
Tightly-Secure Blind Signatures
in Pairing-Free Groups

Nicholas Brandt, Dennis Hofheinz, Michael Klooß, and Michael Reichle

Department of Computer Science
ETH Zurich, Zurich, Switzerland

{nicholas.brandt,hofheinz, michael.klooss, michael.reichle}@inf.ethz.ch

Abstract. We construct the first blind signature scheme that achieves
all of the following properties simultaneously:
– it is tightly secure under a standard (i.e., non-interactive, non-q-type)

computational assumption,
– it does not require pairings,
– it does not rely on generic, non-black-box techniques (like generic

NIZK proofs).
The third property enables a reasonably efficient solution, and in fact
signatures in our scheme comprise 10 group elements and 29 Zp-elements.
Our scheme starts from a pairing-based non-blind signature scheme (Abe
et al., JoC 2023), and uses recent techniques of Chairattana-Apirom,
Tessaro, and Zhu (CRYPTO 2024) to replace the pairings used in this
scheme with non-interactive zero-knowledge proofs in the random oracle
model. This conversion is not generic or straightforward (also because
the mentioned previous works have converted only significantly simpler
signature schemes), and we are required to improve upon and innovate
existing techniques in several places.
As an interesting side note, and unlike previous works, our techniques only
require a non-programmable random oracle, and our signature scheme
achieves predicate blindness (which means that the user can prove state-
ments about the signed message during the signing process).
Keywords. blind signatures, tight security, group-based cryptography.

1 Introduction

Blind signatures. Digital signatures allow a designated signer to sign messages
in a way that the resulting signatures can be efficiently verified to be valid (for the
corresponding message and relative to a signer-specific public key). For security,
we require that only the signer can produce valid signatures, using a dedicated
secret key. Digital signatures are one of the core cryptographic building blocks,
and have a rich history with countless applications.

In this work, we are concerned with a variant of digital signatures, “blind
signatures”, in which the signer does not learn the signed message. This require-
ment immediately implies that signature generation must now be an interactive
process that the signer and a user (who wants a particular message signed)

engage in. Originally, blind signatures were proposed as a technical tool to realize
electronic cash [16]. Much later, a systematic investigation of this building block
has started, with generic [42, 24] and direct [55, 13, 10, 53, 30, 29, 26, 32] con-
structions, as well as lower bounds and impossibility results [25, 54, 8]. Most of
these “first-generation” blind signature schemes are however either very inefficient
(e.g., because they rely on non-interactive zero-knowledge (NIZK) proofs for
complex languages), they rely on somewhat nonstandard assumptions (such as
interactive or even “one-more-type” assumptions), or they only offer a limited
form of security (e.g., for a bounded number of issued signatures).

Recent constructions of blind signatures. More recently, a number of efficient
blind signature schemes have been proposed in the “algebraic group model” (AGM,
see [27]), e.g., [44, 57, 20, 28]. The AGM is a model of computation that lies in
between the standard model and the generic group model (GGM, see [56, 52]),
and it captures a very strong form of knowledge assumption. Another recent line
of work trades (some) efficiency for security under a weaker assumption, and uses
the cut-and-choose paradigm [35, 15] (building on prior works [36, 37, 43, 47]).
Yet another line of work instantiates the generic NIZK-based construction of
Fischlin [24] in algebraic ways (e.g., using lattices [21], pairings [46], or the strong
RSA assumption [45]).

Tight security reductions. The other concept that is important for our work is
the concept of tight security reductions. In cryptography, we are always interested
in security proofs, which for many building blocks (including signatures and blind
signatures) means security reductions. A security reduction argues that a certain
cryptographic scheme S is secure by mapping every (hypothetical) successful
adversary A on that scheme to a successful problem solver, i.e., an algorithm B
that solves an assumed-to-be-hard computational problem P . Then, since P is
assumed to be hard, no successful B, and hence, no successful A can exist (and
S is secure).

In typical reductions, however, B will be less effective than A, in the sense
that B success in solving P will be smaller than A’s success in breaking S.
Sometimes, also B’s runtime will be greater than A’s. In both cases, we say that
the reduction is non-tight, since it may now be (quantitatively) easier to break S
than to solve P . If we derive concrete keylength recommendations for a scheme
S from the best known attacks on the underlying problem P , this means that
we may need to increase keylengths to account for a non-tight reduction. This
becomes particularly problematic in cases in which the reduction loss (i.e., degree
of non-tightness) depends on the number of users or uses of the scheme. Indeed,
in such cases, we may end up deploying a scheme (with concrete parameters)
that becomes less and less secure the more popular it becomes.

Conversely, a tight reduction (in which B’s success and runtime are close toA’s)
is preferable and leads to more efficient parameters. Tight reductions have been
studied for many cryptographic building blocks like public-key encryption [9,
40, 7], digital signatures [18, 40, 12], or (interactive or non-interactive) key
exchange [6, 7, 38].

2

Tightly secure blind signatures. The focus of this paper is a combination of
the two above concepts: a blind signature scheme with a tight security reduction.
Interestingly, there are few known examples of tightly secure blind signatures. Of
course, it is always possible to implement a generic construction of blind signatures
with tightly secure components. For instance, it is possible to implement Fischlin’s
generic construction [24] with a group-based NIZK proof system (such as the
Groth-Sahai proof system [33]) and a tightly secure structure-preserving signature
scheme [2, 31, 4, 3]. This leads to tightly secure blind signatures whose security
relies on standard assumptions, but it requires pairings and is still somewhat
inefficient.1

Our goal. In this work, we are interested in a blind signature scheme with the
following two properties:

1. The scheme should be tightly secure under a standard (i.e., non-interactive
and non-q-type) computational assumption.

2. The scheme should not require pairings.

Additionally, we would like our scheme to be as efficient as possible, both in
signature size and computation times. In particular, we are not interested in
generic constructions, such as the one obtained by implementing Fischlin’s
scheme [24] with generic NIZKs [28].

1.1 Our Contribution

We achieve our goal by combining two recent technical strategies. The first one,
due to Chairattana-Apirom, Tessaro, and Zhu (CTZ [15]), starts from a blind
signature scheme which uses pairings only for equality tests during verification.
CTZ then replaces these pairing checks with NIZKs. (This is already technically
quite delicate even for simple blind signatures used as a basis, since we cannot
prove statements about a potentially used hash function in zero-knowledge.) The
second strategy is to implement this CTZ strategy with a new (non-blind) tightly
secure signature scheme based on the “adaptive partitioning” method [39, 2].
There are a number of technical obstacles (e.g., achieving blindness “along the
way”), which we will detail in our technical overview below.

The resulting blind signature scheme relies on the Decisional Diffie-Hellman
(DDH) assumption in pairing-free groups, but uses the Fiat-Shamir methodol-
ogy [23] for the implicit NIZKs, and hence its analysis uses the random oracle
model. Interestingly, however, we only require a non-programmable random oracle
for most of our analysis.2

1 For instance, [4] calculate that such a highly optimized blind signature scheme
following from their structure-preserving signatures would have signatures comprised
of 82 group elements.

2 More specifically, our reduction only needs to program the (random) global parameters
of our scheme. Hence, our scheme can be formulated in the common random string
model (with trusted random parameters) with a completely non-programmable
random oracle. Alternatively, the random oracle can be used to generate and program

3

Table 1: Comparison of Blind Signatures in the ROM secure under standard assumptions
Reference Signature size Communication size Assumption Advantage Bound

dK22 [21] 100 KB 850 KB DSMR,MLWE,MSIS poly(QM , QH) · ϵ1/θ(1)

BFPV13 [11] 96 B 220 KB † SXDH,CDH O(Q ·
√
λ) · ϵ (cf. [58, 41])

AJOR18 [4] 5.5 KB 1 KB SXDH O(logQS) · ϵ

HLW23 [35]‡ 5 KB 72 KB
CDH O(QS)9 KB 36 KB

KRS23 [46, BSrnd] 447 B 303 B SXDH O(Q2
S) · ϵ

KRS23 [46, BSbb] 96 B 2.2 KB DDH,CDH O(QH) · ϵ
CTZ24 [15, BS3] 27.1 KB 10.6 KB CDH O(QS) ·

√
QH · ϵ

KRW24 [50] 224 B 2.5 KB DDH O(QH) · ϵ
KR24 [49] 192 B 608 B DDH O(QH) · ϵ
Our scheme 1.3 KB 2.7 KB DDH O(logQS) · ϵ

We provide an overview of blind signatures that achieve full one-more unforgeability proven under standard
assumptions (in the ROM). The first, second and third section depicts schemes based on lattices, pairings and
pairing-free groups, respectively. Above, QS denotes the number of signing sessions, QH the number of random
oracle queries and ϵ the advantage of the reduction. Note that the size for group based schemes ignores the
reduction loss (i.e., we assume standard groups for security level λ = 256). A tight loss is highlighted in green.
(†): Communication of [11] scales linearly with the message size, and is given here for 256 bit messages.
(‡): [35] offers tradeoffs between signature and communication sizes.

Our scheme requires 41 (resp. 83) group and Zp elements in signatures (resp.
communication), and the signing process consists of four moves.3 See Table 1 for
comparisons with other blind signatures proven under standard assumptions in
the ROM. We note that, as the to-be-signed message M is not hashed in our
construction, the user can prove statements over M in the signing process (i.e.,
it achieves predicate blindness [28]).

1.2 Technical Overview

On our use of groups. Our blind signature scheme will be using (pairing-free)
cyclic groups. This is a natural design choice, since the random self-reducibility
of popular computational problems in cyclic groups is a very helpful property
in achieving tight security. There are of course other examples of tightly secure
cryptographic primitives, e.g., in the lattice setting [14]. However, current lattice-
based strategies to achieve blind signatures do not seem particularly amenable to
tight reductions (e.g., [21] use trapdoor sampling, while [5] rely on an interactive,
one-more-type assumption).

First attempt: instantiate Fischlin’s generic approach with tightly
secure primitives. As explained above, it is possible to instantiate Fischlin’s [24]
generic blind signature scheme with tightly secure primitives (i.e., with tightly
secure signatures and NIZK proofs). When trying to find a suitable (standard)
signature scheme as a starting point, we are facing a dilemma, however. Namely,
known (group-based and at least “somewhat efficient”) tightly secure signature
schemes either use pairings (e.g., [2, 31, 3]) or random oracles (e.g., [48, 1]). Using

these parameters as hash values, and we can formulate a parameter-free version of
our scheme in the programmable random oracle model. See Remark 2.

3 We note that concurrent work [49] also achieves constant communication.

4

pairings violates our goals, and using random oracles does not mesh well with
Fischlin’s approach.4 Hence, we need to choose another strategy.
Second attempt: directly modify an existing scheme. Next, we can revisit
existing pairing-free blind signature schemes, and try to modify them so that
they become tightly secure. We discuss a few representative options:

– The recent scheme of Kastner, Nguyen, and Reichle [45] indeed implements
a suitable variant of Fischlin’s generic approach, but with an RSA-based
signature scheme (that in itself requires neither pairings nor random oracles).
The inherent use of the (strong) RSA assumption, however, makes tight
security proofs very difficult.

– The recent CTZ [15] work in fact offers several pairing-free blind signature
schemes in the random oracle model. Their BS1 and BS2 schemes require
an interactive, one-more-type assumption, and it is not clear how to avoid
this interactivity. (Besides, BS1 and BS2 achieve only a relately weak form
of unforgeability.) At the cost of additional complexity, their BS3 scheme
(which in turn builds upon [35]) achieves stronger unforgeability without
pairings, based on the relatively mild Computational Diffie-Hellman (CDH)
assumption. Their proof, however, suffers from a large reduction loss due
to the use of rewindings (as inherited from the Fiat-Shamir paradigm). Of
course, it seems plausible that, say, a straight-line-extractable NIZK proof
system could avoid this loss. However, both BS3 additionally employs a
seemingly inherent guessing argument inherited from the cut-and-choose
approach of [35].

– Klooß, Reichle, and Wagner [50] give an improvement of BS3 based on the
pairing-based blind signature in [46]. Their scheme avoids rewindings by not
relying on an explicit extraction of a forged underlying signature. However,
their scheme still suffers from a reduction loss due to its reliance on a
puncturing technique (that in turn requires guessing which unfinished session
corresponds to a particular type of forgery). Also, concurrent work [49] builds
on [50] to improve efficiency, but still relies on the puncturing technique, and
in turn has a noticeable reduction loss.

Conversely, we can of course also try to start with an existing non-blind (but
tightly secure) signature scheme such as the Katz-Wang scheme [48], and attempt
to “add” blindness. However, “adding blindness” is a delicate process in general,
since there must be a way to hide (or “blind”) signatures across messages.

To describe what goes wrong in case of Katz-Wang signatures, recall that this
scheme employs an additional bit b appended randomly to each message before
signing. The reduction will set up things such that for every message m, it can
either sign m||0 or m||1, but not both. This way, every message can be signed for
an adversary A, but with probability 1/2, A’s final forgery is not already known
to the reduction. Hence, the reduction loses only a factor of 2. However, turning
4 In the blind signature scheme from [24], signatures consist of a NIZK proof of

knowledge of a valid signature of the underlying scheme. If the underlying scheme
uses random oracles, this proof becomes problematic.

5

such a scheme and proof strategy into a blind signature runs into the problem
that the reduction’s ability to generate signatures is now closely tied to the full
message m||b itself. Since this message is hashed using a random oracle, it seems
difficult to “forget” messages at any point during the reduction.

Our strategy: combine CTZ approach with adaptive partitioning. For
our purposes, we will use certain ideas from CTZ [15, 50], but avoid the use
of cut-and-choose or guessing techniques. Specifically, CTZ’s approach can be
thought of as proceeding in two phases: (1) start with a concrete pairing-based
blind signature scheme that however uses pairings only during verification; (2)
replace the pairings during verification with NIZK proofs of equality of suitable
quadratic equations over the source group of the pairing. Such NIZK proof
systems can be constructed using the Fiat-Shamir paradigm in the random oracle
model.

This high-level strategy requires careful rerandomization steps at several
points. For instance, blindness requires that a signer cannot link the signatures
obtained by the user to a particular blind signing session. To achieve blindness,
we need to be able to “blind” the low-level NIZK proofs for group equalities,
as well as the corresponding proved equations. Fortunately (and as recognized
and used already by [15, 50]), popular Schnorr-based proof systems have the
necessary blindability.

The tightly secure signature of Abe et al. Next, we need to identify a
suitable (pairing-based) blind signature scheme. Our starting point will be the
tightly secure structure-preserving signature scheme of Abe et al. [2]. This scheme
is very modular and structure-preserving, which means that it only relies on
suitably algebraic operations. It uses the “adaptive partitioning” technique, which
results in relatively complex (albeit tight) reductions. More specifically, the
scheme of [2] has the following properties:

– Signatures consist of an ElGamal-style encryption of the secret key, along
with a “consistency” proof that proves that encrypted values satisfy certain
constraints. The secret contains some redundancy, so that the corresponding
constraints are nontrivial. For instance, one constraint is an OR of two linear
constraints, and the other constraint is a linear one that involves the signed
message (but such that this constraint holds for all messages).

– Verification merely checks the corresponding proofs.

All verification constraints hold initially, but the unforgeability proof carefully
plays with the redundancy in the secret key and sometimes violates (some of)
these constraints. Soundness of the proof systems ensures that the adversary’s
forgery can still be held to the constraints that are not violated. The overall goal
of this procedure is to partially randomize the values encrypted in signatures, so
that finally, every signature is generated by (and the forgery is verified relative to)
a fresh and independently random secret key, generated freshly for each message.
At this point, the linear constraint which involves the signed message can be
used to argue unforgeability based on the one-time security of that key.

6

Blindly issuing Abe et al. [2] signatures. Before invoking the CTZ strategy
to achieve pairing-free blind signatures, we first have to turn the scheme of Abe
et al. sketched above into a blind signature scheme. We do not directly follow
Fischlin’s approach [24], since this would lead to signatures that contain nested
NIZK proofs.5 Instead, like many previous works (e.g., [17, 13]), we design a
“blind issuing protocol” between a user U and a signer S that allows U to obtain
a signature σ for a message M without revealing it to S. The signature σ will
have essentially the same structure as the one from Abe et al.’s scheme, but will
contain additional proof parts that help replace pairing checks during verification.

As a first step in our blind issuing protocol, U will send an encryption ctM
of M to S. (Of course, U cannot send M directly, since this would violate
blindness.) Already here, we deviate from previous works (including CTZ), which
use an additive blinding of M or (usually unconditionally hiding) commitment
instead. Looking ahead, ctM facilitates extraction of the underlying message
in our unforgeability proof. Then, S issues the group elements comprising the
signature and the proofs required for verification following the CTZ strategy.
As S proves statements over the message M , the proof cannot be computed
in plain (as S does not know M). Instead, we can issue the desired proofs by
homomorphically evaluating the Schnorr-prover over the encryption ctM of M .
As Schnorr-based proofs are linear, a simple linear homomorphic scheme (e.g.,
ElGamal) is sufficient. Finally, the group elements and Schnorr-based proofs are
blinded by U.

To adapt the tight security proof of [2] to our blind signature, we need to
very carefully manage information leaked about signatures and secret keys from
unfinished signing sessions. To explain: one difficulty that previous works (in
particular CTZ) faced, was achieving unforgeability in a setting in which a
malicious user could abort arbitrarily many signing sessions prematurely. The
difficulty that arises here is to prevent such a user from learning “half-finished
signatures” that could help build a full signature. CTZ solved this issue by using
a tailor-made commitment scheme with “special equivocation”. This approach
is not compatible with the security proof of [2], as their argument relies on
knowledge soundness of the Schnorr-based proof. As CTZ’s commitment is only
computationally binding, arguing soundness requires rewinding which leads to a
very loose security bound. Similarly, the strategy of [50, 49] relies on a guessing
argument to randomize aborting sessions which we cannot afford either.

Our solution is to use homomorphic dual-mode commitments, which lets the
user operate on the commitments, while keeping the committed values perfectly
hidden. This ensures that unfinished sessions leak nothing. In its second message,
the signer will send openings of the commitment to the user, and the signatures
include rerandomized openings.

This additional commitment step does not impede the blinding operations of
the user, because we can blind the committed values homomorphically over the

5 Nested proofs are not problematic in the pairing setting, e.g., with Groth-Sahai
proofs [33], but would make our life much harder when converting verification to a
pairing-free setting.

7

commitments. Combining the above techniques, we obtain our blind signature.
For more details on the security analysis, we refer to the main body.

1.3 Organization of this Paper

In Section 2, we provide the relevant cryptographic definitions (auxiliary pre-
liminaries are given in Supplementary Material C). In Section 3, we sketch the
pairing-free signature scheme that underlies our construction. In Section 3.2 we
provide the concrete protocols of our scheme; followed by the security statements
in Section 3.3. Formal proofs are given in Supplementary Material D.

We give a concrete instantiation (including a conrete efficiency overview) of
our generic construction in Supplementary Material B.

2 Preliminaries

Let λ ∈ N be the security parameter. We use standard notations for probability,
algorithms and distributions.6 Throughout, we assume that any space is efficiently
sampleable. We write A(inA)←→ B(inB) for interactive protocols between parties
A and B with input inA and inB , respectively. Within algorithmic descriptions,
we denote by req C that the algorithm outputs ⊥ if the condition C is false.
When describing games, we denote by abort if C that the game outputs 0 if
the condition C is false. Throughout, we denote by G a group of prime order p
with generator G ∈ G. We generally use additive notation for G. Throughout,
group elements G are capital, whereas elements x in N or Zp are lowercase.
Assumptions. Although we assume many properties to hold perfectly for ex-
position, it is straightforward to relax them to be statistical (some even to be
computational).

As is common, the group G should be understood as implicitly being a family
of groups, i.e., G = Gλ is implicitly parameterized by the security parameter λ. We
briefly recall the DL, CDH and (Q-)DDH assumptions and refer to Supplementary
Material A for formal definitions. Let a, b, c be uniformly random in Zp. The
DL assumption states that given (G, aG) it is hard to compute a. The CDH
assumption states that it is hard given (G, aG, bB) to compute (ab)G. The
DDH assumption states that it is hard to distinguish a real Diffie-Hellman tuple
(G, aG, bB, (ab)G) from a random tuple (G, aG, bB, cG). The Q-DDH assumption
states that it is hard to distinguish Q random Diffie-Hellman tuples from random
Q tuples; it tightly reduces to DDH.
Random Oracle Model. By H, we always denote a random oracle. We some-
times leave the domain (usually {0, 1}∗) and range (often challenge set CH = Zp)
of a random oracle unspecified when it is clear from the context. We call an
algorithm QH-bounded, if it makes at most QH queries to H, where QH = QH(λ).
6 We use x := v for assignment of value v to x (and x← v if x is updated with value
v), x← A(in) for (probabilistic) algorithms A on input in, and x← D for sampling
from distribution D. (If D is a set, this denotes sampling from D uniformly and
independently at random).

8

2.1 Blind Signatures

We define the primitive of interest, namely, blind signatures [16].

Definition 1 (Blind Signature Scheme). A blind signature scheme with
message space M in the ROM (with random oracle H) is a quadruple of PPT
algorithms BS = (KeyGen,S,U,Verify) with the following syntax:

– KeyGen(1λ): outputs a pair of keys (vk, sk). We assume that sk includes vk
implicitly.

– S(sk)←→ U(vk,m): S takes as input a secret key sk. U takes as input a key
vk, a message m ∈M. Both S and U have access to H. After the execution,
the user U returns a signature σ ← ⟨S(sk),U(vk,m)⟩ (or ⊥).

– Verify(vk,m, σ) is deterministic and takes as input public key vk, message
m ∈M, and a signature σ, and outputs b ∈ {0, 1}.

Due to space constraints, we provide the formal properties of blind signature
schemes in Supplementary Material C.1. We give a brief inituition of the two
security notions:
Unforgeability. Intuitively, a blind signature scheme should not allow any user
to obtain signatures without interacting with the signer. This is modeled by the
notion of one-more unforgeability, which states that after completing ℓ−1 signing
sessions, an adversary can not output valid signatures on ℓ messages.
Blindness. To protect the privacy of users, blind signatures should satisfy
blindness. Intuitively, blindness states that a malicious signer cannot link signing
interactions to the message-signature pairs. We emphasize that we consider the
malicious signer blindness, i.e., the malicious signer can freely choose the public
key and arbitrarily deviate from the protocol.

2.2 Preimage Relations and Blindable Σ-protocols

In this section we define (blindable) Σ-protocols for a specific type of (linear)
relations.

Linear relations Next, we define NP-relations and Σ-protocols for NP-relations.
A preimage relation is a special type of NP-relation.

Definition 2 (NP-Relation and Language). Let X be a statement space
and W be a witness space. Let R ⊆ X ×W be a binary relation. We say that
R is an NP-relation, if there exists a polynomial p such that R can efficiently
be decided and for every (x,w) ∈ R, we have |w| ≤ p(|x|). We denote by
LR = {x ∈ {0, 1}∗ | ∃w s.t. (x,w) ∈ R} the language induced by R.

To model preimage relations, we consider a statement x and a pair of functions
(ϕ, ξ) such that ∃w : ϕx(w) = ξ(x). That is, the statement x specifies a function
ϕx and a target value ξ(x), and the NP-relation asserts the existence of a preimage.
Usually, the statment has the form x = (x, y), such that ϕx = ϕx and ξ(x) = y.

9

Definition 3 (Linear Preimage Relation). Let

ϕ : X ×W → COM and ξ : X → COM

be efficiently computable functions, where we write ϕx(w) := ϕ(x,w) for con-
venience. Define the NP-relation R(ϕ,ξ) ⊆ X ×W associated to the pair (ϕ, ξ)
as

R(ϕ,ξ) = {(x,w) ∈ X ×W | ϕx(w) = ξ(x)}.

We call such an R(ϕ,ξ) a preimage relation (for the pair (ϕ, ξ)).
SupposeW and COM are Zp-vector spaces, and for every x the map ϕx : W →

COM is Zp-linear. Then we call R(ϕ,ξ) a linear relation for short.

All of our relations in Section 3 will be linear, and thus, there are canonical
Σ-protocols (Definition 8) for proving them.

(Canonical) Blindable Σ-protocols Compared to the usual definition of
Σ-protocol, we introduce a Setup (resp. BlindSetup) algorithm, which intuitively
samples the randomness. As a consequence, all other algorithms are deterministic
(given the state), which will be convenient in our protocols and proofs. For
consistency, we use “starred” variables to denote non-blind messages (i.e., variables
which will be sent to or known by the signer).

Definition 4 (Blindable Σ-protocol). Let R(ϕ,ξ) be an linear relation. A
Σ-protocol for R(ϕ,ξ) with commitment space COM, challenge space CH and
response space RESP is a tuple of PPT algorithms Σ = (Setup, Init,Resp,Verify,
BlindSetup,BlindInit,BlindChall,BlindChall−1,BlindResp), where except for Setup
and BlindSetup all algorithms are deterministic. Moreover, we require that

– Setup(1λ): outputs a state st.
– Init(st, ϕx): given7 state st and linear map ϕx, outputs a first flow message

(i.e., commitment) A ∈ COM.
– Resp(st, γ∗,w): given a state st, a challenge γ∗ ∈ CH and a witness w,

outputs a third flow message (i.e., response) ζ∗
– Verify(x, A∗, γ∗, ζ∗): given statement x ∈ LR, commitment A∗, challenge
γ∗ ∈ CH, and response ζ∗, outputs a bit b ∈ {0, 1}.

– BlindSetup(1λ): outputs a state bst.
– BlindInit(bst,x, A∗): given state bst, statement x, commitment A∗, outputs a

commitment A.
– BlindChall(bst, γ∗): given state bst and challenge γ∗, outputs a challenge γ,
– BlindChall−1(bst, γ): given state bst and challenge γ, outputs a challenge γ∗,
– BlindResp(bst, ζ∗): given state bst and response ζ∗, outputs a response ζ,

We call the tuple (A, γ, ζ) the transcript and say that they are valid for x if
Verify(x, A, γ, ζ) outputs 1. When the context is clear, we simply say it is valid
and omit x.
7 Conventionally, Init would take as input the entire statement x. In contrast, we need

to be able to generate a commitment even when the target value ξ(x) is not yet fixed.

10

We define the standard notions of correctness, special honest-verifier zero-knowledge,
and (2-)special soundness. We provide the formal definition of special honest-
verifier zero-knowledge in Supplementary Material C.2. We state correctness
explicitly to include the blind correctness.

Definition 5 (Correctness). Let Σ be a (blindable) Σ-protocol for linear
relation R(ϕ,ξ) as in Definition 4.

– (Perfect) Correctness: For all (x,w) ∈ R, st← Setup(1λ), A := Init(st, ϕx),
γ ∈ CH, and ζ := Resp(st, γ), it holds that Verify(x, A, γ, ζ) = 1.

– (Perfect) Blind Correctness: for all (x,w) ∈ R, bst ← BlindSetup(1λ),
A∗ ∈ COM, γ∗ ∈ CH, and ζ∗ ∈ RESP such that Verify(x, A∗, γ∗, ζ∗) = 1,
it holds that Verify(x, A, γ, ζ) = 1 where A := BlindInit(bst,x, A∗), γ :=
BlindChall(bst, γ∗) and ζ := BlindResp(bst, ζ∗).

– Bijectivity of BlindChall: for all bst ← BlindSetup(1λ), the map CH∗ 7→
BlindChall(bst, CH∗) is has inverse CH 7→ BlindChall−1(bst, CH).

Definition 6 ((Transcript) Blindable Σ-protocol). Let Σ be a blindable
Σ-protocol for linear relation R(ϕ,ξ) as in Definition 4. Let A be a stateful
adversary. The advantage of A against (transcript) blindness is

Expreal(λ)

(x,w, (A∗, γ∗, ζ∗))← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

abort if Verify(x, (A∗, γ∗, ζ∗)) = 0

// Blind the transcript

bst← BlindSetup(1λ)

A← BlindInit(bst,x, A∗)

γ ← BlindChall(bst, γ∗)

ζ ← BlindResp(bst, ζ∗)

b← A(A, γ, ζ)

return b

Expideal(λ)

(x,w, (A∗, γ∗, ζ∗))← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

abort if Verify(x, (A∗, γ∗, ζ∗)) = 0

// Independent transcript

st← Setup(1λ)

A← Init(st, ϕx)

γ ← CH
ζ ← Resp(st, γ,w)

b← A(A, γ, ζ)

return b

Fig. 1: Blindability experiments.

AdvBlindΣA(λ) := |Pr[Expreal(λ) = 1]− Pr[Expideal(λ) = 1]| (1)

for the experiments defined in Figure 1. We say Σ is (perfectly) blindable if for
any A the two distributions in Figure 1 are identical.

A final property which our protocol require is the translation of a transcript
for one statement x∗ into another related statement x. Specifically, this will be
used to rerandomize certain ciphertexts CT∗i in x∗.

Definition 7 ((Transcript) Translatable Σ-protocol). Let Σ be a Σ-protocol
for linear relation R(ϕ,ξ) ⊆ X ×W. Let V be some set and let TransStmt : X ×

11

V → X and TransResp : V × CH × RESP → RESP be efficiently computable
maps such that for any statement x∗ ∈ LR(ϕ,ξ)

and any v ∈ V, it holds that
TransStmt(x∗, v) ∈ LR(ϕ,ξ)

. We say Σ is (perfectly) TransStmt-translatable if

Expfresh

(x,w,x∗,w∗, v)← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

abort if (x∗,w∗) /∈ R(ϕ,ξ)

abort if x ̸= TransStmt(x∗, v)

// Generate fresh transcript for x

st← Setup(1λ)

A← Init(st, ϕx)

γ ← CH

ζ ← Resp(st, γ,w)

b← A(A, γ, ζ)

return b

Exptrans

(x,w,x∗,w∗, v)← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

abort if (x∗,w∗) /∈ R(ϕ,ξ)

abort if x ̸= TransStmt(x∗, v)

// Translate a fresh transcript for x∗

st← Setup(1λ)

A← Init(st, ϕx∗)

γ ← CH
ζ̃ ← Resp(st, γ,w∗)

ζ := TransResp(v, γ, ζ̃)

b← A(A, γ, ζ)

return b

Fig. 2: Translatability experiments. In both cases, if (x,w) /∈ R(ϕ,ξ) or (x∗,w∗) /∈ R(ϕ,ξ)

the output is set to ⊥.

there exists an efficiently computable map TransResp such that for any A the two
distributions in Figure 2 are identical.

Allowing the adversary to choose v in Definition 7 is much stronger than required
in our proofs, where v will be random. But it simplifies the definition and holds
for our protocols (Definition 8).

Linear Σ-protocols Finally, we introduce the canonical Σ-protocol for a
linear relation R(ϕ,ξ) for linear map ϕ [51]. It is well-known that this protocol is
transcript-blindable.

Definition 8 (Canonical blindable Σ-protocol). Let ϕ, ξ be as above and R
be the associated linear NP-relation. We define the canonical blindable Σ-protocol
Σ for R as follows:

– Setup(1λ): samples randomness st←W, outputs st.
– Init(st, ϕx): outputs A∗ := ϕx(st).
– Resp(st, γ∗,w): outputs the response ζ∗ := st+ γ∗w.
– Verify(x, A∗, γ∗, ζ∗): outputs 1 iff A∗ = ϕx(ζ

∗) + γ∗ξ(x).
– BlindSetup(1λ): samples (γ′, ζ ′)← CH×W, outputs bst := (γ′, ζ ′).
– BlindInit(bst,x, A∗): parses (A, γ′, ζ ′) := bst, outputs A := A∗+γ′ξ(x)+ϕx(ζ

′).
– BlindChall(bst, γ∗): outputs γ := γ∗ + γ′.
– BlindChall−1(bst, γ): outputs γ∗ := γ − γ′.
– BlindResp(bst, ζ∗): outputs ζ := ζ∗ + ζ ′.

12

All variables which are superscripted with ∗ are message exchanged in the blinded
protocol; the variables with superscript ′ correspond to blinding terms, and finally
the variables without superscript correspond to the blinded transcript.

Lemma 1. The Σ-protocol in Definition 8 is a perfectly correct, SHVZK, and
blindable.

We give the proof in Supplementary Material D.

2.3 Non-Interactive Proof Systems

Here, we define (straightline-extractable) (zero-knowledge) non-interactive proof
systems. Our definition is in the common random string (CRS) model combined
with the (programmable) random oracle model. This is for simplicity: As we
consider a common random string, we require no explicit setup algorithm; indeed,
by domain separation, we can always generate the common random string through
the random oracle.

Definition 9 (Non-Interactive Proof System). A non-interactive proof
system Π for NP-relation R in the common random string (CRS) model and
random oracle model, is a pair Π = (Prove,Ver) of PPT algorithms, which have
access to the CRS crs ∈ {0, 1}ℓ(λ) and the random oracle H, where

– ProveH(crs,x,w): generates a proof π given a crs and (x,w) ∈ R.
– VerH(crs,x, π): verifies proof π for statement x given crs and outputs 0 or 1.

We require four properties from a non-interactive proof system: correct-
ness, zero-knowledge, straightline R̃-extractability, and soundness. Due to space
constraints, we give the formal definitions in Supplementary Material C.3. Cor-
rectness is straightforward, namely, every honestly generated proof verifies. Zero-
Knowledge is guarantees the existence of a simulator that can produce proofs
for valid statements with a witness (but it can program the CRS and random
oracle). Straightline extractability means that for a given knowledge relation
R̃ there exists an extractor which programs the CRS with a trapdoor. Given a
valid proof for a valid statement x the extractor produces a knowledge witness w̃
such that (x, w̃) ∈ R̃. It is called straightline because no rewinding is necessary.
Finally, we require soundness which states it is infeasible to generate a proof
(that verifies) for any invalid statement.

2.4 Public-Key Encryption

Definition 10 (Public-Key Encryption Scheme). A public-key encryption
(PKE) scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with message space MRE,
ciphertext space CRE, public key space PKRE and randomness space RRE is a tuple
of PPT algorithms defined as follows:

– PKE.Gen(1λ): given security parameter 1λ, outputs a key pair (pk, sk).

13

– PKE.Enc(pk,m): given public key pk and message m, outputs a ciphertext ct.
– PKE.Dec(sk, ct): given secret key sk and ciphertext ct, outputs a message m

or ⊥ if the decryption fails.

Notation. We use an implicit notation, for messages m = (m1, ...,mn) ∈Mn
PKE

we write ct = (cti = PKE.Enc(pk,mi))i∈{1,...,n}.

For conceptual simplicity, we require the public key to be uniformly distributed.

Definition 11 (Uniform Public-Key). A public-key encryption scheme PKE
has a uniform public-key if the following distributions are equal:{

pk
∣∣ (pk, sk)← PKE.Gen(1λ)

}
≡ {pk | pk← PKPKE} . (2)

Definition 12 ((Perfectly) Linear Encryption). Let PKE be as in Defi-
nition 10 and suppose that MRE, RRE, CRE are Zp-vector spaces. We say PKE

has linear encryption, if for each public key pkRE ∈ PK, the encryption function
RE.Enc(pkRE, · ; ·) : m, ρ 7→ CT is (Zp-)linear.

Perfect linear encryption entails a number of natural properties, such as
perfect correctness, and additional functionalities:

– Perfect rerandomizability: A rerandomizable encryption scheme RE is
a PKE that also offers a rerandomization algorithm RE.Rerand(pkRE,CT; ρ′)
which outputs a rerandomized ciphertext. Any linear encryption scheme is ran-
domizable via RE.Rerand(pkRE,CT; ρ′) = CT+RE.Enc(pkRE, 0; ρ′), where ρ′ ←
R. Moreover, this rerandomization is perfect and CT 7→ RE.Rerand(pkRE,CT; ρ′)
is linear in CRE.

– (Linear) Homomorphic evaluation: A linear homomorphic encryption
scheme LHE is a PKE that offers homomorphic evaluation of Zp-linear func-
tions f :M→Mn by an algorithm LHE.Eval(pkLHE,CT, f) which outputs
ciphertexts encrypting f(m) if CT encrypted m. Moreover, if LHE is reran-
domizable, then by rerandomizing after a homomorphic linear evaluation, the
applied function f is hidden; at most f(m) is leaked. Any linear encryption
scheme allows evaluation of linear functions and is rerandomizable.

In Supplementary Material C, we provide detailed definitions of the above
mentioned properties and other common notions such as IND-CPA.

For future reference, we note the following.

Remark 1. Let PKE be a linear encryption scheme. Consider the linear rela-
tion RPKE := RϕPKE,ξPKE for ϕPKE

x
(w) := PKE.Enc(pkPKE,m; ρ) and ξPKE(x =

(pkPKE,CT)) := CT be a target map, that is

RPKE :=
{
(x = (pkPKE,CT),w = (m, ρ))

∣∣∣ ξPKE(x) = ϕPKE
x

(w)
}

(3)

⊆ (XPKE := PKPKE × CPKE)× (WPKE :=MPKE ×RPKE) (4)

Then RPKE is a linear relation, since ϕPKE
x

is linear for every choice of x. Moreover,
ϕPKE
x

only depends on the component pkPKE of x. This relation RPKE will be used
to prove well-formedness of ciphertexts in our blind signature scheme.

14

2.5 Commitment Schemes

Definition 13 (Rerandomizable Linearly Homomorphic Dual-Mode
Commitment Scheme). Let MCOM be an commutative group. A commit-
ment scheme with message space MCOM, commitment space CCOM, parameter
space PPCOM and randomness space RCOM is a tuple of algorithms8 COM =
(COM.Setup,COM.Commit) defined as follows:

– COM.Setup(1λ,mode): given security parameter λ and mode mode ∈ {bind, hide},
outputs parameters pp.

– COM.Commit(pp,m; s): given parameters pp ∈ PPCOM and message m ∈M
(and commitment randomness s ∈ RCOM), outputs a commitment CM.

– COM.Eval(pp,CM, f): given parameters pp ∈ PPCOM, commitment CM =
COM.Commit(pp,m; s), and linear function f : MCOM → Mn

COM for any
n ∈ N, outputs new commitments CM′ to the plaintexts f(m) ∈Mn

COM.
– COM.Rerand(pp,CM; s′): given parameters pp ∈ PPCOM, commitment CM =

COM.Commit(pp,m; s), and randomness s′ ∈ RCOM, outputs a fresh commit-
ment CM′ to the same message m.

– COM.RandEval(pp,m, s, f): given parameters pp ∈ PPCOM, message m ∈M,
randomness s ∈ RCOM, linear function f : MCOM × RCOM → Mn

COM for
any n ∈ N, outputs the randomness s̃ of the homomorphically evaluated
commitment.

– COM.RandRerand(pp,m, s, s′): given parameters pp ∈ PPCOM, message m ∈
M, randomness s, s′ ∈ RCOM, outputs the randomness š of the rerandomized
commitment.

Notation. We use an implicit notation for commitments for multiple mes-
sages. That is, for messages m = (m1, ...,mn) ∈ Mn

COM we write ct = (cti =
COM.Commit(pp,mi))i∈{1,...,n}.

For conceptual simplicity we require the following properties from an com-
mitment scheme.

Definition 14 (Linear Commitment). Let Com be as in Definition 13 and
suppose that MRE, RRE, CRE are Zp-vector spaces. We say Com is a linear
commitment scheme, if for each parameter pp ∈ PP the commitment function
COM.Commit(pp, · , ·) : m, s 7→ CM is linear.

As with PKEs, given a linear commitment function, there are natural notions
of COM.Eval, COM.RandEval, and COM.Rerand, COM.RandRerand. (Indeed, the
only difference is that we handle message and randomness in separate algorithms,
as this is required in our blind signature.) Moreover, similar to PKEs, we can see
that the linear relation RCOM = RϕCOM,ξCOM

RCOM :=
{
(x = (pp,CM),w = (m, s))

∣∣ ξCOM(x) = ϕCOM
x

(w)
}

(5)

8 We omit the typical “open” algorithm, because we don’t need it in our construction.

15

Table 2: Extract of common protocol notation.
Com/Ctxt Values Rand Scheme Parameters/Keys/CRS
CMXi xi ŝi COMX ppX = HX

pp(0)

CMTi cti si COMT ppT = HT
pp(0)

CMAi Ai ti COMT

CTi Zi ρi RE pkRE = HRE
pk (0)

ct M r LHE pkLHE

vk xi ∈ Zp BS (D1, D2, D3) = Hddh(0)

The last row is irregular. It contains signature (secret) key and the
public (non-)DDH parameters.

where ϕCOM
x

(w) = COM.Commit(pp,m; s) and ξCOM(x = (pp,CM)) := CM, is
linear for any linear commitment scheme.

For our construction we need several (fairly standard) properties: perfect
hiding, perfect binding and rerandomization indistinguishability, uniform param-
eters, and parameter indistinguishability; listed in Supplementary Material C.5.
We state unpredictability explicitly here, because it is used in Theorem 1.

Definition 15 (δ-Unpredictability). A commitment scheme COM is δ-unpredictable,
if for all pp ∈ PPCOM, all m ∈ MCOM, and all CM ∈ CCOM, we have that
Pr[COM.Commit(pp,m; s) = CM] ≤ δ(λ), with randomness is over s← RCOM.

3 Tight Signatures à la [2]

In this section, we define all primitives that are used in the construction of our
blind signature scheme. We follow the conventions for group and group element
notation in Section 2, in particular, G is a group of prime order p with generator
G and group elements are denoted by capital letters. As noted in Section 2,
we implicitly assume that an encryption/commitment scheme can be used to
encrypt/commit to a vector of messages.

3.1 Primitives and Notation

We require following primitives:

– Let COMX (resp. COMT) be a commitment scheme (Definition 13) with
message spaceMCOMX

:= Zp (resp.MCOMT
:= G) and public parameters ppX

(resp. ppT). We use si (resp. ti) for commitment randomness for COMX (resp.
COMT).

– Let RE (resp. LHE) be a rerandomizable encryption scheme (resp. linearly
homomorphic encryption scheme) (Definition 31) with message spaceMRE =
MLHE := G and public key pkRE (resp. pkLHE). We use ŝi for commitment
randomness for COMX.

– In Table 2, we overview some frequent notation.

16

Linear Maps for Σ-protocols Now, we define the linear Σ-protocols for our
protocol, which are derived from the (linear) verification maps ϕCOMX ,ϕCOMT

and ϕRE be the maps associated with COMX, COMT and RE, respectively. Let
CH := Zp be the common challenge space for all Σ-protocols.

For convenience, we define following shorthands for (partial) statements and
witnesses, where i ∈ {0, 1, 2}:

xCMXi
= (ppXi ,CMXi) wCMXi

= (xi, ŝi) (6)

xRE,i = (pkREi ,CTi) wRE,i = (Zi, ρi)

xdh = (G,D1, D2, D3) wdh ∈ Zp

Next, we define the linear relation for Σ-protocols. For linear relation R0 =
R(ϕ0,ξ0), we define the statement witness pairs and the function pair (ϕ0, ξ0) as
follows:

x0 = (xCMX0
,xCMX1

,xRE,0) = ((ppX0 ,CMX0), (pp
X
1 ,CMX1), (pk

RE
0 ,CT0))

w0 = (wCMX0
,wCMX1

,wRE,0) = ((x0, ŝ0), (x1, ŝ1), (Z0, ρ0)) (7)

ϕ0
x0
(w0) :=

ϕCOMX
xCMX0

(wCMX0
)

ϕCOMX
xCMX0

(wCMX1
)

ϕRE
xRE,0

(wRE,0)

x0G+ x1M − Z0

 !
=

CMX0

CMX1

CT0

0

 =: ξ0(x0)

Relation R0 states that there are scalars x0, x1 and commitment randomness
ŝ0, ŝ1 for CMX0,CMX1, respectively (and under respective public parameters) so
that CT0 encrypts Z0 = x0G+ x1M . Note that for x1 = 0, this means Z0 = x0G.
Here and in the following, we leave the (co)domain of functions implicitly specified
by the types of the statement and witness. Moreover, here and in the following,
it is clear that ϕ0

x0
is a linear (as a composition of linear maps).

The second relation R1 = Rϕ1,ξ1 states that CT0 and CT1 encrypt the same
message Z0 = Z1. It is defined by

x1 := (xRE,0,xRE,1) = ((pkRE0 ,CT0), (pk
RE
0 ,CT0)) (8)

w1 := (wRE,0,wRE,1) = ((Z0, ρ0), (Z1, ρ1))

ϕ1
x1
(w1) :=

ϕRExRE,0
(wRE,0)

ϕRE
xRE,1

(wRE,1)

Z0 − Z1

 !
=

CT0

CT1

0

 =: ξ1(x1)

The next relation R2 = Rϕ2,ξ2 states that CMX2 commits to the dlog encrypted
in CT2, i.e. x2G = Z2. It is defined by

x2 = (xCMX2 ,xRE,2) = ((ppX2 ,CMX2), (pk
RE
2 ,CT2)) (9)

w2 = (wCOMX,2,wRE,2) = ((x2, ŝ2), (Z2, ρ2))

ϕ2
x2
(w2) :=

ϕCOMX
xCMX2

(wCMX2)

ϕRE
xRE,2

(wRE,2)

x2G− Z2

 !
=

CMX2

CT2

0

 =: ξ2(x2)

17

Our last relation is the DDH relation Rdh = Rϕdh,ξdh

xdh := (G,D1, D2, D3) wdh ∈ Zp (10)

ϕdh
xdh

(wdh) :=

(
wdhG
wdhD1

)
!
=

(
D2

D3

)
=: ξdh(xdh)

Finally, we write Σi for the canonical Σ-protocol for relations Ri (i ∈ {0, 1, 2, dh}).
Translatability. To achieve blindness, the user must rerandomize the ciphertexts
CT∗i in x

∗
RE,i = (ppXi ,CT

∗
i) and adapt the Σ-protocol responses suitably (for

i ∈ {0, 1, 2}). For this, we define translations TransStmti as

TransStmt0(x
∗
0 = (xCMX0

,xCMX1
, x∗RE,0 ,M), ρ′0) := (xCMX0

,xCMX1
, xRE,0 ,M)

TransStmt1(x
∗
1 = (x∗RE,0,x

∗
RE,1), (ρ′0, ρ

′
1)) := (xRE,0,xRE,1)

TransStmt2(x
∗
2 = (xCMX2

, x∗RE,2), ρ′2) := (xCMX2
, xRE,2)

where, for i ∈ {0, 1, 2}, we let

CTi := RE.Rerand(pkRE,CT∗i ; ρ
′
i) in xRE,i = (ppXi ,CTi).

Lemma 2. For each i ∈ {0, 1, 2} the canonical Σ-protocol Σi from Definition 8
for the relation Ri is TransStmti-translatable.

The proof is included in Supplementary Material D.

Functions for Homomorphic Evaluation Within our protocol, the user and
signer evaluate some functions homomorphically on ciphertexts or commitments.
To reduce the syntactic overhead, we define these functions here. The function

InitZero : M 7→ A∗0 := Σ0.Init(st0, ϕ
0

(xCMX0
,xCMX1

,x∗
RE,0, M)

) (11)

allows to compute the Σ-commitment A∗0 for the first relation R0 from the
message M . At the time of (homomorphic) evaluation of InitZero the values
st0 ∈ W0, xCMX0 ∈ XCOMX

, xCMX1 ∈ XCOMX
, x∗RE,0 ∈ XRE are known to the signer

who hardcodes them into InitBlind. Note also, that the function InitZero is linear
in the message M . In our protocol, the user will encrypt M in ctM and the signer
evaluates InitZero on ctM to obtain an encryption of A∗0. This ensures that the
user can obtain A∗0 without revealing the message M to the signer.
In our protocol, the user initially obtains commitments CMT∗i to the ciphertexts
CT∗i . The user then homomorphically computes the function

RandCTi : CT∗i 7→ CTi := RE.Rerand(pkRE, CT∗i ; ρ′i) . (12)

to obtain the rerandomized ciphertexts CTi that are ultimately included in the sig-
nature. Analogously to the first function, the user knows the values pkRE ∈ PKRE

18

and ρ′i ∈ RRE hardcoded in RandCTi. Because RE is linearly rerandomizable, the
function RandCTi is linear in the ciphertext CT∗i .
Finally, the signature contains blinded (and translated) transcripts of ourΣ-protocols.
For blindness of our signature scheme the user homomorphically computes com-
mitments to the blinded Σ-commitments Ai by applying the functions

InitBlindi : IN∗i 7→ Ai := Σi.BlindInit(bsti, x
∗
i , A

∗
i), (13)

to its commitments CMT∗i where

IN∗0 = CT∗0, IN∗1 = (CT∗0,CT
∗
1), IN∗2 = CT∗2

and x∗i are as before, and in particular contain IN∗i . Again, the user hardcodes
the values bsti ∈ CHi ×Wi, A∗i ∈ COMi and xCMXi

= (ppXi ,CMXi) respectively
into InitBlindi. Note here that the user obtains the values A∗1 and A∗2 directly
from the signer, but it decrypts the ciphertext ct∗0 to obtain the value A∗0.

Non-Interactive Proof Systems We require non-interactive proofs (Defini-
tion 9) for two relations. The first relation is

RM :=

{
(x = (pkLHE, ct),w = (skLHE,M, rM))

∣∣∣∣ (pkLHE, skLHE) ∈ LHE.Gen(1λ)

∧ ct = LHE.Enc(pkLHE,M ; rM)

}
(14)

R̃M :=
{
(x = (pkLHE, ct), w̃ =M)

∣∣∣ ∃w = (skLHE,M, rM) : (x,w) ∈ RM

}
(15)

where the correctness relation RM asserts that the user’s LHE public key pkLHE

and encryption of M are honestly generated. Moreover, we require straightline
extractability of M through the knowledge relation R̃M . We let ΠM w.r.t. random
oracle HM be a NIPS for the above.

The second relation for which we require non-interactive proofs is

RCT :=

 x =

(
ppX0 ,CMX0

(pkREi ,CT∗i)i∈{0,1,2}

)
w = ((ρ∗i)i∈{0,1,2}, x0, ŝ0)

∣∣∣∣∣∣∣∣

CT∗0 = RE.Enc(pkRE0 , x0G; ρ
∗
0)

CT∗1 = RE.Enc(pkRE1 , x0G; ρ
∗
1)

CT∗2 = RE.Enc(pkRE2 , 0; ρ∗2)
CMX0 = COMX.Commit(ppX0 , x0; ŝ0)

(16)

where the (correctness and soundness) relation RCT asserts an honest generation
of the ciphertext CT∗i which is in particular consistent with CMX0. We let ΠCT

w.r.t. random oracle HCT be a NIPS for the above.

3.2 Construction

We generate several parameters as evaluations of hash functions. For i ∈ {0, 1, 2},
let ppXi := HX

pp(i), ppT := HT
pp(0), (D1, D2, D3) := Hddh(0) and pkREi := HRE

pk (i).

19

Also, let crsCT := HCT
crs (0) and crsM := HM

crs(0). We assume that these parame-
ters are (implicitly) computed by signer, user and verifier during signing and
verification.

High-level description. As our construction is involved, let us give a brief
description and provide some intuition. Roughly, the goal of the protocol is
that the user obtains ciphertexts CTi together with Fiat-Shamir compiled proofs
(π0, πdh) and (π1, π2) for disjunctive relations R0∪Rdh and R1∪R2 (cf. Section 3.1),
respectively, where the commitments CMXi are fixed in the verification key vk.
Except for some minor modifications explained below, the signature consists
of ciphertexts (CT0,CT1,CT2) and proofs (π0, πdh), (π1, π2). This is also the
conceptual structure of signatures in [2]. The aforementioned modifications are
required for blindness and a tight proof of one-more unforgeability.

Generally, we follow the convention that values that are sent during the
signing protocol are marked with ∗. Non-marked values are often randomized and
part of the final signature or fixed by the verification key vk or random oracles.

KeyGen. The signer samples x0 ← Zp and sets x1 = x2 = 0. It commits to xi
in CMXi = COMX.Commit(ppXi , xi; ŝi) for some random ŝi. The verification key
is vk = (CMX0,CMX1,CMX2) and the signing key is sk = (xi, ŝi)i∈{0,1,2}.
Signing Protocol. The signing protocol proceeds in four moves.

1st message (U→ S). On input of verification key vk and message M , the
user samples fresh keys (pkLHE, skLHE)← LHE.Gen(1λ) for LHE and computes a
ciphertext ctM ← LHE.Enc(pkLHE,M) to M . The user then computes a proof
πM via ΠM that certifies honest setup of pkLHE and ctM . Then, the user outputs

smsg1 := (pkLHE, ctM , πM).

2nd message (S→ U). On input of signing key sk and smsg1 = (pkLHE, ctM ,
πM), the signer checks that the proof πM verifies and aborts otherwise.
If the check succeeds, the signer prepares ciphertexts CT∗i to Zi := ziG with
z0 = x0, z1 = x0 and z2 = 0. It also prepares the first flow for an interactive
Σ-protocol proof via Σi.Init. This interactive proof is blinded and compiled via
Fiat-Shamir by the user to a non-interactive proof. More specifically, the signer
proves that the disjunctive relations

x0G+ x1M = Z0 ∨ d2D1 = D3, (R0 ∪ Rdh)

Z0 = Z1 ∨ x2G = Z2, (R1 ∪ R2)

hold, where xi are the values committed in vk. For this, the signer runs the
OR-compilation of Σ-protocols (Σ0,Σdh) and (Σ1,Σ2) as in [19] (i.e., via additive
secret sharing of the challenge and the HVZK simulator). Concretely, the first
flow contains honestly computed A∗i and simulated A∗dh.
As relation R0 contains message M which is not known to the signer, the first
flow A∗0 of Σ0 is computed homomorphically by evaluating InitZero on ctM . The
signer obtains a ciphertext ct∗0 which encrypts A∗0.

20

For technical reasons, the signer cannot reveal CT∗i to the user immediately, so it
commits to CT∗i in CMT∗i via the dual-mode commitment COMT instead. The
signer outputs

smsg2 := (ct∗0, (CMT∗i)i∈{0,1,2}, A
∗
1, A

∗
2, A

∗
dh).

3rd message (U→ S). On input of smsg2 = (ct∗0, (CMT∗i)i∈{0,1,2}, A
∗
1, A

∗
2,

A∗dh), the user recovers its state and decrypts ct∗0 via skLHE to obtain A∗0. To
ensure blindness later, the user performs several randomization steps:
1. The user randomizes both the ciphertexts CT∗i committed in CMT∗i homo-

morphically and the commitments itself to obtain CMTi. Note if the signer
is honest,9 then CMTi is distributed like a fresh commitment to CTi which is
a fresh encryption to ziG.

2. The user blinds the Σ-protocol commitments A∗i and Adh via BlindInit. For
A∗i the function BlindInit expects CT∗i in plain as input (which is not known
by the user at this point), hence the user evaluates BlindInit homomorphically
over the commitments CMT∗i to CT∗i to obtain commitments C̃MAi to blinded
Ai.

3. The user randomizes the commitments C̃MAi to obtain commitments CMAi

to Ai.
Then, to compile the Σ-protocols via Fiat-Shamir, the user hashes (via HCH0
and HCH1) the first flow and statements (or commitments thereof if not available
in plain) to obtain two challenges δ0,dh and δ1,2. Namely, it queries challenges
δb := HCHb (HINb) for b ∈ {0, 1} where

HIN0 :=
(
(ppXi ,CMXi)i∈{0,1}, (pk

RE
0 ,CMT0),M,CMA0,xdh, Adh

)
HIN1 :=

(
(ppX2 ,CMX2), (pk

RE
i ,CMTi)i∈{0,1,2}, (CMAi)i∈{0,1,2}

) (17)

The user prepares these challenges for blinding via BlindChall−1 to obtain
(δ∗0,dh, δ

∗
1,2) and outputs

smsg3 := (δ∗0,dh, δ
∗
1,2).

4th message (S→ U). On input of smsg3 = (δ∗0,dh, δ
∗
1,2), the signer parses

its state and computes the Σ-protocol responses (ζ∗0 , ζ
∗
1 , ζ
∗
2 , ζ
∗
dh) via appropriate

witnesses10 for challenges (γ∗0 , γ
∗
dh) and (γ∗1 , γ

∗
2) which are additive sharings of

δ∗0,dh and δ∗1,2, respectively. Finally, the signer outputs

smsg4 := ((γ∗i , ζ
∗
i ,CT

∗
i , s
∗
i)i∈{0,1,2}, γ

∗
dh, ζ

∗
dh, π

∗
CT),

where π∗CT is a proof computed via ΠCT which certifies that ciphertexts CT∗i are
setup honestly, and s∗i is an opening for CMT∗i .

9 Roughly, this is ensured by interactive execution of the Σ-protocols and appropriate
NIZKs and verified by the user in U3.

10 As the Σdh transcript is simulated, the response ζ∗dh is the simulated response that
was created when HVZK was invoked.

21

S1(sk, smsg1)

1 : parse smsg1 := (pkLHE, ctM , πM)

2 : xM := (pkLHE, ctM)

3 : req ΠM .VerHM (crsM ,xM , πM) = 1

// Setup the ciphertexts CT∗
i

4 : z0 := x0; z1 := x0; z2 := 0

5 : for i ∈ {0, 1, 2} do
6 : ρ∗i ←RRE

7 : CT∗
i := RE.Enc(pkREi , ziG; ρ∗i)

// Setup the commitments CMT∗
i to CT∗

i

8 : for i ∈ {0, 1, 2} do
9 : s∗i ←RCOM

10 : CMT∗
i := COMT.Commit(ppT,CT∗

i ; s
∗
i)

// Compute first message of Σ-protocols for ϕ
1
x
∗
1
, ϕ

2
x
∗
2

11 : x
∗
1 := (pkRE0 ,CT∗

0, pk
RE
1 ,CT∗

1)

12 : x
∗
2 := (ppX2 ,CMX2, pk

RE
2 ,CT∗

2)

13 : for i ∈ {0, 1, 2} do sti ← Σi.Setup(1
λ)

14 : for i ∈ {1, 2} do A∗
i := Σi.Init(sti, ϕ

i
x
∗
i
)

// Simulate Σ-protocol for ϕdh

15 : γ∗
dh ← CH

16 : xdh := (G,D1, D2, D3)

17 : (A∗
dh, ζ

∗
dh)← Σdh.Sim(xdh, γ

∗
dh)

// Compute A
∗
0 homomorphically (cf. Eq. (11))

18 : ct0 := LHE.Eval(pkLHE, ctM , InitZero)

19 : r̂0 ←Rdim(InitZero)
LHE

20 : ct∗0 := LHE.Rerand(pkLHE, ct0, r̂0)

21 : return smsg2 := (ct∗0, (CMT∗
i)i∈{0,1,2}, A

∗
1, A

∗
2, A

∗
dh)

S2(sk, smsg3)

1 : parse smsg3 := (δ∗0,dh, δ
∗
1,2)

2 : // Setup ZK challenges for OR proof

3 : γ∗
0 := δ∗0,dh − γ∗

dh

4 : γ∗
2 ← CH; γ∗

1 := δ∗1,2 − γ∗
2

// Compose witnesses for (non-blind) statements

5 : w
∗
0 := ((x0, ŝ0), (x1, ŝ1), (z0G, ρ∗0))

6 : w
∗
1 := ((z0G, ρ∗0), (z1G, ρ∗1))

7 : w
∗
2 := ((x2, ŝ2), (z2G, ρ∗2))

// Compute (non-blind) ZK responses

8 : for i ∈ {0, 1, 2} do
9 : ζ∗i := Σi.Resp(sti, γ

∗
i ,w

∗
i)

// Prove that CT∗
i is setup honestly

10 : w
∗
CT := ((ρ∗i)i∈{0,1,2}, x0, ŝ0)

11 : x
∗
CT := (ppX0 ,CMX0, (pk

RE
i ,CT∗

i)i∈{0,1,2})

12 : π∗
CT ← ΠCT.Prove

HCT(crsCT,x
∗
CT,w

∗
CT)

13 : smsg4 := ((γ∗
i , ζ

∗
i ,CT

∗
i , s

∗
i)i∈{0,1,2}, γ

∗
dh, ζ

∗
dh, π

∗
CT)

14 : return smsg4

Fig. 3: The signer algorithms for our blind signature scheme. We assume that the signer
is stateful and but omit its state for conciseness.

Signature derivation. Finally, the user derives its signature as follows. It
parses smsg4 as above, and verifies the proof π∗CT and that the Σ-protocol
transcripts are valid via Verify. If either check fails, the user aborts. Else, the
user recomputes CTi from CT∗i and openings si and ti for CMTi and CMAi via
s∗i . This is possible via RandEval and RandRerand, as the user knows the random
coins that were used to randomize (homomorphically). Finally, it also recovers
A∗i in plain by reevaluating BlindInit with CTi and blinds the challenges and
responses via BlindChall and BlindResp, and outputs

σ := ((CTi, πi, si, ti)i∈{0,1,2}, πdh),

where πi and πdh are the blinded Σ-protocol transcripts.
Verification. To verify a signature σ, the verifier parses σ as above. Then, it
recomputes the commitments CMTi and CMAi via si and ti, respectively. It
outputs 1 iff the proofs πi pass verification via Verify, and γ0 + γdh = HCH0 (HIN0)
and γ1 + γ2 = HCH1 (HIN1). Here, HIN0 and HIN1 are as in Eq. (17)

A formal description is given below. We note here that, since an encryption of
the to-be-signed message M is sent to the signer, it is efficiently possible to prove

22

statements over M in zero-knowledge. In the terminology of [28], we achieve
predicate blindness.

BS: Pairing-free blind signature based on [2]

– KeyGen(1λ):
1. Sample x0 ← Zp and ŝi ← RCOM, set x1 = x2 = 0,
2. For i ∈ {0, 1, 2}, set CMXi := COMX.Commit(ppXi , xi; ŝi).
3. Output vk := (CMX0,CMX1,CMX2) and sk := (x0, x1, x2, ŝ1, ŝ2, ŝ3).

– S(sk)←→ U(vk,M): Proceeds in 4 moves and is given in Figures 3 and 4.
We assume that each signing session is implicitly identified by a session
identifier and that user and signer keep appropriate states.

– Verify(vk,M, σ):
1. Parse σ := ((CTi, πi, si, ti)i∈{0,1,2}, πdh).
2. Set x0 := ((ppX0 ,CMX0), (pp

X
1 ,CMX1), (pk

RE
0 ,CT0),M).

3. Set x1 := ((pkRE0 ,CT0), (pk
RE
1 ,CT1)).

4. Set x2 := ((ppX2 ,CMX2), (pk
RE
2 ,CT2)).

5. Set xdh := (G,D1, D2, D3).
6. Parse πi := (Ai, γi, ζi) for i ∈ {0, 1, 2}.
7. Parse πdh := (Adh, γdh, ζdh).
8. Set CMTi := COMT.Commit(ppT,CTi, si) for i ∈ {0, 1, 2}.
9. Set CMAi := COMT.Commit(ppT, Ai, ti) for i ∈ {0, 1, 2}.

10. Set HIN0 :=
(
(ppXi ,CMXi)i∈{0,1}, (pk

RE
0 ,CMT0),M,CMA0,xdh, Adh

)
11. Set HIN1 :=

(
(ppX2 ,CMX2), (pk

RE
i ,CMTi)i∈{0,1,2}, (CMAi)i∈{0,1,2}

)
12. Check that

γ0 + γdh = HCH0 (HIN0) ∧ γ1 + γ2 = HCH1 (HIN1)

13. Check for i ∈ {0, 1, 2} that

Σi.Verify(xi, Ai, γi, ζi) = 1 ∧ Σdh.Verify(xdh, Adh, γdh, ζdh) = 1

14. Output 1 iff the above checks pass.

3.3 Security Analysis

Theorem 1 (Blindness). For any PPT adversary A there exist reductions
with running time roughly that of A, such that for sufficiently large λ

AdvBlindBSA (λ)/2 ≤ AdvDDHG(λ) + 3 · ϵCOMX

hide (λ) + ϵCOMT

hide (λ)

+ 2(QHCH
0

+ QHCH
1

) · δCOMT
(λ) + 2AdvSndΠCT(λ,QHCT

)

+ AdvZKΠCT(λ,QHCT
) + AdvINDCPALHE(λ)

+ 3 · AdvParamINDCOMX(λ)

23

where δCOMT
(λ) is the unpredictability of COMT, QHCT

,QHCH
0
,QHCH

1
are bounds

on the number of resp. oracle calls made by A, and ϵCOMT

hide (resp. ϵCOMX

hide) is the
(statistical) distance of COMT’s (resp. COMX’s) parameters from uniform.

U1(vk,M)

1 : (pkLHE, skLHE)← LHE.Gen(1λ)

2 : rM ←RLHE

3 : ctM := LHE.Enc(pkLHE,M ; rM)

4 : xM := (pkLHE, ctM);wM := (skLHE,M, rM)

// Prove that ctM was setup honestly

5 : πM ← ΠM .ProveHM (crsM ,xM ,wM)

6 : return smsg1 := (pkLHE, ctM , πM)

U2(vk,M, smsg2)

1 : parse smsg2 := (ct∗0, (CMT∗
i)i∈{0,1,2}, A

∗
1, A

∗
2, A

∗
dh)

// Randomize CT∗
i to CTi homomorphically (cf. Eq. (12))

2 : for i ∈ {0, 1, 2} do
3 : ρ′i ←RRE // Implicit parameter for RandCTi

4 : C̃MTi := COMT.Eval(pp
T,CMT∗

i ,RandCTi)

s′i ←RCOMT

5 : CMTi := COMT.Rerand(pp
T, C̃MTi; s

′
i)

6 : A∗
0 := LHE.Dec(skLHE, ct∗0)

// Blind A
∗
i homomorphically via InitBlind (cf. Eq. (13))

7 : CIN∗
0 := CMT∗

0;

8 : CIN∗
1 := (CMT∗

0,CMT∗
1);

9 : CIN∗
2 := CMT∗

2

10 : for i ∈ {0, 1, 2} do
// Implicit parameter for InitBlindi

11 : bsti ← Σi.BlindSetup(1
λ)

12 : C̃MAi := COMT.Eval(pp
T,CIN∗

i , InitBlindi)

13 : t′i ←RCOMT

14 : CMAi := COMT.Rerand(pp
T, C̃MAi; t

′
i)

15 : xdh := (G,D1, D2, D3)

// Blind ZK commitment A
∗
dh in plain

16 : bstdh ← Σdh.Setup(1
λ)

17 : Adh ← Σdh.BlindInit(bstdh,xdh, A
∗
dh)

// Prepare challenges for blinding

18 : HIN0 := ((ppXi ,CMXi)i∈{0,1}, (pk
RE
0 ,CMT0),M,

CMA0,xdh, Adh)

19 : δ0,dh := HCH
0 (HIN0)

20 : δ0,dh := Σ0.BlindChall
−1(bst0, δ0,dh)

21 : δ∗0,dh := Σdh.BlindChall
−1(bstdh, δ0,dh)

22 : HIN1 := ((ppX2 ,CMX2), (pk
RE
i ,CMTi)i∈{0,1,2},

(CMAi)i∈{0,1,2})

23 : δ1,2 := HCH
1 (HIN1)

24 : δ1,2 := Σ1.BlindChall
−1(bst1, δ1,2)

25 : δ∗1,2 := Σ2.BlindChall
−1(bst2, δ1,2)

26 : return smsg3 := (δ∗0,dh, δ
∗
1,2)

U3(vk,M, smsg4)

1 : parse smsg4 := ((γ∗
i , ζ

∗
i ,CT

∗
i , s

∗
i)i∈{0,1,2}, γ

∗
dh, ζ

∗
dh, π

∗
CT)

2 : req γ∗
0 + γ∗

dh = δ∗0,dh ∧ γ∗
1 + γ∗

2 = δ∗1,2

3 : x
∗
CT := (ppX0 ,CMX0, (pk

RE
i ,CTi)i∈{0,1,2})

4 : req ΠCT.Ver
HCT(crsCT,x

∗
CT, π

∗
CT) = 1

// Check transcripts and commitments

5 : for i ∈ {0, 1, 2} do

6 : req CMT∗
i = COMT.Commit(ppT,CT∗

i , s
∗
i)

7 : req Σi.Verify(x
∗
i , A

∗
i , γ

∗
i , ζ

∗
i) = 1

8 : req Σdh.Verify(x
∗
dh, A

∗
dh, γ

∗
dh, ζ

∗
dh) = 1

9 : // Recompute homomorphically computed values in plain

10 : for i ∈ {0, 1, 2} do

11 : CTi := RE.Rerand(pkRE,CT∗
i , ρ

′
i)

12 : IN∗
0 := CT∗

0;

13 : IN∗
1 := (CT∗

0,CT
∗
1);

14 : IN∗
2 := CT∗

2

15 : for i ∈ {0, 1, 2} do
16 : Ai := InitBlindi(IN

∗
i)

17 : γi := Σi.BlindChall(bsti, γ
∗
i)

18 : ζ̃i := Σi.BlindResp(bsti, ζ
∗
i)

19 : γdh := Σdh.BlindChall(bstdh, γ
∗
dh)

20 : ζdh := Σdh.BlindResp(bstdh, ζ
∗
dh)

21 : // Translate the received ZK responses to blinded statements

22 : paramsTS0 := ρ′0;

23 : paramsTS1 := (ρ′0, ρ
′
1);

24 : paramsTS2 := ρ′2

25 : for i ∈ {0, 1, 2} do

26 : ζi := TransRespi,paramsTSi
(γi, ζ̃i)

// Compose ZK transcripts

27 : πdh := (Adh, γdh, ζdh)

28 : for i ∈ {0, 1, 2} do
29 : πi := (Ai, γi, ζi)

// Recompute the commitment randomness

30 : s̃i := COMT.RandEval(pp
T,CT∗

i , s
∗
i ,RandCTi)

31 : si := COMT.RandRerand(pp
T,CTi, s̃i, s

′
i)

32 : t̃i := COMT.RandEval(pp
T,CTi, s

′
i, InitBlindi)

33 : ti := COMT.RandRerand(pp
T, Ai, t̃i, t

′
i)

34 : return σ := ((CTi, πi, si, ti)i∈{0,1,2}, πdh)

Fig. 4: The user algorithms for our blind signature scheme. We assume that the signer
is stateful and but omit its state for conciseness.

24

Proof (Sketch). We give a very brief proof sketch. A full proof is given in
Supplementary Material D.3. At a high level, we prove blindness by decoupling
the interaction of the signing session from the final signature through a number
of game hops. The main steps are:

– Make all statements (trivially) true: We switch xdh to a DDH tuple and
set up ppX in hiding mode. Together with the proof π∗CT this ensures that all
statements x∗0,x∗1,x∗2,x∗dh possess a witness.

– Program the random oracle: We pick δ∗0,dh, δ
∗
1,2 and pick γi ahead of time,

and retroactively program the random oracle. After this change, the user’s
entire computation in U2 can be postponed to U3. In particular, at this point
the signer has revealed the (previously partially committed) transcripts of
all Σi in the plain (for i ∈ {0, 1, 2, dh}).

– Switch to SHVZK simulation of transcripts: By transcript blindness,
translatability, and SHVZK of Σi, we can compute an accepting transcript
for xi through simulation. The view of the adversary is unchanged. (These
steps require the existence of a witness, hence the first hop.)

– Compute statements fresh and independent of M : Next, we simulate
the proof πM and replace the ciphertexts CTi by fresh encryptions, and the
randomizations of commitments by fresh commitments. At this point, the
signatures σb are completely independent from the interaction.

⊓⊔

Theorem 2 (OMUF). For any PPT adversary A there exist reductions with
running time roughly that of A, such that for sufficiently large λ

AdvOMUFBS
A (λ) ≤ AdvZKΠCT(λ,QHCT

) + AdvCRSΠM ,ExtSetup(λ,QHM
)

+ AdvExtΠM ,Ext(λ,QHM
) + ϵCOMT

hide (λ)

+ 2(QHCH
0

+ 1)/p+ 2AdvDDH(λ)

+ ⌈logQS⌉

4AdvINDCPARE(λ)

+ 2(QHCH
1

+ 1)/p

+ 3AdvParamINDCOMT

R3
COMT

(λ)

+ 7AdvParamINDCOMX

R3
COMX

(λ)

+ 2ℓ/p

where QHCT

,QHM
,QHCH

0
,QHCH

1
are bounds on the number of resp. oracle calls

made by A, QS is the number of signing sessions (started by A), and ϵCOMT

hide (λ)
is the (statistical) distance of COMT’s parameters from uniform.

Proof (Sketch). Let us provide a brief proof sketch. The formal proof is given
in Supplementary Material D.4. On a high level, our proof follows the proof
strategy of unforgeability in [2, Theorem 3.6]. There are two core challenges when
adapting their proof technique to our setting:

25

1. The adversary A outputs ℓ+1 forgeries on distinct messagesM+
k for k ∈ [ℓ+1].

Also, the signer does not learn which messages it signed. In contrast, in [2] the
adversary outputs a single forgery on a fresh message and the game knows
the messages it signed. Thus, to apply the proof strategy of [2], we also need
to identify an unsigned message.

2. In contrast to [2], our signing phase proceeds in two steps. Importantly, the
adversary A needs to provide a forgery for each finished signing session plus
an additional forgery, but it is unrestricted in the number of opened sessions.
Thus, we need to carefully control the information we leak to A in the first
signing round.

To deal with the first point, we extract the messages MS := {M1, ...,MQS
}

to be signed from the resp. proofs πM , where QS is the number of opened
signing sessions (including finished ones). Let us denote by MF ⊆MS the set of
messages with a finished signing session. When the forgery is presented, there are
ℓ+ 1 distinct forgeriesM+ := {M+

1 , ...,M
+
ℓ+1}. Because only at most |MF| ≤ ℓ

signing sessions have been finished, there must be at least one fresh message
M+ ∈M+ \MF. We interpret one such message M+ as the forgery message.11
Note that if the above approach is performed naively, it requires extracting a full
witness w = (skLHE,M, rM) for RM . While extracting scalars (such as skLHE, rM)
induces a large overhead, we instead relax the requirement on the extractor to
only extract M .12 This is sufficient, although the proof requires some care (cf.
Lemma 6).

The second point is more technical. Observe that even if we fix some message
M+ at the end of the OMUF game as described above, the game does not know
M+ during the simulation. In particular, it might be that M+ is extracted in
some started signing session that is never finished (i.e., only the S1 oracle but not
the S2 oracle is accessed). This is in stark contrast to the setting in [2], where
any message passed to the signing oracle cannot be the forgery’s message. As we
are interested in a tight reduction, we cannot simply guess the message M+ as
in previous works.

Let us observe what happens if we naively apply the proof strategy of [2].
Roughly, [2] introduces additional constraints on the forgery in a tight manner
by employing the adaptive partitioning strategy [39]. Eventuelly, after a series of
adding and removing constraints on the forgery, the adversary will only succeed
if

Z+
0 ∈ {x0G+ x1Mj}j∈[QS],

where Z+
0 is the message encrypted in the forgery’s ciphertext CT+

0 associated to
message M+, Mj is the extracted message in the j-th signing session, and x0, x1
11 A similar argument is made by [50, 49] in order to identify an unsigned message.

But their approach requires guessing the unsigned message in advance in order to
puncture the verification key for the guessed message. Here, this message is not
known until the adversary’s success is evaluated. This is important for a tight security
proof, but complicates the security argument. We give more details below.

12 We note that this is a well-known optimization technique, e.g., used in [45].

26

are committed in CMX0,CMX1, respectively. This argument employs soundness
of π1 and π2 as OR-compiled Fiat-Shamir proofs. To get to this point, we will go
through a number of partitionings of the generated signatures. More specifically,
we will consider two types of signatures: those with z2,j = 0, and those with
z2,j = 1. About half of the generated signatures will have z2,j = 0, and half
will have z2,j = 1. We will also guess the bit β = z+2 of the forged signature for
M+. If we play our cards right (and use the soundness of the involved proof
systems), this setup enables us to (a) extract from A’s signature for M+, while
(b) being able to change the encrypted values Z0,j in the generated signatures
with z2,j ̸= β. This will eventually allow to randomize all Z0,j , and the induced
conditions on the A’s forgery. As a technical complication, the invariants provided
by the involved proof systems will only force A to reuse a previously used Z0,j ,
but not more. We will need to deal with this complication next.

Further, soundness of π0 and πdh also guarantees that if (G,D1, D2, D3) /∈ Ldh,
then

Z+
0 = x0G+ x1M

+.

Thus, the adversary A is forced to reuse some message Mj for its forgery which
contradicts that M+ was never signed. Unfortunately, in our context this is does
not mean that A fails, as the session where the reused Mj was extracted could
have never been finished by A.

A more careful analysis is required. Roughly, for the proof to go through,
we need that the signer’s ciphertext CT∗i is not leaked statistically within the
first round. We ensure this property by only sending a commitment CMT∗i to
CT∗i (rather than CT∗i directly). While it is important that CT∗i is not leaked
statistically in the first round, we also rely on soundness of the Fiat-Shamir
compiled NIPS πi in the proof.

When the appropriate commitment is statistically hiding, then the former
requirement is met, but adaptive soundness of the signature scheme is not
guaranteed. On the other hand, if CMT∗i is only computationally hiding, we can
show statistical soundness of the NIPS πi, but CT∗i is leaked computationally too
early to the adversary and the proof strategy fails.

Our key insight is that a dual-mode commitment suffices when combined
with a careful analysis. More subtly, while the first message of the Σ-protocols
A∗i := Σi.Init(sti, ϕ

i
x
∗
i
) might reveal information about the statement x∗i , and thus

about x∗i , the ciphertexts CT∗i are exclusively part of the target vectors ξi(x∗i)
and not ϕi

x
∗
i
. The property in Remark 1 of Σi allows us to control the leaked

information in the proof. ⊓⊔

Remark 2 (Security in the NPROM). Except for HCH, random oracles are only
used to generate parameters or within NIZKs. For parameters, we can replace
them with CRSs. For the NIZKs, tight CRS-based simulation and extraction
trapdoors along with an non-programmable RO are sufficient. The OMUF security
proof never programs the HCH. For blindness, we can avoid programming HCH

by ensuring that the reduction can “honestly” prove the OR-claims R0 ∪ Rdh and
R1 ∪ R2, and thus generate (perfectly indistinguishable) πi. For R0 ∪ Rdh, we can

27

use the DDH witness. By adding a relaxed proof of knowledge to vk which allows
extracting Z0 = x0G, we also have a witness for R1. For details, see Remark 8.

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signa-
tures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Berlin, Heidelberg
(Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_34

2. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. Journal of Cryptology 36(4), 37
(Oct 2023). https://doi.org/10.1007/s00145-023-09477-z

3. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK and
SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Part III. LNCS, vol. 11923, pp. 669–699. Springer, Cham (Dec 2019). https:
//doi.org/10.1007/978-3-030-34618-8_23

4. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Cham (Dec
2018). https://doi.org/10.1007/978-3-030-03326-2_21

5. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Practical, round-optimal lattice-
based blind signatures. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM
CCS 2022. pp. 39–53. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.
3560650

6. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 629–658. Springer, Berlin, Heidelberg (Mar 2015). https://doi.org/10.1007/
978-3-662-46494-6_26

7. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Berlin, Heidelberg (May 2016). https://doi.org/
10.1007/978-3-662-49896-5_10

8. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 82–99. Springer, Berlin, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42045-0_5

9. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Berlin, Heidelberg (May 2000). https://doi.org/
10.1007/3-540-45539-6_18

10. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology 16(3), 185–215 (Jun 2003). https://doi.org/10.1007/
s00145-002-0120-1

11. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Short blind signatures.
Journal of computer security 21(5), 627–661 (2013)

12. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 408–425. Springer, Berlin, Heidelberg (Aug 2014). https:
//doi.org/10.1007/978-3-662-44371-2_23

28

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/s00145-023-09477-z
https://doi.org/10.1007/s00145-023-09477-z
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23

13. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Berlin, Heidelberg (Jan 2003). https://doi.
org/10.1007/3-540-36288-6_3

14. Boyen, X., Li, Q.: Almost tight multi-instance multi-ciphertext identity-based
encryption on lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 18Inter-
national Conference on Applied Cryptography and Network Security. LNCS,
vol. 10892, pp. 535–553. Springer, Cham (Jul 2018). https://doi.org/10.1007/
978-3-319-93387-0_28

15. Chairattana-Apirom, R., Tessaro, S., Zhu, C.: Pairing-free blind signatures from
CDH assumptions. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part I. LNCS,
vol. 14920, pp. 174–209. Springer, Cham (Aug 2024). https://doi.org/10.1007/
978-3-031-68376-3_6

16. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York, USA
(1982). https://doi.org/10.1007/978-1-4757-0602-4_18

17. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO’92. LNCS, vol. 740, pp. 89–105. Springer, Berlin, Heidelberg (Aug 1993).
https://doi.org/10.1007/3-540-48071-4_7

18. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–
356. Springer, Berlin, Heidelberg (Feb 2007). https://doi.org/10.1007/11967668_
22

19. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Berlin, Heidelberg (Aug 1994). https:
//doi.org/10.1007/3-540-48658-5_19

20. Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Snowblind: A threshold
blind signature in pairing-free groups. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part I. LNCS, vol. 14081, pp. 710–742. Springer, Cham (Aug 2023).
https://doi.org/10.1007/978-3-031-38557-5_23

21. del Pino, R., Katsumata, S.: A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 306–336.
Springer, Cham (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_11

22. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Berlin, Heidelberg (Aug 2013).
https://doi.org/10.1007/978-3-642-40084-1_8

23. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of
Cryptology 1(2), 77–94 (Jun 1988). https://doi.org/10.1007/BF02351717

24. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Berlin, Heidelberg (Aug 2006). https://doi.org/10.1007/11818175_4

25. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–
215. Springer, Berlin, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_10

26. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,

29

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-319-93387-0_28
https://doi.org/10.1007/978-3-319-93387-0_28
https://doi.org/10.1007/978-3-319-93387-0_28
https://doi.org/10.1007/978-3-319-93387-0_28
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/11967668_22
https://doi.org/10.1007/11967668_22
https://doi.org/10.1007/11967668_22
https://doi.org/10.1007/11967668_22
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/BF02351717
https://doi.org/10.1007/BF02351717
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10

Part II. LNCS, vol. 9216, pp. 233–253. Springer, Berlin, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7_12

27. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–
62. Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_
2

28. Fuchsbauer, G., Wolf, M.: Concurrently secure blind schnorr signatures. In: Joye,
M., Leander, G. (eds.) EUROCRYPT 2024, Part II. LNCS, vol. 14652, pp. 124–160.
Springer, Cham (May 2024). https://doi.org/10.1007/978-3-031-58723-8_5

29. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Berlin, Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_
27

30. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signa-
tures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer,
Berlin, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_
36

31. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly se-
cure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Cham (Apr / May
2018). https://doi.org/10.1007/978-3-319-78375-8_8

32. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Cham (Apr
2017). https://doi.org/10.1007/978-3-319-70972-7_26

33. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Berlin, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3_24

34. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012). https://doi.org/10.1137/080725386,
https://doi.org/10.1137/080725386

35. Hanzlik, L., Loss, J., Wagner, B.: Rai-choo! Evolving blind signatures to the
next level. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS,
vol. 14008, pp. 753–783. Springer, Cham (Apr 2023). https://doi.org/10.1007/
978-3-031-30589-4_26

36. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from
identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Cham (May 2019). https://doi.org/10.
1007/978-3-030-17659-4_12

37. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, re-
visited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS,
vol. 12171, pp. 500–529. Springer, Cham (Aug 2020). https://doi.org/10.1007/
978-3-030-56880-1_18

38. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 65–
94. Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_
3

39. Hofheinz, D.: Adaptive partitioning. In: Coron, J.S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part III. LNCS, vol. 10212, pp. 489–518. Springer, Cham (Apr / May
2017). https://doi.org/10.1007/978-3-319-56617-7_17

30

https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17

40. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
590–607. Springer, Berlin, Heidelberg (Aug 2012). https://doi.org/10.1007/
978-3-642-32009-5_35

41. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Berlin,
Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-85174-5_2

42. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164.
Springer, Berlin, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052233

43. Kastner, J., Loss, J., Xu, J.: The Abe-Okamoto partially blind signature scheme
revisited. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS,
vol. 13794, pp. 279–309. Springer, Cham (Dec 2022). https://doi.org/10.1007/
978-3-031-22972-5_10

44. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the algebraic
group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II.
LNCS, vol. 13178, pp. 468–497. Springer, Cham (Mar 2022). https://doi.org/10.
1007/978-3-030-97131-1_16

45. Kastner, J., Nguyen, K., Reichle, M.: Pairing-free blind signatures from standard
assumptions in the ROM. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part I.
LNCS, vol. 14920, pp. 210–245. Springer, Cham (Aug 2024). https://doi.org/10.
1007/978-3-031-68376-3_7

46. Katsumata, S., Reichle, M., Sakai, Y.: Practical round-optimal blind signatures
in the ROM from standard assumptions. In: Guo, J., Steinfeld, R. (eds.) ASI-
ACRYPT 2023, Part II. LNCS, vol. 14439, pp. 383–417. Springer, Singapore (Dec
2023). https://doi.org/10.1007/978-981-99-8724-5_12

47. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature
schemes. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS,
vol. 13093, pp. 468–492. Springer, Cham (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_16

48. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight
security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003.
pp. 155–164. ACM Press (Oct 2003). https://doi.org/10.1145/948109.948132

49. Klooß, M., Reichle, M.: Blind signatures from proofs of inequality (2024), https:
//eprint.iacr.org/2024/XXX

50. Klooß, M., Reichle, M., Wagner, B.: Practical blind signatures in pairing-free groups.
In: Chung, K.M., Sasaki, Y. (eds.) ASIACRYPT 2024 (to appear). LNCS (Dec 9–13,
2024)

51. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. DCC
77(2-3), 663–676 (2015). https://doi.org/10.1007/s10623-015-0103-5

52. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Berlin, Heidelberg (Dec 2005). https:
//doi.org/10.1007/11586821_1

53. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Berlin, Heidelberg (Mar 2006). https://doi.org/10.1007/11681878_5

54. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow,
L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 109–118. ACM Press (Jun 2011).
https://doi.org/10.1145/1993636.1993652

31

https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-031-68376-3_7
https://doi.org/10.1007/978-3-031-68376-3_7
https://doi.org/10.1007/978-3-031-68376-3_7
https://doi.org/10.1007/978-3-031-68376-3_7
https://doi.org/10.1007/978-981-99-8724-5_12
https://doi.org/10.1007/978-981-99-8724-5_12
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1145/948109.948132
https://doi.org/10.1145/948109.948132
https://eprint.iacr.org/2024/XXX
https://eprint.iacr.org/2024/XXX
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/11681878_5
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652

55. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/
10.1007/s001450010003

56. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W.
(ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Berlin, Heidelberg
(May 1997). https://doi.org/10.1007/3-540-69053-0_18

57. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 782–811. Springer, Cham (May / Jun 2022). https://doi.org/10.
1007/978-3-031-07085-3_27

58. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Berlin, Heidelberg (May 2005). https://doi.org/10.1007/11426639_7

32

https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7

Supplementary Material

A Assumptions

Let G be a group of prime order p with generator G ∈ G—implicitly parameterized by the security
parameter (cf. Section 2). We formally define the DL, CDH and (Q-)DDH assumptions. Q-DDH is
implied by DDH.

Definition 16 (DDH Assumption). The decisional Diffie-Hellman (DDH) assumption holds in group
G with generator G if for any PPT adversary A, it holds that

AdvDDHG
A(λ) :=

∣∣∣Pr[a, b← Zp : A(G, aG, bG, (ab)G) = 1]−

Pr[a, b, c← Zp : A(G, aG, bG, cG) = 1]
∣∣∣ = negl(λ).

Definition 17 (Q-DDH Assumption). The Q-fold decisional Diffie-Hellman (Q-DDH) assumption
holds in group G with generator g if for any PPT adversary A, it holds that

AdvQDDHG
A(Q,λ) :=

∣∣∣Pr[a← Zp, b⃗← ZQ
p : A(G, aG, (biG, (abi)G)i∈[Q]) = 1]

− Pr[a← Zp, b⃗, c⃗← ZQ
p : A(G, aG, (biG, ciG)i∈[Q]) = 1]

∣∣∣ = negl(λ).

Remark 3. Q-DDH is tightly implied by DDH. Namely, for any PPT adversary A on Q-DDH, there is a
PPT reduction B with running time roughly that of A, such that AdvQDDHG

A(Q,λ) ≤ AdvDDHG
B(λ) +

1/(p− 1) (cf. [22]).

B Instantiations

In this section, we provide the instantiations of our building blocks, recall the (tight) security of the Fiat–
Shamir transformation and relaxed knowledge soundness, and finally, we provide the communication,
signature and proof size estimates when instantiating our blind signature.

B.1 ElGamal Encryption: PKE, RE, LHE

Definition 18 (ElGamal encryption). For a group G = ⟨G⟩ of order p we define the ElGamal
encryption scheme with message space M := G, ciphertext space C := G2, randomness space R := Zp

as follows:

– PKE.Gen(1λ) samples sk← Zp, computes pk = skG, and outputs (pk, sk).
– PKE.Enc(pk,M ; r) for M ∈ G, r ∈ Zp and outputs (rG, rpk+M).
– PKE.Dec(sk, (C0, C1)) outputs C1 − skC0.

Observe that (M, r) 7→ Enc(pk,M ; r) is linear: Enc(pk,M ; r)+Enc(pk,M ′; r′) = Enc(pk,M +M ′, r+r′).

Lemma 3 (PKE, RE, LHE). ElGamal encryption

– is perfectly correct, (Definition 29)
– has uniform public key, (Definition 11)
– has linear encryption, (Definition 12)
– is a randomizable encryption scheme with perfect rerandomization indistinguishability and linear

randomizability, (Definitions 12, 31 and 33)
– is tightly IND-CPA secure under DDH,13 (Definition 30)
– is a linearly homomorphic encryption scheme for MLHE = G, (Definition 34)
– is perfectly homomorphically correct. (Definition 35)

Proof. All of these are straightforward to check or well-known. Many properties immediately follow
from ElGamal encryption being a linear map Encpk :M×R→ C for an pk ∈ PK. ⊓⊔
13 Namely, AdvINDCPAPKE

A (1λ) ≤ AdvQDDHG
B(1

λ) by a straightforward reduction.

B.2 Dual-Mode Commitments

We use the same dual-mode commitments as used for Groth–Sahai proofs [34]. For simplicity, we
commit scalars x ∈ Zp as xG, and thus only define the commitments for group elements.

Definition 19 (Dual-mode ElGamal encryption). For a group G = ⟨G⟩ of order p we define
dual-mode ElGamal encryption with message space M := G, ciphertext space C := G2, randomness
space R := Z2

p as follows:

– PKE.Gen(1λ): security parameter 1λ, samples a, b, c ← Zp, computes pk =

(
aG bG
acG abcG

)
, outputs

(pk, sk := b).
– PKE.Enc(pk,M ; r): given message M ∈ G and randomness r ∈ Z2

p, outputs C := (0,M) + r⊺pk.
– PKE.Dec(sk, C = (C0, C1)): outputs M = C⊺(−b, 1).

Observe that (M, r) 7→ Enc(pk,M ; r) is linear: Enc(pk,M ; r)+Enc(pk,M ′; r′) = Enc(pk,M +M ′, r+r′).

Remark 4. Dual-mode ElGamal encryption PKE can be used as a dual-mode commitment scheme COM
for message in G by setting:

– COM.Setup(1λ, hide) samples X ← Z2×2
p s.t. det(X) ̸= 0 and pp← GX .

– COM.Setup(1λ, bind) samples pp← PKE.Gen(1λ).
– COM.Commit(pp,M) = PKE.Enc(pp,M).

Lemma 4. Dual-mode ElGamal encryption used as a commitment for MCOM = G:

– has uniform public key in hiding mode, (Definition 40)
– has linear encryption, (Definition 14)
– is randomizable as a commitment scheme (and an encryption scheme), with perfect rerandomization

indistinguishability and linear randomizability, (Definition 39)
– is a linearly homomorphic (as commitment and encryption) scheme for MLHE = G,
– is perfectly homomorphically correct, (Definition 38)
– is a dual-mode commitment scheme (resp. lossy encryption scheme). It is parameter indistinguish-

able (Definition 41) with advantage 2AdvDDHG
A by a straightforward reduction. In hiding mode,

“encryptions” are uniformly random tuples in G2. (In particular, the commitment is perfectly hiding
(Definition 36) in hiding mode.)

– in binding mode is perfectly binding (Definition 37). (Moreover, it is efficiently extractable for
MCOM = G with extraction trapdoor td = sk.)

When MCOM = Zp, by committing to mG for message m ∈ Zp, then the same properties apply (except
that extractability is lost).

Proof. All of these are straightforward to check or well-known. ⊓⊔

B.3 Non-Interactive Proof Systems

We instantiate our proof systems as simple Fiat–Shamir transformations of a respective linear Σ-protocol.
For completeness, we recall the proofs of zero-knowledge and soundness, observing that both are tight
in the ROM. Moreover, we recall the folklore transformation to achieve straightline extractability for
(relaxed) knowledge soundness.

Definition 20 (Fiat–Shamir transformation). Let Σ = (Setup, Init,Resp,Verify) be a Σ-protocol
for linear relation Rϕ,ξ and with challenge space CH. Let H : {0, 1}∗ → CH a random oracle. The
Fiat–Shamir transformation FSH[Σ] = (ProveH,VerH) of Σ constructs a non-interactive proof system
defined as follows:

– ProveH(x,w): given statement–witness pair (x,w) ∈ R, computes st← Setup(1λ), A := Init(st, ϕx),
γ := H(x, A), and ζ := Resp(st, γ), outputs π := (A, γ, ζ).

– VerH(x, (A, γ, ζ)): given a purported statement x and transcript (A, γ, ζ), outputs 1 if H(x, A) = γ
and Σ.Verify(x, (A, γ, ζ)) = 1, else outputs 0.

34

Lemma 5. Let Σ = (Setup, Init,Resp,Verify) be a Σ-protocol for linear relation Rϕ,ξ and with challenge
space CH and Π = FSH[Σ] = (ProveH,VerH) its Fiat–Shamir transformation w.r.t. random oracle H.

1. Suppose Σ is 2-special sound. Then for every (unbounded) adversary A against soundness of FSH[Σ],
it holds that

AdvSndΠA(λ,QH) ≤
QH

|CH|
.

2. Suppose Σ is perfectly SHVZK with simulator Σ.Sim and for every x ∈ LR(ϕ,ξ)
the output of Init(ϕx)

is δ-unpredictable, i.e., for all x ∈ {0, 1}∗ : Pr[x = A | st ← Setup(1λ), A := Init(st, ϕx)] ≤ δ(λ).
Then there exists a simulator SimSetup,Sim such that for every adversary A against zero-knowledge
of FSH[Σ] which makes at most QH queries to H it holds that

AdvZKΠ,SimSetup,Sim
A (λ,QH) ≤ AdvSHVZKΣ,Σ.Sim(λ) + QH · δ(λ) = QH · δ(λ).

Proof (Sketch). For Item 1, it suffices to observe that by 2-special soundness, if for any statement x and
first flow message A there exist 2 (or more) challenges γ1 ̸= γ2 which can be completed into accepting
transcripts, then x ∈ LR(ϕ,ξ)

(because a witness could be extracted, hence exists). Consequently, for
every false statement, for every pair (x, A) there is (at most) one unique challenge which the verifier
could accept. As H is a random oracle, this bad challenge is hit with probability 1/|CH|. By a union
bound, given QH queries, the bad event occurs with probability at most QH/|CH|

For Item 2, it suffices to observe that by δ-unpredictability, the adversary A will not have queried
H(x, A), except with probability at most QH · δ(λ). Thus, we can instead program H(x, A) to γ ← CH
and use the SHVZK simulator to perfectly simulate the respective transcript. Since simulation is perfect,
AdvSHVZKΣ,Σ.Sim(λ) = 0. ⊓⊔

Straightline Extractability via Encryption Straightline extractability (Definition 27) requires to
extract a witness w for x merely from the proof π for x and extraction trapdoor td (and perhaps all
random oracle queries Q). There is a folklore transformation to achieve this strong guarantee from a
sound proof system. We first sketch the idea in a general setting, and then present an instantiation for
linear relations.

Remark 5 (The generic transformation). Let R0 be an arbitrary relation, let PKE be a PKE scheme,
and let RPKE be the relation for valid ciphertexts under PKE. The idea is to transform a given relation
R0 into a new relation R∗. A transformed statement x∗ consists of the original statement x0 plus an
encryption CT of the to-be-extracted part w̃0 of the (original) witness w0 in a ciphertext. The CRS for
the transformed relation consists of a public key pk plus the CRS for a NIPS for R∗. The trapdoor for
the straightline extractor is the secret key sk corresponding to pk. This allows extracting the relevant
part w̃0 of the original witness from the transformed statement. In the extreme case, which is the
classic transformation, we can let w̃0 = w and extract the complete witness. But our notion of relaxed
knowledge soundness (Definition 27) allows us to restrict to only a partial witness w̃0

Now, we sketch how relaxed knowledge soundness for certain linear relations is generically achieved
by the above template. We do not provide an abstract definition nor a fully detailed proof, and limit
our attention to Zp-linear maps from Zm

p ×Gn → Zm′

p ×Gn′
and the extraction of witness components

in G.14 Moreover, we concentrate solely on Fiat–Shamir transformation of (canonical) Σ-protocols for
linear relations.
Instantiating the transformation.. Let PKE = (Gen,Enc,Dec) be a PKE with uniform public keys,
linear encryption, and linear relation RPKE. For simplicity, let CH := Zp be the challenge space for all
Σ-protocols in this section.

– Let R0 := R(ϕ0,ξ0) be linear relation.
– Let RPKE := R(ϕPKE,ξPKE) be the linear encryption relation for valid ciphertexts.
– Let Σ0 := (Setup0, Init0,Resp0,Verify0) be a Σ-protocol for R0 and with challenge space CH.
– Let ΣPKE := (SetupPKE, Init,RespPKE,VerifyPKE) be a Σ-protocol for linear relation RϕPKE,ξPKE and

with challenge space CH.
14 Indeed, for straightline extraction of scalars, i.e., elements in Zp, we are not aware of a proof system that is

constant size (in terms of group elements, i.e. O(λ)) bits for elliptic curves.

35

– Let

R∗ :=

(x∗,w∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
∗ = (x0,xPKE)

w
∗ = (w0,wPKE)

(x0,w0) ∈ R0

w0 = (w′0, w̃0)
xPKE = (pk,CT)
CT = PKE.Enc(pk, w̃0; r)

wPKE = (w̃0, r)
pk ∈ PKPKE

r ∈ RPKE

(18)

where w̃0 is the to-be-extracted part of the witness.

Note that to define R∗, we assume that the vector w0 can be split into the to-be-extracted part of
the witness w̃0 and the remaining part w′0. Also observe that R∗ is an AND-claim which asserts that
w̃0 is used both in the witness for R0 and RPKE. Fortunately, by our assumption that we can split w0 as
w
′
0, w̃0, such an AND-relation can again be expressed by a linear relation, namely by R∗ = R(ϕ∗

x
,ξ∗)

where

ϕ∗
x
(w∗ = (w0,wPKE)) =

(
ϕ0
x0
(w0 = (w′0, w̃0))

ϕPKE
xPKE

(wPKE = (w̃0, r))

)
and ξ∗(x∗ = (x0,xPKE)) =

(
ξ0(x0)

ξPKE(xPKE)

)
.

Hence, we have a canonical Σ-protocol Σ∗ = Σϕ∗,ξ∗ and therefore a NIPS Π∗ = FSH[Σ∗] for R∗.
Now, following the template, we define a straightline-extractable NIPS Π0 for the relation R0 as

follows:

Π0.Prove
H(crs,x0,w0)

1 : pk := crs

2 : r ←RPKE

3 : CT := PKE.Enc(pk, w̃0; r)

4 : xPKE := (pk,CT)

5 : wPKE := (w̃0, r)

6 : x
∗ := (x0,xPKE)

7 : w
∗ := (w0,wPKE)

8 : π∗ ← Π∗.ProveH(x∗,w∗)

9 : return π0 := (π∗,CT)

Π0.Ver
H(crs,x0, π0)

1 : pk := crs

2 : (π∗,CT) := π0

3 : xPKE := (pk,CT)

4 : x
∗ := (x0,xPKE)

5 : return Π∗.VerH(x∗, π∗)

The above NIPS Π0 is not a Fiat–Shamir transformation of a canonical Σ-protocol anymore. Hence,
it needs a separate analysis. As a first step, let us recall the properties of Π∗ = FSH[Σ∗] which were
established in Lemma 5: Since Σ is the canonical Σ-protocol for linear relation R(ϕ∗,ξ∗), it is 2-special
sound and SHVZK, and by Lemma 5 Π∗ is

– zero-knowledge with advantage stated in Lemma 5;
– sound for R∗ with advantage stated in Lemma 5.

Now, let us turn to the NIPS Π0, for we we conclude:

– Computational Zero-knowledge: The actual transformation requires that Π0.Prove encrypts
w̃0 under pk and proves well-formedness of the statement as part of R∗. Clearly, this cannot be
perfect/statistical zero-knowledge anymore.15 Assuming δ∗(λ)-unpredictability Σ∗, we can bound
the advantage of an adversary A against zero-knowledge of Π0 which makes at most QH queries to
H by

AdvZKΠ,SimSetup,Sim
A (λ,QH) ≤ AdvINDCPAPKE

D (λ) + QH · δ∗(λ) (19)

where the running time of D is roughly that the zero-knowledge experiment with A. This follows
by first simulating Π∗, using Lemma 5, and then appling IND-CPA to replace the ciphertexts
encrypting w̃0 with ciphertext encrypting 0.

15 We could use extractable dual-mode commitments or lossy encryption to achieve a dual-mode notion of
zero-knowledge and relaxed straightline extractability.

36

– Extractability: Let

R̃0 := {(x0, w̃0) | ∃w′0 : (x0,w0 := (w′0, w̃0)) ∈ R0} (20)

be the knowledge relation for R0. Then, the NIPS Π0 is straightline R̃0-extractable. The extractor
(ExtSetup,Ext) is defined as follows:

ExtSetup(1λ)

1 : (pk, sk)← PKE.Gen(1λ)

2 : return (crs := pk, td := sk)

Ext((td,QH),x0, π0)

1 : sk := td

2 : (π∗,CT) := π0

3 : return PKE.Dec(sk,CT)

Since we assume PKE is perfectly correct (by Definition 10), an abort in the extractability experiment
for R̃0 (see Definition 27) only is equivalent to a soundness break for R∗. Hence, we inherit the tight
bound for soundness shown in Lemma 5. We omit a formal proof.

Finally, we note that IND-CPA security of ElGamal encryption tightly reduces to DDH. Thus, we
have shown the existence of tightly secure straightline extractable and computationally zero-knowledge
non-interactive proof systems for suitable linear relations. Instantiations with ElGamal encryption are
limited to extracting witness parts inMPKE = G. This suffices for our construction.

B.4 Communication, Signature and Proof Sizes

In Table 3 we overview the (co)domains of our linear maps, which correspond to sizes of commitments
and ciphertexts, as well as sizes of witnesses in our relations and Σ-protocols. From these and the
protocol description in Figures 3 and 4, we compute the communication and signature sizes in Table 4.
For comprehensibility, we list the intermediate sizes in Table 4 used to compute the final proof sizes as
well.

Table 3: Linear map codomains and domains for our instantiations.
ϕ
COMX
xCMXi

Z3
p → G2 dual-mode ElGamal for M = Zp

ϕCOMT Z2
p ×G → G2 dual-mode ElGamal for M = G

ϕRE
xRE,i

Z2
p ×G → G2 ElGamal encryption

ϕ0
x
∗
0

Z7
p ×G → G7

ϕ1
x
∗
1

Z2
p ×G2 → G5

ϕ2
x
∗
2

Z4
p ×G → G5

ϕdh
xdh

Zp → G2

ϕM Z2
p ×G → G4 relation RM

ϕCT
x

Z5
p → G8 relation RCT

Let us take a look at the final signature in Table 4. For our optimizations, we ignore their positive
effects on communication, but note that it provides similar savings.

– The unoptimized signature contains 60 Zp-elements, 46 of which are opening randomness for the
dual-mode commitments CMTi,CMAi to CTi and Ai.

– The signature size for σopt−simple consider the straightforward optimization of not committing all
elements in Ai, but only those related to CTi. More specifically, we can compute the Σ-commitment
Ai with fixed randomness 0 for all other parts, and still apply the homomorphic evaluation on
those “commitments”. Since much of the randomness is now fixed, we only require the optimized
costs for topt,0, topt,1, topt,2 listed in Table 4 which are much lower than naive ones. Moreover, we can
apply a standard trick where we don’t include the Σ-commitments Ai in the signature but instead
recompute it given the challenge γi and the response ζi and check its hash against the challenge.

– Finally, we can apply the more fancy optimization of only committing to the message-dependent
group element of CTi. This is in fact sufficient for the security proof of OMUF, as the message of
CTi remains perfectly hidden (and is irrelevant for blindness). This optimization further halves the
openings sizes for (si, ti)i∈{0,1,2} from 28 to 14 Zp-elements, as now, only a single group element is

37

Table 4: Communication in rounds or proof sizes. We count CH = Zp separately for better overview.
Object CH Zp G Comment

πM 1 2 1

π∗
CT 1 4 0

pkLHE 0 0 1 ElGamal-LHE with fixed generator
ctM , ct0,CTi 0 0 2 Individual size
(CMT∗

i)i∈{0,1,2} 0 0 12 Commitments to CTi ∈ G2

(si)i∈{0,1,2}, (s
∗
i)i∈{0,1,2} 0 12 0 Randomness for all CMT∗

i

(ti)i∈{0,1,2} 0 34 0 Naive randomness for all CMAi

t0 0 7 0 Naive randomness for CMA0

t1 0 5 0 Naive randomness for CMA1

t2 0 5 0 Naive randomness for CMA2

A0, A
∗
0 0 0 7

A1, A
∗
1 0 0 5

A2, A
∗
2 0 0 5

Adh, A
∗
dh 0 0 2

γi, γ
∗
i 1 0 0

ζ0, ζ
∗
0 0 7 1

ζ1, ζ
∗
1 0 2 2

ζ2, ζ
∗
2 0 4 1

ζdh, ζ
∗
dh 0 1 0

smsg1 1 2 4 smsg1 = (pkLHE, ctM , πM)

smsg2 0 0 26 smsg2 = (ct∗0, (CMT∗
i)i∈{0,1,2}, A

∗
1, A

∗
2, A

∗
dh)

smsg3 2 0 0 smsg3 = (δ∗0,dh, δ
∗
1,2)

smsg4 5 30 10 smsg4 = ((γ∗
i , ζ

∗
i ,CT

∗
i , s

∗
i)i∈{0,1,2}, γ

∗
dh, ζ

∗
dh, π

∗
CT)

σ 4 60 29 σ = ((CTi, πi, si, ti)i∈{0,1,2}, πdh)

(smsgi)i∈{0,1,2} 8 32 40 Total communication
topt,0 0 4 0 Optimized randomess for CMA∗

0

topt,1 0 8 0 Optimized randomess for CMA∗
1

topt,2 0 4 0 Optimized randomess for CMA∗
2

smsgopt,1 1 2 4 smsg1 = (pkLHE, ctM , πM)

smsgopt,2 0 0 26 smsg2 = (ct∗0, (CMT∗
i)i∈{0,1,2}, A

∗
1, A

∗
2, A

∗
dh)

smsgopt,3 2 0 0 smsg3 = (δ∗0,dh, δ
∗
1,2)

smsgopt,4 5 30 10 smsg4 = ((γ∗
i , ζ

∗
i ,CT

∗
i , s

∗
i)i∈{0,1,2}, γ

∗
dh, ζ

∗
dh, π

∗
CT)

σopt−simple 4 42 10 Optimized topt,i
(smsgi)i∈{0,1,2} 8 32 37 Total communication
σopt−fancy 4 25 10 Optimized topt,i, half-commit to CTi, use better COMX

committed per CTi instead of two. Moreover, we can switch to a better linear dual-mode commitment
schemes for Zp-elements which has randomness in Zp instead of Z2

p, see e.g. [34].16 This saves
another 3 Zp-elements in witness and thus signature size. This this level of optimization we find
that the signature contains 10 group elements and 29 Zp-elements, and the total communication
cost is 37 group elements and 40 Zp-elements.

– We note there are less trivial optimizations which could be used to further reduce the signature
size, but we reach diminishing returns.

C Auxiliary Preliminaries

C.1 Properties of Blind Signatures

In this section we define formal properties of a blind signature scheme.

Definition 21 (Correctness). A blind signature BS is perfectly correct if for all (vk, sk) ∈ KeyGen(1λ),
all H, and all m ∈M, it holds that

Pr[σ ← ⟨S(sk),U(vk,m)⟩ : Verify(vk,m, σ) = 1] = 1

16 Essentially, we use our dual-mode ElGamal encryption with randomness (r0, r1) ∈ Z2
p, and commit to m ∈ Zp

by setting r0 = m and choosing r1 ← Zp.

38

Intuitively, a blind signature scheme should not allow any user to obtain signatures without interacting
with the signer. This is modeled by the notion of one-more unforgeability, which states that after
completing ℓ − 1 signing sessions, an adversary can not output valid signatures on ℓ messages. For
simplicity, we consider 4-move schemes.

Definition 22 (One-More Unforgeability (OMUF)). Let BS = (KeyGen,S,U,Verify) be a BS
scheme. Let A be a PPT adversary. We define A’s advantage against the one-more unforgeability
(OMUF) of BS as

AdvOMUFBS
A (λ) := Pr[ExpOMUF

A (λ) = 1] (21)

with the OMUF experiment

ExpOMUF
A (λ)

(vk, sk)← KeyGen(1λ)

((m1, σ1), ..., (mℓ+1, σℓ+1))← AO(1λ, vk)

req cF ≤ ℓ ∧ |{m1, ...,mℓ+1}| = ℓ+ 1

return ∀i ∈ [ℓ+ 1] : BS.Verify(vk,mi, σi) = 1

O(j, smsg)

if ϱj = 3 return ⊥
smsg′ ← Sj

ϱj (sk, smsg)

// Session finished if ϱj = 2

if ϱj = 2 ∧ smsg′ ̸= ⊥
then cF := cF + 1

ϱj := ϱj + 1

return smsg′

where for each session j the algorithm Sj is a fresh stateful instance of the signer, ϱj := 1 is initialized
as the first round, and cF := 0 counts the number of successfully finished sessions. Here, ϱj ∈ {1, 2} is
the signer’s phase in the j-th session.

Remark 6. Definition 22 is a strong notion of security, also called OMUF-2. A weaker version (OMUF-1)
is defined analogously, except that each started session is counted towards cF, instead of each finished
session.

To protect the privacy of users, blind signatures should satisfy blindness. Intuitively, blindness states
that a malicious signer cannot link signing interactions to the message-signature pairs. We emphasize
that we consider the malicious signer blindness, i.e., the malicious signer can freely choose the public
key and arbitrarily deviate from the protocol.

Definition 23 (Blindness). Let BS = (KeyGen,S,U,Verify) be a BS scheme. Let A be a (stateful)
PPT adversary. We define A’s advantage against the blindness of BS as

AdvBlindBSA (λ) := 2
∣∣∣Pr[ExpblindA (λ) = 1]− 1/2

∣∣∣ (22)

with the blindness experiment

ExpblindA (λ)

(vk,m0,m1)← A(1λ)
b← {0, 1}

b′ ← AU′
1,U

′
2,U

′
3,Fin()

return b = b′

Fin()

if σ0 = ⊥ ∨ σ1 = ⊥
return (⊥,⊥)

return (σb, σb⊕1)

U′1(b̂)

if smsgb̂1 ̸= ⊥ return ⊥

return smsgb̂1 ← U1(vk,mb̂⊕b)

U′2(b̂, smsg2)

if smsgb̂1 = ⊥ ∨ smsgb̂3 ̸= ⊥ return ⊥

return smsgb̂3 ← U1(vk,mb̂⊕b, smsg2)

U′3(b̂, smsg4)

if smsgb̂3 = ⊥ ∨ σb̂ ̸= ⊥ return ⊥
σb̂ ← U3(vk,mb̂⊕b, smsg4) // No output to A

39

C.2 Properties of Σ-protocols

Definition 24 (Special honest-verifier zero-knowledge (SHVZK)). Let Σ be a (blindable)
Σ-protocol linear relation R(ϕ,ξ) as in Definition 4. For a given simulator Sim, define experiments

Expreal(λ)

(x,w)← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

// Generate fresh transcript

st← Setup(1λ)

(A, st)← Init(st, ϕx)

γ ← CH
ζ ← Resp(st, γ,w)

b← A(A, γ, ζ)

return b

Expideal(λ)

(x,w)← A(1λ)
abort if (x,w) /∈ R(ϕ,ξ)

// Simulate transcript

γ ← CH
(A, ζ)← Sim(x, γ)

b← A(A, γ, ζ)

return b

The distinguishing advantage of A is

AdvSHVZKΣ,Sim
A (λ) := |Pr[Expreal(λ) = 1]− Pr[Expideal(λ) = 1]| . (23)

We say Σ is (perfectly) SHVZK if there exists a PPT Sim such that the two distributions are equal.

C.3 Properties of Non-Interactive Proof Systems

Definition 25 (Correctness). Let Π = (Prove,Ver) be a non-interactive proof system for a relation
R. We call Π perfectly correct if for all λ and (x,w) ∈ R, it holds that

Pr
[
π ← ProveH(crs,x,w) : VerH(crs,x, π) = 1

]
= 1,

where the probability is over the choice of crs, H and the randomness of Prove,Ver.

Our definition of zero-knowledge is by definition straightline and allows the simulator to program crs
and H. Moreover, we use a multi-proof variant to avoid (non-tight) hybrid arguments in our reductions.

Definition 26 (Zero-Knowledge). Let Π = (Prove,Ver) be a non-interactive proof system for a
relation R. Let SimSetup,Sim be PPT algorithms. Let A be an QH-bounded algorithm and let

RealΠA(λ,QH) := Pr
[
b = 1 | crs← {0, 1}ℓ(λ); b← AH,OProve(1λ, crs)

]
IdealΠA(λ,QH) := Pr

[
b = 1 | (crs, td)← SimSetup(1λ); b← AH,OSim(1λ, crs)

]
Here, A has (black-box) access to the random oracle H and to an oracle OProve or OSim, which are as
follows:

– OProve(x,w): Return ⊥ if (x,w) /∈ R. Else, output π ← ProveH(crs,x,w).
– OSim(x,w): Return ⊥ if (x,w) /∈ R. Else, output π ← SimH(td,x).

Furthermore, the simulator Sim is allowed to program the random oracle H on any fresh input to H,
i.e. if H(m) has not been queried before, then Sim is free to choose H(m), else, programming fails. The
advantage of QH-bounded A against Π and Sim is

AdvZKΠ,SimSetup,Sim
A (λ,QH) =

∣∣∣RealΠA(λ,QH)− IdealΠA(λ,QH)
∣∣∣ . (24)

We say that Π is (straightline) AdvZKΠ-zero-knowledge if there exists a simulator SimSetup,Sim such
that for any QH-bounded A its advantage is bounded by AdvZKΠ,SimSetup,Sim

A (λ,QH) ≤ AdvZKΠ
A(λ,QH).

We define straightline knowledge extractability w.r.t. a separate (not necessarily efficient) knowledge
relation R̃, which is sufficient in our schemes. Importantly, we will avoid extraction of group exponents.
Our definition is an indistinguishability-based notion with multi-proof extractability.

40

Definition 27 (Straightline R̃-Extractable). Let Π = (Prove,Ver) be a non-interactive proof system
for some relation. Let ExtSetup,Ext be PPT algorithms and R̃ be an associated knowledge relation. Let
A be a QH-bounded algorithm and let

AdvCRSΠ,ExtSetupA (λ,QH) :=Pr
[
b = 1 | crs← {0, 1}ℓ(λ); b← AH(1λ, crs)

]
−Pr

[
b = 1 | (crs, td)← ExtSetup(1λ); b← AH(1λ, crs)

]
AdvExtΠ,ExtA (λ,QH) := Pr[ExpExtΠ,Ext

A (λ,QH) = 1]

where ExpExtΠ,ExtA (λ,QH) is defined as follows:

1. Sample (crs, td)← ExtSetup(1λ)
2. Run AOVer(crs), where the oracle OVer when queried on (x, π) acts as follows

– If VerH(crs,x, π) = 0, do nothing.
– Else run u← Ext((td,Q), (x, π)), where Q is a list containing all random oracle queries of A.

If (x, u) /∈ R̃, then the game returns 1. Else do nothing.
3. If OVer has not caused a return of 1, return 0.

We say that Π is (straightline) R̃-extractable if there exists an extractor (ExtSetup,Ext) such that for
any QH-bounded A the CRS distinguishing advantage AdvCRSΠ,ExtSetup

A (λ,QH) and extraction failure
AdvExtΠ,Ext

A (λ,QH) are negligible. If extraction failure is bounded by κ = κ(λ,QH), we call κ the knowledge
error and say Π is (R̃, κ)-extractable.

Note that R̃-extractability allows us to replace the random CRS with a trapdoored CRS, and then
use the trapdoor to obtain a witness for any accepting proof, except with negligible probability. Also
observe that we did not require R̃ to be an NP-relation. Indeed, in our instantiations, R̃ will not be an
efficient relation.

For conciseness, we define soundness through R̃-extractability.

Definition 28 (Soundness). Let Π = (Prove,Ver) be a non-interactive proof system for relation
R ⊆ X ×W. Let R̃ = LR×{0, 1}∗ (that is, R̃ = {(x,_) | ∃w : (x,w) ∈ R}). Then Π is sound for R if it
is R̃-extractable. For concreteness, we also write AdvSnd instead of AdvExt for the respective advantage.

Note that an “extractor” in Definition 28 is trivial: It can switch to a sound crs and have Ext output
any string u as a “witness”. So this is indeed implied by typical (multi-proof) notions of soundness.

C.4 Properties of Public-Key Encryption

The following are additional properties we require in our constructions.

Definition 29 (Correctness). A public-key encryption scheme PKE is perfectly correct if for every
(pk, sk)← PKE.Gen(1λ) and any message m, it holds that PKE.Dec(sk,PKE.Enc(pk,m)) = m.

Definition 30 (IND-CPA Security). A public-key encryption scheme PKE is IND-CPA-secure if
for any PPT adversary A there exists a negligible function negl such that

AdvINDCPAPKE
A (λ) := |Pr[Exp0(λ) = 0]− Pr[Exp1(λ) = 0]| ≤ negl(λ) (25)

with the experiments

ExpPKEb

(pk, sk)← PKE.Gen(1λ)

b′ ← AOb(1λ, pk)

return b = b′

Ob(m0,m1)

return ct← PKE.Enc(pk,mb)

Definition 31 (Randomizable Encryption Scheme). Let CRE and RRE be vector spaces over Zp. A
rerandomizable encryption (RE) scheme with message spaceMRE, ciphertext space CRE, public key space
PKRE and randomness space RRE is a tuple of algorithms RE = (RE.Gen,RE.Enc,RE.Dec,RE.Rerand)
defined as follows:

41

– (RE.Gen,RE.Enc,RE.Dec) is a PKE scheme according to Definition 10.
– RE.Rerand(pkRE,CT; ρ′) takes as input a public key pkRE, a ciphertext CT = RE.Enc(pkRE,m; ρ),

and randomness ρ′ ∈ RRE, outputs the rerandomized ciphertext CT′ = RE.Enc(pkRE,m; ρ+ ρ′).

Definition 32 (Linear Rerandomizability). In the setting of Definition 31, an RE RE is linearly
rerandomizable iff for any public key pkRE and any randomness ρ′ ∈ RRE there exists some (efficiently
computable) linear function ψρ′ : CRE 7→ CRE such that RE.Rerand(pkRE,CT; ρ′) = ψρ′(CT).

Definition 33 (Rerandomization Indistinguishability). An RE is rerandomization indistinguish-
able if for any stateful (unbounded) adversary A it holds that

Pr[Expfresh(λ) = 0] = Pr[Exprerand(λ) = 0] (26)

where

ExpPKEfresh

(pkRE,m∗, ρ∗)← A(1λ)

ρ←RRE

CT := RE.Enc(pkRE,m; ρ)

b← A(CT)
return b

ExpPKErerand

(pkRE,m∗, ρ∗)← A(1λ)

CT∗ := RE.Enc(pkRE,m∗; ρ∗)

ρ′ ←RRE

CT := RE.Rerand(pkRE,CT∗, ρ′)

b← A(CT)
return b

Definition 34 (Linearly Homomorphic Encryption Scheme). Let MLHE be a vector space over
Zp. A linearly homomorphic encryption (LHE) scheme with message spaceMLHE, ciphertext space CLHE

and randomness space RLHEis a tuple of algorithms LHE = (LHE.Gen, LHE.Enc, LHE.Dec, LHE.Eval)
defined as follows:

– (LHE.Gen, LHE.Enc, LHE.Dec, LHE.Rerand) is a RE scheme according to Definition 31.
– LHE.Eval(pkLHE, ct, f)→ ct′ takes as input a public key pkLHE, ciphertext ct = LHE.Enc(pkLHE,m; r),

and a linear function f : MLHE → Mn
LHE for any n ∈ N, and outputs new ciphertexts c̃t of the

plaintexts f(m) ∈Mn
LHE.

Definition 35 (Homomorphic Correctness). A LHE LHE is homomorphically correct iff for
any keys (pkLHE, skLHE) ∈ LHE.Gen(1λ), any ciphertext ct = LHE.Enc(pkLHE,m; r), any linear func-
tion f : MLHE → Mn

LHE for any n ∈ N it holds that there exists randomness r̃ ∈ Rn
LHE such that

LHE.Enc(pkLHE, f(m); r̃) = c̃t := LHE.Eval(pkLHE, ct, f).

C.5 Properties of Commitments

Definition 36 (Perfect Hiding). A commitment scheme COM is perfectly hiding iff for any
(unbounded) adversary A it holds that Pr[ExpCOM,A

hide (λ) = 1] = 1/2 where

ExpCOM,A
hide

pp← COM.Setup(1λ, hide)

b← {0, 1}

b′ ← AO(1λ, pp)

return b = b′

O(m0,m1)

return CM← COM.Commit(pp,mb)

Definition 37 (Perfect Binding). A commitment scheme COM is perfectly binding iff for all pp ∈←
Setup(1λ, bind) for all m0 ≠ m1 ∈MCOM for all s0, s1 ∈ RCOM it holds that COM.Commit(pp,m0; s0) ̸=
COM.Commit(pp,m1; s1).

42

Definition 38 (Homomorphic Correctness). Let MCOM be a commutative group. A COM COM
is homomorphically correct iff for any parameters pp ∈ PPCOM, any message m ∈ MCOM, any
randomness s ∈ RCOM, and any linear function f :MCOM →Mn

COM for any n ∈ N it holds that there
exists randomness s̃ ∈ Rn

COM such that

COM.Eval(pp,CM, f) = COM.Commit(pp, f(m); s̃) . (27)

Definition 39 (Rerandomization Indistinguishability). A commitment scheme COM is reran-
domization indistinguishable if for any stateful (unbounded) adversary A it holds that Pr[Expfresh(λ) =
0] = Pr[Exprerand(λ) = 0] where

ExpCOM
fresh

(pp,m, s∗)← A(1λ)

s←RCOM

b← A(s)
return b

ExpCOM
rerand

(pp,m, s∗)← A(1λ)
s′ ← RCOM

s := COM.RandRerand(pp,m, s∗, s′)

b← A(s)
return b

Definition 40 (Uniform Parameters). A commitment scheme COM has uniform parameters (in
hiding mode) if the following distributions are statistically close, i.e., there exists a negligible function
ϵhide such that for any unbounded adversary A it holds that∑

pp′∈PPCOM

∣∣∣∣Pr[pp← COM.Setup(1λ, bind) : pp = pp′]− 1

|PPCOM|

∣∣∣∣ ≤ ϵhide(λ) . (28)

Definition 41 (Parameter Indistinguishability). Let COM be a commitment scheme. For any
PPT adversary A we define the parameter distinguishing advantage as

AdvParamINDCOM
A (λ) :=

∣∣∣∣ Pr[pp← COM.Setup(1λ, hide) : A(pp) = 1]
− Pr[pp← COM.Setup(1λ, bind) : A(pp) = 1]

∣∣∣∣ . (29)

D Supplementary Proofs

In this section, we provide proofs that were omitted from the main body.

D.1 Proof of Lemma 1

Proof. All claims are straightforward and well-known. For completeness, we show blindability: First,
observe that A is determined by the values of γ and ζ. Moreover, γ is distributed uniformly in CH
because γ′ is uniform, and ζ is distributed uniformly in W because ζ ′ is uniform. For the original
transcript it holds A∗ = ϕx(ζ

∗) + γ∗ · ξ(x), and the blinded transcript verifies because

A = A∗ + γ′ · ξ(x) + ϕx(ζ
′) (30)

= ϕx(ζ
∗) + γ∗ · ξ(x) + γ′ · ξ(x) + ϕx(ζ

′) = ϕx(ζ) + γ · ξ(x) . (31)

⊓⊔

D.2 Proof of Lemma 2

Proof (Lemma 2). First, we argue that the validity of statements is invariant under translation, i.e.,
for any statement x∗i ∈ LRi

and any v ∈ Vi, it holds that TransStmt(x∗, vi) ∈ LRi
.

Translating a ciphertext statement with a witness by some (rerandomization) randomness vi yields a
new statement whose witness is the old witness translated by the same randomness. More formally,
let (x∗RE,i = (pkREi ,CT∗i),w

∗
i = (Zi, ρ

∗
i)) ∈ RREi be some statement and corresponding witness. Let

43

vi ∈ RREi
be some translation (rerandomization randomness). Let xRE,i := (pkREi ,CTi) be the translated

statement. Let wi := (Zi, ρ
∗
i + vi) be the translated witness. Because of Definition 31 it holds that

CTi := RE.Rerand(pkREi ,CT∗i , vi) = RE.Enc(pkREi , Zi, ρ
∗
i + vi) (32)

and thus (xRE,i,wi) ∈ RREi
. We omit the straightforward extension to TransStmt0,TransStmt1,TransStmt2.

Now, we show that the two distributions in Definition 7 are equal. First, we show that accepting
transcripts are mapped to accepting transcripts. For a given ρ′0, ρ′1 ∈ RRE let

TransResp0,ρ′
0
(γ, ζ̃) := ζ̃ − γ

=v0︷ ︸︸ ︷
(0, 0, 0, 0, 0, ρ′0)

TransResp1,ρ′
0,ρ

′
1
(γ, ζ̃) := ζ̃ − γ(0, ρ′0, 0, ρ′1)

TransResp2,ρ′
2
(γ, ζ̃) := ζ̃ − γ(0, 0, 0, ρ′2)

be response translation maps. For each language we can verify for each randomness ρ′0, statement x0

and the translated Σ-response ζ0 := TransResp0,ρ′
0
(γ0, ζ̃0) that the respective verification equations pass

A0 = ϕ0
x0
(ζ0) + γ0ξ

0(x0) = ϕ0
x0
(ζ̃0 − γ0(0, 0, 0, 0, 0, ρ′0)) + γ0ξ

0(x0)

= ϕ0
x0
(ζ̃0)− γ0ϕ0x0

((0, 0, 0, 0, 0, ρ′0)) + γ0ξ
0(x0)

= ϕ0
x0
(ζ̃0)− γ0ϕ0x0

(0, 0, 0, 0, 0, ρ′0) + γ0ϕ
0
x0
(x0, s0, x1, s1, Z0, ρ0)

= ϕ0
x0
(ζ̃0) + γ0ϕ

0
x0
(x0, s0, x1, s1, Z0, ρ0 − ρ′0)

= ϕ0
x0
(ζ̃0) + γ0ϕ

0
x0
(x0, s0, x1, s1, Z0, ρ

∗
0)

= ϕ0
x0
(ζ̃0) + γ0ξ

0(x∗0) .

For the second language we can verify for each randomness ρ′0, ρ′1, statement x1 and the translated
Σ-response ζ1 := TransResp1,ρ′

0,ρ
′
1
(γ1, ζ̃1) that the respective verification equations pass

A1 = ϕ1
x1
(ζ1) + γ1ξ

1(x1) = ϕ1
x1
(ζ̃1 − γ1(0, ρ′0, 0, ρ′1)) + γ1ξ

1(x1)

= ϕ1
x1
(ζ̃1)− γ1ϕ1x1

(0, ρ′0, 0, ρ
′
1) + γ1ϕ

1
x1
(Z0, ρ0, Z1, ρ1)

= ϕ1
x1
(ζ̃1)− γ1ϕ1x1

(Z0, ρ
∗
0, Z1, ρ

∗
1)

= ϕ1
x1
(ζ̃1) + γ1ξ

1(x∗1) .

For the third language we can verify for each randomness ρ′2, statement x2 and the translated Σ-response
ζ2 := TransResp2,ρ′

2
(γ2, ζ̃2) that the respective verification equations pass

A2 = ϕ2
x2
(ζ2) + γ2ξ

2(x2) = ϕ2
x2
(ζ̃2 − γ2(0, 0, 0, ρ′2)) + γ2ξ

2(x2) (33)

= ϕ2
x2
(ζ̃2)− γ2ϕ2x2

(0, 0, 0, ρ′2) + γ2ϕ
2
x2
(x2, s2, Z2, ρ2) (34)

= ϕ2
x2
(ζ̃2)− γ2ϕ2x2

(x2, s2, Z2, ρ2 − ρ′2) (35)

= ϕ2
x2
(ζ̃2) + γ2ϕ

2
x2
(x2, s2, Z2, ρ

∗
2) (36)

= ϕ2
x2
(ζ̃2) + γ2ξ

2(x∗2) . (37)

Finally, since ζ∗i is uniformly distributed, so is ζ∗i − vi. The challenge distribution γi is unchanged.
Lastly, there is a unique accepting choice of Ai. Hence, the distribution of a transcript (Ai, γi, ζi) is
identical to a fresh transcript. ⊓⊔

D.3 Proof of Blindness (Theorem 1)

Theorem 1 (Blindness). For any PPT adversary A there exist reductions with running time roughly
that of A, such that for sufficiently large λ

AdvBlindBSA (λ)/2 ≤ AdvDDHG(λ) + 3 · ϵCOMX

hide (λ) + ϵCOMT

hide (λ)

+ 2(QHCH
0

+ QHCH
1

) · δCOMT
(λ) + 2AdvSndΠCT(λ,QHCT

)

44

+ AdvZKΠCT(λ,QHCT
) + AdvINDCPALHE(λ)

+ 3 · AdvParamINDCOMX(λ)

where δCOMT
(λ) is the unpredictability of COMT, QHCT

,QHCH
0
,QHCH

1
are bounds on the number of resp.

oracle calls made by A, and ϵCOMT

hide (resp. ϵCOMX

hide) is the (statistical) distance of COMT’s (resp. COMX’s)
parameters from uniform.

We first give sketch the proof idea. Informally, to argue blindness, we need to decouple the transcripts
of the signing sessions from the messages and final signatures. There are three sources from which
information about the signing session could leak:

– The first signing message smsg1 contains a ciphertext ctM of the message M .
– The final signature contains (rerandomized) ciphertexts CTi of some exponents zi which could be

linked to the signing session,
– As per Fiat-Shamir the Σ-challenges γ0, γ1 are computed as a hash of (commitments to blinded)
Σ-commitments Ai which in turn depend on parts A∗i of the signing message smsg2.

We note that the signing transcript contains the message M information-theoretically, hence we can
only achieve blindness against computationally bounded adversaries.

At a high level, the proof of blindness proceeds as follows:

– Make all statements (trivially) true: First, we ensure that xdh is a DDH tuple and ppX is in
hiding mode. Together with the proof π∗CT this ensures that all statements x∗0,x∗1,x∗2,x∗dh possess a
witness (or the user rejects and returns ⊥).

– Program the random oracle: We send random challenges δ∗0,dh, δ
∗
1,2, and pick γi ahead of time,

and then retroactively program the random oracle. This brings us into a situation where the user’s
entire computation in U2 can be postponed to U3. In particular, at this point the signer reveals the
(previously partially committed) transcripts of all Σi in the plain (for i ∈ {0, 1, 2, dh}).

– Switch to SHVZK simulation of transcripts: Next, we can apply the transcript blindness of
the Σi, to compute a fresh transcripts (instead of blinding the interaction), and then translatability,
to change the statement from x

∗
i to xi. To apply the notions to some x∗i , we crucially require

a witness to exist, which is ensured by the very first hop we made. Finally, we apply SHVZK
simulation to efficiently simulate the transcripts instead of bruteforcing a witness. We note that
the inefficient intermediate steps are perfectly indistinguishable, hence we can afford an inefficient
reduction which bruteforces the witnesses.

– Compute statements fresh and independent of M : At this point, we simulate all the
Σ-protocol outputs of the user, and only need to decouple the statements. Now, we simulate πM ,
and replace Enc(pkLHE,Mb) by Enc(pkLHE, 0). Then we switch ppX into binding mode and use the
well-formedness proof π∗CT, so that we can extract Z0 = x0G and, by perfect rerandomization,
replace CTi := Rerand(pk,CT∗i ; ρ

′
i) with fresh encryptions CTi ← Enc(pk, x0G) for i = 0, 1 and

CT2 ← Enc(pk, 0). Similarly, we can replace the randomized commitment openings si and ti by
freshly sampled (commitment) openings. At this point, the signatures are completely independent
from the interactions.

Remark 7 (Blindness in CRS + NPROM model). If we knew a witness for both OR-proofs, we could
honestly prove them instead by programming the challenges and relying on perfect SHVZK. By using
the DDH witness for xdh, the first OR-proof is already efficiently provable. However, the proof for x1 or
x2 has no known witness. This can be remedied by modifying the protocol, e.g., a trivial modification
is to add an additional xdh,2 there. (We stress that this cannot share xdh due to the OMUF proof.) For
such a modification, blindness then holds in the non-programmable random oracle model if we setup
the parameters ppX, ppT via a CRS, and use ΠCT,ΠM in the CRS + NPROM model (which are easy to
obtain based from the current NIPS).

Proof (Theorem 1). Let A be a adversary against the blindness of the signature scheme BS that
makes at most QHCT

queries to the random oracle HCT, at most QHM
queries to the random oracle

HM , and at most QHCH queries to HCH0 and HCH1 combined. We gradually modify the oracles O0,O1

of the signature’s blindness game such that in the end the adversary cannot win the blindness game
information-theoretically. Inefficient games are marked with *. Let ϵi denote the adversary’s success
probability in the i-th game. We assume that adversarial responses are well-formed, as otherwise the
user would abort and output ⊥ as its signature.

45

Game 0 (Original game): This is the blindness game with a random bit b ← {0, 1} according to
Definition 23. We let ϵ0(λ) := Pr[ExpblindA (λ) = 1] denote the adversary’s original success probability.
Game 1 (DDH parameters): In this game we set up the parameters (D1, D2, D3) := (aG, bG, abG)
as a DDH triple. This change is justified by the DDH assumption (Definition 16). Thus

|ϵ1 − ϵ0| ≤ AdvDDHG
RDDH

(λ) .

Game 2 (Switch ppXi and ppT to hiding mode): In this game we set up ppXi ← COMX.Setup(1
λ, hide)

and ppT ← COMX.Setup(1
λ, hide). Because of the uniform parameters in hiding mode (Definition 40),

we have that
|ϵ2 − ϵ1| ≤ 3 · ϵCOMX

hide (λ) + ϵCOMT

hide (λ) .

Game 3 (Abort on RO queries): So far, in phase U2 the commitment CMAi is computed as a
rerandomization CMAi := COM.Rerand(ppT, C̃MAi; t

′
i). At the end we abort (output a random bit) if

the adversary queried the RO oracle on input HIN0 and HIN1 before obtaining the final signatures from
the FIN oracle. Recall that the values HIN0,HIN1 contain the rerandomized commitments CMAi which
are δCOMT

-unpredictable. By a simple union bound17 it follows that the adversary’s probability to query
the RO on HIN0 or HIN1 is at most 2QHCHδCOMT

(λ). Consequently,

|ϵ3 − ϵ2| ≤ 2 · QHCH · δCOMT
(λ) .

Game 4 (Sample challenges uniformly and program RO): In phase U2 instead of sampling
δ0,dh := HCH0 (HIN0) and δ1,2 := HCH1 (HIN1) from the random oracle and unblinding them to ob-
tain δ∗0,dh, δ

∗
1,2, we instead sample δ∗0,dh, δ

∗
1,2 ← CH uniformly and blind them to obtain the values

δ0,dh, δ1,2 which are programmed into the random oracle in phase U3. Recall from Definition 5 that the
blinding, Σ.BlindChall(bst, ·), is the inverse of the unblinding, Σ.BlindChall−1(bst, ·). Thus, all values
have the same distribution as in the previous game, i.e.,

ϵ4 = ϵ3 .

More formally,

δ0,dh := Σdh.BlindChall(bstdh, δ
∗
0,dh) δ1,2 := Σ2.BlindChall(bst2, δ

∗
1,2)

δ0,dh := Σ0.BlindChall(bst0, δ0,dh) δ1,2 := Σ1.BlindChall(bst1, δ1,2)

HCH0 (HIN0) := δ0,dh HCH1 (HIN1) := δ1,2 .

Note also, that δ0,dh = γ0 + γdh and δ1,2 = γ1 + γ2 where γi is computed as a blinding of γ∗i in phase
U3. Alternatively, we sample γi ← CH (and as before δ∗0,dh, δ

∗
1,2 ← CH), and set

δ0,dh := γ0 + γdh and δ1,2 := γ1 + γ2 .

Note that it is not necessary to generate a blind state bsti for the Σi anymore.
Game* 5 (Abort if x∗CT ̸∈ LRCT

): We abort if the adversary (in phase S2) submits π∗CT such that
ΠCT.Ver

HCT(crsCT,x
∗
CT, π

∗
CT) = 1 yet x∗CT ̸∈ LRCT

(checking this is inefficient). This happens with small
probability because of the statistical soundness of ΠCT and perfect correctness of RE and COMX. Suppose
the adversary A2 produces such invalid CT∗i with a valid proof π∗CT, then we can define an inefficient
reduction R that wins the statistical soundness game of ΠCT with the same probability. Thus,

|ϵ5 − ϵ4| ≤ AdvSndΠCT

Rsnd
(λ,QHCT

)

for a straightforward reduction Rsnd that runs in approximately the same time as A.
Game* 6 (Abort if x∗i ̸∈ LRi for i ∈ {0, 1, 2, dh}): In this game we abort if x∗i ̸∈ LRi for any
i ∈ {0, 1, 2, dh}. We argue that this never happens. First, consider Rdh. Because the DDH tuple
(D1, D2, D3) is a valid DDH tuple since Game 1, the statement xdh is always in LRdh

.
Next, consider R0. For any statement x∗0 let Z0 be the plaintext encrypted by CT∗0, i.e, there exists some
encryption randomness ρ∗0 such that CT∗0 = RE.Enc(pkRE, Z0; ρ

∗
0). Let x1 := 0 and let x0 := DLOG(Z0).

17 The factor of 2 accounts for the fact that there are two messages for which it has to abort on corresponding
HINo and HIN1.

46

Because the parameters ppXi are set up in hiding mode, for any commitment CMX∗0,CMX∗1 and any plain-
texts x0, x1 there exists commitment randomness s∗0, s∗1 such that CMX∗0 = COM.Commit(ppX0 , x0; s

∗
0) and

CMX∗1 = COM.Commit(ppX1 , x1; s
∗
1). Thus, for any x∗0 there exists a witness w∗0 := (x0, s

∗
0, x1, s

∗
1, Z0; ρ

∗
0)

such that (x∗0,w
∗
0) ∈ R0.

A similar argument implies that for any x∗2 there exists a witness w∗2 = (x2, s
∗
2, Z2; ρ

∗
2) such that

(x∗2,w
∗
2) ∈ R2.

Finally, consider R1. Due to Game* 5 we can assume that x∗CT ̸∈ LRCT
which implies that the

ciphertexts CT∗0,CT
∗
1 contain the same plaintext x0G. Hence, for any x

∗
1 there exists a witness

w
∗
1 = (x0G, ρ

∗
0, x0G, ρ

∗
1) such that (x∗1,w

∗
1) ∈ R1. Thus,

ϵ6 = ϵ5 .

Game* 7 (Compute fresh (Ai, γi, ζ̃i) for x∗i): Now, in phase U3 we (inefficiently) bruteforce a valid
witness w∗i such that (x∗i ,w

∗
i) ∈ Ri. This is possible because we have shown in Game* 6 that x∗i ∈ LRi

for all i ∈ {0, 1, 2, dh}.
Instead of computing the (blinded) transcript (in phase U3) as Ai := Σi.BlindInit(bsti,x

∗
i , A

∗
i), γi :=

Σi.BlindChall(bsti, γ
∗
i) and ζ̃i := Σi.BlindResp(bsti, ζ

∗
i), we compute a fresh ZK commitment Ai :=

Σi.Init(sti, ϕ
i
x
∗
i
), the challenge γi ← CH and the response ζ̃i := Σi.Resp(sti, γi,w

∗
i). This step is justified

by the perfect blindness of the Σ-protocol (Definition 6). Let R be a reduction that simulates the
blindness challenger and plays the blindness game with A. After obtaining the signing messages
smsg2, smsg4 (containing A∗i , γ

∗
i , ζ
∗
i) the reduction forwards A∗i , γ∗i , ζ∗i to the Σ-protocol blindness

challenger to obtain either a blinded transcript or a fresh transcript (Ai, γi, ζ̃i). Thus,

ϵ7 = ϵ6 .

Game* 8 (Compute fresh (Ai, γi, ζi) for xi): Recall that in phase U3 the final statements xi are
fixed. Now (in phase U3) we bruteforce a valid witness wi s.t. (xi,wi) ∈ Ri. This is possible because we
have shown in Game* 6 that x∗i ∈ LRi and hence xi ∈ LRi for all i ∈ {0, 1, 2, dh} (cf. Definition 7).
In phase U3 instead of computing the ZK commitment Ai ← Σi.Init(sti, ϕ

i
x
∗
i
), the challenge γi ← CH

and the response ζ̃i := Σi.Resp(sti, γi,w
∗
i), we compute the ZK commitment Ai ← Σi.Init(sti, ϕ

i
xi
),

the challenge γi ← CH and the response ζi := Σi.Resp(sti, γi,wi). This step is justified because Σi is
(perfectly) translatable (Lemma 2). Let R be a reduction that simulates the blindness challenger and
plays the blindness game with A. In phase U2 the reduction assembles xi,wi,x

∗
i ,w

∗
i , ρ
∗
i and submits

it to the translatability challenger to obtain either a translated transcript or a fresh transcript for xi.
Thus,

ϵ8 = ϵ7 .

Game* 9 (Compute (Ai, γi, ζi) for xi via SHVZK simulation): Instead of computing the ZK
commitment Ai := Σi.Init(sti, ϕ

i
xi
), the challenge γi ← CH and the response ζi := Σi.Resp(sti, γi,wi) in

phase U3, we simulate the ZK proof using the SHVZK property of Σi (Definition 24) as γi ← CH and
(Ai, ζi)← Σi.Sim(sti,xi). Thus,

ϵ9 = ϵ8 .

Game 10 (Undo aborts from Game 5 and 6): Note that the abort from Game 6 still never occurs.
Removing the abort from Game 5 incurs the same loss as in Game 5. Thus,

|ϵ10 − ϵ9| ≤ AdvSndΠCT

Rsnd
(λ,QHCT

) .

Note that this game is efficient again.
Game 11 (Simulate πM): Instead of generating the CRS crsM := HM

crs(0), we generate (crsM , td)←
ΠM .SimSetup(1λ). Now, instead of generating the proof πM ← ΠM .Prove

HM (crsM ,xM ,wM) in phase
U1, we simulate the NIPS proof for the ciphertext ctM as πM ← SimHM (crsM , ctM). This step is justified
by the zero-knowledge property of ΠM (Definition 26). Hence,

|ϵ11 − ϵ10| ≤ AdvZKΠCT

Rzk
(λ,QHCT

)

for a straightforward reduction Rzk that runs in approximately the same time as A. Note that we no
longer use the secret key of LHE nor the encryption randomness rM .

47

Game 12 (Encrypt ctM ← Enc(pkLHE, 0)): Instead of computing ctM := LHE.Enc(pkRE,M ; rM) in
phase U1, we compute ctM := LHE.Enc(pkRE, 0; rM). This step is justified by the IND-CPA security of
LHE. Thus,

|ϵ12 − ϵ11| ≤ AdvINDCPALHE
Rindcpa

(λ)

for a straightforward reduction Rindcpa that runs in approximately the same time as A.18
Game 13 (Switch ppXi to binding mode): In this game we set up ppXi ← COMX.Setup(1

λ, bind).
Because of the parameter indistinguishability (Definition 41), we have that

|ϵ13 − ϵ12| ≤ 3 · AdvParamINDCOMX

RCOMX
(λ)

for straightforward reductions RCOMT
,RCOMX

that run in approximately the same time as A.
Game* 14 (Abort if x∗CT ̸∈ LRCT

): We reintroduce the abort from Game 5, i.e., we abort if the
adversary (in phase S2) submits π∗CT such that ΠCT.Ver

HCT(crsCT,x
∗
CT, π

∗
CT) = 1 yet x∗CT ̸∈ LRCT

. Thus,

|ϵ14 − ϵ13| ≤ AdvSndΠCT

R′
snd
(λ,QHCT

)

for a straightforward reduction R′snd that runs in approximately the same time as A.
Game* 15 (Compute CTi as fresh encryption): Since the parameters of CMXi are in binding
mode, we can inefficiently extract the value x0G from the commitment CMX0. Notice that since
Game 14 it holds that x∗CT ∈ LRCT

, hence the ciphertexts CT∗0,CT
∗
1,CT

∗
2 contains the plaintexts

x0G, x0G, 0. Instead of computing the ciphertexts CTi := RE.Rerand(pkREi ,CT∗i ; ρ
′
i) in phase U3, we

compute CT0 := RE.Enc(pkRE0 , x0G; ρ0), CT1 := RE.Enc(pkRE1 , x0G; ρ1) and CT2 := RE.Enc(pkRE2 , 0; ρ2)
where ρ′i, ρi ← RRE. This step is justified by the perfect rerandomization indistinguishability of the
encryption scheme. Moreover, note that because if π∗CT verifies, then the ciphertexts CT∗0,CT

∗
1,CT

∗
2

contain the plaintexts x0G, x0G, 0. Thus,
ϵ15 = ϵ14 .

Game* 16 (Sample fresh openings si and ti for COMT): Recall that since Game 2 the param-
eters ppT are set up in hiding mode. Instead of rerandomizing the commitments CMTi and CMAi

in phase U2, we sample fresh randomness si, ti ← RCOMT
and compute fresh commitments CMTi :=

COMT.Commit(ppT, 0; si) and CMAi := COMT.Commit(ppT, 0; ti). This step is justified by the perfect
rerandomization indistinguishability and perfect hiding of COMT. Thus,

ϵ16 = ϵ15 .

Notice that the behavior of the oracles U′1,U
′
2,U
′
3 in this final game is completely independent of

the challenger’s bit b. Thus, ϵ16 = 1/2.
Consequently,

AdvBlindBSA (λ)/2 = |ϵ0 − ϵ16| (38)

≤ AdvDDHG
RDDH

(λ) + 3 · ϵCOMX

hide (λ) + ϵCOMT

hide (λ) (39)

+ 2QHCH · δCOMT
(λ) + AdvSndΠCT

Rsnd
(λ,QHCT

) (40)

+ AdvZKΠCT

Rzk
(λ,QHCT

) + AdvINDCPALHE
Rindcpa

(λ) (41)

+ 3 · AdvParamINDCOMX

RCOMX
(λ) + AdvSndΠCT

R′
snd
(λ,QHCT

) . (42)

⊓⊔

Remark 8 (Blindness without programming HCH). The above proof requires programming the random
oracle HCH to switch to SHVZK simulation of transcripts in the signature in Game* 9. To attain
blindness without programming HCH, we need a witness for Rdh and R1. This can be achieved by
remembering wdh in the reduction, and by augmenting the verification key vk with a zero-knowledge
proof with relaxed knowledge soundness for relation

Rvk :=

 xvk =

ppX0 ,CMX0

ppX1 ,CMX1

ppX2 ,CMX2

wvk = (x0, ŝ0, ŝ1, ŝ2)

∣∣∣∣∣∣∣∣
CMX0 = COMX.Commit(ppX0 , x0; ŝ0)
CMX1 = COMX.Commit(ppX0 , x0; ŝ1)
CMX2 = COMX.Commit(ppX0 , 0; ŝ2)

18 Here, we have a factor of two because we invoke IND-CPA security once for each message.

48

R̃vk := {(xvk, w̃vk = Z0) | ∃wvk = (x0, ŝ0, ŝ1, ŝ2) : Z0 = x0G ∧ (xvk,wvk) ∈ RCOMX
} .

Then the reduction is in possession of a valid witness for OR-relations R0 ∪ Rdh and R1 ∪ R2. Hence,
we are able to generate the transcripts by honestly using the OR-technique: Since the reduction can
honestly run Σ1 (resp. Σdh) for R1 (resp. Rdh), and answer any challenge γ1 and γdh, it can pick γ0, γ2
uniformly and use SHVZK simulation for R0,R1. Importantly, fresh encryptions of x0G for R1 are
consistent with encryptions used by the (malicious) signer due to π∗CT. By perfect indistinguishability of
SHVZK simulation and honest transcript generation (given that a witness exists), making this change
after Game* 9 is perfectly indistinguishable.

Importantly, after the above change, we can generate the challenges by querying HCH and do not
need to program it anymore. Moreover, note that all steps19 from Game* 5 to Game* 9 are statistical,
including this additional change. Hence, while we programmed the random oracle during these proof
steps, this is only used to establish the statistical indistinguishability between the first and last game.
Since neither of them requires programming the random oracle (and it is also not required in the later
proof steps), this indistinguishability still holds in the non-programmable ROM.

D.4 Proof of One-more Unforgeability (Theorem 2)

.

Theorem 2 (OMUF). For any PPT adversary A there exist reductions with running time roughly
that of A, such that for sufficiently large λ

AdvOMUFBS
A (λ) ≤ AdvZKΠCT(λ,QHCT

) + AdvCRSΠM ,ExtSetup(λ,QHM
)

+ AdvExtΠM ,Ext(λ,QHM
) + ϵCOMT

hide (λ)

+ 2(QHCH
0

+ 1)/p+ 2AdvDDH(λ)

+ ⌈logQS⌉

4AdvINDCPARE(λ)

+ 2(QHCH
1

+ 1)/p

+ 3AdvParamINDCOMT

R3
COMT

(λ)

+ 7AdvParamINDCOMX

R3
COMX

(λ)

+ 2ℓ/p

where QHCT

,QHM
,QHCH

0
,QHCH

1
are bounds on the number of resp. oracle calls made by A, QS is the number

of signing sessions (started by A), and ϵCOMT

hide (λ) is the (statistical) distance of COMT’s parameters from
uniform.

Proof (Theorem 2). Let A be a PPT adversary on OMUF. We argue by game hops. As in the proof of
blindness, inefficient games are marked by *. We denote by ϵi the adversary’s success probability in
Game i. An overview of the game hops is given in Tables 5 to 7. Before we proceed, let us establish
some conventions.

– We assume without loss of generality that A finishes at least one session.20

– It can easily be checked that runtimes of reductions R in the proof are roughly that of A. We omit
further details on runtimes.

– We introduce some notation. For some bit β ∈ {0, 1}, we denote by β := 1− β its negation. For
some j ∈ N, we denote by j[k] the k-th bit of j in binary representation. Also, we denote by j|k the
k-bit prefix of j in binary representation.

Game 0 (Original game): This is the OMUF game according to Definition 22. Let us recall the
game explicitly and establish some notation. Note that hash functions are modeled as random oracles.
Denote by QH the number of queries to some random oracle H made by A throughout the game and by
QS the total number of signing sessions.
19 If the NIPS is statistically sound, as it is for our instantiation in Supplementary Material B.
20 If A successfully forges a signature σ for message M without finishing any session, then A can be transformed

to an adversary A′ that finishes one session for some message M ′ ̸= M with the same advantage. We stress
that this assumption is purely for readability as it simplifies the argument in Game 7.

49

Recall that public parameters (ppXi)i∈{0,1,2} for COMX, public parameters ppT for COMT, common
reference strings crsCT for ΠCT, common reference string crsM for ΠM , public keys pkREi for RE, and
tuple (D1, D2, D3) ∈ G3 are setup by appropriate random oracles. First, the challenger samples
(vk, sk) ← KeyGen(1λ). That is, it samples x0 ← Zp and sets x1 = x2 = 0, and commits to xi in
CMXi = COMX.Commit(ppXi , xi, ŝi). It sends vk = (CMX0,CMX1,CMX2) to A. Then, the challenger
provides A access to signing oracles S1 and S2 (cf. Figure 3). We briefly recap how the challenger
answers the oracles on the j-th signing session below.
– In S1(smsg1,j), the challenger parses smsg1,j = (pkLHEj , ctM,j , πM,j), and verifies that πM,j is

valid with respect to statement xM,j = (pkLHEj , ctM,j). If not, the challenger aborts, else it sets
z0,j = x0, z1,j = x0, and z2,j = 0. Then, the challenger encrypts Zi,j := zi,jG in CT∗i,j =

RE.Enc(pkREi , Zi,j ; ρ
∗
i,j), and also commits to CT∗i,j in CMT∗i,j := COMT.Commit(ppT,CT∗i,j ; s

∗
i,j)

Next, after sampling states sti,j ← Σi.Setup(1
λ), the challenger prepares the first message of

the Σ-protocols. Then, the challenger encrypts Zi,j := zi,jG in CT∗i,j := RE.Enc(pkREi , Zi,j ; ρ
∗
i,j),

and also commits to CT∗i,j in CMT∗i,j := COMT.Commit(ppT,CT∗i,j ; s
∗
i,j). Next, after sampling

states sti,j ← Σi.Setup(1
λ), the challenger prepares the first message of the Σ-protocols. That

is, it sets x∗1,j := (pkRE0 , pkRE1 ,CT∗0,j ,CT
∗
1,j) and x

∗
2,j := (ppX2 , pk

RE
2 ,CMX2,CT

∗
2,j), and samples

A∗i,j := Σi.Init(sti,j , ϕ
i
x
∗
i,j
) for i ∈ {1, 2}. It also simulates (A∗dh,j , ζ

∗
dh,j) ← Σdh.Sim(xdh, γ

∗
dh,j) for

xdh = (G,D1, D2, D3) and γ∗dh,j ← CH. Then, the challenger computes InitZero homomorphically
on ctM,j to obtain ct0,j := LHE.Eval(pkLHE, ctM,j , InitZero), which it rerandomizes to a ciphertext
ct∗0,j := LHE.Rerand(pkLHEj , ct0,j ; r̂0,j). Finally, the challenger outputs

smsg2,j := (ct∗0,j , (CMT∗i,j), A
∗
1, A

∗
2, A

∗
dh,j).

– In S2(smsg3,j), the challenger parses smsg3,j = (δ∗0,j , δ
∗
1,j). The challenger then sets γ∗0,j :=

δ∗0,j − γ∗dh,j and γ∗1,j := δ∗1,j − γ∗2,j for γ∗2,j ← CH. Then, it sets w∗0,j := ((x0, ŝ1), (x1, ŝ1), (Z0,j , ρ
∗
0,j)),

w
∗
1,j := ((Z0,j , ρ

∗
0,j), (Z1,j , ρ

∗
1,j)), and w∗2,j := ((x2, ŝ2), (Z2,j , ρ

∗
2,j)). Next, computes the responses

ζ∗i,j = Σi.Resp(sti,j , γ
∗
i,j ,w

∗
i,j). Then, the challenger proves that it set up the ciphertexts CT∗i,j

honestly via π∗CT,j . That is, it sets xCT,j := (ppX0 ,CMX0, (pk
RE
i ,CT∗i,j)i∈{0,1,2}) and wCT,j :=

((Zi,j , ρ
∗
i,j)i∈{0,1,2}, x0, ŝ0), and computes the proof π∗CT,j ← ΠCT.Prove

HCT(crsCT,xCT,j ,wCT,j). It
outputs

smsg4,j := ((γ∗i,j , ζ
∗
i,j ,CT

∗
i,j , s

∗
i,j)i∈{0,1,2}, γ

∗
dh,j , ζ

∗
dh,j , π

∗
CT,j).

Denote by ℓ the number of finished signing sessions. In the end, adversary A outputs ℓ+ 1 signature-
message pairs (M+

κ , σ
+
κ)κ∈[ℓ+1]. Throughout, we denote byM+ := {M+

1 , ...,M
+
ℓ+1} the set of “forged”

messages, byMS := {M1, ...,MQS
} ⊆ M the set of message for which a signing session has been started,

and by MF ⊆ MS the set of messages for which a signing session has been finished (1 ≤ |MF| ≤ ℓ).
For convenience, we also define the set of indices of finished sessions as JF := {j |Mj ∈MF}.
Game 1 (Sample pkREi with known skREi): In this game, we sample (pkREi , skREi)← RE.KeyGen(1λ)
and program HRE

pk (i) := pkREi . Since honest RE public keys are distributed uniformly at random by
assumption (cf. Definition 11), this change does not affect the success probability of A.

ϵ1 = ϵ0 .

Game 2 (Simulate π∗CT): In this game, we simulate the proofs π∗CT,j via the zero-knowledge simulator
ΠCT.Sim of ΠCT in S2. That is, after the challenger defines xCT,j = (ppX0 ,CMX0, (pk

RE
i ,CT∗i,j)i∈{0,1,2}) and

wCT,j = ((Zi,j , ρ
∗
i,j)i∈{0,1,2}, x0, ŝ0), instead of computing π∗CT,j ← ΠCT.Prove

HCT(crsCT,xCT,j ,wCT,j), it
generates (crsCT, tdCT)← SimSetup(1λ) and sets π∗CT,j ← Sim(tdCT,xCT,j).
Note that by construction, we have (xCT,j ,wCT,j) ∈ RCT (cf. Eq. (16)). Also, the common reference
string crsCT is chosen by random oracle HCT

crs . Thus,

|ϵ2 − ϵ1| ≤ AdvZKΠCT

Rzk
(λ,QHCT

) .

for a straightforward reduction Rzk.
Game 3 (Embed td in crsM): In this game, the challenger sets up crsM in extraction mode. That is,
denote by (ExtSetup,Ext) the knowledge extractor of ΠM . Before interacting with A, the challenger
sets (crsM , tdM)← ExtSetup(1λ). The game programs HM

crs such that HM
crs(0) := crsM and then proceeds

as before.

50

This step is justified by the CRS indistinguishability of ΠM (cf. Definition 27) such that

|ϵ3 − ϵ2| ≤ AdvCRSΠM ,ExtSetup
Rextcrs

(λ,QHM
)

for a straightforward reduction Rextcrs.
Game 4 (Extract Mj from πM,j and compute ct∗0,j via Mj): In this game, the challenger ex-
tracts Mj from πM,j and computes ct∗0,j as a fresh ciphertext of A∗0,j , where A∗0,j is setup via Σ0.Init. In
more detail, in the j-th signing session in S1 the challenger sets Mj ← Ext((tdM ,Q), (xM,j , πj)), where
Q is a list containing all HM queries and xM,j := (pkLHEj , ctM,j). Then, after the challenger samples
st0,j ← Σ0.Setup(1

λ), instead of computing InitZero homomorphically on ctM,j and rerandomizing the
resulting ciphertext, it sets

x
∗
0,j := ((ppX0 ,CMX0), (pp

X
1 ,CMX1), (pk

RE
0 ,CT∗0),Mj),

A∗0,j ← Σ0.Init(st0,j , ϕ
0
x
∗
0,j
),

ct∗M,j ← LHE.Enc(pkLHEj , A∗0,j).

Otherwise, the challenger proceeds as before.
In Lemma 6, we show via two intermediate hybrids that there is some adversaryRext on R̃M -extractability
(cf. Eq. (15) and Definition 27) of ΠM such that

|ϵ4 − ϵ3| ≤ AdvExtΠM ,Ext
Rext

(λ,QHM
) .

Game 5 (Define M+): In this game, after A outputs its forgeries, the challenger chooses index
κ∗ := min{κ |M+

κ ̸∈ MF}. Recall that M+
κ are the ℓ+ 1 messages associated to A’s forgeries, whereas

there are at most ℓ “forged” messages in MF. Thus, κ∗ is always well-defined. Since this change is
syntactical we have

ϵ5 = ϵ4 .

We refer to M+ := M+
κ∗ as the forgery’s message and parse the corresponding signature σ+

κ∗ as
((CT+

i , π
+
i , s

+
i , t

+
i)i∈{0,1,2}, π

+
dh). Further, parse π+

i := (A+
i , γ

+
i , ζ

+
i) for i ∈ {0, 1, 2} and π+

dh := (A+
dh, γ

+
dh, ζ

+
dh).

Also, set CMT+
i := COMT.Commit(ppT,CT+

i ; s
+
i) for i ∈ {0, 1, 2} and CMA+

i := COMT.Commit(ppT, A+
i , t

+
i)

for i ∈ {0, 1, 2}, HIN+
0 :=

(
(ppXi ,CMXi)i∈{0,1}, (pk

RE
0 ,CMT+

0),M
+,CMA0,xdh, A

+
dh

)
and HIN+

1 :=
(
(ppX2 ,CMX2), (pk

RE
i ,CMT+

i)i∈{0,1,2}, (CMA+
i)i∈{0,1,2}

)
.

Recall that if σ+
κ∗ is valid, then we have for i ∈ {0, 1, 2} that

γ+0 + γ+dh = HCH0 (HIN+
0)

γ1 + γ2 = HCH1 (HIN+
1)

Σi.Verify(x
+
i , A

+
i , γ

+
i , ζ

+
i) = 1

Σdh.Verify(xdh, A
+
dh, γ

+
dh, ζ

+
dh) = 1

where x+
0 := ((ppX0 ,CMX0), (pp

X
1 ,CMX1), (pk

RE
0 ,CT+

0),M
+),x+

1 := ((pkRE0 ,CT+
0), (pk

RE
1 ,CT+

1)),x
+
2 :=

((ppX2 ,CMX2), (pk
RE
2 ,CT+

2)),xdh := (G,D1, D2, D3). In the following, the game will sometimes know
skREi , sometimes not. If skREi is known to the game, we denote by Z+

i := RE.Dec(skREi ,CT+
i) the message

encrypted in CT+
i . Otherwise, Z+

i remains undefined.
Game 6 (Setup ppXi and ppT in binding mode): In this game, we setup the public parameters of
COMX and COMT in binding mode. That is, before interacting with A, the challenger sets ppXi ←
COMX.Setup(1

λ, bind) and ppT ← COMT.Setup(1
λ, bind). Then, it programs HX

pp and HT
pp such that

HX
pp(i) := ppXi and HT

pp(0) := ppT.
As both COMT and COMX have uniform parameters in hiding mode (cf. Definition 40), we have

|ϵ6 − ϵ5| ≤ ϵCOMT

hide (λ) + AdvParamINDCOMT

R1
COMT

(λ) + 3 · (ϵCOMX

hide (λ) + AdvParamINDCOMX

R1
COMX

(λ))

for straightforward reductions R1
COMT

,R1
COMX

that run in approximately the same time as A.
Game 7 (Abort if Z+

0 /∈ {x0G}j∈JF
): In this game, we abort if Z+

0 := RE.Dec(skREi ,CT+
0) (i.e., the

message encrypted in CT+
0) is not in the set {x0G}j∈JF

.
Recall that we assume that at least one signing session is finished, i.e., JF ̸= ∅. By soundness of π+

0 for
relation R0, we have that Z+

0 = x0G because ppXi and ppT are setup in binding mode. In more detail,

51

if x+
0 ∈ LR0

, there exists some witness w+
0,j such that (x+

0 ,w
+
0,j) ∈ R0. The values Z+

0 , x0, x1 (part of
w

+
0,j) are uniquely determined because CMX is set up in binding mode and RE is perfectly correct. By

Eq. (7) we have that x0G+ x1M
+ − Z+

0 = 0. Since x1 = 0 by construction, it follows that x0G = Z+
0 .

It remains to show that indeed x+
0 ∈ LR0 .

Assume for the sake of contradiction that x+
0 /∈ LR0 . Notice that since (D1, D2, D3) are sampled at

random, the probability that they form a DDH tuple is at most 1/p, i.e., xdh /∈ LRdh
. Due to special

soundness of Σ0 and Σdh, there is at most a single choice of γ0 and γ1 such that there is a valid response
ζ0 and ζdh, that is

Σ0.Verify(x
+
0 , A

+
0 , γ0, ζ0) = 1

Σdh.Verify(xdh, A
+
dh, γdh, ζdh) = 1

Since COMT is perfectly binding, HIN+
0 determines x+

0 ,xdh, A
+
0 and A+

dh. Thus, the pair (γ0, γ1) is already
determined by HIN+

0 . Consequently, for a given HCH0 query, the probability that HCH0 (HIN+
0) = γ0 + γ1

is at most 1/p. A union bound over all possible HCH0 queries yields

|ϵ6 − ϵ7| ≤
QHCH

0
+ 1

p
.

Game 8 (Setup (D1, D2, D3) as DDH tuple): In this game, we setup xdh as valid DDH tuple. That
is, before interacting with A, the challenger samples D1 ← G \ {0}, d2 ← Zp \ {0} and sets D2 := d2 ·G
and D3 := d2 ·D1. Then, it embeds the values into Hddh, i.e., sets Hddh(0) := (D1, D2, D3).
Thus

|ϵ7 − ϵ8| ≤ AdvDDHR1
dh
(λ)

for a straightforward reduction R1
dh that runs in approximately the same time as A.

Game 9 (Use DDH witness for Σdh): In this game, the challenger computes the Σdh transcript
(A∗dh,j , γ

∗
dh,j , ζ

∗
dh,j) via the witness wdh := d2 (where d2 is defined as in Game 8). That is, in S1

the challenger samples stdh,j ← Σdh.Setup(1
λ), and then sets A∗dh,j := Σdh.Init(stdh,j , ϕ

dh
xdh

), where
xdh = (G,D1, D2, D3). It also already samples γ∗0,j ← Zp. In S2 the challenger sets γ∗dh,j := δ∗0,dh − γ∗0,j
(instead of γ∗0 := δ∗0,dh − γ∗dh,j as in Game 8) and computes ζdh,j := Σdh.Resp(stdh,j , γ

∗
dh,j ,wdh).

Clearly, the distribution of γ∗dh,j and γ∗0,j are identical in Game 8 and Game 9. Also, it follows from
HVZK of Σdh that the Σdh transcripts (A∗dh,j , γ

∗
dh,j , ζ

∗
dh,j) are distributed identically in Game 8 and

Game 9. In conclusion, we have
ϵ9 = ϵ8 .

Game 10 (Simulate for Σ0): In this game, the challenger simulates the Σ0 transcript (A∗0,j , γ∗0,j , ζ∗0,j)
via the HVZK simulator Σ0.Sim. That is, in S1 the challenger samples γ∗0,j ← Zp as in Game 9, and
then sets (A∗0,j , ζ

∗
0,j)← Σ0.Sim(x∗0,j , γ

∗
0,j). In S2 the challenger uses ζ∗0,j sampled in S1.

It follows from HVZK of Σ0 that the transcripts (A∗0,j , γ
∗
0,j , ζ

∗
0,j) are distributed identically in Game 9

and Game 10. Thus, we have
ϵ10 = ϵ9 .

Game 11 (Setup ppXi and ppT in hiding mode): In this game, we setup the public parameters
of COMX and COMT in hiding mode. That is, before interacting with A, the challenger sets ppXi ←
COMX.Setup(1

λ, hide) and ppT ← COMT.Setup(1
λ, hide). Then, it programs HX

pp and HT
pp such that

HX
pp(i) := ppXi and HT

pp(i) := ppT.
This step is justified by the parameter indistinguishability (cf. Definition 41) such that

|ϵ11 − ϵ10| ≤ AdvParamINDCOMT

R2
COMT

(λ) + 3 · AdvParamINDCOMX

R2
COMX

(λ)

for straightforward reductions R2
COMT

,R2
COMX

that run in approximately the same time as A.
Game 12 (Simulate for Σ2): In this game, the challenger simulates the Σ2 transcript (A∗2,j , γ∗2,j , ζ∗2,j)
via the HVZK simulator Σ2.Sim. That is, in S1 the challenger samples γ∗2,j ← Zp (instead of doing so
in S2), and then sets (A∗2,j , ζ

∗
2,j)← Σ2.Sim(x∗2,j , γ

∗
2,j). In S2 the challenger uses ζ∗2,j sampled in S1.

It follows from HVZK of Σ2 that the Σ2 transcripts (A∗2,j , γ
∗
2,j , ζ

∗
2,j) are distributed identically in Game

11 and Game 12. Thus, we have
ϵ12 = ϵ11 .

52

Partitioning Before we start with the core argument of the proof, let us give a brief overview of
the partitioning technique [39, 2]. The goal is to move to a game, where in the j-th signing session,
the challenger encrypts F(j) in CT∗0 and CT∗1, where F is a random function mapping into Zp, while
keeping the guarantee that the adversary reuses some value F(j) for its forgery, i.e., Z+

0 ∈ {F(j)G}j∈JF
.

Note that only values from finished sessions are accepted in the forgery which is vital to later argue
unforgeability. This random function is introduced iteratively in ⌈log(QS)⌉ conceptual steps in a tight
manner.
At the beginning of the k-th step, some random function RFk is evaluated only on the k-bit prefix
j|k of j, and it holds that Z+

0 ∈ {RFk(j|k)G}j∈JF
. Note that for k = 0, this is identical to encrypting

a random value RF0(ϵ) := x0 ← Zp in CT∗0 and CT∗1 and checking that Z+
0 = x0G as in Game 12.

Then, the signing sessions are partitioned into two parts: Depending on a random bit-guess β, either a
fresh random function RF′k or the old random function RFk is evaluated on the k-bit prefix j|k of j.
Observe that the next function RFk+1 defined via

RFk+1(j|k+1) :=

{
RFk(j|k), j[k + 1] = β

RF′k(j|k), j[k + 1] = β
(43)

is again a random function, and after a logarithmic number of steps, the encrypted values are fully
randomized. The forgery’s check is adapted accordingly. We stress that as we only accept evaluations of
Z+
0 ∈ {RFk(j|k)G}j∈JF

, we need to make sure that the adversary learns no information about RFk

evaluations from unfinished sessions. For convenience, we define k[0] := k mod 2.
Game 13.k.0 (Begin of partitioning loop): In this game, the challenger proceeds as in Game 12,
except that it sets z0 := z1 := RFk(j|k) and checks that Z+

k[0] ∈ Zk, where RFk denotes a random
function mapping into Zp and

Zk := {RFk(j|k) ·G}j∈JF
. (44)

For k = 0, this Game is identical to Game 12, and we have

ϵ13.k.0 = ϵ12 .

Game 13.k.1 (Sample β and set x2 = β): In this game, the challenger samples a random bit β ←
{0, 1} and sets x2 := β (recall that the commitment CMX2 to x2 is part of the verification key). As ppX2
is setup in hiding mode and x2 is not used elsewhere,21 Game 13.k.0 and Game 13.k.1 are identically
distributed, and we have

ϵ13.k.1 = ϵ13.k.0 .

Game 13.k.2 (Set z2,j := j[k + 1]): In this game, the challenger sets z2,j := j[k + 1] in the j-th
signing session, i.e., z2,j is the (k + 1)-th bit of j ∈ [QS].
Note that based on z2,j , the challenger sets CT∗2,j := RE.Enc(pkRE2 , Z2,j ; ρ

∗
2,j), where Z2,j := z2,jG. As

the proof π∗CT,j and the transcript (A∗2,j , γ
∗
2,j , ζ

∗
2,j) are simulated, the values (Z2,j , ρ

∗
2,j) are exclusively

used to set up CT∗2,j . This step is justified by the IND-CPA security of RE such that

|ϵ13.k.2 − ϵ13.k.1| ≤ AdvINDCPARE
R1

indcpa
(λ)

for a straightforward reduction R1
indcpa.

Game 13.k.3 (Abort if Z+
2 ̸= βG): In this game, after A outputs its forgeries (M+

κ , σ
+
κ)κ∈[ℓ+1], the

challenger samples another bit b← {0, 1} and aborts if (1) Z+
2 ∈ {1, G} and Z+

2 = (1− β)G or if (2)
Z+
2 /∈ {1, G} and b = 0.

Again, as ppX2 is setup in hiding mode, the values β and b are independent of A’s view. Also, note that
both β and b are bits chosen uniformly at random. Thus, the abort probability is

Pr[abort] = Pr[Z+
2 ∈ {1, G} ∧ Z

+
2 = (1− β)G] + Pr[Z+

2 /∈ {1, G} ∧ b = 0]

=
1

2
· Pr[Z+

2 ∈ {1, G}] +
1

2
· (1− Pr[Z+

2 ∈ {1, G}]) =
1

2
.

Thus, we have
ϵ13.k.3 = ϵ13.k.2/2 .

21 Recall that the transcripts (A∗
2,j , γ

∗
2,j , ζ

∗
2,j) are simulated.

53

Game 13.k.4 (Use witness for Σ2 if β ̸= j[k + 1]): In this game, the challenger computes the tran-
script (A∗2,j , γ

∗
2,j , ζ

∗
2,j) via the witness w∗2,j = ((x2, ŝ2), (Z2,j , ρ

∗
2,j)) in the j-th session, if β ̸= j[k + 1].

That is, in S1 the challenger first checks if β ̸= j[k + 1]. If not, it proceeds as in the previous game, else
it sets A∗2,j := Σ2.Init(st2,j , ϕ

2
x
∗
2,j
). In S2 the challenger again checks if β ̸= j[k + 1], and proceeds as

in the previous game if the check fails. Else, it samples γ∗2,j := δ∗1,2 − γ∗1,j , where γ∗1,j ← Zp, and sets
ζ∗2,j := Σ2.Resp(st2,j , γ

∗
2,j ,w

∗
2,j).

Observe that we have x2G = Z2,j since x2 = β = j[k + 1], and Z2,j = j[k + 1]G, thus (x∗2,j ,w
∗
2,j) ∈ R2.

Consequently, we have under HVZK of Σ2 that

ϵ13.k.4 = ϵ13.k.3 .

Game 13.k.5 (Simulate for Σ1 if β ̸= j[k + 1]): In this game, the challenger simulates the Σ1 tran-
script (A∗1,j , γ

∗
1,j , ζ

∗
1,j) via the HVZK simulator Σ1.Sim if β ̸= j[k + 1]. That is, in S1 if β ≠ j[k + 1],

the challenger samples γ∗1,j ← Zp as before, and then sets (A∗1,j , ζ
∗
1,j) ← Σ1.Sim(x∗1,j , γ

∗
1,j). In S2 the

challenger uses ζ∗1,j sampled in S1 if β ̸= j[k + 1].
It follows from HVZK of Σ1 that the simulated Σ1 transcripts (A∗1,j , γ∗1,j , ζ∗1,j) are distributed identically
in Game 13.k.4 and Game 13.k.5. Thus, we have

ϵ13.k.5 = ϵ13.k.4 .

Game 13.k.6 (Set z1−k[0],j := RF′k[j|k] if β ̸= j[k + 1]): Recall k[0] := k mod 2. In this game, if
β ≠ j[k + 1] in the j-th session, the challenger sets z1−k[0],j := RF′k[j|k], where RF′k is a fresh function
mapping into Zp. Then, it sets CT∗1−k[0],j := RE.Enc(pkRE1−k[0], Z1−k[0],j ; ρ

∗
1−k[0],j), where Z1−k[0],j :=

z1−k[0],jG as before.
Observe that as Σ0 and Σ1 are simulated, the values z1−k[0],j and ρ∗1−k[0],j are only used to initialize
CT∗1−k[0],j . Also, the secret key sk1−k[0] associated to pkRE1−k[0] is not required for the simulation (as the
forgery checks for M+ is performed with skk[0] and the abort condition is evaluated with sk2). This
step is justified by the IND-CPA security of RE such

|ϵ13.k.6 − ϵ13.k.5| ≤ AdvINDCPARE
R2

indcpa
(λ)

for a straightforward reduction R2
indcpa.

Game 13.k.7 (Setup ppXi and ppT in binding mode): In this game, the challenger sets up the
public parameters of COMX and COMT in binding mode. That is, before interacting with A, the
challenger sets ppXi ← COMX.Setup(1

λ, bind) and ppT ← COMT.Setup(1
λ, bind). Then, it programs HX

pp

and HT
pp such that HX

pp(i) := ppXi and HT
pp(0) := ppT.

This step is justified by the parameter indistinguishability (cf. Definition 41) such that

|ϵ13.k.7 − ϵ13.k.6| ≤ AdvParamINDCOMT

R3
COMT

(λ) + 3AdvParamINDCOMX

R3
COMX

(λ)

for straightforward reductions R3
COMT

,R3
COMX

that run in approximately the same time as A.
Game 13.k.8 (Abort if Z+

1−k[0] /∈ Zk): In this game, we change the forgery check that was introduced
in Game 7. That is, instead of checking that Z+

k[0] ∈ Zk = {RFk(j|k) ·G}j∈JF
, the challenger aborts if

the value Z+
1−k[0] encrypted in the ciphertext CT+

1−k[0] in A’s forgery associated to M+ does not lie in
Zk.
Because ppXi and ppT are setup in binding mode, this follows by soundness of π+

1 for relation R1. In more
detail, if x+

1 ∈ LR1 , there exists some witness w+
1,j such that (x+

1 ,w
+
1,j) ∈ R1. The values Z+

0 , Z
+
1 (part

of w+
1,j) are uniquely determined because RE is perfectly correct. By Eq. (8) we have that Z+

0 = Z+
1 .

On the other hand, observe that x+
2 /∈ LR2

as CMX2 is setup in binding mode, so x2 = β is uniquely
determined, and due to the abort condition, it holds that Z+

2 = βG (i.e., x2G− Z+
2 ̸= 0). It remains to

show that indeed x+
1 ∈ LR1

which follows by special soundness of Σ0 and Σ1. The formal argument is
as in Game 7, and we omit details. We obtain

|ϵ13.k.8 − ϵ13.k.7| ≤
QHCH

1
+ 1

p
.

54

Game 13.k.9 (Setup ppXi and ppT in hiding mode): In this game, the challenger sets up the pub-
lic parameters of COMX and COMT in hiding mode. That is, before interacting with A, the challenger
sets ppXi ← COMX.Setup(1

λ, hide) and ppT ← COMT.Setup(1
λ, hide). Then, it programs HX

pp and HT
pp

such that HX
pp(i) := ppXi and HT

pp(0) := ppT.
This step is justified by the parameter indistinguishability (cf. Definition 41) such that

|ϵ13.k.9 − ϵ13.k.8| ≤ AdvParamINDCOMT

R4
COMT

(λ) + 3AdvParamINDCOMX

R4
COMX

(λ)

for straightforward reductions R4
COMT

,R4
COMX

that run in approximately the same time as A.
Game 13.k.10 (Set zk[0],j = RF′k[j|k] if β ̸= j[k + 1]): Let k[0] := k mod 2. In this game, if β ̸=
j[k + 1] in the j-th session, the challenger sets zk[0],j := RF′k[j|k], where RF′k is the random function
introduced in Game 13.k.6. Then, it sets CT∗k[0],j := RE.Enc(pkREk[0], Z

∗
k[0]; ρ

∗
k[0],j), where Z∗k[0] := zk[0]G

as before.
Observe that as Σ0 and Σ1 are simulated, the values zk[0],j and ρk[0],j are only used to initialize CT∗k[0],j .
Also, the secret key skk[0] associated to pkREk[0] is not required for the simulation (as the forgery checks
for M+ is performed with sk1−k[0] due to the previous hybrid, and the abort condition is evaluated
with sk2). This step is justified by the IND-CPA security of RE such

|ϵ13.k.10 − ϵ13.k.9| ≤ AdvINDCPARE
R3

indcpa
(λ) .

for a straightforward reduction R3
indcpa.

In the next two games, we revert the changes made in Game 13.k.4 and Game 13.k.5 with respect to
the computation of proofs via Σ1 and Σ2.
Game 13.k.11 (Use witness for Σ1 if β ̸= j[k + 1]): In this game, the challenger computes the
transcript (A∗1,j , γ

∗
1,j , ζ

∗
1,j) via the witness w∗1,j = ((Z0,j , ρ

∗
0,j), (Z1,j , ρ

∗
1,j)) in the j-th session, if β ̸=

j[k + 1].
Observe that we have Z0,j = Z1,j = RF′k[j|k] if β ̸= j[k + 1], thus (x∗1,j ,w

∗
1,j) ∈ R1. Consequently, we

have under HVZK of Σ1 that
ϵ13.k.11 = ϵ13.k.10 .

Game 13.k.12 (Simulate for Σ2 if β ̸= j[k + 1]): In this game, the challenger simulates the Σ2

transcript (A∗2,j , γ
∗
2,j , ζ

∗
2,j) via the HVZK simulator Σ2.Sim if β ≠ j[k+ 1]. That is, in S1 if β ≠ j[k+ 1],

the challenger samples γ∗2,j ← Zp, and then sets (A∗2,j , ζ
∗
2,j)← Σ2.Sim(x∗2,j , γ

∗
2,j). In S2 the challenger

uses ζ∗2,j sampled in S1 if β ̸= j[k + 1].
It follows from HVZK of Σ2 that the simulated Σ2 transcripts (A∗2,j , γ∗2,j , ζ∗2,j) are distributed identically
in Game 13.k.4 and Game 13.k.5. Thus, we have

ϵ13.k.12 = ϵ13.k.11 .

Game 13.k.13 (Rewrite z0,j and z1,j in terms of RFk+1): This is a purely conceptual game. In
particular, observe that the challenger sets z0,j := z1,j := RFk+1(j|k+1) in Game 13.k.12, where RFk+1

is defined as in Eq. (43). We have
ϵ13.k.13 = ϵ13.k.12 .

Game 13.k.14 (Abort if Z+
1−k[0] /∈ Zk+1): In this game, we change the forgery check again. That is,

instead of checking that Z+
1−k[0] ∈ Zk, the challenger checks that Z+

1−k[0] ∈ Zk+1, where Zk and Zk+1

are defined by Eq. (44) with respect to random functions RFk and RFk+1, respectively. That is, recall
that

Zk = {RFk(j|k) ·G}j∈JF

= {RFk(j|k) ·G | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.both

∪{RFk(j|k) ·G | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.13

,

Zk+1 = {RFk+1(j|k+1) ·G}j∈JF

= {RFk(j|k) ·G | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
=Sk.both

∪{RF′k(j|k) ·G | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.14

,

where the last equality follows by definition of RFk+1 (cf. Eq. (43)).

55

Observe that in Game 13.k.13, the challenger also accepts the values Z1−k[0] ∈ Sk.13, whereas not all
such values are accepted in Game 13.k.14. Below, we show that this does not considerably decrease the
advantage of A in Game 13.k.14. Roughly, this is because the values that are not accepted in Sk.13 are
statistically hidden, and thus hard to predict. This argument is quite subtle in our case because we
only index over finished session j ∈ JF, and we need to make sure that unfinished sessions do not leak
information about non-accepted values in Sk.13. On the other hand, in Game 13.k.14, the challenger
accepts forgeries Z1−k[0] ∈ Sk.14, but this at most improves the advantage of A in Game 13.k.14.
Before we proceed with the proof, let us be more precise in our identity for Zk. In particular, observe
that the values RFk(j|k) ∈ Sk.13 such that j|k ∈ J β

pre := {j|k | j ∈ JF, j[k + 1] = β} are also included
in Sk.both, and thus also accepted in Game 13.k.14. In conclusion, we can write

Zk = Sk.both ∪ {RFk(j|k) ·G | j ∈ JF, j[k + 1] = β, j|k /∈ J β
pre}︸ ︷︷ ︸

:=S∗
k.13

,

By the above discussion, it suffices to show that Pr[Z+
1−k[0] ∈ S

∗
k.13] is sufficiently small in Game 13.k.13.

Let Z ∈ S∗k.13 be arbitrary. That is, there is jZ ∈ JF such that Z = RFk(jZ |k) ·G with jZ [k + 1] = β
and jZ |k /∈ J β

pre. We show that the value Z is information-theoretically hidden from A in Game 13.k.13.
For this, let us recap the sources from which A obtains information about evaluations of RFk, including
Z. Observe that these are the ciphertexts CT∗0,j and CT∗1,j for j ∈ [QS], and values that are computed
based on CT∗0,j and CT∗1,j . In particular, for i ∈ {0, 1}:
i. Ciphertext CT∗i,j encrypts RFk(j|k).
ii. Commitment CMTi,j commits to CT∗i,j .
iii. Σ-protocol commitment A∗i,j = Σi.Init(sti,j , ϕ

i
x
∗
i,j
), where x∗i,j includes the ciphertexts.

iv. Σ-protocol responses ζ∗i,j = Σi.Resp(sti,j , γ
∗
i,j ,w

∗
i,j), where w∗i,j contains the message and random-

ness of the ciphertexts.
v. Ciphertext ct∗0,j , which is an encryption of A∗0,j .

First, observe that if we have in the j-th session that j[k + 1] = β, then the evaluations of the random
function RF′k are encrypted. Since RF′k and RFk are independent, these evaluations leak no information
about Z = RFk(jZ |k) ·G. Let us inspect the case j[k+1] = β. If the session is finished (i.e., j ∈ JF) or
j|k ∈ J β

pre, then values in Sk.both are encrypted which are distributed independently of Z by definition
of S∗k.13.
On the other hand, if j /∈ JF and j[k + 1] = β, then CT∗0,j and CT∗1,j are not necessarily independently
distributed from Z. Let us inspect this case in more detail, for i ∈ {0, 1}:
i. Ciphertext CT∗i,j is only sent to A in S2, and because j /∈ JF, A does not learn CT∗i,j in plain.
ii. While CMT∗i,j is a commitment to CT∗i,j , the public parameters ppT are setup in hiding mode. Thus,

the commitments are distributed independently of Z.
iii. As A∗i,j = Σi.Init(sti,j , ϕ

i
x
∗
i,j
), the only value that might leak information about Z is the description

of ϕi
x
∗
i,j

. In particular, by definition of ϕi
x
∗
i,j

(cf. Section 3.1). The values that depend on CT∗i,j are

the maps ϕRE
x
∗
RE,i,j

, where x∗RE,i,j = (pkREi ,CT∗i,j). By Remark 1, the map ϕRE
x
∗
RE,i,j

only depends on

pkREi . Thus, the distribution of A∗i,j is independent of Z.
iv. The Σ-protocol responses ζ∗i,j are only sent in the S2, but the j-th signing session is not finished

(j /∈ JF).
v. As the distribution of ciphertext A∗0,j is independent of Z, so is the distribution of ct∗0,j .

In conclusion, the view of A is independent of the distribution of Z ∈ S∗k.13, and we have Pr[Z+
1−k[0] =

Z] = 1/p. Finally, since there are at most ℓ = |JF| values in S∗k.13, a union bound yields

|ϵ13.k.14 − ϵ13.k.13| ≤
ℓ

p
.

Game 13.k.15 (Do not abort if Z+
2 ̸= βG): Recall that in Game 13.k.14, after A outputs its forg-

eries (M+
κ , σ

+
κ)κ∈[ℓ+1], the challenger samples a bit b ← {0, 1} and aborts if (1) Z+

2 ∈ {1, G} and
Z+
2 = (1− β)G or if (2) Z+

2 /∈ {1, G} and b = 0. In this game, abort conditions (1) and (2) are removed.
As ppX2 is setup in hiding mode, the bits β and b are independent of A’s view. Importantly, the advantage
of A is independent of the bits β and b. As in Game 13.k.3, we can show that the abort probability in
Game 13.k.14 is 1/2. Thus, by removing the abort condition, the advantage of A doubles. That is, we
have

ϵ13.k.15 = 2ϵ13.k.14 .

56

Game 13.k.16 (Set z2,j := 0): In this game, the challenger sets z2,j = 0 in the j-th signing session,
i.e., we revert the change made in Game 13.k.2.
We can argue that Game 13.k.15 and 13.k.16 are indistinguishable under IND-CPA security of RE as in
Game 13.k.2. That is, observe that based on z2,j , the challenger sets CT∗2,j := RE.Enc(pkRE2 , Z2,j ; ρ

∗
2,j),

where Z2,j := z2,jG. As the proof π∗CT,j and the transcript (A∗2,j , γ
∗
2,j , ζ

∗
2,j) are simulated, the values

(Z2,j , ρ
∗
2,j) are exclusively used to set up CT∗2,j . This step is justified by the IND-CPA security of RE

such that
|ϵ13.k.16 − ϵ13.k.15| ≤ AdvINDCPARE

R4
indcpa

(λ)

for a straightforward reduction R4
indcpa.

Game 13.k.17 (Forget β and set x2 := 0): In this game, the challenger does not sample the bit
β anymore. Also, it sets x2 := 0. As ppX2 is setup in hiding mode and the values x2, β are not used
elsewhere, Game 13.k.16 and Game 13.k.17 are identically distributed, and we have

ϵ13.k.17 = ϵ13.k.16 .

Moreover, observe that the last game of one iteration is equal to the first game of the next iteration, i.e.,

ϵ13.(k+1).0 = ϵ13.k.17

because both games perform the same check Z+
1−k[0] ∈ Zk+1 ⇐⇒ Z+

(k+1)[0] ∈ Zk+1 since (k + 1)[0] =

1− k[0].
Game 14 (End of partitioning loop): This game is identical to Game 13.N.17 for N := ⌈logQS⌉,
i.e.,

ϵ14 = ϵ13.k.17 .

Without loss of generality, let us assume that N is even, so the forgery check in Game 14 is performed
with Z+

0 and not Z+
1 . As we have j|N = j, the random function RFN is evaluated on its entire input

and we simply set F := RFN and write z0 = z1 = F(j). Also, note that the challenger now accepts the
forgeries if Z+

0 ∈ {F(j) ·G}j∈JF
. Over a single iteration of the loop, we find that

|ϵ13.k.17 − ϵ13.k.0| ≤ ϵloop(λ) .

We delay ϵloop until Eq. (46). Over all iterations of the loop, we find that

|ϵ14 − ϵ13| ≤ ⌈logQS⌉ · ϵloop(λ) .

Game 15 (Set Z0,j := Z1,j := F(j)G+Mj and x1 := 1): In this game, the challenger sets Z0,j :=
Z1,j := F(j)G +Mj and x1 := 1. The forgery check is also adapted accordingly, i.e., the challenger
checks that Z+

0 ∈ {F(j)G+Mj}j∈JF
.

Note that the challenger can not efficiently compute the DLOGs z0,j and z1,j anymore as this requires
the DLOG of Mj . But as these DLOGs are not required for simulation,22 the simulation of Game 15 is
efficient.
As ppX1 is setup in hiding mode and as F is a random function, the distribution of Z0,j and Z1,j are
identical in Game 14 and Game 15. Thus, we have

ϵ15 = ϵ14 .

Game 16 (Replace F(j) with x0 via partitioning): In this game, the challenger sets Z0,j :=
Z1,j := x0G+Mj and adapts the forgery check accordingly, i.e., checks that Z+

0 ∈ {x0G+Mj}j∈JF
.

By reversing the transitions from Game 13.k.0 to Game 13.k.17 we can show (Lemma 7) that

|ϵ16 − ϵ15| ≤ ⌈logQS⌉ · ϵloop(λ) .

Game 17 (Setup ppXi and ppT in binding mode): In this game, the challenger sets up the public
parameters of COMX and COMT in binding mode. That is, before interacting with A, the challenger
sets ppXi ← COMX.Setup(1

λ, bind) and ppT ← COMT.Setup(1
λ, bind). Then, it programs HX

pp and HT
pp

such that HX
pp(i) := ppXi and HT

pp(0) := ppT.
As before, this step is justified by the parameter indistinguishability such that

|ϵ17 − ϵ16| ≤ AdvParamINDCOMT

RCOMT
(λ) + 3AdvParamINDCOMX

R3
COMX

(λ)

for straightforward reductions R3
COMT

,R3
COMX

that run in approximately the same time as A.
22 Recall that the witness for the Σ-protocols are the group elements Zi,j and not their DLOGs.

57

Game 18 (Use witness for Σ0): In this game, the challenger computes the Σ0-transcript (A∗0,j , γ∗0,j , ζ∗0,j)
via the witness w∗0,j = ((x0, ŝ0), (x1, ŝ1), Z0,j , ρ

∗
0,j). That is, in S1 the challenger samples st0,j ←

Σ0.Setup(1
λ), and then setsA∗0,j := Σ0.Init(st0,j , ϕ

0
x
∗
0,j

), where x∗0,j = ((ppX0 ,CMX0), (pp
X
1 ,CMX1), (pk

RE
0 ,CT∗0,j),Mj).

It also already samples γ∗dh,j ← Zp. In S2 the challenger sets γ∗0,j := δ∗0,dh − γ∗dh,j and computes
ζ∗0,j := Σ0.Resp(st0,j , γ

∗
0,j ,w

∗
0,j).

As in previous games, we can show via HVZK of Σ0 that

ϵ18 = ϵ17 .

Game 19 (Simulate for Σdh): In this game, the challenger simulates the Σdh transcript (A∗dh,j , γ
∗
dh,j , ζ

∗
dh,j)

via the HVZK simulator Σdh.Sim. That is, in S1 the challenger samples γ∗dh,j ← Zp as in Game 18, and
then sets (A∗dh,j , ζ

∗
dh,j) ← Σdh.Sim(xdh, γ

∗
dh,j), where xdh = (G,D1, D2, D3). In S2 the challenger uses

ζ∗dh,j sampled in S1.
As before, we can show via HVZK of Σdh that

ϵ19 = ϵ18 .

Game 20 (Setup Di at random): In this game, we setup xdh at random. That is, initiallyD1, D2, D3 ←
G are drawn at random and Hddh(0) := (D1, D2, D3) is programmed accordingly. This step is justified
by the DDH assumption such that

|ϵ20 − ϵ19| ≤ AdvDDHR2
dh
(λ)

for a straightforward reduction R2
dh.

Finally, let us upper bound the advantage of A in Game 20. Recall that CMXi and CMT are setup in
binding mode and that except with probability 1/p, it holds that (G,D1, D2, D3) /∈ LRdh

. As in Game 7,
we can show via special soundness of Σ0 and Σdh that x+

0 ∈ LR0
except with probability (QHCH

0
+ 1)/p.

By definition of R0 (cf. Eq. (7)), if x+
0 ∈ LR0 , then we have that x0G+ x1M

+ −Z+
0 = 0, where x0 and

x1 = 1 are uniquely determined by the verification key vk. That is, we have

x0G+M+ = Z+
0 (45)

Further, recall that A is only successful if Z+
0 ∈ {x0G+Mj}j∈JF

, that is there is some j+ ∈ JF such
that x0G+Mj+ = Z+

0 . Together with Eq. (45), this yields that

M+ =Mj+

But by definition of M+ (cf. Game 5), we have that M+ /∈ {Mj |j ∈ JF}. In conclusion, we have that

ϵ20 ≤
QHCH

0
+ 1

p
.

Overall, we obtain the bound

AdvOMUFBS
A (λ) ≤ AdvZKΠCT

Rzk
(λ,QHCT

) + AdvCRSΠM ,ExtSetup
Rextcrs

(λ,QHM
)

+ AdvExtΠM ,Ext
Rext

(λ,QHM
) + ϵCOMT

hide (λ)

+ AdvParamINDCOMT

R1
COMT

(λ)

+ 3 · (ϵCOMX

hide (λ) + AdvParamINDCOMX

R1
COMX

(λ))

+ (QHCH
0

+ 1)/p+ AdvDDHR1
dh
(λ)

+ AdvParamINDCOMT

R2
COMT

(λ) + 3 · AdvParamINDCOMX

R2
COMX

(λ)

+ 2 ⌈logQS⌉ ϵloop(λ)
+ AdvParamINDCOMT

R3
COMT

(λ) + 3 · AdvParamINDCOMX

R3
COMX

(λ)

+ AdvDDHR2
dh
(λ) + (QHCH

0
+ 1)/p

58

where
ϵloop(λ) ≤ AdvINDCPARE

R1
indcpa

(λ)

+2AdvINDCPARE
R2

indcpa
(λ)

+2AdvParamINDCOMT

R2
COMT

(λ)

+6AdvParamINDCOMX

R2
COMX

(λ)

+2(QHCH
1

)/p

+2AdvParamINDCOMT

R3
COMT

(λ)

+6AdvParamINDCOMX

R3
COMX

(λ)

+2AdvINDCPARE
R3

indcpa
(λ)

+2ℓ/p

+AdvINDCPARE
R4

indcpa
(λ) .

(46)

59

Table 5: Transitions from Game 0 to Game 11.

Game pkREi Mj M+ crsM π∗
CT,j Di ppXi ppT Σdh ct∗0,j Σ0 Forgery check for M+ Reduction

0 $ - - $ wCT,j $ $ $ Sim Eval, Rerand w
∗
0,j - OMUF Game

1 skREi Uniform public-key

2 Sim Zero-knowledge

3 Ext CRS Indistinguishability

4 from πM,j Init, Enc
R̃M -Extractability

Hom. correctness, Rerand. Ind.

5 M+ \MF Syntax / Notation

6 B B Uniform Parameters

7 Z
+
0 ∈ {x0G}j∈JF

Soundness of Σ0 and Σdh

8 DDH DDH

9 wdh HVZK of Σdh

10 Sim HVZK of Σ0

11 skREi from πM,j M+ \MF Ext Sim DDH H H wdh Init, Enc Sim Z+
0 ∈ {x0G}j∈JF

Parameter indistinguishability

In column pkREi , “$” (resp. “skREi ”) means that pkREi := HRE
pk (i) is sampled at random (resp. sampled via RE.Gen(1λ) with known secret key skREi) for

i ∈ {0, 1, 2}. In column Mj , “-” means that Mj is undefined and “from πM ” means that Mj is extracted from πM,j in the j-th session in phase Sj
1. In

column M+, “-” means that the message M+ is undefined, and else it means that M+ is chosen from the set M+ \MF when A provides its forgeries
with messages M+. In column crsM , “$” (resp. “Ext”) means that crsM := HM

crs (0) is sampled at random (resp. sampled via ExtSetup). In column π∗
CT,j ,

“wCT,j” (resp. “Sim”) means that the proof π∗
CT,j is computed via witness wCT,j honestly (resp. simulated via the zero-knowledge simulator of ΠCT). In

column Di, “$” (resp. “DDH”) means that (D1, D2, D3) := Hddh(0) is setup at random (resp. as valid DDH tuple with witness wdh := DLOG(D2) for Ldh).
In column ppXi , “$” means that parameters ppXi := HX

pp(i) for COMX are chosen at random, and “H” (resp. “B”) means that ppXi is setup in hiding (resp.
binding) mode. The column ppT is analogous to the column ppXi except for COMT instead of COMX. In column Σdh, “Sim” (resp. “wdh”) means that the
transcript (A∗

dh,j , γ
∗
dh,j , ζ

∗
dh,j) is simulated via HVZK (resp. computed via wdh honestly). In column ct∗0,j , “Eval,Rerand” means that ct∗0,j is setup as in the

construction (i.e., by evaluating InitZero on ctM homomorphically via Eval and rerandomizing the obtained ciphertext via Rerand), and “ Init, Enc” means
that ct∗0,j is setup by encrypting A∗

0 obtained by evaluating Σ0.Init. In column Σ0, “w∗
0,j ” means that ζ∗

0 is computed via w∗
0,j and “Sim” means that the

transcript (A∗
0,j , γ

∗
0,j , ζ

∗
0,j) is simulated via HVZK. Recall that JF denotes the set of finished sessions. In column “Forgery check for M+”, “-” means

that no additional check is performed and “Z+
0 ∈ {x0G}j∈JF

” means that the game aborts if Z+
0 ∈ {x0G}j∈JF

, where Z+
0 := RE.Dec(skREi ,CT+

0) is the
messsage encrypted in the ciphertext CT+

0 in the signature associated to M+. Finally, in the column “Reduction”, we give a brief justification for the
game hop.

60

Table 6: Transitions from Game 11 to Game 14. We apply the adaptive partitioning technique from [39] in Game 13.k.0 to Game 13.k.17.

If β ̸= j[k + 1] If β = j[k + 1]

Game ppXi , pp
T guess x2 z2,j Σ1 Σ2 zk[0],j z1−k[0],j Σ1 Σ2 z0,j = z1,j Forgery check for M+ Abort cond. Reduction

Game 11 H - 0 0 w
∗
1,j w

∗
2,j x0 x0 w

∗
1,j w

∗
2,j x0 Z+

0 ∈ {x0G}j∈JF
- -

Game 12 Sim Sim HVZK of Σ2

Game 13.0.0 RF0(ε) := x0 RF0(ε) := x0 RF0(ε) := x0 Z+
0 ∈ {RF0(ε)G}j∈JF

Notation

Game 13.k.0 RFk(j|k) RFk(j|k) RFk(j|k) Z+
k[0]
∈ Zk Begin Loop

Game 13.k.1 β β Hiding

Game 13.k.2 j[k + 1] IND-CPA

Game 13.k.3 Z
+
2 ̸= βG Loses factor 2

Game 13.k.4 w
∗
2,j HVZK of Σ2

Game 13.k.5 Sim HVZK of Σ1

Game 13.k.6 RF1−k[0][j|k] IND-CPA

Game 13.k.7 B Parameter ind.

Game 13.k.8 Z
+
1−k[0] ∈ Zk Soundness of Σ1 and Σ2

Game 13.k.9 H Parameter ind.

Game 13.k.10 RF1−k[0][j|k] IND-CPA

Game 13.k.11 w
∗
1,j HVZK of Σ1

Game 13.k.12 Sim HVZK of Σ2

Game 13.k.13 RFk+1[j|k+1] RFk+1[j|k+1] RFk+1[j|k+1] Notation

Game 13.k.14 Z
+
1−k[0] ∈ Zk+1 Additive loss ℓ/p

Game 13.k.15 − Gains factor 2

Game 13.k.16 0 IND-CPA

Game 13.k.17 − 0 Hiding

Game 14 H - 0 0 w
∗
1,j Sim F(j) F(j) w

∗
1,j Sim F(j) Z+

0 ∈ {F(j)G}j∈JF
- -

As before, JF denotes the indices of finished sessions. In column ppXi , pp
T, “H” (resp. “B”) means that the parameters for COMX and COMT are setup in hiding (resp. binding mode). In

column “guess”, β ← {0, 1} denotes a random guess made by the game. In column x2, the value committed in CMX2 is given. In columns z2,j , the DLOG of the value encrypted in CT∗
2,j

given in the j-th session in phase Sj
1. Note that depending on the guess β and the (k + 1)-th bit j[k + 1] of the j-th signing session, the game simulates the signing oracles in different

manners. In column Σ1, “w∗
1,j” means that ζ∗

1,j is computed via w∗
1,j and “Sim” means that the transcript (A∗

1,j , γ
∗
1,j , ζ

∗
1,j) is simulated via HVZK. In columns zb,j for b ∈ {0, 1}, the

DLOG of the value encrypted in CT∗
b,j given in the j-th session in phase Sj

1. Note that RFk denotes a random function that are inductively defined by RFk+1(j|k+1) := RFk(i|k) if
j[k + 1] = β and RFk+1(j|k+1) := RF′

k(i|k) if j[k + 1] = 1− β, where RF0 and RF1−k[0] are fresh random functions. In column “Forgery check for M+”, an additional forgery check is
described and the game aborts if the check fails. Here, the sets Zk and Zk+1 are defined by Zk := {RFk(j|k)G}j∈JF

and Zk+1 := {RFk+1(j|k+1)G}j∈JF
, respectively. In column

“Abort cond.”, an additional abort condition is introduced that depends on the game’s guess β. Finally, in the column “Reduction”, we give a brief justification for the game hop.

61

Table 7: Transitions from Game 14 to Game 20.

Game Di ppXi ppT x1 Z0,j = Z1,j Σdh Σ0 Forgery check for M+ Reduction

Game 14 DDH H H 0 F(j)G wdh Sim Z+
0 ∈ {F(j)G}j∈JF

-

Game 15 1 F(j)G + Mj Z
+
0 ∈ {F(j)G + Mj}j∈JF

Statistical

Game 16 x0G + Mj Z
+
0 ∈ {x0G + Mj}j∈JF

Backward partitioning

(cf. Table 6)

Game 17 B B Parameter ind.

Game 18 w
∗
0,j HVZK of Σ0

Game 19 Sim HVZK of Σdh

Game 20 $ DDH

In column Di, “$” (resp. “DDH”) means that (D1, D2, D3) := Hddh(0) is setup at random (resp. as valid DDH tuple with witness
wdh = DLOG(D2) for Ldh). In column ppXi , “$” means that parameters ppXi := HX

pp(i) for COMX are chosen at random and “H” (resp.
“B”) means that ppXi is setup in hiding (resp. binding) mode. The column ppT is analogous to the column ppXi except for COMT

instead of COMX. In column x1, the value committed in CMX1 is given. In column Z0,j = Z1,j , the value encrypted in ciphertexts
CT0,j and CT1,j in the j-th session is given. In column Σdh, “Sim” (resp. “wdh”) means that the transcript (A∗

dh,j , γ
∗
dh,j , ζ

∗
dh,j) is

simulated via HVZK (resp. computed via wdh honestly). The column Σ0 is interpreted analogously. In column “Forgery check for
M+”, an additional forgery check is described and the game aborts if the check fails. Finally, in the column “Reduction”, we give a
brief justification for the game hop.

This concludes the one-more unforgeability proof. ⊓⊔

Below, we provide the missing proofs of aforementioned lemmata.

Lemma 6. This step is justified by the R̃M -extractability of ΠM such that

|ϵ4 − ϵ3| ≤ AdvExtΠM ,Ext
Rext

(λ,QHM
) .

Proof (of Lemma 6). We show this by introducing intermediate games between Game 3 and Game 4.
Roughly, we first extract Mj from πM,j and abort if the extracted witness is not in the desired relation.
Because extraction is not efficient for Mj , the game becomes inefficient at this point. Then, we use
Mj to construct ct∗0,j as a fresh ciphertext (indepdenent on ct0). In the last step, we remove the abort
condition again and obtain Game 4.

Game* 3.1: Let us define an intermediate hybrid Game 3.1. In this game, the challenger extracts Mj

from πM,j in S1 as described in Game 4, but the encryption ct∗0,j is still computed as in Game 3 (i.e.,
via Eval and Rerand). After extraction, the challenger aborts if there are no (skLHE, rM,j) such that

ctM,j = LHE.Enc(pkLHE,Mj ; rM,j) ∧ (pkLHE, skLHE) ∈ LHE.Gen(1λ). (47)

Note that this abort condition is inefficient.
This step is justified by the straighline R̃M -extractability (cf. Definition 27) such that

ϵ3.1 − ϵ3 ≤ AdvExtΠM ,Ext
Rext

(λ,QHM
).

Game* 3.2: In this game, the challenger also computes ct∗0,j as in Game 4. By Eq. (47) and by homomor-
phic correctness, we have that there exists some reval,j such that ct0,j = LHE.Enc(pkLHE, InitZero(M); reval,j).
By definition of InitZero (cf. Eq. (11)), we have InitZero(Mj) = A∗0,j , where A∗0,j ← Σ0.Init(st0,j , ϕ

0
x
∗
0
).

Thus, rerandomization indistinguishability of LHE yields that

ϵ3.2 = ϵ3.1

Finally, observe that the only difference between Game 4 and Game 3.3 is the added abort condition.
Removing the abort condition at most improves the advantage of A in Game 4, and we have

ϵ4 ≤ ϵ3.2

Note that Game 4 is efficient again.

62

⊓⊔

Lemma 7. There are appropriate reductions such that |ϵ16 − ϵ15|(λ) ≤ ϵloop(λ) as defined in Eq. (46).

Proof (of Lemma 7). Let us argue that A’s advantage in Game 15 and Game 16 is close. Roughly,
we start with Game 16 and perform the game transitions from Game 13.k.0 to Game 13.k.17 for
k ∈ [⌈logQS⌉] in reverse order. That is, we “deconstruct” RFk+1 into RFk. Below, RFk is a random
function defined as in Eq. (43). We obtain Game 16 after ⌈logQS⌉ steps. Most arguments are identical
to before and we use matching notation for readability. That is, we denote sets and values with similar
meaning in the same manner, even if their definition slightly differs.

Game R.0 (=̂13.k.17; Start of partitioning loop): This game is identical Game 13.k.17 except
that Z0,j = Z1,j = RFk+1[j|k+1] · G +Mj is encrypted in CT∗0,j and CT∗1,j . Also, the forgery check
Z+
1−k[0] ∈ Zk+1 is performed, where Zk+1 is defined as Zk+1 = {RFk+1(j|k+1) ·G+Mj}j∈JF

.
By setting F = RFk+1 and observing that j|k+1 = j, we have for k = ⌈logQS⌉ − 1 that

ϵR.0 = ϵ13.k.17 .

Game R.1 (=̂13.k.16; Sample β and set x2 := β): In this game, the challenger initially samples a
random bit β ← {0, 1} and sets x2 := β.
As ppX2 is setup in hiding mode and the values x2, β are not used elsewhere, we have

ϵR.1 = ϵR.0 .

Game R.2 (=̂13.k.15; Set z2,j := j[k + 1]): In this game, the challenger sets z2,j = j[k + 1] in the
j-th signing session.
As in Game 13.k.16, this step is justified by the IND-CPA security of RE such that

|ϵR.2 − ϵR.1| ≤ AdvINDCPARE
R1

indcpa
(λ) .

Game R.3 (=̂13.k.14; Abort if Z+
2 ̸= βG): After A outputs its forgeries (M+

κ , σ
+
κ)κ∈[ℓ+1], the chal-

lenger samples another bit b ← {0, 1} and aborts if (1) Z+
2 ∈ {1, G} and Z+

2 = (1 − β)G or if (2)
Z+
2 /∈ {1, G} and b = 0.

As ppX2 is setup in hiding mode, the bits β and b are independent of A’s view. As in Game 13.k.3
through 13.k.14 the abort probability in this game is 1/2. Thus, we have

ϵR.3 = ϵR.2/2 .

Game R.4 (=̂13.k.13; Abort if Z+
1−k[0] /∈ Zk): In this game, we change the forgery check. That is,

instead of checking that Z+
1−k[0] ∈ Zk+1, the challenger checks that Z+

1−k[0] ∈ Zk, where Zk and Zk+1

are defined as

Zk+1 = {RFk+1(j|k+1) ·G+Mj}j∈JF

= {RFk(j|k) ·G+Mj | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
=Sk.both

∪{RF′k(j|k) ·G+Mj | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.15

,

Zk = {RFk(j|k) ·G+Mj}j∈JF

= {RFk(j|k) ·G+Mj | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.both

∪{RFk(j|k) ·G+Mj | j ∈ JF, j[k + 1] = β}︸ ︷︷ ︸
:=Sk.14

,

where the last equality follows by definition of RFk+1 (cf. Eq. (43)).
Recall that in Game 13.k.15, the challenger also accepts the values Z1−k[0] ∈ Sk.15, whereas not all
such values are accepted in Game 13.k.14. As before, this impacts the advantage of A by at most an
additive loss ℓ/p because the values that are not accepted in Sk.15 are statistically hidden, and thus
hard to predict. Analogously, in this game the challenger accepts forgeries Z1−k[0] ∈ Sk.15, but this at
most improves the advantage of A compared to Game R.3. Thus, we have

|ϵR.4 − ϵR.3| ≤
ℓ

p
.

63

Game R.5 (=̂13.k.12; Rewrite Z0,j and Z1,j in terms of RFk and RF′k): This is a purely con-
ceptual game. As the challenger sets Z0,j = Z1,j = RFk+1(j|k+1)G+Mj in Game R.4, where RFk+1

is defined as in Eq. (43), we can write Z0,j in terms of RF′k (resp. RFk) in the j-th signing session if
β ̸= j[k + 1] (resp. β = j[k + 1]). We have

ϵR.5 = ϵR.4 .

Game R.6 (=̂13.k.11; Use witness for Σ2 if β ̸= j[k + 1]): In this game, the challenger computes
the Σ2 transcript (A∗2,j , γ

∗
2,j , ζ

∗
2,j) with witness w∗2,j = ((x2, ŝ2), (Z2,j , ρ

∗
2,j)) if β ̸= j[k + 1]. By HVZK

of Σ1, we have
ϵR.6 = ϵR.5 .

Game R.7 (=̂13.k.10; Simulate for Σ1 if β ̸= j[k + 1]): In this game, the challenger simulates the
transcript (A∗1,j , γ

∗
1,j , ζ

∗
1,j) via the HVZK simulator Sim1 in the j-th session and computes γ∗2,j and γ∗1,j

accordingly, if β ̸= j[k + 1]. Under HVZK of Σ1, we have that

ϵR.7 = ϵR.6 .

Game R.8 (=̂13.k.9; Set zk[0],j = RFk[j|k] if β ̸= j[k + 1]): Let k[0] := k mod 2. In this game, if
β ̸= j[k + 1] in the j-th session, the challenger sets zk[0],j := RF′k[j|k]. Then, it sets CT∗k[0],j :=

RE.Enc(pkREk[0], Z
∗
k[0]; ρ

∗
k[0],j), where Z∗k[0] := zk[0]G+Mj as before.

As Σ0 and Σ1 are simulated, the values zk[0],j and ρk[0],j are only used to initialize CT∗k[0],j . Also, the
secret key skk[0] associated to pkREk[0] is not required for the simulation (as the forgery checks for M+ is
performed with sk1−k[0], and the abort condition is evaluated with sk2). This step is justified by the
IND-CPA security of RE such

|ϵR.8 − ϵR.7| ≤ AdvINDCPARE
R2

indcpa
(λ) .

Game R.9 (=̂13.k.8; Setup ppXi and ppT in binding mode): In this game, the challenger sets up
the public parameters of COMX and COMT in binding mode. This step is justified by the parameter
indistinguishability such that

|ϵR.9 − ϵR.8| ≤ AdvParamINDCOMT

R1
COMT

(λ) + 3 · AdvParamINDCOMX

R1
COMX

(λ) .

Game R.10 (=̂13.k.7; Abort if Z+
k[0] /∈ Zk): In this game, instead of checking that Z+

1−k[0] ∈ Zk,
the challenger aborts if the value Z+

k[0] encrypted in the ciphertext CT+
k[0] in A’s forgery associated to

M+ does not lie in Zk.
Because ppXi and ppT are setup in binding mode, this follows by soundness of π+

1 for relation R1 as in
Game R.9, and we obtain

|ϵR.10 − ϵR.9| ≤
QHCH

1

p
.

Game R.11 (=̂13.k.6; Setup ppXi and ppT in hiding mode): In this game, the challenger sets up
the public parameters of COMX and COMT in hiding mode. This step is justified by the parameter
indistinguishability such that

|ϵR.11 − ϵR.10| ≤ AdvParamINDCOMT

R2
COMT

(λ) + 3 · AdvParamINDCOMX

R2
COMT

(λ) .

Game R.12 (=̂13.k.5; Set z1−k[0],j := RFk[j|k] if β ̸= j[k + 1]): In this game, if β ̸= j[k+1] in the j-
th session, the challenger sets z1−k[0],j := RFk[j|k]. Then, it sets CT∗1−k[0],j := RE.Enc(pkRE1−k[0], Z1−k[0],j ; ρ

∗
1−k[0],j),

where Z1−k[0],j := z1−k[0],jG+Mj as before.
Observe that as Σ0 and Σ1 are simulated, the values z1−k[0],j and ρ∗1−k[0],j are only used to initialize
CT∗1−k[0],j . Also, the secret key sk1−k[0] associated to pkRE1−k[0] is not required for the simulation (as the
forgery checks for M+ is performed with skk[0] and the abort condition is evaluated with sk2). This
step is justified by the IND-CPA security of RE such

|ϵR.12 − ϵR.11| ≤ AdvINDCPARE
R3

indcpa
(λ) .

64

Game R.13 (=̂13.k.4; Use witness for Σ1 if β ̸= j[k + 1]): In this game, the challenger computes
the Σ1 transcript (A∗1,j , γ

∗
1,j , ζ

∗
1,j) via the witness w∗1,j = ((Z0,j , ρ

∗
0,j), (Z1,j , ρ

∗
1,j)) if β ̸= j[k + 1]. By

HVZK of Σ1, we have
ϵR.13 = ϵR.12 .

Game R.14 (=̂13.k.3; Simulate Σ2 if β ̸= j[k + 1]): In this game, the challenger simulates the tran-
script (A∗2,j , γ∗2,j , ζ∗2,j) via the Σ2’s HVZK simulator and computes γ∗2,j and γ∗1,j accordingly, if β ≠ j[k+1]
in the j-th signing session. By HVZK, we have under HVZK of Σ2 that

ϵR.14 = ϵR.13 .

Game R.15 (=̂13.k.2; Do not abort if Z+
2 ̸= βG): Recall that in Game R.14, after A outputs its

forgeries (M+
κ , σ

+
κ)κ∈[ℓ+1], the challenger samples a bit b← {0, 1} and aborts if (1) Z+

2 ∈ {1, G} and
Z+
2 = (1− β)G or if (2) Z+

2 /∈ {1, G} and b = 0.
As ppX2 is setup in hiding mode, the bits β and b are independent of A’s view due to the above
modifications. Importantly, the advantage of A is independent of the bits β and b. As in Game 13.k.3,
we can show that the abort probability in Game R.15is exactly 1/2. Thus, by removing the abort
condition, the advantage of A doubles. That is, we have

ϵR.15 = 2ϵR.14 .

Game R.16 (=̂13.k.1; Set z2,j := 0): In this game, the challenger sets z2,j = 0 in the j-th signing
session. As from Game 13.k.1 to Game 13.k.2, this step is justified by the IND-CPA security of RE
such that

|ϵR.16 − ϵR.15| ≤ AdvINDCPARE
R4

indcpa
(λ) .

Game R.17 (=̂13.k.0; Forget β and set x2 := 0): In this game, the challenger does not sample the
bit β anymore. Also, it sets x2 := 0. As ppX2 is setup in hiding mode and the values x2, β are not used
elsewhere, we have

ϵR.17 = ϵR.16 .

A simple inspection yields that Game R.17 is identical to Game R.0.
⊓⊔

65

	Tightly-Secure Blind Signaturesin Pairing-Free Groups
	Introduction
	Our Contribution
	Technical Overview
	Organization of this Paper

	Preliminaries
	Blind Signatures
	Preimage Relations and Blindable Σ-protocols
	Non-Interactive Proof Systems
	Public-Key Encryption
	Commitment Schemes

	Tight Signatures à la JC:AHNOP23
	Primitives and Notation
	Construction
	Security Analysis

	Assumptions
	Instantiations
	ElGamal Encryption: PKE, RE, LHE
	Dual-Mode Commitments
	Non-Interactive Proof Systems
	Communication, Signature and Proof Sizes

	Auxiliary Preliminaries
	Properties of Blind Signatures
	Properties of Σ-protocols
	Properties of Non-Interactive Proof Systems
	Properties of Public-Key Encryption
	Properties of Commitments

	Supplementary Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Blindness (Theorem 1)
	Proof of One-more Unforgeability (Theorem 2)

