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ClusterGuard: Secure Clustered Aggregation for
Federated Learning with Robustness

Yulin Zhao , Zhiguo Wan , Member, IEEE, Zhangshuang Guan

Abstract—Federated Learning (FL) enables collaborative
model training while preserving data privacy by avoiding the
sharing of raw data. However, in large-scale FL systems, efficient
secure aggregation and dropout handling remain critical chal-
lenges. Existing state-of-the-art methods, such as those proposed
by Liu et al. (UAI’22) and Li et al. (ASIACRYPT’23), suffer from
prohibitive communication overhead, implementation complexity,
and vulnerability to poisoning attacks. Alternative approaches
that utilize partially connected graph structures (resembling
client grouping) to reduce communication costs, such as Bell
et al. (CCS’20) and ACORN (USENIX Sec’23), face the risk of
adversarial manipulation during the graph construction process.

To address these issues, we propose ClusterGuard, a secure
clustered aggregation scheme for federated learning. Cluster-
Guard leverages Verifiable Random Functions (VRF) to ensure
fair and transparent cluster selection and employs a lightweight
key-homomorphic masking mechanism, combined with efficient
dropout handling, to achieve secure clustered aggregation. Fur-
thermore, ClusterGuard incorporates a dual filtering mechanism
based on cosine similarity and norm to effectively detect and
mitigate poisoning attacks.

Extensive experiments on standard datasets demonstrate that
ClusterGuard achieves over 2x efficiency improvement compared
to advanced secure aggregation methods. Even with 20% of
clients being malicious, the trained model maintains accuracy
comparable to the original model, outperforming state-of-the-
art robustness solutions. ClusterGuard provides a more efficient,
secure, and robust solution for practical federated learning.

I. INTRODUCTION

In recent years, amidst the rising importance of data pri-
vacy and security, federated learning (FL) has emerged as
a solution for collaborative model training among multiple
data custodians without sharing raw data. While FL prevents
direct data exposure to third parties, it still carries significant
privacy risks, as highlighted in [1]. Protecting update data in
FL training is paramount, underscoring the urgent need for a
secure aggregation framework.

Currently, quite a few schemes have been proposed to
address this pressing need. The pioneering work is due to
Bonawitz et al. from Google [2], along with a series of sub-
sequent works [3]–[6]. Their key idea is to establish pairwise
opposite masks for each pair of clients to hide their model

Corresponding author: Zhiguo Wan.
Yulin Zhao is with Institute of Software Chinese Academy of Sciences,

Beijing 100190, China, and also with Hangzhou Institute for Advanced Study,
University of Chinese Academy of Sciences, Hangzhou 310024, China (e-
mail: zhaoyulin22@mails.ucas.ac.cn).

Zhiguo Wan is with Zhejiang Laboratory, Hangzhou, 311121, China (e-
mail: wanzhiguo@zhejianglab.com).

Zhangshuang Guan is with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, 310027, China (e-mail:
guanzs@zju.edu.cn).

parameters, and these masks can be cancelled completely
in aggregation. Assume a set of clients U perform federate
learning over their local data, and each client u ∈ U obtains
a local model update xu, where the elements of xu and∑

u∈U xu are in ZR for some R. Then we can add the mask
as follows to each xu:

yu = xu + PRG(bu) +
∑

v∈U :u<v

PRG(su,v)

−
∑

v∈U :u>v

PRG(sv,u) mod R (1)

where PRG is a pseudorandom generator, su,v is the shared
seed between clients u and v used to generate pairwise masks,
and bu is another random seed for the client itself used
to generate individual masks. Clients secretly share all their
seeds with other clients. Later, when the masked models
yu are aggregated, the individual masks of online clients
are recovered, and the pairwise masks of offline clients are
recovered. At this point, the pairwise opposite masks will be
successfully eliminated, and the individual masks can also be
correctly subtracted. If only pairwise masks are used, clients
may experience delays in coming online, which could lead to
model leakage if the server uses online clients to recover its
secret.

However, each client needs to compute and share pairwise
masks with other clients, which leads to increased com-
plexity and resource demands. Additionally, in the event of
client dropouts, the server must reconstruct numerous pairwise
masks, further hindering its practicality in large-scale federated
learning (FL).

Liu et al. [7], SASH [8], and LERNA [9] propose utiliz-
ing homomorphic pseudorandom generators to optimize the
process into a single mask. However, their constructions face
significant practical challenges: Liu et al.’s approach requires
brute-forcing discrete logarithms, resulting in a substantial
computational burden; SASH introduces additional commu-
nication rounds, with computation results containing unavoid-
able errors; and LERNA relies on maintaining committees with
a large number of members to support its scheme, which is
impractical in real-world scenarios. Bell et al. [3] and ACORN
[10] adopted the Distributed Graph Generation approach to
effectively reduce the communication overhead required by
clients. However, they overlooked the risk of collusion be-
tween clients and the server, which could manipulate neighbor
relationships. This makes it challenging to ensure truly random
neighbor sampling, posing potential security threats to the
system.
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In this work, we introduce a novel federated learning aggre-
gation scheme, ClusterGuard, to address the aforementioned
issues. Our key idea leverages Verifiable Random Functions
(VRF) for clustering, ensuring randomness in partition re-
sults. We then devise a concise clustering aggregation scheme
using lattice-based key-homomorphic pseudorandom random
function (LKH-PRF) and design corresponding strategies for
dropout handling and robust aggregation. We also propose two
variants of the scheme, enabling our approach to be flexibly
applied in both client-server and decentralized scenarios. We
compare ClusterGuard with the relevant schemes listed in Ta-
ble I in terms of complexity and properties. The contributions
of this paper are as follows:

• We design a VRF-based cluster election strategy to ensure
fairness and transparency. Clients jointly compute the
election result using their own keys, preventing manip-
ulation by either the server or clients, while safeguarding
client data security. Building on cluster aggregation, we
devise a concise, secure model aggregation scheme based
on LKH-PRF. It is efficient, error-free, and supports
dropout.

• We design a countermeasure against poisoning attacks
based on norm and cosine similarity for ClusterGuard,
preserving client privacy while detecting malicious clients
efficiently.

• We conduct a rigorous security and theoretical analysis,
accompanied by detailed performance assessments, to
validate our scheme’s theoretical security guarantees and
feasibility.

• Extensive experiments on common datasets demonstrate
over 2x performance improvement compared to classical
secure aggregation methods. Additionally, under attacks
from 20% of malicious clients, the training model main-
tains a high level of accuracy comparable to the original
model, surpassing current state-of-the-art robustness so-
lutions.

II. MODELS AND PRELIMINARIES

Before introducing the models and preliminaries, we list the
notations used in our scheme in Table II.

A. Threat Model

In line with prior research [2], [11], we investigate two
distinct threat models: 1) the semi-honest setting and 2) the
malicious setting.

1) The semi-honest setting: it is assumed that the server
and all clients will faithfully execute the protocol as
prescribed, but some of them are curious to uncover
the privacy of other parties, and they may share their
information with each other to accomplish this aim;

2) The malicious setting: it is assumed that the server and a
subset of clients may act maliciously, such as deviating
from the designated protocol or sending altered messages
to honest parties.

We consider two different types of attackers, as referenced
by Zhang et al [12]. The first type of attacker aims to steal

the privacy of model updates from honest clients, while the
second type seeks to disrupt the normal training of federated
learning. We assume that the server and the second type of
attackers are adversarial, as the server may also benefit from
an accurate and robust global model.

1) Type I attackers: Potential type I attackers include the
server and some clients. It is important to note that
collusion may occur both between clients and between
the server and clients, with the aim of compromising
the model privacy of honest clients. Clients may be
malicious, while the server is assumed to be honest but
curious.

2) Type II attackers: For type II attackers, the attackers
consist of one or more malicious clients, who can upload
arbitrary gradients to perform poisoning attacks, with the
goal of disrupting the training of the entire global model.
The attackers cannot influence the behavior of benign
users, nor can they observe the local models of benign
users. In the cluster aggregation scheme, we assume that
the proportion of Type II attackers (malicious or com-
promised users) is less than k

n to ensure that at least one
cluster consists entirely of benign clients. Additionally,
we assume that the attackers can fully cooperate with
each other.

B. Federated Learning

Federated learning (FL) is a distributed training framework
where multiple clients collaboratively train a machine learning
model. The classic FL algorithm, FedAvg [13], involves n
clients and a server. Each client ui ∈ U holds its local dataset
Di. The server initializes the global model parameter θ0 and
broadcasts it to all clients. Participants repeat the following
steps for each round r until convergence:

Step 1. Each client receives the global model θr and calcu-
lates local model updates w(ui) = ∇Fi(θr, ξi) by performing
multiple steps of Stochastic Gradient Descent (SGD) on the
local available data (ξi ∼ Di), where Fi is a loss function.

Step 2. Clients upload weight updates w
(ui)
r to the server.

Step 3. The server aggregates updates and sends back
θr+1 ← θr − η 1

n

∑
ui∈U w

(ui)
r , where η is the learning rate.

C. Verifiable Secret Sharing

Based on Feldman’s VSS [14] , Verifiable Secret Sharing
(VSS) enables secure distribution of a secret among multiple
parties without a dealer. It ensures share integrity through
commitments to polynomial coefficients, facilitating secret
reconstruction by collaborating participants.

• VSS.Setup(1λ)→ (G, q, g), where g is a generator of
group G with prime order q.

• VSS.Share(su, t,U)→ ({v, su,v}v∈U , {gsu,v}v∈U ,
{gau,d}d∈[0,t−1]). On input su ∈ Zq , client u chooses

au,1, · · · , au,t−1
$← Zq , constructs a polynomial fu(x) =

au,0 + au,1x + . . . + au,t−1x
t−1 where au,0 = su and

au,t−1 ̸= 0, computes {gau,d} for ∀d ∈ [0, t− 1], su,v :=
fu(v) and gsu,v for ∀v ∈ [1, |U|].
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TABLE I
COMMUNICATION AND COMPUTATION OVERHEAD COMPARED WITH OTHER SECURE AGGREGATION SCHEMES.

Setting Bonawitz [2] Bell [3] FLDP [11] ACORN [10] LERNA [9] Ours

Client Communication O(n+m) O(logn+m) O(m+ k′ + n) O(m+ logn) O(m) O(ℓl +m+ n)
Client Computation O(n2 + nm) O(log2 n+m logn) O(mk′ + n logn) O(m logn) O(mlogℓ+Mℓ) O(ℓl2 +mℓ+ n)

Server Communication O(n2 + nm) O(n logn+ nm) O(mn+ k′) O(nm+ n logn) O((M + n)m) O(mn+ ℓn)

Server Computation O(mn2) O(n log2 n+ nm logn) O(mk′ +mn+ n logn) O(nm logn) O(Mt) O(nt+ nmℓ
l

)
Pairwise Masking Yes Yes No Yes No No

Mask Error No No Yes No No No
Clustering Mechanism ✗ ✓ ✗ ✓ ✗ ✓
Robustness Mechanism No No No Yes No Yes
* n is the number of clients, m is the input size or the model vector size, k′ is the key size in FLDP [11], ℓ is the key size of our scheme, and t is the threshold of

secret sharing, l is the number of members in each cluster, M is the commitee size of LERNA. For fair comparison, the computation and communication of LERNA
is for non-member clients (including flat secret sharing).

TABLE II
NOTATIONS

x,y, z,k, s, su Vector format
s, su, ai Scalar format
⟨x · y⟩ Inner product
{su}u∈U A set of scalar values

U = {u1, u2, · · · , un} A set of users (clients)*

C = {C1, C2, · · · ∪ Ck} Clients split into clusters of equal size
Du Data set held by u

Nu = |Du| Size of data sets
N =

∑
u∈U |Du| Total size of data sets

x
R← X Choose x uniformly at random from X
k the number of clusters
l the number of members in each cluster
n the number of clients

• VSS.Verify(v, gsu,v , {gau,d}d∈[0,t−1]) → b. This algo-
rithm outputs 1 if and only if the following equation
holds:

gsu,v
?
=

t−1∏
d=0

(gau,d)v
d

mod q

• VSS.Accum({v, su,v}u∈U ) → (v, s∗v). On input |U|
inputs of the form (v, su,v)u∈U , this algorithm enables
client v to accumulate |U| shares by computing s∗v =∑

u∈U su,v and gs
∗
v .

• VSS.VrfyAccum(v, gs
∗
v , {gsu,v}u∈U ) → b. This algo-

rithm outputs 1 if and only if the following equation
holds: gs

∗
v

?
=
∏

u∈U gsu,v mod q.
• VSS.Recon({v, s∗v}v∈U )→ s. On input at least t inputs

of the form (v, s∗v), this algorithm computes and outputs
s = f(0) =

∑
u∈U su.

D. Lattice-based Key-homomorphic PRF

Given spaces X ,Y,K over {0, 1}∗, let (K, ⋆) and (Y, •) be
groups and have a group homomorphism between the space
K and Y [15]. For ∀x ∈ X and k1, k2 ∈ K, a pseudorandom
function PRFk : X → Y where k ∈ K denotes the key is key-
homomorphic, if the following equation holds: PRFk1

(x) •
PRFk2

(x) = PRFk1⋆k2
(x).

The above properties can be realized by the lattice
cryptography. In fact, the lattice-based KH-PRF is an
approximate homomorphic function, formulated as [16]:
LKH-PRFk1+k2

(x) = LKH-PRFk1
(x) + LKH-PRFk2

(x) +

e, where e ∈ N is small. Among existing lattice-based KH-
PRF schemes, Boneh et al.’ s construction [16] based on LWR
is simpler and more efficient, and its security is based on ROM.
Let H : X → Zℓ

q be a hash function modeled as a random
oracle, k ∈ Zℓ

q be a vector key, the lattice-based KH-PRF is
defined as follows:

LKH-PRFk(x) = ⌈⟨H(x),k⟩⌋p (2)

where ⌈x⌋p denotes the rounding operation as ⌈x⌋p = ⌊x ·
(p/q)⌋ mod p. Ernst et al. [15] complete the security proof
of the LKH-PRF, provide a simple construction of H(x), and
introduce a rounding error e ∈ {0, 1} in their construction.
Let x = (x1, x2, . . . , xm) where xi ∈ X , we can extend LKH-
PRF for m-dimensional vectors as follows: LKH-PRFk(x) =
[LKH-PRFk(x1), · · · , LKH-PRFk(xm)].

E. Verifiable Random Function

Verifiable Random Functions (VRFs) [17] are cryptographic
primitives that extend the concept of random functions by
enabling third parties to verify the correctness of the outputs
without knowing the secret keys. A Formal Definition is as
follows:

• KeyGen(1λ) → (sku, pku) Generate the corresponding
key pair (sku, pku) based on the public security param-
eter λ.

• Eval(sku,mu)→ (ru, πu) Given the secret key sku, an
input mu ∈ N, the evaluation algorithm outputs fsk(x)
containing ru ∈ N along with a proof πu, such that the
correctness of the output can be verified by pku.

• Check(pku,mu, ru, πu) → {0, 1} Given pku, mu, ru,
and πu, the verification algorithm outputs 1 if ru is
correct, and 0 otherwise.

III. RELATED WORK

A. Secure aggregation based on MPC

MPC enables joint computation over private inputs, suitable
for secure federated learning aggregation. SecureML [18]
employs two-party computation for privacy, but only for basic
neural networks. Google’s scheme [2] utilizes double masking
and secret sharing with high computational overhead. New
approaches like FastSecAgg [4] and Laf [19] optimize secret
sharing but overlook double mask complexity. CCESA [20],
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SecAgg+ [3], and Turbo-Aggregate [5] alter client communi-
cation to reduce complexity. However, they still rely on double
masks, leading to increased computation with dropped clients.
As dropped clients rise, both server and client computation
and communication increase significantly. Liu et al. [7] used
homomorphic PRG based on Diffie-Hellman assumption to
construct a single mask protocol for the secure aggregation,
but the whole protocol requires additional discrete logarithm
calculation when recovering model aggregation, which hinders
its application in the actual scenario. SASH [8] and LERNA
[9] proposed using (R)LWR to construct homomorphic masks
for single-server aggregation, which is similar to our paper,
but our scheme requires fewer public parameters. SASH did
not consider how to solve the error problem caused by homo-
morphic masks. And LERNA uses large-scale heavy clients
to serve as committee members to address errors and mask
reconstruction issues, which increases the actual deployment
difficulty of the scheme. At the same time, their aggregation
scheme cannot provide security against poisoning attacks.

B. Robust aggregation of federated learning

. Poisoning attacks, divided into data and model poisoning,
pose threats to machine learning models. Data poisoning
involves adding misleading samples to training data, leading
to incorrect predictions [21], [22]. Model poisoning entails
sending false updates to global models, impacting performance
in distributed settings like federated learning [23], [24]. [25]–
[29] proposed defenses using Euclidean distance, median,
and cosine similarity, but they require servers to access
plaintext updates, risking privacy. SecureFL [30], PEFL [31],
FLOD [32], PBFL [33], ShieldFL [34], and RFed [35] enable
secure computation of similar metrics but rely on two or more
non-colluding servers to ensure privacy, which is challenging
in practice. ARCON [10] and Hao et al. [36] proposed
single server robust aggregation schemes, with the former
leveraging zero-knowledge proof and the latter employing
multi-key homomorphic encryption, both incurring substantial
communication overhead. Cluster aggregation addresses these
challenges, allowing the server to aggregate cluster values
without revealing individual updates. Several related works
[37]–[40] explore this approach, but these studies either re-
quire the server has a certain scale of verification data set, or
can not guarantee that the performance of the model is not
damaged.

IV. OUR SCHEME

We consider the following federated learning scenario: (i) a
server, responsible for aggregating model updates from partic-
ipating clients, and (ii) a set of clients U = {u1, u2, . . . , un}
with the training data D = {D1,D2, . . . ,Dn}, carrying out the
model training locally, and uploading the encrypted model.

A. Overview

Our approach focuses on the inherent need for secure and
efficient collaboration in federated learning settings. Initially,
the ClusterGuard architecture strategically organizes clients

into clusters based on Verifiable Random Function (VRF),
ensuring a fair and transparent partitioning process.

Within each cluster, secure aggregation is employed to
integrate model updates in a privacy-preserving manner. Each
client generates a model mask using its private key, ensuring
that individual contributions are securely incorporated into the
aggregated model without compromising confidentiality. This
approach not only enhances data privacy but also reduces the
scale of secure computations.

The collector plays a pivotal role in the aggregation process
by directly calculating the overall model mask based on the
total secret key derived from all participating clients (we
can easily achieve KH-PRFk(x) =

∑
u∈U KH-PRFku(x)

through the key homomorphic pseudorandom function). By
eliminating the need for individual client contributions during
aggregation, the server streamlines the process and ensures
computational efficiency without sacrificing security.

Furthermore, robust aggregation are employed to validate
the integrity of the aggregated model update, ensuring its
correctness and reliability. This comprehensive approach to
aggregation guarantees the accuracy of the final model update,
even in the presence of adversarial attacks or client dropouts.

Taking real-world application scenarios into account, we
propose two variants of our scheme: one designed for the
single server-client model and the other suitable for a decen-
tralized setting. For consistency and ease of explanation, we
focus on the single server-client model in the main description,
while the decentralized variant is presented as an extension in
the discussion section. We give the overall architecture of our
solution in Figure 1, which is divided into four rounds. The
specific protocol can be found in Protocol 3.

B. LKH-PRF Model Mask and Aggregation

In HomAgg scheme, each user u ∈ U holds the m-
dimensional model update xu ∈ Rm, while the outputs of
LKH-PRF are elements of Zp, thus we define an encoding
scheme (Encode,Decode) for HomAgg as follows:

Encode : Rm → Zm : xu 7→ x̂u = ⌊(xu + b) · 2prec⌋

Decode : Zm → Rm : x̂u 7→ xu =
x̂u

2prec
− b

(3)

where prec is the number of bits of precision and b is a
constant offset to ensure encoding as unsigned integers. Note
that scalar multiplication, modulo and comparison operations
on vectors are applied individually each of their elements.

As described in Equation (II-D), let pp = {ℓ, p, q, c} be
public parameters of LKH-PRFk where PRF is basd on
LWRℓ,q,p, k ∈ Zℓ

q and c ∈ Zm
q is a non-repetitive sequence

representing label values for various parameters of the global
model, e.g., c = (c||1, c||2, · · · , c||m) and c ∈ Zq. In the
setup phase, the public parameter c only requires an additional
scalar c ∈ Zq , rendering it simpler compared to the matrix
construction utilized in scheme [8], [9].

Each user u ∈ U holds a secret key su, and he can compute
his masked model as follows:

yu = ∆ · Encode(xu) + LKH-PRFsu(c) (4)
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Fig. 1. The architecture of ClusterGuard. Initially, the clients are divided into clusters, with the grouping determined based on the VRFs, and secure aggregation
is performed within each cluster. Each user calculates the corresponding model mask according to its secret key si, and uploads the masked model. The server
directly calculates the model mask and eliminates the secure aggregation model according to the total secret key s. After conducting robust aggregation, the
server obtains the correct aggregated model update.

where ∆ > n is a scaling factor. The server holds the secret
key s =

∑
u∈U su constructed with key shares and computes

the aggregate masks as follows:

LKH-PRFs(c) =
∑
u∈U

LKH-PRFsu(c) + e mod p (5)

where e = (e1, . . . , em) is a vector composed of errors and
0 ≤ ei < |U| = n since the summation of LKH-PRF causes
the accumulation of its error from {0, 1}. With reasonable
parameter selection, we assume that n∆ < p, the secure
aggregation can be done as follows:

ẑ =
1

n∆
(
∑
u∈U

yu − LKH-PRFs(c))

=
1

n∆

∑
u∈U

∆ · x̂u −
e

∆
mod p

=
∑
u∈U

1

n
· Encode(xu)

(6)

It can be seen that the solution to the error introduces a scaling
factor. Although the error issue is resolved, a new problem
arises: the scaling factor must be at least greater than the
number of clients. As the number of clients increases, for a
fixed modulus p, this will result in a decrease in the maximum
number of bits that the target vector can add a mask to.
Since the server will compute

∑
u∈U ∆·Encode(xu), and it is

necessary to ensure no overflow occurs, each client can use at
most ⌈log2(

p
n·∆ )⌉ bits to transmit its original data. Therefore,

the number of clients must be limited. A fixed cluster can
guarantee this. After decoding the aggregation results, it can
be easily deduced that we can obtain the final model updates
aggregation:

z = Decode(ẑ) = Decode(
∑
u∈U

1

n
x̂u) =

1

n

∑
u∈U
·xu (7)

C. VRF Based Clustering
Consider a bilinear pairing e : G1 × G2 → GT , where

G1 and G2 are multiplicative cyclic groups of prime order p,

and g1, g2 are the generators of G1 and G2 respectively. Let
H : {0, 1}∗ → G1 be a hash function that maps a message m
to an element in G1.

Assume there are n clients, each holding a private key ski ∈
Zp and a corresponding public key pki = gski

2 . The protocol
proceeds as follows:

Each client ui generates a random value ri ∈ {0, 1}∗ and
computes its proof:

πi = H(ri)
ski . (8)

The aggregate proof from all n clients is computed as:

π =

n∏
i=1

πi = H(r1)
sk1 ·H(r2)

sk2 · · ·H(rn)
skn . (9)

The BLS aggregate verification is performed by checking
the following equation:

e(π, g2)
?
=

n∏
i=1

e(H(ri), pki). (10)

Correctness:

e(π, g2) = e

(
n∏

i=1

H(ri)
ski , g2

)

=

n∏
i=1

e(H(ri)
ski , g2)

=

n∏
i=1

e(H(ri), g
ski
2 )

=

n∏
i=1

e(H(ri), pki).
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Note:

For A,B ∈ G1, we have e(A ·B, g2) = e(A, g2) · e(B, g2).

Let A = gα1 , B = gβ1 , then

e(AB, g2) = e(gα1 · gβ1 , g2) = e(g1, g2)
α+β .

e(A, g2) · e(B, g2) = e(gα1 , g2) · e(gβ1 , g2) =
e(g1, g2)

α · e(g1, g2)β = e(g1, g2)
α+β .

Each client possesses a key pair (pki, ski) and generates
a tuple (ri, πi), broadcasting these values to the server and
other clients. Upon receiving the broadcasts, other clients
perform batch verification. If the verification is successful, they
compute their cluster assignments {Cφ}φ∈[0,k−1] as follows:

1) Compute the aggregated randomness:

Rtotal =

n⊕
i=1

ri

where
⊕

denotes the bitwise XOR operation.
2) Determine the cluster index for each client:

φi = Cluster(ui) = Hash(i∥Rtotal∥r) mod k

where φi indicates the cluster Cφ to which client ui is
assigned, r is current federated learning round.

The secure aggregation protocol is then executed within
each cluster to collect model updates. After the aggregation
process, the server compiles a trusted root dataset to aid in
anomaly detection, filtering out abnormal updates to ensure
the integrity of the results.

D. Collection

Secrect sharing Setup: All clients are randomly divided
into k clusters, i.e., U = C1 ∪ C2 ∪ . . . ∪ Ck, and the size of
each cluster is fixed at t = |Cφ| where φ ∈ [1, k]. Clients
perform the following steps to complete the key sharing:

Step 1. For each cluster Cφ ⊂ U , each client u ∈ Cφ selects a
random ℓ-dimensional vector su and calculates its own model
mask in advance.

Step 2. Each client u ∈ Cφ utilizes VSS.Share to gen-
erate t shares for each element su in su and sends them
to other clients v ∈ Cφ respectively. Meanwhile, u utilizes
VSS.Accum to accumulate secret key shares received from
other clients v.

Step 3. For each cluster Cφ ⊂ U , the server/leader can
collect t shares accumulated by each client u ∈ Cφ and
call VSS.Recon to recover sCφ =

∑
u∈Cφ

su and sCφ =∑
u∈Cφ

su, finally obtain s =
∑

Cφ⊂U sCφ
. After receiving

all the masked model parameters, the server can unmask and
decode to obtain the aggregated model parameter as follows:

z =
1

k

∑
Cφ⊂U

(
1

l

∑
u∈Cφ

xu) =
1

n

∑
u∈U

xu (11)

where 1
l

∑
u∈Cφ

xu denotes the secure aggregation value of
clients in Cφ. The detailed secret sharing and reconstruction
process can be found in Figure 2.

Fig. 2. Each cluster performs secret sharing internally. After collecting all
masked model updates, the server notifies each client u ∈ U that needs
to calculate the sum of secret shares (i.e., all clients that have successfully
uploaded masked model updates in a cluster). Then the server only needs to
wait for t clients within the cluster to upload the sum of shares to reconstruct
the cluster’s total secret key s.

E. Handling Dropped Clients

The dropped clients affect the elimination of masks, we
consider how to deal with this problem under the setting of
cluster aggregation and (l, t)-secret sharing. When at most
(l− t) clients are dropped in a cluster, the server can adopt t
clients’ shares to recover the sum of secrets of |Cφ| = l clients,
and then eliminate the masks associated with the received
masked models from clients.

By collecting masked models, the server can record client
v ∈ Cφ who has successfully uploaded masked models to
form a new cluster C′φ, and then send to each client u ∈ C′φ
its corresponding cluster’s online client list. Each client u ∈
C′φ accumulates shares sv,u received from v ∈ Cφ and send
them to the server. Finally, the server collects at least t shares
accumulated by each client u ∈ C′φ to recover the secret of
Cφ.

F. Robust Aggregation

To counter poisoning attacks, we use robust aggregation
during cluster aggregation to safeguard the model from ad-
versaries. Similar to FLtrust [28], the server collects a small,
clean root dataset to compute the ideal model update. It
then calculates the cosine similarity between the ideal update
and the cluster’s model update to gauge the security of the
cluster aggregation. Let w(Cφ)

r denote an updated value of the
aggregation model of the cluster Cφ at a round r, g∗r denote
ideal model update, define the cosine similarity score css [28]
for the cluster model update of Cφ as

cssCφ =
⟨g∗r ,w

(Cφ)
r ⟩

∥g∗r∥ · ∥w
(Cφ)
r ∥

(12)

where cssCφ
reflects the positivity and negativity of the

contribution of the model update, as shown in Figure 1.
Under the cluster collection, the cluster is divided into

three situations: (1) all benign clients, (2) mixed malicious
clients and benign clients, and (3) all malicious clients. Given
a threshold thr, the cluster whose css is less than thr is
labeled as malicious, and its update cannot be used in the
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final aggregation operation. Therefore, the final result with the
robustness mechanism should be modified as follows:

U ′ ← {Cφ | Cφ ⊂ U & cssCφ > thr}

z′ =
1

k′

∑
Cφ⊂U′

(
1

l

∑
u∈Cφ

xu) =
1

k′l

∑
u∈U′

xu
(13)

Those with abnormal model update amplitude will also be
eliminated, and we uses L∞-norm to judge, when the updated
norm is significantly different from the overall median norm,
it is considered a malicious update. Additionally, beyond
this, when the model update scores for all clusters are too
low (less than the update threshold), it is essential to reject
all updates. This can be referred to as the “baffle mecha-
nism”, which further safeguards the overall model performance
against potentially harmful malicious updates. Let Max(·)
return the maximum value, Med(·) returns the median value,
Stdev(·) return the standard deviation, and β, bl1, bl2 are
hyperparameters, the specific robust aggregation is shown in
Algorithm 1.

Algorithm 1 RobustAgg

Input: Global model θr, model update aggregations of all
clusters Q = {w(C1)

r ,w
(C2)
r , · · · ,w(Ck)

r } (recover the
model structure from the aggregated vectors {zCφ

}Cφ⊂U ),
root data set D0, local learning rate η.

Output: Robustness aggregation wr

1: Initialization: Generate dis1 = dis2 = ∅,Q′
1 = Q′

2 = ∅,
the weight factor β > 1

2: Step 1: Trusted update calculation
3: Sample the root dataset for stochastic gradient descent to

obtain the trusted model update g∗r .
4: Step 2: Norm-based Filtering
5: for each cluster Cφ do
6: ndis

(Cφ)
r ← |∥w

(Cφ)
r ∥∞

∥g∗
r∥∞

− 1|
7: dis1 ← dis1 ∪ ndis

(Cφ)
r

8: thr1 ←Min(dis1) · β
9: if Min(dis1) > bl1:

10: Q′
1 = ∅

11: else:
12: Q′

1 = {w(Cφ)
r |ndis(Cφ)

r < thr1}
13: Step 3: Cosine-based Filtering
14: for each cluster Cφ do
15: css

(Cφ)
r =

⟨g∗
r ,w

(Cφ)
r ⟩

∥g∗
r∥·∥w

(Cφ)
r ∥

16: dis2 ← dis2 ∪ css
(Cφ)
r

17: thr2 ←Max({dis2})− β · Stdev(dis2)
18: if Max({dis2}) < bl2:
19: Q′

2 = ∅
20: else:
21: Q′

2 = {w(Cφ)
r |css(Cφ)

r < thr2}
22: Step 4: Aggregation
23: Get trusted set: Q′ = Q′

1 ∩Q′
2

24: If Q′ = ∅, then wr is a full 0 tensor with the same
shape as the original model update, otherwise calculate
the aggregate value wr ← 1

|Q′|
∑Q′.

25: return wr

G. Putting it all Together

We give the overall architecture of our solution in Figure 1,
which is divided into four rounds. The specific protocol can
be found in Protocol 3.

In Round 0, the clients broadcast their VRFs and proofs,
which are forwarded by the server. Upon receiving the infor-
mation, clients perform verification. Subsequently, the clients
are randomly partitioned into clusters, and the collection of
model updates is carried out based on the cluster information.
In Round 1, each client generates its own secret key and
performs secret sharing with other clients in its cluster. In
Round 2, each client adopts LKH-PRF to compute its own
masked model update and uploads it to the server. The
server records the cluster information of dropped clients and
dispatches rescue clients as shown in Figure 2. In Round 3,
the server waits for a threshold number of secret shares to be
received, allowing it to begin reconstructing the total secret
key for each cluster. Then server calculates the final model
update aggregation of all clients. Note that execution within
a malicious setting requires additional verification operations.
We construct a complete protocol as shown in Figure 3.

V. SECURITY AND CONVERGENCE ANALYSIS

A. Security in the Semi-Honest Setting

It is straightforward to see that our protocol achieves cor-
rectness for all participants as all of them honestly execute the
protocol as prescribed. With regard to the privacy property, we
establish the security of our protocol as a secure multiparty
computation. This is demonstrated by showing that the joint
view of the server and any subset of fewer than t clients reveals
no information about the inputs of other clients, except for
what can be inferred from the output of the computation.

Let U be the set of clients, and C ⊂ U ∪ {S} be the set of
honest-but-curious parties, xu be the input of client u. Suppose
the simulator SIM has access to an oracle IDEAL(t, xu)u∈U\C
as defined below:

IDEAL(t, xu)u∈U\C =


∑

u∈U\C

xu |U \ C| > t

⊥ otherwise

Please remember that in the traditional SecAgg scheme, the
pairwise seeds used to generate masks are shared among users.
For the (t, n) Shamir scheme with a shared secret s, the secret
can only be reconstructed if more than t or more shares are
combined. Similarly, in the cluster aggregation scheme, we
require that there should not be too many type I attackers
in each cluster to prevent the reconstruction of honest users’
secrets. When analyzing the security of our scheme, we need
to provide a precondition to ensure its security.

Theorem 1. Let n be the number of clients, k be the number
of clusters, l be the number of members in each cluster, t be
the Shamir threshold, and q1 be the number of type I attackers.
Thus, given the security parameter λ, the constraint on k can
be expressed as:

k <
2−λ∑min{q1,l}

i=t
q1!(n−q1)!l!(n−l)!

i!(q1−i)!(l−i)!(n−q1−l+i)!n!

(14)
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ClusterGuard

System Setup:
- All parities (n clients and a server) are given (G, q, g)

by calling VSS.Setup(1λ)

- Assign a unique identity and private key sku and pku
for each client u ∈ U , i.e., 1 ≤ u ≤ |U|

- Generate public parameters for LKH-PRFk:
{LWRℓ,q,p, c}, where c ∈ Zm

q and k ∈ Zℓ
q

(Note that n · q < q). The current number of training
rounds is r.

- All parties also have a private authenticated channel
with each other based on PKI.

* Round 0 - Initialization:
Client u:
- Each client ui computes its VRF and proof
(ru, πu)← Eval(sku, r), then broadcasts it to other
clients through server.

- Upon receiving {(ri, πi)}i∈U/u broadcasted by other
clients, perform batch verification, and if the
verification fails, reject participation in this training
round.

- Compute Rtotal =
⊕n

i=1 ri, then determine the cluster
assignment Cφ as φ = Cluster(ui) = Hash(i||Rtotal)
mod k.

- Select a random ℓ-dimensional vector su ∈ Zℓ
q.

- Store all messages received and values generated in
this round, and move to the next round.

* Round 1 - Sharing key:
Client u:
- Generate |Cφ| key shares for each element su in su:
({v, su,v}v∈Cφ

, {gsu,v}v∈Cφ
, {gau,d}d∈[0,t−1])

← VSS.Share(su, t, Cφ).
- Send (v, su,v) to client v ∈ Cφ\{u}, broadcast
{gsu,v}v∈Cφ

among Cφ, and broadcast
{gau,d}d∈[0,t−1] among Cφ.

- Receive shares (u, sv,u) and verifiable information
(gsv,u , {gav,d}d∈[0,t−1]) from other clients v ∈ Cφ,
and check all shares received:
VSS.Verify(u, gsv,u , {gav,d}d∈[0,t−1]) = 1.

- Store all messages received, and if any of the above
operations (share, check) fails, abort.

Server:
- For each cluster Cφ ⊂ U , receive (u, {gsu,v}v∈Cφ)

from at least t clients (denote with u ∈ C(1)φ ⊆ Cφ and
U (1) ⊆ U)

- Store all messages received.
* Round 2 - Masked model update collection:

Client u:
- Compute the masked input vector:
yu = ∆ · Encode(xu) + LKH-PRFsu(c), and send yu

to server.
Server:
- For each cluster C(1)φ ⊂ U (1), collect the masked

model yu from as least t clients (denote with
C(2)φ ⊆ C(1)φ and U (2) ⊆ U (1)).

- For each cluster C(2)φ ⊂ U (2), if |C(2)φ | ≥ t, compute
yC(2)

φ
=
∑

u∈C(2)
φ

yu, and send to each client u ∈ C(2)φ

its cluster’s information, i.e., an online client list.
Otherwise, remove C(2)φ from U (2).

* Round 3 - Unmasking:
Client u:
- Receive from the server its new cluster’s information,

i.e., an online client list {v}
v∈C(2)

φ
.

- Accumulate shares received from v ∈ C(2)φ :
(u, s∗u)← VSS.Accum({u, sv,u}v∈C(2)

φ
), and

send (u, s∗u, g
s∗u) to the server.

Server:
- For each cluster C(2)φ ⊂ U (2), receive (u, s∗u, g

s∗u) from
at least t clients (denote with C(3)φ ⊆ C(2)φ and
U (3) ⊆ U (2)).

- For each client u ∈ C(3)φ , check shares:
VSS.VrfyAccum(u, gs

∗
u , {gsv,u}

v∈C(1)
φ

) = 1.

- For each cluster C(3)φ ⊂ U (3), if |C(3)φ | ≥ t, recover
sC(2)

φ
← VSS.Recon({u, s∗u}u∈C(3)

φ
). Otherwise,

remove C(2)φ from U (2).
- For each cluster C(2)φ ⊂ U (2), compute each element s

in a ℓ-dimensional vector s where
s =

∑
C(2)
φ ⊂U(2) sC(2)

φ
=
∑

u∈U(2) su.
- Unmask the aggregated model
ẑ = 1

n′∆ (
∑

C(2)
φ ⊂U(2) yC(2)

φ
− LKH-PRFs(c)).

- If any of the above operation (check, recon,
LKH-PRF, unmask) fails, abort.

- Decode ẑ to output z = 1
n′

∑
u∈U(2) xu where

n′ = |{u ∈ U (2)}|.

Fig. 3. The description of ClusterGuard protocol for one FL round. Red, underlined parts are optional to guarantee public verification.
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The full proof of the above theorem, is given in Appendix.
Then the security of our protocol is given by the following
theorem:

Theorem 2 (Privacy under Semi-Honest Setting). There exists
a PPT simulator SIM such that for all λ, t, U , xu, and
C such that C ⊆ U ∪ S and |C \ S| < t, the output of
SIM is computationally indistinguishable from the output of
REALU,t,λ

C :
REALU,t,λ

C (AC , xU\C) ≈c SIM
U,t,λ,IDEAL(t,xu)u∈U\C
C (AC)

This theorem along with the next one is proved with the
proof presented in Appendix.

B. Privacy in the Malicious Setting

Similar to the semi-honest case, we also prove privacy
under the malicious setting by showing that the joint view
of the server and any subset of fewer than t clients reveals no
information about the inputs of other clients, except for what
can be inferred from the output of the computation.

Theorem 3 (Privacy under Malicious Setting). There exists a
PPT simulator SIM such that for all PPT adversaries AC , all
λ, t, U , xu, and C such that C ⊆ U ∪ S and |C \ S| < t, the
output of SIM is computationally indistinguishable from the
output of REALU,t,λ

C :
REALU,t,λ

C (AC , xU\C) ≈c SIM
U,t,λ,IDEAL(t,xu)u∈U\C
C (AC)

The full proof of the above theorem, which also proves
Theorem 1, is given in Appendix.

C. Convergence Analysis

The goal of federated learning is to collaboratively train a
global model across multiple clients such that the expected loss
function over all clients is minimized. The formal definition
is as follows:

θ∗ = min
θ

Eξ∼D [L(θ, ξ)] (15)

where θ∗ denotes the optimal global model, λ represents the
training data sampled from D = ∪u∈UDu, L(θ, ξ) is the loss
function of the model θ under the data ξ.

We use F (θ) to represent Eξ∼D [L(θ, ξ)]. Before providing
the convergence proof, we follow the common assumptions for
distributed optimization convergence analysis given in [41].

Assumption 1. L−Lipschitz continuity of the gradient: the
gradient of F (θ) is Lipschitz continuous with constant L > 0,
for all θ, θ′ ∈ Rd,

∥∇F (θ′)−∇F (θ)∥ ≤ L∥θ′ − θ∥ (16)

It can also be expressed in the following form:

F (θ′) ≤ F (θ) +∇F (θ)⊤(θ′ − θ) +
L

2
∥θ′ − θ∥2 (17)

Assumption 2. Variance between local and global model
updates: There exists a constant σ2

g such that for all clients
ui, the variance between the client model updates ∇Fi(θ) and
the global model update ∇F (θ) is bounded:

E
[
∥∇Fi(θ)−∇F (θ)∥2

]
≤ σ2

g (18)

The stochastic gradient of each worker (client) has a
bounded variance uniformly, satisfying:

Eξi∼Di

[
∥∇Fi(θ; ξi)−∇Fi(θ)∥2

]
≤ σ2

c (19)

where Fi(θ; ξi) is the stochastic gradient computed by worker
ui based on the sample ξi, and ∇Fi(θ) is the expescted
gradient for worker ui.

Our robustness algorithm uses model updates trained on
trusted root dataset or datasets from honest clients to guide
trust. It leverages the similarity between the aggregation of
each cluster and this trusted model update to filter out the
clusters containing malicious clients. Referencing the work
[42] [41], any robust gradient aggregation rule inevitably
results in an error in the average honest gradient. Therefore,
we propose the following assumption:

Assumption 3. For the problem with (1−β)k benign clusters
(without malicious clients) (denoted by Gg) and βk Byzantine
clusters (with malicious clients), suppose at most δk Byzantine
clusters can bypass the robustness algorithm at each iteration.
Assume the existence of positive constants c and b such that
the model update output RobustAgg({w(Cφ)

r }Cφ∈C) from the
robustness algorithm satisfies the following conditions:

Bounded Bias:

E
[
∥RobustAgg({w(Cφ)

r }Cφ∈C)− w̄∥
]2
≤

cδ sup
Ci,Cj∈Gg

E
[
∥w(Ci)

r − w(Cj)
r ∥2

] (20)

where w̄r = 1
|Gg|

∑
Ci∈Gg

w(Ci)
r .

Bounded Variance:

Var
[
∥RobustAgg({w(Cφ)

r }Cφ∈C)∥
]
≤ b2 (21)

Here, δ is the fraction of Byzantine clusters that can bypass
the robustness algorithm, and 0 ≤ δ < β < 1.

Theorem 4. Consider the function F that satisfies assump-
tions 1 and 2. Assume there is a robust aggregation scheme
that satisfies assumption 3. Let the number of type II attackers
be q2, and F ∗ = minθ∇(θ). There exists η < 1

L (1−
√
δ
4 −

q2
2n )

for which, after R rounds, the following condition holds:

1

R

R−1∑
r=0

E∥∇F (θr)∥2 ≤
(F (θ0)− F ∗)

MηR
+

Lη

M
∆3 +

1

M
∆4

(22)
where M = 1 −

√
δ
4 −

q2
2n − Lη,∆4 = 8c

√
δ

l (σ2
c + σ2

g) +
nq2σ

2
g

2(n−q2)2
,∆3 = 2∆1 + 4∆2 + 12 n−q2−(1−β)kl

(n−q2−1)(1−β)kl (σ
2
c + σ2

g +

∆2),∆1 = 8cδ
l (σ2

c + σ2
g) + b2,∆2 =

q22σ
2
g

(n−q2)2
+

2σ2
c

n−q2
.

Remark. The theorem provides an insightful analysis of
federated learning convergence under adversarial settings, with
and without attacks. In the ideal case where δ = β = 0 and
q2 = 0, indicating no adversarial behavior, the convergence
bound simplifies significantly. In this scenario, the parameter
M = 1 − Lη depends only on the smoothness constant L
and the learning rate η, with the error terms ∆3 = 2b2 +
8δ2c
n ,∆4 = 0. At this point, setting a sufficiently small learning

rate can ensure convergence without extra errors. Specifically,
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Client-Server Mode Decentralized Mode

Fig. 4. The figure shows two variations of our federated learning framework:
a centralized server-client model and a decentralized model.

if we set η = O( 1√
R
), and in this case, we can obtain

1
R

∑R−1
r=0 E∥∇F (θr)∥2 ≤ O(F (θ0)−F∗

√
R−L

+ L√
R−L

∆3). At this
point, the ClusterGuard scheme will converge with a rate of
O( 1√

R
), and the extra error terms will also be eliminated.

In the general case, where δ > 0, β > 0,
and q2 > 0, the convergence behavior is influenced
by adversarial robustness and the number of attack-
ers. We still take η = O( 1√

R
), and we can ob-

tain: 1
R

∑R−1
r=0 E∥∇F (θr)∥2 ≤ O( (F (θ0)−F∗)(√

R(1−
√

δ
4 − q2

2n )−L
) +

L∆3(√
R(1−

√
δ

4 − q2
2n )−L

) + ∆4

1−
√

δ
4 − q2

2n− L√
R

). The overall conver-

gence rate can be observed as O( 1√
R
), with an additional error

term ∆4

1−
√

δ
4 − q2

2n

. When malicious clients (i.e., q2 increases), the
robustness of the aggregation algorithm is insufficient (i.e., δ
increases), or the heterogeneity among client updates increases
(i.e., σ2

g , σ
2
c increases, see inequality 24), the extra error term

will grow.

VI. DISCUSSION

A. Decentralized Mode Extension

Our cluster-based federated learning scheme can be ex-
tended to adapt to decentralized federated learning scenarios
4. Accordingly, we need to revise the protocol as follows:

1) VRF-Based Clustering: Each client holds a key pair
(pki, ski) and generates a tuple (ri, πi, round), broadcasting
these values along with the current round number. Upon re-
ceiving the broadcasts, other clients perform batch verification.
If the verification succeeds, the clients determine their clusters
{Cφ}φ∈[0,k−1] and leaders {IφLeader}φ∈[0,k−1] for the current
round as follows:

1) Compute the aggregated randomness:

Rtotal =

n⊕
i=1

ri

where
⊕

denotes the bitwise XOR operation.
2) Assign clusters using a hash function:

φi = Hash(i∥Rtotal∥r) mod k

where φi denotes the cluster index of client ui, and Cφ =
{ui | φi = φ} is the set of clients in cluster φ, r is current
federated learning round.

3) Select a leader for each cluster using a pseudorandom
function (PRF):

IφLeader = PRF(Rtotal, round∥φ) mod |Cφ|

where IφLeader represents the index of the leader in cluster
Cφ.

The leaders {IφLeader} securely aggregate the updates zCφ

from their respective clusters Cφ. After completing the ag-
gregation, the leaders exchange their aggregated updates
{zCφ

}φ∈[0,k−1] and then distribute the exchanged updates
uniformly to all clients (refer to Figure 4).

2) Robust Aggregation: Each client refines the received
updates {zCφ}φ∈[0,k−1] by excluding those deemed malicious,
based on its local dataset Di:

zfiltered
Cφ

= f({zCφ
}φ∈[0,k−1],Di),

where f is a filtering function (in robust aggregation) designed
to identify and remove anomalous updates, referencing the
robustness Algorithm 1. But unlike Algorithm 1, it relies on its
own data for trust instead of a trusted root dataset maintained
by the server.

3) Evaluation: In this paradigm, the security analysis
against Type-I attackers remains consistent with the previous
analysis, as the multiple leaders collectively assume the role
of the server. For Type-II attackers, we consider two scenarios:

1. Non-leader clients: In this case, malicious attacks can
still be countered using the previously established defense
mechanisms. However, the trust in this scenario does not stem
from a trusted dataset collected by the server but rather from
the client’s own local dataset.

2. Leader clients: Leaders may attempt to send entirely
incorrect model updates to the clients. Fortunately, the baffle
mechanism ensures that if all the received model updates
exhibit extremely low similarity to the client’s own updates,
the client can reject these updates.

Detailed experimental results for these scenarios are illus-
trated in appendix.

VII. EVALUATION

We analyze the robust aggregation of ClusterGuard with n
clients and a single server, where each client holds a data
vector of size m and a secret key of size ℓ. For clients, the
computation cost is O(ℓl2+mℓ+n), which includes generating
a secret vector, creating l secret shares, computing the model
update mask and verifying all VRFs. The communication cost
is O(ℓl + m + n), covering the exchange of secret shares,
verification, masked updates, and VRFs. For the server, the
computation cost is O(nl+ nmℓ

l ), dominated by reconstructing
cluster secret keys and calculating masks, which can reduce to
O(nt+mℓ+ nℓ

l ) without robustness detection. If some clients
drop out, the cost further decreases. The communication cost
is O(mn + ℓn) for receiving masked updates, secret shares,
and sending cluster information.
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(a) Running time cost, as the number of clients
increases.

10000 20000 30000 40000 50000
Vector Size

250

500

750

1000

1250

1500

1750

Ru
nn

in
g 

Ti
m

e 
Co

st
 P

er
 C

lie
nt

 (m
s)

SecAgg, 0% drop out
SecAgg, 5% drop out
SecAgg, 10% drop out
SecAgg, 15% drop out
Ours, 0% drop out
Ours, 5% drop out
Ours, 10% drop out
Ours, 15% drop out

(b) Running time cost, as the size of model update
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Fig. 5. Client protocol performance comparison. The data vector size remains fixed at 30K in (a) and (c), while the number of clients is fixed at 300 in (b).
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Fig. 6. Server protocol performance comparison. R denotes the server with
robust aggregation, while NR denotes non-robust aggregation.

A. Prototype Performance

Our experimental setup consists of two parts. First, we
evaluate the performance of the secure aggregation protocol
without considering users’ local training processes. Second,
we assess federated learning accuracy and robustness using
the secure aggregation protocol, involving complete federated
learning training.

1) Experiment Setup: We implement the aggregation pro-
tocol in Python. The lattice based key-homomorphic pseu-
dorandom function (LKH-PRF) is implemented using the go
program accelerated by goroutine. Model updates are set to
16-bit accuracy. For LWRℓ,q,p of LKH-PRF, we set ℓ = 512,
p = 232, and q as a 64-bit prime close to 264. Using the LWE
estimator [43] [8], we estimate that the hardness exceeds 2128.
For each cluster, we set the default values as l = 10, t = 0.8l.
For the cluster election based on VRF, we implement it using
GoFE 1. The experiments are conducted on a Windows desktop
with AMD Ryzen 9 5900HX (3.3 GHz), with 32 GB of RAM
and NVIDIA GeForce RTX 3080 Laptop GPU.

2) Experimental Performance: Figures 5 and 6 depict
our experimental performance results. In comparison with
SecAgg’s (Bonawitz et al. [2]) specific performance results
in Figure 5 (a), we observe a significant improvement in
client running time. Each client’s running time remains nearly
constant as the number of clients increases, primarily de-
pendent on the time taken for single mask computation.

1GoFE can be referred to: https://github.com/fentec-project/gofe

In Figure 5 (b), we note that our protocol exhibits faster
growth in client running time as the aggregation vector size
increases, albeit still outperforming SecAgg. This increase is
attributed to the fact that calculating a single mask entails m ℓ-
dimensional vector inner product operations, with computation
time directly proportional to vector size. In contrast, SecAgg
employs pseudorandom number calculation under AES CTR
mode (utilizing one-time filling), which does not significantly
vary with vector size as the number of clients is fixed.
Figure 5 (c) illustrates the total data transfer of our protocol
compared to SecAgg and CKKS based homomorphic encryp-
tion schemes [44]. Given that our communication units are
secrect vectors, the total data transfer is higher than SecAgg,
but still significantly lower than the communication overhead
associated with homomorphic encryption-based aggregation
protocols.

Figure 6 (a) compares the server running time between the
two protocols as the number of clients increases. Our protocol
demonstrates a clear advantage both when robustness detection
is considered and when it is not. When robustness detection
is taken into account, it shows increased server running time
due to the total mask calculation for all clusters. However, as
dropped clients increase, the server time for SecAgg rise, while
our server time remains unaffected. This is because SecAgg
requires additional masking recovery operations for dropped
clients, unlike our protocol, which only needs limited client
communication to reconstruct the total key.

Figure 6 (b) demonstrates the relationship between server
running time and model update size. Without considering
robustness detection, our protocol only needs to recover and
accumulate cluster keys once, resulting in significantly bet-
ter running times compared to SecAgg. When robustness is
considered, the total running time of our protocol increases
linearly with the size of the model update. Lastly, Figure 7
shows the impact of cluster size on runtime. Reducing the
cluster size decreases client runtimes, while increasing it
reduces server runtime with robustness detection. Adjusting
the cluster size allows flexible control over server and client
complexity.

We assessed ClusterGuard’s defense against DLG attacks
using LeNet and non-i.i.d. data, with a batch size of 8.
Figure 9 shows reconstruction results across 500 epochs for
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Fig. 7. The influence of cluster size on the performance of the protocol. The
data vector size remains fixed at 30K and the number of clients is fixed at 300.
R denotes the server with robust aggregation, while NR denotes non-robust
aggregation.

various cluster sizes. Without protection (FedAvg), recogniz-
able images emerged after 100 epochs (Figures 910(a), 10(c)),
showing vulnerability to attacks. In contrast, ClusterGuard,
tested with cluster sizes 2–20, produced noisy, unrecognizable
reconstructions (e.g., size 4 in Figures 9(b), 10(d)), preventing
data leakage. These results confirm ClusterGuard effectively
resists DLG attacks and enhances privacy.

B. Accuracy and Robustness Performance

1) Datasets and model configurations: We implement a
complete federated learning process using PyTorch, based on
three neural networks with varying architectures and sizes. We
evaluate model accuracy and resistance to poisoning attacks
using our ClusterGuard protocol on three datasets: MNIST,
Fashion-MNIST, and CIFAR. For MNIST, we utilize a Lo-
gistic Regression model with 7,850 parameters. For Fashion-
MNIST, we employ the standard LeNet [45] architecture,
which contains 61,706 parameters. Finally, for CIFAR, we use
a large-scale CNN with 160,856 parameters.
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Fig. 8. Accuracy comparison under the different datasets with two different
distributions.

2) Federated Learning Settings: We consider two scenar-
ios: IID and non-IID data distribution. For IID data, the
dataset is evenly distributed among clients, while for non-IID
data, we use a Dirichlet distribution with a hyperparameter
α = 0.5. In our experiments, we adopt a default non-IID
setting. We involve [100, 100, 60] clients for MNIST, Fashion-
MNIST and CIFAR-10. Each client’s local learning rate is
[0.01, 0.01, 0.05], with 5 local iterations and a batch size of
32. By default, we set l = t = 4.

iter=0 iter=50 iter=100 iter=150 iter=200 iter=250 iter=300 iter=350 iter=400 iter=450 iter=500

(a) Data reconstruction on FedAvg, MNIST.
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(b) Data reconstruction on ClusterGuard, MNIST.

iter=0 iter=50 iter=100 iter=150 iter=200 iter=250 iter=300 iter=350 iter=400 iter=450 iter=500

(c) Data reconstruction on FedAvg, CIFAR.
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(d) Data reconstruction on ClusterGuard, CIFAR.

Fig. 9. The reconstruction results of the DLG attack.

3) Poisoning Attacks and Defense: In our algorithm ex-
periment, we uniformly extract 500 samples as the root data
set D0, like FLtrust [28]. For our robust algorithm, we set
parameters β, bl1, bl2 to 1.5, 0.05, 2 respectively. We consider
the following common poisoning attacks.

Label flipping attack [21], [22]: specifically, malicious
clients are trained using incorrect labels, i.e., any label from
{0, ..., 9} is transformed into 9−label.

Noise attack: malicious clients perturb their gradients by
adding Gaussian noise with mean 0 and standard deviation ,
i.e., wm = w +N (µ, σ2). We take µ = 0, σ = 0.5.

Sign flipping attack [46]: malicious clients send updates
in the opposite direction to those of benign clients, i.e., wm =
−δw. We take δ = 2.

Scale attack: We consider an attacker uploading a scaled
version of the benign model update. Typically, the scaling
factor satisfies ≫ 1. In our experiment, we set γ = 20.

4) Experimental Performance: We first discuss the compar-
ison of the model accuracy of our protocol with others. Since
the error of LKH-PRF has been processed, the influence of the
model accuracy only comes from the encoding and decoding
of the model updates. As shown in Figure 8, our protocol has
the same model accuracy and convergence speed as plaintext
aggregation (FedAvg [13]), and is also consistent with other
secure aggregation protocols.

TABLE III
THE IMPACT OF ALGORITHM-RELATED PARAMETERS ON MODEL

ACCURACY (%).

Dataset Scheme Cluster size
3 4 5 6 10

Fasion-MNIST Share 66.09 71.55 70.92 67.26 56.06
ClusterGuard 80.25 82.39 82.20 82.30 78.94

CIFAR-10 Share 33.62 51.49 44.11 44.42 28.35
ClusterGuard 65.39 64.11 64.27 63.42 62.09

Dataset Scheme Threshold parameter β
1 1.5 2 2.5 3

Fasion-MNIST ClusterGuard 82.06 82.19 82.09 77.98 77.26
CIFAR-10 ClusterGuard 63.98 64.11 63.77 60.54 60.38

Figures 10, 11, and 12 illustrate the comparison of different
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Fig. 10. Accuracy comparison. Assuming 20% of the clients are malicious. The experimental setup involves the MNIST dataset and LR model.
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Fig. 11. Accuracy comparison. Assuming 20% of the clients are malicious. The experimental setup involves the Fasion-MNIST dataset and LeNet model.
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Fig. 12. Accuracy comparison. Assuming 20% of the clients are malicious. The experimental setup involves the CIFAR-10 dataset and CNN model.
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Fig. 13. The impact of root dataset with different distributions on the accuracy
of global model.

defense algorithms against various attacks when the proportion
of malicious clients is 20%. In our experiments, we default
to using a non-IID setting for defense evaluation. It can be
observed that our aggregation method achieves significantly
better convergence accuracy compared to other robust defense
methods for various poisoning attacks.

We further discuss the relationship between parameter se-
lection and robustness of our proposed scheme in Table III,
with a default setting of 20% malicious clients performing
label-flipping attacks. It shows that our ClusterGuard scheme
consistently outperforms the baseline. However, when the

number of attackers is significantly lower than the number of
clusters, reducing the cluster size does not provide substantial
benefits, as the server can already accurately locate the clusters
containing adversaries. Conversely, increasing the cluster size,
which causes the number of attackers to exceed the number
of clusters, results in a loss of model performance. At the
same time, the threshold parameter needs to be selected
appropriately. When the threshold parameter is large enough,
the algorithm degenerates into the FedAvg [13]. Figure 13
discusses the impact of the root dataset on the effectiveness
of our robust defense approach. We conducted experiments
on root datasets of varying scales and distributions, using
label-flipping attacks as the evaluation scenario. We define
the uniformity of the root dataset using distribution entropy,
specifically, H(D) = −∑n′

i=1 pi log pi where pi is the prob-
ability of the i-th class, n′ is the total number of classes.
The results demonstrate that differences in data distribution
within the root dataset D0 do not affect the correctness of the
algorithm. The influence of data distribution differences on the
results can be relatively ignored, which further highlights the
robustness and practicality of our approach. The server does
not need to obtain D0 with a large number of samples, and
the data distribution of does not need to be fully aligned with
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that of the clients. This reduces the difficulty of acquiring the
root dataset for the server.

VIII. CONCLUSION

In summary, this paper focused on the critical role of
secure aggregation in federated learning. We highlighted the
limitations of existing protocols like SecAgg, particularly
in terms of computational efficiency, network stability, and
security against malicious attacks.

To address these concerns, we introduced ClusterGaurd,
a novel secure aggregation scheme that emphasizes Byzan-
tine robustness. ClusterGaurd leverages lattice-based key-
homomorphic pseudorandom functions for efficient and secure
aggregation while countering malicious poisoning attacks with
a VRF based clustered aggregation. Our extensive experiments
validate ClusterGaurd’s adaptability and resilience.

REFERENCES

[1] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[2] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[3] J. H. Bell, K. A. Bonawitz, A. Gascón et al., “Secure single-server
aggregation with (poly) logarithmic overhead,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1253–1269.

[4] S. Kadhe, N. Rajaraman, O. O. Koyluoglu et al., “Fastsecagg: Scalable
secure aggregation for privacy-preserving federated learning,” arXiv
preprint arXiv:2009.11248, 2020.
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APPENDIX

Proof for Theorem 1

Theorem 1. Let n be the number of clients, k be the number
of clusters, l be the number of members in each cluster, t be
the Shamir threshold, and q1 be the number of type I attackers.
Thus, given the security parameter λ, the constraint on k can
be expressed as:

k <
2−λ∑min{q1,l}

i=t
q1!(n−q1)!l!(n−l)!

i!(q1−i)!(l−i)!(n−q1−l+i)!n!

Proof. Case 1: q1 < t. In this case, the number of malicious
clients in a cluster cannot exceed t, since there are fewer than
t malicious clients in total. Therefore, the probability that a
cluster contains more than t malicious clients is zero:

Pr(Xi ≥ t) = 0

Thus, for this case, the privacy constraint is trivially satis-
fied, and no further constraint on k is required.

Case 2: q1 ≥ t. To prove this, we begin by defining the
number of malicious clients in a single group. Suppose that
Xi ∼ H(n, q1, l) represents the number of malicious clients in
a cluster Ci, where Xi follows a hypergeometric distribution
with parameters n, q1, l. The probability that a cluster contains
more than t malicious clients is then:

Pr(Xi ≥ t) =

min{l,q1}∑
i=t

(
q1
i

)(
n−q1
l−i

)(
n
l

)
We now expand the binomial coefficients for the hypergeo-

metric distribution. After simplifying the expression, we get:

Pr(Xi ≥ t) =

min{l,q1}∑
i=t

q1!(n− q1)!l!(n− l)!

i!(q1 − i)!(l − i)!(n− q1 − l + i)!n!

Now, let A represent the event that at least one group
contains more than t malicious clients. In this case, the
corrupted clients can collaboratively infer the model privacy

of the remaining honest clients. Assuming the groups are
independent, the probability that at least one group contains
more than t malicious clients is:

P (A) ≤ k · Pr(Xi ≥ t)

To ensure that the probability of compromising privacy is
less than 2−ξ, we obtain the condition:

k · Pr(Xi ≥ t) < 2−λ

This condition leads to the following constraint on k:

k <
2−λ∑min{l,q1}

i=t
q1!(n−q1)!l!(n−l)!

i!(q1−i)!(l−i)!(n−q1−l+i)!n!

In this case, the probability of the privacy security of the
scheme being compromised at this point is given by:

Pr(Rsuccess = 1) ≤ 2−λ

Proof for Theorem 3

Theorem 3 (Privacy under Malicious Setting). There exists a
PPT simulator SIM such that for all PPT adversaries AC , all
λ, t, U , xu, and C such that C ⊆ U ∪ S and |C \ S| < t, the
output of SIM is computationally indistinguishable from the
output of REALU,t,λ

C :
REALU,t,λ

C (AC , xU\C) ≈c SIM
U,t,λ,IDEAL(t,xu)u∈U\C
C (AC)

The proof is based on a standard hybrid argument. We define
a series of subsequent modifications to the real execution of
our protocol, such that the views of corrupt parties in any two
subsequent executions are computationally indistinguishable.

For fixed n, t, λ and a set C of corrupt parties, AC de-
notes the PPT adversary algorithm that represents the “next-
message” function of parties in C, i.e. AC outputs the message
for party c ∈ C, and also chooses the honest clients to abort
due to failure in a round.
H0: This random variable represents the combined views of

all parties in C in the real execution REAL of our protocol.
H1: In this hybrid, SIM runs a full execution of the protocol

with AC , and simulates LKH-PRF as a random oracle
(using a dynamically generated table), PKI and the rest
of the setup phase. As a result, the view of the adversary
is the same as the previous hybrid.

H2: This hybrid is identical to H1, except additionally, SIM
substitutes all the encrypted shares sent between pairs of
honest clients with encryptions of 0 (in Round 1 - Sharing
key).
Note that, we assume the encryption scheme used for
encrypting uu,v has IND-CPA security, which guarantees
this hybrid is indistinguishable from the previous one.

H3: This hybrid is identical to H2 except that SIM aborts
if AC queries the random oracle LKH-PRF on input su
for some honest user u before the adversary receives the
responses from honest clients in Round 3 - Unmasking.
Because su is information theoretically hidden from AC ,

https://proceedings.mlr.press/v115/xie20a.html
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SIM will only abort if AC can make a correct guess of
su, which is of negligible probability.

H4: This hybrid is identical to H3 except that the values of
yu computed by SIM on behalf of the honest clients and
sent to AC (in Round 2 Masked model update collection),
are substituted with uniformly sampled values, and the
output of some random oracle queries for the LKH-PRF,
i.e. masksu , is modified to ensure consistency. That is,
masksu ← yu − xu. Because AC cannot query the
random oracle on input su, the value yu looks randomly
for the adversary. So the view of the adversary in this
hybrid is statistically indistinguishable from the previous
one.

H5: This hybrid is identical to H4 except that for all honest
clients, SIM programs the random oracle to set the output
of LKH-PRF as masksu ← yu − ru, where ru is a
set of randomly chosen values satisfying

∑
u∈U\C xu =∑

u∈U\C ru. Since AC cannot query the random oracle
for LKH-PRF on su of honest clients, this hybrid is
indistinguishable from the previous one.

H6: This hybrid is identical to H5 except that SIM does not
receive the inputs of the honest clients, but makes a query
to the functionality IDEAL(t, xu)u∈U\C in Round 3 Un-
masking. This modification does not change the view seen
by the adversary, and so this hybrid is indistinguishable
from the previous one. In addition, this hybrid does not
use inputs of the honest parties, and this concludes the
proof.

Proof for Theorem 4

Theorem 4. Consider the function F that satisfies assump-
tions 1 and 2. Assume there is a robust aggregation scheme
that satisfies assumption 3. Let the number of type II attackers
be q2, and F ∗ = minθ∇(θ). There exists η < 1

L (1−
√
δ
4 −

q2
2n )

for which, after R rounds, the following condition holds:

1

R

R−1∑
r=0

E∥∇F (θr)∥2 ≤
(F (θ0)− F ∗)

MηR
+

Lη

M
∆3 +

1

M
∆4

(23)
where M = 1 −

√
δ
4 −

q2
2n − Lη,∆4 = 8c

√
δ

l (σ2
c + σ2

g) +
nq2σ

2
g

2(n−q2)2
,∆3 = 2∆1 + 4∆2 + 12 n−q2−(1−β)kl

(n−q2−1)(1−β)kl (σ
2
c + σ2

g +

∆2),∆1 = 8cδ
l (σ2

c + σ2
g) + b2,∆2 =

q22σ
2
g

(n−q2)2
+

2σ2
c

n−q2
.

Proof. Let the remaining benign clients be Ub. Define w̄(Ub)
r

as the average model update of the benign clients. Note that
the number of clients in the benign clusters is less than or
equal to the number of benign clients (|{ui}ui∈Gg | ≤ |Ub|),
since the Byzantine clusters may also contain benign clients.

For ∀ui, uj ∈ Ub, we have

E
[
∥w(ui)

r − w(uj)
r ∥2

]
= E[∥w(ui)

r −∇Fi(θr) + Fi(θr)−∇F (θr)

+∇F (θr)−∇Fj(θr) +∇Fj(θr)− w(uj)
r ∥2]

(a)

≤ 4(E
[
∥w(ui)

r −∇Fi(θr)∥2
]
+ E

[
∥∇Fi(θr)−∇F (θr)∥2

]
+ E

[
∥∇F (θr)−∇Fj(θr)∥2

]
+ E

[
∥∇Fj(θr)− w(uj)

r ∥2
]
)

(b)

≤ 8(σ2
c + σ2

g)
(24)

where (a) follows Reddi et al. [47] (A.4, Lemma 6), while (b)
is based on Assumptions 2.

We first prove that the difference between the robust ag-
gregation update and the benign cluster average update is
bounded:

E[∥RobustAgg({w(Cφ)
r }Cφ∈C)− w̄r∥2]

a
= E[∥RobustAgg({w(Cφ)

r }Cφ∈C)− w̄r∥]
2

+ Var
[
∥RobustAgg({w(Cφ)

r }Cφ∈C)∥
]

(b)

≤ cδ sup
Ci,Cj∈Gg

E
[
∥w(Ci)

r − w(Cj)
r ∥2

]
+ b2

=
cδ

l2
sup

Ci,Cj∈Gg

E

∥ ∑
ui∈Ci

w(ui)
r −

∑
uj∈Cj

w(uj)
r ∥2

+ b2

(c)

≤ 8cδ

l
(σ2

c + σ2
g) + b2︸ ︷︷ ︸

∆1

(25)

where (a) follows from the basic relationship between expec-
tation and variance, (b) is based on Assumption 3, and (c) uses
(24) and Reddi et al. [47] (A.4, Lemma 6).

Next, we prove that the difference between the benign
cluster average update and the global true update is bounded:

E
[
∥w̄r −∇F (θr)∥2

]
= E

[
∥w̄r − w̄(Ub)

r + w̄(Ub)
r −∇F (θr)∥2

]
≤ 2E

[
∥w̄r − w̄(Ub)

r ∥2
]
+ 2E

[
∥w̄(Ub)

r −∇F (θr)∥2
]

(a)

≤ 2E
[
∥w̄r − w̄(Ub)

r ∥2
]
+ 2

q22σ
2
g

(n− q2)2
+

2σ2
c

n− q2︸ ︷︷ ︸
∆2

(26)

where (a) follows Xu et al. [41] (Lemma 1).
We further prove that the difference between the benign

cluster average update and the average update of all benign
clients is bounded:

E
[
∥w̄r − w̄(Ub)

r ∥2
]

= E

∥ 1

(1− β)kl

∑
ui∈Gg

(w(ui)
r − w̄(Ub)

r )∥2


(a)

≤ n− q2 − (1− β)kl

(n− q2 − 1)(1− β)kl
· 1

n− q2

∑
ui∈Ub

E
[
∥w(ui)

r − w̄(Ub)
r ∥2

]
(27)
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where (a) follows Lei et al. [48] (Lemma A.1), because the
clustering is completely random, {ui}ui∈Gg can be considered
a random sample from the set Ub.

Note that

E
[
∥w(ui)

r − w̄(Ub)
r ∥2

]
= E[∥w(ui)

r −∇Fi(θr) +∇Fi(θr)

−∇F (θr) +∇F (θr)− w̄(Ub)
r ∥2]

(a)

≤ 3E
[
∥w(ui)

r −∇Fi(θr)∥2
]
+ 3E

[
∥∇Fi(θr)−∇F (θr)∥2

]
+ 3E

[
∇F (θr)− w̄(Ub)

r ∥2
]

(b)

≤ 3σ2
c + 3σ2

g + 3∆2

(28)
where (a) refers to Reddi et al. [47] (A.4, Lemma 6), and (b)
is based on (26) and Assumption 2.

So, we can get from (27) and (28)

E
[
∥w̄r − w̄(Ub)

r ∥2
]

≤ 3
n− q2 − (1− β)kl

(n− q2 − 1)(1− β)kl
(σ2

c + σ2
g +∆2)

(29)
Finally, we aim to prove that the difference between the ro-

bust aggregation update and the global true update is bounded:

Er[∥RobustAgg({w(Cφ)
r }Cφ∈C)−∇F (θr)∥2]

= Er[∥RobustAgg({w(Cφ)
r }Cφ∈C)− w̄r + w̄r −∇F (θr)∥2]

(a)

≤ 2Er[∥RobustAgg({w(Cφ)
r }Cφ∈C)− w̄r∥2] + 2Er[∥w̄r −∇F (θr)∥2]

(b)

≤ 2∆1 + 4∆2 + 12
n− q2 − (1− β)kl

(n− q2 − 1)(1− β)kl
(σ2

c + σ2
g +∆2)︸ ︷︷ ︸

∆3

(30)
where (a) follows Reddi et al. [47] (A.4, Lemma 6), while (b)
utilizes (25), (26), and (29).

We will now proceed with the derivation of the convergence

Er[F (θr+1)]− F (θr)

(a)

≤ −⟨∇F (θr),Er[θr+1 − θr]⟩+
L

2
Er[∥θr − θr+1∥2]

= −η⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)
]
⟩

+
Lη2

2
Er

[
∥RobustAgg({w(Cφ)

r }Cφ∈C)∥2
]

= −η⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)
]
−∇F (θr)+

∇F (θr)⟩+
Lη2

2
Er[∥RobustAgg({w(Cφ)

r }Cφ∈C)

−∇F (θr) +∇F (θr)∥2]
(b)

≤ −η⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]−∇F (θr)
]
⟩

+ Lη2Er

[
∥RobustAgg({w(Cφ)

r }Cφ∈C)−∇F (θr)∥2
]

+ (Lη2 − η)∥∇F (θr)∥2
(31)

where (a) applies the property of L − Lipschitz continuity,
and (b) relies on Reddi et al. [47] (A.4, Lemma 6).

Note that

− ⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]−∇F (θr)
]
⟩

= −⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]−∇F (θr)
]
⟩

= −⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]− w̄r

]
⟩

− ⟨∇F (θr),Er

[
w̄r − w̄(Ub)

r

]
⟩

− ⟨∇F (θr),Er

[
w̄(Ub)

r −∇F (θr)
]
⟩

(a)
= −⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]− w̄r

]
⟩

− ⟨∇F (θr),Er

[
w̄(Ub)

r −∇F (θr)
]
⟩

(32)
where (a) is due to the fact that {ui}ui∈Gg

is a random
sample from Ub, and the overall expectation equals the sample
expectation, i.e., Er[w̄r] = Er[w̄

(Ub)
r ].

We will first analyze the first term:

− ⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]− w̄r

]
⟩

(a)

≤ ∥∇F (θr)∥ · Er

[
∥RobustAgg({w(Cφ)

r }Cφ∈C)]− w̄r∥
]

(b)

≤ 1

2
(
2√
δ
Er

[
∥RobustAgg({w(Cφ)

r }Cφ∈C)]− w̄r∥
]2

+

√
δ

2
∥∇F (θr)∥2)

(c)

≤
√
δ

4
∥∇F (θr)∥2 +

8c
√
δ

l
(σ2

c + σ2
g)

(33)
where (a) applies the Cauchy-Schwarz inequality, (b) utilizes
the AM-GM inequality, and (c) follows (25).

Next, we analyze the second term:

− ⟨∇F (θr),Er

[
w̄(Ub)

r −∇F (θr)
]
⟩

(a)

≤ ∥∇F (θr)∥ · Er

[
∥w̄(Ub)

r −∇F (θr)∥
]

(b)

≤ 1

2
(
q2
n
∥∇F (θr)∥2 +

n

q2
Er

[
∥w̄(Ub)

r −∇F (θr)∥
]2
)

(c)

≤ q2
2n
∥∇F (θr)∥2 +

nq2σ
2
g

2(n− q2)2
(34)

where (a) applies the Cauchy-Schwarz inequality, (b) utilizes
the AM-GM inequality, and (c) is based on the derivation from
Xu et al. [41] (Lemma 1).

Combining (32), (33), and (34), we have

− ⟨∇F (θr),Er

[
RobustAgg({w(Cφ)

r }Cφ∈C)]−∇F (θr)
]
⟩

≤ (

√
δ

4
+

q2
2n

)∥∇F (θr)∥2 +
8c
√
δ

l
(σ2

c + σ2
g) +

nq2σ
2
g

2(n− q2)2︸ ︷︷ ︸
∆4

(35)
Substituting (35) into (31) and reorganizing, we obtain

η(1−
√
δ

4
− q2

2n
− Lη)∥∇F (θr)∥2 ≤ Er[F (θr)− F (θr+1)]+

+ Lη2∆3 + η∆4

(36)
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Assuming η < 1
L (1−

√
δ
4 −

q2
2n ), we can get M = 1−

√
δ
4 −

q2
2n − Lη > 0, sum over the federated learning rounds from
0→ R, and we obtain

1

R

R−1∑
r=0

E∥∇F (θr)∥2 ≤
(F (θ0)− F ∗)

MηR
+

Lη

M
∆3 +

1

M
∆4

(37)

Experimental Evaluation: Further Results

We present the evaluation of the ClusterGuard federated
learning scheme in a decentralized setting with 20 clients.
The training configuration, as well as the model and dataset
settings, align with the default setup described earlier. We use
the average model accuracy of honest clients to estimate the
model performance. We consider two situations: the first case
is the attack from non-leader clients, and the second case is
the attack from leader clients.

First case: the attack setup is the same as described
earlier, where we still consider the different attack strategies
mentioned above. The number of adversaries is set to 20% of
the total clients.

TABLE IV
PERFORMANCE COMPARISON OF CLUSTERGUARD AND OTHER SCHEMES

UNDER MALICIOUS ATTACKS IN DECENTRALIZED SETTING

Datasets Scheme Attacks
Label flipping Noise Sign flipping Scaling

MNIST

FedAvg 80.81 66.25 33.02 0.31/0.35
Krum 63.28 66.11 60.75 72.43

Median 69.30 79.37 68.21 86.73
Share 73.59 87.14 29.97 34.95

Bulyan 69.35 68.77 69.41 77.69
ClusterGuard 86.96 85.54 82.03 85.11

Fasion-MNIST

FedAvg 83.11 54.35 59.96 10.00
Krum 69.32 67.32 65.61 69.92

Median 83.43 87.67 79.34 87.96
Share 73.39 86.85 51.60 26.94

Bulyan 84.17 85.24 85.23 84.85
ClusterGuard 85.11 86.91 85.29 85.28

CIFAR-10

FedAvg 58.99 10.00 10.00 10.00
Krum 29.60 37.83 36.66 36.78

Median 41.85 64.19 53.84 67.89
Share 43.52 64.38 62.58 11.65

Bulyan 14.91 58.35 60.19 60.88
ClusterGuard 64.67 65.30 63.44 64.33

Table IV presents a comprehensive evaluation of Cluster-
Guard in comparison to other robust aggregation methods
(including Median, Krum, Share, and Bulyan) across various
malicious attack strategies, including label flipping, noise
injection, sign flipping, and scaling, on the MNIST, Fashion
MNIST, and CIFAR-10 datasets. The experimental results
consistently demonstrate that ClusterGuard outperforms the
other defense strategies across all three datasets. Methods such
as Krum and Share are susceptible to carefully crafted attacks,
whereas ClusterGuard maintains consistently high accuracy
and resilience. Moreover, in contrast to Median and Bulyan,
which are limited to simpler tasks such as MNIST digit classi-
fication, ClusterGuard demonstrates superior performance on
the more complex image classification task of CIFAR-10,
where other methods show significant performance degrada-
tion. These findings establish ClusterGuard as a robust and
reliable solution for decentralized federated learning, capable
of defending against a wide range of diverse and sophisticated
attack strategies.

Second case: we utilize the Random Attack method to
simulate the behavior of adversarial clients. Byzantine clients
send gradients with randomized values, generated from a
multi-dimensional Gaussian distribution N (µ, σ2). In our ex-
periments, we set µ = 0 and σ = 0.5 to simulate random
attacks. Let τ denote the attack interval for all leader clients.
In practice, such attacks are challenging to sustain, as the
leader selection process is fully random, based on a VRF-
based election mechanism. This part of the experiment will
be conducted in the future.
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