the private key, in theory, could be shrunk to a single secret1523

seed that expanded to provide every hidden matrix and x element. If absolute security1524

52

were paramount, each hidden matrix could be derived from its own seed, or stored fully1525

instantiated. In this brief analysis, we will simply derive the costs of brute forcing the1526

scheme as described. Each level has k chains, with one x secret element, effectively n1527

bytes long. Additionally, each level has one hidden matrix seed, of SEED SIZE length,1528

in bytes. Relative sizes are listed below:1529

Table 8: Brute Force Secret Byte Analysis

n k Single x All x Hidden Seed Total Secret Complexity

64 8 64 512 16 528 24224

128 6 128 768 24 792 26336

256 4 256 1024 32 1056 28448

As even level I requires 24224 classical operations, brute force attacks do not appear to1530

be a practical concern with the variant as described in this paper. Note that this could1531

change depending on various implementation optimizations.1532

11.6 Conclusion on Attack Models1533

Through rigorous proofs, we have established that the proposed cryptographic scheme is1534

secure against both classical and quantum adversaries. The security relies on:1535

• The computational hardness of the NAHSP in non-abelian groups.1536

• The pseudorandomness and computational indistinguishability introduced by the1537

mapping function px(·).1538

• The collision resistance of the hash function used in the Fiat-Shamir heuristic.1539

These properties collectively ensure that adversaries cannot feasibly recover private1540

keys, forge signatures, or distinguish ciphertexts, thereby achieving IND-CPA security1541

and resisting forgery under chosen message attacks.1542

12 Implementation and Efficiency1543

12.1 Performance Evaluation1544

Table 9: Compute Cycles (in Megacycles) for Key Generation, Signing, and Verification

Level Key Generation (Mc) Signature (Mc) Verification (Mc)
I .49 .38 .44
III 1.03 .958 1.10
V 9.46 3.25 3.48

Platform: Apple MacBook M2 MAX with 32 GB RAM.1545

53

Level n PK (bytes) Sig (bytes) k
I 64 80 96 8
III 128 152 176 6
V 256 288 320 4

Table 10: Public Key, Signature Sizes, and Chain Instances Across Levels

12.2 Comparison with Other Schemes1546

Table 11: Performance Metrics of Alternative Signature Algorithms (in Bytes and Mega-
cycles)

Algorithm PK+SIG (Bytes) Sign (Mcycles) Verify (Mcycles)
Dilithium2 3,732 0.333 0.118
Dilithium3 5,261 0.529 0.179
Dilithium5 7,219 0.642 0.280
MAYO1 1,489 .461 .175
MAYO3 3,233 1.664 .610
MAYO5 5,846 4.150 1.186
HAWK-512 1,573 .085 .148
HAWK-1024 3,661 .180 .303
Falcon-512 1,563 1.010 .081
Falcon-1024 3,073 2.053 .161
SLH-DSA-128f 17,120 239.794 12.910
SLH-DSA-192f 35,712 386.862 19.877
SLH-DSA-256f 49,920 763.942 19.886
SQIsign-1 241 5,669.00 108.00
SQIsign-3 359 43,760.00 654.00
SQIsign-5 463 158,544.00 2,177.00
EQISIGN-I 176 .38 .44
EQISIGN-III 328 .958 1.10
EQISIGN-V 608 3.25 3.45

The above data was been gathered from the PQShield Post-Quantum signatures zoo, we1547

have not verified it and the most recent developments may not be reflected, but we feel1548

the source is accurate for this early comparison. To date, our priority has been theo-1549

retical security and communication efficiency, with little attention paid to performance1550

optimization. Over time, it is almost certain our performance numbers will improve be-1551

yond our reference instance. We are using portable ANSI C, openSSL/TSL, our portion1552

of the code does not leverage intrinsics, is single threaded, and the majority of time is1553

currently spent expanding matrices from seed. With dedicated effort we feel performance1554

and optimization will yield significant improvements. That said, we do not expect to1555

outperform ML-DSA in terms of compute, nor do we expect computational performance1556

to be a barrier for adoption.1557

0Data source: https://pqshield.github.io/nist-sigs-zoo/c

54

https://pqshield.github.io/nist-sigs-zoo/c

12.3 Rejection Sampling of Zero Coefficients in Output Vari-1558

ables1559

The elimination of zero value elements is a strong method to create resilience against1560

heuristic cryptanalysis, both quantum and classical. Due to the zero product property of1561

finite fields, allowing the value zero tends to cause accumulation in output variables (keys,1562

signatures) opening a window for exploitation. Additionally, while not covered elsewhere,1563

in practical implementations, combined with the working modulus of q = 257, we are1564

able to leverage the possible component range to increase communications efficiency.1565

Under normal circumstances, operating modulo 257 results in elements that range from1566

{0, ..., 256}, or 257 unique values, requiring 9 bits to accurately represent. The elimination1567

of zero via rejection sampling allows each value to map to 256 elements which can be1568

represented using 8 bits.1569

Simply, when serializing variables for transmission, before transmission we simply1570

subtract one from each value. Upon receiving keys or signatures we ’reconstitute’ them1571

by incrementing each by one, mapping back to the appropriate original values. This is1572

an easy optimization to align with normal machine word boundaries.1573

13 Open Research Questions1574

1. For function px(), the optimal ratio of class size to class number in relation to group1575

sizes |G| and |N | is an open question.1576

2. Correct formal complexity classification of NAHSP under extreme equivocation.1577

The NAHSP is conjectured to be in the EXP complexity class, with no known1578

efficient quantum algorithm. These conjectures should be proven if possible, but1579

this work is outside the scope of this paper.1580

14 Applications of Matrix based NAHSP-Based Cryp-1581

tography1582

The NAHSP-based cryptographic scheme offers a versatile, lightweight, and quantum-1583

resistant framework for diverse applications. Its compact signatures, efficient communica-1584

tion requirements, and ability to deploy through software patches without new hardware1585

set it apart from traditional lattice-based approaches such as Dilithium. These features1586

enable its use in domains ranging from terrestrial networks to undersea and RF-limited1587

environments, making it uniquely suited for next-generation cryptographic needs.1588

14.1 Core Cryptographic Capabilities1589

An NAHSP-based scheme based on bilinear matrices can be extended beyond founda-1590

tional primitives to more advanced cryptographic constructions:1591

• Digital Signatures: Compact and efficient signatures ensure secure authentication,1592

document signing, and certificate management, with communication sizes signifi-1593

cantly smaller than lattice-based systems like Dilithium.1594

55

• Public Key Agreement: Enables fast, quantum-resilient key exchanges with minimal1595

communication overhead, ideal for constrained networks.1596

• Identity-Based and Attribute-Based Cryptography: Supports fine-grained access con-1597

trol, allowing secure communication based on user identities or attributes without1598

requiring heavy key distribution infrastructure.1599

• Zero-Knowledge Proofs (ZKPs): Facilitates privacy-preserving verification of state-1600

ments without exposing underlying secrets, essential for regulatory compliance and1601

secure interactions.1602

14.2 Efficient Communication and Deployability1603

Compact Communication Sizes:1604

• NAHSP-based cryptography achieves extremely small communication footprints,1605

with signatures and keys often requiring a fraction of the size used by lattice-1606

based systems. This efficiency is critical in bandwidth-limited environments such1607

as undersea and RF networks.1608

• Example: For a security level equivalent to Dilithium-III, the NAHSP-based scheme1609

offers signatures of 80 bytes and public keys under 100 bytes, compared to the1610

hundreds or thousands of bytes required by Dilithium.1611

Software-Only Deployment:1612

• Unlike lattice-based systems, which often require specialized hardware for efficient1613

operation, NAHSP-based cryptography can be implemented as a drop-in replace-1614

ment via software patches.1615

• This allows immediate deployment in existing infrastructures, including mobile de-1616

vices, routers, and IoT systems, without the need for hardware upgrades.1617

• Rapid updates ensure forward compatibility with evolving security standards while1618

minimizing deployment costs.1619

14.3 Secure Communication Across Diverse Environments1620

NAHSP-based cryptography’s compact and efficient design enables secure communication1621

in challenging and bandwidth-constrained domains:1622

• Cellular Networks: Ensures efficient and secure handshakes, even in low-latency 5G1623

environments, where minimal communication overhead is critical.1624

• Radio Frequency (RF) Systems: Compact key sizes and signatures reduce transmis-1625

sion time in RF-constrained settings, such as military radios and satellite uplinks.1626

• Undersea Acoustics: Low-bandwidth undersea acoustic networks benefit from NAHSP’s1627

compact communication, enabling secure exchanges where data rates are severely1628

limited.1629

56

14.4 Comparison with Dilithium and Other Systems1630

A matrix based NAHSP scheme addresses several limitations of Dilithium and similar1631

lattice-based approaches:1632

• Smaller Communication Sizes: Signatures and keys are significantly more compact,1633

reducing storage and bandwidth requirements.1634

• Flexibility Across Environments: Performs robustly in environments where lattice-1635

based schemes face challenges, such as RF and undersea communication.1636

• Advanced Constructions: Offers natural support for identity-based encryption and1637

zero-knowledge proofs, features that are generally not feasible to implement over1638

schemes with noise.1639

14.5 Real-World Applications1640

Critical Infrastructure and Defense:1641

• Secures command and control systems in military and intelligence operations, en-1642

suring quantum resilience and adaptability across RF and satellite links.1643

• Protects SCADA systems in critical infrastructure, such as energy grids and trans-1644

portation networks, with lightweight and efficient cryptographic primitives.1645

IoT and Edge Devices:1646

• Provides secure authentication for IoT devices with constrained processing power,1647

mitigating risks of botnet attacks and data breaches.1648

• Ensures efficient encryption and signing for edge devices in industrial and healthcare1649

settings.1650

Blockchain and Distributed Systems:1651

• Enhances consensus mechanisms with compact, quantum-resistant signatures, re-1652

ducing energy consumption and improving scalability.1653

• Secures smart contracts and cryptographic tokens with lightweight, efficient con-1654

structions.1655

Telecommunications and Financial Systems:1656

• Enables secure mobile payment systems and digital banking with minimal commu-1657

nication overhead, ensuring transaction authenticity and integrity.1658

• Modernizes public key infrastructure (PKI) for quantum resilience while minimizing1659

deployment costs.1660

57

14.6 Conclusion1661

While the primary embodiment of this invention is a digital signature scheme leverag-1662

ing the Non-Abelian Hidden Subgroup Problem (NAHSP) and equivocation via the px()1663

mapping function, however the core mechanism is broadly applicable to other crypto-1664

graphic primitives. These include, but are not limited to, public key exchange, encryp-1665

tion schemes (such as identity-based and attribute-based encryption), and zero-knowledge1666

proofs. The underlying NAHSP-based obfuscation provides a foundation for secure and1667

efficient cryptographic systems across various applications.1668

15 Future Work and Concluding Remarks1669

• While theoretically robust, the construction requires careful selection of optimal1670

variables and implementation of the underlying mathematics to run in constant1671

time. Achieving constant time execution mitigates side-channel attack and aligns1672

with best practices for any algebraic cryptographic scheme.1673

• Like all novel forms of cryptography, extensive adversarial cryptanalysis is required.1674

We welcome experienced cryptanalysis focused collaboration.1675

• Optimization of functions to leverage platform-specific SIMD instructions can signif-1676

icantly accelerate operations while maintaining constant runtime guarantees. This1677

will enhance the scheme’s practical viability across diverse hardware platforms.1678

• The scheme employs rejection sampling on intermediates with zero-value coeffi-1679

cients to prevent degeneracy. A thorough adversarial analysis is needed to evaluate1680

whether this rejection sampling introduces potential vulnerabilities that could aid1681

cryptanalysis. If identified, appropriate mitigations must be developed.1682

• Additionally, the rejection sampling method of zero components is fairly simple and1683

is currently a major performance cost. By implementing a more optimal mechanism,1684

these costs can be minimized.1685

Integrating quantum-resilient cryptographic systems into existing infrastructures re-1686

mains a complex challenge, particularly for hardware-constrained environments or legacy1687

systems reliant on established PKI frameworks. This NAHSP-based system offers a1688

promising approach by providing compact signatures and practical efficiency suitable1689

for retrofitting into current infrastructures, including standard-sized X.509 certificates.1690

These properties make it a strong candidate for addressing the scalability and trust re-1691

quirements needed in the transition to post-quantum security.1692

While this work may be among the first cryptographic systems to aim for practi-1693

cal information-theoretic security guarantees by design, its formal proofs and construc-1694

tion serve as a foundational step toward bridging the gap between theoretical resilience1695

and real-world application. This approach diversifies the cryptographic landscape, com-1696

plementing existing quantum-resilient efforts and enhancing robustness against diverse1697

attack vectors.1698

Beyond its immediate applications, this cryptosystem opens new avenues of research1699

across multiple fields:1700

58

• Cryptography: The NAHSP framework invites exploration into additional construc-1701

tions such as group-based encryption, secure multi-party computation, and ad-1702

vanced privacy-preserving protocols.1703

• Complexity Theory: By leveraging non-abelian group properties, the system pro-1704

vides fertile ground for studying alternate hardness assumptions and their implica-1705

tions for classical and quantum computational limits.1706

• Quantum Algorithm Design: The inherent resilience of the scheme challenges re-1707

searchers to explore novel quantum algorithms capable of addressing non-abelian1708

group problems, advancing our understanding of quantum computational power.1709

• Systems Security: With its adaptability to constrained environments such as IoT,1710

RF, and undersea acoustics, this system sets the stage for breakthroughs in secure1711

communication under extreme conditions.1712

Closing Statement: This cryptographic scheme offers a significant contribution to1713

the evolving landscape of post-quantum security. By providing practical information-1714

theoretic guarantees and addressing key implementation challenges, it has the potential1715

to transform how secure systems are designed and deployed. While further research and1716

optimization remain, this work lays a strong foundation for future innovations in cryp-1717

tography, complexity theory, and quantum algorithm design, positioning it as a critical1718

component in the journey toward resilient and scalable global security systems.1719

16 Acknowledgements1720

This work is provisionally patented, USPTO 63/726,609.1721

References1722

[1] Daniel J. Bernstein et al. “The SPHINCS+ Signature Framework”. In: Proceedings1723

of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-1724

rity. CCS ’19. London, United Kingdom: Association for Computing Machinery,1725

2019, pp. 2129–2146. isbn: 9781450367479. doi: 10.1145/3319535.3363229. url:1726

https://doi.org/10.1145/3319535.3363229.1727

[2] Léo Ducas et al. “Dilithium: A high-speed lattice-based digital signature scheme”.1728

In: CCS 2019. 2019, pp. 897–918.1729

[3] Luca De Feo et al. SQISign: compact post-quantum signatures from quaternions1730

and isogenies. Cryptology ePrint Archive, Paper 2020/1240. 2020. url: https:1731

//eprint.iacr.org/2020/1240.1732

[4] David Garber. “Braid group cryptography”. In: Braids: Introductory lectures on1733

braids, configurations and their applications. World Scientific, 2010, pp. 329–403.1734

[5] Dimitri Grigoriev and Ilia Ponomarenko. Constructions in public-key cryptography1735

over matrix groups. 2005. arXiv: math/0506180 [math.GR]. url: https://arxiv.1736

org/abs/math/0506180.1737

59

https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://eprint.iacr.org/2020/1240
https://eprint.iacr.org/2020/1240
https://eprint.iacr.org/2020/1240
https://arxiv.org/abs/math/0506180
https://arxiv.org/abs/math/0506180
https://arxiv.org/abs/math/0506180
https://arxiv.org/abs/math/0506180

[6] Ki Hyoung Ko et al. “New public-key cryptosystem using braid groups”. In: Ad-1738

vances in Cryptology—CRYPTO 2000: 20th Annual International Cryptology Con-1739

ference Santa Barbara, California, USA, August 20–24, 2000 Proceedings 20. Springer.1740

2000, pp. 166–183.1741

[7] Patrick Longa, Wen Wang, and Jakub Szefer. The Cost to Break SIKE: A Compar-1742

ative Hardware-Based Analysis with AES and SHA-3. Cryptology ePrint Archive,1743

Paper 2020/1457. 2020. url: https://eprint.iacr.org/2020/1457.1744

[8] Karl Mahlburg. “An overview of braid group cryptography”. In: preprint (2004).1745

[9] Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov. “A practical at-1746

tack on a braid group based cryptographic protocol”. In: Advances in Cryptology–1747

CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara,1748

California, USA, August 14-18, 2005. Proceedings 25. Springer. 2005, pp. 86–96.1749

[10] Alexei GMyasnikov, Vladimir Shpilrain, and Alexander Ushakov. Non-commutative1750

cryptography and complexity of group-theoretic problems. 177. American Mathemat-1751

ical Soc., 2011.1752

[11] Michael Schmid et al. Falcon Takes Off - A Hardware Implementation of the Falcon1753

Signature Scheme. Cryptology ePrint Archive, Paper 2023/1885. 2023. url: https:1754

//eprint.iacr.org/2023/1885.1755

[12] Claude E. Shannon. “Communication theory of secrecy systems”. In: Bell Syst.1756

Tech. J. 28.4 (1949), pp. 656–715. doi: 10.1002/J.1538-7305.1949.TB00928.X.1757

url: https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.1758

[13] Claude Elwood Shannon. “A Mathematical Theory of Communication”. In: The1759

Bell System Technical Journal 27 (1948), pp. 379–423. url: http://plan9.bell-1760

labs.com/cm/ms/what/shannonday/shannon1948.pdf (visited on 04/22/2003).1761

60

https://eprint.iacr.org/2020/1457
https://eprint.iacr.org/2023/1885
https://eprint.iacr.org/2023/1885
https://eprint.iacr.org/2023/1885
https://doi.org/10.1002/J.1538-7305.1949.TB00928.X
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

	Introduction
	The State of the Art
	Secure and Efficient Signatures from the Non-Abelian Hidden Subgroup Problem and Information Theory

	High-Level Description
	Core Representation
	Construction
	Definition of the Group G and Subgroups Hright and Hleft

	Problem Statement
	Preliminary Results and Contributions
	Structure of Remainder of Paper

	Notation and Definitions
	Formal Reduction to the Non-Abelian Hidden Subgroup Problem (NAHSP)
	Group Structure and Properties
	Formal Definition of NAHSP
	Oracle Construction and Reduction to NAHSP
	Hardness of Subgroup Recovery
	Reduction

	Equivocation and Indistinguishability from px()
	Equivocation Function px()
	Analysis of px()
	Probability of Random Forgery
	Brute Force Storage Requirements

	Equivalence Class Invariance of px()
	Enhanced Hiding of px()
	Indistinguishability and Statistical Uniformity of px() Outputs
	Collision and Pre-Image Resistance of px()
	Avalanche Effect in px()
	Adaptive Security of px()
	Adversarial Complexity and Relation to NAHSP
	Quantum Resistance of px()

	Information-Theoretic Security of px(t')
	Proof of Consistency as Verification Under Homomorphic Transformations
	Implementation Details
	Matrix Generation Using Diverse Cryptographically Secure PRNGs
	Public Matrix Generation
	Private Matrix Generation
	Security Implications

	Algorithm Details
	Utility Algorithms
	Signature Generation
	Signature Verification
	Hiding Function

	Attack Models
	Classical Adversaries
	Preliminaries
	Proof of Security Against Classical Adversaries

	Quantum Adversaries
	Proof of Security Against Quantum Adversaries

	IND-CPA Security Proof
	Resistance to Forgery Under Chosen Message Attacks
	Inapplicability of CCA2 Security
	Brute Force Key Recovery

	Conclusion on Attack Models

	Implementation and Efficiency
	Performance Evaluation
	Comparison with Other Schemes
	Rejection Sampling of Zero Coefficients in Output Variables

	Open Research Questions
	Applications of Matrix based NAHSP-Based Cryptography
	Core Cryptographic Capabilities
	Efficient Communication and Deployability
	Secure Communication Across Diverse Environments
	Comparison with Dilithium and Other Systems
	Real-World Applications
	Conclusion

	Future Work and Concluding Remarks
	Acknowledgements

