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Abstract—We describe the design and implementation of
MicroNova, a folding-based recursive argument for producing
proofs of incremental computations of the form y = F (ℓ)(x),
where F is a possibly non-deterministic computation (encoded
using a constraint system such as R1CS), x is the initial
input, y is the output, and ℓ > 0. The proof of an ℓ-step
computation is produced step-by-step such that the proof size
nor the time to verify it depends on ℓ. The proof at the final
iteration is then compressed, to achieve further succinctness
in terms of proof size and verification time. Compared to
prior folding-based arguments, a distinguishing aspect of
MicroNova is the concrete efficiency of the verifier—even
in a resource-constrained environment such as Ethereum’s
blockchain. In particular, the compressed proof consists of
O(logN) group elements and it can be verified with O(logN)

group scalar multiplications and two pairing operations, where
N is the number of constraints for a single invocation of
F . MicroNova requires a universal trusted setup and can
employ any existing setup material created for the popular
KZG univariate polynomial commitment scheme. Finally, we
implement and experimentally evaluate MicroNova. We find that
MicroNova’s proofs can be efficiently verified on the Ethereum
blockchain with ≈2.2M gas. Furthermore, MicroNova’s prover
incurs minimal overheads atop its baseline Nova’s prover.

1. Introduction

A folding scheme [45] is a cryptographic protocol involving
a prover and a verifier, where they interactively reduce the
task of checking two NP instances into the task of checking a
single NP instance. A folding scheme can be used on its own
to reduce the prover’s work when proving multiple instances.
Beyond this, Kothapalli et al. [43], [45] show that folding
schemes that satisfy certain mild requirements immediately
provide an efficient realization of incrementally verifiable
computation (IVC) [57], a powerful cryptographic primitive
that enables one to prove the correct execution of a “long
running” computation in an incremental manner.

Suppose we have an incremental computation of the form
zi = F (ωi, zi−1), where i ≥ 1, F is a function (typically
represented using a circuit), ωi is the non-deterministic input
of the prover for step i, z0 is the initial input, and zi is the
output after i steps. With an IVC scheme, the prover takes
as input a proof πi that proving that zi is the correct output
after executing i steps of the incremental computation, and
then outputs a proof πi+1 that proves the correct execution of
the first i+1 steps to produce an output zi+1. Crucially, the

prover’s work (or the memory requirements to update a proof)
nor the proof size grows with the number of steps executed
thus far, and the verifier can verify any proof produced by
the prover to verify the execution of the computation thus
far. Thus, IVC unlocks proving the correct execution of large
computations without the prover running out of memory.

IVC has a wide variety of applications in decentralized
settings including rollups [46], [61], verifiable delay func-
tions [15], [60], proofs of (virtual) machine executions (e.g.,
RISC-V). In all of these applications, the statement that the
prover wishes to prove can be expressed in an incremental
manner. For example, in a rollup, F checks the correct
execution of a batch of blockchain transactions. In a VDF, F
encodes checks that a delay function such as MinRoot [38]
was executed correctly. In proofs of machine executions, F
checks a certain number of iterations of the fetch-decode-
execute loop of a particular machine.

Early works [14], [57] constructed IVC via succinct non-
interactive arguments of knowledge (SNARKs) [12], [32],
[39], [48]: the prover at step i proves the correct execution
of the step computation F and that it has verified a SNARK
πi−1 proving the correct execution of the first i − 1 steps
(the latter requires representing the SNARK verifier as a
circuit alongside F ). Folding schemes bypass the need for
SNARKs (and even NARKs) by employing a particular type
of reduction of knowledge [40]. Indeed, a folding scheme is
simpler and more prover-efficient than a SNARK. Nova [45]
provides a folding scheme for R1CS, a popular NP-complete
problem that generalizes arithmetic circuit satisfiability. In
this folding scheme, the prover’s work at each step is
dominated by two multi-scalar multiplications (MSMs) of
sizes equal to the number of constraints and number of
witness variables in R1CS expressing the step computation
(this is an order of magnitude lower work compared to a
SNARK prover [25], [31], [50]). Furthermore, the size of
the folding scheme verifier proven at each step by the prover
is constant sized (≈10,000 gates). Nova’s IVC scheme is
fully implemented and is public [6].

Unlike SNARK-based IVC, folding-scheme-based IVC pro-
duces IVC proofs whose size and time to verify scale linearly
with |F |. For example, in Nova, an IVC proof is ≈ 3 · |F |
field elements (where each field element is ≈32 bytes). Even
when F is of modest size such as a when F is represented
with a million R1CS constraints, the proof size is ≈96 MB,
and the verifier spends multiple seconds to verify a proof.
To address this, Nova describes an approach to use SNARKs



to compress IVC proofs: the prover uses a SNARK (e.g.,
Spartan [50]) to prove the knowledge of a valid IVC proof.
The resulting proofs are no longer incrementally updateable
with a folding scheme, but this is acceptable in many target
applications. In the rollup example, a verifier running on
a blockchain merely requires a succinct proof of correct
execution of a batch of transactions.1

1.1. Problem: Verifier times

A topic that has received significantly less attention—even
with a flurry of recent works on folding schemes [7], [11],
[16], [22]–[24], [26]–[28], [41]–[44]—is the verifier’s costs
in folding-based arguments.2 A folding scheme requires an
additively homomorphic commitment scheme with succinct
commitments for vectors. For this, Nova uses Pedersen’s
commitment instantiated over a cycle of elliptic curves. Con-
cretely, Nova’s implementation [6] uses the Pasta curves [8],
which are simple and fast. Then, to compress IVC proofs [45,
§5–6], Nova treats these (vector) commitments as commit-
ments to multilinear polynomials in evaluation form over the
Boolean hypercube. Nova then instantiates Spartan [50] with
an IPA-based polynomial commitment scheme [18], [21] to
prove the knowledge of a valid IVC proof.

Under the above scheme, for an N -sized step circuit, the
compressed proofs are O(logN) group elements (e.g., a few
KBs in practice), which is acceptable. However the time
to verify a compressed proof is O(N)-sized MSM, where
N is at least 10, 000 (given that Nova’s folding scheme’s
verifier must be represented as a circuit at each step of the
computation). For values of N that one may want to use,
this requires the verifier runtime to be up to several seconds
of CPU time. Also, it is well known that this verifier cannot
feasibly be run on Ethereum’s blockchain: the verifier incurs
several billions gas, which is orders of magnitude higher gas
than what is allowed by the block limit.

1.2. Our solution: MicroNova

MicroNova is a new IVC scheme with an efficient verifier
for compressed IVC proofs. In particular, MicroNova con-
tributes new techniques to improve verifier times in folding-
based proof systems and make the verifier suitable for on-
chain verification (e.g., on Ethereum). MicroNova builds on
Nova [45] given Nova is fully implemented and heavily
optimized [6]. However, our techniques apply easily to
other folding-scheme-based arguments (e.g., HyperNova [43],
Protostar [22], Protogalaxy [27], NeutronNova [44]) to reduce
verifier times and to achieve efficient on-chain verification.
Many of MicroNova’s techniques are of independent interest.
We provide a variant of KZG that directly works with
multilinear polynomials in the evaluation basis. We also

1. Constructing SNARKs via folding schemes is still preferred as the
prover’s costs are still orders of magnitude lower than with SNARKs [25],
[31] constructed from other means (prior work [41] provides details of
benefits of incremental proof systems).

2. We discuss a parallel project to address this problem in Section 1.3.

provide a verifier-efficient version of Spartan [50], which
we call MicroSpartan.

1.2.1. Implementation and experimental evaluation.
We implement MicroNova as a modular library in about
11,000 lines of Rust. We also implement MicroNova’s
verifier in about 3,300 lines of Solidity. The prover is
generic over a cycle of elliptic curves and a hash function
that instantiates the random oracle for Fiat-Shamir trans-
form [30]. For efficient on-chain verification, we employ
the BN254/Grumpkin elliptic curve cycle (where BN254
is pairing-friendly and Grumpkin is not pairing-friendly),
Poseidon (for in-circuit hash function), and Keccak (for on-
chain hash function). The library accepts F described as a
circuit with bellpepper [1].

We experimentally evaluate MicroNova on an Azure VM of
size Standard F64s v2 (64 vCPUs, 2.70 GHz Intel processor,
and 128 GiB memory), and compare it with Nova [6], [45]
on the same testbed. For MicroNova’s on-chain verifier, we
evaluate it with Foundry [4]. In our experiments, we vary
the number of constraints N in F . We find the following.

IVC. The per-step prover cost in MicroNova’s IVC scheme
is about the same as the per-step prover cost in Nova—except
when N is small. This is because MicroNova, which aims to
keep the verifier circuit on non-pairing-friendly curve small,
incurs a higher recursion overhead (≈74,000 constraints on
BN254 and ≈1,300 on Grumpkin) when compared to Nova
(≈10,000 constraints on BN254 and ≈10,000 on Grumpkin).
However, this overhead is dwarfed when N exceeds the size
of the recursive verifier circuit.

IVC proof compression and on-chain verification. Mi-
croNova’s compressed proofs are small, and quick to produce
and verify. These costs are independent of the number of
steps of IVC. In other words, the prover’s and the verifier’s
costs can be amortized indefinitely with any number of steps
prior to posting proofs on a blockchain.

• The prover’s cost to compress an IVC proof scales close to
linearly with N and is concretely small (tens of seconds). The
prover’s cost is dominated by a constant cost until N ≈ 221:
for on-chain verification, MicroNova, in addition to proving a
folded F , proves a constant-sized R1CS (≈1.7M constraints)
to prove the evaluation of a polynomial committed over the
non-pairing-friendly curve (i.e., Grumpkin).

• The compressed proofs are small ≈ 11 KB until N ≈ 221,
and then has a logarithmic scaling with N (the proof length
increases by 0.2 KB each time N doubles).

• The verifier takes ≈14 ms to verify a compressed proof.
• MicroNova’s Solidity verifier takes ≈2.2M gas on Ethereum
blockchain until N ≈ 221, and then its gas cost has a
logarithmic scaling with N (the cost increases by 32K gas
each time N doubles).
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1.3. Concurrent work

Sonobe [10] is a library that implements Nova [45] and
other folding schemes. Sonobe’s focus is on modularity, so
it is not fully optimized for performance. Like MicroNova,
Sonobe also focuses on producing Nova proofs that are
efficiently verifiable on-chain. Sonobe crucially relies on
our prior work CycleFold [42], which was discovered while
designing MicroNova.

However, there are several differences between our approach
and their approach. First, Sonobe employs Groth16 [34] to
compress IVC proofs given Groth16 provides an efficient
on-chain verifier. So, Sonobe’s requires a separate trusted
setup for each application proven via Sonobe. In contrast,
MicroNova requires only a universal trusted setup. In fact,
MicroNova does not require any new trusted setup: it can use
any existing trusted setup material created for other popular
proof systems such as Plonk [31]. Second, Sonobe is more
gas efficient: verifying a proof requires about 800,000 gas on
Ethereum virtual machine. Whereas, MicroNova’s proofs re-
quire 2.2 M gas since its proofs are longer and more complex
to verify than the proof generated by Sonobe. However, one
can apply further compression to MicroNova’s proofs using
Groth16 to further compress MicroNova’s proofs—while
retaining the trusted setup property of MicroNova. Third,
to produce a compressed proof, Sonobe’s approach requires
proving a circuit of size ≈10 M constraints via Groth16.
In contrast, MicroNova’s approach only requires proving a
circuit of size ≈1 M constraints via MicroSpartan. We leave
it to the future work to provide a more detailed comparison.

2. A technical overview of MicroNova

This section provides a detailed overview of novel compo-
nents in MicroNova.

(1) A new IVC scheme over half-pairing cycles. We begin
with a simple modification to Nova: we instantiate Nova over
a “half pairing” cycle of elliptic curves.3 Specifically, instead
of the Pasta curves, MicroNova uses the BN254/Grumpkin
cycle (we enhanced Nova’s implementation so that it is
generic over the curve cycle and can use other “half pairing”
curve cycles such as Pluto/Eris). One reason for this change
is so that the verifier can make use of BN254 precompiles
available in Ethereum. The other reason to use a paring-
friendly curve is that we replace Pedersen’s commitment
scheme with the KZG polynomial commitment scheme [37].
In particular, Nova’s IVC scheme only requires a succinct,
additively homomorphic commitment scheme, so MicroNova
uses KZG to commit to vectors defined over the scalar
field of the pairing-friendly elliptic curve in the cycle, i.e.,
MicroNova treats entries in a vector of size n as coefficients
of a univariate polynomial of degree n. On the non-pairing-
friendly curve, MicroNova uses Pedersen commitments.

3. A “half pairing” cycle is a two-cycle of elliptic curves where only one
curve in the cycle supports efficient pairing operations.

Since MicroNova treats the entries in a vector as coefficients
of a univariate polynomial, it does not require any FFTs to
change basis (e.g., from an evaluation from to coefficient
form). In other words, the prover’s commitment costs in
MicroNova is same as that of Nova’s—albeit on a different
curve cycle. Because of this design, MicroNova exhibits
another desirable feature of not requiring a new setup:
MicroNova can use any existing trusted setup material that
was created for other proof systems such as Plonk. Since
KZG’s trusted setup is updatable, one can start with existing
material and update it to add additional security.

(i) Minimize circuit on non-pairing-friendly curve. A more
substantial change is that we replace the folding strategy in
Nova (which is formally described in [49]) with a strategy
based on CycleFold [42]. This ensures that the size of the
circuit defined on the secondary (i.e., non-pairing-friendly)
curve goes down from 10,000 gates to about 1,300 gates. The
verifier circuit on the primary (i.e., pairing-friendly) curve
increases from 10,000 gates to about 37,000 gates. However,
this trade-off is crucial for on-chain verification (which we
unpack below). The higher overhead on the primary curve
can be easily offset by using a step function F that is large
enough to make the recursion overhead small.

(ii) Avoid circuit-friendly hashes in the on-chain verifier.
Another substantial change is related to a hash check in the
Nova verifier. In Nova, an IVC proof contains R1CS instances
and their witnesses, and the verifier must ensure that the
public IO of one of the instances contains a hash of the other
instances. This hash check is also performed by the recursive
verifier circuit, so the hash function is chosen to be circuit-
friendly (e.g., Poseidon). In our context, the verifier runs on
a blockchain, and on Ethereum, there are no precompiles for
Poseidon hash function, so it must be implemented by using
basic opcodes (which is expensive). Furthermore, Poseidon
requires storing a large-sized parameters (which is also
expensive). Replacing Poseidon with an on-chain-efficient
hash function (e.g., Keccak) is not an option as this results in
non-trivial recursion overheads. We introduce new techniques
to get the best of both worlds: our mechanism allows the
recursive verifier circuit to use a circuit-friendly hash function
(e.g., Poseidon) while allowing the on-chain verifier to use an
on-chain-efficient hash function (e.g., Keccak). In a nutshell,
we leverage interaction (which is turned non-interactive
with Fiat-Shamir transformation) where the verifier circuit
“fingerprints” the message (it hashes with Poseidon) using
a random challenge. The on-chain verifier then only has to
derive a challenge by hashing the purported pre-image (e.g.,
with Keccak) and then reexecute the fingerprinting operation.
Both are inexpensive for the on-chain verifier.

(2) A new proof compression layer. MicroNova follows
the blueprint in Nova to compress IVC proofs: prove the
knowledge of valid IVC proofs with Spartan [50]. We make
substantial modifications to Spartan to enable efficient on-
chain verification. In MicroNova, an IVC proof contains two
committed relaxed R1CS instances, one on a pairing-friendly
curve and another on the non-pairing-friendly curve. We
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devise specialized variants of Spartan for each of these.

For the instance on the pairing-friendly curve, we design
MicroSpartan that only requires a single invocation of the
sum-check protocol [47] and a single polynomial evaluation
argument producing a proof of length O(logN) group
elements. For the polynomial evaluation argument, building
on a prior idea [19], we devise a reduction of knowledge [40]
from a multilinear polynomial evaluation instance (where
the multilinear polynomial is given in evaluation form) to a
set of univariate polynomial evaluation instances, which we
prove with a batched version of KZG [37]. We refer to this
multilinear polynomial evaluation argument as HyperKZG.

(i) MicroSpartan: A SNARK with minimal proof sizes.
Spartan [50] is a SNARK for R1CS. To prove the knowledge
of a satisfying witness w̃ to an R1CS instance with R1CS
matrices (A,B,C), Spartan invokes the sum-check protocol
multiple times in sequence. In particular, it invokes the sum-
check protocol twice in sequence to reduce R1CS satisfiabil-
ity to checking evaluations of multilinear polynomials w̃, Ã,
B̃, and C̃ at a random point. To prove the evaluation of w̃,
one can invoke the evaluation argument of a polynomial com-
mitment scheme. To prove evaluations of sparse multilinear
polynomials encoding R1CS matrices, Spartan invokes Spark,
a special-purpose SNARK that internally involves multiple
sequential invocations of the sum-check protocol [51] and a
polynomial evaluation argument. BabySpartan [52] improves
upon Spartan in terms of commitment costs but retains
Spartan’s proof length and verification costs.

We redesign Spartan with a focus on minimizing verifier’s
costs—at the cost of the prover providing additional commit-
ments. We refer to this variant as MicroSpartan. In particular,
we provide a new reduction from circuit satisfiability to a
zero-check and two lookup checks. MicroSpartan reduces
all these checks simultaneously to a collection of multilinear
polynomial evaluation instances, with a single invocation
of the sum-check protocol. We introduce additional claims
in this single sum-check protocol so that all committed
multilinear polynomials are evaluated at the same random
point. To prove these multilinear polynomial evaluation
instances, the prover and the verifier fold them into a single
instance with a simple random linear combination (with-
out requiring any additional invocations of the sum-check
protocol or other auxiliary protocols). To prove that single
multilinear polynomial evaluation instance, MicroSpartan
invokes HyperKZG. Since MicroSpartan is invoked only
once after many steps of IVC, the additional commitment
work by the prover is tolerable.

(ii) HyperKZG: Prove multilinear polynomial evaluation
instances with a reduction to univariate KZG. MicroSpar-
tan treats a vector w of size n containing the coefficients
of a degree-n univariate polynomial as evaluations of a
multilinear polynomial in log n variables over the Boolean
hypercube. Accordingly, the univariate KZG commitment
to w serves as a commitment to a multilinear polynomial
w̃, where w̃ denotes the multilinear extension of the vector

w. This matches exactly the requirement of MicroSpartan.
Now, all that is necessary is a way to prove evaluations of
multilinear polynomials committed in this manner.

Gemini [19, §2.4.2] describes a protocol to reduce a multi-
linear polynomial evaluation instance in coefficient form to
a logarithmic number of univariate polynomial evaluations.
However, in our context, the multilinear polynomials are
in evaluation form rather than coefficient form. Directly
applying Gemini’s technique in our context requires poly-
nomial interpolations during folding, which increases the
prover’s work. We make a small—but crucial—modification
to Gemini’s reduction protocol. This modification allows us
to directly prove evaluations of multilinear polynomials in
evaluation form, allowing us to use Spartan and its variant
MicroSpartan to compress IVC proofs. We additionally
specialize this protocol to use the univariate KZG scheme,
allowing us to employ standard techniques to batch multiple
univariate evaluations into one [13], [19], [29].

(iii) DelegatedSpartan: Proving the instance on the non-
pairing-friendly curve. In MicroNova’s IVC proof, for the
committed relaxed R1CS instance defined over the non-
pairing-friendly curve (e.g., Grumpkin), the commitment
scheme used is Pedersen (one cannot use KZG on non-
pairing-friendly curves). In this setting, the only option
is to use an IPA-based evaluation argument [18], [21].
Unfortunately, the on-chain verifier will have to compute
a multi-scalar multiplication (MSM) of size proportional
to the number of constraints in the circuit defined over the
secondary non-pairing-friendly curve. MicroNova’s circuit on
the secondary curve is minimal, but this still requires at least
1,000 group scalar multiplications from the on-chain verifier.
There are no precompiles for operations over a curve such
as Grumpkin, so this is infeasible (even with a precompile,
the cost will be prohibitive). The on-chain verifier must also
evaluate the multilinear extension (MLE) of R1CS matrices
on its own or ask the prover to prove it via Spark. The
latter increases the size of the MSM that the verifier must
compute to be proportional to the number of non-zero entries
in the R1CS matrices (in our setting this is about 5,600). It
is infeasible to have the verifier perform these tasks.

To address these, we design a variant of Spartan, which we
refer to as DelegatedSpartan. DelegatedSpartan runs Spartan’s
core protocol [50, §4.1], with two modifications: (1) the
verifier efficiently evaluates the MLE of R1CS matrices
on its own by leveraging the highly repetitive nature of
the circuit; and (2) the verifier delegates the polynomial
evaluation to the prover by using MicroSpartan.

• We observe that the circuit, which computes a group scalar
multiplication on the non-pairing-friendly curve is highly
structured: it consists of 128 iterations of the textbook double-
and-add loop (using the incomplete affine addition law),
followed by a complete addition to add the resulting point to
the accumulator. We leverage this structure to make the
verifier’s work to evaluate the MLE of R1CS matrices
inexpensive: the verifier performs finite field operations
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proportional to the number of non-zero entries resulting
from a single iteration of the double and add operation and
a single complete addition law. In a nutshell, the idea is to
express the MLE of the entire matrix in terms of the MLE
of repeated sub-matrix, so the verifier only has to evaluate
the MLE of the repeated sub-matrix and then performs work
logarithmic in the number of copies to compute the desired
MLE of the entire matrix. This computation is inexpensive
for the verifier—even when the verifier is implemented as a
smart contract on Ethereum.

• We use MicroSpartan to prove the evaluation of a polyno-
mial committed with Pedersen’s commitment over the non-
pairing-friendly curve. This is done by writing the polynomial
evaluation algorithm as a circuit over the pairing-friendly
curve in the cycle. To minimize the size of this circuit,
MicroNova uses matrix commitments [59] to commit to the
witness of the circuit on the second curve: view the witness
as a matrix of size n1×n2 and commit to rows of the matrix
with Pedersen’s commitment scheme. During MicroNova’s
IVC, folding a matrix commitment requires n1 group scalar
multiplications instead of one in Pedersen’s commitment, but
this limits the size of MSM—to be proven via MicroSpartan—
when compressing IVC proofs to be of size O(n1 + n2)
rather than O(n1 ·n2). Concretely, we set n1 = 8, n2 = 256,
which ensures that the polynomial evaluation circuit proven
via MicroSpartan is only 1.7M constraints. With matrix
commitments, MicroNova’s recursion overhead goes up from
about 37,000 gates to about 74,000 gates.

3. Preliminaries

In this section, we recall reductions of knowledge. We refer
to prior work [40], [44], [45], [50] for formal definitions
of multilinear polynomials, IVC [57], and arguments of
knowledge. This section borrows text from prior work [44].

Notation. We let λ to denote the security parameter. We
let negl(λ) to denote a negligible function in λ. We write
Pr[X] ≈ ϵ to mean that |Pr[X]− ϵ| = negl(λ). Throughout
the paper, the depicted asymptotics depend on λ, but we elide
this for brevity. We let PPT denote probabilistic polynomial
time and let EPT denote expected probabilistic polynomial
time. We let [n] denote the set {1, . . . , n}. We let {ui}i∈[n]

denote the set {u1, . . . , un}.

We let F to denote a finite field (e.g., the prime field
Fp for a large prime p) and let F n denote vectors of
length n over elements in F . We write F d[X1, . . . , Xn] to
denote multivariate polynomials over field F in the variables
(X1, . . . , Xn) with degree bound d for each variable. We
omit the superscript if there is no degree bound. We denote
vectors as v = (v1, . . . , vn). Given a vector of polynomials
g, we let g(x) = (g1(x), . . . , gn(x)). We let eq(x, y) ∈
F 1[X1, . . . , Xℓ, Y1, . . . , Yℓ] denote the polynomial that out-
puts 1 if x = y and 0 otherwise for x, y ∈ {0, 1}ℓ. For vector
v ∈ F n we let ṽ ∈ F 1[X1, . . . , Xlogn] denote the multilinear
polynomial extension of v (i.e., ṽ(i) =

∑
j eq(i, j) · vj).

Definition 3.1 (Committed relaxed R1CS). Consider a finite
field F and a commitment scheme Com over F . Let the public
parameters consist of size bounds m,n, ℓ ∈ N where m > ℓ,
and commitment parameters ppW and ppE for vectors of
size m and m− ℓ− 1 respectively. The committed relaxed
R1CS structure consists of sparse matrices A,B,C ∈ Fm×m

with at most n = Ω(m) non-zero entries in each matrix. A
committed relaxed R1CS instance is a tuple (E, u,W, x),
where E and W are commitments, u ∈ F , and x ∈ F ℓ

are public inputs and outputs. An instance (E, u,W, x) is
satisfied by a witness (E, rE ,W, rW ) ∈ (Fm, F , Fm−ℓ−1, F )
if E = Com(ppE , E, rE), W = Com(ppW ,W, rW ), and
(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

We now recall reductions of knowledge (RoK) [40], which
are a generalization of arguments of knowledge, in which a
verifier interactively reduces checking a prover’s knowledge
of a witness in a relation R1 to checking the prover’s
knowledge of a witness in another (simpler) relation R2.
In particular, both parties take as input a claimed instance
u1 to be checked, and the prover additionally takes as input
a corresponding witness w1 such that (u1, w1) ∈ R1. After
interaction, the prover and verifier together output a new
statement u2 to be checked in place of the original statement,
and the prover additionally outputs a corresponding witness
w2 such that (u2, w2) ∈ R2. Appendix A provides a formal
definition.

Definition 3.2 (Folding scheme). A folding scheme for
Rm

1 and Rn
2 is a RoK of type Rm

1 ×Rn
2 → R1 where the

encoder outputs its input structure. We call a reduction of
type Rn → R simply as a folding scheme for R.

3.1. The sum-check protocol

Recall that the standard sum-check relation checks that the
sum of evaluations of an ℓ-variate polynomial Q (under a
commitment) on the Boolean hypercube results in some value
T . Formally, the sum-check relation is defined as follows.

Definition 3.3 (Unstructured sum-check relation). Let
(Gen,Com) denote an additively homomorphic commitment
scheme. Consider a size bound ℓ ∈ N. The unstructured sum-
check relation USC over public parameter, instance, witness
pairs is defined as follows.

USC =

 (pp, (Q,T ), Q)

∣∣∣∣∣∣
Q ∈ F [X1, . . . , Xℓ],
Q = Com(pp, Q),
T =

∑
x∈{0,1}ℓ Q(x)


Central to our development is the sum-check protocol [47],
which, when recast as a reduction of knowledge [20], reduces
from the sum-check relation to the polynomial evaluation
relation, which we define below.

Definition 3.4 (Polynomial evaluation relation). Let
(Gen,Com) denote an additively homomorphic commitment
scheme. Consider a size bound ℓ ∈ N and let pp denote
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public parameters of the commitment scheme. We define the
polynomial evaluation relation, PE, as follows.

PE =

 (pp, (Q, x, y), Q)

∣∣∣∣∣∣
Q ∈ F [X1, . . . , Xℓ],
Q = Com(pp, Q),
y = Q(x)

 .

Lemma 3.1 (The sum-check protocol). There exists a suc-
cinct, public-coin, tree-extractable reduction of knowledge
[40] from USC to PE compatible with all encoder, generator,
and commitment algorithms where the output commitment
is the same as the input commitment. For polynomials in
F d[X1, . . . , Xℓ] the communication complexity is O(d · ℓ)
elements in F .

Definition 3.5 (Multilinear polynomial evaluation rela-
tion). Let (Gen,Com) denote an additively homomorphic
commitment scheme. Consider a size bound ℓ ∈ N and let
pp ← Gen(1λ, 2ℓ). We define the multilinear polynomial
evaluation relation, MPE, as follows.

MPE =

 (pp, (Q, x, y), Q)

∣∣∣∣∣∣
Q ∈ F 1[X1, . . . , Xℓ],
Q = Com(pp, Q),
y = Q(x)

 .

Definition 3.6 (Univariate polynomial evaluation rela-
tion). Let (Gen,Com) denote an additively homomorphic
commitment scheme. Consider a size bound n ∈ N and
let pp ← Gen(1λ, n). We define the univariate polynomial
evaluation relation, UPE, as follows.

UPE =

 (pp, (Q, x, y), Q)

∣∣∣∣∣∣
Q ∈ F n[X],
Q = Com(pp, Q),
y = Q(x)

 .

4. MicroNova’s IVC with proof compression

This section describes MicroNova’s IVC scheme. In a
nutshell, MicroNova’s IVC scheme starts with Nova’s IVC
scheme and makes crucial modifications to enable efficient
verification of compressed IVC proofs. Our presentation here
borrows from and extends the description in Nova [45].

4.1. MicroNova’s folding scheme

MicroNova’s folding scheme combines Nova’s folding
scheme [45] with CycleFold technique [42], to get a folding
scheme over a 2-cycle of elliptic curves (E1, E2) such that
the circuit defined over E2 is constant-sized and small.

This allows us to use “half pairing” cycles (i.e., E1 is pairing
friendly but E2 is not), which are significantly more efficient
than cycles of pairing-friendly curves and as efficient as
non-pairing-friendly cycle of curves (e.g., Pasta curves).
The motivation to keep the instance on E2 small is that
when compressing IVC proofs (which we discuss in the next
section), the prover has to prove the knowledge of a valid
witness for the instance defined over E2. Since E2 is not
pairing-friendly, one must use a depth-1 recursion using a

SNARK defined over E1 and keeping the instance on E2

small significantly reduces the prover’s work in this. The
use of CycleFold [42] in MicroNova reduces the instance
defined over E2 by more than 10× compared to Nova, but
this is not sufficient. We discuss additional techniques in the
next section to reduce the depth-1 recursion costs further.
Details.. Recall that Nova [45] provides a folding scheme
for committed relaxed R1CS, where the verifier performs
two group scalar multiplications and two group additions.
If the committed relaxed R1CS instances are defined over
the scalar field of E1, then these elliptic curve operations in
the folding scheme’s verifier represented as a circuit involve
operations over the base field of E1, so they cannot be
efficiently represented in the scalar field of E1.

Notation. Let (u⊥,w⊥) be the trivially satisfying instance-
witness pair in committed relaxed R1CS, where E,W, and
x are appropriately-sized zero vectors, rE = 0, rW = 0, and
E and W are commitments of E and W respectively.

Definition 4.1. Let EC denote a subset of committed relaxed
R1CS (Definition 3.1) in which the constraints are defined
over the scalar field of E2 and the commitment scheme
commits to vectors over the scalar field of E2, and the
structure is fixed to compute the following deterministic
computation: R ← P + r · Q, where P,Q,R are arbitrary
(elliptic curve) group elements on E1, and r is a scalar in
the corresponding scalar field of E1. For instances in EC,
x = (r, P,Q,R), u = 1, and E = u⊥.E.

Since the elliptic curve points on E1 are a pair of field
elements in the base field of E1 (which equals the scalar
field of E2), the elliptic curve group scalar multiplication
and point addition can be represented “natively” on E2

(i.e., without any wrong-field arithmetic or field emulation).
Concretely, when the scalar is 128-bits, the structure in EC
requires only ≈1,300 constraints in R1CS. We denote this
committed relaxed R1CS structure as sEC.

We interpret Nova’s folding scheme as a RoK from two
committed relaxed R1CS instance-witness pairs (defined
over the scalar field of E1) to a single committed relaxed
R1CS instance-witness pair (defined over the scalar field
of E1) and two committed relaxed R1CS instance-witness
pairs in EC (defined over the scalar field of E2) i.e., Nova’s
folding scheme can be interpreted as an RoK of the form

Π1 : CRR1CS× CRR1CS→ CRR1CS× EC2.

In other words, the verifier in the Π1 RoK obtains untrusted
advice regarding the elliptic curve operations that it would
have otherwise performed. This untrusted advice is provided
in the form of a pair of committed relaxed R1CS instances
that are satisfying if and only if the advice is correct.

We then invoke Nova’s folding scheme twice to fold the
advice instances into a running instance. This can be viewed
as a RoK: Π2 : EC×EC2 → EC. By sequentially composing
the two RoKs, Π2 ◦ (1EC × Π1), we get a multi-folding
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scheme, a generalization of folding schemes [43]:

(CRR1CS,EC)× CRR1CS→ (CRR1CS,EC).

Crucially, the verifier of this folding scheme is efficiently
represented in E1’s scalar field. Also, the instance defined
over E2 is constant-sized (e.g., ≈ 1, 300 R1CS constraints).

4.2. MicroNova’s IVC scheme

We construct an IVC scheme from MicroNova’s folding
scheme using an approach similar to Nova’s. We make
a crucial modification to enable efficient verification of
compressed IVC proofs. In Nova, the verifier has to perform
a hash check to ensure that a value of public input in one of
the R1CS instances in the proof is a hash of another instance
and other material (a verification key, initial input and final
output of IVC, etc.). For efficiency, MicroNova and its
base Nova instantiate this hash function with Poseidon [33].
However, Poseidon is inefficient to verify on the Ethereum
blockchain and requires a large set of parameters to be
stored on-chain. To address this, we embed a RoK inside
the verifier circuit. This RoK enables the verifier circuit to
use a circuit-friendly hash function (e.g., Poseidon) while
allowing the on-chain verifier to use an on-chain-efficient
hash function (e.g., Keccak).

4.2.1. An auxiliary RoK.

Definition 4.2 (Hash relation). Let n ∈ N denote a size
bound. Let h denote a hash function that can hash a vector of
n elements over a finite field F . We define the hash relation
over public parameter, instance, witness tuples as follows

HASH =

 (pp, (d, v),⊥)

∣∣∣∣∣∣
pp← Gen(1λ),
v ∈ F n,
h(pp, v) = d,

 .

Definition 4.3 (Hash circuit relation). Consider a subset
of committed relaxed R1CS, where the public IO contains
three values (c, d, f) ∈ F 3, a part of the non-deterministic
witness is a vector v ∈ F n, the structure, which we denote
with sHAC, computes d ← h(pp, v) and f ←

∑n−1
i=0 vi · ci,

u = 1, and E = u⊥.E. Denote this subset with HAC.

Construction 1 (RoK from HASH to HAC). We construct
a RoK as follows.

• Gen(1λ)→ pp: produce parameters for h.

• K(pp, s = ⊥)→ (pk, vk): output (pp, pp).

P and V are given as HASH instance: (d, v).

1) V → P: c ∈R F .

2) P → V: The prover computes an instance-witness pair
(u,w) ∈ HAC and sends W ← u.W .

3) V: Compute f =
∑n−1

i=0 vi · ci.

4) P,V: Produce the following instance-witness pair in
HAC (the verifier only outputs the instance):

((u⊥.E, 1,W , (c, d, f)),w) ∈ HAC

.

Lemma 4.1. Construction 1 is an RoK of type HASH →
HAC with a single round, a constant communication com-
plexity, and the prover’s work is linear in n.

Appendix B provides a proof for Lemma 4.1.

Non-interactivity. We make the above RoK non-interactive
using Fiat-Shamir transform and instantiate the random oracle
in the plain model using a concrete hash function. As in
prior work [40], we assume that the resulting non-interactive
RoK is knowledge sound. Let H denote this hash function.
In our concrete instantiation, we use an on-chain efficient
hash function for H, specifically Keccak.

4.2.2. Constructing IVC from MicroNova’s folding
scheme. Recall that an IVC scheme allows a prover to show
that zn = F (n)(z0) for some count n, initial input z0, and
output zn. We now show how to construct an IVC scheme for
a non-deterministic, polynomial-time computable function
F using our non-interactive folding scheme for committed
relaxed R1CS (§4.1). In MicroNova’s folding scheme, the
“running” instance is a pair of committed relaxed R1CS
instances, one encoding the correct execution of F ′ and
another encoding the correct execution of a group scalar
multiplication operation followed by a group point addition.
So, in the construction below, for a trivially satisfying running
instance, we use (u⊥, u⊥).

Construction 2 (IVC). Let NIFS = (G,K,P,V) be the
non-interactive folding scheme for committed relaxed R1CS
(§4.1). Consider a polynomial-time function F that takes
non-deterministic input, and a cryptographic hash function
hash. We define our augmented function F ′ as follows (all
arguments to F ′ are taken as non-deterministic advice):

F ′(vk,Ui, ui, (i, z0, zi), ωi, π, ri, ri+1, c)→ x:
If i = 0,
(1) m← (vk, i+ 1, z0, F (z0, ω0), (u⊥, u⊥), ri+1),
(2) compute d← hash(m), and f ←

∑n−1
i=0 mi · ci,

(3) output (c, d, f).
Otherwise,
(1) check that ui.x = hash(vk, i, z0, zi,Ui, ri), where ui.x is
the public IO of ui,
(2) check that (ui.E, ui.u) = (u⊥.E, 1),
(3) compute Ui+1 ← NIFS.V(vk,Ui, ui, π), and
(4) m← (vk, i+ 1, z0, F (zi, ωi),Ui+1, ri+1),
(5) compute d← hash(m), and f ←

∑n−1
i=0 mi · ci,

(6) output (c, d, f).

Because F ′ can be computed in polynomial time, it can
be represented as a committed relaxed R1CS structure. We
assume that there is a deterministic procedure, which we
denote with AUGMENT, that takes as input a function F and
public parameters pp sampled by G of the IVC scheme, and
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outputs the committed relaxed R1CS structure corresponding
to F ′, which we denote with sF ′ . Note that this assumes
a canonical representation of the message m as a vector
of n field elements (n is a constant). Let (ui+1,wi+1) ←
trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, π, ri, ri+1, c)) denote the
satisfying committed relaxed R1CS instance-witness pair
(ui+1,wi+1) for the execution of F ′, as a committed Re-
laxed R1CS with structure sF ′ , on non-deterministic advice
(vk,Ui, ui, (i, z0, zi), ωi, π, ri, ri+1, c). Note that trace is a
randomized algorithm that internally samples randomness to
create hiding commitments inside ui+1. Additionally, note
that trace sets ui+1.E = u⊥.E and that ui+1.u = 1.

We define the IVC scheme (G,K,P,V) as follows.

G(1λ)→ pp: Output NIFS.G(1λ).

K(pp, F )→ (pk, vk):

(1) compute sF ′ ← AUGMENT(pp, F );
(2) compute (pkfs, vkfs)← NIFS.K(pp, sF ′);
(3) output (pk, vk)← ((pp, F, pkfs), (pp, sF ′ , vkfs)).

P(pk, (i, z0, zi), ωi,Πi)→ Πi+1:

(1) if i = 0, (Ui+1,Wi+1, π)← ((u⊥, u⊥), (w⊥,w⊥),⊥);
(2) otherwise, parse Πi as ((Ui,Wi), (ui,wi), ri) and
compute (Ui+1,Wi+1, π)← NIFS.P(pk, (Ui,Wi), (ui,wi));
(3) sample ri+1 ∈ F randomly;
(4) compute c← H(vk, i+ 1, z0, F (zi, ωi),Ui+1, ri+1);
(5) compute (ui+1,wi+1) ←
trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, π, ri, ri+1, c)), and
(6) output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), ri+1).

V(vk, (i, z0, zi),Πi)→ {0, 1}:

If i = 0, check that zi = z0;
otherwise,
(1) parse Πi as ((Ui,Wi), (ui,wi), ri),
(2) parse ui.x as (c, d, f), where ui.x is the public IO of ui,
(3) m← (vk, i, z0, zi,Ui, ri),
(4) check that c = H(m) and f =

∑n−1
i=0 mi · ci,

(5) check that (ui.E, ui.u) = (u⊥.E, 1), and
(6) check that Wi and wi are satisfying witnesses to Ui and
ui respectively using vk.pp and vk.sF ′ .

Lemma 4.2. Construction 2 is an IVC scheme that satisfies
completeness and knowledge soundness.

We provide proof intuition of Lemma 4.2 in Appendix C.

4.3. Compressing MicroNova’s IVC Proofs

MicroNova’s IVC proofs are linear in the size of F , so
they are not efficient to verify on a blockchain. We now
discuss how to compress MicroNova’s IVC proofs so they are
exponentially smaller and faster to verify. In theory, one can
address this problem with any SNARK for NP. Specifically,
the prover can produce a SNARK proving that it knows

Πi such that IVC verifier V accepts for statement (i, z0, zi).
Unfortunately, employing an off-the-shelf SNARK makes
the overall solution impractical as the SNARK prover must
prove, among other things, the knowledge of vectors whose
commitments equal a particular value; this requires encoding
a linear number of group scalar multiplications in R1CS. To
address this, we design SNARKs tailored for our purpose
and we describe it in Section 5. Below, we describe how to
use a SNARK to prove the knowledge of a valid IVC proof.
Formally, we design a SNARK for the following relation.
Definition 4.4 (IVC Proof Validity Relation). Let IVC =
(G,K,P,V) denote the IVC scheme described in Construc-
tion 2. We define the relation RVIVC over public parameter,
structure, instance, and witness tuples as follows.

RVIVC =

{
(pp, F, (n, z0, zn),Πn)

∣∣∣∣ vk← IVC.K(pp, F ),
IVC.V(vk, (i, z0, zi),Π) = 1

}

In a nutshell, we leverage the fact that Π contains three com-
mitted relaxed R1CS instance-witness pairs. So, P first folds
the instance-witness pairs (u,w) and (U,W) in Π to produce
a folded instance-witness pair (U′,W′), using NIFS.P. Next,
P runs SNARK.P to prove that it knows a valid witness for
U′. Appendix E provides formal construction.

5. MicroNova’s SNARKs for R1CS

MicroNova’s IVC proof compression layer (§4.3) requires
two SNARKs: (1) a SNARK to prove a committed relaxed
R1CS instance encoding the correct execution of F ′, and
(2) a SNARK to prove an instance in EC, which itself a
subset of committed relaxed R1CS. In MicroNova, the first
instance is defined over a pairing-friendly elliptic curve E1

(e.g., BN254), and the second instance is defined over a
non-pairing-friendly elliptic curve E2 (e.g., Grumpkin), and
E1/E2 is a 2-cycle of elliptic curves (i.e., the base field of
E1 equals the scalar field of E2 and vice versa). We now
describe two different adaptations of Spartan [50]. We refer
to these as MicroSpartan and DelegatedSpartan respectively.

5.1. MicroSpartan (for a pairing-friendly curve)

This section describes MicroSpartan, a SNARK that builds
on Spartan [50] but minimizes its verifier time and proof
sizes. Recall that Spartan runs several sequential invocations
of the sum-check protocol and reduces the satisfiability
of committed relaxed R1CS to proving evaluations of two
multilinear polynomials encoding the witness W and error
terms E and of three sparse multilinear polynomials encoding
the R1CS structure (A,B,C).

In contrast, MicroSpartan reduces the satisfiability of commit-
ted relaxed R1CS to a collection of sum-check instances and
two lookup checks. The lookup instances can be proven with
a straightforward use of lookup arguments. A state-of-the-art
sum-check-based option is Lasso [54], but it uses multiple
invocations of the sum-check protocol. Instead, we employ a
bit more expensive logUp protocol [22], [35], which requires
the prover to send additional polynomial commitments. With
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those additional commitments, the lookup check reduces to a
handful of sum-check instances. The prover then invokes the
sum-check protocol [47] to prove all sum-check instances
including the ones arising from lookup checks. At the end
of the sum-check protocol, all committed polynomials are
queried at the same point r, where r is chosen over the
course of the sum-check protocol. Since all polynomials
are evaluated at the same random point, by leveraging
homomorphic properties of the polynomial commitments,
the verifier requests an evaluation of a single polynomial at a
single point. Overall, MicroNova makes a single invocation
of the sum-check protocol followed by a single invocation
of the polynomial evaluation argument. For the polynomial
evaluation argument, MicroNova uses HyperKZG (§6), which
reduces the single multilinear evaluation into a collection of
univariate polynomial evaluation instances, which are proven
with a batched version of KZG.

We recall the sum-check relation SC [44, Definition 6], and
introduce additional relations. For N ∈ N, let eqτ , where
τ ∈ F logN , denote the multilinear polynomial g such that
for all i ∈ {0, 1}logN , g(i) = eq(τ, i).

Definition 5.1 (Structured lookup relation). Let
(Gen,Com) denote an additively-homomorphic commitment
scheme for vectors over finite field F . Consider size param-
eters n,m ∈ N. We define the lookup relation SLKP over
public parameter, instance, witness tuples as follows

SLKP =

 (pp, (a, v), (τ, a, v))

∣∣∣∣∣∣∣
v, a ∈ Fm, eqτ ∈ F n,
∀i ∈ [m]. vi = τai

,
Com(pp, a) = a,
Com(pp, v) = v,

 .

Definition 5.2 (Piece-wise lookup relation). Let (Gen,Com)
denote an additively-homomorphic commitment scheme for
vectors over finite field F . Consider size parameters n,m, ℓ ∈
N. We define the lookup relation PLKP over public parameter,
instance, witness tuples as follows. PLKP =

(pp, (w, a, v), (x, u, a, v))

∣∣∣∣∣∣∣∣∣∣∣∣∣

z = (w, u, x),
v, a ∈ Fm, x ∈ F ℓ,
u ∈ F , z ∈ F n,
∀i ∈ [m]. vi = zai

,
Com(pp, w) = w,
Com(pp, a) = a,
Com(pp, v) = v,


.

Construction 3 (MicroSpartan: A RoK CRR1CS→ LKP).
Let Π = (Gen,Com) denote an additively-homomorphic
commitment scheme for vectors over finite field F . Let m
denote the number of constraints and n denote the number of
witness variables for members of CRR1CS. Let NA, NB , NC

denote the number of non-zero entries in R1CS matrices.
Let N = NA + NB + NC . WLOG, N is a power of 2.
Suppose that matrices are represented in the COO format as
a vector of tuples. Let M denote the concatenation of sparse
representations of A,B,C. We construct a RoK as follows.

• Gen(1λ)→ pp: output Π.Gen(1λ, N)

• K(pp, s) → (pk, vk): compute row, col, valA, valB ,
valC ∈ FN as follows.

– for (i, (r, c, v)) ∈M , row[i] = r, col[i] = c.

– for (i, (r, c, v)) ∈ A, valA[i] = v.

– for (i, (r, c, v)) ∈ B, valB [i+ nA] = v.

– for (i, (r, c, v)) ∈ C, valC [i+ nA + nB ] = v.

pk← (row, col, valA, valB , valC)

vk← (Com(pp, row),Com(pp, col),Com(pp, valA),

Com(pp, valB),Com(pp, valC))

Output (pk, vk)

The prover and the verifier are given an instance in CRR1CS:
(E,W, u, x). The prover is additionally provided with a
witness: (E,W ). Let z = (w, u, x). WLOG, we assume
that all vectors are padded with zeros to be of size N .

• P → V: The prover sends commitments (a, b, c), where
a = Az, b = Bz, c = Cz,a = Com(pp, a), b =
Com(pp, b), c = Com(pp, c).

• V → P: Sample and send τ ∈R F logN .

• P → V: The prover sends (va, vb, vc, Lr, Lc), where
va = ã(τ), vb = b̃(τ), vc = c̃(τ), and for all i ∈ [N ],
Lr[i] = eqτ [row[i]] and Lc[i] = z[col[i]].

• V → P: Sample and send a random value c ∈ F

• The prover and the verifier output the following instance-
witness pairs (the verifier only outputs instances):

– (pp, (F1, G1), (a, b, c, E, u, τ), (a, b, c, E)) ∈ SC,

G1((a, b, c, E), (u, τ)) = (a, b, c, E, eqτ )

F1(a(x), b(x), c(x), E(x), eqτ ) = eqτ (x)·

(a(x) · b(x)− u · c(x)− E(x))

– (pp, (F2, G2), u1,w1) ∈ SC,
(pp, (F2, G2), u2,w2) ∈ SC, (pp, (F2, G2), u3,w3) ∈
SC, where

u1 = (va, a, τ),w1 = a

u2 = (vb, b, τ),w2 = b

u3 = (vc, c, τ),w3 = c

G2(a, τ) = (a, eqτ )

F2(a(x), eqτ (x)) = eqτ (x) · a(x)

– (pp, (F5, G5), u,w) ∈ SC, where

T = va + c · vb + c2 · vc
u = (T, (Lr, Lc, w, valA, valB , valC), (x, u, c))

w = (Lr, Lc, w, valA, valB , valC)
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G5(w, (x, u, c)) = (Lr, Lc, z = (w, u, x), val)

val = valA + c · valB + c2 · valC
F5(Lr(x), Lc(x), z(x), val(x)) = Lr(x)·val(x)·Lc(x)

– (pp, (row, Lr), (τ, row, Lr)) ∈ SLKP

– (pp, (w, col, Lc), (x, u, col, Lc)) ∈ PLKP

Proof Intuition. The construction above essentially stream-
lines the checks done in Spartan [50]. The first sum-check
instance checks if the constraints are satisfying assuming
that polynomials a, b, c are correct. The last sum-check
instance recomputes (Ãz(τ), B̃z(τ), C̃z(τ)) assuming the
validity of Lr and Lc. By the construction of val polynomials,
this sum-check instance recomputes the claimed values
via preprocessed R1CS matrices and w. The two lookup
checks validate the correctness of (Lr, Lc) using preprocessed
address vectors. We still need to validate the correctness of
the provided (va, vb, vc) values. One option is to invoke the
polynomial evaluation argument, but this ends up querying
polynomials at two different locations: some polynomials
at τ and others at r, where r is chosen over the course of
the sum-check protocol. Instead, we express the multilinear
polynomial evaluation as a degree-2 sum-check instance. At
the end of the single sum-check, all polynomials including
(a, b, c) are queried at r.

5.2. DelegatedSpartan: SNARKs over a non-pairing-
friendly curve

Spartan [50, §5.1] can be phrased as a RoK from CRR1CS
to MPE2. There are two instances in the output relation
because there are two commitments in the input instance.

Lemma 5.1 (Spartan’s NARK [50]). For instances in
CRR1CS, let m denote the number of constraints and n
denote the number of variables. There exists a RoK from
CRR1CS to MPE2 with the following efficiency character-
istics. The prover’s work is O(m+ n) field operations; the
verifier’s work is O(logm + logn) field operations, plus
the cost to evaluate the multilinear extension (MLE) of
R1CS matrices at a random point; and the communication
complexity is O(logm+ log n) finite field elements.

To prove two MPE instances (u1, u2), we do the following.
We cannot use HyperKZG because E2 is not pairing-friendly.

(1) Reduce polynomial evaluations to circuit satisfiability.
We design an R1CS circuit, polyeval, over the scalar field
of E1 that checks the purported instance-witness pairs and
places the corresponding instances in the public IO. All inputs
are taken non-deterministically and the circuit hardcodes the
public parameters pp. Note that all steps except for steps (3)
and (4) are represented without any field emulation.

polyeval(Q1, Q2, x1, x2)→ (q1, q2, x, y1, y2)
(1) compute q1 ← Com(pp, Q1)
(2) compute q2 ← Com(pp, Q2)

(3) compute y1 ← Q1(x1)
(4) compute y2 ← Q2(x2)
(5) output (q1, q2, x1, x2, y1, y2)

Using u1 and u2, the verifier constructs a committed relaxed
R1CS instance upolyeval. Then, it is easy to see that the
satisfiability of u1, u2 is tantamount to the knowledge of
satisfying witnesses to upolyeval.

(2) Prove the circuit with MicroSpartan. Since the R1CS
circuit is defined over the scalar field of E1, we invoke
MicroSpartan with HyperKZG to produce a succinct proof
with an efficient on-chain verifier.

5.3. Implemented optimizations

Efficiently evaluating the MLE of R1CS matrices in EC.
Recall that DelegatedSpartan is run to prove the satisfiability
of a small circuit containing about 1,300 constraints. This
circuit computes a scalar multiplication and a point addition.
Since DelegatedSpartan relies on Lemma 5.1, the verifier
has to evaluate the MLE of R1CS matrices. The time-
optimal algorithm takes time linear in the number of non-zero
entries in R1CS matrices [50], [55], [58]. In our context,
R1CS matrices have ≈6,000 non-zero entries. While a linear
number of field operations is relatively inexpensive on-
chain, this requires storing R1CS matrices on-chain, which is
prohibitive (we attempted to do a clever encoding of R1CS
matrix entries and the costs were still prohibitive).

We observe that this circuit can be made structured given
that it implements many iterations of a double-add loop to
compute a scalar multiplication followed by some constraints
to do point addition. We introduce dummy constraints so that
the R1CS matrices contain repeated copies of the same sub-
matrix, one for each loop iteration, followed by some entries
in the end. Now, to evaluate the MLE of these structured
matrices, the verifier evaluates the MLE of the three sub-
matrices (there are at most 30 non-zero entries) and the
MLEs of the non-uniform portion of the matrices (which
also only has a few tens of non-zero entries). Using these
values, the verifier computes the MLE of the three structured
matrices with only O(log k) finite field operations (k =
128 in our case). Overall, the on-chain verifier stores a
succinct representation of these matrices and evaluates MLEs
efficiently on the fly. Although this idea is folklore and
described in different forms in prior work [53], implementing
it required substantial circuit engineering.

Prove upolyeval with UF ′ in a batch. MicroSpartan naturally
provides a batched variant that proves multiple R1CS in-
stances at once (i.e., by batching all the sum-check protocol
invocations). For ease of reference, we refer to this as
BatchedMicroSpartan. To prove UF ′ , MicroNova invokes
MicroSpartan already, so we use BatchedMicroSpartan to
prove upolyeval and UF′ in a single batch, saving proof sizes
and verifier costs by ≈2×.

Reduce the size of polyeval circuit. A natural commitment
scheme over a non-pairing-friendly curve E2 is Pedersen’s
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commitment scheme. In our context, the instances in MPE
commit to vectors of size n = 2, 048. This means that the
polyeval circuit performs that many group scalar multipli-
cations and finite field operations. To reduce this work, we
employ a matrix commitment scheme [59]: a commitment to
a vector of size n is n1 group elements each committing to
a vector of size n2, where n = n1 ·n2. This reduces the size
of the circuit from O(n1 · n2) to O(n1 + n2). However, the
trade-off is that the recursive verifier circuit has to perform
O(n1) group scalar multiplications, rather than O(1), to fold
instances in E2. To balance the two costs, we pick n1 = 8
and n2 = 256. We provide additional details in Appendix F.

6. HyperKZG: Proving multilinear evaluations

This section describes HyperKZG, a RoK from a multilinear
polynomial evaluation instance to a collection of univari-
ate polynomial evaluation instances. We then prove those
univariate polynomial evaluation instances with univariate
KZG. Together, the verifier’s work is dominated by two
pairing operations and a logarithmic number of group scalar
multiplications. Our starting point here is the reduction from
Gemini [19] that reduces the task of checking a multilinear
polynomial in coefficient form over log n variables to the task
of checking evaluations of log n univariate polynomials over
n coefficients. We make a small—but crucial—modification
to this reduction that allows committing to multilinear
polynomials in evaluation form. This in turn makes it possible
to use the commitment scheme with MicroSpartan without
requiring a change of basis (which entails superlinear and
expensive operations such as FFTs).

6.1. Reducing multilinear to univariate evaluations

Construction 4 (An RoK from MPE to UPE). Consider a
finite field F , a commitment scheme com for vectors over
F , and a size parameter n. Let pp ← Gen(1λ, n). Let ℓ =
log n. We construct a reduction of knowledge from MPE
to UPE3(logn−1). That is, the prover and verifier reduce the
task of checking the evaluation of a multilinear polynomial
over log n variables to the task of checking 3(log n − 1)
evaluations of univariate polynomials with n coefficients.

For a vector P ∈ F n, let Pevens ∈ F n/2 and Podds ∈ F n/2

denote vectors with elements from P at the even indices and
odd indices respectively.

Consider an arbitrary instance in MPE (P , x, y), and suppose
the prover claims that it knows polynomial P such that
(pp, (P , x, y), P ) ∈ MPE.

1) Let P (0) = P . The prover computes ∀i ∈ {1, . . . , ℓ−1}

P (i) = (1− xi) · P (i−1)
evens + xi · P (i−1)

odds

The prover sends commitments (P
(1)

, . . . , P
(ℓ−1)

).4

4. Observe that P (i) corresponds to partially evaluating P as a multilinear
polynomial at (x1, . . . , xi). Each step i corresponds to a step of the
evaluation algorithm from [58, Section 5.1] (also described in [56, Lemma
3.8]), for polynomials in evaluation form.

2) The verifier sends a random challenge r ∈ F .

3) The prover sends claimed evaluations, treating each
vector as coefficients of a univariate polynomial of
appropriate degree. For all i ∈ {1, . . . , ℓ− 1}:

y(i) = P (i)(r2)

y(i−1)
pos = P (i−1)(r)

y(i−1)
neg = P (i−1)(−r)

4) The verifier checks the for all i ∈ {1, . . . , ℓ− 1}

y(i) = (1− xi) ·
y
(i−1)
pos (r) + y

(i−1)
neg (−r)

2

+xi ·
y
(i−1)
pos (r)− y

(i−1)
neg (−r)

2 · r
The verifier checks that y(ℓ−1) = y.

5) Let P
(0)

= P . The prover and the verifier output a
collection of instance-witness pairs in UPE (the verifier
only outputs instances): for i ∈ {1, . . . , ℓ− 1}

(pp, (P
(i)
, r2, y(i)), P (i)) ∈ UPE

(pp, (P
(i−1)

, r, y(i−1)
pos ), P (i−1)) ∈ UPE

(pp, (P
(i−1)

,−r, y(i−1)
neg ), P (i−1)) ∈ UPE

Lemma 6.1. For a size bound n, Construction 4 is a
reduction of knowledge from MPE to UPE3(logn−1) with
the following efficiency characteristics. The prover’s cost
is dominated by

∑ℓ−1
i=0 |com(2i)|p where |com(2i)|p denotes

the cost of committing to a vector of size 2i, and the cost of
computing P (i) for all i ∈ {1, . . . , ℓ−1} The communication
cost is dominated by (

∑ℓ−1
i=0 |com(2i)|c) + 3 log n · F where

|com(2i)|c denotes the size of a commitment for a vector
of size 2i and F denotes the size of a field element, The
verifier’s cost is dominated by O(log n).

Appendix D provides a proof sketch for Lemma 6.1.

6.2. Proving UPE instances with batched KZG

To prove instances in UPE, we invoke batched KZG [17],
[37]. For uniformity, we batch 3 log n evaluations rather than
3(log n− 1) evaluations as depicted i.e., we evaluate each
of the log n univariate polynomials at r,−r, and r2. Our ap-
proach to batching leverages the particular characteristics of
our setting. Suppose p1, . . . , pk are polynomials in F [X] and
(u1, . . . , ut) are values in F and vi,j are the corresponding
evaluations such that pi(uj) = vi,j . In our context, t = 3
and k = log n.

Let C1, . . . , Ck be commitments to pi. Call this a (k, t)-
polynomial relation. A prover can convince a verifier that
the relation holds, more efficiently than the O(kt) direct
solution, by using two types of batching (in order):
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1) Fold the k polynomials into a single polynomial, by
taking a random linear combination, thus creating a
(1, t)-polynomial relation instance.

2) Batch the t evaluations for a single polynomial directly.

Step 1. The verifier sends a random value q ∈ F to the
prover, who computes the following polynomial

B(X) = p1(X)+q ·p2(X)+q2 ·p3(X)+ . . .+qk−1 ·pk(X)

The verifier computes CB =
∑k

i=1 q
i−1Ci locally (since the

commitments are linearly homomorphic). Similarly, for the
evaluation of B at any of the points ui, we have

B(ui) = q0 · p1(ui) + q1 · p2(ui) + . . .+ qk−1 · pk(ui)

= v1,i + q · v2,i + . . .+ qk−1 · vk,i
which V can also compute locally. Now (P,V) have a (1, t)
instance, where B(X) is the committed polynomial and
(ui)

t
i=1 are the t points. The cost to the verifier in of Step 1

is t− 1 group scalar multiplications.

Step 2 In this step we batch the verifier’s work to check
the t openings of B(X) using the details of verifying KZG
polynomial commitments [37]. Compute the t witnesses
Wi = KZG.Open(ck, CB , ui, B(ui)). Checking these indi-
vidually entails checking:

e(CB −B(ui)G+ uiWi, H) = e(Wi, τH) (1)

for all i ∈ [t]. A well-known batching technique [13] applied
to pairing-based signatures [29, Technique 3] is as follows.
Suppose the verification of t items is of the form

e(L1, H) = e(R1, H
′) ∧ . . . ∧ e(Lt, H) = e(Rt, H

′) .

V instead samples a random (d2, . . . , dt) and checks

e(L1, H)e(L2, H)d2 · · · e(Lt, H)dt =

e(R1, H
′)e(R2, H

′)d2 · · · e(Rt, H
′)dt

e(L1, H)e(d2L2, H) · · · e(dtLt, H) =

e(R1, H
′)e(d2R2, H

′) · · · e(dtRt, H
′)

e(L1 + d2L2 + . . .+ dtLt, H) =

e(R1 + d2R2 + . . .+ dtRt, H
′) .

When we set Li and Ri as in Equation (1), the verifier’s cost
in Step 2 is 4 · (t− 1) scalar multiplications in G1 and two
pairings. In HyperKZG, we have k = ℓ polynomials and t =
3 points so Step 1 costs ℓ−1 scalar multiplications and Step 2
costs 8 scalar multiplications and two pairings, for a total of
ℓ+7 scalar multiplications and two pairings. In Equation (1)
we re-arranged the KZG verification equation (following [36])
so that all scalar multiplications are in G1, and a single
pairing is required for verification, allowing us to make use
of Ethereum’s pre-compiled contracts.

7. Implementation

We implement MicroNova on top of Nova [6] as a library
in about 11,000 lines of Rust. For a curve cycle, we use

BN254/Grumpkin [5]; it also supports Pallas/Vesta [8] and
Secp/Secq curve cycles [5]. For a circuit-friendly hash
function, we use Poseidon [33]. For a on-chain-efficient
hash function, we use Keccak256. The APIs of MicroNova
accept a step function F as a circuit expressed with
bellpepper [1]. The library also implements BatchedMi-
croSpartan and DelegatedSpartan to compress an IVC proof
produced by MicroNova, as well as implementations of (non-
batched) MicroSpartan and the baseline Spartan to compress
an IVC proof of Nova. For polynomial commitment schemes,
the library implements HyperKZG for pairing-friendly curves
(e.g., BN254), and Pedersen commitments that can serve all
curves (e.g., Grumpkin).

On-chain verifier. We implement MicroNova’s on-chain
verifier as a library in about 3,300 lines of Solidity. The
library also provides an on-chain verifier for the stand-
alone MicroSpartan and HyperKZG. Both MicroNova and
the stand-alone MicroSpartan are over BN254. We use
Ethereum’s EC precompiles to support EC operations (i.e.,
ecAdd, ecMul and ecPairing) [2]. Fiat-Shamir tran-
script is built on Keccak256.

To send proofs on-chain, we use serde [9]. We wrote
a deserializer in Solidity to reconstruct appropriate data
structures. We customize the serialization so the elliptic
curve points are in affine form, prime field elements are in
big-endian format, and other values are encoded in fixed
size byte arrays. This avoids expensive on-chain conversions.
The on-chain verifier also accepts a serialized verifier key as
an argument. In more detail, the on-chain verifier receives
a byte sequence containing a verifier key, a proof, and the
public IO (e.g., z0, zn, number of steps). After receiving the
sequence, the on-chain verifier inexpensively deserializes it
into data structures, and then verifies the proof. The verifier
reverts if any step in the verification fails.

8. Experimental evaluation

In this section, we experimentally evaluate MicroNova. To
evaluate the cost of achieving a succinct on-chain verifier, we
compare MicroNova with Nova. In addition, we provide mi-
crobenchmarks (Appendix G) of the underlying components,
which provide context to understand end-to-end performance.

Metrics and testbed. Our principal evaluation metrics are:
(1) the prover’s cost to produce a proof; (2) the verifier’s cost
to verify a proof on a CPU; (3) the verifier’s cost to verify
a proof on-chain; (4) the size of a proof on a CPU; and (5)
the size of a proof on-chain. For (1) and (2), we use the wall
clock time, and for (3), we measure gas costs on the Ethereum
virtual machine (EVM). For (4) and (5), we report length in
bytes, but by serializing proof data structures differently. For
example, proofs verified on a CPU have elliptic curve points
in compressed form (decompression of points is relatively
inexpensive on a CPU, but expensive on-chain).

For our measurements, we use an Azure Fsv2-series VM
of size Standard F64s v2 (64 vCPUs, 2.70 GHz Intel(R)
Xeon(R) Platinum 8168, and 128 GiB memory).
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217 218 219 220 221 222 223

Nova 0.91 1.77 3.52 6.62 12.5 23.0 46.4
MicroNova 2.45 3.21 4.77 7.75 12.9 24.6 48.7

Figure 1: Prover’s total cost on a CPU (in seconds) to produce an
IVC proof of 10 steps of varying step-circuit sizes.

217 218 219 220 221 222 223

Nova1 1.30 2.39 4.44 8.49 16.7 33.2 66.1
Nova2 0.45 0.68 1.08 1.93 3.51 6.73 12.9
Nova3 5.31 10.4 20.3 39.9 78.5 155 310
Nova4 2.02 3.87 7.18 13.5 26.1 50.1 100
MicroNova 28.5 29.9 30.5 33.7 40.8 66.7 119

Figure 2: Prover’s cost on a CPU (in seconds) to compress an
IVC proof of varying step-circuit sizes.

Methodology and parameters. We report performance
with varying step circuit sizes |F |. We use a synthetic circuit,
from prior work [45], [50], that contains |F | = nc R1CS
constraints and nv R1CS variables, and maintains nc/nv ≈
1. The circuit computes y = x2nc naively with repeated
multiplications on a prime field with nc constraints. We use
a public IO of length 1, i.e., |x| = 1. We set the number of
IVC steps proven to 10.

We use cargo bench to measure metrics (1) and (2). For
metric (4), we serialize the proof structure with serde [9]
and then measure the number of bytes after compressing
the serialized proof string with ZlibEncoder [3]. For
metric (5), we serialize proofs as described in Section 7

To compile MicroNova’s Solidity verifier, we use Foundry [4]
with Solidity command-line compiler solc version 0.8.25
on EVM version cancun. We configure solc optimizer
with flags --via-ir and --optimizer-runs=50000.
To measure gas costs, we use gasleft().

8.1. Evaluation results of MicroNova and Nova

We first measure the size of MicroNova’s verifier circuit, as
it determines recursion overheads: the number of additional
constraints that the prover must prove at each incremental
step besides proving an invocation of F . We find that
MicroNova’s verifier circuit is ≈ 74, 000 R1CS constraints
on the pairing-friendly curve, and ≈ 1, 300 on the non-
pairing-friendly curve. Precisely, the circuit is of 74,352
constraints on BN254 and 2,037 on Grumpkin, while the
latter includes dummy constraints (§5.3), which does not
cost the prover or the verifier, to make the circuit uniform.
As a comparison, Nova’s verifier circuit is ≈ 10, 000 R1CS
constraints on each curve in the cycle (9,949 and 10,502
constraints on BN254 and Grumpkin curve respectively).
That is, MicroNova’s recursion overhead is about 3× higher
than Nova’s, but this overhead is negligible when |F | is
sufficiently large, which is the case in our target applications
(e.g., a Rollup).

When varying the step circuit size |F |, we pick the number
of constraints nc so that when augmented with MicroNova’s

217 218 219 220 221 222 223

Nova1 78.0 125 204 397 768 1.4s 2.8s
Nova2 25.4 26.8 30.6 43.6 77.0 148 288
Nova3 188 383 690 1.3s 2.5s 5.0s 10s
Nova4 20.9 21.2 20.7 21.5 21.5 21.5 21.0
MicroNova 13.6 13.7 13.7 13.7 13.8 13.6 13.7

Figure 3: Verifier’s cost on a CPU (in milliseconds) to verify a
compressed IVC proof of varying step-circuit sizes. Entries with
“s” are in seconds.

verifier circuit, the total number of constraints in F ′ equals
to a power of 2. For ease of depiction, we use these powers
of 2 to denote |F | e.g., when F ′ has 220 constraints, |F | =
nc = 220 − 74, 352 = 974, 224, and we will use |F | ≈ 220

in figures to represent |F | = 974, 224. Note that MicroNova
and Nova prove the same F in our experiments (sizes of
augmented circuits F ′ of MicroNova and Nova are different
due to their different recursion overheads).

We instantiate Nova over BN254/Grumpkin. For proof
compression, Nova library implements non-preprocessing
Spartan [50], which does not provide succinct verification,
let alone on-chain verification (the verifier’s work is linear
in the circuit size). We refer to this version of Spartan as
SpartanNARK. To provide a full context, we experiment
with different configurations. For its IVC proof component
on Grumpkin curve, Nova compresses it with SpartanNARK
and with an IPA-based polynomial commitment scheme. For
its proof of IVC on BN254 curve, Nova can compress it with
either SpartanNARK or MicroSpartan, and with either IPA-
PC or HyperKZG as the polynomial commitment scheme.
We use the following notation to refer to different variants
of Nova for brevity: Nova1—Nova with SpartanNARK and
IPA-PC; Nova2—Nova with SpartanNARK and HyperKZG;
Nova3—Nova with MicroSpartan and IPA-PC; and Nova4—
Nova with MicroSpartan and HyperKZG.

Prover. Figure 1 depicts the prover’s total cost to produce a
proof of a ten-step IVC (four variants of Nova are exactly
the same for the IVC prover). Figure 2 depicts the prover’s
cost to compress an IVC proof.

MicroNova’s prover’s cost to produce and to compress an
IVC proof scale roughly linearly with |F |. When |F | is
small, MicroNova incurs higher overheads than Nova, but
the overhead drops as |F | increases. This is because (1)
Nova’s verifier’s circuit on both curves combined is smaller
than MicroNova’s, and (2) when MicroNova compresses
an IVC proof the BatchedMicroSpartan proves a constant-
sized R1CS polyeval of 1.7M constraints that proves 2 MPE
instances on Grumpkin curve (§5.3). For MicroNova’s prover
to compress an IVC proof, such constant cost is dominating
until |F | ≈ 221, then the R1CS of IVC is no longer smaller
than the R1CS of polyeval. At |F | ≈ 221, MicroNova’s IVC
prover overhead over Nova is only 3.2%.

Note that Nova using SpartanNARK has a better prover time
than with MicroSpartan because the former incurs linear
verification costs whereas the latter does not. These results
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217 218 219 220 221 222 223

proof size 12.8 12.8 12.8 12.8 12.8 13.1 13.4
gas cost 2.23 2.22 2.22 2.22 2.22 2.25 2.28

Figure 4: MicroNova’s on-chain proof size (in KB) and the
verifier’s on-chain cost (in M gas) to verify a compressed IVC
proof of varying step-circuit sizes. The length of the verifier’s key
on-chain is 1,368 bytes regardless of |F |.

217 218 219 220 221 222 223

Nova1 10.3 10.6 10.8 11.1 11.4 11.7 12.0
Nova2 11.4 11.8 12.1 12.5 12.8 13.2 13.5
Nova3 9.04 9.20 9.37 9.53 9.70 9.86 10.0
Nova4 10.3 10.5 10.8 11.0 11.2 11.4 11.7
MicroNova 10.8 10.8 10.8 10.8 10.8 11.0 11.2

Figure 5: MicroNova’s and Nova’s proof sizes on a CPU (in KB).

also confirm that HyperKZG is significantly more efficient
than IPA-based polynomial commitment scheme.

Verifier and proof sizes. Figure 3 depicts the verifier’s cost
to verify a compressed IVC proof on a CPU. The cost under
the first three Nova instantiation scale close to linearly with
|F |. MicroNova’s verifier cost is the lowest: < 14 ms (Nova
with MicroSpartan and HyperKZG benefits from techniques
in this work and performs better than other Nova variants).

Figure 4 depicts the on-chain verifier’s costs for MicroNova
(we do not depict Nova’s costs as it is impractical to verify
Nova’s proof on-chain). We can see that both the gas cost
and proof length remains (almost) unchanged up to |F | ≈
221 (this is due to fixed-sized polyeval circuit proven by
MicroNova). Then, they have a logarithmic growth with
|F |: when |F | increases from 221 to 222, or from 222 to
223, the gas cost of the on-chain verifier only increases by
32K (< 2%), and the proof length only grows by 264 bytes
(≈ 2%) each time.

Figure 5 depicts the size of compressed IVC proofs of
MicroNova and Nova on a CPU. MicroNova’s proof is about
10.8 KB, until |F | ≈ 221, and then has a logarithmic growth
with |F |, but still remains small. The different Nova variants
have similar proof sizes despite using IPA-based polynomial
commitment scheme because proof sizes are similar under
both IPA-PC and HyperKZG.
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Appendix

1. Reductions of knowledge

Definition A.1 (Reduction of Knowledge [40]). Consider
relations R1 and R2 over public parameters, structure,
instance, and witness tuples. A reduction of knowledge
from R1 to R2 is defined by PPT algorithms (G,P,V) and
deterministic algorithm K, called the generator, the prover,
the verifier and the encoder respectively:

• G(λ, n)→ pp: Takes as input security parameter λ and
size parameters n. Outputs public parameters pp.

• K(pp, s1)→ (pk, vk, s2): Takes as input public parame-
ters pp and structure s1. Outputs prover key pk, verifier
key vk, and updated structure s2.

• P(pk, u1, w1) → (u2, w2): Takes as input pk, and an
instance-witness pair (u1, w1). Reduces the task of
checking (pp, s, u1, w1) ∈ R1 to the task of checking
(pp, s, u2, w2) ∈ R2.

• V(vk, u1)→ u2: Takes as input vk, and an instance u1

in R1. Reduces the task of checking instance u1 to the
task of checking a new instance u2 in R2.

Let ⟨P,V⟩ denote the interaction between P and V . We treat
⟨P,V⟩ as a function that takes as input ((pk, vk), u1, w1) and
runs the interaction on the prover’s input (pk, u1, w1) and
the verifier’s input (vk, u1). At the end of the interaction,
⟨P,V⟩ outputs the verifier’s instance u2 and the prover’s
witness w2. A reduction of knowledge (G,K,P,V) satisfies
the following conditions.

(i) Completeness: For any PPT adversary A, given
pp ← G(λ, n), (s1, u1, w1) ← A(pp) such that
(pp, s, u1, w1) ∈ R1 and (pk, vk, s2) ← K(pp, s1)
we have that the prover’s output instance is equal
to the verifier’s output instance u2, and that
(pp, s2, ⟨P,V⟩((pk, vk), u1, w1)) ∈ R2.

(ii) Knowledge soundness: For any expected polynomial-
time adversaries A and P∗, there exists an
expected polynomial-time extractor E such that
given pp ← G(λ, n), (s1, u1, st) ← A(pp),
and (pk, vk, s2) ← K(pp, s1), we have that
Pr[(pp, s1, u1, E(pp, s, u1, st)) ∈ R1] ≈
Pr[(pp, s2, ⟨P∗,V⟩((pk, vk), u1, st)) ∈ R2].

(iii) Public reducibility: There exists a deterministic
polynomial-time function φ such that for any PPT
adversary A and expected polynomial-time adver-
sary P∗, given pp ← G(λ, n), (s1, u1, st) ←
A(pp), (pk, vk, s2) ← K(pp, s1) and (u2, w2) ←
⟨P∗,V⟩((pk, vk), u1, st) with the interaction transcript
tr, we have that φ(pp, s1, u1, tr) = u2.

Typically, we are interested in reducing several relations at
once. We can interpret several relations as a single relation
using the following product operator.

Definition A.2 (Relation product). For relations R1 and
R2 over public parameter, structure, instance, and wit-
ness pairs we define the relation R1 × R2 such that
(pp, s, (u1, u2), (w1, w2)) ∈ R1 × R2 if and only if
(pp, s, u1, w1) ∈ R1, and (pp, s, u2, w2) ∈ R2. We let Rn

denote R× . . .×R for n times.

A motivating property of RoKs is that they are composable,
allowing us to build complex reductions by stitching together
simpler ones. In particular, given reductions Π1 : R1 → R2

and Π2 : R2 → R3 we have that Π2 ◦Π1 (that is, running
Π1 first and then running Π2 on the outputs) is a reduction
of knowledge from R1 to R3. Similarly, given reductions
Π1 : R1 → R2 and Π2 : R3 → R4 we have that Π1 × Π2

(that is, independently running Π1 and Π2 on pairs of inputs)
is a reduction of knowledge from R1 ×R3 to R2 ×R4.

2. Proof of Lemma 4.1 (RoK from HASH to HAC)

Proof. The claimed efficiency is easy to check. Perfect
completeness is easy to check. Given a valid instance (d, v)
in HASH, d = h(v). For any c ∈ F sent by the verifier,
the prover can compute a satisfying instance-witness pair in
HAC. Specifically, the prover computes a committed relaxed
R1CS instance-witness pair (u,w) that computes d← h(v)
and f ←

∑n−1
i=0 vi · ci and places (c, d, f) in the public IO.

In the honest prover case, the relaxed instance is “strict”
i.e., u.u = 1 and u.E = u⊥.E. This instance passes the
verifier’s check in step 3. Furthermore, the instance output
by the verifier matches that of the prover. So, the output
instance-witness pair is in HAC and is satisfying.

We prove knowledge soundness as follows. Consider an
adversary A that adaptively picks the input instance and
a malicious prover P⋆ that succeds with probability ϵ.
Let pp ← Gen(1λ). Suppose on input a random tape r,
the adversary A picks an HASH instance (d, v) and some
auxiliary state st. We construct an extractor E that succeds
with probability ϵ− negl(λ) in obtaining satisfying witness
for the original instance.

On input r, E first obtains the following tuple from the
adversary:

(s = ⊥, (d, v), st)← A(r)

The extractor E then computes (pk, vk) ← K(pp, s = ⊥).
Next, E runs

(u = (u⊥.E, 1,W , (c, d, f)),w)← ⟨P⋆,V⟩((pk, vk), (d, v), st).

. The extractor outputs ⊥ as the witness for the input instance.
Since the extractor runs P⋆ only once, it runs in expected
polynomial time.

We must now argue that ⊥ is a satisfying witness for the
HASH instance (d, v) with probability ϵ− negl(λ). We are
given that w is a satisfying witness for the HAC instance
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u = (u⊥.E, 1,W , (c, d, f)) with structure sHAC. From this
satisfying witness, parse out a value v′ ∈ F n such that
d = h(pp, v′) and f =

∑n−1
i=0 v′i · ci. From the verifier’s

checks, we have that f =
∑n−1

i=0 vi · ci. Since c is a random
challenge and because h is a collision-resistant hash function,
by the Schwartz-Zippel lemma over c, we have that v =
v′ with probability ϵ − negl(λ). Since h(pp, v′) = d and
v = v′, we have that d = h(pp, v) with probability ϵ −
negl(λ). Therefore, (pp, (d, v),⊥) ∈ HASH with probability
ϵ− negl(λ).

3. Proof intuition of Lemma 4.2 (IVC)

Proof Intuition (Completetness). Given a satisfying IVC
proof Πi = ((Ui,Wi), (ui,wi), ri) suppose that P outputs
Πi+1 = ((Ui+1,Wi+1), (ui+1,wi+1), ri+1). Because Πi is
a valid IVC proof, (ui,wi) and (Ui,Wi) are satisfying
instance-witness pairs. Because (Ui+1,Wi+1) is obtained
by folding (ui,wi) and (Ui,Wi), it must be satisfying
by the folding scheme’s completeness. By construction,
(ui+1,wi+1) is satisfying instance-witness pair that satisfies
the IVC verifier’s auxiliary checks including the ones that
involve ri+1. Thus, Πi+1 is satisfying.

Proof Intuition (knowledge soundness). For function F ,
constant n, pp ← G(1λ), and (pk, vk) ← K(pp, F ),
consider an adversary P∗ that outputs (z0, z,Π) such
that V(vk, (n, z0, z),Π) = 1 with probability ϵ. We
construct an extractor E that with input (pp, z0, z), outputs
(ω0, . . . , ωn−1) such that by computing zi ← F (zi−1, ωi−1)
for all i ∈ {1, . . . , n} we have that zn = z with probability
ϵ − negl(λ). We show inductively that E can construct an
extractor Ei that outputs (zi, . . . , zn−1), (ωi, . . . , ωn−1), and
Πi such that for all j ∈ {i+1, . . . , n}, zj = F (zj−1, ωj−1),
V(vk, i, z0, zi,Πi) = 1, and zn = z with probability
ϵ − negl(λ). Then, because in the base case when i = 0,
V checks that z0 = zi, it is sufficient for E to run E0 to
retrieve values (ω0, . . . , ωn−1). Initially, En simply runs
the assumed P∗ to get a satisfying Πn. Given extractor Ei
that satisfies the inductive hypothesis, we can construct
extractor Ei−1. Note that this proof is identical to the
knowledge soundness proof of Nova’s IVC scheme, except
for one component: during the first invocation of recursive
extraction, the extractor invokes the knowledge soundness
gurantees of the auxiliary RoK that we introduce to establish
the desired hash relationship between the two instances in
the provided IVC proof.

4. Proof of Lemma 6.1 (RoK from MPE to UPE)

Proof (sketch). The claimed efficiency is easy to check.
Perfect completeness is also easy to check. This follows im-
mediately from the correctness of the multilinear polynomial
evaluation algorithm in the Lagrange basis (i.e., multilinear
polynomials represented in their evaluation form over a
Boolean hypercube) on which the protocol is based (see [56,
Lemma 3.8]), and the correctness of the verifier’s checks

in the RoK, which holds for any random challenge r ∈ F
when the prover is honest.

We prove knowledge soundness as follows. Consider an
adversary A that adaptively picks the input instance and a
malicious prover P⋆ that succeds with probability ϵ. Let n ∈
N denote a size parameter. Let pp← Gen(1λ, n). Suppose
on input a random tape r, the adversary A picks an MPE
instance (P , x, y) and some auxiliary state st. We construct
an extractor E that succeds with probability ϵ− negl(λ) in
obtaining satisfying witness for the original instance.

On input r, E first obtains the following tuple from the
adversary:

((P , x, y), st)← A(r)

The extractor E runs ⟨P⋆,V⟩((pk, vk), (d, v), st) to obtain
the following instance-witness pairs, where i ∈ {1, . . . , log n.

(pp, (P
(i)
, r2, y(i)), P (i)) ∈ UPE

(pp, (P
(i−1)

, r, y(i−1)
pos ), P (i−1)) ∈ UPE

(pp, (P
(i−1)

,−r, y(i−1)
neg ), P (i−1)) ∈ UPE

The extractor outputs P (0) as the witness for the input
instance. Since the extractor runs P⋆ only once, it runs
in expected polynomial time. We must now argue that P (0)

is a satisfying witness for the MPE instance (P , x, y) with
probability ϵ− negl(λ). This follows from an anlysis similar
to our base protocol’s analysis [19, Lemma 5.4].

5. Compressing IVC proofs

Construction 5 (A SNARK of a Valid IVC Proof).
Let IVC = (G,K,P,V) denote the IVC scheme in
Construction 2, let NIFS denote the non-interactive folding
scheme (§4.1), and let hash and H denote two cryptographic
hash functions, hash is circuit-friendly (e.g., Poseidon) and
H is on-chain-friendly (e.g., Keccak). Let SNARK denote
a SNARK for committed relaxed R1CS that has the same
public parameter generator algorithm as the IVC scheme.
We construct a SNARK (G,K,P,V) for the relation RVIVC

(Definition 4.4) as follows.

G(1λ)→ pp: Output pp← SNARK.G(1λ)

K(pp, F )→ (pk, vk):

(1) Compute (pkIVC, vkIVC)← IVC.K(pp, F ).
(2) Compute sF ′ ← AUGMENT(pp, F ).
(3) Compute (pkF′ , vkF′)← SNARK.K(pp, sF ′).
(4) Compute (pkEC, vkEC)← SNARK.K(pp, sEC).
(5) Output ((pkIVC, pkF′ , pkEC), (vkIVC, vkF′ , vkEC)).

P(pk, (n, z0, zn),Πn))→ π:

If n = 0, output ⊥; otherwise,
(1) parse Πn as ((Un,Wn), (un,wn), rn)
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(2) (U′,W′, πn)← NIFS.P(pkIVC, ((Un,Wn), (un,wn)))
(3) parse (U′,W′) as ((UF′ ,UEC), (WF′ ,WEC))
(4) compute πF′ ← SNARK.P(pkF′ ,UF′ ,WF′)
(5) compute πEC ← SNARK.P(pkEC,UEC,WEC)
(6) output (Un, un, rn, πn, πF′ , πEC).

V(vk, (n, z0, zn), π)→ {0, 1}:

If n = 0, check that z0 = zi; otherwise,
(1) parse π as (Un, un, rn, πn, πF′ , πEC),
(2) parse public IO un.x as (c, d, f),
(3) m← (vkIVC, i, z0, zn,Un, rn),
(4) check that c = H(m) and f =

∑n−1
i=0 mi · ci,

(5) check that (u.E, u.u) = (u⊥.E, 1),
(6) compute U′ ← NIFS.V(vkIVC,Un, un, πn),
(7) parse U′ as (UF′ ,UEC)
(7) check that SNARK.V(vkF′ ,UF′ , πF′) = 1, and
(8) check that SNARK.V(vkEC,UEC, πEC) = 1.

Theorem A.1 (A SNARK of a Valid IVC Proof). Con-
struction 5 is a SNARK of a valid IVC proof produced by
Construction 2.

Proof Intuition. Completeness and knowledge soundness
hold due to the completeness and knowledge soundness of the
underlying SNARK and the non-interactive folding scheme.
Assuming the non-interactive folding scheme satisfies suc-
cinctness (e.g., with Pedersen commitments), succinctness
holds due to the fact that u, U, and pi are succinct, and due
to the succinctness of the underling SNARK.

6. Details on polyeval with matrix commitment

Suppose that we have witness vectors (Q1, Q2) for instances
in MPE2 i.e., each has n field elements of E2. Suppose that
their commitments are q1 and q2 respectively, each containing
n1 curve points on E2.

To evaluate both Q1 and Q2 at the same point x (i.e., x =
x1 = x2), the verifier produces a challenge c (e.g., using a
transcript in the non-interactive version), and combine two
matrices into one by Q ← Q1 + c · Q2. We split x with
ℓ = log n scalars of E2 into (r1, r2)← x, where r1 gets the
first log n1 scalars and r2 gets the rest log n2 scalars (both n1

and n2 are powers of 2 in our context). Then, we fold n1 rows
of Q into one row—a vector Q′ of n2 scalars —by taking a
weighted sum, where the weight of i-th row of Q equals to
eq(r1, i). This effectively evaluates the polynomial using the
tensor structure of multilinear polynomial evaluations [59].

We now describe a more refined polyeval that checks the
purported instance-witness pairs of MPE2, and output the
instance. All arguments are taken as non-deterministic
advice, and hash is a hash function (e.g., Poseidon).

polyeval(pp, q1, q2, c, x,Q
′)→ (d, c, x, y)

(1) parse pp as (n1, n2, ck), where ck is the Pedersen’s

217 218-221 222 223

MicroNova 2.23 2.22 2.25 2.28
Deserializer 0.126 0.126 0.128 0.130
DelegatedSpartan 0.552 0.552 0.552 0.552
BatchedMicroSpartan 1.44 1.43 1.46 1.49
HyperKZG 0.447 0.447 0.459 0.471

Figure 6: Cost of four components of MicroNova’s on-chain
verifier (in M gas). HyperKZG is included in BatchedMicroSpartan
while the deserializer or DelegatedSpartan is not. Four columns of
|F | ≈ 218, |F | ≈ 219, |F | ≈ 220 and |F | ≈ 221 are merged into
one as data is (nearly) the same.

commitment key.
(2) compute o1 ← Com(ck, Q′).
(3) parse x as (r1, r2), which is described above.
(4) compute T ← (eq(r1, 0), . . . , eq(r1, n1 − 1)),
(5) compute q ← q1 + c · q2,
(6) compute o2 ← Com(q, T ) // an MSM.
(7) check that o1 = o2.
(8) compute y ← Q̃′(r2), which is the evaluation.
(9) compute d← hash((q1, q2)).
(10) output (d, c, x, y).

7. Microbenchmarks

We also implement MicroSpartan as a stand-alone proof
system alongside MicroNova and Nova, targeting scenarios
that does not require IVC. To build such stand-alone prover
and verifier, we design a straightforward augmented circuit
that, given step F and zi−1, compute zi ← F (zi−1), and
outputs x← (zi, zi−1) into R1CS public IO.

Decomposing MicroNova’s on-chain costs. Figure 6 depicts
the on-chain gas costs of four components of MicroNova’s
verifier: (1) deserializer; (2) DelegatedSpartan’s verifier; (3)
BatchedMicroSpartan’s verifier; and (4) HyperKZG verifier,
which is included in (2).

First, the deserializer’s cost scales linearly with the proof
length (in our implementation, the deserializer also handles
verifier’s key and other parameters, which are constant-sized).
DelegatedSpartan verifier has a constant cost. BatchedMi-
croSpartan and HyperKZG’s verifiers’ costs exhibit the same
trend as MicroNova’s verifier—costs nearly unchanged until
|F | ≈ 221 and then have a logarithmic scaling. Second,
BatchedMicroSpartan contributes ≈65% of the cost of
MicroNova’s verifier; it also contributes a vast majority of
MicroNova’s gas cost increase when the circuit grows. Within
BatchedMicroSpartan, ≈31% is incurred by HyperKZG
verifier. The DelegatedSpartan verifier contributes < 25% of
MicroNova’s cost. Finally, deserializer only contributes 6%
of the total cost of MicroNova’s on-chain verifier.

Stand-alone MicroSpartan. When varying the size of the
step circuit |F |, we use the same set of |F | = nc we have
picked when evaluating MicroNova (§8.1). We have the
stand-alone MicroSpartan prove and verify 10 continuous
steps of F one after another.
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217 218 219 220 221 222 223

Prove 1.18 3.94 7.36 13.9 26.6 51.9 104
Verify1 5.09 5.12 5.15 5.20 5.23 5.26 5.29
proof1 5.18 5.63 5.86 6.08 6.31 6.53 6.76
Verify2 0.81 0.86 0.88 0.90 0.93 0.95 0.98
proof2 6.25 6.78 7.04 7.30 7.57 7.83 8.10

Figure 7: Performance results of stand-alone MicroSpartan per-
step average, from the first row to the last: (1) prover’s cost (in
seconds); (2) verifier’s cost on CPU (in milliseconds); (3) proof
length on CPU (in KB); (4) verifier’s cost on chain (in M gas);
and (5) proof length on chain (in KB). The length of the verifier’s
key on-chain is always 824 bytes.

215 217 219 221 223 225

Commit 0.02 0.05 0.15 0.53 1.8 7.1
Prove 0.08 0.24 0.75 2.6 9.7 36
Verify on CPU 2.7 2.9 2.9 2.9 3.0 3.1
proof on CPU 2.0 2.3 2.6 2.8 3.1 3.3
Verify on-chain 0.35 0.37 0.39 0.42 0.44 0.46
proof on-chain 2.6 2.9 3.2 3.5 3.9 4.2

Figure 8: Performance of HyperKZG for polynomials of various
length, from the first row to the last: (1) commit cost on CPU (in
seconds); (2) prover’s cost (in seconds); (3) verifier’s cost on CPU
(in milliseconds); (4) proof length on CPU (in KB); (5) verifier’s
cost on-chain (in M gas); and (6) proof length on chain (in KB).
Length of the verifier’s key on-chain is always 320 bytes.

Figure 7 shows all five performance metrics evaluated for
stand-alone MicroSpartan as a prove system. For the first
three metrics (prover’s cost on a CPU, verifier’s cost on a
CPU, and length of the proof on a CPU), Table 7 shows the
average results of all 10 steps, while the difference of these
performance metrics among steps are relatively very small
(< 2% of the average). For the last two metrics (verifier’s
on-chain gas cost, and proof length on-chain), results have
never changed throughout 10 steps of F . The cost of stand-
alone MicroSpartan’s prover scales close to linearly with |F |.
On- and off-chain verifier cost, proof length on a CPU, and
proof length on-chain have a logarithmic scaling with |F |.
HyperKZG. We vary the size of polynomials from 215 to
225, which is the range of the size of polynomials that
are committed when evaluating MicroNova, stand-alone
MicroSpartan, and Nova with HyperKZG in §8.1. We depict
the Performance of HyperKZG in Figure 8. HyperKZG’s
cost to commit and to prove the commitment both grow close
to linearly with the length of the polynomial, and verifies
with a cost of logarithmic growth.
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