
Blind Signatures from Proofs of Inequality

Michael Klooß and Michael Reichle

Department of Computer Science
ETH Zurich, Zurich, Switzerland

{michael.klooss, michael.reichle}@inf.ethz.ch

Abstract. Blind signatures are an important primitive for privacy-
preserving technologies. To date, highly efficient pairing-free constructions
rely on the random oracle model, and additionally, a strong assumption,
such as interactive assumptions or the algebraic group model. In con-
trast, for signatures we know many efficient constructions that rely on
the random oracle model and standard assumptions. In this work, we
develop techniques to close this gap. Compared to the most efficient
pairing-free AGM-based blind signature by Crites et. al. (Crypto 2023),
our construction has a relative overhead of only a factor 3× and 2× in
terms of communication and signature size, and it is provable in the
random oracle model under the DDH assumption. With one additional
move and Zp element, we also achieve one-more strong unforgeability.
Our construction is inspired by the recent works by Chairattana-Apirom,
Tessaro, and Zhu (Crypto 2024) and Klooß, Reichle, and Wagner (Asi-
acrypt 2024), and we develop a tailored technique to circumvent the
sources of inefficiency in their constructions. Concretely, we achieve sig-
nature and communication size of 192 B and 608 B, respectively.

1 Introduction

Since their introduction in [Cha82], blind signatures have found application in
many privacy-preserving applications such as anonymous credentials [Bra94;
CL01], e-voting [Cha88; FOO92], direct anonymous attestation [BCC04]. More
recently, new applications in blockchains [Bus+22; YL19] and privacy-preserving
authentication tokens [Hen+22] are emerging. A digital signature scheme allows
a signer to issue a publicly verifiable signature σ on a message M . We say a
signature is unforgeable if even after seeing Q-many valid signature-message pairs
(σj ,Mj), it remains hard to forge a signature σ for a fresh message M . We say
that the signature scheme is strongly unforgeable if the adversary only has to
come up with a fresh pair (σ,M). A blind signature [Cha82] allows a signer to
issue a signature σ on some (user-specified) message M in an interactive protocol
to a user. The term “blind” refers to the anonymity property we demand from
blind signatures: A malicious signer cannot link the pair (σ,M), where σ was
obtained from some protocol execution for M , to the specific execution. As for
digital signatures, we also demand that it is hard to forge a signature. As the
signer does not learn the signed message, this is often formalized as one-more
unforgeability (OMUF) [JLO97; PS00]: After engaging in at most Q (concurrent

and finalized) signing sessions, a malicious user cannot produce Q + 1 valid
signature-message pairs (σ,M) with pairwise distinct messages M j . As with
digital signatures, this notion can be strengthened by demanding that the pairs
are pairwise distinct, coined one-more strong unforgeability (OMSUF).

Blind signatures in pairing-free groups. In this work, we are interested
in blind signatures in pairing-free groups of prime order. Unlike pairing groups,
these have been standardized, the arithmetic is generally faster, and there are
several off-the-shelf libraries providing highly optimized implementations. The
first construction in such groups, coined Blind Schnorr [PS00], issues a signature
based on a Fiat-Shamir compiled Σ-protocol for a linear language [Sch90]. Then,
the linear structure of the Σ-protocol is leveraged to blind the signing session.
Other early constructions [AO00] and [Abe01] follow this template to construct
both elegant and efficient blind signatures. Yet, these constructions were only
proven secure in the random oracle model [BR93] under limited concurrency,
namely, assuming the adversary does not engage in more than polylog-many
signing sessions. In fact, this is not a limitation of the security proof, but
rather an inherent problem: Benhamouda et. al. [Ben+21; Ben+22] demonstrate
that the proof is tight by providing an efficient attack on [AO00; PS00]. Until
recently, it was unclear whether this template can even be instantiated without
restricting the adversary’s concurrency. Tessaro and Zhu [TZ22] and Kastner,
Loss and Xu [KLX22] answer this affirmatively: [KLX22] proves that the scheme
by Abe [Abe01] is secure and [TZ22] make an elegant modification to the Schnorr
blind signature and prove unforgeability. Later, the approach of [TZ22] is further
optimized in [Cri+23]. Unfortunately, both proofs rely on the algebraic group
model (AGM), that is, the proof assumes that the adversary behaves in an
“algebraic manner”.1 For (non-blind) signatures, the gap between provable security
with the AGM or without it is quite small: the most efficient construction, namely
Schnorr signatures, can be proven purely in the ROM (with rewinding-induced
loss) and very efficient tightly secure constructions from DDH are known.

Removing the AGM requirement. In their recent work, Chairattana-Apirom,
Tessaro and Zhu [CATZ24] manage to remove the reliance on the AGM in an
elegant manner. Their work can be seen as instantiating the pairing-based scheme
Blind BLS [BLS04] in pairing-free groups as follows. [CATZ24] observes that only
verification relies on the pairing in Blind BLS. To add verification in pairing-free
groups, [CATZ24] includes a proof π that ensures that σ is valid (i.e., fulfils the
equations previously verified by a pairing). The proof is instantiated via a simple
Fiat-Shamir compiled Σ-protocol. Then, to issue a signature blindly, [CATZ24]
proceeds in two steps:

1Another recent scheme by Fuchsbauer and Wolf [FW24] issues regular Schnorr
signatures blindly, but still under strong assumptions: Either one assumes the security
of Schnorr signatures [Sch91], which is an interactive but falsifiable assumption. Or one
relies on the hardness of DLog, but must generate SNARK proofs of random oracle
evaluations.

2

(1) Blindly issue σ (following the template in [Bol03]).
(2) Blindly and interactively issue a proof π that σ verifies (following Blind

Schnorr techniques [PS00; Sch90]).

The resulting protocol is simple and elegant, and from a practical viewpoint even
competitive with AGM-based constructions [Abe01; Cri+23; FPS20; KLX22;
TZ22] in terms of communication and signature size, cf. Table 1. Yet it is far from
trivial to prove security. For the proof to go through, some minor modifications
to π are made and the security model is weakened (i.e., the adversary is asked
to provide a valid signature for every opened sessions instead of only for every
finished session). Based on the above template, [CATZ24] provide a scheme BS1
that achieves OMUF in 4 moves and a scheme BS2 that achieves OMSUF in 5
moves, albeit in the weakened security model.

While BS1 and BS2 are proven secure under a one-more assumptions (CT-
OMCDH), [CATZ24] also provides a construction BS3 based on [HLW23]. The
scheme BS3 achieves the standard notion of OMUF under CDH, but also inherits
the efficiency limitations from [HLW23].

Subsequently, Klooß, Reichle and Wagner [KRW24] apply the above template
to the pairing-based construction in [KRS23] and prove security under the DDH
assumption. In the process, the authors also equip the scheme with partial
blindness (i.e., the parties can agree upon a common message I that is signed in
addition to message M). While the signature size is compact and competitive
with AGM-based constructions [Abe01; CATZ24; Cri+23], the communication
remains linear (compared to constant in the AGM). This gap in efficiency in
both [CATZ24] and [KRW24] comes from cut-and-choose techniques. In [KRW24],
this is due to a straightline extractable (SLE) proof system, but unfortunately,
this reliance seems inherent for their proof technique, since known techniques for
SLE of Zp witnesses are limited to bit (or digit) decomposition or cut-and-choose
techniques [Fis06; Ks22; Pas03] or not efficiently applicable [Kat21]. We therefore
ask the following question.

Is it possible to close the efficiency gap between AGM-based and AGM-free
constructions in pairing-free groups proven under non-interactive assumptions?

1.1 Our Contributions

In this paper, we present a novel technique to construct pairing-free blind signa-
tures. While it is inspired by the template in [CATZ24; KRW24], our construction
is not based on translating a pairing-based blind signature. Rather, we develop
techniques tailored to the pairing-free setting and obtain the following:

– BSufneq: We obtain a 4-move blind signature BSufneq with partial blindness and
one-more unforgeability under the DDH assumption in the ROM. Notably,
BSufneq has communication and signature size of 10G + 9Zp and 1G + 5Zp,
respectively.2

2This is an asymptotic improvement in communication over [CATZ24; KRW24].
This is also achieved by the concurrent work [Bra+24], see Table 1 and Section 1.3.

3

Assuming λ = 128 and that group and field elements are represented using
256 bit, we obtain 192 B signatures and 608 B communication. In com-
parison, [KRW24] achieves 224 B signatures and 2.5 KB communication.
Our construction is a factor 4× and 1.16× improvement over [KRW24] in
communication and signature size, respectively,

– Based on BSufneq, we obtain a 5-move blind signature BSsufneq with partial
blindness and one-more strong unforgeability under the DDH assumption in
the ROM. Communication is identical to BSufneq and the signature contains
only one additional Zp element.

The blindness of our schemes is computational, but with minor overhead in
signature size and communication, we can upgrade both BSufneq and BSsufneq to
statistical blindness. We believe that this is a significant step towards answering
our research question affirmatively. Indeed, as visible in Table 1, we improve both
communication, signature size, and security (to OMSUF) compared to [CATZ24;
KRW24]. For completeness, we provide a complementary overview over other
related works in Appendix A.

Scheme Assumption Unforgeability Moves Communication Signature

OMUF OMSUF

Cl-Schnorr [FPS20] OMDL, mROS ✓ ✓ 3 2G+ 3Zp 1G+ 1Zp

Abe [Abe01; KLX22] DLOG ✓ ✓ 3 λ+ 3G+ 6Zp 2G+ 6Zp

TZ [TZ22] DLOG ✓ ✓ 3 2G+ 4Zp 4Zp

Snowblind [Cri+23] DLOG ✓ ✓ 3 2G+ 4Zp 1G+ 2Zp

BS1 [CATZ24] CT-OMCDH (✓) ✗ 4 5G+ 5Zp 1G+ 4Zp

BS2 [CATZ24] CT-OMCDH (✓) (✓) 5 5G+ 5Zp 1G+ 4Zp

BS3 [CATZ24] CDH ✓ ✗ 4 Θ(λ)(λ+G+ Zp) Θ(λ)(λ+G+ Zp)
BS [KRW24] DDH ✓ ✗ 4 Ω(λ)(λ+G+ Zp) 2G+ 5Zp

BS [Bra+24] DDH ✓ ✗ 4 37G+ 40Zp 10G+ 29Zp

BSuf
neq (see Section 4) DDH ✓ ✗ 4 10G+ 9Zp 1G+ 5Zp

BSsuf
neq (see Section 5) DDH ✓ ✓ 5 10G+ 9Zp 1G+ 6Zp

Table 1: Comparison of blind signature schemes in pairing-free prime order groups
with concurrent security. All constructions rely on the random oracle model. The
schemes above the line (highlighted in red) additionally require the algebraic
group model. We compare the assumptions and security, and the communication
complexity and signature size in terms of number of group elements and number
of field elements. The schemes BS1 and BS2 [CATZ24] only satisfy a weaker
variant of one-more (strong) unforgeability, denoted by (✓).

1.2 Technical Overview

We follow the strategies and approach of prior Schnorr-based works, that is, inter-
actively issuing the Fiat–Shamir proof. In particular, we build on the techniques
in [CATZ24; KRW24]. In these previous approaches, a pairing-based verification

4

was made pairing-free by replacing the pairing check with a NIZK proof. The
underlying pairing-free schemes were

– BLS signatures [BLS04] in [CATZ24], which either required a type of “one-
more CDH” assumption (CT-CDH) or the cut-and-choose technique from
Rai-Choo [HLW23]; or

– signatures derived from the Boneh–Boyen IBE [BB04] in [KRW24], which
additionally required a straightline extractable (SLE) NIZK for a scalar, i.e.,
Zp elements.

While it is unclear how to remove the interactive assumptions or cut-and-choose
from [CATZ24], the approach of [KRW24] seems more promising towards achieving
better concrete efficiency. In particular, the signature size is already quite compact
and it only remains to improve communication size to obtain a competitive scheme.
However, we are faced with a crucial obstruction: as mentioned, [KRW24] relies
on an SLE NIZK for proving knowledge of scalars (i.e., DLogs) from prime-
order group-based assumptions, and this represents a major bottle neck in terms
of efficiency. Indeed, improving this component would require a major (and
unexpected) improvement in SLE techniques in itself. Our natural solution to this
problem is to switch from hashing the messages into Zp to hashing into the group
G. Straightline extraction of group elements is efficient through a well-known
folklore technique (sometimes dubbed encryption-to-the-sky), which is, e.g., used
in [KLN23; KRS23] to instantiate SLE NIZKs.

However, while we now have efficient choices for SLE NIZK, we are not
aware of suitable and concretely efficient pairing-based candidate schemes that
implement the translation used in [CATZ24; KRW24].3 Here we must deviate
from the prior blueprints. We realize that the approach of [KRW24] is based on
an all-but-one trapdoor (adapted from [PK22]). The all-but-one trapdoor allows
to generate signatures for all messages M except M∗ efficiently. A valid signature
for M∗ would solve a hard problem (in the case of [KRW24] it solves CDH
and relies on the all-but-one trapdoor for selective security of the Boneh–Boyen
IBE [BB04; BB08]). To prove security, it is additionally necessary to first extract
the to-be-signed hashed message M using the SLE NIZK, since knowledge of M
is required to use the all-but-one trapdoor.

A tailored singing trapdoor: Our approach is based on a surprisingly simple all-
but-one trapdoor construction which does not have an obvious pairing-based
equivalent. It is easiest to explain by sketching our basic signature scheme:

– The public parameters contain a public key pk and ciphertext C.
– The verification key vk is a DDH tuple and its witness is the secret key.
– A signature for (hashed) message M = HM (µ) is a Fiat–Shamir-compiled

OR-proof that:
Either: vk is a DDH tuple (and one knows the secret key).

3The concurrent work [Bra+24] observed that the tightly secure structure-preserving
pairing-based signature scheme [Abe+17; Abe+23] does, in fact, provide a candidate,
though lacking practical efficiency. See Section 1.3 for detailed discussions.

5

Or: The ciphertext C does not encrypt M .

The all-but-one structure of the OR-branch trapdoor is obvious: After encrypting
a challenge message M∗ in C, we can sign every message M ̸= M∗ by using
the OR-branch. Importantly, the OR-branch can be realized from ElGamal
encryption, and thus, we can hash into group elements. Now, we can rely on the
very efficient SLE NIZK in this case (and indeed, our NIZK just adds 3G+ 3Zp

in communication).

Blind signature: To make the above idea a blind signature, we can follow the
footsteps of prior works [CATZ24; KRW24]. We implement the signature as a Fiat–
Shamir transformation of Σ-protocols for the two OR-statements, and use the
OR-composition of Σ-protocols [CDS94]. Then we make issuance of the signature
interactive by letting the user send the challenge which the signer would derive
from the random oracle. Moreover, the user will blind the signing transcript by
rerandomization techniques. As in [KRW24], we manage to circumvent rewinding
in our security analysis which gives tighter bounds compared to [CATZ24].

Summary and Extensions: With the above techniques, we obtain a concretely
efficient blind signature scheme with small communication and signature size,
whose security can be based on DDH. In the main body, we generate the public
parameters (pk,C) from as a random oracle output (pkI ,CI) = Hpar(I) and thus
obtain a partially blind signature with common input I. Moreover, we use the
approach of [CATZ24] for achieving one-more strong unforgeability (OMSUF) to
construct our signature scheme BSsufneq (at the cost of increasing the number of
rounds to 5). Compared to [CATZ24], we manage to avoid rewinding, the weaker
OMSUF model, and the interactive assumption in our OMSUF proof. We refer
to Section 5 for details. Finally, we also show how to achieve statistical blindness
by replacing the public parameter pk with a lossy/dual-mode encryption scheme
which is in lossy/hiding mode for random keys.4

1.3 Concurrent work

The concurrent work [Bra+24] constructs a tightly secure signature scheme with
similar characteristics to ours: it is in the pairing-free setting and has constant
communication. Moreover, their blind signature supports efficient zero-knowledge
proofs over the to-be-signed message (and thus predicate blindness [FW24]), and it
can be shown secure in the non-programmable ROM, whereas our approach cannot
support these properties as it hashes the message through a programmable RO
(which we need for the all-but-one trapdoor). To achieve these features, Brandt
et al. [Bra+24] rely on fundamentally different techniques: while [Bra+24] builds
on [CATZ24; KRW24], as we do, they translate the tightly secure structure
preserving pairing-based signature scheme [Abe+23] to the pairing-free setting.5

4To achieve this, we use dual-mode commitments from [GS12], similar to the pairing-
based blind signature scheme [Bla+13].

5The scheme of [Abe+23] gives a semi-generic recipe from suitable proof systems and
instantiates it with Groth–Sahai proofs [GS12]. The recipe is amenable to Σ-protocols.

6

As a consequence, they can also use encryption-to-the-sky and get constant-
sized proofs. To be able to transfer the tight security proof from the underlying
signature to their scheme, their protocol is necessarily more complex, and, in
particular, must rely on different techniques to achieve blindness. While their
approach for blindness significantly increases communication (cf. Table 1) and is
not practically competitive, the overhead is a small constant over the non-blind
protocol. Thus, they also achieve constant communication (in G and Zp elements)
which is an asymptotic improvement over prior works (cf. Table 1). In terms
of concrete efficiency for 256-bit groups, the communication and signature size
of [Bra+24] are roughly 2.5 KB and 1.3 KB, respectively. This is roughly 1×
(resp. 6×) the size of [KRW24], and roughly 4× (resp. 6.5×) the size of our work.
Moreover, [Bra+24] does not consider OMSUF security nor statistical blindness.
Indeed, it is unclear how [Bra+24] could achieve these properties due to their
different techniques for blinding.

2 Preliminaries

General Conventions

Throughout, λ denotes the security parameter and G denotes a group of prime
order p with generator G (which is implicitly provided through public parameters
depending on λ). We use additive group notation and denote group elements
H ∈ G by capital letters and Zp elements by lowercase letters. We write Z×

p :=
Zp \ {0} and G× := G \ {0}. We write y ← A(x) to run (probabilistic) algorithm
A with fresh randomness on input x; we write A ⇄ B for interactive protocols;
and we write y ← S to sample y uniformly from a set S. Finally, write y := x for
algorithmic assignment and H(x) := y to program a random oracle at query x to
output y. Throughout the paper, we assume that algorithms check their inputs
are in the right space (e.g. encode a group element), and return ⊥ otherwise.

ElGamal Encryption The ElGamal encryption scheme [ElG85] with message
space G is defined as follows.

– KeyGen(1λ): Samples x ← Zp and outputs (pk, sk), where H := xG, pk :=
(G,H) and sk := x.

– Enc(pk,M): Samples t← Zp and outputs C := (0,M) + t · pk.
– Dec(sk,C): Parses sk = x and outputs M := C1 − xC0 = C · (−x, 1).

The IND-CPA security of ElGamal reduces tightly to the DDH assumption.

Definition 2.1 (QDDH Assumption). The Q-fold decisional Diffie–Hellman
assumption holds in group G with generator G if for any PPT adversary A, the
advantage

AdvQDDHG
A(λ,Q) :=

∣∣Pr[A(G, aG, (biG, (abi)G)i∈[Q]) = 1 | a← Zp, b← ZQ
p]

− Pr[A(G, aG, (biG, ciG)i∈[Q]) = 1 | a← Zp, b, c← ZQ
p]
∣∣

is negligible.

7

The DDH assumption (1-DDH) is tightly equivalent to QDDH. Concretely, for
anyA there is an B with roughly the same running time such that AdvQDDHG

A(λ,Q) ≤
AdvDDHG

B(λ) + 1/(p− 1) (see, e.g., [Esc+13]).

2.1 Relations and Σ-Protocols

Definitions of NP relations and Σ protocols for linear languages are standard. We
re-use the definition and notation from [KRW24] often verbatim, but introduce
the notion of randomizable transcripts (Definition 2.6) as a convenient abstraction
for the blindness proof.

Next, we define Σ-protocols for NP-relations. We start by defining NP-
relations.

Definition 2.2 (NP-Relation and Language). Let R ⊆ {0, 1}∗ × {0, 1}∗ be
a binary relation. We say that R is an NP-relation, if R is efficiently decidable
and there is a polynomial p such that for every (x,w) ∈ R, we have |w| ≤ |x|.
We denote by LR = {x ∈ {0, 1}∗ | ∃w s.t. (x,w) ∈ R} the language induced by
R.

Let R be an NP-relation with statements x and witnesses w. A Σ-protocol
for an NP-relation R with efficiently sampleable challenge space C is a tuple of
PPT algorithms Σ = (Init,Resp,Verify) such that

– Init(x,w): given a statement-witness pair (x,w) ∈ R, outputs a first flow
message A (a.k.a. commitment) and a state st, where we assume st includes
(x,w);

– Resp(st, γ): given a state st and a challenge γ ∈ C, outputs a third flow
message (i.e., response) z,

– Verify(x, A, γ, z): given a (purported) statement x, a first flow message A,
challenge γ ∈ C, and a response z, outputs a bit b ∈ {0, 1}.

We call the tuple (A, γ, z) the transcript. It is valid for x if Verify(x, A, γ, z)
outputs 1 . When the context is clear, we simply say it is valid and omit x.
Next, we define the standard notions of correctness, special honest-verifier zero-
knowledge, and (2-)special soundness.

Definition 2.3 (Correctness). Let R be an NP-relation and Σ = (Init,Resp,
Verify) be a Σ-protocol for R with challenge space C. We say Σ is correct, if for
all (x,w) ∈ R,

Pr[Verify(x, A, γ, z) = 1 | (A, st)← Init(x,w); γ ← C; z ← Resp(st, γ)] = 1

Definition 2.4 (Special Soundness). Let R be an NP-relation and Σ = (Init,
Resp,Verify) be an Σ-protocol for R. We call Σ (2-)special sound, if there exists
a deterministic polynomial-time extractor Ext such that given statement x and
two valid transcripts {(A, γb, zb)}b∈{0,1} with γ0 ̸= γ1, outputs a witness w such
that (x,w) ∈ R.

8

Definition 2.5 ((Perfect) Special HVZK). Let R be an NP-relation and Σ =
(Init,Resp,Verify) be an Σ-protocol for R We say that Σ is (perfect) special
honest-verifier zero-knowledge (SHVZK), if there exists a PPT zero-knowledge
simulator Sim such that for any (potentially unbounded) adversary A, it holds
that for any (x,w) ∈ R and γ ∈ C that DReal = DSVHZK for

DReal := {(x,w, (A, γ, z)) | A← Init(x,w); z ← Resp(st, γ)},
DSHVZK := {(x,w, (A, γ, z)) | (A, z)← Sim(x, γ)}.

In this work, we write HVZK for short.

We define a notion of randomizable transcripts w.r.t. SHVZK Σ-protocols.
This modularizes common steps in blindness proofs. For simplicity, we only define
a perfect version of randomizability.

Definition 2.6 ((Perfect) Randomizable Transcripts). Let Σ be a Σ-protocol
for relation R with challenge space C, and suppose Σ is SHVZK. Let Rand be
an efficient randomization algorithm, such that Rand(x, (A, γ, z)), given a valid
transcript (A, γ, z) for x outputs a new valid transcript for x. We say Σ has
randomizable transcripts (resp. strongly randomizable transcripts) if a Rand
exists such that for all x ∈ LR (resp. all x) and all accepting π∗ = (A∗, γ∗, z∗),
the distributions

DSHVZK := {(x, (A, γ, z)) | γ ← C; (A, z)← Sim(x, γ)}
DRand := {(x, (A, γ, z)) | (A, γ, z)← Rand(x, π∗)}

are identical.

From the perfect identity of distributions in SVHZK and randomizable tran-
scripts, we immediately obtain the following corollary.

Corollary 2.7. Suppose Σ is a Σ-protocol for relation R which is SVHZK
and has randomizable transcripts. Then for all (x,w) ∈ R and all accepting
π∗ = (A∗, γ∗, z∗), the following distributions are identical:

DReal := {(x, (A, γ, z)) | A← Init(x,w); γ ← C; z ← Resp(st, γ)}
DSHVZK := {(x, (A, γ, z)) | γ ← C; (A, z)← Sim(x, γ)}
DRand := {(x, (A, γ, z)) | (A, γ, z)← Rand(x, π∗)}

Definition 2.8 (Unique response). A Σ-protocol Σ has unique response if
for any tuple (x, A, γ) the exists at most one z such that Σ.Verify(x, (A, γ, z)) = 1.

Σ-Protocols for Preimages of Linear Maps The generalization of Schnorr’s
protocol to proving knowledge of a preimage w for a Zp-linear map ϕ(w) = x
is well-known [Mau15]. Namely, let ϕ : W → X be a Zp-linear map. Define the
canonical Σ-protocol Σϕ for the preimage relation Rϕ := {(x,w) | ϕ(w) = x}
with challenge space C = Zp as follows:

9

– Init(x,w): Sample r ←W. Output (st,A) where st = (w, r) and A = ϕ(r).
– Resp(st, γ): Output z = r + γw
– Verify(x,A, γ, z): Return 1 if ϕ(z) = A + γx. (It implicitly checks that

all elements are in their respective spaces of definition, i.e., in X , C,W
respectively).

We summarize following well-known facts about Σϕ.

Lemma 2.9. Let Σϕ the above canonical Σ-protocol for Rϕ. Then Σϕ is 2-
special sound, SHVZK, and has strongly randomizable transcripts. More concretely:

– Sim(x, γ) samples z ←W, sets A = γ · x− ϕ(z) and outputs (A, z).
– Rand(x, (A∗, γ∗, z∗)) samples γ′ ← C and z′ ←W and outputs

(A, γ, z) = (A∗ − γ′x+ ϕ(A′), γ∗ + γ′, z∗ + z′). (2.1)

Moreover, if ϕ is injective, then Σϕ has unique responses.

For completeness, we provide a proof in Appendix E.1

2.2 Non-Interactive Proof Systems

In this section we recall straightline-extractable non-interactive zero-knowledge
proofs as defined in [KRW24]. As [KRW24], we consider NIZKs in the random
oracle model and reuse some definitions almost verbatim. As in [KRS23], we
additionally consider a common random string crs as input in our definitions.
The crs can be derived in the random oracle by domain separation.

Definition 2.10 (Non-Interactive Proof System). A non-interactive proof
system Π for NP-relation R using a random oracle H is a pair Π = (Prove,Verify)
of PPT algorithms with access to a random oracle and a CRS crs ∈ {0, 1}ℓ(λ),
where

– ProveH(crs,x,w): generates a proof π given (x,w) ∈ R.
– VerifyH(crs,x, π): verifies a proof π for statement x and outputs 0 or 1.

We briefly define standard properties of non-interactive proof systems. A
NIPS Π for R is perfectly correct if for any crs ∈ {0, 1}ℓ and (x,w) ∈ R every
generated proof is valid, i.e., Verify outputs 1.

We say Π is zero-knowledge, if there exists a simulator (which is allowed
to choose crs and program the random oracle), such that no distinguisher can
distinguish between an honest setup and a Prove oracle, and a simulated setup
and a Sim oracle (which does not learn the witness, but still simulates convincing
proofs).

Finally, we say Π is straightline R̃-extractable for a knowledge relation R̃
(which may differ from the correctness relation R, but has LR = LR̃), if there
exists an extractor (ExtSetup,Ext) which is allowed to choose crs via (crs, td)←
ExtSetup(1λ), such that: (1) ExtSetup is indistinguishable from uniform; (2) Given
(crs, td)← ExtSetup(1λ) as the crs, for any accepting proof (x, π) an adversary

10

submits to a verification oracle, the extractor can provide a witness w̃ such that
(x, w̃) ∈ R̃, given only the trapdoor td and all list of all random oracle queries.

Looking ahead, we will need to straightline extract the to-be-signed message
M , similar to [KRS23; KRW24]. As M will be additionally be ElGamal encrypted,
we can efficiently realize this by using double encryption. That is, we choose
crs ∈ G, and interpret pk = (G, crs) ∈ G2 as an ElGamal public key. (The
extractor will remember the secret key sk.) We elaborate on this below.

Remark 2.11 (Efficient straightline extractability). In [KRW24], the Fischlin
transformation is used to obtain straightline extractability for committed scalar
message m ∈ Zp, at the cost of superconstant sized proofs. In our setting, the
message M ∈ G is a group element. Straightline extraction of group elements is
simple, using the “encryption to the sky” approach (see, e.g., [KLN23; KRS23]):
To prove R, one proves encrypts M and includes ct′M in the statement x′. Now
one proves the augmented relation R′ which states that R holds and ct′M contains
the same M as in the witness w. By putting a (dual-mode) ElGamal public
key into crs, and keeping the secret key for extraction, this reduces straightline
extractability of M to (non-straightline) soundness of Π. For Π derived by Fiat–
Shamir for a linear map ϕ, this modification is very efficient as it just “combines”
the original ϕ with a ϕelg for ElGamal encryption.

2.3 (Partially) Blind Signatures

Now, we define blind signatures [Cha82]. For brevity, we directly define their exten-
sion to partial blindness [AF96]. We follow closely the definitions from [KRW24].

Definition 2.12 (Partially Blind Signature Scheme). A partially blind
signature scheme with message space M and common message space I is a tuple
of PPT algorithms BS = (KeyGen,BSign,BUser,Verify) with the following syntax:

– KeyGen(1λ) outputs a pair of keys (vk, sk). We assume vk can be efficiently
computed from sk.

– BSign(sk, I) ⇄ BUser(vk,m, I): BSign takes as input a secret key sk and
common message I ∈ I. BUser takes as input a key vk, a message m ∈ M
and common message I ∈ I. After the execution, BUser returns a signature
σ and we write σ ← ⟨BSign(sk, I),BUser(vk,m, I)⟩.

– Verify(vk,m, I, σ) is deterministic and takes as input public key vk, message
m ∈M, a common message I, and a signature σ, and outputs b ∈ {0, 1}.

The security properties we demand from partially blind signatures are cor-
rectness, partial blindness and one-more (strong) unforgeability. As these notions
are fairly standard, we only provide a brief overview and refer to Appendix B.2
for more details.

Correctness. An honest signing protocol execution yields a valid signature.

11

One-more (strong) unforgeability. The unforgeability guarantee of a (partially)
blind signature scheme is that a valid signature can only be obtained via inter-
action with the signer. That is, one cannot output more valid signatures σi for
distinct messages µi than the number of successfully completed signing sessions
(one-more unforgeability, OMUF). We can strengthen the notion by demanding
that the pairs (σi, µi) are distinct (one-more strong unforgeability, OMSUF)

Partial blindness. Partial blindness asserts that a (malicious) signer cannot link
a concrete signing session with the obtained signature-message pair (σi, µi).

3 Baseline Signature Scheme

In this section, we introduce a signature on which we base our blind signature
constructions in Sections 4 and 5. For this, we first introduce the functions Φelg

and Φdh on which our signature is based, the derived Σ-protocols Σelg,Σdh. Then,
we define the baseline signature scheme, and give some high-level intuition.

3.1 Preparations

Let us define two linear functions Φelg and Φdh to improve readability.

ElGamal Decryption. First, let Φelg, parameterized by pk = (G,H) ∈ G2, be
defined as follows.

Φpk
elg(C, (x, y)) =

(
yH − xG
yC1 − xC0

)T

= (x, y) ·
(
−G −C0

H C1

)
. (3.1)

If clear by context, we omit parameter pk. Observe that for fixed C, the function
Φelg is linear. We define the relation Relg with induced language Lelg as

Relg :=
{
(x,w) | (0,M) = Φpk

elg(C, (x, y))
}
, (3.2)

where x = (pk,C,M) ∈ G5,w = (x, y) ∈ Z2
p. Note that Lelg contains ElGamal

ciphertexts C that encrypt to M with respect to scaled pky = (yG, yH) and
the witness (x, y) is a scaled secret key (s, 1). In particular, if y ̸= 0, then C
encrypts 1/y ·M with respect to pk. Finally, observe that M ̸= 0, then C is not
an encryption of 0 with respect to pk.

DDH. Second, we define the linear function Φdh parameterized by (G,D1) such
that

ΦG,D1

dh (d2) =

(
d2G
d2D1

)T

. (3.3)

If clear by context, we omit parameter (G,D1). We define the relation Rdh with
induced language Ldh as

Rdh :=
{
(x,w) | (D2, D3) = ΦG,D1

dh (d2)
}
, (3.4)

where x = (G,D1, D2, D3) ∈ G4,w = d2 ∈ Zp. Note that Ldh contains valid
DDH tuples.

12

Interpretation: Σ-protocol for non-zero encryption. We will use the canonical
Σ-protocols (Section 2.1) Σelg and Σdh derived from ϕelg and ϕdh. However, it
can be helpful to interpret a part of our protocol as a non-canonical Σ-protocol
Σnez for non-zero message encryption, which we explain below. As Σnez is not
canonical, we do not use in our construction, but introduce it only for intuition
and explanations.

Remark 3.1. Let Σelg = ΣΦelg
be the canonical Σ-protocol for Φelg as in Eq. (3.1)

and Relg with x = (pk,C). Consider the relation

Rnez :=
{
((pk,C), (−s, 1)) | (0,M) = Φpk

elg(C, (x, y)) ∧M ̸= 0
}
, (3.5)

that is, statements consist of public key and ciphertexts which encrypt a non-
zero message, and the witness is the respective (ElGamal) secret key. We now
introduce Σnez, which is (implicitly) given in Section 3.1. Essentially, to prove
Rnez, what we do is to scale the ElGamal secret key by y ← Z×

p , which gives
us an instance of Relg with witness (sy, y) and randomized message M$ = yM .
Formally, we define Σnez with challenge space Zp as follows:

– Init((pk,C), (s, 1)): Let (0,M) = Φpk
elg(C, (s, 1)). Sample y ← Z×

p and let
M$ = y ·M . Let xelg = (pk,C,M$) and welg = (sy, y). Let (stelg,Aelg) =
Init((xelg,welg)). Output (st, A) where st = stnez and A = (M$, Aelg).

– Resp(st, γ): Output z = zelg = Respelg(stelg, γ)
– Verify(x, A, γ, z): Parse A = (M$, Aelg). Return 1 if Verify(xelg, Aelg, γ, z) = 1.

and M$ ̸= 0.

Properties of Σ-protocols Σelg,Σdh,Σnez. The following lemma summarizes the
core properties of our Σ-protocols.

Lemma 3.2. Σdh,Σelg,Σnez are Σ-protocols for relations Rdh,Relg,Rnez, re-
spectively, and each is 2-special sound, SVHZK and have strongly randomizable
transcripts.

3.2 Construction

Let Σelg = (Initelg,Respelg,Verifyelg) and Σdh = (Initdh,Respdh,Verifydh) be Σ-protocols
with challenge space Zp for the relations Relg and Rdh defined above, respec-
tively. Denote by Simelg the HVZK simulator of Σelg. We rely on some hash
functions for our construction, later modeled as random oracles in the security
proof. Let Hch : {0, 1}∗ → Zp be a hash function to generate the challenge for
the Fiat-Shamir transformation of OR-compiled Σ-protocols Σelg and Σdh. Let
Hpar : {0, 1}∗ → ({G} × G×) × (G2) be a random oracle whose outputs we
view as Hpar(I) = (pkI ,CI), an ElGamal public key pkI = (G, pkI,1) ∈ (G×)2,
together with an ElGamal ciphertext CI ∈ G2 under this public key. We define
the signature Sneq in the following.

13

Sneq: Pairing-free signature

– KeyGen(1λ):
(1) Sample D1 ← G and d2 ← Zp.
(2) Set D2 := d2G, D3 := d2D1, and D := (D1, D2, D3).
(3) Output vk := D and sk := d2.

– Sign(sk, I,M):
(1) Set (pkI ,CI) := Hpar(I).
(2) Set CM := (0,M) and C := CI −CM .
(3) Sample M$ ← G×.
(4) Compute a proof π as follows:

(a) Let xdh := (G,D) with wdh := sk, and xelg := (pkI ,C,M$).
(b) Sample γelg ← Zp and set (Aelg, zelg)← Simelg(xelg, γelg).
(c) Run (Adh, stdh)← Initdh(xdh,wdh).
(d) Set γ := Hch(xdh,xelg,Aelg,Adh) and γdh := γ − γelg.
(e) Run zdh ← Respdh(stdh, γdh).
(f) Set π := (Aelg,Adh, γelg, γdh, zelg, zdh).

(5) Output σ := (M$, π).
– Verify(vk,M, I, σ):

(1) Parse σ as σ = (M$,Aelg,Adh, γelg, γdh, zelg, zdh).
(2) Set (pkI ,CI) := Hpar(I).
(3) Set CM := (0,M) and C := CI −CM .
(4) Let xdh := (G,D) and xelg := (pk,C,M$).
(5) Set γ := Hch(xdh,xelg,Aelg,Adh).
(6) Output 0 if M$ = 0.
(7) Output 0 if Verifydh(xdh,Adh, γdh, zdh) = 0.
(8) Output 0 if Verifyelg(xelg,Aelg, γelg, zelg) = 0.
(9) Output 0 if γ ̸= γelg + γdh.

(10) Otherwise, output 1.

Let us discuss the intuition behind the construction. The verification key vk
is a DDH tuple and sk is the witness (w.r.t. the map ϕdh). The signature itself is
an OR-proof for Rdh ∪Rnez, built from Σ-protocols Σdh and Σnez, i.e., it asserts
that either:

– vk is a DDH tuple, or
– CI − (0,M) is not an encryption of 0 (under pkI).

Evidently, the honest signer computes the Fiat–Shamir transformed OR-proof,
using the SHVZK simulator Simelg (implicitly, running SHVZK simulation Simnez).
The resulting proof π, together with M$ is the signature σ. The verification
procedure simply recomputes the statement for M in checks the validity the
OR-proof.

For security, observe that we do not require M as input to Hch (as xelg implicitly
fixes M). Also, since (pkI ,CI) are generated by Hpar, it is not (efficiently) possible
to use this non-zero encryption branch. However, by letting the reduction program
Hpar, we have access to an all-but-one trapdoor, similar to [KRS23; KRW24].

14

We stress that the scheme Sneq only serves as a baseline for our blind signature
constructions BSufneq and BSsufneq (cf. Figs. 1 and 2). As such, we will not analyze
the scheme further but refer to the analysis of BSufneq and BSsufneq instead.

4 Blind Signature in 4 Moves

In this section, we present our 4-move blind signature BSufneq which achieves
one-more unforgeability and partial blindness.

4.1 Additional Preparations

Non-Interactive Proof System Let ΠM be a NIZK for the following relation

RM := {(x,w) | C = (0,M) + t · pk} (4.1)

using the common reference string crsM and random oracle HΠ, where x =
(pk,C) ∈ G4 and w = (M, t) ∈ G× Zp. For our security analysis, it is sufficient
if ΠM is straightline R̃M-extractable for the knowledge relation

R̃M := {(x = (pkI ,C), w = M) | ∃t ∈ Zp : w = (M, t), (x,w) ∈ RM}. (4.2)

A concrete instantiation (following Remark 2.11) uses crsM ∈ G, and defines
pkext = (G, crsM). During Prove, one encrypts M under pkext as Cext = (0,M) +
text · pkext and includes Cext in the proof. Then one proves the following relation
with a canonical Σ-protocol

Rext :=

{
(x = (crs, pkI ,C, Cext), w = (M, t, text)) :

C = (0,M) + t · pkI ∧ Cext = (0,M) + text · pkext

}
. (4.3)

With standard optimizations, the proof size is 3Zp + 3G.

4.2 Construction

We assume several random oracles (which can be obtained from a single random
oracle by standard techniques). In our construction we use Hcrs,Hpar,HM ,Hch:

– We always set crsM = Hcrs(0) for random oracle Hcrs : {0} → G.
– We always set (pkI ,CI) = Hpar(I) for random oracle Hpar : ({G} ×G)×G2.
– We hash-then-sign via M = HM (µ), where HM : {0, 1}∗ → G is a random

oracle. We will often call M the (to-be-signed) “message” (although formally,
M is the image of the actual message µ).

– We let Hch : {0, 1}∗ → Zp be the random oracle used for the Fiat–Shamir
transformation.

Additionally, we use the NIZK ΠM introduced above. With this, we can state
BSufneq below.

15

BSuf
neq.BSign(sk, I) BSuf

neq.BUser(vk, µ, I)

1 : M := HM (µ)

2 : (pkI ,CI) := Hpar(I)

3 : t← Zp ,C∗
M := (0,M) + t · pkI

4 : xM := (pkI ,C
∗
M),wM := (M, t), crsM := Hcrs(0)

5 : πM ← ΠM.Prove
HΠ(crsM,xM,wM)

C∗
M , πM

6 : (pkI ,CI) := Hpar(I)

7 : xM := (pkI ,C
∗
M), crsM := Hcrs(0)

8 : req ΠM.Verify
HΠ(crsM,xM, πM) = 1

9 : C∗ := CI −C∗
M ,M∗

$ ← G×

10 : x
∗
elg := (pkI ,C

∗,M∗
$),xdh := (G,D)

11 : γ∗
elg ← Zp, (A

∗
elg,z

∗
elg)← Simelg(x

∗
elg, γ

∗
elg)

12 : (A∗
dh, stdh)← Initdh(xdh, sk)

M∗
$,A

∗
elg,A

∗
dh

13 : req M∗
$ ̸= 0

14 : z′dh ← Zp , z′
elg ← Z2

p

15 : γ′
dh, γ

′
elg ← Zp

16 : α′ ← Z×
p ,M$:= α′M∗

$

17 : CM := (0,M) = C∗
M − t · pkI

18 : C := CI −CM = C∗ + t · pkI

19 : A′
elg := Aelg + (0, t ·A∗

elg,0)

20 : Aelg := α′·
(
A′

elg + Φelg(C,z′
elg) − γ′

elg(0,M
∗
$)

)
21 : Adh := A∗

dh + Φdh(z
′
dh) − γ′

dhD

22 : xelg := (pkI ,C,M$),xdh := (G,D)

23 : γ := Hch(xdh,xelg,Aelg,Adh)

24 : γ∗ := γ − γ′
dh − γ′

elg

γ∗

25 : γ∗
dh := γ∗ − γ∗

elg

26 : z∗
dh ← Respdh(stdh, γ

∗
dh)

z∗
elg, z

∗
dh, γ

∗
elg

27 : x
∗
elg := (pkI ,C

∗,M∗
$)

28 : req Verifyelg(x
∗
elg,A

∗
elg, γ

∗
elg,z

∗
elg)

29 : req Verifydh(xdh,A
∗
dh, γ

∗
dh,z

∗
dh)

30 : γelg := γ∗
elg + γ′

elg

31 : γdh := γ∗
dh + γ′

dh

32 : zelg := α′· (z∗
elg + z′

elg)

33 : zdh := z∗dh + z′dh

34 : π := (Aelg,Adh, γelg, γdh,zelg, zdh)

35 : σ := (M$, π)

Fig. 1: The signing session for BSuf
neq for message µ ∈ {0, 1}∗ and common message

I ∈ {0, 1}∗. The signer and user abort (i.e., output ⊥) if req C is evaluated for a false
condition C. Recall that sk = d2 is a witness for Ldh membership of vk = D. The colors
highlight terms for masking challenges γ , responses z , and statements M$ and C∗

M .

16

BSufneq: Our 4-move pairing-free blind signature

– BSufneq.KeyGen(1
λ): Output (vk, sk)← Sneq.KeyGen(1

λ).
– BSufneq.BSign(sk, I) ⇄ BSufneq.BUser(vk,m, I): Proceeds in 4 moves and is

given in Fig. 1.
– BSufneq.Verify(vk, µ, I, σ): Output b ← Sneq.Verify(vk,M, I, σ) for M :=

HM (µ).

Remark 4.1 (Optimizations). There are a few possible optimization which we
omitted for readability:

– A standard optimization is to not include (Adh,Aelg), as these can be recom-
puted from the statements and (γdh, γ̸=, zdh, zelg).

– The element D1 ← G can be shared among all signers as part of a CRS,
which reduces public key size to 2G.

– By switching to a proof for DLog instead of DDH, the public key can be
reduced to one group element. The OMUF proof applies verbatim, except
that the final step requires rewinding which increases the security loss

4.3 Security Analysis

We prove correctness, one-more unforgeability and partial blindness for BSufneq.
Before we move towards the analysis, let us provide some useful lemmata.

Preparations The following two lemmata are repeatedly used in our proofs. In
the first lemma, we recall soundness of OR-compiled Fiat-Shamir Σ-protocols.
The proof is standard. For completeness, we include it in Appendix E.2.

Lemma 4.2 (Soundness of OR-proof). For every Hch query X := (xdh,xelg,
Aelg,Adh) with xdh /∈ Ldh and xelg /∈ Lelg, there exists (γdh, γelg, zelg, zdh) such
that

τdh := (Adh, γdh, zdh) is valid for xdh

τelg := (Aelg, γelg, zelg) is valid for xelg

γ := Hch(X) = γdh + γelg

with probability at most 1/p. If Qch queries to Hch were made, the probability that
such a query X exists is at most Qch/p.

The next lemma captures a recurring random oracle reprogramming step.

Lemma 4.3 (Chosen plaintext setup). Consider the following pair of experi-
ments (Exp0,Exp1) w.r.t. random oracle Hpar and an adversary A which makes
at most Qpar queries. On a Hpar query, the experiment Expb operates as follows:

– Invoke AHpar(1λ)
– Upon a fresh query Hpar(I):

17

• Sample pkI,1 ← G, set pkI ← (G, pkI,1), and send it to A.
• Receive MI from the challenger as a response.
• If b = 0, sample CI ← G2, program Hpar(I) := (pkI ,CI), and output CI

to A.
• If b = 1, CI ← (0,MI) + tI · pkI where tI ← Zp, program Hpar(I) :=
(pkI ,CI), and output CI to A.

– A eventually outputs a bit b′, which the experiment outputs.

Then
|Pr[Exp0(A) = 1]− Pr[Exp1(A) = 1]| ≤ AdvQDDHG

A(λ,Qpar).

The proof is simple and relegated to Appendix E.3.

Correctness First, we show correctness. This follows by inspection and we omit
details. A formal proof is given in Appendix E.4.

Theorem 4.4 (Correctness). BSufneq is perfectly correct.

One-more Unforgeability Let us turn towards one-more unforgeability. The
proof structure is quite similar to [KRW24], as we also simulate signing by using
an all-but-one trapdoor. Technically, [KRW24] punctured the verification key,
while we we puncture public parameters, namely public key and ciphertext output
by Hpar. In the proof, we guess the forgery common message I and guess (and
program) the forgery (hashed) message M := HM (I, µ). The we can puncture
the Σelg branch for I by setting (pk∗I ,C

∗
I) = Hpar(I) to an encryption of M .

This allows the reduction to change the signing to use the Σelg-OR-branch
with witness (skI ,M) for all queries, except for (I,M), for which no witness
exists for the Σelg branch. In the final step, we switch vk to a non-DDH tuple,
which makes the Σdh-OR-branch false. Since we forced A to forge for (I,M) (by
guessing), a valid forgery would constitute a break of the soundness property of
the Fiat–Shamir-compiled OR-proof.

We comment on an interesting subtlety here: We require the user to prove
knowledge of M within CM , although the reduction will be in possession of
skI , and could thus decrypt. However, in the step where we change set MI from
random to M , we need to rely on IND-CPA security of CI , and thus must forget
the secret key. But to perfectly emulate the hybrid game, we need still need to
“decrypt” CM . Fortunately, the NIZK ΠM for this is very efficient (in the random
oracle model): It is simply a proof of valid double encryption, for which it suffices
to send 3Zp + 3G elements additionally.

Theorem 4.5. Denote by p the order of group G. For any PPT adversary A
that causes at most Qch, QM , Qpar, QΠ random oracle queries to Hch,HM ,Hpar,HΠ,
respectively, to occur in the game, and that starts at most QS signing sessions,
there are reductions Bcrs, BQDDH whose running time is roughly that of the OMUF

18

game, such that

AdvOMUF
BSuf

neq

A (λ) ≤ AdvCRSΠm,ExtSetup
Bcrs

(λ,QΠ) +
QS

p
+

Q2
M

p
+

1 +Qch

p

+QM ·Qpar ·
(
AdvQDDHG

Bdh
(λ,Qpar) + AdvExtΠm,Ext

Bext
(λ,QΠ)

)
.

Proof. Let A be a PPT adversary against one-more unforgeability of BSufneq. Let
G be a group of prime order p with generator G. For random oracle Hxyz ∈
{HM ,Hch,Hpar,HΠ,Hcrs}, denote by Qxyz the number of oracle queries to Hxyz.
We use the convention that Hxyz queries made by the game (e.g., during signing
queries or verification) count towards Qxyz. Denote by QS the number of A’s
signing queries.

We proceed with a sequence of games Game i and denote by εi the advantage
of A in Game i (i.e., the probability that Game i outputs 1).
Game 0 (Honest). This game is the real one-more unforgeability game for
scheme BSufneq. Recall that oracles HM ,Hch,Hpar,HΠ,Hcrs are modeled as random
oracles. For convenience, let us recap the game below.

The game first samples vk = D and sk = d2 via BSufneq.KeyGen. That is, it
samples d2 ← Zp and D1 ← G, then sets D3 := d2D1 and D = (D1, D2, D3).
Next, the game sends vk to A and provides access to the random oracles and
signing oracles OBSign1 ,OBSign2 . In the end, A outputs a common message I and
forgeries (µj , σj)j∈[Qfrg]. The game outputs 1 iffOBSign2 was queried at most Qfrg−1
times with common message I, all messages {µj}j∈[Qfrg] are pairwise-distinct,
and all signatures verify (i.e., Sneq.Verify(vk,M j , I, σj) = 1 with M j := HM (µj)).
We consistently mark values x associated to the forgeries with x. We identify
each signing session with a session identifier sid provided as input in OBSign1 and
OBSign2 . The signing oracles behave as follows:

– OBSign1(sid, I,C
∗
M , πM): The game sets (pkI ,CI) := Hpar(I). Then, it ver-

ifies πM, i.e., it sets xM := (pkI ,C
∗
M) and crsM := Hcrs(0), and aborts if

ΠM.Verify
HΠ(crsM,xM, πM) ̸= 1. Then, it sets up ciphertext C∗ := CI −C∗

M

and target M∗
$ ← G×, and computes Σ-protocol messages for x∗

elg :=
(pkI ,C

∗,M∗
$) and xdh := (G,D). That is, it samples γ∗

elg ← Zp and sets
(A∗

elg, z
∗
elg) ← Simelg(x

∗
elg, γ

∗
elg), as well as (A∗

dh, stdh) ← Initdh(xdh, sk). The
game stores γ∗

elg, z
∗
elg and stdh in its state for sid, and outputs

(M∗
$,A

∗
elg,A

∗
dh).

– OBSign2(sid, γ
∗): The game retrieves γ∗

elg, z
∗
elg and stdh from the state for

sid (and aborts if this is not possible). Then, it sets γ∗
dh := γ∗ − γ∗

elg and
z∗
dh ← Respdh(stdh, γ

∗
dh). The game empties its state for sid and outputs

(z∗
elg, z

∗
dh, γ

∗
elg).

By definition, we have

AdvOMUF
BSuf

neq

A (λ) = ε0.

19

Game 1 (Abort if HM collision). The game aborts its entire execution if there
is a collision in HM . By a standard birthday-bound argument, we have

|ε0 − ε1| ≤
Q2

M

p
.

Game 2 (Extract M from πM). Before sending vk to A, the game sets crsM ←
ExtSetup(1λ) and programs Hcrs(0) := crsM. Later, on every OBSign1 query of
the form (sid, I,C∗

M , πM), after verifying πM, the adversary extracts the message
M ← Ext((td,Q), (xM, πM)) via πM. Here, Q is a list containing all HΠ queries so
far.

Note that while we already extract the message, we do not use the extracted
value within the simulation yet. It is straightforward to construct a reduction B2
with running time similar to A such that

|ε2 − ε3| ≤ AdvCRSΠm,ExtSetup
B2

(λ,QΠ).

At this point, the game does not know whether M is actually a witness for
relation R̃M. This can readily be verified via the secret key skI associated to pkI .
Yet, because the simulation cannot depend on skI for subsequent proof steps, we
cannot yet add an explicit abort condition that that relies on skI . Nevertheless,
it is useful to know the extracted message M for the next proof steps.
Game 3 (Guess I). We guess the first query to Hpar such that the forgeries’
common message I is provided as input. That is, the game samples iI,A ← [Qpar]
at its start. When A outputs common message I and its forgeries, the game
additionally checks whether I was queried for the first time to Hpar on the iI,A-th
query. If not, the game aborts its entire execution.

Observe that such a query must exist, as we also count the game’s Hpar queries
and the game evaluates Hpar on input I when verifying the forgeries. As the guess
iI,A is hidden from A, we have that

ε2 ≤ Qpar · ε3.

We stress that at this point, the game knows I after the first Hpar query with
input I was made. In particular, as the game evaluates Hpar on common message
I during each OBSign1 query, the game knows the forgeries’ common message I

at latest when the first OBSign1 query with common message I is made.

Game 4 (Guess unsigned M in forgery). We guess the first query iM,A to
HM such that the following two conditions hold:

(1) The input XiM,A to the iM,A-th HM query is part of the hashed messages
M1, . . . ,MQfrg

in A’s forgeries and XiM,A was never queried to HM before.
(2) No session with common message I is completed if M = HM (XiM,A) is

extracted from proof πM (cf. game 2).

Again, the game aborts its execution if the guess was incorrect.

20

If A is successful, then A’s output contains Qfrg distinct messages µj . As
HM is collision-free (cf. game 1), there are also Qfrg distinct hashed messages
M j := HM (µj). As there are at most Qfrg − 1 completed sessions for common
message I, there must be at least one hashed message M ∈ {M1, . . . ,MQfrg

} that
was never extracted in any of these completed Qfrg − 1 sessions. Consequently,
such an index iM,A must exist, and since the guess is hidden from A, we have

ε3 ≤ QM · ε4.

In the following, we denote by M the output of the iM,A-th HM query. Note that
if A is successful, we can assume that M is known by the game from the start
on.6

Game 5 (Abort if M∗
I is extracted). Initially, the game samples a random

message M∗
I ← G. Then, the game aborts its entire execution if M∗

I is extracted
from πM in OBSign1 for any common message I. That is, after setting M ←
Ext((td,Q), (x, πM)) in OBSign1 (cf. game 3), the game checks if M = M∗

I . If so,
the game aborts its entire execution, else it continues as before.

As M∗
I is never used within in the simulation (except for the abort condition),

a union bound yields

|ε4 − ε5| ≤
QS

p
.

Game 6 (Setup CI with specific messages). We now setup the ciphertexts
CI output by Hpar depending on whether the forgeries’ common message I
was queried. That is, on the first Hpar query with input I, the game sets up
pkI ← {G} × G at random and encrypts M in CI , i.e., computes ElGamal
ciphertext CI := (0,M) + t · pkI for t← Zp. The game outputs (pkI ,CI). On all
other fresh Hpar queries on input I, the game sets up pkI at random and encrypts
M∗

I in CI , i.e., sets CI := (0,M∗
I) + t · pkI , Again, the game outputs (pkI ,CI).

Note that M∗
I is chosen as in Game 5.

Recall that in the previous game, all Hpar outputs CI are uniform over G2. In
this game, the ciphertexts CI are setup with messages chosen by the game. This
is exactly the setting in Lemma 4.3. As there are Qpar oracle queries in total,
there is an adversary B6 on QDDH with running time roughly that of A such
that

|ε5 − ε6| ≤ AdvQDDHG
B6
(λ,Qpar).

As consequence of Game 5 and Game 6, the CI output by Hpar are setup in two
manners.

Remark 4.6. The ciphertexts CI given by (pkI ,CI) = Hpar(I) are setup as
follows.

(1) For the forgery’s common message I = I, the ciphertext CI encrypts the
guessed message M (cf. Game 4).

6The game initially samples M ← G and outputs M on the iM,A-th HM query.

21

(2) For other common messages I ̸= I, the ciphertext CI encrypts M∗
I . Also,

M∗
I is never extracted within OBSign1 (else the game aborts).

In particular, C∗ = CI −C∗
M encrypts a non-zero value if I = I and M ≠ M or

if I ̸= I (cf. Game 5 and Game 6).

Game 7 (Setup pkI with known secret key). On every Hpar query, the game
samples skI ← Zp and sets pkI,1 := skI · G. It computes CI as in Game 6 and
outputs (pkI ,CI) with pkI := (G, pkI,1). Clearly, both games are identically
distributed and we have

ε6 = ε7.

Game 8 (Abort if M is an invalid R̃M witness). We now abort if the
extracted message M is not a witness for relation R̃M. That is, after the game
extracts M in OBSign1 from the proof πM for statement xM = (pkI ,C

∗
M), it

decrypts C∗
M and aborts if the obtained message does not match M . More

formally, the game sets M ′ ← C∗
M,1 − skI · C∗

M,0 and aborts its entire execution
if M ̸= M ′.

We can show that the abort probability is negligible under straightline R̃M-
extractability of Πm. It is easy to see that M = M ′ iff (xM,M) ∈ R̃M (cf.
Eq. (4.2)). In conclusion, we can construct an adversary B8 with running time
roughly that of A such that

|ε7 − ε8| ≤ AdvExtΠm,Ext
B8

(λ,QΠ)

Our next goal is to transition to a game where the Σelg transcripts are
computed via the known witness, and the Σdh transcripts are simulated. For
this, it is important that the statement x∗

elg = (pkI ,C
∗,M∗

$) is in the language
Lelg. The abort conditions in previous games make sure that this is indeed true,
except if

I = I and M = M. (⋆)

In case Eq. (⋆) holds, the game still simulates the Σelg transcript.7 Also, note
that in order to compute Σelg transcripts honestly, we need to find a witness
for x∗

elg. For this, we setup M∗
$ based on the message M∗ encrypted in C∗ as

M∗
$ = y ·M∗ with known discrete logarithm y. Observe that then, the game

knows a witness (y · skI , y) for Relg in all signing sessions except if Eq. (⋆) holds.
We elaborate below.
Game 9 (Compute Σelg transcripts honestly). Now, the game computes
the Σelg transcript (A∗

elg, γ
∗
elg, zelg) via the witness except if Eq. (⋆) holds. More

precisely, in OBSign1 after extracting M , the game sets M∗ := M −M if I = I

and M ̸= M . Else, if I ̸= I, then it sets M∗ := M∗
I −M . Note that M∗ is the

message encrypted in C∗. Then, the game sets M∗
$
:= y ·M∗ for y ← Z×

p and
w

∗
elg := (y · skI , y). If otherwise Eq. (⋆) holds, then M∗

$ ← G× is still sampled at

7In this case, both transcripts are simulated and the game is not able to answer the
OBSign2 oracle. But by definition of M , the game aborts its execution if this occurs.

22

random. Note that x∗
elg = (pkI ,C

∗,M∗
$) is set as before. Then, except if Eq. (⋆)

holds, the game samples γ∗
elg ← Zp and sets (A∗

elg, stelg) ← Initelg(x
∗
elg,w

∗
elg).

Otherwise, it simulates (A∗
elg, z

∗
elg)← Simelg(x

∗
elg, γ

∗
elg) as before. In OBSign2 , the

game sets z∗
elg ← Respelg(stelg, γ

∗
elg) if Eq. (⋆) holds. All other values are computed

as in Game 8. Note that Eq. (⋆) never occurs in OBSign2 due to the choice of M
(cf. game 4).

First, let us show that (x∗
elg,w

∗
elg) ∈ Relg (cf. Eq. (3.2)). Due to the abort

condition introduced in Game 8, we know that M = C∗
M,1 − skI · C∗

M,0. Also,
recall that C∗ = CI −C∗

M . Together with Remark 4.6, the above yields that

M∗ = C∗
1 − skI · C∗

0 .

Also, by construction we have pkI,1 = skI · pkI,0. Multiplying both aforemen-
tioned equations by y yields that (x∗

elg,w
∗
elg) ∈ Relg. Thus, the Σelg transcripts

(A∗
elg, γ

∗
elg, z

∗
elg) in Game 8 and Game 9 are identically distributed by HVZK. Also,

by construction M∗
$ is distributed uniform over G×, as M∗ ̸= 0 (cf. Remark 4.6).

In conclusion, we have
ε8 = ε9.

Game 10 (Simulate Σdh transcripts). Now, the game simulates Σdh transcript
(A∗

dh, γ
∗
dh, zdh) in all signing sessions. In particular, in OBSign1 , the game samples

γ∗
dh ← Zp and sets (A∗

dh, zdh) ← Simdh(x
∗
dh, γ

∗
dh) instead of computing Adh via

Initdh. Further, the game does not sample γ∗
elg at random in OBSign1 anymore

except if Eq. (⋆) holds. Instead, the challenger sets γ∗
elg := γ∗ − γ∗

dh in OBSign2 ,
and uses the simulated response zdh computed in OBSign1 . As the game aborts its
execution if Eq. (⋆) occurs in OBSign2 , we leave the simulation behavior in OBSign2
unspecified in that case. Other than the above, the game behaves as in Game 9.

If Eq. (⋆) does not hold in the signing session, then clearly γ∗
elg and γ∗

dh are
distributed identically in Game 9 and Game 10. Further, the Σdh transcript
(A∗

dh, γ
∗
dh, zdh) is identically distributed under HVZK. If Eq. (⋆) holds, then both

Σdh and Σelg transcripts are simulated. As noted above, it suffices to argue that
the OBSign1 output (M∗

$,A
∗
elg,A

∗
dh) in Game 10 are distributed as in Game 9. As

the distribution of A∗
elg and M∗

$ remains unchanged, it suffices to inspect Adh.
By HVZK, a simulated Adh as in Game 10 and an honestly computed Adh as in
Game 9 are distributed identically. Consequently, we have

ε9 = ε10.

Observe that in Game 10, the secret key sk = d2 is not required anymore for
simulation.
Game 11 (Sample non-DDH tuple D). In this game, we change how the vk
is setup. Instead of sampling a DDH tuple D, the game samples D← G3 instead.
Then, the game sets vk = D and proceeds as in Game 10.

We can construct an adversary B11 against DDH with running time similar
to A and with

|ε10 − ε11| ≤ AdvDDHG
B11

(λ).

23

Bounding A’s advantage in Game 11: Denote by σ the forgery associated to
message M , i.e., σ := σj for j ∈ [Qfrg] such that M = HM (µj). Also, let us
parse σ = (M$, π) with π = (Aelg,Adh, γelg, γdh, zelg, zdh). Roughly, as π is an
OR-proof for the language Ldh ∪ Lelg and as xdh := (G,D) /∈ Ldh except with
probability 1/p, it must hold that xelg := (pkI ,C,M$) ∈ Lelg by soundness of π,
where C = CI −CM with CM = (0,M). Further, as M$ ̸= 0, the ciphertext C
is not an encryption of 0 as discussed in Section 3.1. But as both CI and CM

encrypt M by construction, A cannot win except with negligible probability.
In more detail, as (G,D) /∈ Ldh except with probability 1/p and by Lemma 4.2,

we have that xelg ∈ Lelg except with probability probability (1 +Qch)/p. Then,
by definition of Lelg (cf. Eq. (3.2)), there exists welg = (x, y) ∈ Z2

p such that
yH = xG and M$ = yC1 − xC0, where pkI = (G,H).

Note that y ̸= 0, as it must hold that M$ ≠ 0. In more detail, assume for
the sake of contradiction that y = 0. Then, it holds that x = 0, as otherwise
yH ̸= xG. Consequently, 0 = yC1 − xC0 = M$, which is a contradiction.

Dividing by y, we obtain H = skI · G, where skI = x/y, and 1/y ·M$ =
C1− skI ·C0. That is, C encrypts 1/y ·M$ ̸= 0. But as by construction, we know
that CI encrypts M (cf. Remark 4.6) and since CM also encrypts M , we have
that M$ = 0. This is a contradiction. In summary, we obtain

ε11 ≤
1 +Qch

p
.

Blindness Let us prove blindness of BSufneq. We follow the common proof tech-
nique of making indistinguishable changes to the game until we finally decouple
the interaction and the generated signatures completely.

Theorem 4.7. BSufneq is blind if DDH is hard in G. More precisely, for any
adversary A against blindness of BSufneq, there exists an adversary B against
QDDH such that

AdvBlind
BSuf

neq

A (λ,Qch) ≤ 2 ·
(
AdvZKΠM

AZK
(λ) + AdvQDDHG

ADDH
(λ) +

2

p
·Qch

)
Proof. We argue by game hops, where we gradually modify the game until the
adversary has no information about the secret bit anymore.
Game 0 (Honest). This is the real blindness game, where A has access to
the honest oracles O0,O1 and b ← {0, 1} is the challenge bit. Recall that the
adversary chooses a common message I and two messages (µ0, µ1) and then
interacts with Oi(I, µi), which run the protocol BSufneq.BUser(I, µi⊕b) honestly
and eventually outputs σi⊕b. At the end of both interactions, A learns the
signature pair (σ0, σ1). (If any σi = ⊥, then A learns (⊥,⊥) instead to avoid
trivial attacks.) If the adversary guesses guess b′ and b′ = b, the game outputs 1
(i.e., A wins), else 0.

In the following games, we modify the behaviour of the oracles Oi. We describe
these as modifications to the protocol BUser in Fig. 1, which Oi executes. Let µi

be the messages A inputs to Oi, and let Mi = HM (µi) (for i = 0, 1).

24

Game 1 (Simulate πM). We replace the proofs πM of knowledge for C∗
M by a

simulation. By a direct reduction to zero-knowledge of ΠM, we find an adversary
AZK such that

|ε1 − ε0| ≤ AdvZKΠM

AZK
(λ).

Game 2 (Abort if Hch was queried before A received (σ0, σ1).). When
the game queries (xelg,xdh, Aelg, Adh) to Hch on behalf of O0 and O1, abort if
Hch was queried on this before (by either A or the game itself). Due to masking
with ϕdh(z

′
dh) , from A’s view the value Adh is uniformly random in G (prior to

receiving (σ0, σ1)). Hence we find

|ε2 − ε1| ≤
2Qch

p
.

Game 3 (Program Hch). Sample γ∗, γdh, γelg uniformly at the start of O0,O1,
and program Hch(xdh,xelg, Adh, Aelg) := γdh + γelg. Due to the abort in Game 2,
this change is purely conceptual, and thus

ε3 = ε2.

Game 4 (Use SHVZK simulation for xdh). Next, we can replace the tran-
script (Adh, γdh, zdh) by a SHVZK simulation. Indeed, since we program Hch and
thus know γdh beforehand, we can move the whole randomization code of the user
to the final step BUser2. By definition, the user computes its output (Adh, γdh, zdh)
as a randomization of the transcript (A∗

dh, γ
∗
dh, z

∗
dh) (w.r.t. fixed statement xdh),

cf. Lemmas 2.9 and 3.2. By randomizability of transcripts for Σdh, we know that
the randomized distribution of (Adh, γdh, zdh) coincides with a SHVZK simulation
for γdh ← Zp. Overall, we find that

ε4 = ε3.

Observe that after this step, we do not use τ∗dh anymore.
Game 5 (Use SHVZK simulation for xelg (and xnez = (M$,xelg))). In this
game, we replace the transcript (M$,Aelg, γelg, zelg) by a SHVZK simulation. For
this, we choose M$ ← G× and let τelg = (Aelg, γelg, zelg) be computed as a SHVZK
simulation of Σelg for xelg = (pkI ,CI ,M$).

To see that this change is perfectly indistinguishable, first observe that
M∗

$ ̸= 0 (or the user would abort), so that M$ = α′ ·M∗
$ is distributed uniformly

in G×. Hence, the distribution of M$ is unaffected. Second, and analogous to the
previous game, we now use that Σelg is SHVZK and randomizable, and that τelg =
(Aelg, γelg, zelg) is a randomization of τ ′elg(A

′
elg, γ

′
elg, z

′
elg) where x′

nez = (pkI ,CM).
Note that by correctness of BSufneq (cf. Theorem 4.4), if τ∗elg = (A∗

elg, γ
∗
elg, z

∗
elg) verifies

for x∗
elg = (pkI ,C

∗
M ,M$), then so does τ ′elg for x′

elg. Hence, by randomizability of
Σelg, this change is perfectly indistinguishable and we find that

ε5 = ε4.

25

Observe that after this step, we do not use τ∗nez = (M∗
$, τ

∗
elg) anymore.

Game 6 (Encrypt zero in C∗
M). Finally, we replace the encryption of M in C∗

by an encryption of 0. By a direct reduction to IND-CPA of ElGamal encryption,
or equivalently QDDH, we find and adversary Adh

|ε6 − ε5| ≤ AdvQDDHG
Adh

(λ).

At this point, the game generates the signatures σi independently from the
interaction with A, and only after all signing interaction with A completed. Thus,
the adversary’s distinguishing advantage is 0.

By going these steps backward, we can switch the challenge bit b = 0 to b = 1
(potentially doubling the adversary’s advantage).

5 Blind Signature in 5 Moves

In this section, we present our 5-move blind signature BSsufneq which achieves one-
more strong unforgeability and partial blindness. Our construction BSsufneq is ob-
tained by modifying BSufneq, similar to how BS2 is obtained from BS1 in [CATZ24].

5.1 Preparations

We also rely on ΠM for relation RM from Section 4.1 (cf. Eq. (4.1)). Again, we
assume that ΠM is straightline R̃M-extractable (cf. Eq. (4.2)).

5.2 Construction

Let Hcrs,Hpar,HM ,Hch be defined as in Section 4.2. BSsufneq is given below.

BSsufneq: Our 5-move pairing-free blind signature

– BSsufneq.KeyGen(1
λ): Output (vk, sk)← BSsufneq.KeyGen(1

λ).
– BSsufneq.BSign(sk, I) ⇄ BSufneq.BUser(vk,m, I): Proceeds in 5 moves. We

sketch the protocol below.
Signer 1. In BSsufneq.BSign1, the signer sets (A∗

dh, stdh)← Initdh(xdh, sk)
for xdh = (G,D). The signer sends A∗

dh to the user.
User 1. In BSsufneq.BUser1, the user proceeds as in BSufneq.BUser1 ex-

cept that sets M := HM (µ,Adh), where A∗
dh is blinded to Adh :=

A∗
dh + Φdh(z

′
dh) − γ′

dhD for z′dh ← Zp , γ
′
dh ← Zp .

Signer 2. In BSsufneq.BSign2, the signer proceeds as in BSufneq.BSign1 ex-
cept that it reuses (A∗

dh, stdh) from BSsufneq.BSign1.
User 2. In BSsufneq.BUser2, the user proceeds as in BSufneq.BUser2 except

it reuses the blinded Adh from BSsufneq.BUser1.
Signer 3. In BSsufneq.BSign3, the singer proceeds as in BSufneq.BSign2.
User 3. In BSsufneq.BUser3, the user proceeds in BSufneq.BUser3.

26

As a BSsufneq signing session is similar to a BSufneq signing session (cf.
Section 4.2), we defer a formal description to Appendix D.

– BSsufneq.Verify(vk, µ, I, σ):
(1) Parse σ as σ = (M$,Aelg,Adh, γelg, γdh, zelg, zdh).
(2) Output b← Sneq.Verify(vk,M, I, σ) for M := HM (µ,Adh).

Remark 5.1 (Partial blindness). Note that user and signer can agree on a common
message I in the second move (i.e., BUser1) as the first move (i.e., BSign1) is
independent from I. Our security analysis covers this variant.

Remark 5.2 (Optimizations). Almost all optimization for BSufneq also apply to
BSsufneq (cf. Remark 4.1), except for the standard optimization of only sending
Adh. In the protocol, Adh is required to derive γ = Hch(µ,Adh). However, we can
replace Adh ∈ G2 by hdh = H(Adh) for another random oracle H in this derivation.
Now, only one hash value hdh ∈ H instead of Adh ∈ G2 is needed in the signature.

5.3 Security Analysis

We prove correctness, one-more unforgeability and partial blindness for BSufneq.
Before we move towards the analysis, let us provide some useful lemmata.

Preparations Before we proceed with the proof, we provide a useful lemma.
The proof is given in Appendix E.5 and based on special soundness.

Lemma 5.3 (Unique Σ-protocol Challenges). Let pk = (G,H) with H ∈ G
and let t ∈ Zp. Let xelg = (pk,C,M$) be a statement with M$ ∈ G× and C = t·pk.
Then there exists at most one γelg ∈ Zp such that there exists a response zelg with
Σdh.Verify(xelg,Aelg, γelg, zelg) = 1.

Correctness As the proof of correctness for BSsufneq is almost identical to BSufneq
(cf. Theorem 4.4), we omit details.

Theorem 5.4 (Correctness). BSsufneq is perfectly correct.

One-more Strong Unforgeability We provide a high-level overview of the
proof of OMSUF; a formal proof is in Appendix E.6. Let (µj , σj)j∈[Qfrg] be the
forgeries output by A at the end of the game. In our analysis, we consider three
types of adversaries, depending on the forgeries:

– Type (I) adversaries succeed only if they output distinct message-commitment
pairs (µj ,Adh,j). As now all M j = HM (µj ,Adh,j) are pairwise-distinct, this
is essentially attack standard OMUF. For this type of adversary, the proof
for Theorem 4.5 (OMUF for BSufneq) is easily adapted.

27

– Type (II) adversaries succeed only if they reuse at least one Adh in the
signature σi, but do not reuse the corresponding γdh. In this case, we can
appeal to special soundness of Σdh to break DDH (in fact, extract a DLog).
For this, we switch signing to the Σelg-branch, similar to Type (I) adversaries,
with one difference: we do not puncture a message. That is, we proceed as
in game 6 of the proof of Theorem 4.5, but we ensure that MI differs from
all extracted messages M in all sessions. Thus, we can always simulate the
signing oracle without sk = d2, and as a Type (I) adversary outputs Σdh

transcripts with reused Adh but distinct challenges, we can extract the DLog
of D2 by special soundness.

– Type (III) adversaries succeed only if they reuse a complete transcript τdh =
(Adh, γdh, zdh) (and also µ) in the forgeries. In this case, we cannot appeal to
2-special soundness of Σdh. Thus, we turn to puncturing again: we guess the
message µ for which the transcript τdh is reused, and puncture the parameter
CI as in Type (I). As CI is punctured and Σelg (or more precisely, Σnez)
is 2-special sound, there is at most one challenge Γ (M$,Aelg) which has an
accepting zelg (cf. Lemma 5.3). However, since a Type (III) adversary must
reuse τdh to succeed, it can only succeed by guessing Γ (M$,Aelg), which
succeeds only with probability 1/p per try.8

Note that the Types (I) to (III) cover all possible cases by the unique response
property of Σdh (cf. Definition 2.8) which can occur if an adversary succeeds
in OMSUF. Consequently, by reducing each case to DDH (or DLog), we have
shown OMSUF. The formal proof contains concrete bounds (cf. Appendix E.6).

Theorem 5.5. BSsufneq is OMSUF under relaxed knowledge soundness for R̃M of
ΠM and the DDH assumption.

Blindness The blindness of BSsufneq follows by exactly the same argument as our
proof for BSufneq. Except that rerandomization of Σdh and Σelg occur in different
rounds now, all steps of the proof of Theorem 4.7 apply verbatim. Thus, following
theorem is an immediate corollary.

Theorem 5.6. BSsufneq is blind if DDH is hard in G. The precise bound on the
adversary’s advantage carries over from Theorem 4.7.

6 Achieving Statistical Blindness

Our protocols BSufneq and BSsufneq are only computationally blind, because the user
sends an ElGamal encryption of his message to the signer. Next, we briefly sketch
how to achieve statistical blindness. A more detailed discussion is in Appendix C.

8This is formally imprecise, as the adversary has some freedom to choose γelg due
to the OR-construction. However, it is true if γelg is fixed, e.g., by guessing the first
occurrence in advance. Then because of the constraint γdh + γelg = Hch(Adh, Aelg), we
get Γ (M$,Aelg)

!
= γelg = Hch(xdh,xelg,Adh,Aelg)− γdh.

28

The only obstruction to statistical blindness is that the user sends an en-
cryption of the (hash of) the to-be-signed message M = HM (µ), and that the
NIZK also needs to be statistically zero-knowledge. By replacing the encryption
with dual-mode encryption, e.g., based on the dual-mode commitments used in
Groth–Sahai proofs [GS08; GS12], this can be achieved. For uniformly random
public keys, they are statistically hiding with overwhelming probability. Thus, we
are able to prove statistical blindness, i.e., all game hops in the blindness proof
are statistical. In the one-more (strong) unforgeability proofs, we merely need to
add a step where we switch the public key to perfectly binding and efficiently
extractable. The remaining proof steps are unchanged.

As the randomness (which is part of the witness) for dual-mode encryption
based on DDH is 2Zp elements instead of one, the signature grows by one Zp

element and communication grows by 2Zp elements (due to the additional NIZK).

References

[Abe01] Masayuki Abe. “A Secure Three-Move Blind Signature Scheme for
Polynomially Many Signatures”. In: 2001, pp. 136–151. doi: 10.1007/
3-540-44987-6_9.

[Abe+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralam-
biev, and Miyako Ohkubo. “Structure-Preserving Signatures and
Commitments to Group Elements”. In: 2010, pp. 209–236. doi:
10.1007/978-3-642-14623-7_12.

[Abe+17] Masayuki Abe, Dennis Hofheinz, Ryo Nishimaki, Miyako Ohkubo,
and Jiaxin Pan. “Compact Structure-Preserving Signatures with
Almost Tight Security”. In: 2017, pp. 548–580. doi: 10.1007/978-
3-319-63715-0_19.

[Abe+18] Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, and Arnab Roy.
“Improved (Almost) Tightly-Secure Simulation-Sound QA-NIZK with
Applications”. In: 2018, pp. 627–656. doi: 10.1007/978-3-030-
03326-2_21.

[Abe+23] Masayuki Abe, Dennis Hofheinz, Ryo Nishimaki, Miyako Ohkubo,
and Jiaxin Pan. “Compact Structure-Preserving Signatures with
Almost Tight Security”. In: 36.4 (Oct. 2023), p. 37. doi: 10.1007/
s00145-023-09477-z.

[AEB20] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buch-
mann. “On Lattice-Based Interactive Protocols: An Approach with
Less or No Aborts”. In: 2020, pp. 41–61. doi: 10.1007/978-3-030-
55304-3_3.

[AF96] Masayuki Abe and Eiichiro Fujisaki. “How to Date Blind Signatures”.
In: 1996, pp. 244–251. doi: 10.1007/BFb0034851.

[Agr+22] Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav.
“Practical, Round-Optimal Lattice-Based Blind Signatures”. In: 2022,
pp. 39–53. doi: 10.1145/3548606.3560650.

29

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/s00145-023-09477-z
https://doi.org/10.1007/s00145-023-09477-z
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/BFb0034851
https://doi.org/10.1145/3548606.3560650

[AHJ21] Nabil Alkeilani Alkadri, Patrick Harasser, and Christian Janson.
“BlindOR: an Efficient Lattice-Based Blind Signature Scheme from
OR-Proofs”. In: 2021, pp. 95–115. doi: 10.1007/978-3-030-92548-
2_6.

[AO00] Masayuki Abe and Tatsuaki Okamoto. “Provably Secure Partially
Blind Signatures”. In: 2000, pp. 271–286. doi: 10.1007/3- 540-
44598-6_17.

[BB04] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity
Based Encryption Without Random Oracles”. In: 2004, pp. 223–238.
doi: 10.1007/978-3-540-24676-3_14.

[BB08] Dan Boneh and Xavier Boyen. “Short Signatures Without Random
Oracles and the SDH Assumption in Bilinear Groups”. In: 21.2 (Apr.
2008), pp. 149–177. doi: 10.1007/s00145-007-9005-7.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. “Direct Anony-
mous Attestation”. In: 2004, pp. 132–145. doi: 10.1145/1030083.
1030103.

[Bel+03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and
Michael Semanko. “The One-More-RSA-Inversion Problems and the
Security of Chaum’s Blind Signature Scheme”. In: J. Cryptol. 16.3
(2003), pp. 185–215. doi: 10.1007/s00145- 002- 0120- 1. url:
https://doi.org/10.1007/s00145-002-0120-1.

[Ben+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù,
and Mariana Raykova. “On the (in)security of ROS”. In: 2021, pp. 33–
53. doi: 10.1007/978-3-030-77870-5_2.

[Ben+22] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù,
and Mariana Raykova. “On the (in)Security of ROS”. In: 35.4 (Oct.
2022), p. 25. doi: 10.1007/s00145-022-09436-0.

[Beu+23] Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gre-
gor Seiler. “Lattice-Based Blind Signatures: Short, Efficient, and
Round-Optimal”. In: 2023, pp. 16–29. doi: 10 . 1145 / 3576915 .
3616613.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. “Anonymous credentials
light”. In: 2013, pp. 1087–1098. doi: 10.1145/2508859.2516687.

[Bla+13] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien
Vergnaud. “Short blind signatures”. In: Journal of computer security
21.5 (2013), pp. 627–661.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures
from the Weil Pairing”. In: 17.4 (Sept. 2004), pp. 297–319. doi:
10.1007/s00145-004-0314-9.

[Bol03] Alexandra Boldyreva. “Threshold Signatures, Multisignatures and
Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme”. In: 2003, pp. 31–46. doi: 10.1007/3-540-36288-6_3.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols”. In: 1993, pp. 62–73.
doi: 10.1145/168588.168596.

30

https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/s00145-022-09436-0
https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1145/168588.168596

[Bra+24] Nicolas Brandt, Dennis Hofheinz, Michael Klooß, and Michael Reichle.
“Tightly-Secure Blind Signatures in Pairing-Free Groups”. In: (2024).
url: https://eprint.iacr.org/2024/XXX.

[Bra94] Stefan Brands. “Untraceable Off-line Cash in Wallets with Observers
(Extended Abstract)”. In: 1994, pp. 302–318. doi: 10.1007/3-540-
48329-2_26.

[Bus+22] Maxime Buser et al. “A Survey on Exotic Signatures for Post-
Quantum Blockchain: Challenges & Research Directions”. In: ACM
Comput. Surv. (2022). Just accepted. issn: 0360-0300. doi: 10.1145/
3572771. url: https://doi.org/10.1145/3572771.

[CA+22] Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna
Lysyanskaya, and Benedikt Wagner. “PI-Cut-Choo and Friends: Com-
pact Blind Signatures via Parallel Instance Cut-and-Choose and
More”. In: 2022, pp. 3–31. doi: 10.1007/978-3-031-15982-4_1.

[CATZ24] Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu.
“Pairing-Free Blind Signatures from CDH Assumptions”. In: 2024,
pp. 174–209. doi: 10.1007/978-3-031-68376-3_6.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of
Partial Knowledge and Simplified Design of Witness Hiding Proto-
cols”. In: 1994, pp. 174–187. doi: 10.1007/3-540-48658-5_19.

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In:
1982, pp. 199–203. doi: 10.1007/978-1-4757-0602-4_18.

[Cha88] David Chaum. “Elections with Unconditionally-Secret Ballots and
Disruption Equivalent to Breaking RSA”. In: 1988, pp. 177–182. doi:
10.1007/3-540-45961-8_15.

[CL01] Jan Camenisch and Anna Lysyanskaya. “An Efficient System for
Non-transferable Anonymous Credentials with Optional Anonymity
Revocation”. In: 2001, pp. 93–118. doi: 10.1007/3-540-44987-6_7.

[Cri+23] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro,
and Chenzhi Zhu. “Snowblind: A Threshold Blind Signature in
Pairing-Free Groups”. In: 2023, pp. 710–742. doi: 10.1007/978-
3-031-38557-5_23.

[DHP24] Khue Do, Lucjan Hanzlik, and Eugenio Paracucchi. “M&M’S: Mix
and Match Attacks on Schnorr-Type Blind Signatures with Repeti-
tion”. In: 2024, pp. 363–387. doi: 10.1007/978-3-031-58751-1_13.

[ElG85] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: 31.4 (1985), pp. 469–472. doi:
10.1109/TIT.1985.1057074.

[Esc+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge
Villar. “An Algebraic Framework for Diffie-Hellman Assumptions”.
In: 2013, pp. 129–147. doi: 10.1007/978-3-642-40084-1_8.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. “Practical
Round-Optimal Blind Signatures in the Standard Model”. In: 2015,
pp. 233–253. doi: 10.1007/978-3-662-48000-7_12.

31

https://eprint.iacr.org/2024/XXX
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1145/3572771
https://doi.org/10.1145/3572771
https://doi.org/10.1145/3572771
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-58751-1_13
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-48000-7_12

[Fis06] Marc Fischlin. “Round-Optimal Composable Blind Signatures in
the Common Reference String Model”. In: 2006, pp. 60–77. doi:
10.1007/11818175_4.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The Algebraic Group
Model and its Applications”. In: 2018, pp. 33–62. doi: 10.1007/978-
3-319-96881-0_2.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A practi-
cal secret voting scheme for large scale elections”. In: AUSCRYPT.
Springer. 1992, pp. 244–251.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. “Blind
Schnorr Signatures and Signed ElGamal Encryption in the Algebraic
Group Model”. In: 2020, pp. 63–95. doi: 10.1007/978- 3- 030-
45724-2_3.

[FS10] Marc Fischlin and Dominique Schröder. “On the Impossibility of
Three-Move Blind Signature Schemes”. In: 2010, pp. 197–215. doi:
10.1007/978-3-642-13190-5_10.

[Fuc+16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel
Slamanig. “Practical Round-Optimal Blind Signatures in the Stan-
dard Model from Weaker Assumptions”. In: 2016, pp. 391–408. doi:
10.1007/978-3-319-44618-9_21.

[FW24] Georg Fuchsbauer and Mathias Wolf. “Concurrently Secure Blind
Schnorr Signatures”. In: 2024, pp. 124–160. doi: 10.1007/978-3-
031-58723-8_5.

[Gar+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and
Dominique Unruh. “Round Optimal Blind Signatures”. In: 2011,
pp. 630–648. doi: 10.1007/978-3-642-22792-9_36.

[GG14] Sanjam Garg and Divya Gupta. “Efficient Round Optimal Blind
Signatures”. In: 2014, pp. 477–495. doi: 10.1007/978- 3- 642-
55220-5_27.

[Gha17] Essam Ghadafi. “Efficient Round-Optimal Blind Signatures in the
Standard Model”. In: 2017, pp. 455–473. doi: 10.1007/978-3-319-
70972-7_26.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems
for Bilinear Groups”. In: 2008, pp. 415–432. doi: 10.1007/978-3-
540-78967-3_24.

[GS12] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems
for Bilinear Groups”. In: SIAM J. Comput. 41.5 (2012), pp. 1193–
1232. doi: 10.1137/080725386. url: https://doi.org/10.1137/
080725386.

[Hau+20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen.
“Lattice-Based Blind Signatures, Revisited”. In: 2020, pp. 500–529.
doi: 10.1007/978-3-030-56880-1_18.

[Hen+22] Scott Hendrickson, Jana Iyengar, Tommy Pauly, Steven Valdez,
and Christopher A. Wood. Private Access Tokens. Internet-Draft

32

https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1007/978-3-030-56880-1_18

draft-private-access-tokens-01. Work in Progress. 2022. url: https:
//datatracker.ietf.org/doc/draft-private-access-tokens/.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. “A Modular Treatment of
Blind Signatures from Identification Schemes”. In: 2019, pp. 345–375.
doi: 10.1007/978-3-030-17659-4_12.

[HLW23] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. “Rai-Choo! Evolv-
ing Blind Signatures to the Next Level”. In: 2023, pp. 753–783. doi:
10.1007/978-3-031-30589-4_26.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. “Security of Blind
Digital Signatures (Extended Abstract)”. In: 1997, pp. 150–164. doi:
10.1007/BFb0052233.

[Kat21] Shuichi Katsumata. “A New Simple Technique to Bootstrap Various
Lattice Zero-Knowledge Proofs to QROM Secure NIZKs”. In: 2021,
pp. 580–610. doi: 10.1007/978-3-030-84245-1_20.

[Kat+21] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. “Round-Optimal Blind Signatures in the Plain Model from
Classical and Quantum Standard Assumptions”. In: 2021, pp. 404–
434. doi: 10.1007/978-3-030-77870-5_15.

[Kat+23] Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, and Ling Qin. “CSI-
Otter: Isogeny-Based (Partially) Blind Signatures from the Class
Group Action with a Twist”. In: 2023, pp. 729–761. doi: 10.1007/
978-3-031-38548-3_24.

[KLN23] Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. “Privacy-
Preserving Blueprints”. In: 2023, pp. 594–625. doi: 10.1007/978-3-
031-30617-4_20.

[KLR21] Jonathan Katz, Julian Loss, and Michael Rosenberg. “Boosting the
Security of Blind Signature Schemes”. In: 2021, pp. 468–492. doi:
10.1007/978-3-030-92068-5_16.

[KLR24] Shuichi Katsumata, Yi-Fu Lai, and Michael Reichle. “Breaking Paral-
lel ROS: Implication for Isogeny and Lattice-Based Blind Signatures”.
In: 2024, pp. 319–351. doi: 10.1007/978-3-031-57718-5_11.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. “On Pairing-Free Blind
Signature Schemes in the Algebraic Group Model”. In: 2022, pp. 468–
497. doi: 10.1007/978-3-030-97131-1_16.

[KNR24] Julia Kastner, Ky Nguyen, and Michael Reichle. “Pairing-Free Blind
Signatures from Standard Assumptions in the ROM”. In: 2024,
pp. 210–245. doi: 10.1007/978-3-031-68376-3_7.

[KRS23] Shuichi Katsumata, Michael Reichle, and Yusuke Sakai. “Practical
Round-Optimal Blind Signatures in the ROM from Standard As-
sumptions”. In: 2023, pp. 383–417. doi: 10.1007/978-981-99-8724-
5_12.

[KRW24] Michael Klooß, Michael Reichle, and Benedikt Wagner. “Practical
Blind Signatures in Pairing-Free Groups”. In: To Appear in ASI-
ACRYPT 2024. Available at ia. cr/ 2024/ 1378 (2024).

33

https://datatracker.ietf.org/doc/draft-private-access-tokens/
https://datatracker.ietf.org/doc/draft-private-access-tokens/
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-3-030-77870-5_15
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-031-68376-3_7
https://doi.org/10.1007/978-981-99-8724-5_12
https://doi.org/10.1007/978-981-99-8724-5_12
ia.cr/2024/1378

[Ks22] Yashvanth Kondi and abhi shelat. “Improved Straight-Line Extrac-
tion in the Random Oracle Model with Applications to Signature
Aggregation”. In: 2022, pp. 279–309. doi: 10.1007/978-3-031-
22966-4_10.

[KSD19] Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian.
“Structure-Preserving Signatures on Equivalence Classes from Stan-
dard Assumptions”. In: 2019, pp. 63–93. doi: 10.1007/978-3-030-
34618-8_3.

[Lin08] Yehuda Lindell. “Lower Bounds and Impossibility Results for Con-
current Self Composition”. In: 21.2 (Apr. 2008), pp. 200–249. doi:
10.1007/s00145-007-9015-5.

[Mau15] Ueli Maurer. “Zero-knowledge proofs of knowledge for group homo-
morphisms”. In: 77.2-3 (2015), pp. 663–676. doi: 10.1007/s10623-
015-0103-5.

[MSF10] Sarah Meiklejohn, Hovav Shacham, and David Mandell Freeman.
“Limitations on Transformations from Composite-Order to Prime-
Order Groups: The Case of Round-Optimal Blind Signatures”. In:
2010, pp. 519–538. doi: 10.1007/978-3-642-17373-8_30.

[Oka93] Tatsuaki Okamoto. “Provably Secure and Practical Identification
Schemes and Corresponding Signature Schemes”. In: 1993, pp. 31–53.
doi: 10.1007/3-540-48071-4_3.

[Pas03] Rafael Pass. “On Deniability in the Common Reference String and
Random Oracle Model”. In: 2003, pp. 316–337. doi: 10.1007/978-
3-540-45146-4_19.

[Pas11] Rafael Pass. “Limits of provable security from standard assumptions”.
In: 2011, pp. 109–118. doi: 10.1145/1993636.1993652.

[PK22] Rafaël del Pino and Shuichi Katsumata. “A New Framework for More
Efficient Round-Optimal Lattice-Based (Partially) Blind Signature
via Trapdoor Sampling”. In: 2022, pp. 306–336. doi: 10.1007/978-
3-031-15979-4_11.

[Poi98] David Pointcheval. “Strengthened Security for Blind Signatures”. In:
1998, pp. 391–405. doi: 10.1007/BFb0054141.

[PS00] David Pointcheval and Jacques Stern. “Security Arguments for Digital
Signatures and Blind Signatures”. In: 13.3 (June 2000), pp. 361–396.
doi: 10.1007/s001450010003.

[PS97] David Pointcheval and Jacques Stern. “New Blind Signatures Equiva-
lent to Factorization (Extended Abstract)”. In: 1997, pp. 92–99. doi:
10.1145/266420.266440.

[SC12] Jae Hong Seo and Jung Hee Cheon. “Beyond the Limitation of Prime-
Order Bilinear Groups, and Round Optimal Blind Signatures”. In:
2012, pp. 133–150. doi: 10.1007/978-3-642-28914-9_8.

[Sch90] Claus-Peter Schnorr. “Efficient Identification and Signatures for
Smart Cards”. In: 1990, pp. 239–252. doi: 10.1007/0-387-34805-
0_22.

34

https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-030-34618-8_3
https://doi.org/10.1007/978-3-030-34618-8_3
https://doi.org/10.1007/s00145-007-9015-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/978-3-642-17373-8_30
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1145/266420.266440
https://doi.org/10.1007/978-3-642-28914-9_8
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”.
In: 4.3 (Jan. 1991), pp. 161–174. doi: 10.1007/BF00196725.

[TZ22] Stefano Tessaro and Chenzhi Zhu. “Short Pairing-Free Blind Sig-
natures with Exponential Security”. In: 2022, pp. 782–811. doi:
10.1007/978-3-031-07085-3_27.

[YL19] Xun Yi and Kwok-Yan Lam. “A New Blind ECDSA Scheme for
Bitcoin Transaction Anonymity”. In: 2019, pp. 613–620. doi: 10.
1145/3321705.3329816.

A Related Work

We give an overview of blind signature literature to complement our selective
overview in Section 1.
Restricted Concurrency. Early constructions of blind signatures in the ROM [AO00;
Oka93; PS00; Sch90] are based on Schnorr-style Σ-protocols. These constructions
are efficient 3-move schemes in pairing-free groups, but proven secure for at most
polylog-many signing sessions [HKL19; KLX22; PS00]. The technique was applied
in other settings, e.g., hidden-order groups [PS97], lattices [AEB20; AHJ21;
Hau+20], and isogenies [Kat+23], but the schemes inherit the polylog upper
bound. This polylog upper bound on concurrent signing sessions is tight [Ben+21;
DHP24; KLR24]: With the exception of [Hau+20], the aforementioned schemes
are broken if O(λ)-many concurrent signing session are allowed.
Generic Group Model and ROM. In pairing-free generic groups and the
ROM, there are 3-move blind signatures [Abe01; Cri+23; FPS20; KLX22; TZ22]
that avoid the attack given in [Ben+21]. These constructions are practical, and
notably [KLX22; TZ22] provide full concurrent security. The security argument
in the above works relies on the algebraic group model (AGM) [FKL18] and
random oracles. In the ROM, [BL13] shows security of [Abe01] without generic
groups, albeit with limited concurrency.
Boosting Transforms. A line of work [CA+22; HLW23; KLR21] based on [Poi98]
provide boosting transformations for blind signatures with limited concurrent
security. Concrete constructions are given in the hidden-order or pairing setting.
While [CA+22; KLR21] gives a generic framework, the resulting schemes are
impractical.
Trusted Setup. In the pairing setting, there are several blind signatures with
trusted setup [Abe+18; Bla+13; KSD19; MSF10; SC12] in the standard model.
The setup assumption can be removed in [Abe+18; Bla+13] in the ROM.
Complexity Leveraging. There are blind signatures [Gar+11; GG14; Kat+21]
that circumvent impossibility results to construct round-optimal blind signa-
tures [FS10; Lin08; Pas11] in the standard model via complexity leveraging or by
relying on both classical and post-quantum assumptions.
Interactive assumptions. There are several blind signatures [Abe+10; Agr+22;
Bel+03; Beu+23; Bol03; Cha82] secure under interactive or q-type assumptions
and in the ROM. Also, there are constructions in the standard model [Abe+10;

35

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816

FHS15; Fuc+16; FW24; Gha17] which rely on tailored interactive hardness
assumptions. Their security is based on strong interactive assumptions. Fur-
ther, [Abe+10] first notices that Fischlin blind signatures can be instantiated by
combining sufficiently algebraic signatures and GOS proofs.

Generic Frameworks. Juels, Luby, and Ostrovsky [JLO97] show that blind
signatures can be constructed from generic MPC and one-way trapdoor permu-
tations. Also, Fischlin [Fis06] gives a generic framework based on signatures,
NIZKs and commitments. The latter framework can be instantiated efficiently in
pairings, lattices and hidden order groups [C:delKat22; KNR24; KRS23] under
standard assumption in the ROM.

B Omitted Preliminaries

B.1 Non-Interactive Proof Systems

Definition B.1 ((Perfect) Correctness). Let Π = (Prove,Verify) be a non-
interactive proof system for a relation R. It is perfectly correct if for all (x,w) ∈
R it holds that

Pr[VerifyH(crs,x, π) = 1 | π ← ProveH(crs,x,w)] = 1

where the probability is over the choice of H, crs, and the randomness of Prove,Verify.

Note that our definitions of zero-knowledge simulator and knowledge extractor
are independent of an adversary, in particular, they are straightline by definition.

Definition B.2 (Zero-Knowledge). Let Π = (Prove,Verify) be a non-interactive
proof system for a relation R. Let Sim be a PPT algorithm. Let A be an algorithm
and let

RealΠA(λ) := Pr[b = 1 | b← AH,OProve(1λ, crs)]

IdealΠA,Sim(λ) := Pr[b = 1 | b← AH,OSim(1λ, crs)]

Here, A has (black-box) access to the random oracle H and to an oracle OProve

or OSim, which are as follows:

– OProve(x,w): Return ⊥ if (x,w) /∈ R. Else, output π ← ProveH(crs,x,w).
– OSim(x,w): Return ⊥ if (x,w) /∈ R. Else, output π ← SimH(x).

Furthermore, the simulator Sim chooses crs and can program the random oracle
H on any fresh input, i.e. if H(m) has not been queried before, then Sim is free to
choose H(m), else, programming fails. We define the advantage of A against Π and
Sim by AdvZKΠ,Sim

A (λ) = |RealΠA(λ)− IdealΠA,Sim(λ)|. We call Sim a (straightline)
zero-knowledge simulator for Π, if for any PPT A the advantage AdvZKΠ

A is
negligible. We say that Π is zero-knowledge if there is a zero-knowledge simulator
for Π.

36

For knowledge soundness, the extractor must compute a witness from an
accepting proof, a potential crs trapdoor td, and all adversarial random oracle
queries. In particular, extraction is straightline. We consider relaxed knowledge
soundness, which means that the knowledge relation R̃ differs from the correctness
relation R.

Definition B.3 (Relaxed Knowledge Soundness). Let Π = (Prove,Verify)

be a non-interactive proof system for a relation R and let R̃ be an NP-relation.
Let (ExtSetup,Ext) be a PPT algorithms. Let A be an oracle algorithm and let

RealA(λ) := Pr[b = 1 | crs← {0, 1}ℓ(λ); b← AH,OVerify(1λ, crs) = 1]

IdealA(λ) := Pr[b = 1 | (crs, td)← ExtSetup(1λ); b← AH,OExt(1λ, crs) = 1]

Here, A has (black-box) access to the random oracle H and to an oracle OProve

or OExt, which are as follows:

– OVerify(x, π): Return Verify(x, π).
– OExt(x, π): If Verify(x, π) = 1 and (x,w) /∈ R̃ for w ← Ext(td,Q,x, π),

return 0. Else, return 1. Here, Q denotes the set of A’s H queries.

The advantage of A against knowledge soundness is AdvExtΠ,R̃
A (λ) := |RealA(λ)

− IdealA(λ)|. We denote by AdvCRSΠ,ExtSetup
D (λ) the (standard) distinguishing

between real and trapdoored crs. We say that Ext is a knowledge extractor for Π
and knowledge relation R̃, if for every PPT algorithm A (resp. D), the advantage
AdvExtΠ,R̃

A (λ) (resp. AdvCRSΠ,ExtSetupD (λ)) is negligible in λ. We say that Π is
straightline R̃-extractable if there is a knowledge extractor for Π.

B.2 (Partially) Blind Signatures

For completeness, we provide formal definitions of security properties for blind
signatures. In particular, we give correctness, (partial) blindness and one-more
(strong) unforgeability.

Definition B.4 (Correctness). A partially blind signature BS is (perfectly)
correct if for all (vk, sk) ∈ KeyGen(1λ) and all m ∈M, I ∈ I, it holds that

Pr[σ ← ⟨BSign(sk, I),BUser(vk,m, I)⟩ : Verify(vk,m, I, σ) = 1] = 1

The guarantee of a (partially) blind signature scheme for the signer is that a
valid signature can only be obtained via interaction, i.e., one cannot output more
signatures than the number of successfully completed signing sessions (one-more
unforgeability, OMUF). We consider both OMUF and OMSUF, the latter being
one-more strong unforgeability, i.e., the adversary succeeds also if it can produce
a fresh signature on an already signed message.

Definition B.5 (One-More (Strong) Unforgeability). Let BS = (KeyGen,
BSign,BUser,Verify) be a blind signature scheme. Let A be an algorithm playing
the following game:

37

(1) Run (vk, sk) ← KeyGen(1λ) and let O be an interactive oracle running
BSign(sk, ·).

(2) Run (I, ((m1, σ1), . . . , (mk, σk))) ← AO(vk) where A can query O in an
arbitrarily interleaved way.

(3) Output 1 if and only if A completed at most k − 1 interactions with O on
input I, and for each i ∈ [k] it holds that Verify(vk,mi, I, σi) = 1, and
– all mi for i ∈ [k] are pairwise distinct (for unforgeability), or
– all (mi, σi) for i ∈ [k] are pairwise distinct (for strong unforgeability).

We denote by AdvOMUFBS
A (λ) (resp. AdvOMSUFBS

A (λ)) the probability that the
above game outputs 1. We say that BS is one-more unforgeable (OMUF), if
for every PPT algorithm A, it holds that AdvOMUFBS

A (λ) = negl(λ). We define
one-more strong unforgeable (OMSUF) analogously.

The security guarantee for the user is that interactions are not linkable to the
issued signatures (blindness). Our blindness notion is malicious signer blindness,
i.e., the malicious signer can freely choose the public key and arbitrarily deviate
from the protocol.

Definition B.6 (Partial Blindness). Let BS = (KeyGen,BSign,BUser,Verify)
be a blind signature scheme. For an algorithm A and bit b ∈ {0, 1}, consider the
following game:

(1) Run (vk,m0,m1, I, st)← A(1λ).
(2) Let O0 be an interactive oracle simulating BUser(vk,mb, I) and O1 be an

interactive oracle simulating BUser(vk,m1−b, I).
(3) Run st′ ← AO0,O1(st), where A has arbitrary interleaved one-time access to
O0 and O1. Let σb, σ1−b be the local outputs of O0,O1, respectively.

(4) If σ0 = ⊥ or σ1 = ⊥, run b′ ← A(st′,⊥,⊥). Else, run b′ ← A(st′, σ0, σ1).
(5) Output b′.

We denote by AdvBlindBSA (λ) difference between the probability that the above game
with b = 0 outputs 1 and the probability that the game with b = 1 outputs 1. We
say that BS satisfies partial blindness if AdvBlindBSA (λ) = negl(λ).

C Achieving Statistical Blindness

Our protocols BSufneq and BSsufneq are only computationally blind, because the
user sends an ElGamal encryption of his message to the signer. By a minor
modification, one can upgrade the protocols to statistical blindness: Instead of
using ElGamal encryption, we can use its lossy or dual-mode version, which was
also used in Groth–Sahai proofs [GS12]. Effectively, we generate public keys and
encryptions as

pk =
(

G Y0

X1 Y1

)
and C = (0,M) + (r0, r1) · pk.

If pk is full rank, which happens for a random choice of (X1, Y0, Y1) except with
probability 1/p, then r · pk ∈ G2 is uniformly random. On the other hand, if we

38

setup (Y0, Y1)
T = t · (G,X1)

T, then C is an ElGamal encryption w.r.t. public key
(G,X1) and randomness r0 + r1t. Both modes are indistinguishable under DDH.

It is now easy to adapt our protocol and proofs to this setting. The notable
differences are:

(1) zelg ∈ Z2
p now consists of two scalars instead of one.

(2) The blindness is statistical if ΠM is statistically zero-knowledge.
(3) Programming the random oracles Hch and Hpar is not required for blindness

anymore, similar to [KRW24].

We elaborate on points Items (2) and (3) below.
Item (2) follows by observing that, in the current proof, only the first step

(application of zero-knowledge, game 1) and the final step (application of IND-
CPA, game 6) are computational steps. With statistical zero-knowledge and lossy
encryption, both πM and C∗

M are statistically independent of M .
For Item (3), observe that unless a query (pkI ,CI) = Hpar(I) occurs for which

pkI is not of full rank, all C∗
M are statistically uniform and thus independent of M .

Hence, we can brute-force a witness for Σelg and replace the SHVZK simulation
introduced in game 5 of the proof of blindness (Theorem 4.7) with honestly
generated transcripts. By SHVZK, this is perfectly indistinguishable. But now,
we do not need to program (γdh, γelg) anymore, and hence can undo the random
oracle programming and aborts.

Remark C.1. As all steps, except zero-knowledge simulation and replacement of
C∗

M by an encryption of 0 were statistical already in Theorem 4.7, this shows
statistical closeness of the real execution and an (unbounded) execution which is
statistically independent of the message. Statistical blindness follows. As we only
program the ROM to prove an equality of (non-programmed) distributions, we
find it plausible that statistical blindness does transfer to then quantum random
oracle model (QROM) as well.

D Deferred Figures

We provide a description of the signing interaction of our 5-move blind signature
BSsufneq in Fig. 2.

E Deferred Proofs

Here, we provide proofs that were deferred from the main body.

E.1 Proof of Lemma 2.9

Proof. We prove the claims individually.
2-special soundness: Observe that given a pair of accepting transcripts (A, γb, zb)

for b ∈ {0, 1}, we see that w := 1
γ1−γ0

(z1 − z0) satisfies ϕ(w) = x.

39

Special HVZK: Observe that A for an accepting transcript is uniquely defined
by (x, γ, z) due to the verification equation, namely A = γ · x− ϕ(z) must hold.
Moreover, observe that z = γ ·w+ r is uniformly distributed (since r is). Hence,
we can sample z ← W and set A as in the simulation without affecting the
distribution. This is perfect SHVZK simulation.
Strongly randomizable transcripts: Clearly, randomization in (2.1) maps accept-
ing transcripts to accepting transcripts. Now, observe that in (2.1) the challenge
γ = γ∗+γ′ and response z = z∗+z′ are evidently uniformly distributed (since γ′

and z are). As A is uniquely defined given (x, γ, z), this shows that the complete
transcripts is a uniformly random choice of accepting transcripts for x. Also
observe that the distribution is identical to that of SHVZK simulation (both for
x ∈ LRϕ

= im(ϕ) and x /∈ LRϕ
).

Unique response: Given two accepting responses z, z′ for (x,A, γ), we immedi-
ately find ϕ(z) = ϕ(z′), and by injectivity z = z′.

Proof of Lemma 3.2

Proof. Since Σdh and Σelg are canonical Σ-protocols, we already know from
Lemma 2.9 that they satisfy all properties. Thus, we concentrate on Σnez. The
2-special soundness property follows immediately from Σelg. For SHVZK it suffices
to note that M$ is distributed as M$ ← G×. The simulator Simnez((pk,C), γ) thus
simply samples M$ ← G×, runs (Aelg, z) ← Simelg((pk,C,M$), γ) and outputs
A = (M$,Aelg) and z. Clearly, the simulation is perfect for x ∈ Rnez.

For randomizable transcripts, let Randelg be the canonical randomization
algorithm for Σnez and observe that for α ∈ Z×

p

Φelg(zelg) = Aelg + γ · (0,M) =⇒ Φelg(αzelg) = αAelg + γ · (0, αM)

that is, multiplication of Aelg and zelg by α modifies the encrypted message in the
statement from M to M$ = αM . Observe that M$ is uniformly random in G× if
α← Z×

p . Thus, Σnez is randomizable by first running Randelg on the input tran-
script, and then (re)randomizing M$ with α′ on the intermediate transcript. Note
that the resulting distribution coincide with SHVZK (even for x /∈ Rnez). Also note
that the correctness of randomization was explicitly verified in the Theorem 4.4 to
assert correctness of BSufneq. Namely, Randnez((pk,C), (M∗

$,A
∗
elg, γ

∗
elg, z

∗
elg)) chooses

α′, γ′, z′
elg and sets

– M$ = α′ ·M∗
$

– Aelg := α′·
(
A′

elg + Φelg(C, z∗
elg) − γ∗(0,M∗

$)
)

– γ = γ∗ + γ′
elg and zelg = z∗

elg + z′
elg.

E.2 Proof of Lemma 4.2

Proof. By special soundness of Σdh and because xdh /∈ Ldh, there is at most one
challenge γdh ∈ Zp such that there exists an accepting response zdh, i.e., such that

40

τdh accepts. Similarly, by special soundness of Σelg and as xelg /∈ Lelg, there exists
at most one challenge γelg such that an accepting response zelg exists. Thus, the
pair (γdh, γelg) is fully determined by X. Consequently, the value γ is distributed
uniformly over Zp and at most with probability 1/p, we have γ = γdh + γelg. The
final statement follows by a union bound.

E.3 Proof of Lemma 4.3

Proof. The proof is a straightforward reduction to QDDH, or rather IND-CPA
security of ElGamal encryption. We argue by hybrid games. The first hybrid is
Exp0(A).

The second hybrid modifies the computation of CI to CI = C′
I + (0,MI) for

C′
I ← G2. As the distribution is unaffected, this change is does not affect the

output probabilities.
The third and final change replaces C′

I ← G2 by C′
I = tI · pkI for tI ← G2.

This the same as Exp1(A). Observe that the tuples (pkI,1, CI,0, CI,1) are either
uniformly random (except G), or DDH tuples. Hence, the indistinguishability is
a direct reduction to QDDH with Q = Qpar.

E.4 Proof of Theorem 4.4

Proof. Denote by σ = (M$, π) the output of a honest signing session. We need
to show that π = (Aelg,Adh, γ, γdh, zelg, zdh) is a valid OR-proof for statements
xdh := (G,D) and xelg := (pk,C,M$). Let γ′ := Hch(xdh,xelg,Aelg,Adh) and
γelg := γ′ − γdh. By construction, we have γ′ = γ, where γ is the challenge. It
remains to show that

Verifyelg(xelg,Aelg, γelg, zelg) = 1 ∧ Verifydh(xdh,Adh, γdh, zdh) = 1.

We show that both transcripts verify below. Below, for some transcript τx =
(Ax, γx, zx), we denote τx[A] = Ax, τx[γ] = γx and τx[z] = zx for convenience.

Non-zero Encryption. Let us show that Verifyelg(xelg,Aelg, γelg, zelg) = 1.
Note that by Lemma 2.9, the simulator Simelg outputs a pair (Aelg, zelg) such

that

Φelg(C
∗, z∗

elg) = A∗
elg + γ∗

elg(0,M
∗
$).

Denote by τ∗ := (A∗
elg, γ

∗
elg, z

∗
elg) the accepting transcript.

Let us show that after the transformation highlighted with , the modified
transcript τ ′ := τ∗+((0, t ·A∗

elg,0), 0, 0) verifies with respect to x′
elg = (pkI ,C,M∗

$)

41

where C = CI −CM = C∗ + tpkI :

Φelg(C, τ ′[z]) = Φelg(C
∗ + tpkI , τ

∗[z])

= τ∗[z] ·

(
pkI,0 C∗

0 + tpkI,0

pkI,1 C∗
1 + tpkI,1

)
= τ∗[z] ·

(
pkI C∗) + τ∗[z] ·

(
0 tpkI

)
= Φelg(C

∗, τ∗[z]) + (0, t · τ∗[Aelg,0])

= τ∗[A] + (0, t · τ∗[Aelg,0])] + τ∗[γ] · (0,M$)

= τ ′[A] + τ ′[γ] · (0,M$)

Now, let us show that after the transformation highlighted with , the
modified transcript τ1 := τ∗ + (Φelg(C

∗, z∗
elg) , 0, z

′
elg) still verifies with respect

to x∗
elg:

Φelg(C
∗, τ1[z]) = Φelg(C

∗, z∗
elg + z′

elg)

= Φelg(C
∗, z∗

elg) + Φelg(C
∗, z∗

elg)

= A∗
elg + γ∗

elg(0,M
∗
$) + Φelg(C

∗, z∗
elg)

= τ1[A] + τ1[γ](0,M
∗
$).

Next, let us show that after the transformation highlighted with , the modified
transcript τ2 := τ1 + (− γ′

elg(0,M
∗
$) , γ

′
elg , 0) still verifies with respect to x∗

elg:

Φelg(C
∗, τ2[z]) = Φelg(C

∗, τ1[z])

= τ1[A] + τ1[γ](0,M
∗
$)

= τ1[A] + γ∗
elg(0,M

∗
$) +γ′

elg(0,M
∗
$)− γ′

elg(0,M
∗
$)

= τ1[A] + (γ∗
elg + γ′

elg)(0,M
∗
$) −γ

′
elg(0,M

∗
$)

= τ2[A] + τ2[γ](0,M
∗
$).

Next, let us show that after the transformation highlighted with , the modified
transcript τ3 := (α′· τ2[A], τ2(γ), α′· τ2[z]) still verifies with respect to x′

elg =

(pkI ,C
∗,M$), where M$ = α′ ·M∗

$:

Φelg(C
∗, τ3[z]) = Φelg(C

∗, α′· τ2[z])

= α′· Φelg(C
∗, τ2[z])

= α′· (τ2[A] + τ2[γ](0,M
∗
$))

= α′· τ2[A] + τ2[γ](0, α
′·M∗

$)

= τ3[A] + τ3[γ](0,M$).

42

At this point, we have applied all the transformations, and every time, they
mapped accepting transcripts to accepting transcripts. Thus, the non-zero en-
cryption part of the protocol is correct.

DDH. This follows as above as for the transformations highlighted with and
only linearity of the map is required, and we omit details.

E.5 Proof of Lemma 5.3

Proof. Let us assume that there exist two such challenges γelg,1 and γelg,2. By
special soundness, there exists welg = (x, y) ∈ Z2

p such that yH = xG and
M$ = yC1 − xC0 by definition of Lelg (cf. Eq. (3.2)). As previously, we can show
that y ̸= 0 (cf. final paragraph in the proof of Theorem 4.5). Dividing by y, we
obtain H = h ·G, where h := x/y, and 1/y ·M$ = C1 − hC0. As C = t · pk, we
have 1/y ·M$ = tH − h(tG) = 0. As M$ ̸= 0, this is a contradiction.

E.6 Proof of Theorem 5.5

Proof. Let A be a PPT adversary against strong one-more unforgeability of
BSsufneq. Let G be a group of prime order p with generator G. We use the same
conventions and notations as in the proof of Theorem 4.5. That is, for random
oracle Hxyz ∈ {HM ,Hch,Hpar,HΠ,Hcrs}, denote by Qxyz the number of oracle
queries to Hxyz. Also, we assume that Hxyz queries made by the game (e.g., during
signing queries or verification) count towards Qxyz. Denote by QS the number of
A’s signing queries. We proceed with a sequence of games Game i and denote by
εi the advantage of A in Game i (i.e., the probability that Game i outputs 1).

Game 0 (Honest). This game is the real strong one-more unforgeability game for
scheme BSsufneq. Recall that oracles HM ,Hch,Hpar,HΠ,Hcrs are modeled as random
oracles. For convenience, let us recap the game below.

The game first samples vk = D and sk = d2 via BSsufneq.KeyGen. That is, it
samples d2 ← Zp and D1 ← G, then sets D3 := d2D1 and D = (D1, D2, D3). Next,
the game sends vk to A and provides access to the random oracles and signing
oracles OBSign2 ,OBSign3 ,OBSign3 . In the end, A outputs a common message I and
forgeries (µj , σj)j∈[Qfrg]. The game outputs 1 iffOBSign3 was queried at most Qfrg−1
times with common message I, all message-signature pairs {(µj , σj)}j∈[Qfrg] are
pairwise-distinct, and all signatures verify (i.e., Sneq.Verify(vk,M j , I, σj) = 1 with
M j := HM (µj)). We consistently mark values x associated to the forgeries with x.
In particular, we parse σj = (M$j , πj) with πj = (Aelg,j ,Adh,j , γelg,j , γdh,j , zelg,j ,

zdh,j). Also, we denote πxyz,j := (Axyz,j , γxyz,j , zxyz,j) for xyz ∈ {elg, dh}.
We identify each signing session with a session identifier sid provided as input

in OBSign2 and OBSign3 . The signing oracles behave as follows:

– OBSign2(sid): The game sets xdh := (G,D) and (A∗
dh, stdh) ← Initdh(xdh, d2),

where vk = D and sk = d2. Note that common message I is not yet specified.

43

(This can be delayed until OBSign3 .) The game stores stdh in its state for sid
and outputs

A∗
dh.

– OBSign3(sid, I,C
∗
M , πM): The game aborts if the state for sid does not contain

(exactly) stdh, else it sets (pkI ,CI) := Hpar(I). Then, it verifies πM, i.e., it sets
xM := (pkI ,C

∗
M) and crsM := Hcrs(0), and aborts if ΠM.Verify

HΠ(crsM,xM, πM) ̸=
1. Then, it sets up ciphertext C∗ := CI −C∗

M and target M∗
$ ← G×, and

computes Σ-protocol messages for x∗
elg := (pkI ,C

∗,M∗
$). That is, it samples

γ∗
elg ← Zp and sets (A∗

elg, z
∗
elg) ← Simelg(x

∗
elg, γ

∗
elg). Note that the first flow

xdh := (G,D) was already output in OBSign2 . The game further stores γ∗
elg

and z∗
elg in its state for sid, and outputs

(M∗
$,A

∗
elg,A

∗
dh).

– OBSign3(sid, γ
∗): The game retrieves γ∗

elg, z
∗
elg and stdh from the state for

sid (and aborts if this is not possible). Then, it sets γ∗
dh := γ∗ − γ∗

elg and
z∗
dh ← Respdh(stdh, γ

∗
dh). The game empties its state for sid and outputs

(z∗
elg, z

∗
dh, γ

∗
elg).

By definition, we have

AdvOMSUF
BSsuf

neq

A (λ) = ε0.

Before we proceed with our game sequence, let us define three different games
Game 0.1,Game 0.2,Game 0.3 by modifying the win condition in Game 0 such
that

ε0 ≤ ε0.1 + ε0.2 + ε0.3.

Game 0.1 (Distinct messages). This game is identical to Game 0, except that
after adversary A outputs its forgeries (µj , σj)j∈[Qfrg], the game checks that

all message-commitment pairs {(µj ,Adh,j)}j∈[Qfrg] are pairwise distinct, (I)

that is, each forgery consists of distinct message and Σdh-commitment pairs.
Game 0.2 (Adh reuse with distinct γdh). This game is identical to Game 0,
except that after adversary A outputs its forgeries (µj , σj)j∈[Qfrg], the game checks
that

∃j, k ∈ [Qfrg] : j ̸= k, µj = µk,Adh,j = Adh,k, γdh,j ̸= γdh,k, (II)

that is, the j-th and k-th forgery share the same message and Σdh commitments,
but the Σdh challenges are distinct.
Game 0.3 (Adh reuse with same γdh). This game is identical to Game 0,
except that after adversary A outputs its forgeries (µj , σj)j∈[Qfrg], the game
checks that

∃j, k ∈ [Qfrg] : j ̸= k, µj = µk,Adh,j = Adh,k, γdh,j = γdh,k, (III)

44

that is, the j-th and k-th forgery share the same message and Σdh commitments,
and the Σdh challenges are identical.

Case distinction: Clearly, the conditions in Eqs. (I), (II) and (III) cover all
possible forgery types of A. Thus, we have ε0 ≤ ε0.1 + ε0.2 + ε0.3. Lemmas E.1
to E.3 yields that there are reductions Bcrs, BQDDH,Bdl such that

AdvOMSUF
BSsuf

neq

A (λ) ≤ 2AdvCRSΠm,ExtSetup
Bcrs

(λ,QΠ) + AdvDLOGG
dl(λ)

+ (QM + 1) ·Qpar ·
(
AdvQDDHG

Bdh
(λ,Qpar) + AdvExtΠm,Ext

Bext
(λ,QΠ)

)
+

2QS

p
+

Q2
M

p
+

1 +Qch

p
+

QM ·Q2
ch

p
.

Lemma E.1. There are reductions Bcrs, BQDDH whose running time is roughly
that of the OMSUF game, such that

ε0.1 ≤ AdvCRSΠm,ExtSetup
Bcrs

(λ,QΠ) +
QS

p
+

Q2
M

p
+

1 +Qch

p

+QM ·Qpar ·
(
AdvQDDHG

Bdh
(λ,Qpar) + AdvExtΠm,Ext

Bext
(λ,QΠ)

)
.

Lemma E.2. There are reductions Bcrs, BQDDH,Bdl whose running time is roughly
that of the OMSUF game, such that

ε0.2 ≤ AdvCRSΠm,ExtSetup
Bcrs

(λ,QΠ) +
QS

p
+ AdvQDDHG

Bdh
(λ,Qpar)

+ AdvExtΠm,Ext
Bext

(λ,QΠ) + AdvDLOGG
dl(λ).

Lemma E.3. There is a reduction BQDDH whose running time is roughly that
of the OMSUF game, such that

ε0.3 ≤ QM ·
(
AdvQDDHG

Bdh
(λ,Qpar) +

Q2
ch

p

)
.

This concludes the proof of Theorem 5.5.

Below, we prove the remaining Lemmas E.1 to E.3 in Appendices E.7 to E.9,
respectively.

E.7 Proof of Lemma E.1

Proof. Observe that if all pairs (µj ,Adh,j) are pairwise distinct, then so are the
messages M j = HM (µj ,Adh,j) with high probability. Now, essentially the same
argument as in the proof of Theorem 4.5 gives us the statement. Most of the
proof is almost verbatim, but we elaborate below for completeness. We highlight
when the argument differs via .
Game 1 (Honest). The game is identical to Game 0.1 and we have

ε0.1 = ε1.

45

Game 2 (Abort if HM collision). The game aborts its entire execution if there
is a collision in HM . By a standard birthday-bound argument, we have

|ε1 − ε2| ≤
Q2

M

p
.

Game 3 (Extract M from πM). Before sending vk to A, the game sets crsM ←
ExtSetup(1λ) and programs Hcrs(0) := crsM. Later, on every OBSign2 query of
the form (sid, I,C∗

M , πM), after verifying πM, the adversary extracts the message
M ← Ext((td,Q), (xM, πM)) via πM. Here, Q is a list containing all HΠ so far.

Note that while we already extract the message, we do not use the extracted
value within the simulation yet. It is straightforward to construct a reduction B3
with running time similar to A such that

|ε2 − ε3| ≤ AdvCRSΠm,ExtSetup
B3

(λ,QΠ).

At this point, the game does not know whether M is actually a witness for
relation R̃M. This can readily be verified via the secret key skI associated to pkI .
Yet, because the simulation cannot depend on skI for subsequent proof steps, we
cannot yet add an explicit abort condition that that relies on skI . Nevertheless,
it is useful to know the extracted message M for the next proof steps.
Game 4 (Guess I). We guess the first query to Hpar such that the forgeries’
common message I is provided as input. That is, the game samples iI,A ← [Qpar]
at its start. When A outputs common message I and its forgeries, the game
additionally checks whether I was queried for the first time to Hpar on the iI,A-th
query. If not, the game aborts its entire execution.

Observe that such a query must exist, as we also count the game’s Hpar queries
and the game evaluates Hpar on input I when verifying the forgeries. As the guess
iI,A is hidden from A, we have that

ε3 ≤ Qpar · ε4.

We stress that at this point, the game knows I after the first Hpar query with
input I was made. In particular, as the game evaluates Hpar on common message
I during each OBSign2 query, the game knows the forgeries’ common message I

at latest when the first OBSign2 query with common message I is made.

Game 5 (Guess unsigned M in forgery) . We guess the first query iM,A to
HM such that the following two conditions hold:

(1) The input XiM,A to the iM,A-th HM query is part of A’s forgeries and XiM,A

was never queried to HM beforehand, i.e., there exists j ∈ [Qfrg] such that
XiM,A = (µj ,Adh,j).

(2) No session with common message I is completed if M = HM (XiM,A) is
extracted from proof πM (cf. game 3).

Again, the game aborts its execution if the guess was incorrect.

46

Here, we crucially rely on Eq. (I). If A is successful, then A’s output con-
tains Qfrg distinct message-commitment pairs {(µj ,Adh,j)}j∈[Qfrg]. As HM is
collision-free (cf. game 2), there are also Qfrg distinct hashed messages M j :=
HM (µj ,Adh,j). As there are at most Qfrg − 1 completed sessions for common
message I, there must be at least one hashed message M ∈ {M1, . . . ,MQfrg

} that
was never extracted in any of these completed Qfrg − 1 sessions. Consequently,
such an index iM,A must exist, and since the guess is hidden from A, we have

ε4 ≤ QM · ε5.

In the following, we denote by M the output of the iM,A-th HM query. Note that
if A is successful, we can assume that M is known by the game from the start
on.9

Game 6 (Abort if M∗
I is extracted). Initially, the game samples a random

message M∗
I ← G. Then, the game aborts its entire execution if M∗

I is extracted
from πM in OBSign2 for any common message I. That is, after setting M ←
Ext((td,Q), (x, πM)) in OBSign2 (cf. game 4), the game checks if M = M∗

I . If so,
the game aborts its entire execution, else it continues as before.

As M∗
I is never used within in the simulation (except for the abort condition),

a union bound yields

|ε5 − ε6| ≤
QS

p
.

Game 7 (Setup CI with specific messages). We now setup the ciphertexts
CI output by Hpar depending on whether the forgeries’ common message I
was queried. That is, on the first Hpar query with input I, the game sets up
pkI ← {G} × G at random and encrypts M in CI , i.e., computes ElGamal
ciphertext CI := (0,M) + t · pkI for t← Zp. The game outputs (pkI ,CI). On all
other fresh Hpar queries on input I, the game sets up pkI at random and encrypts
M∗

I in CI , i.e., sets CI := (0,M∗
I) + t · pkI . Again, outputs (pkI ,CI). Note that

M∗
I is chosen as in Game 6.
Recall that in the previous game, all Hpar outputs CI are uniform over G2. In

this game, the ciphertexts CI are setup with messages chosen by the game. This
is exactly the setting in Lemma 4.3. As there are Qpar oracle queries in total,
there is an adversary B7 on QDDH with running time roughly that of A such
that

|ε6 − ε7| ≤ AdvQDDHG
B7
(λ,Qpar).

As consequence of Game 6 and Game 7, the CI output by Hpar are setup in two
manners. Note that Remark 4.6 also holds in this proof. That is, the ciphertexts
CI given by (pkI ,CI) = Hpar(I) are setup as follows.

(1) For the forgery’s common message I = I, the ciphertext CI encrypts the
guessed message M (cf. Game 5).

(2) For other common messages I ̸= I, the ciphertext CI encrypts M∗
I . Also,

M∗
I is never extracted within OBSign2 (else the game aborts).

9The game initially samples M ← G and outputs M on the iM,A-th HM query.

47

In particular, C∗ = CI −C∗
M encrypts a non-zero value if I = I and M ≠ M or

if I ̸= I (cf. Game 6 and Game 7).
Game 8 (Setup pkI with known secret key). On every Hpar query, the game
samples skI ← Zp and sets pkI,1 := skI · G. It computes CI as in Game 7 and
outputs (pkI ,CI) with pkI := (G, pkI,1). Clearly, both games are identically
distributed and we have

ε7 = ε8.

Game 9 (Abort if M is an invalid R̃M witness). We now abort if the
extracted message M is not a witness for relation R̃M. That is, after the game
extracts M in OBSign2 from the proof πM for statement xM = (pkI ,C

∗
M), it

decrypts C∗
M and aborts if the obtained message does not match M . More

formally, the game sets M ′ ← C∗
M,1 − skI · C∗

M,0 and aborts its entire execution
if M ̸= M ′.

We can show that the abort probability is negligible under straightline R̃M-
extractability of Πm. It is easy to see that M = M ′ iff (xM,M) ∈ R̃M (cf.
Eq. (4.2)). In conclusion, we can construct an adversary B9 with running time
roughly that of A such that

|ε8 − ε9| ≤ AdvExtΠm,Ext
B9

(λ,QΠ)

Our next goal is to transition to a game where the Σelg transcripts are
computed via the known witness, and the Σdh transcripts are simulated. For
this, it is important that the statement x∗

elg = (pkI ,C
∗,M∗

$) is in the language
Lelg. The abort conditions in previous games make sure that this is indeed true,
except if

I = I and M = M. (⋆)

In case Eq. (⋆) holds, the game still simulates the Σelg transcript.10 Also, note
that in order to compute Σelg transcripts honestly, we need to find a witness for
x
∗
elg. For this, we setup M∗

$ based on the message M∗ encrypted in C∗ and by
randomizing M∗ with known discrete logarithm y. Observe that then, the game
knows a witness (y · skI , y) for Relg in all signing sessions except if Eq. (⋆) holds.
We elaborate below.
Game 10 (Compute Σelg transcripts honestly). Now, the game computes
the Σelg transcript (A∗

elg, γ
∗
elg, zelg) via the witness except if Eq. (⋆) holds. More

precisely, in OBSign2 after extracting M , the game sets M∗ := M −M if I = I

and M ̸= M . Else, if I ̸= I, then it sets M∗ := M∗
I −M . Note that M∗ is the

message encrypted in C∗. Then, the game sets M∗
$
:= y ·M∗ for y ← Z×

p and
w

∗
elg := (skI , y). If otherwise Eq. (⋆) holds, then M∗

$ ← G× is still sampled at
random. Note that x∗

elg = (pkI ,C
∗,M∗

$) is set as before. Then, except if Eq. (⋆)
holds, the game samples γ∗

elg ← Zp and sets (A∗
elg, stelg) ← Initelg(x

∗
elg,w

∗
elg).

Otherwise, it simulates (A∗
elg, z

∗
elg)← Simelg(x

∗
elg, γ

∗
elg) as before. In OBSign3 , the

10In this case, both transcripts are simulated and the game is not able to answer the
OBSign3 oracle. But by definition of M , the game aborts its execution if this occurs.

48

game sets z∗
elg ← Respelg(stelg, γ

∗
elg) if Eq. (⋆) holds. All other values are computed

as in Game 9. Note that Eq. (⋆) never occurs in OBSign3 due to the choice of M
(cf. game 5).

First, let us show that (x∗
elg,w

∗
elg) ∈ Relg (cf. Eq. (3.2)). Due to the abort

condition introduced in Game 9, we know that M = C∗
M,1 − skI · C∗

M,0. Also,
recall that C∗ = CI −C∗

M . Together with Remark 4.6, the above yields that

M∗ = C∗
1 − skI · C∗

0 .

Also, by construction we have pkI,1 = skI · pkI,0. Multiplying both aforemen-
tioned equations by y yields that (x∗

elg,w
∗
elg) ∈ Relg. Thus, the Σelg transcripts

(A∗
elg, γ

∗
elg, z

∗
elg) in Game 9 and Game 10 are identically distributed by HVZK. Also,

by construction M∗
$ is distributed uniform over G×, as M∗ ̸= 0 (cf. Remark 4.6).

In conclusion, we have
ε9 = ε10.

Game 11 (Simulate Σdh transcripts) . Now, the game simulates Σdh tran-
script (A∗

dh, γ
∗
dh, zdh) in all signing sessions. As A∗

dh is already output in the
additional OBSign1 oracle, this step slightly differs from the OMUF proof of BSufneq.
In particular, in OBSign1 , the game samples γ∗

dh ← Zp and sets (A∗
dh, zdh) ←

Simdh(x
∗
dh, γ

∗
dh) instead of computing Adh via Initdh. It outputs the simulated A∗

dh.
In OBSign2 , the game does not sample γ∗

elg at random except if Eq. (⋆) holds.
Instead, the challenger sets γ∗

elg := γ∗ − γ∗
dh in OBSign3 , and uses the simulated

response zdh computed in OBSign1 . As if Eq. (⋆) occurs in OBSign3 , the game aborts
its execution, we leave the simulation behavior in OBSign3 unspecified in that case.
Other than the above, the game behaves as in Game 10.

Even though the Σdh commitment A∗
dh is output in OBSign1 , the proof is as

in game 10 in the OMUF proof of BSufneq. If Eq. (⋆) does not hold in the signing
session, then clearly γ∗

elg and γ∗
dh are distributed identically in Game 10 and

Game 11. Further, the Σdh transcript (A∗
dh, γ

∗
dh, zdh) is identically distributed

under HVZK. If Eq. (⋆) holds, then both Σdh and Σelg transcripts are simulated.
Here, it suffices to argue that the OBSign1 and OBSign2 outputs A∗

dh and (M∗
$,A

∗
elg),

respectively, in Game 11 are distributed as in Game 10. As the distribution of
A∗

elg and M∗
$ remains unchanged, it suffices to inspect Adh. By HVZK, a simulated

Adh as in Game 11 and an honestly computed Adh as in Game 10 are distributed
identically. Consequently, we have

ε10 = ε11.

Observe that in Game 11, the secret key sk = d2 is not required anymore for
simulation.
Game 12 (Sample non-DDH tuple D). In this game, we change how the vk
is setup. Instead of sampling a DDH tuple D, the game samples D← G3 instead.
Then, the game sets vk = D and proceeds as in Game 11.

We can construct an adversary B12 against DDH with running time similar
to A and with

|ε11 − ε12| ≤ AdvDDHG
B12

(λ).

49

Bounding A’s advantage in Game 12 : Denote by σ the forgery associated to

message M , i.e., σ := σj for j ∈ [Qfrg] such that M = HM (µj ,Adh,j). Also, let
us parse σ = (M$, π) with π = (Aelg,Adh, γelg, γdh, zelg, zdh). Roughly, as π is an
OR-proof for the language Ldh ∪ Lelg and as xdh := (G,D) /∈ Ldh except with
probability 1/p, it must hold that xelg := (pkI ,C,M$) ∈ Lelg by soundness of π,
where C = CI −CM with CM = (0,M). Further, as M$ ̸= 0, the ciphertext C
is not an encryption of 0 But as both CI and CM encrypt M by construction,
A cannot win except with negligible probability. This can be shown as in final
paragraph Theorem 4.5’s proof and we omit further details. We have

ε12 ≤
1 +Qch

p
.

Lemma E.1 follows by collecting all above bounds.

E.8 Proof of Lemma E.2

Proof. Recall that in this case, there are distinct j, k ∈ [Qfrg] such that the
j-th and k-th forgery share the same message and Σdh commitments, but the
Σdh challenges are distinct. Then, the transcripts πdh,j πdh,k fulfil the conditions
to invoke special soundness. In particular, we obtain a witness w that xdh =
(G,D) ∈ Ldh. This allows to break the DLog assumption if we manage to sign
without w. For this, it suffices to sign via the nez branch instead of the dh branch.
Game 1 (Honest). The game is identical to Game 0.2 and we have

ε0.2 = ε1.

Game 2 (Extract M from πM). Before sending vk to A, the game sets crsM ←
ExtSetup(1λ) and programs Hcrs(0) := crsM. Later, on every OBSign2 query of
the form (sid, I,C∗

M , πM), after verifying πM, the adversary extracts the message
M ← Ext((td,Q), (xM, πM)) via πM. Here, Q is a list containing all HΠ so far.

Note that while we already extract the message, we do not use the extracted
value within the simulation yet. It is straightforward to construct a reduction B2
with running time similar to A such that

|ε2 − ε3| ≤ AdvCRSΠm,ExtSetup
B2

(λ,QΠ).

Game 3 (Abort if M∗
I is extracted). Initially, the game samples a random

message M∗
I ← G. Then, the game aborts its entire execution if M∗

I is extracted
from πM in OBSign2 for any common message I. That is, after setting M ←
Ext((td,Q), (x, πM)) in OBSign2 , the game checks if M = M∗

I . If so, the game
aborts its entire execution, else it continues as before.

As M∗
I is never used within in the simulation (except for the abort condition),

a union bound yields

|ε2 − ε3| ≤
QS

p
.

50

Game 4 (Encrypt M∗
I in CI). We now encrypt M∗

I in all ciphertexts CI

output by Hpar. That is, on every fresh Hpar query, the game sets up pkI ←
{G}×G× at random and encrypts M∗

I in CI , i.e., computes ElGamal ciphertext
CI := (0,M∗

I) + t · ·pkI for t← Zp. The game outputs (pkI ,CI).
Recall that in the previous game, all Hpar outputs CI are uniform over G2.

In this game, the ciphertexts CI are setup with a message chosen by the game.
This is exactly the setting in Lemma 4.3. As there are Qpar oracle queries in total,
there is an adversary B4 on QDDH with running time roughly that of A such
that

|ε3 − ε4| ≤ AdvQDDHG
B4
(λ,Qpar).

As consequence of Game 3 and Game 4, the CI ciphertexts output by Hpar all
encrypt M∗

I .
Game 5 (Abort if M is an invalid R̃M witness). We now abort if the
extracted message M is not a witness for relation R̃M. That is, after the game
extracts M in OBSign2 from the proof πM for statement xM = (pkI ,C

∗
M), it

decrypts C∗
M and aborts if the obtained message does not match M . More

formally, the game sets M ′ ← C∗
M,1 − skI · C∗

M,0 and aborts its entire execution
if M ̸= M ′.

We can show that the abort probability is negligible under straightline R̃M-
extractability of Πm. It is easy to see that M = M ′ iff (xM,M) ∈ R̃M (cf.
Eq. (4.2)). In conclusion, we can construct an adversary B5 with running time
roughly that of A such that

|ε4 − ε5| ≤ AdvExtΠm,Ext
B5

(λ,QΠ)

Game 6 (Setup pkI with known secret key). On every Hpar query, the game
samples skI ← Zp and sets pkI,1 := skI · G. It computes CI as in Game 5 and
outputs (pkI ,CI) with pkI := (G, pkI,1). Clearly, both games are identically
distributed and we have

ε5 = ε6.

Our next goal is to transition to a game where the Σelg transcripts are
computed via the known witness, and the Σdh transcripts are simulated. As in
previous proofs, we need that x∗

elg = (pkI ,C
∗,M∗

$) is in the language Lelg. The
abort conditions in game 3 ensures this.
Game 7 (Compute Σelg transcripts honestly). Now, the game computes
the Σelg transcript (A∗

elg, γ
∗
elg, zelg) via the witness. More precisely, in OBSign2

after extracting M , the game computes the message M∗ := M∗
I −M encrypted

in C∗. Then, the game sets M∗
$
:= y ·M∗ for y ← Z×

p and w∗
elg := (skI , y), and

sets x∗
elg = (pkI ,C

∗,M∗
$) as before. Next, the game samples γ∗

elg ← Zp and sets
(A∗

elg, stelg)← Initelg(x
∗
elg,w

∗
elg), and then proceeds as before. In OBSign3 , the game

sets z∗
elg ← Respelg(stelg, γ

∗
elg).

We can show, e.g., as in the proof of Lemma E.1 (cf. game 10) that (x∗
elg,w

∗
elg) ∈

Relg and M∗ ∈ G×. By HVZK, the Σelg transcripts (A∗
elg, γ

∗
elg, z

∗
elg) and M∗

$ in
Game 6 and Game 7 are identically distributed. In conclusion, we have

ε6 = ε7.

51

Game 8 (Simulate Σdh transcripts). Now, the game simulates Σdh transcript
(A∗

dh, γ
∗
dh, zdh) in all signing sessions. The changes are as in game 11 in the proof

of Lemma E.1 and we omit details. As previously, we have

ε7 = ε8.

Observe that in Game 8, the secret key sk = d2 is not required anymore for
simulation.

Bounding A’s advantage in Game 8: We construct an adversary B on the DLog
assumption. In particular, B obtains DLog challenge X ∈ G. Then, B simulates
Game 8 to A except that it sets up vk = (D1, D2, D3) with D1 := d1G, D2 := X
and D3 := d1 · D2, where d1 ← Zp. Finally, A outputs forgeries such that
Eq (II) holds. That is, there are distinct j, k ∈ [Qfrg] such that µj = µk and
Adh,j = Adh,k but γdh,j ̸= γdh,k. Adversary B sets wdh ← Extdh(xdh, πdh,j , πdh,k)
and outputs wdh, where xdh = (G,D) and Extdh is the extractor of Σdh due to
special soundness (cf. Definition 2.4).

If A is successful, then πdh,j and πdh,k share Σdh commitment Adh,j = Adh,k

but have distinct challenges γdh,j ̸= γdh,k. Thus, it holds that (wdh,xdh) ∈ Rdh

and consequently, the value wdh is the DLog of D2 = X. Consequently, we have

ε8 ≤ AdvDLOGG
B(λ).

Lemma E.2 follows by collecting all above bounds.

E.9 Proof of Lemma E.3

Proof. Recall that in in Game 0.3, the j-th and k-th forgery share the same
message µj = µk, Σdh commitments Adh,j = Adh,k and Σdh challenges γdh,j =
γdh,k. Then as Σdh has unique responses (cf. Definition 2.8), it follows that both
Σdh transcripts are identical, i.e., πdh,j = πdh,k. Intuitively, this means that
the adversary does not “use” the dh branch to produce the forgery. Thus, the
adversary must use the elg branch in a non-trivial manner to come up with the
forgeries. If we now puncture the elg branch for M := HM (µj ,Adh,j), then this
should not be possible. We formalize this intuition below.
Game 1 (Honest). The game is identical to Game 0.3 and we have

ε0.3 = ε1.

Game 2 (Guess duplicated M in forgery). We guess the first query iM,A to
HM such that the following condition holds:

(1) The input XiM,A to the iM,A-th HM query was never queried to HM before-
hand.

(2) The input XiM,A is part of A’s forgeries twice and fulfils III, i.e., there
exists distinct j, k ∈ [Qfrg] such that XiM,A = (µj ,Adh,j) = (µk,Adh,k) and
γdh,j = γdh,k.

52

Again, the game aborts its execution if the guess was incorrect.
If A is successful, then such a query must exists by Eq. (III) and since the

guess is hidden from A, we have

ε1 ≤ QM · ε2.

In the following, we denote by M the output of the iM,A-th HM query. As before,
we can assume that M is known by the game from the start on if A is successful.
Game 3 (Encrypt M in CI). We now encrypt M in all ciphertexts CI output
by Hpar. That is, on every fresh Hpar query, the game sets up pkI ← {G} ×G×

at random and encrypts M in CI , i.e., computes ElGamal ciphertext CI :=
(0,M) + t · pkI for t← Zp. The game outputs (pkI ,CI).

Recall that in the previous game, all Hpar outputs CI are uniform over G2.
In this game, the ciphertexts CI are setup with a message chosen by the game.
This is exactly the setting in Lemma 4.3. As there are Qpar oracle queries in total,
there is an adversary B3 on QDDH with running time roughly that of A such
that

|ε2 − ε3| ≤ AdvQDDHG
B3
(λ,Qpar).

As consequence of Game 2 and Game 3, the CI ciphertexts output by Hpar all
encrypt M .

Bounding A’s advantage in Game 3: Let us assume thatA is successful in Game 3.
Then, there are two distinct indices j, k ∈ [Qfrg] such that (µj ,Adh,j) = (µk,Adh,k)

and γdh,j = γdh,k. Also, we know that CI encrypts M = HM (µj ,Adh,j).
Denote C := CI − (0,M) = t · pkI for t ∈ Zp as sampled in Hpar. By

construction, the statements xelg,j = (pkI ,C,M$j) and xelg,k = (pkI ,C,M$k)
are associated to πelg,j and πelg,k, respectively. By Σdh’s unique response property
(cf. Definition 2.8), it holds that πdh,j = πdh,k. Let us denote Adh := Adh,j and
γdh := γdh,j . We know that

γj = Hch(xdh,xelg,j ,Aelg,j ,Adh) = γelg,j + γdh, (E.1)

γk = Hch(xdh,xelg,k,Aelg,k,Adh) = γelg,k + γdh, (E.2)

where xdh = (G,D). As (µj , σj) ̸= (µk, σk), we know by Σelg’s unique response
property that (M$j ,Aelg,j) ̸= (M$k,Aelg,k) must hold.11 Consequently, we have
that γj and γk are distributed independently. As both transcripts πelg,j and πelg,k

are valid and as Mj ,Mk ∈ G×, it must hold that γelg,j and γelg,k are the unique
challenges specified as in Lemma 5.3. By substracting Eq. (E.2) from Eq. (E.1),
we obtain

γj − γk = γelg,j − γelg,k.

11As µj = µk, we have σj ̸= σk. If we had (M$j ,Aelg,j) = (M$k,Aelg,k), then as
Adh,j = Adh,k are identical, the challenges γj and γk derived via Hch as in Eqs. (E.1)
and (E.2) were identical. Then, as γdh,j = γdh,k, we have γelg,j = γelg,k. The unique
response property of Σelg now implies σj = σk and yields a contradiction.

53

As the right side is determined by the input to Hch and the Hch-outputs on the
left side is uniform, the probability that such a pair of Hch queries exists is at
most Q2

ch/p. This follows, e.g., via a simple union bound. In total, we have

ε3 ≤
Q2

ch

p
.

Lemma E.3 follows by collecting all above bounds.

54

BSsuf
neq.BSign(sk, I) BSsuf

neq.BUser(vk, µ, I)

1 : xdh := (G,D)

2 : (A∗
dh, stdh)← Initdh(xdh, sk)

A∗
dh

3 : z′dh ← Zp , γ′
dh ← Zp

4 : Adh := A∗
dh + Φdh(z

′
dh) − γ′

dhD

5 : M := HM (µ,Adh)

6 : (pkI ,CI)← Hpar(I)

7 : t← Zp ,C∗
M := (0,M) + t · pkI

8 : xM := (pkI ,C
∗
M),wM := (M, t), crsM := Hcrs(0)

9 : πM ← ΠM.Prove
HΠ(crsM,xM,wM)

C∗
M , πM

10 : (pkI ,CI)← Hpar(I)

11 : xM := (pkI ,C
∗
M), crsM := Hcrs(0)

12 : req ΠM.Verify
HΠ(crsM,xM, πM) = 1

13 : C∗ := CI −C∗
M ,M∗

$ ← G×

14 : x
∗
elg := (pkI ,C

∗,M∗
$)

15 : γ∗
elg ← Zp, (A

∗
elg,z

∗
elg)← Simelg(x

∗
elg, γ

∗
elg)

M∗
$,A

∗
elg

16 : req M∗
$ ̸= 0

17 : z′
elg ← Z2

p , γ′
elg ← Zp

18 : α′ ← Z×
p ,M$:= α′M∗

$

19 : CM := (0,M) = C∗
M − t · pkI

20 : C := CI −CM = C∗ + t · pkI

21 : A′
elg := Aelg + (0, t ·A∗

elg,0)

22 : Aelg := α′·
(
A′

elg + Φelg(C,z∗
elg) − γ∗

elg(0,M
∗
$)

)
23 : xelg := (pkI ,C,M$),xdh := (G,D)

24 : γ := Hch(xdh,xelg,Aelg,Adh)

25 : γ∗ := γ − γ′
dh − γ′

elg
γ∗

26 : γ∗
dh := γ∗ − γ∗

elg

27 : z∗
dh ← Respdh(stdh, γ

∗
dh)

z∗
elg, z

∗
dh, γ

∗
elg

28 : x
∗
elg := (pkI ,C

∗,M∗
$)

29 : req Verifyelg(xA
∗
elg, γ

∗
elg,z

∗
elg)

30 : req Verifydh(A
∗
dh, γ

∗
dh,z

∗
dh)

31 : γelg := γ∗
elg + γ′

elg

32 : γdh := γ∗
dh + γ′

dh

33 : zelg := α′· (z∗
elg + z′

elg)

34 : zdh := z∗dh + z′dh

35 : π := (Aelg,Adh, γelg, γdh,zelg, zdh)

36 : σ := (M$, π)

Fig. 2: The signing session for BSsuf
neq for message µ ∈ {0, 1}∗ and common message

I ∈ {0, 1}∗. The signer and user abort (i.e., output ⊥) if req C is evaluated for a false
condition C. Recall that sk = d2 is a witness for Ldh membership of vk = D. We follow
the color conventions in Fig. 1. The main difference between BSsuf

neq and BSuf
neq is that

the message M is derived from HM on input (µ,Adh) instead of just µ.

55

	Blind Signatures from Proofs of Inequality
	Introduction
	Our Contributions
	Technical Overview
	Concurrent work

	Preliminaries
	Relations and -Protocols
	Non-Interactive Proof Systems
	(Partially) Blind Signatures

	Baseline Signature Scheme
	Preparations
	Construction

	Blind Signature in 4 Moves
	Additional Preparations
	Construction
	Security Analysis

	Blind Signature in 5 Moves
	Preparations
	Construction
	Security Analysis

	Achieving Statistical Blindness
	Related Work
	Omitted Preliminaries
	Non-Interactive Proof Systems
	(Partially) Blind Signatures

	Achieving Statistical Blindness
	Deferred Figures
	Deferred Proofs
	Proof of Lemma 2.9
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Lemma 5.3
	Proof of Theorem 5.5
	Proof of Lemma E.1
	Proof of Lemma E.2
	Proof of Lemma E.3

