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Abstract. The recent surge of distribute technologies caused an increas-
ing interest towards threshold signature protocols, that peaked with the
recent NIST First Call for Multi-Party Threshold Schemes.
Since its introduction, the Fiat-Shamir Transform has been the most
popular way to design standard digital signature schemes. Many thresh-
old signature schemes are designed in a way that recalls the structure
of digital signatures created using Fiat Shamir, by having the signers
generate a common commitment, compute the challenge as the hash of
it, and then jointly create the response.
In this work we formalize this approach. In particular we introduce the
notion of threshold identification scheme and threshold sigma protocol.
Next, we introduce the concept of generalized Fiat-Shamir transform,
that links the security of the threshold signature with the underlying
threshold identification protocol. Our framework seeks to be an alterna-
tive, easier way to design concurrently secure threshold digital signatures
and we show its potentiality providing an alternative security proof for
Sparkle, a recent threshold Schnorr signature, and GRASS, a full thresh-
old signature based on cryptographic group actions.

Keywords: Threshold Signatures · Fiat-Shamir Transform · Threshold
Identification Schemes

1 Introduction

Decentralized systems are slowly becoming a desirable alternative to central-
ized ones, due to the advantages of distributing the management of data, such
as avoiding single-points-of-failures or the secure storage of crypto-assets. For
them to become a viable alternative, it is necessary to use secure decentralized
cryptographic schemes. In particular, digital signature schemes assume a cen-
tral role in this setting, as hinted by the amount of recent works on multi-user
schemes and threshold variants of signature protocols, with a particular focus
toward Schnorr, EdDSA and ECDSA [3,4,19,15], and by the recent NIST calls
[12,11,10].

A common way to design threshold signatures is to translate a well-established
digital signature schemes to the multi-party setting. Their security is then proved
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with a reduction to the standard centralized scheme or directly to the hard
problem they relies on. In this work, we provide a new framework for designing
threshold signature protocols, without relying on already existing centralized
signature schemes. To do so, we introduce the concept of threshold identifica-
tion schemes, the decentralized version of the classical identification schemes,
and show their ties with threshold signature algorithms.

Definitions In this work, we employ a game-based approach defining the security
of a threshold signature, following the footprint of well established works like
[23,15]. This is done to mimic the centralized case and to provide tools for
designing and proving the security of threshold signatures in the same way is
usually done for centralized signature (i.e. by proving the completeness, the
special soundness and the honest verifier zero knowledge of the underlying sigma
protocol)[26].

On the other hand, alternative definition such as UC-security exists [13].
Secure evaluation of threshold signature functionality is stronger than unforge-
ability and it is arguably overly strong in the sense that it often requires par-
ticular design decisions that are usually less efficient, such as the use of online-
extractable zero-knowledge proofs.

Organization In Section 2 we define the cryptographic preliminaries needed in
our paper. Next, in Section 3 we define threshold identification schemes, thresh-
old sigma protocols and a threshold variant of the Fiat-Shamir Transform. Sec-
tion 4 contains the core of our work: we present necessary security properties of
the threshold identification scheme to obtain secure threshold signatures. Lastly,
in Section 5 we show a possible application of our paradigm providing an alter-
native security proof for two recent threshold signatures: Sparkle and GRASS.
Finally, in Section 6 we draw our conclusions and suggest some possible research
directions arising from our work.

1.1 Our contribution and related works

The concept of distributed identification protocol has very few examples in
literature: it was firstly introduced in [7], where M. Ben-Or et al. defined the
concept of multi provers zero knowledge proof. However, the scope was limited
to only two provers that could not communicate after starting an interaction
with the verifier. The concept was later revised by Y. Desmedt et al. in [17],
who maintained the setting of no communication between the provers, and by
Pedersen in [25], who introduced the concept of multiple provers in the context
of undeniable signatures. While Pedersen’s focus is on robustness, we focus on
the security of threshold identification schemes and their relation with threshold
signatures. Lastly, M. Keller et al. in [21] introduced the concept of multiple
prover with combiner : each of these provers communicate with a player, denoted
as combiner, that combines the messages in the proof and communicates with
the verifier, effectively playing the role of the prover in a standard ZKP.
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Finally, C. Baum et al. in [5] introduced the concept of multiple verifiers that
cooperate to verify a proof made by a single prover.

In this paper we flip the approach of [5], introducing the notion of distributed
identification protocol, where the knowledge of the witness is shared among mul-
tiple provers cooperating in the production of a proof, which later will be verified
by a single verifier. Contrary to the previous works such as [7,17], we allow for
communication between the provers and we do not rely on the presence of a
combiner handling the communication with the verifier, like in [21]. Instead we
focus our attention to protocols where provers communicate and jointly produce
the proofs.

We then introduce the distributed Fiat Shamir transform, a way to build
threshold signatures starting from distributed identification protocols. Miming
the approach proposed by Abdalla et al. in [1], we show that our transformation
can be used to obtain unforgeable threshold digital signatures. In particular, we
show that if the starting threshold identification protocol satisfies some security
definitions, then the threshold signature obtained by applying the distributed
Fiat-Shamir transform is unforgeable against active chosen message attacks.

2 Preliminaries

In Section 2.1 we introduce the notation that we use along the paper. In Sec-
tion 2.2 we introduce the concepts of sigma protocol and identification scheme
together with the security notions associated to such schemes. In Section 2.3 we
introduce the Fiat-Shamir transform, one of the most common way to design
digital signature schemes starting from identification protocols. Finally in Sec-
tion 2.4 we define the concept of threshold signature scheme and the security
notions associated to it.

2.1 Notation and terminology

If S is a set, s $←− S means that s is sampled uniformly at random in the
set S; we write [n] to represent the set of numbers {1, 2, . . . , n}; for the sake of
readability, when having an index set J ⊆ {1, . . . , n} we write {ai}J in place of
{ai}i∈J .

With y ← A(x1, x2, . . . ) we refer to a deterministic algorithm A taking in
input the values x1, x2, . . . and returning the value y; if the input of some al-
gorithm is clear from the context we might write A(·) instead of A(x1, x2, . . . )
and when the input is not explicitly necessary, we might omit it entirely, writing
simply A; let A be an algorithm that produces an output y by accessing an oracle
O, then we write y ← AO.

If A(x1, x2, . . . ) is a probabilistic algorithm then we can use two notations for
assigning to a variable y the output of A(x1, x2, . . . ): y

$←− A(x1, x2, . . . ) where
the symbol $←− emphasizes the probabilistic nature of the algorithm A(x1, x2, . . . )

or y ← A(x1, x2, . . . ;R), where R
$←− Coins(λ) is drawn from the set of random
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coins Coins(λ), namely the set of bit strings of appropriate length which guaran-
tees λ bits of randomness. If the randomness R is given in input to A(x1, x2, . . . ),
the output y is uniquely determined.

Algorithms that start with the the letters T are multi-party algorithms that
require communication between the parties. In particular each party has its own
input identified with a subscript and the set of participants (usually denoted
by J) is an explicit input of the function. For example TSign({ai}J , m) means
that the protocol TSign is a multi party protocol, run by party in J , with each
party having a private input ai while m is a common input. We also assume that
the parties involved in the execution of multi-party algorithms have pairwise
untappable authenticated communication channels.

We indicate the concatenation of strings x1, x2 . . . , xn as x1||x2|| . . . ||xn. We
also assume that, given a context, any string x can be uniquely parsed as a the
concatenation of substrings.

2.2 Sigma protocols and identification schemes

A sigma protocol [9,16] for a relation R ⊆ W×Y is a three moves interactive
protocol between a prover, holding a witness-statement pair (w, y) ∈ R, and a
verifier, knowing only the statement y. Roughly speaking, Sigma protocols work
as follows:

1. In the first step, the prover sends the first message of the sigma protocol,
often called commitment, Cmt ∈ X to the verifier.

2. Then the verifier returns a challenge Ch consisting of a random string of
fixed length c(λ) which depends on the security parameter λ.

3. Lastly, the prover provides a response Rsp and the verifier verifies it accord-
ing to y,Cmt,Ch and Rsp.

Usually, it is required that a sigma protocol satisfies the standard definitions
of completeness, special soundness and honest verifier zero knowledge [9].

From sigma protocols to identification schemes When the relation R is
hard (i.e. given only y ∈ Y, it is hard to compute w ∈ W such that (w, y) ∈ R)
we can use sigma protocols to build canonical identification schemes. Informally
speaking, we can imagine a canonical identification scheme as a sigma protocol
equipped with a secure key generation algorithm for the relation R which gen-
erates key pairs (w, y) ∈ R. In this case we say that w is the secret key, denoted
by sk, while y is the public key, denoted by pk. From now on we omit to mention
the hard relation R when not necessary.

Definition 1 (Identification scheme). A canonical identification scheme is an
interactive protocol between a prover P and a verifier V defined by the tuple

ID = (Setup(·),Key-Gen(·),PCmt(·),PRsp(·), V (·))

– Setup(λ): on input a security parameter λ, it outputs public parameters pp;
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– Key-Gen(pp;R): it is a probabilistic key generation algorithm that takes as
input the public parameters pp and outputs a key pair (sk, pk);

– PCmt(pk, pp;R): it is a probabilistic algorithm called prover commitment
that takes as input a secret key sk and outputs a commitment Cmt ∈ X ;

– PRsp(sk,Cmt,Ch;R): it is a probabilistic algorithm called prover response
that takes as input a private key sk, a commitment Cmt and a challenge Ch
of fixed length c(λ) and outputs a response Rsp;

– V (pk,Cmt,Ch,Rsp): it is a deterministic algorithm, called Verifier, which
takes as input a public key, a commitment Cmt, a challenge Ch and a
response Rsp, and outputs accept or reject.

A triple (Ch,Cmt,Rsp) such that V (pk,Cmt,Ch,Rsp) = accept is called
accepting conversation.

Particularly interesting are non-trivial identification scheme, where the min-
entropy of the first message is high. Formally:

Definition 2 (Min-entropy of PCmt). Being

α(sk) = max
Cmt∈X

{Pr[PCmt(pk, pp;R) = Cmt : R
$←− Coins(λ)]}

the probability that PCmt outputs the most likely commitment Cmt, we de-
fine the min-entropy function associated to PCmt (or the min-entropy of the
commitments) as

β(λ) = min
sk

{
log2

1

α(sk)

}
.

Definition 3 (Non-triviality). A canonical identification scheme is called non-
trivial if the min-entropy of the commitments is super-logarithmic in the security
parameter λ [1].

An important notion of security for canonical identification schemes is the
security against impersonation under passive attacks (or eavesdropping attacks).
Informally speaking, an identification scheme is secure against impersonation
under passive attacks if no attacker can engage in an accepting conversation
with an honest verifier, even after having access to a polynomial number of
transcripts of interactions between the real prover and an honest verifier. For a
formal definition see [1].

2.3 Fiat-Shamir Transform

Firstly introduced in [18], and then studied in [1,26] the Fiat-Shamir Trans-
form is a widespread heuristic used to design digital signature schemes starting
from canonical identification schemes. The general idea is to replace the challenge
step with the evaluation of a cryptographic hash function on the concatenation
of the message to be signed and the first message of the identification protocol.
This transform is proven secure in the Random Oracle Model (ROM), in which
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all the pseudo-random functions (usually hash functions) are replaced by ran-
dom oracles which return truly random values upon invocation. In this paper we
always assume the random oracle model.

In [1], Abdalla et al. prove that, if a non-trivial canonical identification
scheme is secure against eavesdropping attack, then the digital signature scheme
obtained by applying the Fiat-Shamir Transform is unforgeable under chosen
message attacks.

2.4 Threshold signature schemes

We briefly summarize here the relevant notions for threshold signature schemes.
In a nutshell, a (t, n)-threshold signature is a multi-party protocol that allows
any t parties out of a total of n to compute a signature that may be verified
against a common public key. This can be done by sharing the secret key among
the multiple parties involved using a secret sharing scheme.

Definition 4 (Secret sharing). A (t, n)-secret sharing scheme SS for a secret s
is a pair of algorithm (D,R) such that share-generation function D takes in input
a secret s and some randomness q and outputs a vector of n shares (s1, ..., sn).
The recovery function R takes input a set of t shares and outputs a value. We
require the following properties:

– perfect security: P[secret = s|{si}J ] = P[secret = s′|{si}J ] for every set
J ⊆ {1, ..., n} such that |J | < t.

– completeness: R({si}J) = s for all J with |J | ≥ t.

In the following we write SS(s, t, n;R) = (s1, ..., sn) to refer to the algorithm
for the creation of the shares of s for the (t, n)-secret sharing SS and we implic-
itly suppose SS is secure according to this definition.

Classically, threshold signature schemes comprise of four algorithms:

T DS = (Setup(λ),Key-Gen(pp, n, t),TSign(m, {ski}J),Ver(pk, m, σ)).

However, since we suppose the presence of a trusted dealer, both the Setup and
Key-Gen are not considered in our discussion.

– Setup(λ), on input a security parameter λ, it outputs public parameters pp.
– Key-Gen(pp, n, t, λ), on input the number of participants n, the threshold t

and the security parameter λ, it outputs a public key pk and a secret sharing
{ski}i∈[n] of the corresponding secret key sk, with participant Pi holding ski.

– TSign(m, {ski}J) is a multi party protocol run by parties in J . On input an
agreed upon message m and shards ski from various players, it outputs a valid
signature σ if |J | ≥ t,

– Ver(pk, m, σ), on input a public key pk, a message m and a signature σ, it
outputs accept if the signature is valid, reject if not.

Informally, after an initial setup, any set of t parties who agrees on a common
message m is able to jointly perform TSign to sign it. The resulting signature is
verifiable against the public key pk via the verification algorithm Ver.
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Security of threshold digital signatures There are several relevant security
notions associated to threshold signatures, for instance security against pas-
sive chosen message attacks, against active chosen message attacks or adaptive
chosen message attacks, each of them capturing an adversary with different ca-
pabilities in the way the attack is performed [9]. In this work we focus on the
security against active chosen message attack even if most of our main results
and definition could be easily adapted to cover also the passive case.

Definition 5 (Unforgeability under active chosen message attacks). Let T DS =
(Setup,Key-Gen,TSign,Ver) be a (t, n)-threshold digital signature scheme.

Let Expa-uf-cma
T DS,F (λ) be the experiment described below, where F is a forger

who can corrupt up to t− 1 parties of its choice and can perform a polynomial
number qs of queries to a signing oracle OT DS(·) with which it interacts in the
creation of the signatures of the queried messages, specifying also the set of
parties hon the oracle must impersonate in the signing protocol execution.

Expa-uf-cma
T DS,F (λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}i∈[n], pk)
$←− Key-Gen(pp, n, t)

3 : cor
$←− F(pp, pk, n, t) // cor ⊂ [n], |cor| < t

4 : (m⋆, σ⋆)← FOT DS ({ski}i∈cor)

5 : return Ver(pk, m⋆, σ⋆) ∧m ̸∈ Q

OT DS(hon, m)

1 : if |Q| < qs

2 : σ ← TSign(m, {ski}cor∪hon)

3 : // F and OT DS interact.

4 : Q.add(m, σ)

5 : // F records all the messages exchanged

6 : return ⊥

Define the advantage of F in winning Expa-uf-cma
T DS,F (λ)

Adva-uf-cma
T DS,F (λ) = P(Expa-uf-cma

T DS,F (λ) = 1)

We say that T DS is existentially unforgeable under active chosen message
attacks if Adva-uf-cma

T DS,F (λ)(·) is negligible for every probabilistic polynomial time
forger F .

Identifiable abort. A desirable feature of threshold signatures is the ability for
the honest parties to perform identifiable abort. Informally, a threshold signature
scheme supports identifiable abort if, in case of abort of the protocol execution,
the honest participants can identify at least one participant who misbehaved.
Typically this happens by requiring the participants to provide proofs of honest
behaviour during the protocol execution or, in some cases, to prove that they
behaved honestly after a protocol abort [20]. In this way the honest participants
can repeat the protocol execution excluding the identified malicious party and
substituting it with another possibly honest party.

Concurrent security Unlike for UC-secure [13] schemes, which automatically
guarantee the security of the scheme also against an adversary who opens con-
current session, when we consider a game based security definition for threshold
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digital signatures, the most that can be done to claim security against an adver-
sary who open concurrent signing sessions is to show that:

– the reduction that is used to prove the security of the digital signature scheme
can simulate in polynomial time the experiment Expa-uf-cma

T DS,F (λ) even if the
adversary performs parallel signing queries;

– that the threshold signature scheme is not subject to practical attacks (ROS
[8]) that exploit concurrent sessions.

.

3 Distributed Identification Schemes and Fiat-Shamir
Transform

In Section 3.1 we generalise the definition of identification scheme to threshold
identification scheme following the same principles used to define the security of
threshold signatures. Then, in Section 3.2 we generalise the definition of sigma
protocol to threshold sigma protocol and we describe a way to design secure
threshold identification schemes derived from it. Finally in Section 3.3 we pro-
pose a generalisation of the Fiat-Shamir Transform to the distributed case and
we identify two properties that the algorithm TPCmt might satisfy. These prop-
erties will be useful to characterize threshold identification schemes which can be
turned, by applying the Fiat-Shamir transform, into threshold signature schemes
secure against active chosen message attacks.

3.1 Threshold (canonical) identification schemes

We generalize Definition 1 and define protocols that allow multiple provers
P1, ..., Pn, holding a secret sharing of a secret sk, to prove their joint knowledge
of sk. The idea is to replace both the PCmt and PRsp in the original definition
with multi-party protocols that fulfill the same role. In particular TPCmt is run
by a set J of provers to jointly produce a common first message Cmt, then,
after receiving a challenge Ch, the parties in J jointly run TPRsp to produce a
response Rsp.

Definition 6 (Canonical (t, n)− identification protocol). Let P1, . . . , Pn be a set
of players, λ the security parameter and c(λ) the challenge length. A threshold
identification protocol is defined by the tuple

T ID = (Setup(·),Key-Gen(·),TPCmt(·),TPRsp(·), V (·))

– Setup(λ): on input a security parameter λ, it outputs public parameters pp.
– Key-Gen(n, t, pp;R): it is a probabilistic key generation algorithm that takes

as input the public parameters pp, the number of participants n and the
threshold t, and outputs a public key pk and a secret sharing SS(sk, t, n;R) =
{ski}[n] of the secret key sk, with each participant Pi holding ski;
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– TPCmt(pk, pp, J ;R): it is a probabilistic multi-party protocol run by par-
ties in J . On input the public parameters, the public key and the set of
participants it outputs a common first message Cmt;

– TPRsp({ski}J ,Cmt,Ch;R): it is a probabilistic multi party protocol run by
parties in J . It takes as input shards ski from the various player, a commit-
ment Cmt and a challenge Ch ∈ {0, 1}c(λ), and outputs a valid response
Rsp if |J | ≥ t;

– V (pk,Cmt,Ch,Rsp): it is a centralized protocol called Verifier which takes
in input a public key, a first message Cmt, a challenge Ch and a response
Rsp, and outputs accept or reject.

We require that when a set of t players Pi1 , . . . , Pit executes the proto-
col TPCmt(pk, pp, J), it receives a challenge from V and executes the protocol
TPRsp(ski1 , . . . , skit ,Cmt,Ch), then a verifier V with in input the public key
outputs accept with probability 1.

In Figure 1 we represent the execution of a threshold identification scheme.

Public Data : public parameter pp and the security parameter λ

Private Key : Each player i ∈ J holds ski, such that (pk, {ski})
$←− Key-Gen(pp, λ).

Public Key : pk

PROVERS VERIFIER
R = [Ri]i∈J ← Coins(λ)t and
Cmt← TPCmt(pk, pp, J ;R)

Cmt−→
Ch←− Ch $← {0, 1}c(λ).

Rsp← TPRsp({ski}J ,Ch,Cmt;R)
Rsp−→

Return V (pk,Cmt,Ch,Rsp).

Fig. 1. Threshold identification scheme.

As before, since we are supposing the presence of a trusted dealer, both the
Setup and Key-Gen are not considered in our discussion.

From now on, we refer to canonical (t, n)-identification schemes (and (t, n)-
digital signatures) as threshold identification schemes (and threshold digital sig-
natures).

Security notions for threshold identification schemes. In order to de-
fine security notions for threshold identification schemes, we adapt the security
against impersonation under passive attacks (Definition 2.1 of [1]) to the dis-
tributed case. In particular we allow the adversary I (impersonator) to corrupt
a subset {Pi}i∈cor of the parties {Pi}i∈[n] with |cor| < t. Before performing the
impersonation attempt we allow the adversary to interact with an identification
oracle OT ID and execute a polynomial number qi of queries for the execution of
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the threshold identification protocol with the OT ID controlling a set of honest
parties {Pi}i∈hon, |cor ∪ hon| = t chosen by I (and the verifier by sampling a
random challenge).

Definition 7 (Security against impersonation under active attacks). Let T ID =
(Setup,Key-Gen,TPCmt,TPRsp, V ) be a (t, n)-threshold identification scheme.
Let Expa-imp

T ID,I(λ) be the experiment described below, where I is an impersonator
having access to the threshold identification oracle OT ID.

Define the advantage of I in winning the experiment Expa-imp
T ID,I(λ) as

Adva-imp
T ID,I(λ) = P(Expa-imp

T DS,I(λ) = 1)

We say that T ID is secure against impersonation under active attacks if
Adva-imp

T ID,I(λ)(·) is negligible for every probabilistic polynomial time imperson-
ator I.

Expa-imp
T ID,I(λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}, pk)
$←− Key-Gen(pp, n, t)

3 : cor
$←− I(pp, pk, n, t)

4 : // |cor| < t

5 : st||Cmt⋆ $←− IOT ID (pk, {ski}i∈cor)

6 : Ch⋆ $←− {0, 1}c(λ)

7 : // I can perform other queries

8 : st′
$←− IOT ID (pk, {ski}i∈cor,Cmt⋆,Ch⋆)

9 : Rsp⋆ $←− IOT ID (pk, {ski}i∈cor,Cmt⋆,Ch⋆)

10 : return V (pk,Cmt⋆||Ch⋆||Rsp⋆)

OT ID(pk, hon, cor)

1 : if c < qi

2 : c← c+ 1

3 : // OT ID interacts with I

4 : Cmt $←− TPCmt(pk, pp, cor ∪ hon)

5 : Ch $←− {0, 1}c(λ)

6 : Rsp $←− TPRsp({ski}cor∪hon,Cmt,Ch)

7 : // I records all the messages exchanged

8 : return ⊥

3.2 Threshold Sigma Protocols and Zero-Knowledge Property

We adapt Definition 6 to define a threshold Sigma protocol as follows.

Definition 8 (Threshold sigma protocol). Let R ⊆ W × Y be a relation (de-
pending on the security parameter λ) and SS a secure (t, n)-secret sharing scheme
for elements of W. A threshold sigma protocol Σ for R and SS is defined by the
tuple

ΣR,SS = (TPCmt(pk, pp, J ;R),TPRsp({wi}J ,Cmt,Ch;R), V (y))

where the algorithms TPCmt,TPRsp, V are defined as for canonical threshold
identification schemes (Definition 6).
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We require that when a set of t players Pi1 , . . . , Pit executes the protocol
TPCmt(y, pp, J ;R), they receive a challenge from V and execute the protocol
TPRsp(wi1 , . . . , wit ,Cmt,Ch), then a verifier V with in input the statement y
outputs accept with probability 1.

This definition naturally extends the definition of sigma protocol presented
in [9, Section 19.4]. When R and SS are clear from the context, or it is not
relevant, we will refer to a threshold sigma protocol as Σ instead of ΣR,SS.

We now describe properties which are the analogous of honest-verifier zero-
knowledge and of (knowledge) soundness defined for sigma protocols [16].

We start with Active Honest-Verifier Zero Knowledge (AHVZK). Roughly
speaking, a threshold identification protocol is AHVZK if no information about
the private share is leaked during the execution. In particular, we require the
existance of a simulator that

– takes in input a random challenge Ch;
– simulates the execution of TPCmt and TPRsp, interacting with the adver-

sary, without knowing its own private shards. The interaction needs to be
indistinguishable from a real interaction.

Notice that the adjective “active” refers to the fact that the adversary is
active in the interaction with the simulator, while “honest verifier” refers to the
fact that the challenge is chosen randomly by the simulator (in the same way of
honest-verifier zero-knowledge property of sigma protocols). More formally we
have the following definition:

Definition 9 (Active Honest-Verifier Zero-Knowledge (AHVZK)). Let ΣR,SS

be a threshold sigma protocol for a relation R ⊆ W × Y, secret sharing SS and
challenge length c(λ). Let (w, y) ∈ R.

We say that Σ is active honest-verifier zero-knowledge if, for every adversary
Ay,cor({wi}i∈cor) corrupting the set of parties {Pi}i∈cor, cor ⊂ [n], |cor| < t, there
exists an efficient probabilistic algorithm Sy,cor({wi}i∈cor) controlling the honest
parties in [n] \ cor such that, being hon ⊂ [n] \ cor with |cor∪ hon| = t chosen by
Ay,cor({wi}i∈cor), the following two experiments are indistinguishable:

– Experiment 0: Ay,cor({wi}i∈cor) interacts with a challenger C({wi}i∈[n], y)
engaging in a real execution of the sigma protocol, with C acting on behalf
of the parties in hon and also as a honest verifier;

– Experiment 1: Sy,cor({wi}i∈cor, hon) pick a random challenge Ch ∈ {0, 1}c(λ),
then Ay,cor({wi}i∈cor) interacts with the simulator Sy,cor({wi}i∈cor, hon,Ch)
in a simulated execution of the sigma protocol, with Sy,cor({wi}i∈cor,Ch)
acting on behalf of the parties in hon and setting the challenge to Ch.

Note that C acting as an honest verifier samples uniformly at random a
challenge after the execution of TPCmt, instead Sy,cor({wi}i∈cor, hon) samples it
in advance.
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Note that as a consequence of the definition of active zero knowledge, if A
acts honestly, while interacting with S, then (Cmt,Ch,Rsp) is an accepting
conversation for y.

The special soundness definition is the same as the centralized case [9], we
include it for completeness:

Definition 10 (Special Soundness). Let Σ be a threshold sigma protocol for a
relation R ⊆ W×Y. We say that Σ is special sound if and only if there exists an
efficient deterministic algorithm E , called extractor, with the following property:
whenever E is given as input a statement y ∈ Y, two accepting conversations
(Cmt,Ch,Rsp) and (Cmt,Ch′,Rsp′), with Ch ̸= Ch′ E outputs w ∈ W such
that (w, y) ∈ R.

This definition naturally extends to k-special soundness, where k is the num-
ber of transcripts with the same commitment and different challenges that must
be provided to an extractor to extract the witness w for y.

It is easy to see that given a generic threshold sigma protocol ΣR,SS there
exists a generic threshold identification scheme in which the Setup generates the
parameters for the relation R, and Key-Gen generates the key pair (sk, pk) and
computes {ski}i∈[n]

$←− SS(t, n, sk).

Theorem 1. Let ΣR,SS = (TPCmt,TPRsp, V ) be a (t, n)− threshold Sigma pro-
tocol for a hard relation R ⊆ W×Y, and secret sharing SS, with super-polynomial
challenge space {0, 1}c(λ). Let

T ID = (Setup,Key-Gen,TPCmt,TPRsp, V )

be the threshold identification scheme derived from it. If Σ is AHVZK and special
sound, then the T ID is secure against active impersonation attacks.

Proof. We want to show that if there exists an adversary I able to win the
Expa-imp

T ID,I game with non-negligible advantage, then it is possible to build a
simulator B(pk) that, simulating the challenger of experiment Expa-imp

T ID,I , is able
to extract the secret key sk such that (sk, pk) ∈ R, contradicting the hardness
of the relation R.
B(pk) receives from I the set of parties it want to corrupt cor, |cor| < t, then

B sends to I random shares {ski}i∈cor. Since the secret sharing scheme is secure
according to Definition 4, this is indistinguishable from an execution of a real
secret sharing, since I controls less than t parties.

Simulation of identification queries. B is able to simulate the oracle OT ID(·)
thanks to the AHVZK property of Σ. In particular for each identification query,
I sends to B the set of indexes hon associated to the parties it want to interact
with. Then B samples Ch $←− {0, 1}c(λ), and executes Spk,cor(Ch, hon) simulating
in this way the execution of OT ID, where the challenge used in the execution of
T ID is Ch and Spk,cor is the simulator of Definition 9.
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Exploit of the impersonation of I. I will eventually perform a successful imper-
sonation. At this point B rewinds I and changes the challenge corresponding to
the first message used in the impersonation attempt. Since the challenge space
is super-polynomial, with non-negligible probability this yields the two required
accepting conversation (by the Forking Lemma [27], see Appendix C), thus B
can use the extractor E from the special soundness Definition 10 to extract a
witness w breaking the hardness of the relation R.

3.3 Distributed Fiat-Shamir Transform

We adapt the definition of Fiat-Shamir transform to the distributed case:

Definition 11 (Distributed Fiat-Shamir transform). Let T ID be a canonical
threshold identification scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ).

We define the threshold digital signature T DS built from the canonical
(t, n)−identification scheme T ID using the Fiat-Shamir transform as T DS =
(Setup,Key-Gen,TSign,Ver).

The signature has the same Setup and Key-Gen algorithm as the identification
scheme, and the output length of the hash function equals the challenge length
of the identification scheme. Let J be a set of signers with |J | ≥ t. The signing
and the verification algorithms are defined as follows:

TSign(m, {ski}i∈J):

1 : R
$←− Coinst(λ)

2 : Cmt← TPCmt(pk, pp, J ;R)

3 : Ch← H(Cmt||m)
4 : Rsp← TPRsp({ski}i∈J ,Cmt,Ch;R)

5 : return Cmt||Rsp

Ver(pk, m, σ):

1 : Parse σ as Cmt|Rsp

2 : Ch← H(Cmt||m)
3 : return V (pk,Cmt,Ch,Rsp)

We now define two properties on TPCmt that are useful when discussing the
security.

Requirements on TPCmt We want to characterise a class of algorithms TPCmt
whose design guarantees that the output has high min-entropy if at least one of
the parties taking part to the execution of the algorithm is not controlled by an
adversary. Adapting [9, Definition 19.7] to the multi-party case, we refer to this
class of TPCmt as unpredictable.

Definition 12 (Unpredictable TPCmt). Let T ID be a (t, n)-threshold identi-
fication scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ). We say that
TPCmt is unpredictable, if the output Cmt has super-logarithmic min-entropy
when at least one party is honest.
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As we will show, the unpredictability property of TPCmt is not enough to
guarantee the security of the threshold signature obtained by applying the dis-
tributed Fiat-Shamir transform to a threshold identification scheme. Indeed, to
guarantee active unforgeability of the threshold signature scheme, a simulator
of the experiment Expa-imp

T ID,I(λ) in Definition 7 needs to be able to extract from
the adversary its secret values used in the computation of Cmt, before the ad-
versary can compute it. Moreover, we require the simulator to extract “online”
the commitment, without rewinding the adversary, to guarantee the concurrent
security of the threshold signature scheme against practical attacks [8]. More
formally we have the following definition:

Definition 13 (Extractable TPCmt). Let T ID be a threshold identification
scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ).

We say that TPCmt is online extractable if:

– it comprise two consecutive sub-protocols, TP1
Cmt and (deterministic) TP2

Cmt,
with the input of TP2

Cmt being the output of TP1
Cmt in addition to every other

input of TPCmt, which are executed one immediately after the other,
– for every non empty sets of parties A,B, such that |A ∪B| = t, there exists

a simulator Sext that, on input all the messages from parties in A to parties
in B during the execution of TP1

Cmt as well as every oracle query made by
parties in A, is able to simulate the execution of TP2

Cmt on behalf of all the
parties in A interacting with parties in B in an indistinguishable way.

– For every probabilistic polynomial time adversary I, the probability of I
guessing the output of TP2

Cmt before the execution of TP2
Cmt is negligible.

As we will see, the hypothesis about the input of the simulator could be
lowered, allowing Sext to rewind the parties in A. However, doing so decrease the
security of the signature that, while still unforgeable, would not be secure in the
concurrent setting.

While the definition does not explicitly mention an extractor, the most com-
mon way to achieve this properties is to exploit the messages sent in TP1

Cmt to
extract the private data of the adversary and use them to compute Cmt ahead
of time.

Observation 1. Given that the impersonator I has negligible probability of
guessing Cmt at the end of TP1

Cmt, it follows immediately that every extractable
TPCmt is also an unpredictable TPCmt.

Observation 2 (Commit-Release TPCmt). A common way to design an ex-
tractable TPCmt in the random oracle model is to use a “commit-release” struc-
ture, using an hash function for the commitment step. In particular, let T ID be a
threshold identification scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V )
where TPCmt is defined by the following two sub-protocols:

– TPCom
Cmt(pk, pp, J ;R) a non interactive protocol run locally by each party that

outputs a commitment comi ← H(ssid||Cmti) where Cmti has high min-
entropy, and ssid is a session identifier shared among all the parties involved
in the execution.



Distributed Fiat-Shamir Transform 15

– TPRel
Cmt({Commit(ssid||Cmti)}i∈[t]): each party reveals the value Cmti, checks

that the values Cmtj revealed by the parties Pj are consistent with their
commitments comj , and output a common Cmt, obtained deterministically
by combining the partial first messages Cmti. The combining function must
satisfies an analogous property of Definition 12, i.e. as long as at least one
Cmti has high min-entropy, then also final output Cmt has high min-
entropy.

It is easy to see that as long as H is a cryptographic hash function (thus is
pre-image resistant) and Cmti has high min-entropy both the hypothesis of
Definition 13 are satisfied. Indeed, the extractor can learn all the Cmti from the
adversary from the random oracle queries and, since TPRel

Cmt is deterministic, it
can use them to compute Cmt.

4 Main Result

In this section we state and prove our main result, namely the relation be-
tween the security of threshold identification protocol and the security of the
threshold signature obtained by applying the distributed Fiat-Shamir Trans-
form.

Theorem 2 (Active security). Let T ID = (Setup,Key-Gen,TPCmt,TPRsp, V )
be a canonical threshold identification scheme. Consider the associated signature
scheme T DS = (Setup,Key-Gen,TSign,Ver) as per Definition 11. Then, assum-
ing the ROM, the following implications hold:

1. (T ID =⇒ T DS): if TPCmt is extractable as per Definition 13 and T ID
is secure against impersonation under active attacks, then T DS is secure
against active chosen-message attacks.

2. (T DS =⇒ T ID): If T DS is secure against active chosen-message attacks,
then T ID is secure against impersonation under active attacks.

As an immediate corollary, thanks to Theorem 1 we have that if TPCmt is
extractable as per Definition 13 and the underlying sigma protocol is AHVZK
and special sound, then the threshold signature is unforgeable.

We now prove separately the two implications of Theorem 2.

Lemma 1 (T ID =⇒ T DS). Under the assumptions of Theorem 2,if TPCmt
satisfies the extractability property of Definition 13 and T ID is secure against
impersonation under active attacks, then T DS is unforgeable against active
chosen-message attacks.

Proof. We first provide a general idea of the proof, then we provide a detailed
discussion.
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Overview. Let F be a forger for the threshold signature. Our goal is to build an
impersonator I, that use F as a subroutine, to win the impersonation game. The
impersonator I interacts with the challenger CT ID of experiment Expa-imp

T ID,A(λ)
and has access to the transcript oracle OT ID(pk, cor, hon) that can query up
to qs(λ) times, where cor and hon are chosen by I. In order to exploit the
advantage of F , and use it as a subroutine, I simulates the challenger CT DS of
the experiment Expa-uf-cma

T DS,F (λ) executed by F and the sign and random oracles
OH

T DS({ski}i∈cor)
1 and OH(·) to which it can make respectively qs(λ) and qh(λ)

queries, both polynomial in the security parameter λ, being F a polynomial-time
adversary.

In Appendix A, Figure 4, we provide a graphical representation of the reduc-
tion we describe below.

Defining the forger. Let F be a forger that wins the Expa-uf-cma
T DS,F (λ) with non-

negligible advantage ϵ(λ). We require that F satisfies the following properties
(as in [1]):

– all of its hash queries have the form Cmt||m with Cmt ∈ X , m ∈ {0, 1}∗;
– before outputting a forgery (m,Cmt||Rsp), F has performed an hash query

for (Cmt||m);
– if F outputs (m,Cmt||Rsp), m was never a sign query.

It is easy to see that if there exists a forger F ′ who does not satisfy these
requirements, it is possible to build a forger F satisfying the requirements using
F ′ as a subroutine, as discussed in [1], Proof of Lemma 3.5.

Initialization. I initializes the hash query counter hc = 0 and the sign query
counter sc = 0. I also initializes the hash table HT = ∅, and the query table
QT = ∅, then generates a random forge pointer fp ∈ [qh(λ)].
I receives from CT ID the public parameters pp of the identification protocol

and the public key pk. I forwards this information to F .

Training phase. F chooses the set cor (with |cor| ≤ t − 1) of actors it wants to
control. I chooses the same set cor and sends it to CT ID, receiving the secret
keys of the players in cor, finally I forwards this information to F .

Now F can perform qh(λ) hash queries and qs(λ) sign queries to I. In the
first case I uses the hash table HT to answer, while in the second I performs
an identification query to its oracle OT ID using the same input as part of the
Expa-imp

T ID,I(λ) game. Specifically, the simulation works as follows:

– F performs an hash query with input x ∈ {0, 1}∗: I returns HT[x] if it is
defined. Otherwise, I increases the counter hc by 1 and sets QT[hc] = x,
then, if hc ̸= fp, I picks uniformly at random d ∈ {0, 1}c(λ), sends it to
F and sets HT[x] = d. If hc = fp it parses x as Cmt∗||m∗, sends to the

1 We denote the signing oracle OH
T DS({ski}i∈cor) in place of OT DS({ski}i∈cor) to em-

phasize that it depends on the hash function H.
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challenger CT ID Cmt∗ as the first move of the impersonation attempt of the
Expa-uf-cma

T DS,F (λ) game and receives back from CT ID a challenge Ch∗. In this
case, I sets HT[x] = Ch∗ and sends Ch∗ to F . This procedure allows I to
perfectly simulate the random oracle OH .

– F performs a sign query for message m: F chooses hon, the set of the honest
players who, together with the parties in cor, participates in the compu-
tation of a signature of m. I increases the signature counter sc and sends
to OT ID(pk, cor, hon) a request to perform the threshold identification pro-
tocol. The impersonator I acts as a man in the middle between F and
OT ID(pk, cor, hon), and repeats the following operations for each step pre-
scribed by the algorithm TPCmt:
1. OT ID(pk, cor, hon) produces the messages for the participants in hon,

and anticipates I in the execution of the steps prescribed by TP1
Cmt;

2. I forwards to F the messages received from OT ID(pk, cor, hon);
3. F produces the messages executing TP1

Cmt on behalf of the corrupted
participants in cor.

4. I forwards the messages received from F to OT ID(pk, cor, hon).
These steps are repeated for the protocol TP2

Cmt, leading to the computation
of the shared Cmt by F at first, then by I, once it receives the openings of
the parties in cor from F and finally by OT ID, once it receives the messages
forwarded by I.
The oracle OT ID(pk, cor, hon) produces a random challenge Ch and I sets
HT[Cmt||m] = Ch. This operation may overwrite the hash table HT but we
show later that the probability of this happening is negligible if the simulator
I adopts the countermeasures that we prescribe later in the proof.
Together with Ch, OT ID sends its contribution to the execution of TPRsp
that I forwards to F . As for the creation of Cmt, I acts as a man in the
middle between F and OT ID(pk, cor, hon) in the execution of TPRsp until
the identification process is completed as well as the signing process and the
algorithm TPRsp outputs the response Rsp and therefore F creates, together
with I the signature (Cmt||Rsp) of m.

This concludes the description of the simulation of the experiment of unforgeabil-
ity under active attacks for F performed by I. In order to state that I correctly
simulates the experiment it remains to show that the simulation fails only with
negligible probability.

Simulation failure. We now focus on the cases in which the simulation may fail
and we find an upper bound to the probability that such failure happens. We
have shown that the simulation of I fails only if I is forced to overwrite the hash
table HT during a sign query performed by F . The overwriting of HT during
a sign query might refer to a previous hash query or to a previous sign query,
therefore we must consider separately the following two cases.

1. During a sign query for a message m, before computing Cmt, F has performed
a hash query for Cmt||m. We must consider again two possible scenarios:
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(a) During the execution of TP2
Cmt or at the end of it. Since F is malicious

we can suppose that F always sends its messages after all the honest
parties. In this setting, F learns the final output Cmt before I. Later
we discuss how to deal with this case such that it never occurs and thus
does not contribute in the evaluation of the failure probability of the
simulation performed by I.

(b) Before the execution of TP2
Cmt. By the third properties of Definition 13

and the unpredictability of TPCmt, the output of TPCmt has min-entropy
β(λ), super-logarithmic in λ, thus the probability of the adversary guess-
ing Cmt is less than qh(λ)

2β(λ) which is negligible being 2β(λ) super-polynomial
in λ.

2. Before producing the first message Cmt associated to a sign query for m, F
has performed another sign query for m, and the output of TPCmt results to
be the same Cmt. For n ∈ [qs(λ)] we define Xn ⊂ X the set of first messages
Cmt generated in the previous n−1 sign queries, then the failure probability
of the simulation during sign query n for a collision of the first message with
the first message of a previous query is:

P[Cmt ∈ Xn] =
n− 1

2β(λ)

The probability that I is forced to overwrite the hash table HT during the n-th
sign query (when the sign counter sc = n) is

P[I overwrites when sc = n] =
qh(λ) + (n− 1)

2β(λ)
.

Therefore the probability that I fails its simulation and overwrites the hash
table is:

P[I fails] ≤
qs(λ)∑
n=1

(n− 1) + qh(λ)

2β(λ)
=

=
qh(λ)qs(λ)

2β(λ)
+

qs(λ)∑
n=1

(n− 1)

2β(λ)
=

=
qh(λ)qs(λ) + qs(λ)(qs(λ)− 1)/2

2β(λ)

Therefore it holds that

P[I fails] ≤ qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)
(4.1)

which is negligible in λ.

We now focus on the case described in Item 1a and explain how we deal with
that.
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At the end of TP2
Cmt, F knows the first message Cmt that will be used to

create the signature on m and could ask for an hash query on it before sending
Cmt to I.

Without any countermeasure, if F would do so, I would returns a random
digest d according to the simulation of the random oracle. However, when F
would eventually reveal Cmt, I would not be able to set HT[m||Cmt] = Ch
where Ch is the challenge received by the oracle OT ID, causing a failure.

All of this is avoided thanks to the extractability properties of TPCmt, see
Definition 13. Indeed, at the end of TP1

Cmt, I can use the simulator of Defini-
tion 13 to anticipate the execution of TP2

Cmt in the Expa-imp
T ID,I game. This allows

I to learn Cmt and Ch before the execution of TP2
Cmt in the Expa-uf-cma

T DS,F , and
thus, when F does an oracle query on input m||Cmt, I can answer Ch and set
HT[m||Cmt] = Ch. In this way I can always answer the random oracle queries
made by F consistently and does not risk to overwrite the hash table. Notice
that thanks to the last point of Definition 13 it is impossible for F to learn Cmt
before I, so this strategy never fails.

Exploit of F ’s forgery. Once F has concluded the training phase, F outputs a
forgery (Ĉmt, R̂sp) of a message m̂ not previously queried. Then I concludes
its impersonation attempt by sending the message R̂sp as a response to the
challenge Ch∗ received after the fp-th hash query, associated to the commitment
Cmt∗.

Note that if Ĉmt = Cmt∗, m̂ = m∗ and (Ĉmt, R̂sp) is a valid forgery of
m̂ = m∗, which happens if fp was guessed by I, then the impersonator will be
successful in its impersonation attempt.

Evauation of I’s advantage. We know that the forger F must perform an hash
query (Ĉmt, m̂) among the qh(λ) hash queries it is allowed to perform during
the training phase (according to the requirements listed at the beginning of the
proof), therefore with probability

P[I guesses fp | I simulates] =
1

qh(λ)

the impersonator guesses the right forge pointer fp. The probability is condi-
tioned to the event that I (correctly) simulates the unforgeability experiment
because otherwise the forge pointer might not be defined. We assumed that the
forger F has non-negligible advantage in winning the real unforgeability experi-
ment P[Expa-uf-cma

T DS,F (λ) = 1] = ϵ(λ). If I simulates the experiment Expa-uf-cma
T DS,F (λ),

F wins the simulated experiment, while interacting with I, with the same non-
negligible probability

P[FI wins | I simulates] = P[Expa-uf-cma
T DS,F (λ) = 1] = ϵ(λ).
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Finally we can find a lower bound to the probability of success of the imper-
sonator I in playing the experiment Expa-imp

T ID,I

P[Expa-imp
T ID,I = 1] ≥ P[FI wins ∧ I guesses fp ∧ I simulates] =

=P[FI wins ∧ I guesses fp| I simulates] · P[I simulates] =

=P[FI wins | I simulates] · P[fp is guessed | I simulates] · P[I simulates] ≥

≥ϵ(λ) 1

qh(λ)

(
1− qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)

)
which is non-negligible in the security parameter λ.
Note that in the second equality we used the fact that fp is sampled uniformly

at random by I before it starts interacting with F and the value of fp does not
affect the simulation of the experiment with F , and in the third equality we
used the lower bound to the probability that I fails the simulation described in
Equation 4.1.

Since we have designed an impersonator I, using F as a subroutine, that has
non-negligible advantage in winning the experiment Expa-imp

T ID,I(λ), where T ID
was assumed secure against impersonation under active attacks, this means that
the algorithm F , which has non-negligible advantage in winning the experiment
Expa-uf-cma

T DS,F (λ), do not exist. Therefore the digital signature T DS is unforgeable
under active attacks, and this concludes the proof.

Observation 3 (Non concurrent security). The assumption about the struc-
ture of TPCmt = (TP1

Cmt,TP2
Cmt) is essential to guarantee that the derived

signature schemes are resistant against practical attacks on concurrent sessions
as described in [8].

In principle one could avoid the “online” aspect of Definition 13. Indeed, the
above simulation would be acceptable as long as I could rewind F after receiving
Cmt, in order to fix some inconsistencies in the hash table HT. While this would
be fine for the standard notion of unforgeability this would cause major problems
when proving the protocols secure under parallel composition.

Lemma 2. [T DS =⇒ T ID] Under the assumptions of Theorem 2, if T DS
is unforgeable against active chosen-message attacks then T ID is secure against
impersonation under active attacks in the random oracle model.

Proof Sketch. Let I be an impersonator which wins the experiment Expa-imp
T ID,I(λ)

with non-negligible probability, then we build a forger F which uses I as a sub-
routine who wins the experiment Expa-uf-cma

T DS,F (λ) with non-neligible probability.
In this case, it is F who will simulate the identification oracle, by interacting

with the real world oracles OH
T DS(·) and OH(·) therefore the issues in simulating

the random oracle as in Theorem 1 are not present anymore.

Initialization F interacts with OH
T DS(·) and OH(·) who provides her with the

public parameters pp and the public key of the n parties among which t− 1 can
be corrupted by F . F simulates OT ID(·) and forwards this information to I.
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Training phase I selects the set of cor actors to corrupt and before each imper-
sonation query it chooses the set of hon honest parties it wants to interact with.
This information is sent to F who forwards it to OH

T DS(·).
Whenever I makes an identification query, F sends to OH

T DS(·) a sign query
of a fresh new message m which gets increased for every different sign query.

The oracle sends the messages on behalf of the parties in hon and F forwards
it to I correctly simulating the multiparty protocol TPCmt. When it comes the
time for F to send the challenge Ch to I, F queries OH(·) on (m||Cmt) and
obtains Ch which forwards to I as the challenge of the impersonation attempt.
Since it is the first time that F queries the random oracle on (m||Cmt), since
m is updated during every execution of the identification protocol, F correctly
simulates the oracle OT ID(·) in sending a random challenge. Finally as with
the protocol TPCmt, F acts as a man in the middle in the execution of TPRsp
between I and OH

T DS(·).

Simulation failure The simulation never fails because F always receives new
random challenges from OH since it provides OH always with different inputs
obtained by increasing m every time it performs a new sign query.

Exploit of I’s impersonation When I produces its impersonation attempt, it
sends Cmt∗ to F as if it were produced by executing TPCmt. Then F starts
preparing its forgery by sending to OH(·) a hash query with input (m∗||Cmt∗)
fresh new m∗ that has never been used before and that will be the message that
will be signed in the forgery. The oracle OH returns to F the challenge Ch∗ that
F sends to I correctly simulating the transcript oracle OT ID(·) in the generation
of a random challenge.

Finally I concludes its impersonation by sending the response Rsp∗ that,
if it is valid, allows F to produce a forgery of m, namely (Cmt∗,Rsp∗) which
verifies since H(m∗||Cmt∗) = Ch∗.

The proofs of Lemma 1 and Lemma 2 prove Theorem 2.

Dealing with abort Our heuristic does not require an explicit behaviour to adopt
when dealing with errors, such as a party refusing to sends data or failing some
ZKPs. In general, a safe countermeasure would be to abort when any party
deviate from the protocol. This can clearly lead to bias in the signature gener-
ation, but since we are limiting our analysis on the unforgeability property this
is acceptable [15]. On the other hand, a strong selling point is that our heuristic
does not intrinsically lower the security properties of the underlying identifica-
tion protocols, and it is easy to see that if the starting protocols has identifiable
abort then also the transformed protocol has this properties. In this sense, the
obtained signature inherits all the properties regarding abort or robustness of
the starting protocol, allowing to design more secure protocols.
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5 Examples of Applications for Existing Signatures

In this section we show possible applications of our heuristic, using two ex-
isting threshold signatures as examples. In Section 5.1 we prove the security of
GRASS [2], which is a group action based threshold signature. In Section 5.2 we
analyse Sparkle [15], a threshold Schnorr signature: we provide an alternative
proof of Theorem 1 of [15] (“Sparkle is statically secure under DL in the ROM”)
using our framework.

We recall the scheme of Sparkle in Appendix B, Figure 5, using the same
notation used in their paper [15], and we also provide additional details about
the associated threshold identification scheme.

5.1 GRASS

Let G be a multiplicative group, X be a set and ⋆ : G → X be a regular
group action hard to invert. The threshold sigma protocol that we present in
Figure 2 is a threshold sigma protocol for relation R = {(w, y = w ⋆ x0)|w ∈
G, x0 ∈ X} ⊂ G×X and additive secret sharing SS. The witness w is split among
all the parties, such that party i knows gi, with

∏n
i=1 gi = w. Moreover, each

party has a public key xi = gi ⋆ xi−1. Since the challenge space is binary, the
complete protocol is done by doing parallel repetition of the protocol presented
in Figure 2, here we present only a single execution but all the arguments could
be easily generalized to the complete protocol.

To prove their joint knowledge of w, the parties engage in a round robin
protocol where Pi, on input x̃i−1 published by previous party (or the common
value x0 in case of i = 1) picks a random g̃i ∈ G, computes x̃i = g̃i ⋆ x̃i−1 and
outputs it. Moreover, they participate in a two step creation of random string
r, by first sending Hcom(ri) for a random ri and then sending ri. The common
output of TPCmt is Cmt = r||x̃n. On input a challenge bit Ch, the response
works as follows: if Ch = 0 then each party reveals g̃i and Rsp =

∏N
i=1 g̃i,

if Ch = 1 then the parties engage in a round robin protocol where Pi, on
input Rspi−1 published by previous party (or 1 in case of i = 1), publishes
Rspi = g̃i · Rspi−1 · g−1

i . The common response Rsp is Rspn. To verify it, the
verifier checks x̃n = Rsp ⋆ x0 when Ch = 0 and x̃n = Rsp ⋆ xn otherwise.

Theorem 3. If the group action ⋆ : G→ X is hard to invert, then the threshold
signature scheme GRASS is unforgeable under active chosen message attacks.

Proof. Our goal is to use Theorem 1, from which Theorem 2 follows immediately.
We start by proving that the threshold sigma protocol is special sound and

then we prove the active honest-verifier zero-knowledge property.

Special soundness. Suppose to have two accepting transcripts (Cmt, 0,Rsp)
and (Cmt, 1,Rsp′). Then it would be possible to compute the witness as
w = Rsp ·Rsp′−1.
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TP1
Cmt(ssid, {xi}[n];R)→ {Cmti}i∈S

1 : // Each party i runs it

2 : ri
$←− {0, 1}λ

3 : comi ← Hcom(ssid, ri)

4 : Publish comi

5 : // Round robin

6 : x̃0 ← x0

7 : for i in {1, ..., n}

8 : g̃i
$←− G

9 : x̃i ← g̃i ⋆ x̃i−1

10 : return com1||...||comn||x̃n

TPRsp({gi}S, x̃i, xi,Cmt,Ch)→ (Rsp)

1 : if Ch = 0 then // Each party k runs it

2 : Party Pi sends g̃i

3 : Rsp←
∏
i∈[n]

g̃i

4 : if Ch = 1 then // Round robin

5 : ũ0 ← 1

6 : for i in {1, ..., n}
7 : if ui−1 ⋆ xi−1 ̸= x̃i−1 return ⊥

8 : Rspi ← g̃iui−1g
−1
i

9 : Rsp← Rspn

10 : return Rsp

TP2
Cmt(ssid, {xi, com}[n], x̃n)→ Cmt

1 : // Each party i runs it

2 : Party Pi sends ri

3 : If ∃j ∈ [n] s.t.
4 : comj ̸= Hcom(ssid, rj)

5 : return ⊥

6 : r =
∑
i∈[n]

ri

7 : return Cmt← r||x̃n

8 : // (Cmt, x̃n) are sent to the verifier

9 : // who returns the challenge Ch

V (Cmt,Rsp)→ 0/1

1 : if Ch = 0 then

2 : return Rsp ⋆ x = x̃n

3 : if Ch = 1 then

4 : return Rsp ⋆ xn = x̃n

Fig. 2. Threshold sigma protocol for GRASS.

Active honest-verifier zero-knowledge. To prove that the protocol is AHVZK,
we must show that it can be simulated by a simulator S taking in input
(xn,Ch∗) and the n − 1 shares of the private key controlled by the adver-
sary. Let i be the honest party, controlled by the simulator S. When Ch∗ = 0
the simulator follows the protocol normally, while when Ch∗ = 1 S picks a
random g̃i and sends x̃i = g̃i ⋆xi in place of x̃i = g̃i ⋆ x̃i−1. It is immediate to
see that in both cases the simulation is indistinguishable from a real execu-
tion and that, if the adversary act honestly, the resulting response verifies.
Indeed, thanks to the check of line 7 of TPRsp, the simulator is sure that all
the previous parties Pj , j = 1, ..., i − 1, in the round robin acted honestly,
thus it can safely sends g̃i, which verifies the check of line 7 of the next
round.

It remains to prove that the above scheme has a secure TPCmt as per Def-
inition 13. At the end of TP1

Cmt the simulator knows all the x̃i and ri of the
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adversary, thanks to the random oracle queries. This allows the simulator to
perfectly simulate TP2

Cmt, since it knows all the input. We can notice that as
long as Hcom is binding, TP2

Cmt is deterministic. It remains to prove that no
adversary F can guess Cmt with non negligible probability before the execution
of TP2

Cmt. This is thanks to the string r and the one way-property of Hcom (i.e. it
is impossible to find x knowing only Hcom(x)). Indeed, even if x̃n is fully known,
the string r is uniformly distributed in {0, 1}λ and the probability that F guesses
it is 2λ, due to the one-wayness of Hcom. This ensure that the probability of F
guessing Cmt is 2λ, which is negligible.

It is immediate to see that the above arguments could be adapted when
considering the parallel repetition of the protocol the protocol in Figure 2. By
equipping it with the Setup and Key-Gen explained in [2] we obtain a threshold
identification scheme T ID which has a one-way Key-Gen, a super-polynomial
challenge space and is special sound and zero-knowledge. Therefore by Theo-
rem 1, T ID is secure against active impersonation attacks. By applying The-
orem 2 we proved that GRASS, the digital signature obtained by applying the
distributed Fiat-Shamir transform, is unforgeable against active chosen message
attacks.

5.2 Sparkle

The threshold sigma protocol that we present in Figure 3 is a threshold sigma
protocol for relation R = {(w, y = gw)|w ∈ Zp,G =< g >} ⊂ Zp×G and Shamir
secret sharing SS, where G is a cyclic group with generator g of order p, a λ bits
prime number. The challenge space is C = Zp which is super-polynomial in the
security parameter λ. This, equipped with the Setup and the one-way Key-Gen
which is used in the threshold signature of Sparkle, will form the threshold
identification scheme we use to prove Sparkle security.

Theorem 4. If the discrete logarithm is hard in G, then the threshold signature
scheme Sparkle is unforgeable under active chosen message attacks.

Proof. Our goal is to use Theorem 1, from which Theorem 2 follows immediately.
We start by proving that the threshold sigma protocol is special sound and

then we prove the active honest-verifier zero-knowledge property.

Special soundness. The special soundness property is trivial and follows im-
mediately from the special soundness of the standard Schnorr protocol [28].
Indeed, suppose to have two accepting transcripts (R,Ch, z) and (R,Ch′, z′)
with Ch ̸= Ch′. Then it would be possible to compute the discrete logarithm
of pk = y by simply computing w = (z − z′)(Ch−Ch′)−1.

Active honest-verifier zero-knowledge. To prove that the protocol is AHVZK,
we must show that it can be simulated by a simulator S taking in input
(y = gw,Ch∗) and the t − 1 shares of the private key controlled by the ad-
versary. Without loss of generality we can say that S = [t], the adversary
controls P1, . . . , Pt−1 and w1, . . . , wt−1 are their shares of the witness which
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TPCom
Cmt (ssid, {wi}i∈S;R)→ {Cmti}i∈S

1 : // Each party k runs it

2 : rk
$←− Zp

3 : Rk ← gr

4 : // Compute the commitment comk

5 : comk ← Hcom(ssid,S, Rk)

6 : return comk

TPRsp({wi}i∈S,Cmt,Ch)→ (Rsp)

1 : // Each party k runs it

2 : zk ← rk + Ch(λkxk)

3 : // λk is the Lagrange

4 : // coefficient of k w.r.t. S

5 : Party Pk sends zk

6 : z ←
∑
i∈S

zi

7 : return σ ← (R, z)

TPRel
Cmt(ssid, {wi}i∈S, {comi}i∈S)→ Cmt

1 : // Each party k runs it

2 : Party Pk sends Rk

3 : If ∃j ∈ S s.t.
4 : comj ̸= Hcom(ssid,S, Rj)

5 : return ⊥

6 : R =
∏
i∈S

Ri

7 : return Cmt← R

8 : // Cmt is sent to the verifier

9 : // who returns the challenge Ch

V (y, σ)→ 0/1

1 : Parse (R, z)← σ

2 : if RyCh = gz return 1

3 : Else return 0

Fig. 3. Threshold sigma protocol for Sparkle.

are given also to the simulator S who must impersonate Pt without knowing
wt.
The simulation resembles the simulation of the centralized sigma protocol.
The simulator S samples uniformly at random zt ∈ Zp and defines

Rt = gzty−Ch∗
t−1∏
j=1

gλjwjCh∗
,

where Ch∗ is the challenge it received in input and λj is the Lagrange coef-
ficient of j with respect to S.
Note that, even if S does not know wt, by definition of Shamir secret sharing
w =

∑
i∈[t] λiwi and y−Ch∗

= gw(−Ch∗), therefore y−Ch∗ ∏t−1
j=1 g

λjwjCh∗
=

gλtwt(−Ch∗), then it holds that gzt = Rtg
λtwtCh∗

.
This means that the transcript (Rt,Ch∗, zt) is valid and, being zt sampled
uniformly at random, and Rt being univocally determined from (zt,Ch∗),
(Rt,Ch∗, zt) is indistinguishable from an honest transcript (generated start-
ing from Rt).
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Finally S executes TPCom
Cmt computing comt = Hcom(m,S, Rt), then it executes

TPRel
Cmt by releasing Rt. The commitments are aggregated computing R, then

the challenge Ch∗ will be used as the challenge of the transcript and S
simulates the algorithm TPRsp by broadcasting the responses Rspt = zt it
sampled randomly at the beginning of the simulation.
Note that the transcripts (R,Ch∗, z), together with the transcript generated
by the messages sent by S, form an accepting transcript as long as the other
parties in S act compute their responses correctly. Also, the transcripts of S
are indistinguishable from a real execution since the messages that S must
send are independent of the messages sent by the adversary who could be
potentially malicious. Therefore the sigma protocol is active zero-knowledge
according to Definition 9.

By equipping the threshold sigma protocol with the Setup and Key-Gen of
Sparkle we obtain a threshold identification scheme T ID which has a one-way
Key-Gen, a super-polynomial challenge space and is special sound, active honest-
verifier zero-knowledge. Therefore by Theorem 1, T ID is secure against active
impersonation attacks.

It remains to prove that T ID has an extractable TPCmt as per Definition 13.
Indeed, at the end of the execution of TP1

Cmt, the simulator knows Ri from the
random oracle query made by the adversary and it can use them to simulate
an execution of TP2

Cmt. The simulation is perfect, since the simulator knows
all the input of TP2

Cmt. Notice that as long as Hcom is binding the protocol
TP2

Cmt is deterministic and, as long as Hcom is one-way the final output R has
high min entropy and the probability of an adversary being able to compute it
before the execution of TP2

Cmt is negligible. Indeed, since R =
∏

i∈S Ri where the
computations are executed in G, if at least one party in S is honest, the value R
will be uniformly distributed in G. We can notice that TPCmt is commit-release,
as per Observation 1.

By applying Theorem 2 we prove that Sparkle, the digital signature obtained
by applying the distributed Fiat-Shamir transform, is unforgeable against active
chosen message attacks.

6 Conclusions

Although threshold signature schemes have been known for a while and are
more popular than ever, the concept of threshold identification scheme received
very little attention. In particular, previous works focus their attention to pro-
tocols that do not allow communication between prover, either relying on some
pre-computation or on the presence of a trusted third party (the combiner).

In our work we propose a new definition for threshold identification schemes,
with the aim of capturing the multi-party nature of it. We model our definition to
mimic the traditional structure of threshold signature schemes, in order to draw
a link between the two worlds, thanks to a generalized version of the Fiat-Shamir
Transform.
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Following the footprint of M. Abdalla et al. in [1], we show the relation that
links the security of a threshold identification protocol and the security of the
threshold signature schemes derived by applying the distributed Fiat-Shamir
Transform.

Finally, we move our attention to threshold sigma protocols and their link
with threshold identification schemes. Similarly to the centralized case, we define
properties of the sigma protocols that, if satisfied, guarantee that the associated
identification schemes are secure. This provides a viable way to prove a threshold
digital signature unforgeable as we show for Sparkle in Section 5.

Future works. Our approach could streamline the security analysis of many
threshold signatures, however it covers only static corruptions, where the adver-
sary decide which party to corrupt at the beginning of the protocol. While this
is a relevant security notion, often used as in [4,24,14], many protocols are also
proved secure in the adaptive case, where the adversary can, at any time, corrupt
parties and learn their state [15]. It would be interesting to extend our analysis
to the adaptive case. The structure of the proof of Theorem 2 suggests that if a
threshold identification scheme is secure against adaptive adversaries (this can
be done by adding an additional oracle OCorrupt that can be adaptively called
to learn honest parties input) also the derived threshold signature scheme is se-
cure against adaptive attacks. In this case, the real challenge would be to define
properties on the threshold sigma protocol, in the same vein of the zero knowl-
edge properties, to achieve the adaptive security of the threshold identification
scheme.

It would be also interesting to strengthen our security models and prove it in
the UC framework, taking also in consideration the distribution of the signature
and not only the unforgeability property.

Finally the results we prove in this paper should pave the way for the defi-
nition and design of threshold NIZKP, by applying the distributed Fiat-Shamir
Transform to threshold sigma protocols.
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A Reduction of Lemma 1

In this section we provide an overview of the reduction described in the proof
of Lemma 1.

In Figure 4 we represent the impersonator I who executes the experiment
Expa-imp

T ID,I . I interacts with a challenger CT ID who initialises the experiment and
which will provide the challenge Ch∗ to I during the impersonation attempt, and
with a transcript oracle OT ID which answers the threshold identification queries
and takes part together with I to the creation of the transcripts generated during
the training phase.

The impersonator I runs the forger F as a subroutine and simulates the
experiment Expa-uf-cma

T DS,F , therefore it must simulate the challenger CT DS , the ran-
dom oracle OH and the signature generation oracle OT DS which are represented
with the bar Ō to recall that I simulates the oracles.

The simulation comprises four parts, each of them denoted by a different
enumerating system. Namely

Numbers (1)-(6): the initialization of the security game of T ID. I uses the
same data in the initialization of T DS for F . This allows I to correctly
simulate CT DS . Notice that the parties I corrupts are the same parties chosen
by F .

Lower case letters (a)-(o): the simulation of the sign queries made to OT DS
by F . In particular F sends to I a sign query for m, asking for the cooperation
of the parties in Jh. I, to simulate the sign oracle, starts an interaction with
OT ID asking for the same Jh. F forwards the messages received by OT ID
to F (steps (c-d) and (g-h)) and vice versa (steps (e-f) and (i-j)). In step
(k), when I receives the challenge Ch from OT ID, it updates the hash table
setting HT[m||Cmt] = Ch. Finally I carries out the whole signing protocol
with the support of OT ID.

Greek letters (α)− (β): F sends an hash query for x to I (who simulates
OH) and I answers with HT[x] if it is defined, otherwise it samples a random
digest and updates the hash table. When I receives the fp-th hash query, it
parses x = m∗||Cmt∗ and starts the impersonation attempt sending Cmt∗

(step (A)) to CT ID, who answers with a challenge Ch∗ (step (B)). Finally I
sets HT[x] = Ch∗.

Upper case letters (A)-(D): I starts its impersonator attempt during the fp-
th hash query of F (step (A) and (B)). After a polynomial number of hash
queries and sign queries the forger F outputs its forgery (Ĉmt, Ĉh, R̂sp)
(step (C)). At this point I uses it in its impersonator attempt. In particular
I sends R̂sp to CT ID (step (D)) as the response.
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Setup: hc = 0, sc = 0,HT = ∅,QT = ∅, fp $←− [qh(λ)]

F
(2)pp, pk, n, t

(3)J

(6){ski}i∈J

(C)(Ĉmt, Ĉh, R̂sp))

ŌH(α)x
(β)HT[x]

ŌT DS

(a)m, Jh

(d)TPCom
Cmt

(e)TPCom
Cmt

(h)TPRel
Cmt

(i)TPRel
Cmt

(m)TPRsp

(n)TPRsp

Impersonator I (simulating CT DS)

Setup

Attack to
T ID

CT ID

Training
T ID

OT ID

(1)pp, pk, n, t

(4)J
(5){ski}i∈J

(A)Cmt∗

(B)Ch∗

(D)R̂sp

(b)Jh

(c)TPCom
Cmt

(f)TPCom
Cmt

(g)TPRel
Cmt

(j)TPRel
Cmt

(k)Ch
(l)TPRsp

(o)TPRsp

Fig. 4. High level description of the impersonator I using a forger F as a subroutine.
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B Sparkle signature scheme

Below we provide the description of the Schnorr threshold signature Sparkle
using the same notation used in [15].

Setup(λ)→ pp

(G, p, g)
$←− GrGen(λ)

Hcom,Hsig
$←− {H : {0, 1}∗ → Zp}

pp← (p,G, g,Hcom,Hsig)

Key-Gen(n, t, pp)
→ (X, {Xi}i∈[n], {xi}i∈[n])

x
$←− Zp, X ← gx

{j, xj}j∈[n] ← IssueShares(x, n, t)
for j ∈ [n] do:
Xj ← gxj

return (X, {Xj , xj}j∈[n])

TSign1(m,S)→ (statek, ck)

rk
$←− Zp

Rk ← gr

ck ← Hcom(m, S,Rk)
statek ← (ck, Rk, rk, m,S)
return (statek, ck)

TSign2(statek, {ci}i∈S)→ (statek, Rk)

parse (ck, Rk, rk, m,S)← statek
return ⊥ if ck ̸∈ {ci}i∈S

statek ← (ck, Rk, rk, m,S, {ci}i∈S)
return (statek, Rk)

TSign3(statek, xk, {Ri}i∈S)
→ (statek, Rk)

parse
(ck, Rk, rk, m,S, {ci}i∈S)← statek
return ⊥ if Rk ̸∈ {Ri}i∈S

for i ∈ S do:
return ⊥ if ci ̸= Hcom(m,S, Ri)

R←
∏

i∈S Ri

c← Hsig(X, m, R)
zk ← rk + c(λkxk)
return zk

Combine({Ri}i∈S, {zi}i∈S)→ (m, σ)

R←
∏

i∈S Ri, z ←
∑

i∈S zk.
return σ ← (R, z)

Ver(X, m, σ)→ 0/1

parse (R, z)← σ
c← Hsig(X,m,R)
if RXc = gz return 1
else return 0

Fig. 5. Sparkle Signature Scheme

In the T ID of Figure 3 we avoided to explicitly write state. Moreover:

– TSign1 is the same of TP1
Cmt where the session id ssid is replaced by m.

– during TSign2 each party checks the received data and outputs its partial
commitment Rk. This is the same as the first line of TP1

Cmt, where the check
are omitted for the sake of readability.

– in TSign3 each party checks the consistency of each Cmti, computes the joint
commitment Cmt = R, computes the challenge and the partial signature zk.
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This is the same as the second part of TP1
Cmt as well as the first two line of

TPRsp.
– In Combine each party combines all the partial signatures to obtain the final

signature. These are the last two lines of TPRsp.

C Forking Lemma

First introduced by Pointcheval and Stern [26], the forking lemma is com-
monly used in proofs of security that require rewinding an adversary.

Let A be an adversary initialized with a random tape and having access
to a random oracle (modeled by an hash function). While the behavior of the
adversary is generally not defined, the adversary outputs some value that will
either satisfy some pre-defined conditions (thus winning the security game), or
not satisfy these conditions. If A completes its attack successfully, the forking
lemma gives a lower bound for the probability that A wins again the security
game in a second execution with the same random tape but with different outputs
from the random oracle [22]. More formally we have the following lemma, by M.
Bellare and G. Neven in [6]:

Lemma 3 (General Forking Lemma). Let q ∈ Z with q ≥ 1, H be a set with
|H| ≥ 2. Let IG be a randomized algorithm called input generator and let A be a
randomized algorithm that, on input x $←− IG, h1, ..., hq ∈ H, returns a pair (J, σ)
with J being an integer 0 ≤ J ≤ q and σ a side output. The accepting probability
p of A, is defined as the probability that J ≥ 1 in the experiment

x
$←− IG;h1, ..., hq

$←− H; (J, σ)
$←− A(x, h1, ..., hq)

The forking algorithm FA associated to A is the randomized algorithm that
takes as input x and proceeds as follows:

FA(x) :

R
$←− {0, 1}∗

h1, ..., hq
$←− H

(J, σ)
$←− A(x, h1, ..., hq;R)

If J = 0 Return(0, ϵ, ϵ)
h′
J , ..., h

′
q

$←− H

(J ′, σ′)
$←− A(x, h1, ..., hJ−1, h

′
J , ..., h

′
q;R)

If (J = J ′ ∧ hJ ̸= h′
J) Return(1, σ, σ′)

Else Return (0, ϵ, ϵ)
Then we have

P[b = 1|x $←− IG; (b, σ, σ′)
$←− FA(x)] ≥ p

(
p

q
− 1

|H|

)
.
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