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Abstract

A universal thresholdizer (UT), constructed from a threshold fully homomorphic encryption by Boneh et. al
, Crypto 2018, is a general framework for universally thresholdizing many cryptographic schemes. However,
their framework is insufficient to construct strongly secure threshold schemes, such as threshold signatures
and threshold public-key encryption, etc.

In this paper, we strengthen the security definition for a universal thresholdizer and propose a scheme
which satisfies our stronger security notion. Our UT scheme is an improvement of Boneh et. al ’s construction
at the level of threshold fully homomorphic encryption using a key homomorphic pseudorandom function.
We apply our strongly secure UT scheme to construct strongly secure threshold signatures and threshold
public-key encryption.
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1 Introduction

Threshold cryptography [DF89] refers to distributing a privileged operation that requires a secret key, like
signing in a signature scheme and decryption in an encryption key, among n parties so that any t of them can
collaborate to perform the final computation. Distributing shares of the secret key between multiple parties
make the system fault-tolerant. The reasons are: 1) A corrupted number of parties below the threshold value
are not able to evaluate the cryptographic primitive. 2) The system would perform correctly, even in the pres-
ence of few corrupt parties, if honest parties beyond the threshold value participate in the evaluation. Due to
the importance of protecting the secret key, almost all the cryptographic primitives have their correspond-
ing threshold system. Examples are threshold public-key encryption schemes [CG99], threshold signature
schemes [Sho00], threshold pseudorandom functions [NPR99], threshold symmetric encryption [AMMR18],
threshold message authentication codes [MPS+02], etc.

In a non-interactive threshold scheme, each party computes a partial output completely independently
of others and then any t partial outputs can be publicly combined to get the final output. A natural notion
of security then says that no polynomial time adversary must be able to compute the final output even if it
is given up to t − 1 partial outputs. Most of the papers on threshold cryptography model this by allowing
the adversary to get the partial secret keys of t − 1 parties. Ideally, the adversary should be allowed to
choose the t − 1 parties adaptively. However, achieving adaptive security is hard, and hence, generally the
security definitions restrict the adversary to output the t− 1 parties in the beginning. In addition, they also
disallow the adversary to ask the partial outputs on challenge inputs (for e.g., partial signature on challenge
message in threshold signature and partial decryption of challenge ciphertext in CCA security of threshold



PKE scheme) [GWW+13,dPKM+24,Bol02,BGG+18]. This notion of security was strengthened by Bellare,
et. al [BCK+22] in the context of threshold signatures, where the adversary is now allowed to output a
forgery on one of the messages for which it has already asked a partial signature. In more detail, let c be the
number of parties whose keys are given to the adversary. Then the adversary is allowed to output a forgery
on any message for which it has received at most t − 1 − c partial signatures3. They further showed that
some of the well-known signature schemes, BLS [BLS04,Bol03] and FROST [KG20] can, in fact, be proven
secure in their stronger security definition. BLS and FROST are based on classical assumptions based on
discrete logarithm problem and is thus not secure against a quantum adversary.

Motivated by Bellare et. al ’s work, we started with the question - is the only lattice based non-interactive
threshold signature scheme of Boneh et. al [BGG+18] (referred to as BGGJKRS from mow on) secure in
the stronger definition given by Bellare et. al ? We found that it is hard to prove the stronger security for
BGGJKRS in its current form. We discuss the issues in the technical overview. We observed that the stronger
definition can in fact be viewed as an adaptive version of the current definition, which explains the difficulty
in proving it. We provide a detailed discussion on adaptive nature of the Bellare et. al ’s stronger security
notion in technical overview.

We then improved BGGJKRS construction using key homomorphic pseudorandom functions (KHPRF),
which are standard PRF, with additional property that for all K1,K2, for all inputs x, PRF(K1, x) +
PRF(K2, x) = PRF(K1 + K2, x). We then show that our improved construction satisfies the stronger se-
curity notion of Bellare et. al .

Boneh et. al constructed the threshold signature from a tool called universal thresholdizer (UT), which
they defined and built from lattice based assumptions. The universal thresholdizer can be used as a compiler
to thresholdize any cryptographic primitive and is itself built from threshold FHE, which again, the authors
define and construct from any “special” FHE in the same paper. We realized that our improvement in
threshold signature scheme can actually be implemented at the level of TFHE so that it improves its security,
which in turn, improves the security of universal thresholdizer built from TFHE in a way that helps in
achieving the stronger security for any threshold cryptographic primitive that uses UT as the thresholdizer.
In the main body of this paper, we define the desired stronger notion of security for TFHE and UT and provide
a construction for TFHE that achieves this notion. We then show that the universal thresholdizer built from
our TFHE achieves the desired security. We finally show applications of stronger universal thresholdizer to
construct threshold signatures and CCA secure PKE with the stronger security. However, in the technical
overview, we describe the challenges and our ideas using the specific case of threshold signatures, because
some of the ideas, especially the adaptivity perspective of the stronger security definition is more clear when
viewed at the applications level, instead of TFHE or UT.

Our contributions:

– We strengthen the security definition of universal thresholdizer (UT) in [BGG+18], which is needed to
prove the stronger security of threshold cryptoprimitives built using the UT. In turn, we define stronger
security property for threshold FHE (TFHE) needed to prove the stronger security of UT.

– We improve the construction of TFHE in [BGG+18] to achieve the stronger security property, we define.

– Using our TFHE, we get the first lattice based construction of non-interactive threshold signature with
the stronger security as defined in [BCK+22,BTZ22].

– Along the lines of [BCK+22], we define a stronger security notion for CCA-PKE, and show that the
constructions in [BGG+18] satisfy this security if the universal thresholdizer UT satisfies stronger security.

– In [ASY22], Agrawal et. al constructed partially adaptive threshold signatures in random oracle model,
that allows the adversary to issue key queries (all at once) in the middle of the game. We combine our
technique with Agrawal et. al ’s to construct TFHE (and its applications) with stronger security while
also allowing the adversary to issue key queries (all at once) in the middle of the game.

3 Bellare et. al defined different levels of security improvements. However, in this work, we focus only on their
TS-UF-1 definition.
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1.1 Stronger Security from Adaptivity Perspective

A natural notion of security for t-out-of-n threshold signatures says that any PPT adversary A should not
be able to generate a signature on any message m∗ even if it gets (i) partial signatures on m∗ from up to
any t − 1 parties and (ii) complete (or any number of partial) signatures on messages m ̸= m∗. Item (ii)
is easy to provide and considered by all versions of unforgeability definition in the literature. For item (i),
A can obtain partial signatures on m∗ in two ways - (i) get the partial signing keys from the t − 1 parties
(ii) only get the partial signatures (but not the keys) on m∗ from these parties. Clearly, the adversary gets
more power in the first case. In an ideal situation, the adversary can adaptively decide which t− 1 parties to
corrupt. However, this natural notion of security (mostly referred to as adaptive unforgeability) is hard to
achieve and hence, most of the constructions in this area consider a selective notion of unforgeability where
the adversary must decide the set of corrupted parties in the beginning. There is also a notion of partial
adaptivity, where the adversary can choose the set of corrupted parties in the middle of the unforgeability
game (i.e. after seeing some (partial) signatures on other messages), but the entire set of corrupted parties
must be declared together [ASY22]. Since once the adversary has decided the set of corrupted parties, it
is always beneficial for it to ask the signing keys rather than just the partial signatures, these definitions
assume that the adversary gets the partial signing keys from t − 1 parties, and is not allowed to issue any
partial signing query on the challenge message m∗. However, we can also consider partial adaptivity in an
orthogonal direction, where the adversary divides the set of corrupted parties as fully corrupted, for which it
asks the signing keys and semi-corrupted from which it only asks the partial signature on m∗. The adversary
must output the set of fully corrupted parties selectively, i.e., in the beginning of the game, but can decide the
semi-corrupted parties adaptively throughout the game. This is the notion considered in [BCK+22,BTZ22]
under stronger security definition which they call as TS-UF-1. Indeed we can define security properties that
combine adaptivity in both the directions. In Fig. 1, we present different security properties that can be thus
obtained, and relation between them.

Between P2 and P∗
1, we could not show either of them implied by the other. However, this is not surprising

since both P∗
1 and P2 improve P1 in different directions.

What is interesting is that even P3 does not seem to imply P∗
1 except with a loss of factor Q, where Q is

the number of signing queries. This can be understood as follows. Let TS be any threshold signature scheme
and AP∗

1
be an adversary against P∗

1 security of TS. We want to show that if AP∗
1
exists then there exists an

adversary AP3
against P3 security of TS. The difficulty in the reduction comes when AP∗

1
issues a signing

query (m, i) such that m = m∗. In this situation, AP3
must not ask the partial signature from P3 challenger.

Instead it should ask for fski (the partial signing key of party i) and compute PartSign(i, fski,m) itself. But
the problem is that AP3 does not know when m = m∗. So, AP3 guesses m∗ as follows: let Qs be the number
of different messages queried for partial signatures. Then Qs ≤ Q, where Q is the total number of signing
queries. Guess an index k ∈ [Qs + 1] and assume the k-th unique message as m∗. Then, for each signing
query (m, i) with m ̸= m∗ from AP∗

1
, the reduction forwards the query to P3 challenger. For m = m∗, the

reduction queries for fski and computes the partial signature itself. Thus, P3 implies P∗
1, but with a loss of

factor Qs ≤ Q.
We summarize all the discussed notions in Figure 1. An arrow in the picture indicates a path to strengthen

a notion, i.e., it is not an implication.

1.2 Technical Overview

Our construction uses the BGGJKRS construction, which does not satisfy the stronger security notion, as the
base and builds upon it to get the stronger security. We first recall the BGGJKRS construction for threshold
signature.

Recap of BGGJKRS threshold signature. The BGGJKRS threshold signature scheme is a round optimal
(non-interactive) scheme built from a “universal thresholdizer” that can thresholdize a number of crypto-
graphic primitives. The thresholdizer is built from a thresholdized version of any “special” fully homomorphic
encryption (FHE) where the decryption of any ciphertext ct, using a key fsk, is a linear operation as ⟨ct, fsk⟩,
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Fig. 1. Threshold Signature security with different level of adaptivity. For any two properties, Pi, Pj , Pi → Pj means
that Pj is stronger than (at least as strong as) Pi.

which gives ⌊q/2⌉m + e, followed with rounding which gives m. Here, q is the working modulus and e is
a “small” error and depends on the LWE assumption on which FHE is built. In the thresholdized version
the decryption key fsk is t-out-of-n secret shared between n parties. To decrypt a ciphertext ct, each party
can compute a partial decryption of ct using its own key share fski and then any t partial decryptions can
be (publicly) combined to get a complete decryption. The BGGJKRS construction for threshold signature
TS = (TS.Setup,TS.PartSign,TS.Combine) uses (i) a linear secret sharing scheme SS, where the individual
shares are combined through a linear process (SS.Combine) to get the full secret, (ii) a fully homomorphic
encryption scheme FHE, where the decryption algorithm is a linear operation4, and (iii) a signature scheme
Sig. Then the construction is:

– TS.Setup(): generates FHE keys (fpk, fsk), signing keys (svk, ssk), and encrypts ssk as ct = FHE.Enc(ssk).
It then uses SS to secret share fsk among the n parties as {fski}i∈[n] for t-out-of-n threshold access
structure. Finally, it sets pp = (fpk, svk, ct), {ski = fski}i∈[n], vk = svk.

– TS.PartSign(i, ski,m): firstly computes encryption of signature, σm, on m using FHE.Eval as ctσm
=

FHE.Eval(Sig.Signm, ct) and returns partial decryption of ctσm
as σm,i = ⟨ctσm

, fski⟩ + noise. Here,
Sig.Signm is the signing circuit of Sig with message m being hardwired.

– TS.Combine(S, {σm,i}i∈S): For |S| ≥ t, the TS combine algorithm first runs the SS.Combine algorithm on
the partial signatures and then performs rounding to gets the signature as σm = round(SS.Combine({σm,i}i∈S)).

Security sketch for BGGJKRS construction. We first briefly recall the security game. In the beginning
of the game, the adversary is given the partial signing keys from up to t− 1 parties of its choice. In addition,
the adversary can adaptively issue partial signing queries of the form (m, i) to receive partial signature σm,i

on m from party i. In the end, to win the game, the adversary must output a forgery (m∗, σ∗) on a message
m∗ for which no partial signature was requested.

For the ease of presentation, let us consider a simple case of 2-out-of-2 access structure. Thus, the FHE
decryption key fsk is secret shared between the two parties as : pick a random fsk1 and set fsk2 = fsk− fsk1.
Wlog, we assume that the adversary asks the signing key for the first party5.

The security is through a sequence of hybrids, where as usual, the initial hybrid (H0) is the real game.
Then in the next hybrid (H1), for any queried message m, the challenger computes the partial signatures
corresponding to the honest party P2 without using its signing key fsk2. Instead, σm,2 is computed as
⌊q/2⌉σm−⟨ctσm , fsk1⟩+noise, while σm,1 is computed honestly as ⟨ctσm , fsk1⟩+noise6. This does not change

4 For ciphertext ct ∈ Zλ
q and decryption key fsk ∈ Zλ

q , FHE.Decrypt(fsk, ct) first computes ⟨ct, fsk⟩, which gives
⌊q/2⌉m+ e, followed by rounding which outputs m.

5 Since it is in the best interest of the adversary to get keys from the maximum possible number of parties, the
security definition assumes that the adversary gets keys from t− 1 parties.

6 noise is added to hide the FHE error e, but is not the main focus of current discussion.
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the adversary’s view because of linearity of FHE.Decrypt. The purpose behind this step is to use the shares
of FHE key fsk only from an “invalid” set of parties (i.e. a set having at most t− 1 parties) so that, then, in
the next hybrid (H2), the setup algorithm can use zero vector instead of fsk to generate the partial signing
keys fsk1, fsk2, using the security of the secret sharing scheme. At this stage, fsk is not used at all, and
hence in the next hybrid (H3), using FHE security, ct in the setup is changed from ct = FHE.Encrypt(ssk)
to ct = FHE.Encrypt(0). Finally, at this stage ssk is not used and we can use the security of underlying
signature scheme to argue that the adversary cannot output a forgery in this hybrid, which implies that the
adversary cannot generate a forgery in the real world as well.

The reduction to Sig security goes as follows. After getting svk from the Sig challenger the reduction
algorithm samples FHE keys (fpk, fsk) and discards fsk. It secret shares 0 into fsk1 and fsk2, encrypts 0 as
ct = FHE.Encrypt(0) and sends pp = (fpk, ct) and fsk1 as signing key for party 1. Whenever the adversary
issue signing query on any message m from party 2, the reduction algorithm computes ctσm

and sends a
signing query on m to Sig challenger and gets σm. It then computes σ2,m = σm − ⟨ctσm

, fsk1⟩+ noise.

In the end when the adversary outputs a forgery (m∗, σm∗), the reduction forwards it to the Sig challenger.
Since the adversary is not allowed to query partial signatures on m∗, the reduction never asks signature on
m∗ from the Sig challenger and hence, (m∗, σm∗) is a valid forgery against the Sig challenger.

Problem in proving stronger security. In the stronger security, the adversary is allowed to query partial
signature on m∗ from up to g parties, where g = t − 1 − c and c is the number of parties for which the
signing key is obtained. To better understand the difficulty in proving the stronger security in BGGJKRS,
let us consider a scenario where the adversary does not issue any key query. Following the proof strategy
as before, while answering partial signing queries, the challenger would want to make sure that it uses only
either fsk1 or fsk2 but not both. The challenger needs to decide, which one? But, since now partial signature
queries on m∗ are also allowed, when a signing query (m, i) for i ∈ {1, 2} is received, the challenger needs
to be careful in using σm because in the end, if m∗ = m, the reduction against the Sig challenger in the last
hybrid fails. This is so because whenever the challenger needs σm to reply a partial signing query on m in
(H3 in the proof of BGGJKRS scheme above), the reduction against Sig gets it from the Sig challenger, and
in this case, the reduction cannot output a forgery on m. Let us understand the challenger’s dilemma with
the following example:

Suppose the adversary issues the first signing query as (m1, 1). Now the challenger needs to decide whether
to use fsk1 to compute σm1,1 or not. Let us analyze both the options and show that both the choices can go
wrong:
Option 1:

– The challenger uses fsk1 to compute σm1,1.

– The adversary issues next query as (m2, 2). Now since fsk1 is already used, the challenger cannot use
fsk2 to generate σm2,2. Hence, it computes σm2,2 as ⌊q/2⌉σm2

− ⟨ctσm2
, fsk1⟩+ noise.

– The adversary outputs a forgery (m2, σm2). Observe that this is a valid forgery from the TS adversary
since it has queried partial signature on m2 from party 2 only. But since the challenger used σm2

to
compute the partial signature, (m2, σm2

) cannot be returned as a forgery to the Sig challenger.

Option 2:

– The challenger uses fsk2 to compute σm1,1 as σm1,1 as ⌊q/2⌉σm1
− ⟨ctσm1

, fsk2⟩+ noise.

– The adversary outputs a forgery (m1, σm1
). Observe that this is a valid forgery from the TS adversary

since it has queried partial signature on m1 from party 1 only. But since the challenger used σm1 to
compute the partial signature, (m1, σm1) cannot be returned as a forgery to the Sig challenger.

Remark 1. In the toy example above, one may be tempted to use guessing, and that would indeed work here.
But guessing becomes hard for general case of t-out-of-n access structure with neither n− t nor t− c being
a constant, where c is the number of parties for which the adversary asks the signing keys.
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Our Solution: From the above arguments we can derive the following wishful strategy for the challenger
(i) use the secret shares of fsk from at most t− 1 parties (as before), (ii) for any signing query (m, i) do not
use σm till |Sm ∪ S∗| ≤ t − 1, where S∗ is the set of parties for which the adversary asks the signing keys
and Sm = {j : (m, j) has been queried so far (including the query (m, i))}.

Attempt 1: For each query (m, i) simply return a random value + noise till |S∗ ∪ Sm| ≤ t− 1 and argue
that since fski is random, ⟨ctσm

, fski⟩ is also random. But we can observe that this strategy immediately fails
if the adversary issues partial signing query from party i for Q different messages for Q > |fski|.

Solution: We use the same strategy as before, where for each query (m, i), the challenger simply returns a
random value + noise till |S∗∪Sm| ≤ t−1. But now, we use a different argument to argue indistinguishability
from the honestly computed value using fski. In more detail, let us consider the previous toy example of
2-out-of-2 access structure. Let the adversary issues first signing query as (m1, 1). The challenger returns

σm1,1 = rm1,1 + noise,

where rm1,1 is uniformly random. Then if and whenever the adversary issues a signing query (m1, 2), the
challenger returns

σm1,2 = ⌊q/2⌉σm1 − rm1,1 + noise.

Notice that this time it is safe to use σm1 because party 1 and party 2 together form a valid party set and
hence the challenger knows that m1 cannot be m∗. To argue indistinguishability in the adversary’s view, we
implicitly view rm1,1 = ⟨ctσm1

, fsk1⟩+ r′m1,1, and write

σm1,2 = ⌊q/2⌉σm1 − rm1,1 + noise

= ⌊q/2⌉σm1 − ⟨ctσm1
, fsk1⟩ − r′m1,1 + noise

= ⌊q/2⌉σm1 − ⟨ctσm1
, fsk1⟩ − ⟨ctσm1

, fsk2⟩+ ⟨ctσm1
, fsk2⟩ − r′m1,1 + noise

= ⌊q/2⌉σm1 − ⟨ctσm1
, fsk⟩+ ⟨ctσm1

, fsk2⟩ − r′m1,1 + noise

= ⌊q/2⌉σm1 − ⌊q/2⌉σm1 + e+ ⟨ctσm1
, fsk2⟩ − r′m1,1 + noise

= ⟨ctσm1
, fsk2⟩+ (−r′m1,1) + e+ noise.

This view leaves the extra terms r′m1,1 and (−r′m1,1) in σm1,1 and σm1,2, respectively. We can think of
r′m1,1 and (−r′m1,1) as 2-out-of-2 random secret shares of 0. To address these extra random values, we
modify the original construction by adding pseudorandom components to partial signatures as following. Let
PRF : K × {0, 1}λ → Y be a PRF. Then

σreal
m1,1 = ⟨ctσm1

, fsk1⟩+ PRF(K1,m1) + noise, and

σreal
m1,2 = ⟨ctσm1

, fsk2⟩+ PRF(K2,m1) + noise.

It is easy to see that for correctness, PRF(K1,m1) + PRF(K2,m1) must be zero7. However, for a general
PRF for any two keys K and K ′, PRF(K,m1) + PRF(K ′,m1) ̸= 0 with high probability. So, we use a key
homomorphic PRF and K1,K2 are generated as 2-out-of-2 secret shares of 0 ∈ K. We recall that if PRF is
key homomorphic, then for all K,K ′ ∈ K and all input x, PRF(K,x)+PRF(K ′, x) = PRF(K+K ′, x). Thus,
for K2=−K1, PRF(K2,m1) = PRF(−K1,m1) = −PRF(K1,m1)

8. Now, we can argue indistinguishability
of real partial signatures from simulated ones from PRF security that allows to replace PRF(K1,m1) with
random r′m1,1, and also from the security of secret sharing that ensures that K1 is uniformly random.

In general, our modified construction is:

7 Indeed, it suffices that PRF(K1,m1) + PRF(K2,m1) can be computed publicly. In that case the TS.Combine algo-
rithm can first compute and subtract the extra term PRF(K1,m1) + PRF(K2,m1) before rounding.

8 For 0 ∈ K, any K ∈ K and any input x, PRF(K,x) = PRF(K+0, x) = PRF(0, x)+PRF(K,x). Hence, PRF(0, x) = 0.
This further implies PRF(−K,x) = −PRF(K,x).
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– ski = (Ki, fski), where {K1, . . . ,Kn} are t-out-of-n secret shares of 0 ∈ K.

– TS.PartSign(i, ski,m) computes σm,i = ⟨ctσm , fski⟩+ PRF(Ki,m) + noisei

A simple calculation shows the correctness. For security, we need that for {K1, . . . ,Kn} generated as se-
cret shares of 0 ∈ K and for all input x ∈ X , the following two distributions are indistinguishable (i)
{PRF(K1, x), . . . ,PRF(Kn, x)} versus (ii) (rx,1, . . . , rx,n), where {rx,1, . . . , rx,n} are generated as secret shares
of 0 ∈ Y. This should hold even if the adversary is given such samples for polynomially many different x of
the adversary’s choice. Here, K is the key space, X , the input space and Y is the output space of the PRF.
We prove this based on the security of PRF and the secret sharing scheme. Please see section 4 for details.

Lattice based key homomorphic PRF? Known lattice based constructions of key homomorphic PRF are only
almost key homomorphic, that is PRF(K1, x)+PRF(K2, x) = PRF(K1+K2, x)±δ, where δ is a small constant,
mostly in {0, 1, 2}. Clearly, the above security property does not hold for almost key homomorphic PRF,
because the adversary can combine the secrets using SS.Combine and if the result is zero, then it is the second
case, else the first case, with good probability. We need extra care to work with almost key homomorphic
PRF, where we also add some flooding noise to hide the error incurred by homomorphic evaluation of almost
KHPRF. Please refer to section 4 for details.

Comparing with [ASY22]. In [ASY22], Agrawal et. al improve the BGGJKRS construction by providing
adaptivity in the other direction as we discussed previously. They construct a threshold signature scheme
that allows the adversary to output S∗, the set of parties for which it queries the signing keys, in the middle of
the game, but does not allow partial signing queries on m∗. In that case also, to answer the partial signature
queries before key query, the challenger has similar dilemma - to decide which of the FHE key shares to use.
However the nature of the problem is different - again considering the previous toy example of 2-out-of-2
access structure, suppose the challenger decides to use fsk1 and simulate the partial signatures from Party
2. That is, for any message m, σm,1 = ⟨ctσm , fsk1⟩ + noise and σm,2 = ⌊q/2⌉σm − ⟨ctσm , fsk1⟩ + noise. This
time there is no issue related to deciding whether to use σm or not. Instead, the issue is that if the adversary
asks fsk2, then the challenger will be in trouble, as it will end up using both the key shares of fsk. To address
this situation, [ASY22] also use a similar idea - to simulate the partial signatures till S∗ is received without
using either fsk1 or fsk2. That is, for a signing query on message m, the challenger computes ⌊q/2⌉σm and
secret shares it as rm,1 and rm,2. Then it sets σm,1 = rm,1 + noise and σm,2 = rm,2 + noise, and implicitly
views rm,i = ⟨ctσm , fski⟩+ r′m,i, for i = 1, 2. To account for extra r′m,1 and r′m,2, Agrawal et. al also modify
the BGGJKRS construction, but instead of PRF they use random oracle. In particular, sk1 = (fsk1, R1,K),
sk2 = (fsk2, R2,K). Here R1 and R2 are random vectors of length n (here 2) such that R1 + R2 = 0 and
H is a hash function modeled as random oracle. PartSign(ski,m) = ⟨ctσm

, fski⟩+ ⟨H(K,m), Ri⟩+ noise, for
i = 1, 2. When the adversary outputs S∗, the challenger does the following: for each message m for which a
partial signature has been queried, it solves for hm such that ⟨hm, Ri⟩ = r′m,i for all i ∈ S∗. It then programs
H(K,m) = hm and returns {ski}i∈S∗ . In our toy example, let S∗ = {1}, then the challenger solves for
⟨hm, R1⟩ = r′m,1, programs H(K,m) = hm and returns sk1 = (fsk1, R1,K). After this point, the challenger
has no uncertainty and it behaves in the same way as in the proof of BGGJKRS . Observe that it is crucial
that K has entropy and is hidden from the adversary until it outputs S∗. In fact, that is the reason this
improvement gives only partial adaptivity and not the full adaptivity.

Looking back to our problem, we cannot use the ROM based trick from [ASY22] because, in our case, as
soon as the adversary gets a signing key, it learns K, but the uncertainty for the challenger regarding when
to use fski or σm remains.

On the other hand, interestingly, the PRF based trick does not work for [ASY22]. This is because, if r′m,i

for i ∈ [n] replaces PRF(Ki,m), then when the adversary outputs S∗, the challenger will need to provide
a K ′

i such that PRF(K ′
i,m) = r′m,i, which we don’t know how to do. For us, the PRF based improvement

works, because the challenger never needs to output such a key.
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Combining our approach with [ASY22] to get partially adaptive key queries with partial
signatures on m∗. We can combine our PRF based technique with the ROM based technique in [ASY22]
to get a construction that has the advantage of both the constructions. That is, the adversary can ask key
queries in the middle of the game (but all at once) and also issue partial signing queries on m∗. We refer the
readers to Appendix B for more details.

Applying the techniques at the TFHE level. In [BGG+18], Boneh et. al construct a threshold FHE
(TFHE), using which they construct a universal thresholdizer (UT), which, in turn, is used to thresholdize
various cryptographic primitives - threshold signature (TS), threshold CCA-PKE (TPKE).

We observed that all ideas and improvements that we discussed above in the context of threshold signa-
tures, can in fact be implemented at the TFHE level itself, which then will have the obvious advantage of
improving the security of all the threshold primitives that are thresholdized from TFHE.

A TFHE is the same as FHE except that the decryption algorithm is thresholdized in TFHE. In more
detail,

– Setup algorithm outputs a public key fpk and n secret keys {fski}i∈[n].
– The Eval algorithm is the same as the one in FHE. It takes as input, the ciphertexts ct1, . . . , ctk, where

cti = Encrypt(µi), µi ∈ {0, 1}, and a circuit C : {0, 1}k → {0, 1} and outputs a ciphertext ct that encrypts
C(µ1, . . . , µk).

– The PartDec algorithm takes as input a partial decryption key fski and a ciphertext ct and outputs a
partial decryption pi.

– The FinDec algorithm takes as input a set of partial decryptions of a ciphertext from a valid set of parties
(i.e. the number of parties in the set is at least t) and outputs the encrypted message.

Boneh et. al define semantic security and simulation security for TFHE. The semantic security is the same as
the semantic security of any PKE. Roughly speaking simulation security is defined as follows. There exists an
efficient simulator S, which can simulate the secret key shares {fski}i∈[n], without using fsk in the Setup. Later
on, given a set of ciphertexts {ct1, . . . , ctk} which encrypts adversarially chosen message bits {µ1, . . . , µk},
and any circuit C : {0, 1}k → {0, 1} along with C(µ1, . . . , µk) and a set S, S simulates partial decryptions
of ctC on behalf of parties in the set S. Here ctC = TFHE .Eval({ct1, . . . , ctk}, C). The simulator does not
need to know the message bits µ1, . . . , µk. The simulation security says that for any PPT adversary who gets
partial decryption keys {fski}i∈S∗ corresponding to any invalid set of parties of its choice in the beginning,
the simulated view is indistinguishable from the real view. For precise definition, we refer to Definition 24.For
the current discussion, we only need to observe that in this definition, the simulator S takes C(µ1, . . . , µk)
as input irrespective of whether S is a valid (i.e. |S| ≥ t) or an invalid set (|S| < t). We observed that this
is the main hurdle in proving stronger security of threshold signature (and also the other primitives) built
from the universal thresholdizer (UT) in [BGG+18]. We propose stronger definition of simulation security
for TFHE, where the simulator S needs C(µ1, . . . , µk) only when it generates partial decryption for a valid
set of parties. We then propose the same improvement in UT security, which in turn allows us to prove the
stronger security for thresholdized primitives. We apply the ideas discussed above in the context of TSig at
the level of TFHE to achieve the stronger simulation security.

Stronger security for threshold CCA-PKE. We define a stronger CCA security definition for a threshold
public-key encryption scheme. In a real life attack scenario, an adversary capable of corrupting a number
of parties below the threshold value can participate in the decryption of a targeted ciphertext ct∗ with the
help of a corrupt party. Let g = t− |S∗| be the gap between the threshold value and the number of corrupt
parties. A natural notion of CCA security should allow up to g − 1 number of partial decryption queries on
the challenge ciphertext ct∗. We define a CCA security definition in which the adversary is allowed to query
partial decryption queries on ct∗ from up to g − 1 honest parties. Furthermore, we show that the threshold
public-key encryption scheme in [BGG+18] constructed from a UT scheme and a public-key encryption
satisfies our stronger notion of CCA security if UT is strongly secure (which we define) and the underlying
public-key encryption is CCA secure.
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Other related work. Significant research has been done in building lattice based threshold cryptography
with efficient parameters. Uunfortunately efficient constructions are achieved at the cost of increasing the
number of communication rounds between the parties [dPKM+24] [GKS24] or restricting to n-out-of-n
access structure [DOTT21,MS23]. In [dPKM+24] del Pino et. al construct an efficient threshold signature
that involves 3 rounds. In [GKS24], Gur, Katz and Silde improve [ASY22] but at the cost of increasing
the number of rounds to 2. Moreover both the constructions achieve weaker notion of unforgeability (P1 in
Fig 1). In [CCK23] improve the efficiency of [BGG+18] UT using iterative Shamir secret sharing.
Organization of the paper: We provide the notations and preliminaries in Sections 2. In section 3 we define
simulators for secret sharing which we use in our construction. In section 4, we present key homomorphic
PRF. In section 5, we define stronger definition of TFHE and provide our construction that satisfies the
stronger security. In section 6, we define and prove stronger security definition of UT. In section 7, we prove
stronger security of threshold signatures and threshold PKE from strongly secure UT.

2 Preliminaries

Notations: We represent the t-out-of-n threshold access structure as At,n. At many places we refer to a party
Pi as i only (i.e. discarding the letter P ). For secret sharing scheme where each party’s shares consist of
multiple shares, we refer to each share index by the term ‘party-share’ or only ‘share’. For a matrix M of
dimensions ℓ×N , we represent the i-th row as M[i] or Mi. Let S ⊆ [ℓ], then we use M[S] or MS to represent
the matrix formed by rows in set S. For a vector x, unless otherwise stated, xi represents the i-th element
in x.

2.1 Fully Homomorphic Encryption (FHE).

A fully homomorphic encryption scheme is an encryption scheme that allows computations on encrypted
data.

Definition 1 (Fully Homomorphic Encryption). A fully homomorphic encryption scheme FHE is a
tuple of PPT algorithms FHE = (FHE.KeyGen,FHE.Encrypt, FHE.Eval,FHE.Decrypt) defined as follows:

– FHE.KeyGen(1λ, 1d)→(pk, sk): On input the security parameter λ and a depth bound d, the KeyGen algo-
rithm outputs a key pair (pk, sk).

– FHE.Encrypt(pk, µ)→ct: On input a public key pk and a message µ ∈ {0, 1}, the encryption algorithm
outputs a ciphertext ct.

– FHE.Eval(pk, C, ct1, . . . , ctk)→ĉt: On input a public key pk, a circuit C : {0, 1}k→{0, 1} of depth at most d,
and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated ciphertext ĉt.

– FHE.Decrypt(pk, sk, ĉt)→µ̂: On input a public key pk, a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note that the
evaluation algorithm takes as input a (deterministic) circuit rather than a possibly randomized algorithm.
An FHE should satisfy compactness, correctness and security properties defined below.

Definition 2 (Compactness). An FHE scheme is compact if there exists a polynomial function f(·, ·) such
that for all λ, depth bound d, circuit C : {0, 1}k→{0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the fol-
lowing holds: for (pk, sk)←FHE.KeyGen(1λ, 1d), cti←FHE.Encrypt(pk, µi) for i ∈ [k], ĉt←FHE.Eval(pk, C, ct1, . . . , ctk),
the bit-length of ĉt is at most f(λ, d).

Definition 3 (Correctness). An FHE scheme is correct if for all λ, depth bound d, circuit C : {0, 1}k→{0, 1}
of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds: for (pk, sk)←FHE.KeyGen(1λ, 1d),
cti←FHE.Encrypt(pk, µi) for i ∈ [k], ĉt←FHE.Eval(pk, C, ct1, . . . , ctk), we have

Pr[FHE.Decrypt(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− λ−ω(1).

10



Definition 4 (Security). An FHE scheme is secure if for all λ and depth bound d, the following holds: for
any adversary A with run-time 2o(λ), the following experiment outputs 1 with probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs (pk, sk)←FHE.KeyGen(1λ, 1d)
and ct←FHE.Encrypt(pk, b) for b←{0, 1}. It provides (pk, ct) to A.

2. A outputs a guess b′. The experiment outputs 1 if b = b′.

Similar to BGGJKRS , our constructions also use a special FHE having some additional properties as
described in [BGG+18]. These properties are satisfied by direct adaptations of typical FHE schemes such
as [BV11,GSW13] (see, e.g., [BGG+18, Appendix B]).

Definition 5 (Special FHE). An FHE scheme is a special FHE scheme if it satisfies the following properties:

1. On input (1λ, 1d), the key generation algorithm FHE.KeyGen outputs (pk, sk), where the public key con-
tains a prime q and the secret key is a vector sk ∈ Zm

q for some m = poly(λ, d).
2. The decryption algorithm FHE.Decrypt consists of two functions (FHE.decode0, FHE.decode1) defined as

follows:
– FHE.decode0(sk, ct): On input an encryption of a message µ ∈ {0, 1} and a secret key vector sk, it

outputs p = µ⌊q/2⌉+ e ∈ Zq for e ∈ [−cB, cB] with B = B(λ, d, q) and e is an integer multiple of c.
This algorithm must be a linear operation over Zq in the secret key sk.

– FHE.decode1(p): On input p ∈ Z, it outputs 1 if p ∈ [−⌊q/4⌉, ⌊q/4⌉], and 0 otherwise.
The bound B = B(λ, d, q) is referred to as the associated noise bound parameter of the construction and
c as the associated multiplicative constant.

2.2 Zero Knowledge Proofs with Pre-processing

These are specific type of zero knowledge proof system where all but the last communication round between
a prover and a verifier can be pre-processed offline. This is captured by a pre-processing step that generates a
common reference string for the verifier σV and a separate common reference string for the prover σP . Since
only the last step of the communication is required for the online phase, the proof system can be viewed as a
weaker variant of a non-interactive zero knowledge (NIZK) proof system. Such proof system, termed as zero
knowledge proof system with pre-processing (PZK) in [BGG+18], can be constructed from a much weaker
assumption of one-way functions [DSMP88,LS91] than a standard NIZK proof system and is sufficient for
our purpose.

Definition 6. Let L be a language with relation R. A tuple of PPT algorithms PZK = (PZK.Pre,PZK.Prove,PZK.Verify)
is a zero knowledge proof system with pre-processing if the following conditions are true. For (σV , σP ) ←
PZK.Pre(1λ):

Completeness: For every (x,w) ∈ R, we have that: Pr[PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] =
1 where the probability is over the internal randomness of all the PZK algorithms.

Soundness: For every x ̸∈ L, we have that: Pr[∃ π : PZK.Verify(σV , x, π) = 1] = neg(λ), where the
probability is over PZK.Pre.

Zero-Knowledge: There exists a PPT algorithm S such that for any x,w where V (x,w) = 1, the following
two distributions are computationally indistinguishable:

{σV ,PZK.Prove(σP , x, w)} ≈c {S(x)}

2.3 Some Useful Definitions and Lemmas

Definition 7 (Statistical Distance). Let E be a finite set, Ω a probability space, and X,Y : Ω → E
random variables. The statistical distance between X and Y is defined as a function ∆ defined by

∆(X,Y ) = 1/2
∑
e∈E

|Pr
X
(X = e)− Pr

Y
(Y = e)|

.

Lemma 1 (Smudging Lemma [AJLA+12, MW16). ] Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1], let E1

and E2 be independent random variables uniformly distributed on [−B2, B2] and define the two stochastic
variables X1 = E1 + e1 and X2 = E2. Then ∆(E1, E2) < B1/B2.
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3 Secret Sharing

We first recall the definitions related to secret sharing. Then we define two simulators that can simulate
secret shares for parties one by one as per the need. More importantly, the simulators do not need the actual
secret till the shares are generated for less than the threshold number of parties.

Access Structures

Definition 8 (Monotone Access Structure). Let P = {Pi}i∈[n] be a set of parties. A collection A ⊆
P(P ) is monotone if for any two sets B,C ⊆ P , if B ∈ A and B ⊆ C, then C ∈ A. A monotone access
structure on P is a monotone collection A ⊆ P(P ) \ ∅.

Definition 9 (Efficient Access Structure). Let P = {Pi}i∈[n] be a set of parties. For any set of par-
ties S ⊆ P , let xS = (x1, . . . , xn) ∈ {0, 1}n with xi = 1 iff Pi ∈ S. An access structure A on P is called an
efficient access structure if there exists a polynomial size circuit fA : {0, 1}n→{0, 1}, such that for all S ⊆ P ,
fA(xS) = 1 iff S ∈ A.

Definition 10 ((In)Valid Party Sets).

1. The sets in A are called valid party sets and the sets in P(P ) \ A are called invalid party sets.
2. Let S ⊆ P be a subset of parties in P . S is called maximal invalid party set if S ̸∈ A, but for any

Pi ∈ P \ S, we have S ∪ {Pi} ∈ A.
3. S is called minimal valid party set if S ∈ A, but for any S′ ⊊ S, we have S′ ̸∈ A.

Notation: In this work, we sometimes drop the word monotone. When it is clear from the context, we use
either i or Pi to represent party Pi.

Definition 11 (Secret sharing). Let P = {P1, . . . , Pn} be a set of parties and S be a class of efficient
access structures on P . A secret sharing scheme SS for a secret space K is a tuple of PPT algorithms
SS = (SS.Share,SS.Combine) defined as follows:

– SS.Share(k,A)→(s1, . . . , sn): On input a secret k ∈ K and an access structure A, the sharing algorithm
returns shares s1, . . . , sn for all parties.

– SS.Combine(B)→k: On input a set of shares B = {si}i∈S, where S ∈ A, the combining algorithm outputs
a secret k ∈ K.

A secret sharing algorithm must satisfy the following correctness and privacy properties.

Definition 12 (Correctness). For all S ∈ A and k ∈ K, if (s1, . . . , sn)←SS.Share(k,A), then

SS.Combine({si}i∈S) = k.

Definition 13 (Privacy). For all S ̸∈ A and k0, k1 ∈ K, if (sb,1, . . . , sb,n)←SS.Share(kb,A) for b ∈ {0, 1},
then the distributions {s0,i}i∈S and {s1,i}i∈S are identical.

Definition 14 (Linear Secret Sharing (LSSS)). Let P = {Pi}i∈[n] be a set of parties and S be a class of
efficient access structures. A secret sharing scheme SS with secret space K = Zp for some prime p is called
a linear secret sharing scheme if it satisfies the following properties:

– SS.Share(k,A): There exists a matrix M ∈ Zℓ×N
p called the share matrix, and each party Pi is associated

with a partition Ti ⊆ [ℓ]. We assume a SS.Setup algorithm that outputs the share matrix and the partitions
as pp which is implicitly assumed to be an input to the SS.Share and the SS.Combine algorithm.
To create the shares on a secret k, the sharing algorithm first samples uniform values r1, . . . , rN−1←Zp

and defines a vector w = M ·(k, r1, . . . , rN−1)
T. The share ki for Pi consists of the entries ki = {wj}j∈Ti .

At many places in the paper, when it is clear from the context, we directly write (w1, . . . , wℓ)← SS.Share(k,A)
instead of (k1, . . . , kn)← SS.Share(k,A) with ki = {wj}j∈Ti

.
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– SS.Combine(B): For any valid set S ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[j]}j∈⋃
i∈S Ti

)

over Zp where M[j] denotes the jth row of M. Any valid set of parties S ∈ A can efficiently find the
coefficients {cj}j∈⋃

i∈S Ti
satisfying ∑

j∈
⋃

i∈S Ti

cj ·M[j] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑

j∈
⋃

i∈S Ti
cj · wj. The coefficients {cj} are called recovery

coefficients.

To secret-share a vector s = {s1, . . . , sm} ∈ Zm
p , we can simply secret-share each entry si using fresh

randomness. This gives secret share vectors s1, . . . , sℓ ∈ Zm
p . Using these secret shares, the secret vector s

can be recovered using the same coefficients as that for a single field element.

Definition 15 ((In)Valid Share Sets). Let P = {P1, . . . , Pn} be a set of parties, S a class of efficient
structures on P , and SS a linear secret sharing scheme with share matrix M ∈ Zq

ℓ×N . For a set of indices
T ⊆ [ℓ], T is said to be a valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T ), and an invalid share set otherwise.
We also use following definitions:

– A set of indices T ⊆ [ℓ] is a maximal invalid share set if T is an invalid share set, but for any i ∈ [ℓ] \T ,
the set T ∪ {i} is a valid share set.

– A set of indices T ⊆ [ℓ] is a minimal valid share set if T is a valid share set, but for any T ′ ⊊ T , T ′ is
an invalid share set.

Definition 16 (Threshold Access Structure (TAS)). Let P = {P1, . . . , Pn} be a set of parties. An
access structure At,n is called a threshold access structure if for every set of parties S ⊆ P , S ∈ At,n if and
only if |S| ≥ t. We let TAS to be the class of all access structures At,n for all t, n ∈ N.

Below we describe the properties of two kinds of linear secret sharing schemes for threshold access
structure - (i) Shamir secret sharing and (ii){0, 1}- linear secret sharing.

Theorem 1 (Shamir Secret Sharing). Let P = {P1, . . . , Pn} be a set of parties, and let TAS be the
class of threshold access structures on P . Then, there exists a linear secret sharing scheme (Definition 14)
SS = (SS.Share,SS.Combine) with secret space K = Zq for some prime q satisfying the following properties:

• For any secret s ∈ Zq and At,n ∈ TAS, each share for party Pi consists of a single element wi ∈ Zq. Let
us denote w0 = s.

• For every i, j ∈ [n] ∪ {0} and set S ⊂ [n] ∪ {0} of size t, there exists an efficiently computable Lagrange
coefficients γSi,j ∈ Zq such that wj =

∑
i∈S γ

S
i,j · wi.

We will use ShSS = (ShSS.Share,ShSS.Combine) to refer to a Shamir secret sharing scheme in this work.

Lemma 2 ( [ABV+12]). Let P = {P1, . . . , Pn} be a set of parties, TAS the class of threshold access
structures on P , and ShSS a Shamir secret sharing scheme with secret space Zp for some prime q with
(n!)3 ≤ q. Then, for any set S ⊂ [n] ∪ {0} of size t, and for any i, j ∈ [n], the product (n!)2 · γSi,j has bound

|(n!)2 · γSi,j | ≤ (n!)3.

We use the following lemma about TAS from [BGG+18].

Lemma 3 ({0, 1}-LSSS for TAS [BGG+18]). Let P = {P1, . . . , Pn} be a set of parties. Let At,n be a t-out-
of-n threshold access structure. There exists an efficient linear secret sharing scheme bSS = (bSS.Share, bSS.Combine)
over the secret space K = Zq satisfying the following property:
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• Let s be a shared secret and {wj}j∈Ti be the share of party Pi for i ∈ [n]. Then, for every set S ∈ At,n,
there exists a subset T ⊆

⋃
i∈S Ti such that s =

∑
j∈T wj. Moreover the set T can be computed efficiently

for all S ∈ At,n.

We call a linear secret sharing scheme that satisfy the properties above as a {0, 1}-linear secret sharing
scheme9.

Note that for any {0, 1}-linear secret sharing scheme bSS, and for any minimal valid share set T ⊆ [ℓ], we
have that

∑
j∈T wj = s. We will use bSS = (bSS.Share, bSS.Combine) to refer to a {0, 1}-LSSS in this work.

3.1 LSSS Simulators

In the above definition of linear secret sharing (Definition 14), the SS.Share algorithm takes the secret as
input and outputs the secret shares for all the parties in one step. However, the secret shares can indeed be
generated in a sequential manner - one party (or even one share) at a time - and the secret is needed only
when the set of parties (or shares) become valid. This is straightforward, for example, for n-out-of-n secret
sharing, where n−1 secret shares are chosen independently randomly as r1, . . . , rn−1 and then the last share
is computed as s −

∑
i∈[n−1] ri. However, for more general case of t-out-of-n sharing, where each party can

have more than one secret share, it is little more involved. We formalize this by defining two simulators -
SSSimI and SSSimV as follows:

– SSSimI(pp, S, {wi}i∈S , R, st) → ({wj}j∈R, st
′): takes as input a set S ⊆ [ℓ], for which the secret shares

are already assigned, along with the assigned secret shares {wi}i∈S , a subset R ⊆ [ℓ], for which the secret
shares are to be generated and a state st, and outputs the secret shares for indices in R and a new state
st′. Wlog, we assume R ∩ S = ∅, otherwise for such j ∈ R ∩ S, the simulator simply returns the wj from
the input secret shares and works with R\S. We note that the simulator does not take the secret s being
shared and that S ∪R must be an invalid share set.

1. If S ∪R is a valid share set, then return ⊥.
2. Initialize I = ∅ and W = S.
3. For each j ∈ R,
• If M[j] /∈ Span(MW ) (i.e., is independent of rows in MW ), then I = I ∪ {j} and W =W ∪ {j};
and wj ← Zq.
Else, ∃ {γα}α∈W such that M[j] =

∑
α∈W γαM[α]. Set wj =

∑
α∈W γαwα.

4. Return {wα}α∈R and st′ = st.

– SSSimV(pp, S, {wi}i∈S , s, R, st)→ ({wj}j∈R, st
′): takes as input a set S ⊆ [ℓ], for which the secret shares

are already assigned, along with the assigned secret shares {wi}i∈S , the secret s, a subset R ⊆ [ℓ], for
which the secret shares are to be generated and a state st, and outputs the secret shares for indices in
R and a new state st′. Wlog, we assume R ∩ S = ∅, otherwise for such j ∈ R ∩ S, the simulator simply
returns the wj from the input secret shares and work with R \ S. We note that this simulator takes the
secret s being shared and that S ∪R is a valid share set.

1. If st = ∅
(a) If S is a valid share set, then return ⊥.
(b) Find a maximal invalid share set X ⊆ [ℓ] such that S ⊆ X.
(c) Initialize I = ∅ and W = S.
(d) For j ∈ X \ S,

i. If M[j] /∈ Span(MW ), sample wj ← Zq and update I = I ∪ {j} and W =W ∪ {j}.
ii. Else compute wj from {wα}α∈W in the same ways as in Step 3 in SSSimI above.

(e) st′ = (X, {wα}α∈X)
(f) For j ∈ R \X

9 We are using a slightly different naming from [BGG+18]. They call such a scheme a special linear secret sharing
scheme and the class of access structures that supports special LSS as {0, 1}-LSSS.
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i. Since X is a maximally invalid share set, X ∪ {j} is a valid share set. Hence, there exists
{cα}α∈X∪{j}

10 such that (1, 0, . . . , 0) =
∑

α∈X∪{j} cαM[α], which implies s =
∑

α∈X∪{j} cαwα.

Hence, compute wj =
s−

∑
α∈X cαwα

cj

(g) Return {wα}α∈R and st′.

2. Else
(a) Parse st as (X, {wα}α∈X) where X is a maximally invalid share set - if not, abort.
(b) Again, wlog we assume R ∩X = ∅, because otherwise for all j ∈ X \R, wj is already set and is

returned as it is.
(c) For j ∈ R \X

i. Since X is a maximally invalid share set, X ∪ {j} is a valid share set. Hence, there exists

{cα}α∈X∪{j} such that s =
∑

α∈X∪{j} cαwα. Hence, compute wj =
s−

∑
α∈X cαwα

c
X∪{j}
j

3. Return {wα}α∈R and st′ = st.

Below we show that the secret shares generated by the simulators SSSimI and SSSimV have the same
distribution as those generated by the SS.Share algorithm. We formalize this via the following claim.

Claim 2 For all adversary A, Expt0SSSim and Expt1SSSim, as described below are identical in A’s view.

ExptbSSSim(1
λ) :

1. Upon input the security parameter 1λ and a threshold access structure At,n, the challenger runs SS.Setup(1
λ,At,n)

to generate a share matrix M and the partitions {Ti}i∈[n], and sends them to A.
2. A outputs a secret s ∈ Zq (for which secret shares are to be generated).
3. The challenger does the following:

– If b = 0, generates {wj}j∈[ℓ] ← SS.Share(s,At,n)
Else if b = 1, initializes W = ∅ and st = ∅.

4. For κ = 1 to ℓ,
(a) A outputs jκ ∈ [ℓ] (wlog we assume that jκ was not queried before).
(b) If b = 0, the challenger returns wjκ (generated in Step 3)
(c) If b = 1 and W ∪ {jκ} is an invalid share set, generate (wjκ , st

′) ← SSSimI(W, {wα}α∈W , {jκ}, st);
stores wjκ , updates W =W ∪ {jκ}, st = st′ and returns wjκ to A.

(d) If b = 1 and W ∪ {jκ} is a valid share set, generate
(wjκ , st

′)← SSSimV(W, {wα}α∈W , s, {jκ}, st); stores wjκ , updatesW =W∪{jκ}, st = st′ and returns
wjκ to A.

5. At the end, A outputs its guess bit b′ and wins if b′ = b.

Proof. We first recall the SS.Share algorithm. The secret shares of s, {wj}j∈[ℓ] are computed asM·(s, r1, . . . , rN−1)
T =

(w1, . . . , wℓ)
T, where r1, . . . , rN−1 are chosen uniformly randomly from Zq.

To prove the claim, we show that the secret shares {wj}j∈[ℓ] generated by the simulators can also be

expressed as M · (s, r1, . . . , rN−1)
T = (w1, . . . , wℓ)

T, for uniformly random r1, . . . , rN−1.
Let k ∈ [ℓ] be the index where the transition from invalid to valid happens - i.e., {j1, . . . , jk} is an invalid

share set and {j1, . . . , jk, jk+1} is a valid share set. Let I be the maximal invalid share set chosen by SSSimV
when called to generate wjk+1

. Note that for all subsequent queries also, the same invalid share set I is
used. Further, let E ⊆ I be the set of indices for which the secret shares are chosen uniformly randomly.
That is, E = {j | wj ← Zq, j ∈ I}. From the definition of the simulators, we note that the rows in ME are
independent. Let |E| = c. Now we make the following observations: since I is a maximally invalid share set
and E ⊆ I, E is also an invalid share set. Hence, for all j ∈ [ℓ]\I, M[j] /∈ Span(ME), otherwise the adversary
could recover the shares for a valid share set I ∪ {j} from the shares of an invalid share set I, where the
j-th share wj could be generated from {wα}α∈E , thus breaking the security of secret sharing scheme. Thus,

10 These coefficients can be different for different sets X ∪ {j}, but we don’t explicitly specify the set X ∪ {j} in cα
to keep the notation simple.
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rank(M) ≥ |E|+ 1 and hence, N ≥ |E|+ 1 or |E| ≤ N − 1. Thus, there are more unknowns (r1, . . . , rN−1)
than the number of independent equations. So, we can solve for them. Moreover, since for each j ∈ E, wj is
uniformly random in Zq, r1, . . . , rN−1 are also uniformly random in Zq. In more details,

Case 1: |E| = N − 1. Then given ME and {wj}j∈E , we can uniquely solve for r1, . . . , rN−1 such that
ME · (s, r1, . . . , rN−1)

T = (wj)j∈E , and since {wj}j∈E are also chosen uniformly randomly from the
same space as r’s, {rj}j∈[N−1] are also uniformly random.

Case 2: |E| < N − 1. In this case, we first choose N − 1 − |E| r’s uniformly randomly from Zq and then
uniquely solve for the rest. In more detail, let EC ⊆ [2, N ] be the set of columns in M such that the
matrix formed by rows in E and columns in EC is a square full rank matrix. Thus |E| = |EC |. Then, for
all i ∈ [2, N ] \EC , ri−1 ← Zq, and the remaining r’s: {ri−1}i∈EC

are solved uniquely as in case 1 and by
the same argument, these r’s are also uniformly random.

Finally, it is straightforward to verify that for any (s, r1, . . . , rN−1), such that ∀ j ∈ E,M[j]·(s, r1, . . . , rN−1)
T =

wj , M[κ] · (s, r1, . . . , rN−1)
T = wκ, for all κ ∈ [ℓ] \ E.

4 Key Homomorphic PRF

We recall the definitions related to pseudorandom functions.

Definition 17 (Pseudorandom Function (PRF)). A function F : K×X → Y with key space K, domain
X , and range Y is a secure pseudorandom function if for all PPT adversary A,

|Pr[k ← K : AF (k,·)(1λ) = 1]− Pr[f ← Funcs(X ,Y) : Af(·)(1λ) = 1]| = neg(λ),

where Funcs(X ,Y) denotes the set of all functions with domain X and range Y.

Definition 18 (Key Homomorphic PRF). Any function F : K × X → Y is a key homomorphic PRF
(KHPRF) [NPR99,BLMR13] if it satisfies the following two properties:

1. It must be a PRF.
2. It satisfies key homomorphism: for any k1, k2 ∈ K, F (k1, x) + F (k2, x) = F (k1 + k2, x) for all x ∈ X 11.

Definition 19 (Almost Key Homomorphic PRF).
A δ-almost KHPRF [BLMR13] is the same as the standard KHPRF (Definition 18) except that the second
condition is different as:

2. It satisfies (almost) key homomorphism: for any k1, k2 ∈ K, F (k1, x) + F (k2, x) = F (k1 + k2, x) + e,
where |e| ≤ δ, for all x ∈ X .

Almost KHPRF are constructed from LWE in [BLMR13,BP14,Kim20], where δ = 1 or 2, depending upon the
choice of the parameters.

We prove the following lemma which says that: for a secure KHPRF F and linear secret sharing scheme SS,
let K is a KHPRF key and is secret shared as (K1, . . . ,Kn)← SS.Share(K,At,n). Then for all PPT adversary
A, who outputs polynomially many queries of the form (i, x), the following two views are indistinguishable
- in the first (real) world, A receives F (Ki, x), while in the other (ideal) world, A receives Rx,i, where
(Rx,1, . . . , Rx,n)← SS.Share(F (K,x),At,n)

12. This is true even if the adversary can corrupt up to t−1 parties
(now outputs for only uncorrupted parties are random in the ideal world) and also knows K. Intuitively, this
holds because, from the security of SS, the key shares K1, . . . ,Kn are “random” with the constraint that
any valid combination of these keys gives K. Hence, from KHPRF security we can replace F (Ki, x) in the

11 In general, if K is a group with operation ‘+’ and Y is a group with operation ‘∗’, then F (k1, x) ∗ F (k2, x) =
F (k1 + k2, x).

12 Each Ki may indeed consist of multiple keys as Ki = {kj}j∈Ti . In that case, F (Ki, x) = {F (kj , x)}j∈Ti and
Rx,i = {rx,j}j∈Ti .
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real world with random Rx,i in the ideal world under the constraint that any valid combination of Rx,· gives
F (K,x). These {Rx,i}i∈[n] can indeed be generated as secret shares of F (K,x).

However, observe that in the case of almost KHPRF, the adversary can distinguish between the two
worlds as follows. Let us consider a simple case of 2-out-of-2 sharing of an almost KHPRF key k (known to
the adversary) as k = k1 + k2 without any corruption. On any input x, the adversary is given F (k1, x) and
F (k2, x) in the real world. In the ideal world, the adversary is given a random secret shares of F (k, x) : r1, r2
such that r1 + r2 = F (k, x). The adversary can distinguish the two worlds by adding the received values - if
they add up exactly to F (k, x), then it is the ideal world, else the real world with “good” probability. Hence,
in almost KHPRF, we must add noise to hide the error introduced due to homomorphic evaluation.

We further observe that since each addition may add a δ error, the total error introduced due to the
homomorphic evaluation of partially evaluated PRF values (let us call it ep) may actually depend on the
secret sharing schemes - in particular, the recovery coefficients. In {0, 1}-LSSS, the recovery co-efficients are
binary and hence it is easier to bound the error as |ep| ≤ ℓ, where ℓ is the number of rows in the share matrix
M. In Shamir secret sharing the recovery co-efficients can be arbitrary in Zq. Hence, in that case one would
need the technique of ‘clearing the denominators’ as in [BGG+18] and modify the game accordingly. In this
paper, we work with {0, 1}-LSSS. However, the same ideas work for Shamir secret sharing as well.

Below we state and prove the lemma directly for the general case of almost KHPRF for {0, 1}-LSSS.
Before formally defining the lemma, let us define an intermediate algorithm SS.ShareInt for generating

secret shares when some of the secret shares are already set. Thus, SS.ShareInt(pp, T, {wj}j∈T , s) takes as
input the public parameters, an invalid share set T ⊂ [ℓ] and the corresponding secret shares, {wj}j∈T and
the secret s and outputs the secret shares for [ℓ] \ T . We assume that the input shares are consistent in the
following sense: for all j ∈ T such that the row M[j] ∈ Span(MT\{j}), that is, M[j] =

∑
κ∈T\{j} cκM[κ],

where {cκ}κ∈T\{j} are constants, wj =
∑

κ∈T\{j} cκwκ. The algorithm is defined as follows:

SS.ShareInt(T, {wj}j∈T , s,At,n):

– Find a set of random values r1, . . . , rN−1 such that for each α ∈ T , ⟨M[α], (s, r1, . . . , rN−1)⟩ = wα. These
r’s are chosen as follows:
• Let TI ⊆ T such that MTI

is maximally independent set of rows within MT . Let |TI | = c. Further,
let Tcol ⊆ [2, N ] be a set of columns in M such that the matrix formed by the rows and columns of
M in TI and Tcol, respectively is a square full-rank matrix.

• Sample rj−1 ← Zq for all j ∈ [2, N ] \ Tcol.
• Solve (deterministically) MTI

(s, r1, . . . , rN−1)
T = wTI

to compute {rj−1}j∈Tcol
.

• For each α ∈ [ℓ] \ T , wα = ⟨Mα, (s, r1, . . . , rN−1)⟩

Now we are ready to define the lemma.

Lemma 4. Let F be any secure δ-almost KHPRF and SS is a secure binary linear secret sharing scheme
(Definition 14 and Lemma 3). Then for all PPT adversary A, Pr[A wins] ≤ 1/2+neg(λ) in the following ex-
periments if δℓ/Esm ≤ neg(λ), where Esm is flooding noise used to hide the error in homomorphic evaluation
of KHPRF.

ExptA,almost-KHPRF(1
λ,At,n):

1. Upon input the security parameter λ and a threshold access structure At,n, the challenger C finds a share
matrix M of dimensions ℓ × N along with the n partitions as (M, {Ti}i∈[n]) ← bSS.Setup(1λ,At,n). It
sends bSS.pp = (M, {Ti}i∈[n]) to A.

2. C samples a challenge bit, b← {0, 1}.
3. A outputs a PRF key K and an invalid share set T ∗ ⊆ [ℓ].
4. C runs {k1, . . . , kℓ} ← bSS.Share(K,At,n) and returns {kj}j∈T∗ to A.
5. Then A issues polynomial number of evaluation queries of the form (x, j) adaptively, where j ∈ [ℓ] and

x is an input to PRF F .
6. For each evaluation query (x, j), C does the following.
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– Samples ηx,j ← [−Esm, Esm], where δℓ/Esm ≤ neg(λ).
– If b = 0, it returns yx,j = F (kj , x) + ηx,j.

Else,
• If j ∈ T ∗, return yx,j = F (kj , x) + ηx,j.
• Else, C does the following:

If x is queried for the first time (irrespective of any j ∈ [ℓ]), then it first computes yx,α =
F (kα, x) for all α ∈ T ∗ and runs {yx,α}α∈[ℓ]\S∗ ← bSS.ShareInt(bSS.pp, T ∗, {yx,α}α∈T∗ , F (K,x),At,n)
and returns yx,j + ηx,j. It saves {yx,α}α∈[ℓ]\T∗ for future queries.

Else C returns the saved yx,j + ηx,j.
7. A outputs b′ and wins if b′ = b.

Note 1.
– Here, we are using a slight abuse of notation - we work directly at the level of party shares in [ℓ] without

identifying the parties to which they belong. For example, we write (k1, . . . , kℓ) ← bSS.Share(K,At,n)
instead of {{kj}j∈Ti

}i∈[n] ← bSS.Share(K,At,n).
– In the above game, the adversary can issue evaluation queries for multiple party shares together as (T, x),

where T ⊆ [ℓ].

Proof. We prove the lemma via the following hybrids:

Hybrid0: This is the real game with b = 0.
Hybrid1: In this hybrid, the challenger does the following:

– After receiving the set T ∗, it first fixes a maximal invalid share set I ⊆ [ℓ] such that T ∗ ⊆ I.
– For any evaluation query (x, j) such that j ∈ I, the challenger computes and returns yx,j = y′x,j+ηx,j ,

where y′x,j = F (kj , x) and ηx,j is sampled as described in the experiment.
– For any evaluation query (x, j) such that j /∈ I, the challenger computes y′x,j from {y′x,α}α∈I and
F (K,x), without using kj . In more detail, since I is a maximally invalid share set, I ∪ {j} is a valid
share set and hence, there exist binary constants {bα}α∈I∪{j}

13 such that K =
∑

α∈I∪{j} bαkα. The

challenger computes y′x,j = F (K,x)−
∑

α∈I y
′
x,α, where y

′
x,α = F (kα, x), and returns yx,j = y′x,j+ηx,j ,

∀ α ∈ I,.
The two hybrids are statistically indistinguishable due to key homomorphism of F and because
δℓ/Esm ≤ neg(λ).
In more detail, for all input x, for all j ∈ I, yx,j is same in both the hybrids. For j ∈ [ℓ] \ I,

y
Hybrid1
x,j = F (K,x)−

∑
α∈I

bαF (kα, x) + ηx,j

= F ((K −
∑
α∈I

bαkα), x) + ep + ηx,j

from almost key homomorphism of F

here |ep| ≤ δ(1 +
∑
α∈I

bα) ≤ δ(|I|+ 1) ≤ δℓ

= F (kj , x) + ep + ηx,j

≈s F (kj , x) + ηx,j because δℓ/Esm ≤ neg(λ)

= y
Hybrid0
x,j

Hybrid2: This is the same as the previous hybrid, except the following changes: after receiving set T ∗, the
challenger fixes the set I as in the previous hybrid, and then computes a set E ⊆ I \ T ∗ as follows:
1. Initialize E = ∅ and W = T ∗

2. For j ∈ I \ T ∗,

13 These binary constants can be different for different valid sets, but we do not indicate that explicitly to keep the
notations simple. Also, since I is an invalid set, bj must be 1.
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(a) if M[j] /∈ Span(MW ), E = E ∪ {j}, W =W ∪ {j}
We note that all the rows in ME are mutually independent and also independent of rows in MT∗ .
Then for all queried input x, for all j ∈ T ∗ ∪ E, y′x,j = F (kj , x) (as in the previous hybrid), but
for all j ∈ I \ (E ∪ T ∗), y′x,j is computed indirectly from {y′x,α}α∈E∪T∗ using key homomorphism as
follows: let M[j] =

∑
α∈E∪T∗ cαM[α], for some constants {cα}α∈E∪T∗ . Then y′x,j =

∑
α∈E∪T∗ cαy

′
x,α

and yx,j = y′x,j + ηx,j . Since we are working with binary linear secret sharing scheme, cα ∈ {−1, 0, 1}.
For all j ∈ [ℓ] \ I, the queries are answered as in the previous hybrid.
The two hybrids Hybrid2 and Hybrid1 are statistically indistinguishable by almost key homomorphism of
F and becasue δℓ/Esm ≤ neg(λ). In more detail, for j ∈ I \ (E ∪ T ∗), since M[j] =

∑
α∈E∪S∗ M[α],

kj =
∑

α∈E∪T∗ kα because of the way linear secret sharing is defined. Thus, for j ∈ I \ (E ∪ T ∗), we get

y
Hybrid2
x,j =

∑
α∈E∪T∗

cαF (kα, x) + ηx,j

= F (
∑

α∈E∪T∗

cαkα, x) + ep + ηx,j

from almost key homomorphism of F .

here |ep| ≤
∑

α∈E∪T∗

δcα ≤ δ|E ∪ T ∗| ≤ δℓ

= F (kj , x) + ep + ηx,j

≈s F (kj , x) + ηx,j because δℓ/Esm ≤ neg(λ)

= y
Hybrid1
x,j

Hybrid3: In this hybrid the key shares {kα}α∈E∪T∗ are generated using SSSimI (note that by now, we do
not need any other PRF key shares) as:

1. ({kj}j∈T∗ , st′)← SSSimI(pp, ∅, ∅, T ∗, st = ∅)
2. ({kj}j∈E , st

′′)← SSSimI(pp, T ∗, {kα}α∈T∗ , E, st′)

From the description of the SSSimI and the set E, and the fact that E ∪ T ∗ is an invalid share set, we
note that for all α ∈ E, kα is simply kα ← Zq.
Hybrid2 and Hybrid3 are equivalent in the adversary’s view from Claim 2.

Hybrid3+a, where 1 ≤ a ≤ |E|: Let E = {j1, j2, . . . , j|E|}. Then in Hybrid3+a, for 1 ≤ κ ≤ a, y′x,jκ is chosen
uniformly randomly from the range of the PRF F . For a < κ ≤ |E|, yx,jκ is computed as in the previous
hybrid as y′x,jκ = F (kjκ , x).
For 0 ≤ a < |E|, Hybrid3+a and Hybrid3+a+1 are computationally indistinguishable from the PRF security
of F .

HybridLast: This is the honestly played game with b = 1. In Claim 3, we show that Hybrid3+|E| is the same
as HybridLast in the adversary’s view.

Claim 3 Hybrid3+|E| is identical to HybridLast in the adversary’s view.

Proof. The proof is same as the proof of claim 2. That is, again we can explain the distribution of the PRF
values generated in Hybrid3+|E| as those generated by bSS.ShareInt algorithm (in HybridLast). In particular,
let ES∗ ⊆ T ∗ be the set of maximally independent rows in MT∗ and E ⊆ I \T ∗ be as defined in Hybrid3+|E|.

Then for each x, (y′x,j)j∈[ℓ] computed in Hybrid3+|E| can be written as M ·(F (K,x), rx,1, . . . , rx,N−1)
T, where

rx,1, . . . , rx,N−1 have the same distribution as those chosen by the bSS.ShareInt algorithm in Hybrid4 - we
sample N − 1 − |E ∪ ET∗ | of the r’s unifromly randomly from Zq. The choice of r’s to sample randomly is
done in the same way as in the case 2 of the proof of Claim 2. The remaining |E ∪ ET∗ | r’s are then solved
deterministically. Since {y′x,j}j∈E are uniformly random, the joint distribution of rx,· values will be same as
those chosen by the bSS.ShareInt algorithm.

We also provide a generalization of Claim 2 in appendix A.
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5 Threshold Fully Homomorphic Encryption

We first recall the definitions of TFHE from [BGG+18] along with its correctness and security (semantic and
simulation) properties. We then define our stronger notion of simulation security needed for constructing UT
with stronger security, which in turn is needed for building thresholdized primitives with stronger notion of
security.

Definition 20 (Threshold Fully Homomorphic Encryption (TFHE)). Let P = {P1, . . . , Pn} be a set
of parties and let S be a class of efficient access structures on P . A threshold fully homomorphic encryption
scheme for S is a tuple of PPT algorithms
TFHE = (TFHE .Setup,TFHE .Encrypt,TFHE .Eval,TFHE .PartDec,TFHE .FinDec) with the following proper-
ties:

– TFHE .Setup(1λ, 1d,A)→ (pk, sk1, . . . , skn): On input the security parameter λ, a depth bound d, and an
access structure A, the setup algorithm outputs a public key pk, and a set of secret key shares sk1, . . . , skn.

– TFHE .Encrypt(pk, µ)→ ct: On input a public key pk, and a plaintext µ ∈ {0, 1}, the encryption algorithm
outputs a ciphertext ct.

– TFHE .Eval(pk, C, ct1, . . . , ctk) → ct: On input a public key pk, circuit C : {0, 1}k → {0, 1} of depth at
most d, and a set of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs a cipehrtext ct.

– TFHE .PartDec(pk, ski, ct)→ pi: On input a public key pk, a secret key share ski, and a ciphertext ct, the
partial decryption algorithm outputs a partial decryption pi related to the party Pi.

– TFHE .FinDec(pk, B)→ µ: On input a public key pk, and a set B = {pi}i∈S for some S ⊆ {P1, . . . , Pn},
the final decryption algorithm outputs a plaintext µ ∈ {0, 1,⊥}.

As in a standard FHE scheme, we require that a TFHE scheme satisfies compactness, correctness, and security.

Definition 21 (Compactness). A TFHE scheme is compact if there exists polynomials poly1(·) and
poly2(·) such that for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at most d, and µ ∈ {0, 1},
the following holds. For (pk, sk1, . . . , skn) ← TFHE .Setup(1λ, 1d,A), {cti ← TFHE .Encrypt(pk, µi)}i∈[k],
ct ← TFHE .Eval(pk, C, ct1, . . . , ctk), pj ← TFHE .PartDec(pk, skj , ct) for any j ∈ [n], |ct| ≤ poly(λ, d) and
|pj | ≤ poly(λ, d, n).

Definition 22 (Evaluation Correctness). A TFHE scheme satisfies evaluation correctness if for all
λ, depth bound d, access structure A ∈ S, circuit C : {0, 1}k → {0, 1} of depth at most d, S ∈ A, and
µi ∈ {0, 1} for i ∈ [k], the following condition holds. For (pk, sk1, . . . , skn) ← TFHE .Setup(1λ, 1d,A), cti ←
TFHE .Encrypt(pk, µi) for i ∈ [k], ct← TFHE .Eval(pk, C, ct1, . . . , ctk),

Pr[TFHE .FinDec(pk, {TFHE .PartDec(pk, ski, ct)}i∈S) = C(µ1, . . . , µk)] = 1− neg(λ).

Definition 23 (Semantic Security). A TFHE scheme satisfies semantic security if for all λ, and depth
bound d, the following holds. For any PPT adversary A, the following experiment ExptA,TFHE,sem(1

λ, 1d)
outputs 1 with negligible probability:
ExptA,TFHE,sem(1

λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn)← TFHE .Setup(1λ, 1d,A) and provides pk to A.
3. A outputs a set S ⊆ {P1, . . . , Pn} such that S /∈ A.
4. The challenger provides {ski}i∈S along with TFHE .Encrypt(pk, b) for b← {0, 1} to A.
5. A outputs a guess b′. The experiment outputs 1 if b′ = b.

We now describe the notion of simulation security for TFHE. Intuitively, simulation security definition says
that no information about the key shares or the messages µ1, . . . , µk should be leaked by the partial or final
decryption other than what is already implied by the result of the homomorphic operation C(µ1, . . . , µk).
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Definition 24 (Simulation Security [BGG+18]). A TFHE scheme satisfies simulation security if for
all λ, depth bound d, and access structure A, the following holds. There exists a stateful PPT algorithm
S = (S1,S2) such that for any PPT adversary A, the following experiments ExptRealA,TFHE-Sim(1

λ, 1d) and

ExptIdealA,TFHE-Sim(1
λ, 1d) are indistinguishable:

ExptRealA,TFHE-Sim(1
λ, 1d)

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn)← TFHE .Setup(1λ, 1d,A) and provides pk to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , Pn} and messages µ1, . . . , µk ∈ {0, 1}.
4. The challenger provides the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger computes ct← TFHE .Eval(pk, C, ct1, . . . , ctk)
and provides {TFHE .PartDec(pk, ski, ct)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptIdealA,TFHE-Sim(1
λ, 1d)

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn, st)← S1(1λ, 1d,A) and provides pk to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , Pn} and messages µ1, . . . , µk ∈ {0, 1}.
4. The challenger provides the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger runs the simulator {pi}i∈S ←
S2(C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, st) and sends {pi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Definition 25 (Stronger Simulation Security). A TFHE scheme satisfies stronger simulation security
if for all λ, depth bound d, and access structure A, the following holds. There exists a stateful PPT algorithm
S = (S1,SI ,SV ) such that for any PPT adversary A, the following experiments, ExptRealA,TFHE-strSim(1

λ, 1d) and

ExptIdealA,TFHE-strSim(1
λ, 1d)) are indistinguishable:

ExptRealA,TFHE-strSim(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn)← TFHE .Setup(1λ, 1d,A) and provides pk to A.
3. A outputs an invalid (not necessarily maximal) party set S∗ ⊆ {P1, . . . , Pn} and messages µ1, . . . , µk ∈
{0, 1}.

4. The challenger sends the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger computes ct← TFHE .Eval(pk, C, ct1, . . . , ctk)
and provides pi ← {TFHE .PartDec(pk, ski, ct)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptIdealA,TFHE-strSim(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn, st)← S1(1λ, 1d,A) and sends pk to A.
3. A outputs an invalid (not necessarily maximal) party set S∗ ⊆ {P1, . . . , Pn} and messages µ1, . . . , µk ∈
{0, 1}.

4. The challenger sends the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger provides {pi}i∈S computed as follows:
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– If C is queried for the first time, then initialize SC = ∅ and stC = st.
– If S ∪ SC ∪ S∗ is an invalid party set, then

(st′C , {pi}i∈S)← SI(C, {ct1, . . . , ctk}, S, stC)

Else, if S ∪ SC ∪ S∗ is a valid party set, then

(st′C , {pi}i∈S)← SV (C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, stC).

– Update SC = SC ∪ S and stC = st′C .
6. At the end of the experiment, A outputs a distinguishing bit b.

Our definition differs from [BGG+18] mainly in the ideal experiment where we define two simulators SI and
SV instead of S2 in [BGG+18]. Note that SI simulates the response for partial evaluation queries (S,C) if
S forms an invalid set of parties along with S∗ and the sets corresponding to previous queries for the circuit
C. The key property of SI is that it does not need C(µ1, . . . , µk) as its input. SV simulates the response for
partial evaluation queries (S,C) when S forms a valid party set (along with S∗ and the sets corresponding
to previous queries for the circuit C) and takes C(µ1, . . . , µk) as one of its input.

5.1 Construction of Threshold FHE from {0, 1}-LSSS

Construction 1 (TFHE) Let P = {P1, ..., Pn}. We use the following building blocks to construct a TFHE
for P :

– A special fully homomorphic encryption scheme, FHE = (FHE.Setup, FHE.Encrypt, FHE,Eval,FHE.Decrypt)
with noise bound B = B(λ, d, q) and multiplicative constant 1 (Definition 5).

– A (δ-almost) KHPRF, F : K × {0, 1}λ → Zq.
– A {0, 1}-LSSS, bSS = (bSS.Share, bSS.Combine). We use Ti to denote the i-th partition of the share

matrix M.We use = ℓ = ℓ(λ, n) to denote a fixed polynomial bound on the size of the share: |Ti| ≤ ℓ for
all i ∈ [n]. We let Bsm be the bound on the smudging noise to hide the LWE error e ∈ [−B,B] and Esm

the bound on the noise added to smudge the error in homomorphic evaluation of KHPRF.
– A collision resistant hash function H : {0, 1}∗ → {0, 1}λ.

TFHE .Setup(1λ, 1d,At,n): On input the security parameter λ, depth bound d, and threshold access structure
At,n, the setup algorithm does the following:
1. Samples (fpk, fsk)← FHE.Setup(1λ, 1d).
2. Secret shares 0 ∈ K as (K1, . . . ,Kn)← bSS.Share(0,At,n) and fsk as (fsk1, . . . , fskn)← bSS.Share(fsk,At,n).

We let fski = {fheskj}j∈Ti
and Ki = {kj}j∈Ti

.
3. Outputs tfpk = fpk and tfski = (fski,Ki) for all i ∈ [n].

TFHE .Encrypt(tfpk, µ): On input the public key tfpk and input µ ∈ {0, 1}, the encryption algorithm computes
and returns ct = FHE.Encrypt(tfpk, µ).

TFHE .Eval(tfpk, C, {ct1, . . . , ctk}): On input the public key tfpk, a circuit C : {0, 1}k → {0, 1} of depth at
most d and ciphertexts ct1, . . . , ctk, the evaluation algorithm computes and returns ctC = FHE.Eval(tfpk, C, ct1, . . . , ctk).

TFHE .PartDec(tfpk, tfski, ct): On input the public key tfpk, a ciphertext ct and partial decryption key tfski,
the partial decryption algorithm does the following.
1. Parse tfski = ({fheskj}j∈Ti

, {kj}j∈Ti
) and sample {ξj}j∈Ti

← [−Bsm, Bsm] and {ηj}j∈Ti
← [−Esm, Esm].

2. Compute and return pi = {yj = FHE.decode0(fheskj , ct) + ξj + F (kj , H(ct)) + ηj}j∈Ti
14.

TFHE .FinDec(tfpk, S, {pi}i∈S): On input a public key tfpk, a set S ⊆ [n], and a set of partial decryption
shares {pi}i∈S, it first checks if S ∈ At,n. If no, then it outputs ⊥. Else, it computes and returns

µ = FHE.decode1(bSS.Combine({pi}i∈S)),

which involves following steps: parse pi = {yj}j∈Ti for each i ∈ S and compute a minimal valid shares
set T ⊆

⋃
i∈S Ti. Then compute FHE.decode1(

∑
j∈T yj).

14 The two smudging noises, ξj and ηj can in fact be merged together by appropriately setting the parameters.
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Correctness

Theorem 4. Assume FHE is a special FHE (Definition 5) that satisfies correctness with noise bound B, bSS
is a {0, 1}-LSSS that satisfies correctness and F is a δ-almost KHPRF. Then the above construction of TFHE
(Construction 1) with parameters B,Bsm, Esm such that B+ ℓ(δ+Bsm +Esm) ≤ q/4 (where ℓ = poly(λ, n)
is the number of rows in the share matrix M) satisfies evaluation correctness.

Proof. Let tfpk, fpk, fsk, {tfski}i∈[n], {fheskj , kj}j∈[ℓ] be as defined in the construction. Let C : {0, 1}k → {0, 1}
be a circuit of depth atmost d, and cti = TFHE .Encrypt(fpk, µi), for µi ∈ {0, 1}, for all i ∈ [k]. Let ct =
TFHE .Eval(fpk, C, {cti}i∈[k]). Then we need to show that for all S ∈ At,n, {pi = TFHE .PartDec(fpk, tfski, ct)}i∈S ,

Pr[TFHE .FinDec(fpk, {pi}i∈S) = C(µ1, . . . , µk)] ≥ 1− neg(λ).

We have, from the construction, cti = FHE.Encrypt(fpk, µi),

ct = FHE.Eval(fpk, C, ct1, . . . , ctk),

pi = {yj}j∈Ti ,where yj = FHE.decode0(fheskj , ct) + ξj + F (kj , H(ct)) + ηj ,

for all i ∈ [n]. For a minimally valid share set T ⊆
⋃

i∈S Ti, we have, from the definition of bSS.Combine,

bSS.Combine({pi}i∈S) =
∑
j∈T

yj .

Thus, we have

TFHE .FinDec(fpk, {pi}i∈S)

= FHE.decode1(
∑
j∈T

yj)

= FHE.decode1(
∑
j∈T

(FHE.decode0(fheskj , ct) + F (kj , H(ct)) + ξj + ηj))

= FHE.decode1(FHE.decode0(
∑
j∈T

fheskj , ct) + F (
∑
j∈T

kj , H(ct)) + ep +
∑
j∈T

ξj +
∑
j∈T

ηj)

= FHE.decode1(FHE.decode0(fsk, ct) + F (0, H(ct)) + ep +
∑
j∈T

ξj +
∑
j∈T

ηj),

where |ep| ≤ |T |δ ≤ ℓδ

= FHE.decode1(⌊q/2⌉C(µ1, . . . , µk) + e+ ep +
∑
j∈T

ξj +
∑
j∈T

ηj)

= C(µ1, . . . , µk)

Here, the third equation follows from the linearity of FHE.decode0 and PRF F , ep is the error due to
homomorphic evaluation of almost KHPRF and is atmost δℓ. The fourth equality follows from the correctness
of bSS and the sixth equality follows from the correctness of FHE.decode0. Finally, the correctness follows
from the correctness of FHE.decode1 since |e + ep +

∑
j∈T ξj +

∑
j∈T ηj | ≤ B + |T |(δ + Bsm + Esm) ≤

B + ℓ(δ +Bsm + Esm) ≤ q/4.

Parameters For security and correctness, we require

– B + ℓBsm + δℓ+ ℓEsm ≤ q/4 (for correctness)
– B/Bsm ≤ neg(λ) and δℓ/Esm ≤ neg(λ) (for security).

We observe that since ℓ is poly(λ, n) and δ is a constant, our parameters are similar to those in [BGG+18]. As
noted there, FHE satisfying these parameters is known from subexponential LWE assumption [GSW13,BV11],
which is as hard as approximating the shortest vector with subexponential approximation factors.
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5.2 Security and Compactness

Theorem 5. Assume that FHE is a fully homomorphic encryption scheme that satisfies security (Defini-
tion 4) and bSS is a secure linear secret sharing scheme. Then the above construction of TFHE satisfies
semantic security.

Theorem 6. Assume that FHE is a compact fully homomorphic encryption scheme (Definition 3). Then the
above construction of TFHE satisfies compactness.

Since the TFHE ciphertext is same as the FHE ciphertext, the above two theorems follow directly from
the security of FHE and bSS, and compactness of FHE, respectively.

Simulation security

Theorem 7. Assume that FHE is secure(Definition 4), F is a secure δ-almost KHPRF and bSS is a secure
{0, 1}-LSSS and H is collision resistant. Then the above construction of TFHE satisfies stronger simulation
security (Definition 25).

Proof. Let A be any PPT adversary against the stronger simulation security of TFHE. Then we prove the
above theorem via the following sequence of hybrid experiments with A.

Hybrid0 : This is the real experiment ExptrealA,TFHE-strSim(1
λ, 1d). On input the access structure, At,n, the chal-

lenger runs (tfpk, tfsk1, . . . , tfskn) ← TFHE .Setup(1λ, 1d,At,n) and sends tfpk to A. Then A outputs a
set S∗ ⊆ [n] such that |S∗| < t and a set of messages µ1, . . . , µk ∈ {0, 1}. The challenger then computes
cti = TFHE .Encrypt(tfpk, µi) for i ∈ [k] and returns {tfski}i∈S∗ and {cti}i∈[k] to A. For each evaluation
query (S,C) from A, the challenger computes ctC = TFHE .Eval(tfpk, C, ct1, . . . , ctk) and returns the
following to A:

{pC,i = TFHE .PartDec(tfpk, tfski, ctC)}i∈S .

Each pC,i = {yC,j}j∈Ti , where yC,j = FHE.decode0(fheskj , ctC) + F (kj , H(ctC)) + ξC,j + ηC,j . In the
following, for any X ⊆ [n], we let TX =

⋃
i∈X Ti.

Hybrid1: This is the same as the previous hybrid except that for each query (S,C), the PRF component in
TFHE .PartDec is replaced with random values. In more detail, for i ∈ S ∩S∗, pC,i is computed as in the
real world. For i ∈ S \ S∗, pC,i is computed as follows:

– If C is queried for the first time, generate {rC,j}j∈T[n]\S∗ ← bSS.ShareInt(TS∗ , {F (kj , C)}j∈TS∗ , 0),
and save them in a list LC for future iterations and queries. Else, lookup for previously saved values
of {rC,j}j∈Ti in LC .

– Compute yC,j = FHE.decode0(fheskj , ctC) + rC,j + ξC,j + ηC,j for all j ∈ Ti.
Hybrid2: This is the same as the previous hybrid, except that for each query (S,C), for all i ∈ S \ S∗, the

PRF components in pC,i are generated from bSS simulators as follows.

– If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
– If S∗∪SC∪S is an invalid party set then generate ({rC,j}j∈TS\S∗ , st′C)← bSS.SSSimI(TS∗∪SC

, {rC,j}j∈TS∗∪SC
, TS\S∗ , stC).

Else, if S∗∪SC∪S is a valid party set then generate ({rC,j}j∈TS\S∗ , st′C)← bSS.SSSimV(TS∗∪SC
, {rC,j}j∈TS∗∪SC

, 0, TS\S∗ , stC).

Here, for j ∈ TS∗ , rC,j = F (kj , H(ctC)) and for j ∈ TSC\S∗ , rC,j is computed during previous queries
for C and is stored in LC .

– Update SC = SC ∪ S and stC = st′C and add {rC,j}j∈TS\S∗ to LC .

Then compute and return yC,j = FHE.decode0(fheskj , ct) + rC,j + ξC,j + ηC,j for all j ∈ TS\S∗ .
Hybrid3: This is the same as the previous hybrid, except that for i ∈ S \ S∗, pC,i = {yC,j}j∈Ti

is computed
differently as yC,j = r̃C,j + ξC,j + ηC,j , where r̃C,j are generated as follows:

– If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
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– If S∗ ∪ SC ∪ S is an invalid party set then generate

({r̃C,j}j∈TS\S∗ , st
′
C)← bSS.SSSimI(TS∗∪SC

, {r̃C,j}j∈TS∗∪SC
, TS\S∗ , stC).

Else, if S∗ ∪ SC ∪ S is a valid party set then generate

({r̃C,j}j∈TS\S∗ , st
′
C) ← bSS.SSSimV(TS∗∪SC

, {r̃C,j}j∈TS∗∪SC
, ⌊q/2⌉C(µ1, . . . , µk), TS\S∗ , stC).

Here, for j ∈ TS∗ , r̃C,j = FHE.decode0(fheskj , ctC) + F (kj , H(ctC)) and for j ∈ TSC\S∗ , r̃C,j is
computed during previous queries for C and is saved in LC .

– Update SC = SC ∪ S and stC = st′C and save {r̃C,j}j∈TS\S∗ in LC .

Hybrid4: In this hybrid, the challenger secret shares 0|fsk| in place of fsk in the setup phase.
Hybrid5: In this hybrid, cti encrypts 0 instead of µi.

We observe that the challenger does not use fsk or µ1, . . . , µk to generate the secret key shares {fski}i∈[n] or
to reply PartDec queries. Furthermore, for any queried circuit C, the challenger does not use C(µ1, . . . , µk)
as long as the partial decryptions (of ctC) are generated for an invalid set of parties. Thus the challenger in
Hybrid4 corresponds to the simulator in the ideal experiment, as desired.

Indistinguishability of Hybrids.

Hybrid0 ≈c Hybrid1: We observe that the only difference between the two hybrids is that in Hybrid0, the
PRF component in each partial evaluation is computed honestly using the PRF key share, while in
Hybrid1, for each circuit C, the PRF components are generated using the ShareInt algorithm. Hence, the
indistinguishability between Hybrid0 and Hybrid1 follows directly from Lemma 4.

Hybrid1 and Hybrid2 are identical in A’s view: The only difference between Hybrid1 and Hybrid2 is that
in Hybrid1 the PRF components are genertaed from ShareInt algorithm, while in Hybrid2 they are gen-
erated using the simulators bSS.SSSimI and bSS.SSSimV depending on whether the set S in the query
(S,C) forms an invalid or a valid set (along with S∗ and the subsets S′ in the previous queries of the
form (S′, C)). The indistinguishability between the two hybrids follows directly from the claim 14.

Claim 8 Given that B/Bsm ∈ neg(λ), Hybrid2 and Hybrid3 are statistically indistinguishable.

Proof. We observe that the two hybrids differ only in the way query (S,C) is answered for the honest parties.
For any queried circuit C, firstly, let

– SC be the set of parties for which partial evaluations were queried during the entire experiment.
– IC be the maximally invalid share set chosen by the bSS.SSSimV simulator. If SC ∪S∗ is an invalid party

set then let IC = TSC∪S∗ .
– EC be the set of party shares for which rC,j in Hybrid2 (resp. r̃C,j in Hybrid3) are chosen uniformly

randomly from Zq
15. From the description of the hybrids, it can be observed that EC ⊆ IC and EC∩TS∗ =

∅.

Then we make the following observations:

1. For all j ∈ TS∗ , yC,j is computed in the same way in both the hybrids.
2. For all j ∈ EC , rC,j ← Zq in Hybrid2 (resp. r̃C,j ← Zq in Hybrid3). Thus,

y
Hybrid2
C,j = FHE.decode0(fheskj , ctC) + rC,j + ξC,j + ηC,j

= r̃C,j + ξC,j + ηC,j

= y
Hybrid3
C,j

In the above, since rC,j is uniformly random, we can replace FHE.decode0(fheskj , ctC) + rC,j with uni-
formly random r̃C,j .

15 Since the choice of EC and IC depends only on the order of queries and the share matrix M , they are same in
both the hybrids.
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3. For all j ∈ IC \ (TS∗ ∪ EC), rC,j =
∑

α∈EC∪TS∗ cαrC,α in Hybrid2 (resp. r̃C,j =
∑

α∈EC∪TS∗ cαr̃C,α in
Hybrid3), where {cα} are such that M [j] =

∑
α∈EC∪TS∗ cαM [α]. This also gives us:

fheskj =
∑

α∈EC∪TS∗

cαfheskα.

Thus,

y
Hybrid2
C,j = FHE.decode0(fheskj , ctC) + rC,j + ξC,j + ηC,j

= FHE.decode0(fheskj , ctC) +
∑

α∈EC∪TS∗

cαrC,α + ξC,j + ηC,j

= FHE.decode0(
∑

α∈EC∪TS∗

cαfheskα, ctC) +
∑

α∈EC∪TS∗

cαrC,α + ξC,j + ηC,j

=
∑

α∈EC∪TS∗

cαFHE.decode0(fheskα, ctC) +
∑

α∈EC∪TS∗

cαrC,α + ξC,j + ηC,j

=
∑

α∈EC

cα(FHE.decode0(fheskα, ctC) + rC,α)

+
∑

α∈TS∗

cα(FHE.decode0(fheskα, ctC) + rC,α) + ξC,j + ηC,j

=
∑

α∈EC

cαr̃C,α +
∑

α∈TS∗

cαr̃C,α + ξC,j + ηC,j

=
∑

α∈EC∪TS∗

cαr̃C,α + ξC,j + ηC,j

= r̃C,j + ξC,j + ηC,j = y
Hybrid3
C,j

Here, the third equation follows from the linearity of FHE.decode0. In the fifth equation, FHE.decode0(fheskα, ctC)+
rC,α ≡ r̃C,α in EC , because rC,α is uniformly random for α ∈ EC and thus hides FHE.decode0(fheskα, ctC);
for α ∈ TS∗ , FHE.decode0(fheskα, ctC) + rC,α ≡ r̃C,α by definition.

4. Finally, for j ∈ TSC
\ IC , rC,j in Hybrid2 (resp. r̃C,j in Hybrid3) are computed as 0 −

∑
α∈IC

cαrC,α
16

(resp. r̃C,j = ⌊q/2⌉C(µ1, . . . , µk) −
∑

α∈IC
cαr̃C,α in Hybrid3), where {cα}α∈IC are such that M [j] +∑

α∈IC
cαM [α] = (1, 0, . . . , 0)17. Thus, we also have

fheskj = fsk−
∑
α∈IC

cαfheskα.

16 since F (0, H(ctC)) = 0.
17 Since IC is a maximally invalid share set and IC ∪ {j} is a valid share set, cj = 1
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Thus,

y
Hybrid2
C,j = FHE.decode0(fheskj , ctC) + rC,j + ξC,j + ηC,j

= FHE.decode0((fsk−
∑
α∈IC

cαfheskα), ctC)−
∑
α∈IC

cαrC,α + ξC,j + ηC,j

= FHE.decode0(fsk, ctC)−
∑
α∈IC

cαFHE.decode0(fheskα), ctC)−
∑
α∈IC

cαrC,α + ξC,j + ηC,j

= ⌊q/2⌉C(µ1, . . . , µk) + e−
∑
α∈IC

cα(FHE.decode0(fheskα), ctC) + rC,α) + ξC,j + ηC,j

= ⌊q/2⌉C(µ1, . . . , µk) + e−
∑
α∈IC

cαr̃C,α + ξC,j + ηC,j

= r̃C,j + e+ ξC,j + ηC,j

≈s r̃C,j + ξC,j + ηC,j = y
Hybrid3
C,j

Here, the fourth equality follows from the correctness of FHE, which gives FHE.decode0(fsk, ctC) =
⌊q/2⌉C(µ1, . . . , µk) + e, where e is the FHE error and is bounded by B. Finally, the statistical indis-
tinguishability in the last step follows from the smudging lemma 1, since ξC,j ← [−Bsm, Bsm] and
B/Bsm ≤ neg(λ).

Claim 9 Assume that bSS is a secure {0, 1}-LSSS. Then Hybrid3 and Hybrid4 are statistically indistinguish-
able.

Proof. The two hybrids differ only in the way {fhesk}j∈[ℓ] are generated. In Hybrid3, they are generated

as secret shares of fsk, while in Hybrid4, they are generated as secret shares of 0|fsk|. However, we observe
that in Hybrid3 and Hybrid4, the key shares of fsk corresponding to only invalid party shares are used - in
particular, only {fheskj}j∈TS∗ are used. Hence, from the security of bSS, the two hybrids are statistically
indistinguishable.

Claim 10 Assume that FHE is a secure fully homomorphic encryption scheme. Then Hybrid4 and Hybrid5
are computationally indistinguishable.

Proof. We observe that fsk is no longer used in Hybrid4. Hence, the indistinguishability between Hybrid4 and
Hybrid5 follows from FHE security.

Remark 2. In [ASY22], Agrawal et. al use Rényi divergence [BLL+15] based analysis to reduce the size of
noise flooding in BGGJKRS threshold signature from exponential to polynomial, effectively reducing the size of
modulus q to poly(λ). Rényi divergence is more suitable for search based primitives, like signatures. We remark
that using similar analysis as in [ASY22], size of Bsm and Esm can also be reduced to polynomial in case of
threshold signatures. However, this does not apply for threshold FHE and UT which are indistinguishability
based primitives.

6 Universal Thresholdizer

We first recall the definition of universal thresholdizer from [BGG+18]. Then we define our stronger security
notion for universal thresholdizer needed to prove stronger notion of security for the primitives thresholdized
using it - for example, threshold signatures and threshold CCA-PKE. We refer to [BGG+18] for the defini-
tions of compactness, correctness, (weaker) security and robustness.

Definition 26 (Universal Thresholdizer). Let P = {P1, . . . , Pn} be a set of parties. A universal thresh-
oldizer scheme for threshold access structure is a tuple of PPT algorithms UT = (UT.Setup,UT.Eval,UT.Verify,
UT.Combine) with the following properties:
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UT.Setup(1λ, 1d,At,n, x)→ (pp, s1, . . . , sn): On input the security parameter λ, a depth bound d, an access
structure. At,n, and a message x ∈ {0, 1}k, the setup algorithm outputs the public parameters pp, and a
set of secret shares s1, . . . , sn.

UT.Eval(pp, si, C) → yi: On input the public parameters pp, a share si, and a circuit C : {0, 1}k → {0, 1}
of depth at most d, the evaluation algorithm outputs a partial evaluation yi.

UT.Verify(pp, yi, C) → {0, 1}: On input the public parameters pp, a partial evaluation yi, and a circuit
C : {0, 1}k → {0, 1}, the verification algorithm accepts or rejects.

UT.Combine(pp, B) → y: On input the public parameters pp, a set of partial evaluations B = {yi}i∈S, the
combining algorithm outputs the final evaluation y.

Definition 27 (UT Stronger Security). We say that a UT scheme satisfies (stronger) security if for all λ,
and depth bound d, the following holds. There exists a stateful PPT algorithm S = (S1,SI ,SV ) such that for
all PPT adversary A, we have that the following experiments ExptA,UT,Real(1

λ, 1d) and ExptA,UT,Ideal(1
λ, 1d)

are computationally indistinguishable:

ExptA,UT,Real(1
λ, 1d):

1. On input the security parameter 1λ, and circuit depth 1d, the adversary A outputs an access structure
At,n, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sn)← UT.Setup(1λ, 1d,At,n, x) and provides pp to A.
3. A outputs an invalid (not necessarily maximal) party set S∗ ⊂ {P1, . . . , Pn} for At,n.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger provides {yi ← UT.Eval(pp, si, C)}i∈S

to A.
6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,UT,Ideal(1
λ, 1d):

1. On input the security parameter 1λ, and circuit depth 1d, the adversary A outputs an access structure
At,n, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sn, st)← S1(1λ, 1d,At,n) and provides pp to A.
3. A outputs an invalid (not necessarily maximal) party set S∗ ⊂ {P1, . . . , Pn} for At,n.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits C :
{0, 1}k → {0, 1} of depth at most d. For each query, the challenger provides {yi}i∈S computed as follows:
– If C is queried for the first time, then initialize SC = S, else SC = SC ∪ S.
– If SC ∪ S∗ is an invalid party set, then ({yi}i∈S , st

′)← SI(pp, C, S, st).
Else, if SC ∪ S∗ is a valid party set, then ({yi}i∈S , st

′)← SV (pp, C, C(x), S, st).
– Update st = st′.

6. At the end of the experiment, A outputs a distinguishing bit b.

Remark 3. The above definition differs from the security definition in [BGG+18] in the ideal experiment.
In the weaker notion of [BGG+18], in response to any query (S,C), the UT simulator takes C(x) as input,
irrespective of whether or not the set S forms a valid party set along with S∗ and sets corresponding to the
previous queries for the circuit C. In our definition, we make this distinction - we define two simulators SI
and SV . SI is used in case of invalid set and does not take C(x) as input. SV is used when S forms a valid
set (along with S∗ and sets in previous queries for C) and takes C(x) as input.

6.1 Construction

The construction for universal thresholdizer with stronger security is the same as that in [BGG+18]. We show
that the same construction satisfies our stronger notion of security if the underlying TFHE scheme satisfies
strong simulation security. We recall the construction from [BGG+18] and prove its (stronger) security
under the assumption that the underlying TFHE satisfies our stronger simulation security. We remark that
the proof is very similar to the proof of [BGG+18, Theorem 7.11], except mainly in Hybrid3, where we use
TFHE simulators from our construction. However, we present the entire proof here for completeness.
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[BGG+18] Construction of Universal Thresholdizer The construction relies on the following primi-
tives:

– A threshold fully homomorphic encryption scheme TFHE = (TFHE .Setup,TFHE .Encrypt,TFHE .Eval,
TFHE .PartDec,TFHE .FinDec)

– A NIZK with pre-processing scheme PZK = (PZK.Pre,PZK.Prove,PZK.Verify)
– A non-interactive commitment scheme Com = Com.commit.

A universal thresholdizer scheme UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) is constructed as follows:

UT.Setup(1λ, 1d,At,n, x)→ (utpp, {utsi}i∈[n]) : On input the security parameter λ, depth bound d, access

structure At,n, and message x = (x1, . . . , xk) ∈ {0, 1}k, the setup algorithm first generates the TFHE keys
(tfhepk, tfhesk1, . . . , tfheskn)← TFHE .Setup(1λ, 1d,At,n) and ciphertexts cti ← TFHE .Encrypt(tfhepk, xi)
for i = 1, . . . , k. Then, for all i ∈ [n], it generates reference strings (σV,i, σP,i) ← PZK.Pre(1λ), commit-
ment randomness ri ← {0, 1}λ, and commitments comi ← Com.commit(tfheski; ri).
Outputs utpp = (tfhepk, {cti}i∈[k], {σV,i}i∈[n],{comi}i∈[n]), utsi = (tfheski, σP,i, ri).

UT.Eval(utpp, utsi, C)→ yi = (pi, πi) : On input the public parameters utpp, a key share utsi, and a circuit
C, the evaluation algorithm does the following:
– Parses utpp as (tfhepk, {cti}i∈[k], {σV,i}i∈[n],{comi}i∈[n]) and utsi as (tfheski, σP,i, ri).
– Computes the evaluated ciphertext ct ← TFHE .Eval(tfhepk, C, ct1, . . . , ctk) and partial decryption
pi ← TFHE .PartDec(tfhepk, tfheski, ct).

– Then, it constructs the statement ψi = ψi(comi, ct, pi) asserting that the value pi is consistent with
the committed secret key tfheski as

∃(tfheski, ri) : comi = Com.commit(tfheski; ri) ∧ pi = TFHE .PartDec(tfhepk, tfheski, ct).

– It generates a NIZK proof πi ← PZK.Prove(σP,i, ψi, (tfheski, ri)) and returns yi = (pi, πi).
UT.Verify(utpp, yi, C)→ accept/reject : On input the public parameters utpp, a partial evalaution yi, and a

circuit C, the verification algorithm does the following:
– Parses utpp as (tfhepk, {cti}i∈[k], {σV,i}i∈[n],{comi}i∈[n]).
– Computes the evaluated ciphertext ct← TFHE .Eval(tfhepk, C, ct1, . . . , ctk).
– Then, it constructs the statement ψi = ψi(comi, ct, pi) as described in the Eval algorithm.
– It then parses yi = (pi, πi) and returns the result of PZK.Verify(σV,i, ψi, πi).

UT.Combine(utpp, B)→ y : On input the public parameters utpp = (tfhepk, {cti}i∈[k], {σV,i}i∈[n],{comi}i∈[n]),
and a set of partial evaluations B = {yi}i∈S for some S ⊆ [n], the combining algorithm first parses
yi = (pi, πi) for i ∈ S and outputs y = TFHE .FinDec(tfhepk, {pi}i∈S).

6.2 Security

Theorem 11. Suppose TFHE satisfies semantic security (Definition 23) and stronger simulation security
(Definition 25) with simulators (TFHE .S1,TFHE .SI ,TFHE .SV ), PZK is a zero knowledge proof system with
pre-processing that satisfies zero-knwoeldge (Definition 6), and C is a non-interactive commitment scheme
that satisfies computational hiding. Then, the universal thresholdizer scheme by Boneh et. al [BGG+18]
satisfies the stronger security (Definition 27).

Proof. The proof uses the following hybrids. These hybrids are the same as those in the proof of [BGG+18,
Theorem 7.11], except Hybrid3.

Hybrid0: This is the UT real security experiment from Definition 27. We define this hybrid in detail, to set
up the notataions to be used in the following hybrids.
On input a threshold access structure At,n, and a message x ∈ {0, 1}k from A, the challenger
– Runs UT.Setup(1λ, 1d,At,n, x) by computing the TFHE keys (tfhepk, tfhesk1, . . . , tfheskn) ← TFHE .

Setup(1λ, 1d,At,n), ciphertexts {cti ← TFHE .Encrypt(tfhepk, xi)}i∈[k], (σV,i, σP,i)← PZK.Pre(1λ).
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– It then samples ri ← {0, 1}λ and computes comi ← Com.commit(tfheski; ri) for i = 1, . . . , n. Sets
utpp = (tfhepk, {cti}i∈[k], {σV,i, σP,i}i∈[n], {comi}i∈[n]) and {utsi = (tfheski, ri)}i∈[n].

– Sends utpp to the adversary.

When A outputs an invalid party set S∗ ⊆ [n], the challenger provides {utsi}i∈S∗ to A.
For each evaluation query (S,C) from A, the challenger

– Computes ctC ← TFHE .Eval(tfhepk, C, ct1, . . . , ctk),

– Computes {pi = TFHE .PartDec(tfheski, ctC)}i∈S and {πi}i∈S for statements {ψi}i∈S as defined in
the construction using PZK.Prove algorithm. Sends yi = (pi, πi) to A for i ∈ S.

Hybrid1: This is the same as the previous hybrid, except that for each query (S,C), for each i ∈ S, πi is
computed using the PZK simulator (i.e. without using the witness tfheski).

Hybrid0 and Hybrid1 are computationally indistinguishable from the zero knowledge property of PZK.

Hybrid2: This is the same as the previous hybrid except that the comi in UT.Setup commits to zero string
instead of tfheski for all i ∈ [n] as comi = Com.commit(0|tfheski|; ri).

The computational indistinguishablity between Hybrid1 and Hybrid2 follows from the computational hid-
ing property of Com.

Hybrid3: In this hybrid the challenger uses TFHE simulators for generating the TFHE components in the
UT.Setup and in computing partial evaluations as follows:

– In the UT.Setup algorithm, the challenger generates (tfhepk, tfhesk1, . . . , tfheskn, st)← TFHE .S1(1λ, 1d,At,n)
instead of running TFHE .Setup. The rest of the UT.Setup is the same as in Hybrid2.

– For each query (S,C), for each i ∈ S, pi is computed using TFHE simulators TFHE .SI and TFHE .SV
as follows:

• If C is queried for the first time, initialize SC = ∅, stC = ∅.
• If S ∪SC ∪S∗ is an invalid party set then the partial evaluations {pi}i∈S are generated using SI

simulator for TFHE as (st′C , {pi}i∈S)← TFHE .SI(C, {ctκ}κ∈[k], S, stC).
Else, if S ∪ SC ∪ S∗ is a valid party set then the partial evaluations {p∗i }i∈S are generated using
SV simulator for TFHE as (st′C , {pi}i∈S)← TFHE .SV (C, {ctκ}κ∈[k], C(x), S, stC).

• Update stC with st′C , SC = SC ∪ S.

The remaining components are computed as in the previous hybrid.

By the stronger simulation security of TFHE (Definition 25, Hybrid2 and Hybrid3 are statistically indis-
tinguishable.

Hybrid4: This is the same hybrid as the previous one, except that in the UT.Setup, {cti}i∈[k]} encrypts zero
string instead of x. That is, {cti = TFHE .Encrypt(tfhepk, 0)}i∈[k].

The (computational) indistinguishability between Hybrid3 and Hybrid4 follows from the semantic security
of TFHE. In particular, we observe that the TFHE .S1 does not use tfhesk to generate the secret shares
{tfhesk1, . . . , tfheskn}. Thus, tfhesk is not used in Hybrid3 and hence, we can use semantic security of
TFHE to argue indistinguishability.

Hybrid4 is same as the ideal experiment, where the simulators UT.S1,UT.SI ,UT.SV are defined as follows:

1. UT.S1(1λ, 1d,At,n):

– Run (tfhepk, {tfheski}i∈[n], st)← TFHE .S1(1λ, 1d,At,n).

– Compute {cti ← TFHE .Encrypt(tfhepk, 0)}i∈[k],

– Generates (σV,i, σP,i)← PZK.Pre(1λ) for all i ∈ [n].

– It then samples ri ← {0, 1}λ and computes comi ← Com.commit(0|tfheski|; ri) for i = 1, . . . , n.

– Sets utpp = (tfhepk, {cti}i∈[k], {σV,i, σP,i}i∈[n], {comi}i∈[n]) and {utsi = (tfheski, ri)}i∈[n].

2. UT.SI(utpp, C, S, st) Runs TFHE .SI(C, {cti}i∈[k], S, st).

3. UT.SI(utpp, C, C(x), S, st) Runs TFHE .SI(C, {cti}i∈[k], C(x), S, st).

30



7 Applications

In this section we revisit the application of universal thresholdizer in thresholdizing different crypto primitives
as considered in [BGG+18]. In particular we define and construct threshold signatures and threshold CCA
PKE with stronger security properties. We note that the constructions for these primitives using universal
thresholdizer is the same as in [BGG+18]. Our contribution lies in (defining and) proving stronger security
for these primitives assuming that the underlying universal thresholdizer satisfies the stronger security as
defined in section 6.

7.1 Threshold Signatures

We first recall the definition of threshold signatures and its desired properties. Then we describe selective
unforgeability from [BGG+18] and its stronger notion from [BTZ22].

Definition 28 (Threshold Signatures). Let P = {P1, . . . , Pn} be a set of n parties. A threshold signature
scheme for access structure At,n on P is a tuple of PPT algorithms denoted by
TS = (TS.KeyGen, TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) defined as follows:

– TS.KeyGen(1λ,At,n) → (pp, vk, {ski}ni=1): On input the security parameter λ and an access structure
At,n, the KeyGen algorithm outputs public parameters pp, verification key vk and a set of key shares
{ski}ni=1.

– TS.PartSign(pp, ski,m)→ σi: On input the public parameters pp, a partial signing key ski and a message
m ∈ {0, 1}∗ to be signed, the partial signing algorithm outputs a partial signature σi.

– TS.PartSignVerify(pp,m, σi)→ accept/reject: On input the public parameters pp, a message m ∈ {0, 1}∗
and a partial signature σi, the partial signature verification algorithm outputs accept or reject.

– TS.Combine(pp, {σi}i∈S) → σm: On input the public parameters pp and the partial signatures {σi}i∈S

for S ∈ At,n, the combining algorithm outputs a full signature σm.
– TS.Verify(vk,m, σm) → accept/reject: On input a verification key vk, a message m and a signature σm,

the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following requirements.

Definition 29 (Compactness). A TS scheme satisfies compactness if there exist polynomials poly1(·), poly2(·)
such that for all λ, for all At,n and S ∈ At,n, the following holds. For (pp, vk, {ski}ni=1)←TS.KeyGen(1λ,At,n),
σi←TS.PartSign(pp, ski,m) for i ∈ S, and σ←TS.Combine(pp, {σi}i∈S), we have that |σ| ≤ poly1(λ) and
|vk| ≤ poly2(λ).

Definition 30 (Evaluation Correctness). A signature scheme TS satisfies evaluation correctness if forall
λ, for all At,n and S ∈ At,n, the following holds. For (pp, vk, {ski}ni=1) ← TS.KeyGen(1λ,At,n), σi ←
TS.PartSign(pp, ski,m) for i ∈ [n] and σm ← TS.Combine(pp, {σi}i∈S), we have:

Pr[TS.Verify(vk,m, σm) = accept] ≥ 1− neg(λ).

Definition 31 (Partial Verification Correctness). A signature scheme TS satisfies partial verification
correctness if for all λ and and for all At,n, the following holds. For (pp, vk, {ski}ni=1)← TS.KeyGen(1λ,At,n),

Pr[TS.PartSignVerify(pp,m,TS.PartSign(pp, ski,m)) = accept] = 1− neg(λ).

Definition 32 (Selective Unforgeability [BGG+18]). A TS scheme is unforgeable if for all PPT ad-
versary A, the probability of winning in the following experiment, ExptA,TS,uf (1

λ) is neg(λ).

1. On input the security parameter λ and an access structure At,n, the challenger runs the TS.KeyGen(1
λ,At,n)

algorithm and generates public parameters pp, verification key vk and a set of n key shares {ski}ni=1. It
sends pp and vk to A.
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2. A then outputs a maximally invalid party set S∗ ⊂ [n], i.e. |S∗| = t − 1, requesting key shares ski for
i ∈ S∗.

3. Challenger provides the set of keys {ski}i∈S∗ to A.
4. Adversary A issues polynomial number of adaptive queries of the form (m, i), where i ∈ [n] \ S∗, to

get partial signature σi on m. For each query the challenger computes σi as TS.PartSign(pp, ski,m) and
provides it to A.

5. At the end of the experiment, A outputs a message-signature pair (m∗, σ∗). The adversary wins if the
following conditions hold:
(a) m∗ was never queried as a signing query.
(b) TS.Verify(vk,m∗, σ∗) = accept.

Definition 33 (Stronger Selective Unforgeability [BTZ22]). In the stronger definition, the set S∗ of
corrupted parties is not necessarily maximally invalid, i.e. |S∗| < t. Another and the main difference is in
the conditions under which the adversary wins as defined below:

The adversary is allowed to issue partial signatures on the challenge message m∗, and wins if the following
conditions hold:

1. Let Sm∗ = {i : (m∗, i) was queried as a signing query}. Then |S∗ ∪ Sm∗ | < t.
2. TS.Verify(vk,m∗, σ∗) = accept.

Similar to [BGG+18], we construct a threshold signature scheme from a universal thresholdizer and a
signature scheme.

Construction 2 (Construction 8.16 in [BGG+18]) The construction TS = (TS.KeyGen, TS.PartSign,
TS.PartSignVerify,TS.Combine,TS.Verify) uses a signature scheme SignScheme = (SGen,Sign,Verify) and a
universal thresholdizer UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine).

– TS.KeyGen(1λ,At,n) → (pp, vk, {ski}ni=1). First it invokes SGen(1λ) to obtain a pair (pk, sk) and it sets
vk := pk. Then it runs (upp, {uski}ni=1)← UT.Setup(1λ,At,n, sk). Sets pp = upp and {ski = uski}ni=1.

– TS.PartSign(pp, ski,m)→ σi. On input the public parameters pp, a partial signing key ski and a message
m, the partial signing algorithm outputs UT.Eval(pp, ski, Cm) where the circuit Cm is defined as

Cm(sk) := Sign(sk,m).

– TS.PartSignVerify(pp,m, σi) → accept/reject. On input the public parameters pp, message m, and a
partial signature σi, the partial signature verification algorithm outputs UT.Verify(pp, σi, Cm).

– TS.Combine(pp, {σi}i∈S) → σm. On input the public parameters pp, and a set of partial signatures
{σi}i∈S, the signature combining algorithm outputs UT.Combine(pp, {σi}i∈S).

– TS.Verify(vk,m, σm)→ accept/reject. On input the signature verification key vk = pk, a message m, and
a signature σ, the verification algorithm outputs Verify(pk,m, σ).

Theorem 12. If the universal thresholdizer UT satisfies the stronger security notion (Definition 27) and
SignScheme is a signature scheme that satisfies unforgeability, then the construction above (Construction 2)
satisfies the Stronger Selective Unforgeability (Definition 33).

Proof. We prove the above theorem via the following hybrids. We start with Hybrid0 which is the experiment
ExptA,TS,uf (1

λ) for the construction 2.

Hybrid1. Note that since UT is secure with respect to Definition 27, there exists a stateful PPT algorithm
UT.S = (UT.S1,UT.SI ,UT.SV ) which can simulate answer to UT.Eval(pp, ski, ·) queries. We define Hybrid1
that is similar to Hybrid0 except that for the challenge queries of the form (m, i) made by A, the challenger
uses UT.S = (UT.S1,UT.SI ,UT.SV ) to generate partial signatures. It is straightforward to show these two
hybrids are indistinguishable because UT is secure with respect to Definition 27.
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Furthermore, we show that the advantage of A in Hybrid1 is negligible. Let us assume that the advantage
of A in Hybrid1 is ϵ. We define a reduction adversary B to attack the unforgeability of the underlying signature
scheme SignScheme = (SGen,Sign,Verify). Namely, the adversary B after receiving the public key pk from
its challenger, sets vk = pk. It runs (pp, sk1, . . . , skn, st)← UT.S1(1λ, 1d,At,n) and provides pp to A.

– When A outputs an invalid party set S∗ ⊂ [n], the adversary B provides the set of keys {ski}i∈S∗ to A.
– Adversary A issues polynomial number of adaptive queries of the form (m, i), where i ∈ [n] \ S∗ to get

partial signature σi for m. For each query the adversary B computes σi computed as follows:
• If m is queried for the first time, then initialize Sm = {i}, else Sm = Sm ∪ {i}.
• If Sm ∪ S∗ is an invalid party set, then (σi, st

′)← UT.SI(pp, Cm, {i}, st)
• Else, if Sm ∪ S∗ is a valid party set, then it queries m to its challenger to receive a signature σm on
m, and returns (σi, st

′)← UT.SV (pp, Cm, σm, {i}, st).
• Update st = st′.

– When at the end of the experiment, A outputs a message-signature pair (m∗, σ∗), the adversary B returns
(m∗, σ∗) as a forgery for SignScheme.

We observe that (m∗, σ∗) is a valid forgery by B. This is because |S∗∪Sm∗ | < t due to validity of A’s forgery.
Hence, B would never have asked a signature on m∗ to its challenger to answer any partial signature query on
m∗ by A. It is clear that if A wins with ϵ advantage, then the advantage of B in breaking the unforgeability
of SignScheme is also ϵ. This finishes the proof.

7.2 Threshold CCA PKE

We first recall the definition of CCA threshold PKE, correctness and security from [BGG+18]. Then we
define a stronger security notion, similar to stronger security of threshold signature.

Definition 34 (CCA Threshold PKE). CCA threshold PKE is CCA secure PKE in which the decryption
key is divided into key shares and distributed to multiple decryption servers. To decrypt a ciphertext, each
decryption server creates its own decryption share. These shares can then be publicly combined to get the full
decryption.

Let P = {P1, P2, . . . , Pn} be a set of n participants. A CCA threshold PKE scheme for threshold access
structure At,n on P and message spaceM is a tuple of PPT algorithms TPKE = (TPKE.KeyGen,TPKE.Encrypt,
TPKE.PartDec,TPKE.Combine) defined as follows:

– TPKE.KeyGen(1λ,At,n)→ (pp, ek, sk1, . . . , skn) : On input the security parameter, λ and an access struc-
ture, At,n, the keygen algorithm outputs the public parameters pp and the secret key shares {ski}ni=1

– TPKE.Encrypt(ek,m)→ ct : The encryption algorithm takes as input a message m ∈M and the encryp-
tion key ek and outputs a ciphertext ct.

– TPKE.PartDec(pp, ski, ct) → mi :The partial decryption algorithm takes as input the public parameters,
pp, decryption key share ski and a ciphertext ct and outputs a partial message mi

– TPKE.Combine(pp, {mi}i∈S)→ m′ :The combining algorithm takes the public parameters, pp and set of
partially decrypted messages {mi}i∈S and outputs message m′

Correctness: A TPKE scheme is said to satisfy decryption correctness if for all λ, for all At,n and S ∈
At,n, the following holds: for (pp, ek, sk1, . . . , skn)←TPKE.KeyGen(1λ,At,n), ct←TPKE.Encrypt(ek,m) and
mi←TPKE.PartDec(pp, ski, ct)

Pr[TPKE.Combine(pp, {mi}i∈S)] ≥ 1− neg(λ).

Definition 35 (Security [BGG+18]). A TPKE scheme for At,n is said to satisfy CCA security if for all
λ, the following holds: for all PPT adversary A, following experiments, Expt0A,TPKE(1

λ) and Expt1A,TPKE(1
λ)

are computationally indistinguishable.

ExptbA,TPKE(1
λ)
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1. On input a security parameter λ, and a threshold access structure At,n, the challenger runs (pp, ek, sk1, . . . , skn)
←TPKE.KeyGen(1λ,At,n) and provides pp and ek to A.

2. A outputs a maximal invalid party set, S∗ ⊂ [n], that is, |S∗| = t− 1.
3. The challenger provides the set of secret keys, {ski}i∈S∗ to A.
4. A issues a polynomial number of adaptive decryption queries of the form (ct, i), where i ̸∈ S∗.
5. The challenger computes si←TFHE.PartDec(pp, ski, ct) and sends si to A.
6. A outputs a pair of challenge messages (m∗

0,m
∗
1)

7. The challenger computes ct∗←TFHE.Encrypt(ek,m∗
b) and sends ct∗ to A.

8. A continues issuing a polynomial number of adaptive decryption queries. However, the adversary is not
allowed to issue a decryption query on the challenge ciphertext ct∗.

9. At the end of the experiment, A outputs a guess bit b′.

Similar to the stronger security of threshold signature, we define the stronger security for TPKE, where
the adversary is allowed to issue partial decryption query on the challenge ciphertext as well, as long as it is
for an invalid set of parties over all such queries.

Definition 36 (Stronger Security TPKE).
In the stronger definition, the set S∗ of corrupted parties is not necessarily maximally invalid, i.e. |S∗| < t.

Another, and the main difference is in the admissibility condition for A as follows - A can issue queries of
the form (ct∗, i). Let Sct∗ = {i : A issued decryption query as (ct∗, i)}. Then, S∗ ∪ Sct∗ must be an invalid
set, i.e. |S∗ ∪ Sct∗ | < t.

Similar to [BGG+18], we construct a threshold public-key encryption scheme from a universal thresholdizer
and a public-key encryption.

Construction 3 (Construction 8.29 in [BGG+18]) The construction TPKE = (TPKE.KeyGen,TPKE.
Encrypt,TPKE.PartDec,TPKE.Combine) uses a public key encryption scheme PKE = (PKE.Gen,Enc,Dec)
and a universal thresholdizer UT = (UT.Setup, UT.Eval,UT.Verify,UT.Combine).

– TPKE.KeyGen(1λ,At,n) → (pp, ek, sk1, . . . , skn). First it invokes PKE.Gen(1λ) to obtain a pair (pk, sk)
and it sets ek := pk. Then it runs (upp, {uski}i∈[n]) ← UT.Setup(1λ,At,n, sk), and sets pp = upp and
{ski = uski}ni=1.

– TPKE.Encrypt(ek,m)→ ct. The encryption algorithm takes as input a message m ∈M and the encryp-
tion key ek and outputs a ciphertext ct← Enc(pk,m).

– TPKE.PartDec(pp, ski, ct) → mi. The partial decryption algorithm takes as input the public parameters,
pp, decryption key share ski and a ciphertext ct and outputs mi ← UT.Eval(pp, ski, Cct) where the circuit
Cct is defined as

Cct(sk) := Dec(sk, ct).

– TPKE.Combine(pp, {mi}i∈S)→ m′. The combining algorithm takes the public parameters, pp and set of
partially decrypted messages {mi}i∈S and outputs m′ ← UT.Combine(pp, {mi}i∈S).

Theorem 13. If the universal thresholdizer UT satisfies the stronger security definition (Definition 27) and
PKE is CCA secure, then the construction above (Construction 3) satisfies the stronger security Definition 36.

Proof. We prove the above theorem via the following hybrids. For simplicity, we consider a modified but
equivalent version of ExptbA,TPKE(1

λ) in which the advantage of the adversary is the probability that b′ = b
when b is chosen uniformly random by the challenger. We start with Hybrid0 which is the (modified) experi-
ment ExptbA,TPKE(1

λ) for the construction 2.

Hybrid1. Note that since UT is secure with respect to Definition 27, there exists a stateful PPT algorithm
UT.S = (UT.S1,UT.SI ,UT.SV ) which can simulate answer to UT.Eval(pp, ski, ·) queries. We define Hybrid1
that is similar to Hybrid0 except for the challenge decryption queries of the form (ct, i) made by A. For
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the challenge queries, the challenger uses UT.S = (UT.S1,UT.SI ,UT.SV ) to answer. It is straightforward to
show these two hybrids are indistinguishable because UT is secure with respect to Definition 27.

Furthermore, we show that the advantage of A in Hybrid1 is at most 1/2 + negligible. Let us assume that
the advantage of A in Hybrid1 is ϵ. We define a reduction adversary B to attack the CCA security of the un-
derlying public-key encryption scheme PKE = (PKE.Gen,Enc,Dec). Namely, the adversary B after receiving
the public key pk from its challenger, it sets ek = pk, it runs (pp, sk1, . . . , skn, st)← UT.S1(1λ, 1d,At,n) and
provides pp, ek to A.

– When A outputs an invalid party set S∗ ⊆ [n], the adversary B provides the set of keys {ski}i∈S∗ to A.
– Adversary A issues a polynomial number of adaptive decryption queries of the form (ct, i), where i ̸∈ S∗

. For each query the adversary B returns mi computed as follows:
• If ct is queried for the first time, then initialize Sct = {i}, else Sct = Sct ∪ {i}.
• If Sct ∪ S∗ is an invalid party set, then (mi, st

′)← UT.SI(pp, Cct, {i}, st).
• Else, if Sct ∪ S∗ is a valid party set, then it queries ct to its challenger to receive a decryption mct,
and (mi, st

′)← UT.SV (pp, Cct,mct, {i}, st).
• Update st = st′.

– When A outputs a pair of challenge messages (m∗
0,m

∗
1), the adversary B forwards it to its challenger and

receives ct∗←TFHE.Encrypt(ek,m∗
b), where b is the challenge bit of PKE challenger. B sends ct∗ to A.

– A continues issuing a polynomial number of adaptive decryption queries (ct, i). The adversary A is
allowed to issue a decryption query on the challenge ciphertext ct∗ up to the gap between the threshold
value and the number of corrupted parties. The adversary B answers similar to pre-challenge queries
above, unless, when A queries ct∗. For ct∗, the adversary B stops and returns ⊥ whenever Sct∗ ∪ S∗ is a
valid party set. Note that as long as Sct∗ ∪S∗ is an invalid party set, B uses UT.SI , which does not need
the decryption of ct∗.

– When at the end of the experiment, A outputs a bit b′, the adversary B returns b′ as its output.

It is clear that the advantage of B in breaking the CCA security of PKE is ϵ. This finishes the proof since
since by the the CCA security of PKE, ϵ ≤ 1/2 + negligible.
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A Aditional Lemmas Related to KHPRF

A.1 Scurity lemma for perfect KHPRF

Lemma 5. Let F be any secure KHPRF and SS is a secure linear secret sharing scheme (Definition 14).
Then for all PPT adversary A, Pr[A wins] ≤ 1/2 + neg(λ) in the following experiment.

ExptA,KHPRF(1
λ):

1. The adversary A outputs the threshold access structure At,n, and a KHPRF key K.
2. The challenger C picks a share matrix M of dimensions ℓ × N for At,n access structure and sends

SS.pp = (M, {Ti}i∈[n]) to A.
3. A outputs an invalid share set T ∗ ⊆ [ℓ].
4. C runs {k1, . . . , kℓ} ← SS.Share(K,At,n) and returns {kα}α∈T∗ to A. It also samples a bit b← {0, 1}.
5. A issues polynomial number of evaluation queries of the form (j, x) adaptively, where j ∈ [ℓ] and x is an

input to PRF F .
– If b = 0, C returns yx,j = F (kj , x).
– Else (i.e. b = 1),
• if j ∈ T ∗, return yx,j = F (kj , x).
• else, C does the following:

∗ if x is queried for the first time (for any party share j ∈ [ℓ]), then it first computes yx,α =
F (kα, x) for all α ∈ T ∗ and runs {yx,α}α∈[ℓ]\S ← SS.ShareInt(SS.pp, T ∗, {yx,α}α∈T∗ , F (K,x),At,n).
Returns yx,j and saves {yx,α}α∈[ℓ]\T∗ for future queries.

∗ else C returns the saved yx,j.

6. A outputs b′ and wins if b′ = b.

Note 2.
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– Here, we are using a slight abuse of notation - we work directly at the level of party shares in [ℓ] without
identifying the parties to which they belong. For example, we write (k1, . . . , kℓ) ← SS.Share(K,At,n)
instead of {{kj}j∈Ti

}i∈[n] ← SS.Share(K,At,n).
– In the above game, the adversary can issue evaluation queries for multiple party shares together as (T, x),

where T ⊆ [ℓ].

A.2 Generalization of claim 2.

Claim 14 For all adversary A, Expt0A,SSIntSim and Expt1A,SSIntSim, as described below are identical in A’s view.
ExptbA,SSIntSim(1

λ)

1. Upon input a threshold access structure At,n, the challenger runs (M, {Ti}i∈[n]) ← SS.Setup(1λ,At,n)
and sends pp = (M, {Ti}i∈[n]) to A.

2. A outputs a secret s, an invalid party-share set T ⊆ [ℓ] along with the secret shares {wj}j∈S, already
fixed by A for party-shares in T .

3. The challenger does the following:
– If b = 0, generates {wj}j∈[ℓ] ← SS.ShareInt(pp, T, {wj}j∈T , s)
– Else if b = 1, initializes W = T and st = ∅.

4. For κ = 1 to ℓ− |T |,
(a) A outputs jκ ∈ [ℓ] (wlog we assume that jκ was not queried before and is not in T . Otherwise, the

challenger returns the previously set value).
(b) The challenger replies as following:

– If b = 0, the challenger returns wjκ (generated in Step 3)
– If b = 1 andW∪{jκ} is an invalid share set, generate (wjκ , st

′)← SSSimI(pp,W, {wα}α∈W , {jκ}, st);
updates W =W ∪ {jκ}, st = st′ and returns wjκ

– If b = 1 andW∪{jκ} is a valid share set, generate (wjκ , st
′)← SSSimV(pp,W, {wα}α∈W , {jκ}, s, st);

updates W =W ∪ {jκ}, st = st′ and returns wjκ

5. A outputs its guess bit b′ and wins if b′ = b.

Proof. The proof is same as that for claims 2 and 3 and hence omitted.

B TFHE for Stronger Simulation Security with Partially Adaptive Key Queries

In this section we combine our technique of using PRF for stronger simulation security with the technique
in [ASY22] to achieve partially adaptive key queries in the random oracle model.

B.1 Definition

We first define the security definition in this setting.

Definition 37 (Partially Adaptive Stronger Simulation Security ). A TFHE scheme satisfies par-
tially adaptive stronger simulation security if for all λ, depth bound d, and access structure A, the following
holds. There exists a stateful PPT algorithm S = (S1,SI ,SV ) such that for any PPT adversary A, the
following experiments ExptRealA,TFHE-partAdapt-strSim(1

λ, 1d) and ExptIdealA,TFHE-partAdapt-strSim(1
λ, 1d)d) are indistin-

guishable:
ExptRealA,TFHE-partAdapt-strSim(1

λ, 1d)

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn)← TFHE .Setup(1λ, 1d,A) and provides pk to A.
3. A outputs messages µ1, . . . , µk ∈ {0, 1}.
4. The challenger provides {pi ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
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5. A issues a polynomial number of adaptive PartDec queries of the form (S ⊆ {P1, . . . , Pn}, C) for
circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger computes ctC ←
TFHE .Eval(pk, C, ct1, . . . , ctk) and provides cti ← {TFHE .PartDec(pk, ski, ctC)}i∈S to A.

6. A outputs an invalid (not necessarily maximal) party set S∗ ⊆ {P1, . . . , Pn}.
7. The challenger provides the keys {ski}i∈S∗ .
8. A continues to issue more PartDec queries, to which the challenger responds as before.
9. At the end of the experiment, A outputs a distinguishing bit b.

ExptIdealA,TFHE-partAdapt-strSim(1
λ, 1d)

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn)← S1(1λ, 1d,A) and provides pk to A.
3. A outputs messages µ1, . . . , µk ∈ {0, 1}.
4. The challenger provides {cti ← TFHE .Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive PartDec queries of the form (S ⊆ {P1, . . . , Pn}, C) for circuits

C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger provides {pi}i∈S computed as
follows:
– If C is queried for the first time, then initialize SC = ∅.
– If S ∪ SC is an invalid party set, then (st′, {pi}i∈S)← SI(C, {ct1, . . . , ctk}, S, st)

Else, if S ∪ SC is a valid party set, then
(st′, {pi}i∈S)← SV (C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, st).

– Update SC = SC ∪ S and st = st′.
6. A outputs an invalid (not necessarily maximal) party set S∗ ⊆ {P1, . . . , Pn}.
7. The challenger provides the keys {ski}i∈S∗ .
8. A continues to issue more PartDec queries. The challenger computes the response using the simulators

as before - i.e., use SI if SC ∪ S ∪ S∗ is invalid, else use SV .
9. At the end of the experiment, A outputs a distinguishing bit b.

We now construct a TFHE with above security.

B.2 Construction

Construction 4 (Partially Adaptive Stronger TFHE) Our construction for t-out-of-n threshold access
structure uses the same building blocks as in Construction 1. In addition, it also uses a keyed hash function
H1 : {0, 1}λ × {0, 1}∗→Zℓ

q, where ℓ is the number of rows in the share matrix M.

TFHE .Setup(1λ, 1d,At,n): On input the security parameter λ, depth bound d, and threshold access structure
At,n, the setup algorithm does the following:
1. Samples a random key for H1 as R← {0, 1}λ; secret shares 0 ∈ Zℓ

q as (rk1, . . . rkn)← bSS.Share(0ℓ,At,n).
Here, each rki = {vj}j∈Ti

.
2. Sample (fpk, fsk)← FHE.Setup(1λ, 1d).
3. Secret share 0 ∈ K as (K1, . . . ,Kn)← bSS.Share(0,At,n) and fsk as (fsk1, . . . , fskn)← bSS.Share(fsk,At,n).

We let fski = {fheskj}j∈Ti and Ki = {kj}j∈Ti .
4. Outputs tfpk = fpk and tfski = (fski,Ki, rki, R) for all i ∈ [n].

TFHE .Encrypt(tfpk, µ): On input the public key tfpk and input µ ∈ {0, 1}, the encryption algorithm computes
and returns ct = FHE.Encrypt(tfpk, µ).

TFHE .Eval(tfpk, C, {ct1, . . . , ctk}): On input the public key tfpk, a circuit C : {0, 1}k → {0, 1} of depth at
most d and ciphertexts ct1, . . . , ctk, the evaluation algorithm computes and returns ctC = FHE.Eval(tfpk, C,
ct1, . . . , ctk).

TFHE .PartDec(tfpk, tfski, ct): On input the public key tfpk, a ciphertext ct and partial decryption key tfski,
the partial decryption algorithm does the following.
1. Parse tfski = ({fheskj}j∈Ti

, {kj}j∈Ti
and sample {ξj}j∈Ti

← [−Bsm, Bsm] and {ηj}j∈Ti
← [−Esm, Esm].
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2. Compute and return pi = {yj = FHE.decode0(fheskj , ct)+ξj+H1(R, ct)
Tvj+F (kj , H(ct))+ηj}j∈Ti

18

TFHE .FinDec(tfpk, S, {pi}i∈S): On input a public key tfpk, a set S ⊆ [n], and a set of partial decryption
shares {pi}i∈S, it first checks if S ∈ At,n. If no, then it outputs ⊥. Else, it computes and returns

µ = FHE.decode1(bSS.Combine({pi}i∈S))

which involves following steps: parse pi = {yj}j∈Ti
for each i ∈ S and compute a minimal valid shares

set T ⊆
⋃

i∈S Ti. Then compute FHE.decode1(
∑

j∈T yj).

The correctness is same as the correctness of Construction 1, due to the observation that for any valid set
S, bSS.Combine({H1(R, ct)rki}i∈S = H1(R, ct)bSS.Combine({rki}i∈S = H1(R, ct) · 0ℓ = 0. The second last
equality follows from the fact that {rki}i∈[n] are secret shares of 0 vector.

Security We prove the security via the following theorem.

Theorem 15. Assume that FHE is secure (Definition 4), F is a secure KHPRF and bSS is a secure {0, 1}-LSSS,
H is collision resistant and H1 is modeled as random oracle. Then the above construction of TFHE satisfies
stronger simulation security with partially adaptive key queries(Definition 37).

Proof. The theorem can be proved by combining the steps from proof of [ASY22, Theorem 5.1] and Thee-
orem 7. We provide an overview of the proof here. The proof is given via the following hybrids.

Hybrid0: This is the real experiment.
– On input the access structure, At,n, the challenger runs (tfpk, tfsk1, . . . , tfskn)← TFHE .Setup(1λ, 1d,At,n)

and sends tfpk to A.
– A outputs a set of messages µ1, . . . , µk ∈ {0, 1}. The challenger then computes cti = TFHE .Encrypt(tfpk, µi)

for i ∈ [k] and returns {cti}i∈[k] to A.
– A issues polynomially many PartDec queries of the form (S,C).

For each query (S,C), the challenger computes ctC = TFHE .Eval(tfpk, C, ct1, . . . , ctk) and returns
{pC,i = TFHE .PartDec(tfpk, tfski, ctC)}i∈S to A.
Each pC,i = {yC,j}j∈Ti

, where yC,j = FHE.decode0(fheskj , ctC) +H1(R, ctC)
Tvj + F (kj , H(ctC)) +

ξC,j + ηC,j .
– A outputs a set S∗ ⊆ [n] such that |S∗| < t. The challenger returns {tfski}i∈S∗ .
– A continues to query more partial decryptions, to which the challenger replies honestly as before.
– Whenever A issues a query (x, y) to the oracle for H1, the challenger samples a random value r from

Zℓ
q, sets and returns H1(x, y) = r. If a query is repeated, the challenger returns the already set value.

Hybrid1: Let us call the partial decryption queries before the key queries as pre-queries and those after as
post queries. Then, Hybrid1 differes from Hybrid0 in the following:
– for each pre query (S,C), the challenger computes pC,i = {yC,j}j∈Ti differently as yC,j = r̃C,j +
ξC,j + ηC,j , where r̃C,j are generated as follows:
• If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
• If SC ∪ S is an invalid party set then generate

({r̃C,j}j∈TS
, st′C)← bSS.SSSimI(TSC

, {r̃C,j}j∈TSC
, TS , stC).

Else, if SC ∪ S is a valid party set then generate

({r̃C,j}j∈TS
, st′C)← bSS.SSSimV(TSC

, {r̃C,j}j∈TSC
, TS , ⌊q/2⌉C(µ1, . . . , Ck), stC).

Here, for j ∈ TSC
, r̃C,j is computed during previous queries for C and is saved in LC .

• Update SC = SC ∪ S and stC = st′C and save {r̃C,j}j∈TS
in LC .

– When A issues key queries for a set S∗, the challenger does the following.

18 The two smudging noises, ξj and ηj can in fact be merged together by appropriately setting the parameters.
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• For each C for which a partial decryption has been returned, it does the following:
∗ Implicitly assumes a PartDec query of the form (S∗ \ SC , C) and generates {r̃C,j}j∈TS∗\SC

.

∗ For each j ∈ TS∗ , computes r̂C,j = r̃C,j − FHE.decode0(fheskj , ctC)− F (kj , H(ctC)). It then
finds a hC such that hT

Cvj = r̂C,j for all j ∈ TS∗ . Observe that hC is of length ℓ, we have
more unknowns than the number of equations, and hence such a hC can be found. Moreover
since S∗ is an invalid set, {r̂C,j}j∈TS∗ are random19 Thus hC is also random. The challenger
then programs H1(R, ctC) = hC and returns {fskj}j∈TS∗ to A. We note that since R is a
secret with high entropy, the probability that the adversary would have queried the random
oracle H1 on input (R, ·) before getting the keys is negligible.

∗ For each j ∈ TSC\S∗ , r̃C,j is viewed as FHE.decode0(fheskj , ctC) +H1(R, ctC) + r′C,j . Since,
r̃C,j is random, r′C,j is also random. Thus, effectively, the PRF component is replaced with
a random value.

– For each post query (S,C), if S = S∗, the challenger returns an honestly computed value. For
i ∈ S \S∗, pC,i = {yC,j}j∈Ti

is computed as yC,j = r̃C,j + ξC,j + ηC,j , where r̃C,j are again generated
using the simulators as follows:
• If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
• If S∗ ∪ SC ∪ S is an invalid party set then generate ({r̃C,j}j∈TS\S∗ , st′C) ← bSS.SSSimI(TS∗∪SC

,
{r̃C,j}j∈TS∗∪SC

, TS\S∗ , stC).
Else, if S∗ ∪ SC ∪ S is a valid party set then generate

({r̃C,j}j∈TS\S∗ , st
′
C)← bSS.SSSimV(⌊q/2⌉C(µ1, . . . , Ck), TS∗∪SC

,

{r̃C,j}j∈TS∗∪SC
, TS∗\S , stC)

Again, for each j ∈ TS\S∗ , r̃C,j can be viewed as FHE.decode0(fheskj , ctC) +H1(R, ctC) + r′C,j .
Since, r̃C,j is random, r̂C,j is also random.

We observe that this hybrid has the same distribution as Hybrid3 in the proof of theorem 7. And
hence, by similar arguments in theorem 5, Hybrid0 and Hybrid1 are indistinguishable.

Hybrid2: In this hybrid, the challenger generates secret shares of 0|fsk| in place of fsk. Hybrid2 is indistin-
guishable from Hybrid1 from the security of bSS.

Hybrid3: In this hybrid, cti encrypts 0 instead of µi. The indistinguishability from the previous hybrid
follows from FHE security, since fsk is no longer used.

Finally, the proof completes by observing that since the challenger does not use fsk or {µi}i∈[k] in Hybrid3,
it represents the simulator in the ideal experiment of Definition 37.

19 except for the dependencies due to the share matrix M, which are there in {vj}j∈TS∗ as well.
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